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Annals of Mathematics, 136 (1992), 569-587

Positive line bundles on
arithmetic surfaces

By SHOUWU ZHANG*

Introduction

In [1] Arakelov introduced an intersection theory on an arithmetic surface
with the purpose of applying techniques from algebraic geometry to arithmetic
problems. Then in (3] Faltings proved a Riemann-Roch theorem and an index
theorem as analogues of some properties of an algebraic surface. Furthermore
in [7] and [8] Szpiro studied in detail the relation of numerical properties of
relative dualizing sheaves to some effective versions of the Mordell conjecture.

In this paper we obtain several results concerning Szpiro’s work in [7] and
8].

From Sections 1 to 5 we prove a Nakai-Moishezon theorem on an arith-
metic surface: A hermitian line bundle is ample if and only if it is numerically
positive. This was conjectured by Szpiro. The statement of this result will
be given as Theorem 1.3. In the proof of this theorem we will use a result
of Faltings in Section 2 on the existence of effective sections and a result of
Tian on Fubini-Study metrics in Section 3. The proof of the theorem will be
given in Sections 4 and 5. From Section 6 to Section 9 we prove an analogue
of Bogomolov’s conjecture about the discreteness of algebraic points on an
algebraic curve. This analogue gives discreteness with respect to the distance
function induced from an embedding of the curve into a multiplicative group.
The precise statement of the result will be given as Theorem 6.2. The main
known result, Faltings’s index theorem for arithmetic surfaces, will be quoted
in Section 7. The theorems in Section 6 will be proved in the last two sections.

*Research was supported by Columbia University and a Sloan Dissertation Fellowship. This paper
is a part of my doctoral Thesis at Columbia University. I would like to express my gratitude to my
advisor Lucien Szpiro for introducing me to the subject of the thesis, for having many discussions with me
concerning the subject and for inviting me to LH.E.S in the spring of 1989. I would like to thank Gerd
Faltings for the time and effort he spent in teaching me during my visit to Princeton in 1989-1990, and
Dorian Goldfeld for making it possible for me to study at Columbia and for correcting my English mistakes
in this paper. I am grateful to R. Ekik and the referee for pointing out several inaccuracies and misprints
in the orignal version of the manuscript.
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1. Ampleness and numerical positivity

By an arithmetic variety X of dimension d+1 we mean an integral scheme
X, whose structure morphism f : X — specZ is projective, flat and of pure
relative dimension d, and whose generic fiber Xq is regular. If d = 0, we say
that X is an arithmetic curve. If d = 1, we say that X is an arithmetic surface.
The arithmetic varieties we deal with in this paper always have d < 1.

A hermitian line bundle L on an arithmetic variety is presented by a
couple (L, || ||), where L is an invertible sheaf on X and || || is a continuous
hermitian metric on Lg, which is invariant under the complex conjugation of
Xc. If X is an arithmetic surface and [ is a nonzero meromorphic section of
L, then we have a linear function

! 3

() = ¢

(%)

log ||7]] + baiv(y)

on the space C®°(X¢) of smooth functions on X¢, where d’' and d” are dis-
tributions associated to 8,8. It is easy to check that w(L) does not depend
on the choice of I. We call w(L) the curvature form of L. In this paper we
always assume that w(L) can be extended to a continuous function on the
space C(X¢) of continuous functions on X with the supremum norm.

For a smooth hermitian line bundle L on a complex manifold M, the
curvature w(L) = 89/milog||l|| is said to be positive (resp. semipositive) if
for any nonzero tangent vector v of type (1,0) at any point p of M we have
w(—iv A7) = —vi/mlog||l|| > O (resp. > 0), where [ is a local section of L
near p such that I(p) # 0. For a hermitian line bundle L = (L,|| ||) (with
a continuous metric) on an arithmetic surface X we say that the curvature
w(L) is semipositive if there is a sequence of metrics || ||,, with semipositive
curvature on Lc such that

(1) limg || ||,,/Il || =1 uniformly on X¢, and

(2) limy, [ fw(L,| ||,) = J fw(L) for any continuous function f on Xc.

The divisor in this paper always means the Weil divisor on the scheme
X. A divisor is called vertical if all of its generic points are contained in the
special fibers of X, and a divisor is called horizontal if all of its generic points
are contained in the generic fiber of X.

Definition 1.1. Let X be an arithmetic surface and let L be a hermitian
line bundle on X. A nonzero section I of L on X is effective if ||l||(z) < 1 for
any r € X¢, and it is strictly effective if ||I||(z) < 1 for any = € Xc.

We say that L is effective (resp. strictly effective) if there is a section of
L which is effective (resp. strictly effective).
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We say that L is ample if L is ample, w(L) is semipositive and there is a
basis of I'(L®") over Z consisting of strictly effective sections for all sufficiently
large n.

