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POSITIVE LINE BUNDLES ON ARITHMETIC VARIETIES

SHOUWU ZHANG

INTRODUCTION

For an arithmetic variety and a positive hermitian line bundle, in this paper,
we compute the leading term of the Hilbert function of the line bundle, show the
ampleness of the line bundle, and estimate the height of the variety in terms of
the density of small points. In more details, our results are explained as follows.

Leading term of the Hilbert function. For an arithmetic variety X which we
refer to as a projective and flat integral scheme over specZ, and for a relatively
positive hermitian line bundle L, the Hilbert function xsup(F(L®"))’ of positive

integers is defined to count the volume of the lattice I'(L®") of integral sections
in the space I"(Lg’ ") of real sections with supremum norm. We want to prove
that the leading term of this Hilbert function as n — oo is given in terms of the
height of X in as §1. This is known as a theorem of Gillet and Soulé [GS2] if X
has a regular generic fiber. Beside this known result, our proof uses Hironaka’s
theorem on resolutions of singularities and Minkowski’s theorem on successive
minima. By Hironaka’s theorem, we may construct

(1) two sequences of hermitian line bundles {L)} and {L]} on a fixed
gergaric resolution X of X, such that they are numerically close to the sequence
{L®"};

(2) some sequences of embeddings with small norms

_ I'(L)) c T(L®") c T(L)).

By Minkowski’s theorem, we may obtain a lower (resp. upper ) bound for

the Hilbert function of L by corresponding functions induced by {L;} (resp.
{L;'} ). Applying the known results on X we obtain the required estimate for
{L®"}.
Arithmetic ampleness. For an arithmetic variety X and a numerically positive
hermitian line bundle L, we prove that the group I (L®") has a basis consisting
of small sections when 7 is sufficiently large in §4. We use a similar idea as
in the context of algebraic geometry [Ha]. By our estimate of the leading term
of the Hilbert function and by some lattice arguments, we reduce the proof to
proving that, for any subvariety Y, of X, the map

N(L") = Ly )
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is “surjective” in the metric sense: given finitely many fixed sections /,, --- , [, ,
any section /" ---l,‘:" (a; 20) of L®(°“+"')|Y with a, +--- + a, sufficiently
large can be lifted to a section on X with a small supremum norm. We prove
this in two steps. The first step (§2) is devoted to proving the assertion for
compact complex manifolds using Hormander’s L*-estimate. The second step
(§3) is devoted to proving the assertion for singular varieties, where we introduce
the ampleness of the metric and work on nonarchimedean metrics at the same
time.

Density of small points. We have two results under this title. The first result
is an estimate of the height of an arithmetic variety in terms of the density
of small points (§5). This gives a more precise version of Kleiman’s theorem
on ampleness of a line bundle in terms of intersection numbers with curves,
in the context of algebraic geometry. The proof of our result is similar to that
of Kleiman’s theorem [Ha]. One typical consequence is as follows: for an
arithmetic variety X and a semipositive hermitian line bundle L, the height
of X is O if and only if, on any nonempty Zariski open subset U, the height
function on U(Q) has the infimum 0.

The second result (§6) is as follows: a subvariety X of a multiplicative group
G"m is of the form xH , where x 1is a torsion point and H is a subgroup, if
and only if small points of X(Q) are dense with respect to the usual height
function h_, . For proof, we embed G, to (P"Y" as usual. Then B 1S
equivalent to a height function 4_ induced by a hermitian line bundle o ()=
(0(1), || - ll,) - Approximating || - ||, by smooth metrics, we are reduced to
proving that the height of the Zariski closure of X with respect O (1) is
positive, if X cannot be written in the form xH . We prove this by induction
on dim X, by representing c,(0__(1)) by certain canonical sections and by the
Ihara-Serre-Tate theorem [Lan].

For an arithmetic surface, the arithmetic ampleness of a positive hermitian
line bundle was conjectured by L. Szpiro and was proved in [Z1]. For an arith-
metic surface without bad reduction, Szpiro [Sz] obtained a relation between the
positivity of the relative dualizing sheaf and the discreteness of algebraic points
with respect to Néron-Tate height. Such a result has been generalized to the
general case, by arithmetic ampleness, and by an admissible pairing on a curve;
see [Z2]. We expect to obtain some results in higher dimensional varieties by
using the results in this paper.

I learned subjects from L. Szpiro and G. Faltings and I am very grateful to
them for encouragement during the preparation of this paper and for the time
they spent in teaching me. I would like to thank X. Dai, P. Deligne, G. Tian,
and S. Yeung for helpful conversations, and the referee for pointing out several
inaccuracies in the original manuscript. The research has been supported by
NSF grant DMS-9100383. I would like to thank IAS for its hospitality.

1. HEIGHTS OF ARITHMETIC VARIETIES

(1.1) Let X be a complex variety of dimension d, and let L= (L, | -||) be
a hermitian line bundle on X . We say that the metric on L is smooth if, for

any (analytic) morphism f from the disc D¢ = {z € c? . |z} < 1} to X, the
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pull-back metric on f*(L) is smooth. For example, if X is a subvariety of a
complex manifold and L is the restriction of a smoothly metrized hermitian
line on the manifold, then the metric on L is smooth. In this section we always
assume that all hermitian line bundles we deal with have smooth metrics.

For a hermitian 11ne bundle L on X, we say that L is semlposmve if for

any morphism f : DY - X the curvature form c1 (f*(L)) is semipositive,
where cl(f (L)) is a (1,1)-form on D? defined to be fﬁ log ||l|| , where [/ is an
invertible section of f*(L) on D“.

(1.2) By an arithmetic variety X of dimension d , we mean an integral scheme
of dimension d such that the structure morphism 7z : X — specZ is projective
and flat. A hermitian line bundle L = (L, | -|) on X is defined to be a
line bundle L on X with a hermitian metric || - || on L. = L®,C, the
pull-back of L on X, = X ®specz SPECC, such that || - || is invariant under
the complex conjugation of X,. We say that L is relatively semipositive if
(1) L is relatively semipositive: for any closed curve C on any fiber of X
over specZ, the degree deg(L|.) of L on C is nonnegative; and (2) H I| is

semlposmve for any finite morphism f : D¢ - X, the curvature form ¢ ( L)
is semipositive pointwise.

Let X be an arithmetic vanety, let L be a hermitian line bundle on X, and
let f: X — X be a generic resolution of singularities of X . This means that
f is a birational morphism from an arithmetic variety X with regular generic
fiber over specZ. By the Hironaka theorem [Hi], such a resolution always
exists. Then f*(L) 1s a hermluan line bundle (with smooth metric) on X, and

the number ¢, (f* L)Y = e f L)? is defined as in [GS1], [F2]. One can prove
that this number does not depend on the choice of f. In fact if fi: X - X
(i=1, 2) are two resolutions, then we can find a third resolution

g: X - X X X2.

Using the projection formula, one can prove that both ¢ ( f" L) coincide with
¢ ( f* L , where f is the canonical morphism from X to X. We call this
number the height of X with respect to L, and denote it by c (L)d .

(1.3) The main aim of this section is to compute the leading terms of “Hilbert
functions”. We fix the following notation. Let ¥ be a real vector space with
anorm | -], and let I" be a lattice of V. Then there is a unique invariant
measure on V' such that the volume of the unit ball {v € V : |lv|| <1} is 1.
We define that

X (@) = —logvol(V/T).

Let X be an arithmetic variety, let L be a hermitian llne bundle, and let ||-||
denote the supremum norm on I'(Xg, Lg):

1llgp = xgl,\l’l()c) NN (x).

sup

Theorem (1.4). Let X be an arithmetic variety of dimension d , and let L and
N be two hermitian line bundle on X such that Ly is ample and L is relatively
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semipositive. Then as n — oo, we have

d

- ®n n -
Xy T(X, L% ® N)) = ECI(L)” +o(n”

).
We start from the following result of Gillet and Soulé:

Lemma (1.5). The assertion (1.4) is true if the following conditions are verified

(1) X has a regular generic fiber;

(2) L is relatively ample;

(3) ¢,(L) is positive pointwise.
Proof. Assume conditions are verified. Let g be a Kahler metric on X with
Kahler form c;(L). Let I'(Xg, Lg),» denote the space I'(Xy, L,) with the L*-
norm induced by g on X, . By an arithmetic Riemann-Roch theorem proved
by Gillet and Soulé and by an estimate of Bismut and Vasserot on analytic
torsions, we have that

nd

Cxp(T(X, L% @ N)) = o (L) + o(n* ' 1ogn).

The assertion of the theorem follows from this estimate and the following in-

equality of Gromov: there is a constant ¢ > 0 such that ¢~ '||/]| 2 < Ml <

cndlllll 2 forall [ in I'(X, Lg" ® N). See [GS2], [F2], and [BV] for details.

Lemma (1.6). Let f,: X, —» X and f,: X, — X be two projective morphisms
of arithmetic varieties. Let L,, L,, M be hermitian line bundles on X, , X,, X
respectively, with LIQ and Ly, ample. There is a constant ¢ such that the
Jfollowing condition is verified. For any n, > 0, n, > 0 there is a set of linear
independent elements of maximal rank of T'( th?"’ ® fz,_L?"2 ® M) such that
each element has norm < ¢™":")

Proof. We consider the special case that M = O, only; the general case follows
from the same approach. Since the algebra

ML) = @ TU LS © LS
n,n
is finitely generated over Q, there are finitely many elements s,,--- , s, of
['(L") of multidegree (d,,e,), -, (d,, e,) which generate I'(L")q - Replac-
ing them by some integral multiple, we may assume that all of them are integral.

Now for any n, >0, n, >0, the group IT( fl,‘L?"l ® fZ‘L?"Z) contains the fol-
lowing set of elements of maximal rank:

Q. — —
M"n2={la=Hsi .a,.ZO,Zaidi—nl,Zaiei—nz}.
i i i

Let ¢ = max, ||s;|| For each [ € M, we have

sup * n,n,’
Hla”sup < cza; < Cmax(nl,nz).

This proves the lemma.
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Lemma (1.7). Let V be a real vector space of dimension d with a norm | -||,
and let T be a latticein V. For each 1 <i<d, let A,(T") denote the smallest
number ). such that there exist i-independent elements of T with norm < A.
Let V' be a subspace of V of dimension d', and let T’ be a lattice in V' which
is contained in I". Then

Xy (D) = 2y (T') > —log(d!) — (d — d') log(}34,(I)).
Proof. By Minkowski’s theorem we have the following estimate:

d
% vol(T') < A,(T) - - 4,(T") < 2% vol(T).

Since A,(T) < A,(T”) for 1 <i<d’, it follows that
d!
vol(T') < z—dil(f‘) - Ag(T)

< %zl(r’ oo Ay (T, (M)

< d!vol(I") (ld(r))d—d’ )

2
The lemma follows by taking —log on both sides.

(1.8) Proof of (1.4). For simplicity of notation, we just consider the case that
N = Oy ; the general case follows from the the same approach. First of all we
have the following setting:

(A) Let f:X — X be a generic resolution of singularities of X, and let A/
be a hermitian line bundle on X such that M is very ample and the curvature
c; (M) is positive pointwise. Let s, be a nonzero section of M, and let c,
denote its norm.

(B) Choose n, sufficiently large such that

T(f'Ly @ My') =T(Lg" ® £,(Mg ")) # 0.

Since for any line bundle B on X one has I'(By) =T'(B) ®, Q, it follows that

there is a nonzero section s, of the hermitian line bundle f° *I"eM . Let
¢, denote the norm of s, .

(C) For any x € X(C) and any function a on '(x), let lla]| denote
SUD, ¢ 1) |a|(y). Then f,(O;) becomes a metrized sheaf on X . Let F de-
note the coherent sheaf Hom(f,(Oy), Oy). For a sufficiently large positive
number 7, , there is a nonzero section s; of FQ®L3"2. Replacing s, by ms,,
where m is a positive integer, we may assume that s, is an integral section.
Let ¢; denote the norm of s, .

(D) Let c, be the constants defined in (1.6) for (L, M).

Let ny > n, +n, and n, be any two positive integers, and let i be a nonneg-

ative integer between 0 and n, — 1. We want to estimate Xsup(r( L®n3n4+i)).
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The multiplication by sf“ gives a map
a: V1 — F(L®n3n4+i) - V2 — r(f»»L®n3n4+i ® M”‘)
with norm bounded by ¢, where V, is considered a subspace of I'(f*L®""s*').
1 1
The multiplication by s,* gives a map
l.‘(me®(n}—nl—nz)n,,+i ® M®n4) - F(f:-l—l®(n3—nz)n4+i)
with norm bounded by c;“ . The multiplication by s;‘ gives a map
r(f*l_,‘&("}_nz)n"“) _ F(L®("3_n2)"‘+i ® f (Oxz)) = Iﬂ(l—‘®njn4+i)

with norm bounded by c;"‘ . The composition of these two morphisms gives a
map BV, = r(f*Z®(n3—n,—n2)n4+i & M®™) - V= F(L®n3n4+i)
with norm bounded by c;*c3*.
Applying (1.7) to (T',T’) = (¥,, a(¥})) and (I',T) = (¥, B(V;)), we ob-
tain that
Xsup(V1) < Xgp(a(W})) + 1y dimg (V) log e

(1.8.1) < Xoup(V3) +1ogdimg (Vo) + ny dimg (Vo) loge,
. c
+ ny(n, + 1) dimg, coker(a)g, log 5“ ,
and
. . c
Xsup(V1) 2 Xp(B(V3)) — log dimg (V) )! = nyn, dimg, coker(,B)log?4
(1.8.2) > Xsup(V3) — nydimg (V) log(c,c;) — logdimg(Vo)!

—ny(n, +1) dimQ coker(f) log %“.

By Lemma (1.5), we have the following estimate:

d
Hy - _d d

Xap(V2) = 5rey (FTL®" @ M)” + 0, (n)
(1.8.3) : 4

(nyng + 1) d d-1_d d
= ~3—-‘;,!———cl(L) +0(ny” "ny) +o, (n,),
where O(x) denotes a quantity such that O(x)x~ is bounded independently
on ny, n,, and ons(x) denotes a quantity such that, for any fixed n,, the

number on}(x)x_1 tends to 0 as x tends to infinity. Similarly we have

~d
n.n,+1 - -
(184) x5 = LD 0 (1)t 4 ond " nd) 4 o, (n).

Furthermore, by the Riemann-Roch theorem for algebraic varieties, we have
for i=1,2,3 that

) = (n3n4+i)d—l d-1)
¥ (d-1) '

(1.8.5) dimg (¥, +0(ny 'ny ™) + o, (n]
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Bringing (1.8.3)-(1.8.5) to (1.8.1) and (1.8.2), we obtain that

(nyn, + i)

d!
For any € > 0, we may choose n, such that O(nffng 1) is bounded by 2n§nf

d

(D(L™"*) = (D) +0(ngny ™) + o, (nf).

X sup

Then for n, sufficiently large, o, (n4) is also bounded by & n3 n4 This proves
that, for sufficiently large n,

d
oo C(LEM) = 2

sup - mcl(f,)d <en".

The theorem follows.