Let X be an arithmetic curve and L be a hermitian line bundle on X.
The degree of L can be defined as follows: Let [ be a section of L; then

lF(L)/F(l.OX)l— eg|divl]| — o T
[hox. M@~ degldiv] gclg”’”( ).

deg(L) = log

Let X be an arithmetic surface and L and M be two hermitian line
bundles. Deligne (2] defined the intersection number L - M as follows: Choose
sections [ and m of L and M, respectively, such that [div lq] and [divmq] are
disjoint. Then define

LM = [divi] - [divm] — (|ltll, |m])c,

where

dldl/ . .
(el llmll) e = /X —1og |lU]| - log [|m|| + log ||Z[|[div m] + log [|m/|[div ].
We need to show that (||{||, ||m||)c makes sense here. Choose a smooth metric
| I on M. It follows that

[ ,
(el limlle =/10g||l||w(M,|| ||')+/10g #—”lw(L)HOgIImII'[dWl]-
The first term of the right-hand side makes sense, since w(M, || ||') is smooth.
The second term makes sense by the hypothesis on L, since log || ||/|| ||’ is a

continuous function.

Definition 1.2. Let X be an arithmetic surface and let L be a hermitian
bundle on X. We say that L is positive (resp. semipositive) if w(L) is semi-
positive, L - L is positive (resp. nonnegative) and deg L|p is positive (resp.
nonnegative) for any integral divisor D.

We say that L is relatively positive (resp. relatively semipositive) if
deg(L|r) > 0 (resp. > 0) for any irreducible vertical divisor F' and w(L) is
semipositive.

We say that L is horizontally positive (resp. horizontally semipositive) if
deg(L|p) > 0 (resp. > 0) for any irreducible horizontal divisor D.

The Nakai-Moishezon arithmetic theorem, which we will prove in this
section, is given as follows:



572 S. ZHANG

THEOREM 1.3. Let X be an arithmetic surface and let L be a hermitian
line bundle on X. Then L is ample if and only if L is positive.

Remark 1.4. This theorem was conjectured by Szpiro in [8],§2.2, and in
a letter to the author. The original form of his conjecture is slightly different
than Theorem 1.3 and can be stated as follows: If L is relatively semipositive
and horizontally positive, then, for any irreducible divisor D, one can find an
effective section ! in some positive power L®" such that I|p # 0. This original
conjecture and Theorem 1.3 are both induced by the following result:

THEOREM 1.5. Let X be an arithmetic surface and let L be a hermitian
line bundle on X which is relatively semipositive and horizontally positive.
Assume that Lq is positive and L? > 0. Then there is a positive integer N
such that HO(X, L®N) has a basis consisting of strictly effective sections.

Proof of Theorems 1.5 = 1.3. The “only if” part of Theorem 1.3 follows
directly from our definitions. We have to prove the “if” part. Applying The-
orem 1.5, we need only show that L is ample provided that L is positive. It is
enough to prove that for any line bundle M, for n sufficiently large, L®" ® M
has no base point.

We claim first that, for any effective divisor D, the bundle L®*" ® M|p
is ample for some positive n. Since the normalization 7 : D’ — D is finite,
it is enough to prove that the pullback L' on D’ of L®" ® M|p is ample. By
the same reasoning, we reduce the proof of ampleness to its restriction L” on

! o~ We know that D!, is a disjoint sum of smooth curves C;. The degrees
of L" on each C; equal those of L’ on their images C;, respectively, which are
positive. This implies that L” is ample on D!_,.

Secondly we claim that H(L®" ® M) = 0 for n > 0. For this we choose
an n sufficiently large that L®" ® M has no H! on X, for any p. From the
exact sequence

0—>L®"®M—>L®"®M—)L®"®M|Xp—>O,

the morphism
p:H(X,L®" ® M) — H(X,L®" ® M)

is surjective. Notice that H = H!(X, L®" ® M) is a finite-type module of Z.
This implies that p is invertible in H for each p. Hence we must have H = 0.

Now we are ready to prove that L®" ® M does not have a base point for
n > 0. Since H(L®" ® M) = 0 for n > 0, the restriction map

I'(X,L®" ® M) — [(X,, L®" ® M)



POSITIVE LINE BUNDLES 573

is surjective; especially we have a nontrivial section ! for L®" ® M. Also the
restriction map
['(X,L®"® M) — I'(divl, L®*" ® M)

is surjective for n sufficiently large. Choose n so that I'(divil, L®" ® M) has
no base point in divl. Then L®" ® M does not have any base point. O

For a lattice I in a normed real vector space we define the following two
numbers x(T') and A(T'): The number p(T) (resp. A(T")) is the smallest number
r such that the ball B(r) of radius r contains a basis of T' (resp. a basis of a
sublattice of I of full rank). For a hermitian line bundle L on an arithmetic
variety, let || ||, be the supremum norm on T(Lg) on X¢, where T(LR) is
considered as the invariant subspace of I'(L¢c) under the complex conjugation
of Xc. Then the numbers p(I'(L)) and A(T'(L)) are defined.

To conclude this section we will prove this lemma for ampleness:

LEMMA 1.6. Let L be a hermitian line bundle over an arithmetic variety
such that Lq is ample. The following conditions are equivalent:

(1) p(T(L®)) < 1 forn > 0;

(2) MT(L®™)) < 1 for n > 0.