Applying the Minkowski theorem we obtain the following result for small
sections:

Corollary (1.9). Let X be an arithmetic variety, and let L be a hermitian line
bundle on X . Assume that Ly is ample and L is relatively semipositive. Then
for any € >0 and any n sufficiently large, there is a nonzero section 1 of L®"

such that 4
nc, (L)
ll.. = sup ||||(x)<exp|ne— —L1"2— 1.
171l g xEX?C) I2]1(x) D( dcl(LQ)d_l)

(1.10) As in [GS], we may generalize (1.4) to compute the leading term of
sup(l"(F ® S"E)), where E and F are two hermitian vector bundles on X
with EQ ample and E is relatively semipositive. We omit details here.

2. LIFTING SECTIONS WITH SMALL NORMS ON COMPLEX MANIFOLDS

(2.1) Let X be a compact complex manifold of dimension d, and let L be
a hermitian line bundle with positive curvature form c; (L); then Kodaira’s
theorem asserts that L is ample. In particular, for any subvariety Y of X and
for n sufficiently large, the map

rx,L®) -1y, L®
is surjective. In this section we want to prove a “metrized version” of this fact.

Theorem (2.2). Let X, Y, L be assumed as in (2.1), let I, --- , I, be sections
of L|y, and let € be a positive number. Then for any s-tuple of nonnegative
integers a = (a,, -+ , o) with |a| = Y a; sufficiently large, there is a section

I of L®" such that
Iy =T[&",

Ialc
1y sup <€ TTNENT supr

(2.3) Our proof is based on a method used by Tian [T] in the proof of the

density of Fubini-Study metrics, namely Hormander’s L’-estimate. We need
some notation. Let X be a compact complex manifold with a Kahler metric g,

and
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and let L be a hermitian line bundle on X . We denote by ( , ) the induced
hermitian products on C*(Q}) and on C*(L®Q}),and by ||-|I, (, )2,

and ||-[|,> the corresponding norm, L?-product, and L’-norm (with respect to
the volume form dx on X induced by g) respectively. Locally near a point

p of X, we may find coordinates z,, , Z; such that

9 8
g(Bz aj) 3, +0(z).

If / is a nonzero section of L we define an endomorphism N(L) of Q?‘;l by
the matrix (——a—%loglllll). For a function ¥ on X, let N(y) denote the
[l

endomorphism N(O(y)) = (— az 53, =2¥_) where O(y) is the trivial line bundle O
with metric |-|exp(—y).
Lemma (2.4). Let T, be the holomorphic tangent bundle on X with the hermi-
tian metric mduced by g. Let ¢ bea positive number such that N(L®det T! 0) >
c; this means that for any point x of X and any element o in Qg( lx, the fol-
lowing inequality is verified:

(N(LedetTy)a, a) > c(a, a).
Then for any w € C°(L® Q/’Y’O) such that dw = 0, there is an element u in
C™(L) such that du=w and ||u||Lz < l||w||Lz

Proof. By the Bochner-Kodaira formula, for any a in C™(L ® Q[))(’ 1) one has
the following estimate:

2
(2.4.1) (Aja, a),2 > cllell;:;
see [BV] for details.
Let v be any element in C°°(L<8>Q0 1) Write v = v +v2 such that dv, =0

and such that v, is orthogonal to ker(8). It follows that " v, = 0, where "
is the adjoint of § with respect to || -||,2. Applying (2.4.1) we obtain that

2 2
(v, w)2|” = (v, w) 2

2 2 1 2
< ”U1”L2“w”L2 < E”w”LZ(Ag’Ul ’ U])

1 2 A% 2 1 2 % 2
= w2019 v 2 = Zllwlp2110" vl 2.
Applying the Hahn-Banach theorem to the linear functional on the im (8%) in
L*(L):
v — (v, w),:

we obtain an element u € LZ(L) with ||u||Lz l||w||Lz such that

(07v,u) 2= (v, w)

for any v . This implies that Ju = w . Since Aju = 8w is smooth, it follows
that u is a smooth section of L. This completes the proof of the lemma.

We have the following formal generalization:
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Lemma (2.5). Let (X, g) be a compact Kahler manifold, let L be a hermitian
line bundle, let u be a measure on X , and let ¢ be a constant. Assume that the
JSollowing conditions are verified: there is a decreasing sequence {y,} of smooth

JSunctions on X such that e”¥idx converges to u, and for each i,

1 - 0
3N(¥) + N(L) + N(det T,) > ¢

Then for any O-closed form w in C*(L® Qo’l) with ||w||Lz w <0 there is
auin C°°( ) Such that 0u = w and ||u||L 2y < 1||w||Lz . where ||| 2,
is the L* norm with respect to the measure L .

Proof. For any smooth function y on X, let L(y) denote the line bundle L
with hermitian metric ||- ||, =||-|,e”" . Applying (2.4) to L(y,), we obtain
a sequence {u;} of elements in C*™(L) such that du;, = w and ||ui||i,' <
%llw”i}_. Write u; = u, +v;, where v, is in I'(L). We claim that {v;} isa
bounded subset of I'(L). Actually for any ¥, let || ll, denote the L*- norm

with respect to measure e~ ¥idx ; then

1 2 2 2 1 2 2
iz 2 Mully, 2 luglly, > 5llvl, — Nyl
Our claim follows. Since I'(L) is of finite dimension, replacmg {v;} by a

subsequence we may assume that v; converges to an element v in I (L) Let
u denote U, +v; then Ju=w. Smce for any j > i we have

2 2 1 2
oyl < Nyl < < MwlZag,
it follows that :
2 2
ladlly, < < lwllzzg,
This implies that ||u||iz < l||w||iz( )- The proof of the lemma is complete.

Lemma (2. 6) Let L be a hermitian line bundle on a compact complex manifold
such that c (L) is positive. Let Y be a reduced subvariety of X, let U be
a nezghborhood of Y in X, and let € be a positive number. Then for any n
sufficiently large, and any section I, of L®" on U, there is a section | of L®"
such that 1|y = Iy, and ||l < "€||1U||sup

Proof. Let g be the metric on X induced by the Kahler form ¢ (L). Let
f: X = X be the blow-up of X at Y, and let E denote the exceptmnal
divisor. For sufficiently large m, the bundle I, ® L®™ is generated by global
sections V' = I'(I, ® L®™), where Iy is the 1dea1 sheaf of Y. Let i denote
the canonical morphlsm from X to X xP(V). Then i*(O(1)) = f*L®™(-E).
Choose a basis for V. This gives a Fubini-Study metric on O(1) with positive
curvature form. Choose a metric || - ||, on O(E) such that || - 4 |l on
fL®"(-E ) agrees with the pull-back of the Fubini-Study metric. This shows
that (O(-E), || - |lg) has curvature no less than —mc;(l—,). Let p denote the
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function ||1]|, where 1 is the canonical section of O(E). Then p is a distance
functionof Y. On X —Y we have N(—logp) = N(O(E), ||-llg) - So N(logp)
is bounded below by —mN(L) on X.

One can find a decreasing sequence of smooth functions {y;} which con-
verges to logp, such that the set {N(y,)} is uniformly bounded below in i
and on X. Actually, let f be any smooth function such that (i) ) f'(x) >0
for all x; (ii) f(x) = x for x >0 and f(x)=-0.5 for x < —1. Then the
sequence {!//i = f(log p + i) — i} will satisfy our requirements. In fact (1) since
f is constant for x < —1 it follows that y; is defined over whole X ; (2) since
f' <1, it follows that the sequence {;} is decreasing; (3) since f(x) = x for
all x > 0, it follows that y, is convergent to logp; (4) since 0 < f <1 and
f" >0, it follows that

o’y dlogpdlo :
N(we) = ( : ) =f’(logp+k>( ot —3%) + f'(log p + i)N(log p)
i J

Let ¢, be a constant such that N (L) > ¢, pointwise, and let d denote the
dimension of X . It follows that for sufficiently large n, the following inequality
holds uniformly in i and on X:

(2.6.1) (d+1)N(y,) +nN(L) + N(det Ty'") > ;.

Let n be any positive number such that (2.6.1) holds, and let /;, be a section

of L®" on U. Let 6 be a smooth function on X which is 0 out of U and
which is 1 on a neighborhood U’ of Y. Let w denote d(61,). Applying

(2.5) we obtain a smooth section /' (which may not be holomorphic) such that
dl'=w and
(2.6.2)

[ure 4 ax < - [ i ax
b ¢ ¢ Jx

2
1 - - [ 2 -
= [ 16611y IPp O dx < Vol [ lgerts™ 4 Vax
G Jx ¢ u-u'

1
2
= gllylZ,,

where ¢, is a positive constant.
Let [ = 01, - I". Since 8! = 0, it follows that / is holomorphic. Since

/ ||l'||2p_(2d+l)dx is finite, it follows that /'|, = 0, i.e., I|, = lyl, . To com-
plete the proof of the lemma, we need to estimate ||/|| We estimate ||/]|;»
first. By (2.6.2), one has

2 2 2
11172 < 21161 ll72 + 20101172
2d+1 2 —(2d+1)
< 20012, Mg l2, + 20115y / 117 oV dx < elliylls, .

where ¢, is a positive constant.

sup °
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The lemma follows from (2.6.3) and the following inequality of Gromov:

2 2d 712

where ¢, is a positive constant. See [GS2] for the proof of this inequality.

(2.7) Proof of (2.2). Let n, be a positive integer such that all sections of
L®" on Y can be extended to sections on X . Without loss of generality we
may assume that all /; are nonzero. For each s-tuple g = (Bys-++, B,) of
nonnegative integers with n; < |B| < 2n,, let Iﬂ be a fixed section of L®"

such that |, =], ll{'g". Let U be a neighborhood of Y in X such that

€ ﬂi
gl llsup < €7 T8 gy
Now any section Hl;a" with |a| > 2n, can be written as a product

[1;(IT, ll’(m) with ny < |y;| < 2n,, where ?; = (?jy,-+-) are s-tuples of non-
negative integers. Applying (2.6) to the section [] ; l},_| v When |o| is sufficiently
J

large, we obtain a section / of L®'*! on X such that lly = Hl,{a" and

al€ l Ie / R
Uy < ¥ \TT4 | < € TT 11
J i

sup

This completes the proof of the theorem.

3. AMPLE LINE BUNDLES WITH SEMIAMPLE METRICS

(3.1) Let K be an algebraically closed normed field as in the appendix. Let
X be a projective variety on specK , and let L be a line bundle on X with a
continuous and bounded metric as defined in (a.2). Assume that L is ample;
then for sufficiently large n the morphism

¢, : T(L®") — L®"

is surjective, where I'(L®") is considered as a free vector bundle on X . The
supremum norm on I'(L®") induces a quotient norm on L®" , whose n-th root
gives a norm || - l, ron L.

The metrized line bundle (L, || -||) is said to be a semiample metrized line
bundle, if limsup llﬂ_ulf converges to 1 uniformly on X . Equivalently, for any
€ > 0, there is a positive integer n, such that for any point x € X(K), there

is a nonzero section / of L®" with 11l < €™ NNI(x) .

(3.2) We fix the following assumptions and notation:

— Let K, be R, C, or a complete discrete valuation field, and let X denote
an algebraic closure of K, , and let K, denote the separable closure of K, in
K.

— Let X, be a projective variety defined over K, ,andlet Y; be a subvariety
of X,. Denote by X the variety X, x specK, and denote by Y the

subvariety Y, x specK of X.

spec K|,
spec K,
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— Let L be an ample line bundle on X,, with a Gal(K /K) invariant and
semiample metric over X (K).
— Let M be a coherent sheaf on X, such that M |Y0 is also torsion free.

Fix bounded Gal(K,/K;) invariant metrics on M and MY0 as in (a.3).

Theorem (3.3). Let € be a positive number. Let I, --- , I, be s sections of
L|Y0 and m a section of M|Y0. Then for any s-tuple o = (o, -+ , @) of
nonnegative integers with |o| = Y a, sufficiently large, there is a section I of
L2 @ M on X, such that
Iy =m[[ 2"
1l

and ol
al€ /o
"l”sup’X S e "m”sup, Y H ”11”31;‘), Y
i

Proof. We denote by P(L, M) the assertion of the theorem, and denote by
P(L) the following assertion: Under the assumption of the theorem for any

€ > 0 there is a positive integer n and sections [, --- , [ of L®" such that

Lly =1" and ||l < €™ IZ;ll5,p- We have the following principles:

(A) Let L, = (L, | -|l,) be a sequence of metrized line bundles such that

metrics are invariant under Gal(K/K,). If Hﬂ—"“l converges uniformly to 1 on

X(K) and P(L,, M) holds for all n, then P(L, M) holds. This is easy to
check by definition.

(B) Let N be any positive number. If P(L®N, M) holds for all M, then
P(L, M) holds for all M. In fact, for a fixed 7, P(L®", L% ® M) (i =
0,---, N—1) together imply P(L, M).

(C) P(L) implies P(L, M). For any € > 0, by P(L), we can,ﬁnd a

positive integer n and sections /,,---, [ of L®" such that Lly = li" and

il gup < e® I ||:up. For sufficiently large n,, and for any (s+1)-tuple of integers

B,j)=(By, -, B, J) with 0 < B, <n and 1 < j <s, there are sections

my of L®™"* 8D g A on X such that mg |y = mll'.""OHl,{ﬂi- Let ¢ denote
the constant

"mﬂ j“sup
n;a?(IOg l/ nn, ll B -
»J ”m”sup" j"sup H” i”sup
Then any section m]J; l;a' with |a| sufficiently large can be written as
(ml;.nn0 H,.l;ﬂ")H,.l;y’" with B, < n for all i. Let | = mﬁ’jl_llf". Then

lly = mHl;a‘ and

c+ 52 /aa;
Ml < e 5 limll g TTIN

The assertion follows for |a| > 2c/€.

(D)Let i: X - X ' be an embedding from X to another projective variety
X' over specK, and let L' be a semiample metrized line bundle on X S
i*L' = L, then P(L') implies P(L). This is clear by definition.
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Fix L and M as in the theorem. Since L is semiample metrized, apply-
ing (A) to {L, = (L, |- l, )}, it suffices to prove P(L, ., M) forall n.
Applying (B) for N = n and metrized line bundles Z‘n,r , we need only prove
P(L?"., M) for all n. Applying (C) it suffices to prove all P(L®"). Each L%
has the property that the quotient metric by the map

F(Z‘f,"r) - Lf,nr

coincides with the metric ||- ll:, r- So we are reduced to proving P(L) provided
that L is very ample and that the metric on L is induced by the quotient metric
viamap a,:V =I(L)— L. Let i: X — P(V) denote the embedding of X
to the projective space associated to V' induced by the morphism V' — L. The
canonical bundle O(1) has a quotient metric induced by the surjective mor-
phism ¥V — O(1). It is easy to see that i*(O(1)) is isometric to L. Applying
(D) we are reduced to proving the following lemma.

Lemma (3.4). Let V, be a finite-dimensional vector space over K, with a K
norm as in (a.1). On the projective space P(V;), let O(1) denote the line bundle
O(1) with the quotient metric || - oy via the map V — O(1), where V s

considered as a free vector bundle on (V). Then the assertion P(O(1)) is true.