We must prove the following lemma first:

LEMMA 1.7. Let sy,...,sy be linear independent elements of full rank in
a free abelian group G. Then a basis e, ...,e, of G can be found such that,
mGQ® Q, € = Zaijsj with |aij| <1.

Proof. We use induction on the n = rankG. It is trivial for n = 0.
Assume that n > 0. Let n; be the largest integer such that e; = s;/n; is in G.
Then G’ = G/Ze; is a free group and the images s),..., s, of sy, ..., s, are of
independent elements of G’ with full rank. By induction we can find a basis
€9, ---,€, of G with the form €} = 3., aj;s; in G’ ® Q such that laz;| < 1.
Let fi (1 < i < n) be elements in I' that have images €/. Then in G ® Q
the elements Zj>1 agjsj — fi are contained in Qe;, namely equal to cje;. It is
easy to check that {e,e; = f; + [eiler = 3., ai;) + ([ei] —ei)er:i> 1} isa
required basis for G. O

By Lemma 1.7, for the normed lattice I' we have the following inequality:

AT) < up() < raznk(P))\(F).

Proof of Lemma 1.6. The proof for conditions (1) — (2) is trivial. Assume
condition (2). Since Lq is ample, it follows that A(I'(L®")) < exp(—ne) for
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some € > 0 when n > 0. Consequently, for n > 0,
p(T(L®)) < rank ['(L®") exp(—en) < 1
by the Riemann-Roch theorem. O

2. Faltings’s theorem on the existence of effective sections

Faltings [3] proved that if L is an admissible hermitian line bundle, in
Arakelov’s sense, and L - L > 0, then there is a section with an L? norm less
than 1. Recently Gillet—Soulé improved Faltings’s result using an L2 - L™
comparison inequality. The final result is quoted as follows:

THEOREM 2.1 (Faltings, Gillet-Soulé). Let X be an arithmetic surface
and L be a hermitian line bundle on X such that Lq is positive, L? is positive
and w(L) is semipositive. Then L®" is strictly effective for n > 0.

Proof. When w(L) is smooth and positive, this is just the result given in
[4]. We can eliminate the positive condition for w(L) as follows: Let || ||,, be
a sequence of smooth metrics on L, which have semipositive curvatures, such
that || ||, is convergent to the metric || || of L, and w(L, || |,,) is convergent to
w(L,]|| ||) as a distribution on C(Xc). Let || |" be a smooth positive metric
on L. Replacing | ||,, by || I=17|| 'V/", we may assume that w(L, ]| ||,,) is
positive. Let € be any positive number and let En,e be the hermitian line
bundle (L, | ||,ef). Then the sequence L2, has the limit L? — 2edeg(Lq).
Choose € sufficiently small; we may assume that this limit is positive. Choose
an ng sufficiently large that || || < | [|,,,e® and L2, . > 0. Then, for sufficiently
large d, the power Efo‘fe has a strictly effective section s. It is easy to check
that s is also a strictly effective section of L®d, O

Using this theorem, one might prove that if L is relatively and horizontally
semipositive, then L? > 0; i.e., L is semipositive. See Section 8 for the details.

To conclude this section we would like to prove an analogue of Theorem 2.1
for an arithmetic curve.

THEOREM 2.2. Let X be an arithmetic curve and let L be a hermitian
line bundle on X. Then L is ample (i.e., w(L®") < 1 for n > 0) if and only
if deg L is positive.

We need the Riemann-Roch formula for an arithmetic curve before giving
the proof of Theorem 2.2. Let us define the Euler characteristic x(L) of L as
follows:

x(L) = —logvol(L) = —logvol(T'(L) ®z R/T(L)).

Then we have the Riemann—Roch formula:
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LEMMA 2.3. x(L) = deg L + x(Ox).

Proof. Let [ be a section of L. This gives a morphism [ : I'(Ox) — I'(L)
and therefore also gives a morphism of two metrized spaces lg : I'(Ox) R —
I'(L) ® R. The ratio of volume forms is [],cx I(z). It follows that

vol(I(L) ® R/T( - Ox)) [Loexc IUll(2)
vol(L) = = vol(Ox c .
= —r@mra-ox COE@Ii- ox)
This gives the Riemann—Roch formula by the application of —log on both
sides. O

Proof of Theorem 2.2. If L is ample, then for some integer n > 0,
L®" has a strictly effective section [. This implies that

_1. - 1
L="degL® == ivi— ! .
deg L = — deg - [degdlvl S ||(ac)] >0

z€Xc

Conversely, if deg L is positive, then, by Lemma 2.3, x(L) — oo asn — oo.
So by Minkowski’s convex-body theorem, L®" has a strictly effective section I
for a positive integer n. Letting {l1,l2,...,In} be a basis for I'(L) over Z, we
can choose a positive integer m such that I™l;, i = 1,2,..., N, are all strictly
effective sections of L®(™™+1), Since T'(L") has the same rank for all n, these
sections already form a basis of a sublattice of I'(L®(™"*1)) with full rank. It
follows that L is ample by Lemma 1.6. O

3. Tian’s theorem on Fubini—-Study metrics

Let X be a compact complex manifold and let L be a hermitian line
bundle with smooth metric and positive curvature. Denote by dz the measure
induced from w(L) on X. We take a norm || ||, on I'(L®") as follows:

= /X W2 (z)dz,

where || || is the metric on L®".

Let {l1,l2,...,Ix} be an orthonormal basis for ['(L®"). For n > 0,
by the Kodaira embedding theorem, L®" is very ample. Especially we have
> ||lz||721(w) # 0. We define the Fubini-Study metric || ||, on L®" by the for-

mula .
nm 021 ()

0l 2) = 2
VE (@)

One easily checks that the metric here does not depend on the choice of the
orthonormal basis. The following theorem is Lemma 3.2(i) of [9].
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THEOREM 3.1 (Tian). Uniformly on X,
1
Ly _140(L).
I'll7 n
Before using this theorem to give some estimates on restriction maps of
a positive hermitian line bundle, we introduce the following notation:

Let V; and V, be two normed spaces over R and let a : Vi — Vs, be a
surjective morphism. Let us denote by || ||; the norm on V;. We define

g(a) =q(V1 — V) =sup inf log lylly

seVyveai@)  ||zll2’
THEOREM 3.2. Let X be a compact complex manifold and let Y be a finite
set of distinct points that are considered as a subvariety of X. Let L and M
be hermitian bundles on X with continuous metrics. Assume that L is ample
and the metric || || on L is a limit of smooth metrics || ||,, with semipositive
curvatures; this means that, uniformly on Xc, || ||,./|l |[(z) converges to 1.
Then, for any € > 0, a positive integer ng can be found such that, for any

n > nop,
g(0(X, L% ® M)syp — T(Y, L= @ M)qp) < ne.

If Xr is a regular algebraic variety defined over R such that X = Xr®C,
YR is a reduced subvariety of Xr of dimension 0 such thatY = YR®C, and L
and M are invariant under complex conjugation, then the above assertion still

holds in the spaces T'(Xw,-) and I'(XR,-) with subspace norms induced from
['(X,-) and I'(Y,").

Proof. Let us denote the first assertion in the theorem by P(L, M). Let
L, (resp. M,) be a sequence of hermitian line bundles with the same line
bundle L (resp. M) and let their metrics be convergent to the metric of L
(resp. M). Then it is easy to see that P(Ln, M,) for all sufficiently large n
implies P(L, M). By the hypothesis of the theorem we may assume that the
metric on L is smooth and its curvature is semipositive and that the metric
on M is smooth.

Since L is ample, we can choose a metric || ||" on L such that L' = (L, || ||')
is positive. Then the sequence of metrics || ||'~ Um ||’1/ ™ is convergent to the
metric of L. We reduce the problem to the case where L is positive.

Suppose now that L is positive. Choose a positive integer ng such that
L® ® M is very ample for n > mg. Put the metrics | ||, /" on L, where
| |I", is the Fubini-Study metric. Then Tian’s theorem claims that || ||'1/ "
convergent to the metric of L. We are left with proving P(Ly, M) for all

n > ng, where L, = (L, || ||73/")
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Fix an n > ng. Since the assertions P(LE", M ® L®) (0 < i < n —1)
together imply P(L,, M), we need only prove P(L®", M) for arbitary M. For
each 1 < i < p we can find a basis {l;1,li2,...,} of I'(X, L®" ® M), which is
orthonormal with respect to the L? norm such that l;j(z;) = 0 for i # j and
li(z;) # 0, where Y = {z1,...,z,}. Let || ||" denote the metric on L®"; then
one easily sees that ||/;;|| obtains its maximal value at z;. In fact

il ) = " i)
v/ 225 5113 (=)
For any given M, choose a positive integer dy such that the map
[(X,L®%" ® M) — (Y, L®%" @ M)

is surjective. Hence we can find sections s; (1 < i < p) of I'(X, L®%" @ M)
such that s;(z;) = 0if i # j and s;(z;) # 0. It follows that, for d > dy,

2 = |l13]|' ().

p
LY, L*™ ® M) = @) Cl % si(w:).

i=1

For any element | = > ailfi"d"si(xi) in this space, take [ to be the section
> ailiis; in T(L®" @ M). Then the image of [ in @?_, L& ® M|,, is I. Let
| || also denote the induced metric on a power of L, or on a tensor product
of a power of L, with M. Then

21/ () < pmax |agf[|sq ' [11s] 4~ ()
< cmax g llsill'(23) llal| = ()
= cmax [/ (z:),
where a constant ¢ = psup; , ||si[|'(x)/||s:||'(x;). Since ¢ does not depend on
d and n, it follows that, for any € > 0 and any sufficiently large d,
q(T(X, L8 @ M)sup — T(Y, LE™ @ M)syp) < ¢ < de.

This proves P(L®", M). The first assertion of the theorem follows.
The assertion for real manifolds is obviously true. O

Remark 3.3. The proof of Theorem 3.1 is based on Hoérmander’s
L? estimate. Using this method, one can give a direct proof of Theorem 3.2.
Ullmo’s report [10] has given details for such a proof.