Proof. We consider archimedean K first. By principle (A), and by approxi-
mating ||-|| by norms |||, on V such that ||-||, is smooth on ¥ — {0} and
invariant under complex conjugation if K, = R, we may assume that |- | is
smooth on ¥V — {0}. It follows that the induced metric on O(1) is smooth.
We claim that c;(O(l)) is semipositive pointwise. If it is not true, then there
is a point p and a holomorphic vector v at p such that c; (O(1))(ivAD) <O0.
In other words, there is an analytic morphism f:D — P(¥) and an invertible
section J, of L = f7(O(1)) such that log||/,|| = alz|* + O(z%), where a is
a positive number. Now any section of L on D with norm 1 at 0 can be
written as / = fI, with a holomorphic function f which has norm 1 at 0.
We have the estimate

1 . 1 .
| 10gltipe™*)d0 = [ togligltpe™ a0 > 5ap’,

for p > 0 sufficiently small. It follows that ||/||.,. > [[/||(0). This contradicts

sup

the fact from the construction of | - || oqy that there is a nonzero section s
in T'(O(1)) = V such that ||s|| attains its maximal value at p. This proves
that c;(O(l)) is semipositive. Let |- | be any metric on O(1) with positive

curvature form. For example, fixing any basis of V|, over K|, the induced
Fubini-Study on O(1) has positive curvature. Now |[-||0(1) is approximated by

-1, =1" ”10?1%) Il - |l'% . By principle (A), assertions P(O(1), || -||,) all together
imply P(O(1)). But (O(1), | -|l,) has positive curvature, so the assertion
P(O(1), ||-1l,) follows from Theorem (2.2) if K, =C. If K, =R and / is the
section of a power of L chosen as in Theorem (2.2) on X, then }(/ + al) is

a section defined on R, which has the same image in Y as /, and whose norm
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is not bigger than that of /, where ¢ denotes the complex conjugation on X .

This proves P(O(1)) in the archimedean case.
It remains to consider the case that K is nonarchimedean. Let R, denote

the valuation ring of K. Let ¥ denote the set {v € V, ||v|| < 1}. Then V is
a module over R, of rank d =dimV, and | - || is induced by this module.

Notice that ¥ may not be finitely generated. Let @ denote the set of all finitely
generated submodules of V' of rank d which are stable under Gal(K,/K,). For
each W in @, let || -||,,, denote the norm on V induced by W:

. -1
V|, = Inf {|la]  :av e W}.
Ivlly = inf {lal }

Since Uy, oW = ¥ and V is finite dimensional, one may find a sequence w,
in @ such that ||-||,,, converges uniformly to ||-||; the induced metric on O(1)

by |||, therefore cc"mverges uniformly to the induced metric by ||-||. Applying

principle (A), we may assume that ¥ is finitely generated. It follows that there
is a finite extension E of K which is stable under Gal(K /K) and a finitely

generated (so free) R -module Wy such that W, ® R, Ry is isomorphic to V.
Let P denote P(Wy). Then one can show that the metric ||-|| o) is induced by
model (P, O(1)), where O(1) denotes the line bundle Op(1). Now P(0O(1))
follows easily: Let Y be any subvariety of P = P(V) defined over K,. Let Y
denote the Zariski closure of Y in P. Then for sufficiently large n, the map

L(P, O(n)) - (Y, O(n))
is surjective. This just means that, in the map

I'(P, O(n)) - (Y, O(n)),
the induced quotient norm agrees with the original norm on the target. Now for
any section I’ of O(1) in Y defined over K, , we may find a section /, in O(n)
defined over E such that /, has the image /" on Y and ||/, lsupx = 17 l5p ¥ -
Let / denote the following section of O(nde):

H alf ,

o€Gal(E/K,)
where d = [E : K] and e is the inseparable index of K, in E. Then !/

is defined on K, which has image I in Y, and 1llggp x = l|l'||':u":},. The
assertion P(O(1)) holds. This completes the proof of the lemma.

Theorem (3.5). Let X be a projective variety defined over K, and let L be a
metrized line bundle on X . Assume that the following conditions are verified.
(1) If K is archimedean, there is an embedding i from X to a compact
complex manifold, and a hermitian line bundle M on Y with M ample and
c'l(M ) semipositive, such that i*M is isometric to L.
(2) If K is nonarchimedean, some positive power of L is induced by a model
(X, L) such that L is ample and L is semipositive on the special fiber of X .
Then L is semiample metrized.



POSITIVE LINE BUNDLES ON ARITHMETIC VARIETIES 201

Proof. We consider the case that K is archimedean first. Since the ampleness
for M already implies the ampleness for L. We may assume that X = Y and
M =1L;ie., X is smooth and cl(I:) is semipositive. Since L is ample, there
is a hermitian metric || - || on L with positive curvature form, for example
the pullback of some Fubini-Study metric of O(1) bundle from some P" by
an embedding by some power of L. Let L, denote (L, ||-||,), where |- I, =

Il - III“ Il - l|"' and | - || is the metricon L. Then L, has positive curvature
and ||- ||, converges uniformly to ||-||. Since ampleness for all L, will imply
the ampleness for L, we may assume that L has positive curvature Let € be
any positive number and p be any point of X . Applying Theorem (2.2), there
is a positive integer n, and a nonzero section l of the hermitian line bundle

L®" such that 1 [lsup < 72||l l(p). Let U be a neighborhood of p in X
such that for any g in U, we have I ||sup < "P‘lllp||(q). Since X is compact,
we can find p,, --- » D, such that Ul U, cover X. Let n =n,cen, .
Then for any point p in X, we can find a nonzero section / of L®" whose
supremum norm is bounded by e" times the norm of / at p. It follows that
the quotient norm induced by the map I'(L®") — L is bounded by " times

the norm on L®”. This shows that L is semiample metrized.

It remains to consider the case that K is nonarchimedean. Replacing L by
some positive power we may assume that it is induced by a model (X, L).
Since X is projective, there is an ample line bundle M on X. For any fixed
positive integer n,, the bundle L®" @ M is positive on the special fiber. By
the Nakai-Moishezon theorem L®™" ® M is ample on the special fiber, so on
X . Let n, be a positive integer such that L®"" @ A1®" is very ample. Let
M be the metrized line bundle on X induced by the model (X, M). Since
over X the morphism

F(L®non, ®M®n0) - L®”0"1 ®M®n0
is surjective, the quotient metric of the map
F(L®n0nl ®M®no) N Z@nonl ®M®no

coincides with the original metric on the target bundle. In particular, for any
point p of X, there is a section l such that ||/’ M —— ||l llp) .

Since L is ample, there is a positive integer n, such that L™ e M®! s
very ample. Let s, ---, s,, be elements of I“(i,@"2 QM ®*l) such that they
form a basis for I'(L®" @ M®'l). Write div(s;) = H; + V;, where H, are
horizontal and V¥, are vertical. Then N, JH| = @. Let ¢ be a number such
that ¢, X Vi ( 1 <i<s)areall eﬂ"ective where X denotes the special fiber
of X. Then we have

igfm;‘lx lls;ll(p) > exp(—c,).

Let ¢, denote the number log max, ||s; || Now for any point p on X, there

sup *
is an i; such that the nonzero section I, = l}r',si"')0 of L®™M*™)™ pKas the property
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that
1, llgep < €™ NI 11 ()

sup —
For any € >0, fix n,, ¢, c, as above. Let N = (n, + n,)n,. Then for n,, n,
sufficiently large, the quotient metric of the map

F(L®N) - L®N

is bounded by eV times the original metric on L® . This proves that L is
semiample metrized.

We conclude the section by asking the following question:

(3.6) Question. Let X be a projective complex variety, and let L be a hermi-
tian line bundle on X with smooth metric. Assume that L is ample and c'l(Z),
is semipositive. Is L semiample metrized?

4. AN ARITHMETIC NAKAI-MOISHEZON THEOREM

(4.1) Let S ={c0,2,---,} be the set of all places of Q. For each p € S,
let |-|, denote the valuation on Q such that |p|, = p~' if p# oo and |- |0
is the ordinary absolute valuation. Let Qp denote the completion of Q under
[ > and let Qp be a fixed algebraic closure of Q,.

Let X be an irreducible variety defined over Q. By an adelic metrized
line bundle L we mean a line bundle L on X and a collection of metrics
I-Il = {ll-ll,, p € S}, where each |[-|, is a (Weil) metricon L, = L®0Qp which
is invariant under the Galois group Gal(Qp /Q,) , and such that the following
conditions are verified. There is a Zariski open subset U = specZ[1] of specZ,
a projective model X on U, and a line bundle I on X extending L, such
that, on each p € U, the metric || -||, is induced by the model

(X,, L,) = (X x, specZ,, L®Zl%l z,).

We say a metrized line bundle L = (L, || -||) is semiample metrized, if, for
each p € S, the metrized line bundle (L, ||-||,) on X, is semiample metrized.
The main result of this section is the following theorem:

Theorem (4.2). Let X be an irreducible variety defined over Q, and let L, M
be two adelic metrized line bundles on X , such that L is semiample metrized.
Assume that, for each irreducible subvariety Y of X, there exist a positive integer
n and a nontrivial strictly effective section | of L®" on Y. This means that
I, <1 for p # oo and |ll||,, < 1. Let T(X, L®" ® M) denote the subgroup
of T(X, L®" @ M) consisting of sections | with ||| , <1 forall p# occ. Then
for n sufficiently large, there is a basis of T(X , L®" ® M) consisting of strictly
effective sections.

(4.3) Let V bea Q vector space. By a global norm ||-|| we mean a collection
{Il-1l,} of norms on the collection {V, = V' ®,Q, : p € S} respectively. We
always assume that
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(1) II-l, is nonarchimedean if p # oo (ie., [Ix + y|, < max(|lx|,, [I¥l,)
forall x,y in Vp);
(2) there is a nonzero integer n and a free module 17,l over Z[%] extending
V such that || - ||p is induced by f/n for all p coprime with n.
In this way
V={xeV,|xl, <1 forall p # oo}

is a lattice of V. Usually for p|n, ||-||, does not coincide with metric || - ||;
induced by module ¥ ®y Z, , but we have the following estimate:

li
-1, < -1, <ol -,

Let u(V) (resp. A(V)) denote the smallest number r such that the ball B(r)
of radius r contains a basis (resp. of a subset of full rank) of V. Then one
has the following estimate:

(4.3.1) AV) < u(V) < dimg VA(V).

See 1.7 of [Z1] for a proof.

With notation as in (4.2), let. I'(L) denote the Q-vector space I'(L) with
global norm |[|-|| = {||-||,} , where ||-||, is the supremum norm of L®,Q, on
X(Qp). Theorem (4.2) just claims that u(I'(L®" ® M)) < 1 for n >> 0. Since

L is ample, this is equivalent to u(I'(L®" ® M)) < e~ for some € > 0, to
AT(L®" @ M) < e~ , and finally to A(T(L®" @ M)) < 1.

Lemma (4.4). Let V be a Q vector space with a global norm || - ||, and let
O0=V,cV,c.---cV, =V

be a filtration for V . Assume that, for each i, V; has a global norm. It induces
a quotient norm on V,/V,_, . Notice that the norm on V, | and the norm on V
may not be same. Let f be the smallest positive integer such that

(1) for all p coprime with f the modules

V, ,={xeV¥,®Q,: x|, <1}

i,p
induce the Q, normson V; for all i,
2V, ,cVy,, , foral i.

i+1,p
Let p; , denote the norm of the map I"/l.,p -V, and p; denote p_ lefpzpi,p.
Then
AY) £ PpiAV,i V) + 32 1AV [ V) dimg(V,, 1/ V).
i<n
Proof. We prove the following two special cases first.

Case 1. Assume that f = 1 and for each i the norm | -|| on V; is
induced from ¥ . In this case we have that p(¥) = 1. By induction on n, we
need only prove the following inequality: A(V) < A(V/V}) +dimg VjA(V}) . Let
dimgy ¥, = d, and dimyV =d, +d,. Choose Lol 1;2 in f/~ su~ch that
their images m,, m,, --- , my form a set of maximal rank for V/V|, and



204 SHOUWU ZHANG

1
subset of maximal rank for ¥, and max, |||, = A(¥;). Choose [}, Iy , -+, l;,'z

max, ||m]| = A(V/V;). Choose [, [,, -, ldl in ¥, such that they form a

in V; such that, for each 1, l" has image m; and || l" lo=Il m; |l . Since
1 —1 are in V,_ , we have real numbers a;; 1 <i<d,and 1<j< d1 , such

IR
that
-1 = Zau P
Set /

d+i—l,{+2j[ai{]lj €V for 1<i<d,. Then {l;, b, ,l; 4} is
a subset of full rank in V' and

I Z(a,, [y, 1),

‘This implies that A(V) < A(V/V)) + dim,, ViA(V)).

Case 2. Assume that n = 0. Let {/} be a set of maximal rank in ¥,
with oco-norm bounded by A(V}), and let {m;} be its image in V. Then,
for each i, |Im,|, <1 if (p,f) =1, and Imll, < p;, otherwise. Let n,,

denote [ lggp;z 1+ 1, and let m; denote m; lefp""’. The subset.{mi.} in V

is contained in ¥ with maximal rank, and the co-norms of its elements are
bounded by p_ lefpp,.pl(Vl) .

Now we want to prove the lemma for the general case. Let V' ~denote the
Q-vector space V' whose nonarchimedean norms are induced by V. Let Vi'

denote V; with the norm induced by the subspace norm of V' . Then by Case
1 we have that

MV)=MV') S AV, V) + 3 AV, V) dimg(V, /V)).

i<n

1l =

d+l

1"
Sl + 2 1lloo
1%
J

We need only prove that
( z+1/V ) < )”( +1/V)pz+1

By Case 2 we need only prove that for each i the norm of the map o; : V, — V
is bounded by le PPy, - Let V, be the space with subspace global norm

induced by V. Then o, is the composition of the canonical maps B;: V; — V,."

and y,: Vi" — V;’ . The assertion follows, since for each p, the Q,-norm of 7,

is bounded by p.

(4.5) Proof of (4.2). By (4.3.1) we need only prove that A(I'(L®" @ M)) < 1
for any sufficiently large n. We use induction on d = dim X . If d = 0, then
X = specK is the spectrum of.a number field and L, M are vector spaces of
K of dimension 1. By the assumption there is a nontrivial strictly effective
section / of some positive power L&™ . Let l,,---, I beabasis of L, where
L is considered as a vector space of dimension s = [K : Q] over Q with a
global norm. Let m be a nonzero element in M . For n sufficiently large, the
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set {I"lm:i=1,---,s} generates I'(L®""*) @ M) and consists of strictly
effective sections.

Now we may assume that d > 0 and the theorem is true for all subvarieties
of lower dimensions. Let P(L, M) denote the assertion of the theorem. It
is easy to see that, for any N > 0, the assertions P(L®", [® ® M ), I =
0,1,---, N—1, together imply P(L, M). So in the proof of P(L, M), we
may replace L by any fixed positive power.