4. On restriction maps of line bundles

Let X/specZ be an arithmetic surface. Let L be a line bundle on X such
that L is positive on the generic fiber and semipositive on the special fibers.
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Let M be any line bundle on X and D be any irreducible divisor on X. We
have the following analogue of Theorem 3.2:

THEOREM 4.1. Consider the exact sequence
I(L*"® M) - T(D,L®*"® M) — H(L®" ® M(-D)).

The image of I'(D, L®" ® M) in H' (X, L®" ® M(—D)) has finite order for n
sufficiently large. Let hy, be the order of this image. Then for any € > 0,

hn S e€’ﬂ
for sufficiently large n.

LEMMA 4.2. Let H(n) denote the group @, imes H'(L®" ® M(—D)) ®
Z/pZ. Then for sufficiently large n, the group H(n) is finite and its order is
bounded uniformly in n.

Proof. Apply the Riemann—-Roch theorem to fibers of X /Z. O

LEMMA 4.3. There are a positive integer ng and an effective vertical di-
visor Vo of X such that L®™(V;) is positive on each special fiber of X.

Proof. Consider the set S of pairs (n,V), a positive number n and an
effective vertical divisor V such that L&"(V) is semipositive on each fiber of
X. Let Z be a function on S defined as follows: Z(n,V) is the number of
irreducible vertical divisors over which L®"(V) has degree 0. Let (ng, V) € S
be such a pair from which Z gets its minimal value. We need to prove that
Z (’n,(), V()) =0.

Let R = I'(Ox). Then all special fibers of X/spec R are connected.
If Z(no, Vo) is not 0, then we can find two vertical divisors F,G such that
degp(L®™(Vp)) = 0, degg(L®™(Vp)) > 0, and F -G > 0. For sufficiently large
n we have

Z(nng, Von + G) < Z(ng, Vo) — 1.

This gives a contradiction. O

Proof of Theorem 4.1. For any n > 0 let N,, be the smallest positive in-
teger IV such that NI'(D, L*"® M) is contained in the image of ['(X, LE"®@ M).
By Lemma 4.2 it suffices to prove that N, < e for any given € > 0 and large
n.

Choose L#™(Vp) as in Lemma 4.2. Since L&™(V;) has the same restriction
to the generic fiber as L®™, we have a positive integer N such that N L& (V)
is contained in L®™. For any n; > 0 choose d sufficiently large that

H' (X, L&) (g1,) @ M(-D)) = 0.
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Now N4I'(D, L&4m+m) @ M) is contained in NOT'(D, L84™+™)(dV,) @ M),
which is the image of NT'(X, L&+ (dV,)® M) and, in turn, is contained in
the image of I'(D, L®4m0+™)@ M). This proves that Ninginyya < N 4 Replacing
M by M ®L®, 0 < i < ng+ ny, we obtain N, < N*/™+70 for n >> 0. Since
ny can be arbitrarily large, this shows that N, < e for any given ¢ > 0 and
any sufficiently large n. O

5. The proof of Theorem 1.5

We need a lemma on a normed lattice before we can give the completed
proof of Theorem 1.5. First of all let us fix the following notation.

Let T" be a finitely generated abelian group. Assume that there is a norm
on V =T'®zR. Let T be the image of I' in V. We denote by A(T') the smallest
number A such that there is a basis {l1,ls,...,l,} for a sublattice of T of full
rank such that max; ||i;|| < A.

Let 0=IycCcTIycC---CT, CT,y =T be a filtration for the lattice
I'. Assume that I'; ® R has a norm || ||;; then I';/T;_; ® R has the quotient
norm induced by that of I'; ® R. Notice that the metrics on I',1; ® R and
I' ® R may not be the same. We let p(I';) denote the norm of the morphism

LEMMA 5.1.

A(T) < p(Crs)ATns1/Tn) + > p(Tig1)A(Tiga/Ti)rankg (Tip1 /T5).

<n

Proof. We prove the following special case first: Assume that for each %
the norm on I'; ® R is induced by I' ® R. In this case we have p(I';) = 1.
By induction on n, we need only prove the inequality A(I') < AT'/T) +
rank W A(T;). Let Vi =T'; ®z R, rankI'; = d; and rankI’ = d; + dz. Choose
1,15,..., 1y in T such that their images mi, ma, ..., mq, form a basis for I T/Ty,
and max; ||m;|| = A(IT'/T'1). Choose ly,1a,.. ldl m I'; such that they form a
basis for Ty, and max; ||l;|| = A(T1). Choose .,1g, in V such that, for
each 4, I/ has an image m; and [|I]|| = ||m;]|. Slnce l” —1 is in V1, we have real
numbers o;;, 1 < i < dp and 1 < j < dy, such that

-l = Z il

Set Iy, = lj + 3 _;laij)lj € T for 1 <4 < dy. Now {lg, 13, .. S ld+dy} IS a
basis for a sublattlce of full rank in T and
< |1l +lel B

I — Z(aw [e])1

J

Illay+ll =
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This implies that A(I") < A(I'/T'1) + rank ') A(T'y).