Replacing L by a positive power, we may assume that L has a nontrivial
strictly effective section /. Let I denote the ideal sheaf I = L™'/ = O(—divl).
We claim there is sequence of ideals

Iy=Icl c---cl,=0,,
and integral subvarities D,,---, D, such that I,/I,_, are pushforwards of
torsion free sheaves G; on D;. If I,_, is constructed and Oy/I,_, #0, we
construct I, and D; as follows. Since X is Noetherian, there is a nonzero
subsheaf F of O,/I,_, such that all subsheaves of F have same support. Let
D; denote the support of F. Let n be the maximal positive integer such that
G. = I F is nonzero. Then G, is a torsion free sheaf on D;. The preimage

I, in 0 of G, is constructed as required. Since Oy is Noethenan, the chain
I cl C . w1ll stop in finitely many steps. The clalm is proved.

Let U be a Zariski open subset of specZ such that all metrics of L, M on
U are induced by a model (X, L, M), the section / is regular on X, and the
sequence of I,’s is extended to a sequence

~ ~—1 ~ ~
Iy=L "cl,c---cl, =0,

with G, = I,/I,_, supported on integral subvarieties D,. Replacing U by a
smaller open subset, we may assume that L is ample on X . For each p not
in U, put Galois invariant bounded metrics on I; and on G;.

Foreach N=nmnm+r with 1 <r<m, deﬁne Dy =D,. Let L, denote

the metrized sheaf L®" @ M ® I, let L denote the correspondmg sheaf on
X, and let Vy denote the Q-vector space I'(L,) with global norms. Consider
the filtration of Vou =T(X, L®" @ M):

By Lemma (4.4), and Lemmas (4.6) and (4.7) which we will prove later,

'1(Vnm)§ Z e(N_nm)c'+Cz_Nc3+c“dim VN/VN_I)
N<nm

<e %" dimy(Vy),
where ¢,—c, are positive numbers defined in the following lemmas, and Cs5 Cq

are some positive numbers independent of n. By the Riemann-Roch theorem,
dim(Vy) is bounded by a power of 7, it follows that

of

AMD(L®" @ M) < 1

for sufficiently large »n. This will complete the proof of the theorem.
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Lemma (4.6). Let p, denote the norm of the map V,, — V,  for N < nm
defined in Lemma (4.4). There are two positive numbers c, , ¢, independent of
N such that

py < ecl(N—nm)+02

I .

Proof. Write N = mk +r with 0 < k <n and 1 <r < m. Then the map
Vy = V,n is given by the multiplication of

I =01"%

N r’

where [, is the injection I, — O, which has finite norm by (a.4). Let U
denote S — U — {o0}; then

1, forpe U,
Il = Nl forpeU’;
N N N for p = oo,
It follows that p, < ||/ ||;'o_k [Lew 211, < eN7"mate for some positive con-
stants ¢, , ¢, independent of N, n.

Lemma (4.7). There are two positive numbers c,, c, such that, for any N, the
Jollowing estimate holds:
MV Vy_y) < e N,

Proof. Since L is ample and (4.2) holds for subvarieties D,,---, D, , by
induction, we can find a positive integer n, such that the following conditions
are verified.

(1) The algebra

®
A=® cicm Dpso I'D,;, L o)
is generated by the group
®
A =il (D5 L7).

(2) A(4,) < 1. Choose a finite subset {/;} of 4, of maximal rank such that
each element belongs to a single component and is strictly effective.
Since M =@, ;cp, Oy> T(D;, Ly) is a finitely generated 4 module, there
is positive constant n, such that this module is generated by
®N
My =S cicm Pr<n<nm I'(D;, L")

over A. Choose a finite subset {m,} of maximal rank in M such that each
element belongs to a single component and ||m,|| s < 1 forall p# .
For N sufficiently large, from the exact sequence

0-T(Ly_,)=T(Ly)—=T(Dy,Ly)—0,
we obtain an isomorphism

o:Vy/Vy_y = T(Dy, Ly).
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We identify these two spaces via « and let || - || = {|| - [|,} (resp. |- [
= {ll - lir,}) denote the global norm induced from the image (resp. the do-
main) of a. Notice that the subset

Sy={L=m; ][ €T(Dy,Ly):0;=0,1,---}
i

generates I'(D,, L,). To estimate A(V,/V)_,) we need to estimate || - || of
elements in S, .
Case 1. pe U. For any N sufficiently large one has the exact sequence
0-TI(X, LN—I) - T(X, I:N) — F(DN, i‘N) — 0.
It follows that, for any p € U, any lja in Sy has || .||, bounded by 1.

Case2: p e U =S —U —{oo}. Let € be any positive number. Write
N = (kny+s)m+r with 0 <s < n,. Applying Theorem (3.3) to ample bundle

L®" | one obtains elements l;a ’sin (L, ®9 Qp) =Vy®eQ, such that their
images in I'(D,, x spec Q,, Ly®Q,) are lja ’s and

! k . k
I < o™ Nm I TT 1% < ™.
i

k
It follows that ||/ |, <p™.

Case 3: p =o00. Let ¢ be a positive number such that all /;, have ||-|| less
(4

than e”°. Then by the same argument we obtain that ||/ |-, < ek,
k
(Il_,et t;, denote (Hpeufp[ ”“)lja. Then {z,,} also generates I'(Dy, Ly)
an

o=t h p # ;
A}'a Ip — ek(e—c) HpGU' plk€]+1 , p=oo.
It follows that, for sufficiently large N,

/I(VN/VN_l) < e—kc+kce ,

Iz

where ¢’ is a positive number independent of €, k. Choosing a sufficiently
small ¢ we may find positive constants ¢; and c, such that, forall N >0,

| AV Vy_,) < e Vot
The proof of the lemma is complete.

Corollary (4.8). Let X be an arithmetic variety with regular generic fiber and let
L, M be two hermitian line bundles on X . Assume that the following conditions
are verified :

(1) Ly is ample and L is relatively semipositive.

(2) For any irreducible horizontal subvariety Y (i.e., Y is flat over specZ),
the height ¢,(L|,)*™Y of Y is positive.

Then for n sufficiently large, there exists a basis of T(X , L®" @ M) consisting
of strictly effective sections.
Proof. By (3.5), the globally metrized line bundle (L, {||-||,}) on X, induced
by L is semiample metrized. By (1.9), for any Y , some positive power of Ll,
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will have a nontrivial strictly effective section. The assertion of lemma follows
from (4.2).

S. ALGEBRAIC POINTS WITH SMALL HEIGHTS

(5.1) Let X be an arithmetic variety of dimension d. Let L be a hermitian
line bundle on X . We say L is relatively semiample if L is relatively semi-
positive and the metric of L is semiample. By (3.5), L is relatively semiample
if and only if the induced adelic metric of L is semiample metrized. Modulo
a positive answer to question (3.6), L is relatively semiample if and only it is
relatively semipositive.

For any x € X(Q), let D denote the Zariski closure of x in X ; then the
height h;(x) is defined to be deg(L| Dx)/ deg(D, ). Assume that L, is ample.
For each subset U of X, let ¢;(U) denote the number inf, ., h;(x). For
each 1 <i<d,let

e,(L) =liminf{e, (X - Y):Y C X closed of codimension 7 }.

It is clear that e,(L) > e,(L) > --- > e,(L). The main result of this section is
the following theorem:

Theorem (5.2). Let X be an arithmetic variety of dimension d, and let L be
a hermitian line bundle such that Ly is ample and L is relatively semiample
with smooth metric. Then

¢,(L)?

bz T

e (L) +---+e,(L).

Lemma (5.3). Let X be an arithmetic variety of dimension d, and let M
be a hermitian line bundle on X such that My is ample and M is relative
semipositive. Assume that I'(M) has nontrivial elements s, , --- , s; such that
N;1div(s;)| = @ and ||s;|| < 1. Then we have the following assertions.