Now we want to prove the lemma for the general case. Let I'} be the
image of I'; in " with the subspace norm on I'; ® R induced by that of ' ® R.
Then, by the lemma in the above special case,

AT) < Y AT /TY) rank(Tit1/T3) + A(Tn41/Tn)-

i<n
We need only prove that
AMIi41/T5) < AMTig1/Ti)p(Tig1)-

Fix onei. Let {I1,...,l,} be a basis for the image of [';;1/T; in T';; 1 /T;®R
with norms bounded by A(T;+1/T;). Then we can choose elements {li,...,1,}
in I'; ® R with images {l1,...,[,}, and their norms are bounded by A(T';+1/T;).
Let {I1,...,1,} be the images of {l;,...,l,} in I';,; ® R. Then the norms of
{li,...,1} are bounded by A(T'i4+1/T;)p(Ti+1). Since the images of {l},...,l,}
in I, /T; ® R are integral and form a basis for the image of I'; ,/I'j, this
implies that

A(T1/T7) < AMTiv1/Ti)p(Tin).- a

Proof of Theorem 1.5 (completed). Replacing L by L®" for some positive
integer n if necessary, we may assume that there exists a strictly effective
section [ of L. Let [divl] = Dy + D2+ - - - + Dp,, where the D;’s are irreducible
divisors on X. For each i put a hermitian metric on O(D;) such that the
product of these bundles is L. For each nonnegative integer N let Ly denote
the bundle O(D; + Dy + - - - + Dy) with the product metric introduced above,
where D, ,, = D;. Denote by I'y the lattice I'(X, Ly) in the normed space
I'(XR, Ly) with the supremum norm on X¢. By Lemma 1.6 we need only
prove that A(I'y) < 1 for N = nm > 0.

We want to apply Lemma 5.1 to 0 C I'y C I'y C --- C I'y in order to
estimate A(T'y). Notice that if N’ = n'm + r, then the morphism I'yy — 'y
is the multiplication by I"~"'I', where I’ is the canonical section in O(D,1 +
D,i9+ -+ Dy,). So the norm p(I'y) of the induced map from I'y» ® R to
Iy ® R is bounded by exp((N' — N)ec; + ¢2), where ¢; and ¢y are positive
numbers.

It remains to estimate A(I'yv41/I'nv). From the exact sequence

0— Lyx» — Lyry; — LN’+1|DN/+1 —0
we have the embedding

0— FN’+1/FN' - F(DN/+1) LN'+1)-
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Since deg Lq > 0, the cokernel of this map is a finite group. Let hy,; denote
its order. Then we have the following filtration:

0 C Anry1(T(Dnrs1, Lviy1)) C Ty /T

Applying Lemma 5.1 to this filtration, we obtain

AT N1 /Tar) < pnrg1hy A AT (Dnrg1, L)),

where pny1 is the norm of the map from I'(Dyr41, Ly4+1) ® R with the supre-
mum norm to I'y.y1/Tn @ R with the quotient t norm induced from the
supremum norm on 'y ® R.

We estimate the numbers on the right-hand side of the above inequality
as follows:

(a) By Theorem 4.1, hy4; is bounded by const - exp(Ne;), where € is
any positive number.

(b) By Theorem 2.2, A\(T'(Dnr11, Ly11)) is bounded by const - exp(—N'-
positive constant).

(c) By Theorem 3.2, pn41 is bounded by const-exp(Nez), where €, is any
positive number.

Combining these estimates with small ¢; shows that A(Ty/,1/Tpy) is
bounded by exp(—c3N’ + ¢4), where c3 and ¢4 are positive numbers.

Now applying Lemma 5.1, we obtain

ATN) < ) exp((N' — N)ey + cz) exp(—N'es + c4) rank(y:/T'yi-1)
N'<N

< exp(—csN + cg) I‘aélk Ty,

where c; and cg are positive numbers. From the Riemann-Roch theorem on
algebraic curves we know that rankzI'(X, Ly) is linear in N. This implies
finally that

AMT(X,L®"0)) < 1

for n > 0, completing the proof of the theorem. O

6. Discreteness and positivity

Let A be an abelian variety defined over a number field K and let C C A
be an embedding of a smooth, projective, algebraic curve of genus > 2. Let
hnt be the Néron-Tate height on A(K) defined by an ample line bundle on
A, where K is an algebraic closure of K. Let us define a function dnT on
A(K) x A(K) as follows:

dnt(Z,y) = vV hno(z — y).
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We can easily check that dyr is a semipositive distance function on A(K).
This means that, for any z,y, 2 on A(K),

(1) dnt(z,y) > 0; actually dnt(z — y) = 0 if and only if z — y is a torsion
point,

(2) dnr(z,y) + dnr(y, 2) 2 dnr(z, 2),

(3) dnr(z,y) = dnr(y, @)

Conjecture 6.1 (Bogomolov). C(K) is discrete under dyt. This means
that, for any p € C(K), there is a positive number € such that the set of
points g € C(K), with the property that dnt(z,y) < €, is finite.

Clearly Conjecture 6.1 implies a result of Raynaud [6] that, for any point
p € C(K), there are only finitely many points ¢ € C(K) such that p — q is
torsion.

The main result we will prove here is an analogue of Conjecture 6.1 for
multiplicative groups. Let us explain it as follows: Recall the definition of a
canonical height function on the projective line. Then, for p a place of Q, let
Q, denote one fixed algebraic closure of the p-adic numbers Qp and let | |,
be the canonical norm function on Q, such that |p|, = p~! if p is finite and
la + bv/—1|eo = Va2 + b2 for a,b € R. For a point (zg,1) in P}(Q), let K
denote the Galois closure of Q(zg, ;). Now define

hoo(z0, 1) = ——1—— Z Z log max(|ozolp, |oZ1]p)-
[K ’ Q] p a:K—pr

Let G,, be the multiplicative group of dimension 1, which we consider as
the complement of {zoz; = 0} in P!. Let us still denote by h its restriction
on G, and its product on G?,. Then the function dw,on (G?)? is defined as
follows:

doo(T,Y) = hool(zy ™),

where if £ = (z1,...,%,) and y = (Y1, . .. ,Yn), then zy™ = (2197, .., 2oy ).
It is easy to check that d is a semipositive distance function on G%,(Q). This
means that d., has the corresponding properties to (1), (2) and (3) of dnr

described before Conjecture 6.1.

THEOREM 6.2. Let C — G}, be an embedding of a curve defined over a

number field K. Assume that C is not a translate of a subgroup GJ,. Then
C(K) is discrete under dy.

In the spirit of Szpiro (8], the discreteness of algebraic points follows from
the positivity of certain line bundles. Let us explain this in more detail.

Let X/Z be an arithmetic surface and L be a hermitian line bundle on
X such that Lq is positive. Then L defines a height function h; on X(Q) as
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follows: Let z € X(Q) and let D(z) be the irreducible divisor on X with a
generic point . Then _
Let us define
er(Xq) = xei)r(l(fQ) hi(x)
and
e7(Xq) = lim zei)r(l(fQ) hi(z).

THEOREM 6.3. If L is relatively semipositive and deg Lq >0, then
/ L? /
2€E > @ Z€E+€E

Remark 6.4. Here is an example which shows that the equalities in The-
orem 6.3 may hold. Let E/Ogk be a semistable model of an elliptic curve with
a j-invariant integral. Then E/Og has good reduction everywhere. Let P be
any section of E, which we identify with the line bundle O(P) with a canonical
Arakelov metric. By a theorem of Szpiro [8], P? = 0 and, by Theorem 7.1, we
can show that e, = ep = 0.

For an application to Theorem 6.2 we need to define a metric | | on the
bundle O(1) on P!. Let sp and s; be two canonical sections of O(1). The
metric | |« is defined so that

T
[50]eo (20, 21) = 1/ max (1, rz—;t) .

Its curvature w(] ) can be extended to a function on C(Pg): for any con-
tinous function f on P1,

2
/ f0(O),] o) = o= [ f(e®)a8,
P1(C)

271'0

where x; = €?zj. Also the metric | |, (resp. its curvature) is the limit of the
metrics | |; (resp. the curvature of the metrics | |;), where the | |; denote the

metrics defined by
~1/1
x
]80!1(1:0,1‘1) = (1 + I-—1-|l> .

This shows that the results in Sections 1-5 are valid for | |-
It is easy to see that the height function he, on P!(Q) is defined by

(O(1), ] loo)-
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Let C be any curve in G',}I~ defined over K. Let us denote its Zariski
closure in (P})" by X. Let 7 : X — X be its normalization and Leoc be the
pullback of (O(1),]| |s) on X. Then we have the following result:

THEOREM 6.5. Assume that C is not a translate of a subgroup of G7,;
then
L% o >0.

Proof of Theorems 6.5+ 6.3 = 6.2. Let p be an algebraic point on C. We
need only prove that
lim inf d(p,q) > 0.
e (P, )
Let G, — G, be a morphism of a variety by the multiplication of p~! and
let C’ be the image of C under this morphism. Then C’ is still not a translate
of a subgroup and

lim inf d(p,q) =lim inf dw(g,1)=lm inf heolq) =¢€; .
T eC®) =(P,0) T eC(R) =(0:1) T () o(2) = €L

This number is positive by Theorems 6.3 and 6.5. O

7. Faltings’s results on the index theorem

Let m : X — specOg be a morphism from an arithmetic surface to the
spectrum of the ring Ok of integers of the number field K. Assume that the
generic fiber of 7 is regular and of positive genus. Let L be a hermitian line
bundle on X of degree 0. Then there are a vertical divisor ¢9 with coefficients
in Q and a smooth function ¢ on X¢ such that the following conditions are
verified:

(1) for any vertical divisor F of X, (L — ¢o)F =0,

(2) w(L) + 00/ Tigoo = 0.

Replacing L by a positive power of L, we may assume that ¢p has integral
coeflicients.

Let L(—¢o — ¢o) denote the line bundle L(—¢) with the metric
| Iz, exp(¢oo) on Lc. Then L(—¢o—¢) has 0 intersections with each vertical
divisor and each hermitian line bundle of the form O(f) = (O, || || exp(—f)),
where f is a smooth function on X¢ and || || is the canonical metric on O. We
have the following index theorem:

THEOREM 7.1 (Faltings, Hriljac). Let h(Lk) denote the Néron-Tate
height of the class of Lk ; then

]

LK QL)+ 8+ [ 0L
Xc ™
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In particular L- L = 0 if and only if some positive power is isometric to the
trivial line bundle with some constant metric.

Proof. If ¢ = ¢oo = 0, the theorem follows from Theorem 4 in [3]. In
general, replacing L by some positive power (the assertion does not change), we
may assume that ¢ has integral coefficients. Since L(—¢p— doo) - O(¢0 + hoo) =
0, one has

—[K : QIA(L) = L(—¢o — ¢0)* = L — O(¢0)* — O(o0)*.

We obtain the formula in the theorem, since O( ¢oo f Xc Poo 88/m Poo-
Since the three terms in the right-hand side of the formula in the theorem are
all nonpositive, L - L = 0 will imply that all of them are 0. This implies that
Lk is a torsion line bundle, ¢ is a combination of vertical fibers and boo 18
a constant function on X¢. This is equivalent to the second assertion in the
theorem. O

8. The proof of Theorem 6.3

We prove the lower bound for L - L first.

Let L' be the hermitian line bundle L(—e £) on X. We want to prove that
L'-L' > 0. Suppose that L' - L’ < 0. Let M be an ample hermitian line bundle
on X and p(t) be the polynomial

L' L' +2I' - Mt + M - M¢.

Then there is a positive number ¢y such that p(t) = 0 and p(t) > 0 for any
t > to. Let a and b be two positive integers such that a/b > ty and let L” be
the hermitian line bundle L'®® ® M®?. Then

"I =wp (b) > 0.

By Theorem 2.1, L"®" is effective for some positive integer n, and this implies
that L' - L"®" > 0or L' - L' + L' - Ma/b > 0. Since a/b can be any rational
number bigger than ¢y, and p(ty) = 0, we have

L' I'+L Mty>0

and
L' Mty+ M- Mt2 <0.

We get a contradiction, since L' - M > 0 and M - M > 0. This implies that
L'-L'>o.

Now let Dy be any effective divisor on X and € be any positive number.
Then L'(¢) is horizontally positive. By Theorem 1.5 there is a section s of a
power L'(¢) such that div(s)q and Dyq are disjoint. Write div(s) = Y D; + ¢,
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where the D;’s are all irreducible and horizontal and ¢ is vertical. Then we
have _ _ _ —/( )
L-D L-D; L-L'(e
inf ———— < min < .
DoqnDq=¢ deg(Dq) ~— i deg(Diq) ~ degLq

Since Dy and € are arbitrary,
L-L > degLq(ez + €}).

We can now start to prove the upper bound for L - L. Fix a positive
number e. Let us denote by L” the bundle L(—L?/(2deg(Lq)) + €). Then
L".L" > 0. By Theorem 2.1 there is a strictly effective section [ of a power of
L". This implies that any irreducible horizontal divisor D of X, which is not
in the support of div(l), has a positive intersection with L”. This implies that
e’E,, is nonnegative or

Since € is arbitrary, we obtain our inequality in the theorem. a

9. The proof of Theorem 6.5

Before we give the proof of Theorem 6.5 let us recall a theorem of Thara,
Serre and Tate on the torsion points on a curve in a multiplicative group. Note
that this is an analogue of Raynaud’s theorem [6] for an abelian variety and
both of these theorems were conjectured by S. Lang.

THEOREM 9.1 (Ihara, Serre and Tate). Let C be a curve in a multiplica-
tive group G, which is not a translate of a subgroup. Then there are only

finitely many torsion points of G}, lying on C.
For the proof see [5].

Proof of Theorem 6.5. Let m; be the i*f component of the morphism X -
(PY)". Let d; = degm; and L; = 7}(O(1),| |x). Then we have Ly, = 3" L;.
For each i, since the curvature and the height associated to L; are pull-
backs of those associated to w(O(1),] ||), it follows that L; is both rela-
tive semipositive and horizontally semipositive. By Theorem 6.3, or by some
direct computation, one has L? = 0. It follows that L; is semipositive. For
each 4, one has L; - L; > 0. Hence L% > 0.

If L2, = 0, then we have L; - L; = 0 for any i, j. This implies that

(djl_;i — dil_;j)2 =0.

By Theorem 7.1, the djﬂi — diI_,j are all numerically equivalent to 0.
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Let S C C consist of all points that have at least one torsion component.
This means that, for any point p in S, we can find an 7 such that

S i) =o.

gen; ! (p)

By the above argument, this equation holds for all 7. In other words, S is the
set of all torsion points on C. By the above construction, we know that S is
an infinite set. The assertion follows from Theorem 9.1. O
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