(1) ¢,(#)* > 0.

(2) For each 1 < i < d, there is an effective cycle Z; of codimension i
such that far any relatively semipositive hermitian line bundle L, the following
inequality holds:

e (D), (M) > ¢,(LI, )™

(3) For any finitely many irreducible subvarieties V|, --- , V, of X, there
is a section | of a positive power M®" | such that |l|| < 1 and I, # 0 for all
i , '

Proof. For each 1 < i < d, we claim that ¢, (M )i can be represented by a
“strictly effective” arithmetic cycle (Z;, g;); this means that Z; is an effective
algebraic cycle on X, and

Zf.k )T,
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where f, > 0 are functions on X and Z; are effective cycles on X of
codimension k. We prove this claim by induction on i. If i =1 then ¢, (M)

is represented by (divs,, —log||s,||). Now assume that / > 1 and c,(M)‘"'
is represented by (Z;_,, g;,_,) as required. Assume Z;, , = ZCj with Cj
irreducible. Since sections s, --- , s, do not have base point, for each Cj

there is a section s in {s;} such that s|. # 0; then ¢, (M )" is represented by
J

(Z div(sjlc ), &,y () = ) log ||s;||6q) :
J
This proves our claim. It follows that

¢, (M) = deg(Z,. g,) > / o€, ()"

>0

and
ond—i i S d—i ' ood—i =0 \d—i
/(D) = ¢, (Li) + [ gL > e (i)

It remains to prove (3). Replacing {V, V,,--- , ¥, } by the subset of max-
imal elements, we may assume that V, ¢ V; for i # j. For each i there is a
section sl{ in {s,,---,s,} such that s,{lVi # 0. Since MQ is ample, there are
m sections ¢,,--- , ¢, of some positive power M®P such that t;ly =0 for

J

i#j and ¢, #0. It follows that, for sufficiently large p, the section

=D
l= Z s,f °t;
will satisfy our requirement.

Lemma (5.4). Let (X, L) be assumed as in (5.2). Assume in addition that
e,(L)>0;ie, hy(x) >0 forany x € X(Q). Then c, (L)Y >0.

Proof. Our argument is adapted from [Ha], Chapter I, §6. By induction on
d = dim X , we may assume that c (Lly)di"‘y > 0 for any subvariety Y of X
with dimY < d. Let M be a very ample line bundle, and let s, , 5,, --- , 5, be

a basis for I'(M). We define the %-scaled Fubini-Study metric | -| as follows.
For any point x of X, and any local section s of M with s(x) # 0, then

-4
Islloe) = 5 (Z_l%ﬁ) .

It is easy to see that M = (M, || - ||) is semiample metrized and ||s;[|,,, < I

For any subvariety Y of X which is flat over specZ and is of dimension
s, let m,, = ¢,(L|,)" '¢,(M|,)" for 0 < i <s. By (5.3) and assumptions,
my >0,and my,, >0 if s <d or i > 0. We need to show that m,, > 0.
Let p,(t) denote the polynomial

s

(c;(Lly) + tc,(M|})) = my,+smyt+-+myt.
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We claim that if 7 > 0 and p,(¢) > 0, then p,(f) > tded. By this claim p, (¢)
does not have positive root. It follows that m, = p,(0) > 0. By continuity we
need only prove our claim for ¢ = 5 , a rational number with positive integers
a, b, such that p,(f) > 0.

Let L' denote the line bundle L% ® M®°. Then L' has positive height
for any irreducible subvariety Y which is flat over specZ. In fact, if Y =
X, then ¢,(L')? = a%py(2) > 0, and if s = dimY < d, then ¢,(L']y)° >
b'c,(Mly)* > 0. By (1.9) and (4.2) for n >> 0, I'(X, L,®") = (X, L'®")
will have a basis s, --- , 5, such that [|s;]| <1 for all /. Since L' is ample,
for n >>0, N, divs;| = J. By (5.3) and the assumptions on L, we have that

¢,(L)e,(L'y*™" > 0. 1t follows that

pr (2) =a(@e (L) + be, (e, (L)

d
> ba" ¢, (M)c, (L)™' > (g) ¢, (A1)°.

This proves our claim, and therefore the lemma.

(5.6) Proof of (5.2). Fix a hermitian line bundle ¥ = (N, || -||) such that N
is ample and || - || is semiample. Since numerically lc, (L®" ® N) — ¢,(L) as
n — oo, and every term in (5.2) depends continuously on ¢, (L), it is suffices to
prove (5.2) for bundle L®" @ N for all n > 0. In other words we may assume
that L is ample in the following proof.

The first inequality of (5.2) follows from (1.9) as following. Let ¢ be any
positive number, and let L' denote the hermitian line bundle

r\d
L <———————CI(L)d . +e) ,
de(Lo)*™

where L(a) = (L, ||-||e”“) foraconstant a. It is easy to see that ¢, (Z')d >0.
By (1.9), there is a nontrivial section s of a positive power L'®”" with ||s|| < 1.
It follows that L'®" has nonegative height at each point out of Y = div(s),
and so does L'. Therefore
7\d #\d
L)z inf ()= inf hp(x)+ —"(i)-— —e> —fl-(li)-ﬂ —e.
x¢Y(Q x¢Y(Q de,( Q) de,(Lg)

Since € is arbitrary, this shows the required inequality.

We use induction on d = dim X to prove the second inequality of (5.2). If
d = 0 it is trivial. We assume that d > 0, and the inequality is true for any
subvariety Y of dimension < d. Let € be any positive number. Consider the
line bundle M = L(—e (L) +€). Since L(—e,(L)) has nonnegative height at
any point of X, it has nonnegative height at each irreducible subvariety of X
by (5.4). It follows that A/ has positive height at each subvariety of X . By
(4.2) some positive power M®" will have a basis s, -+, 5, suchthat ||s;|| <1
for all i. Since L is ample, it follows that N|divs,| =@ for n >>0.
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For each 1, by definition, there is a subvariety Z; (may not be irreducible)
of Xq of codimension i such that

e (L)< inf h,(x)+e€.
i )‘xezzi(o) LX)

By (5.3) we may find a section / of a power M®™ such that / is not zero at
each generic point of each Z;. Let Y =div(/). It follows that

d— - 1 - d— 1 d-
(L) e (M) = e (LY, ~log ) 2 —e, (LI ™.
Since me,(Ly)* ™" = ¢, (LQIYQ)d_Z , it follows that
L d 7 d—1
¢ (L) > ¢ (Ly) —€+ey(L).

d—1 = d—
L) ™" T ey(Loly )
By induction,

¢ (L]y)*!
= 2 e (Lly) +e(Lly)+---+e,_,(Lly),
¢1(Loly,)

and definitions,
e,(Lly) > i §£lrzxf’m, hp(x)>e(L)—¢,

we have that

|3
:?If:))d_:l >e (L)+---+ey(L)—de.

Since € is arbitrary, we obtain the required inequality.

Corollary (5.7). Let X be an arithmetic variety of dimension d, and let L be
a hermitian line bundle such that Ly is ample and L is relatively semiample
with smooth metric. Then we have the following assertions

(1) Assume that L has nonnegative height at each point of X(Q). The fol-
lowing conditions are equivalent

(1) Some positive power of L has a nontrivial strictly effective section.
(ii) There is a nonempty Zariski open subset U of X such the height func-
tion h; has a positive lower bound on U .
(iii) The height of X with respect to L is positive.
(2) The following conditions are equivalent

(iv) For sufficiently large n, the group T(L®") has a basis consisting of
strictly effective sections.

(v) Some positive power of L has a set of sections which has no base point
and whose elements are strictly effective.

(vi) The height function h; has positive lower bound on X .

Proof. (i) — (ii): If a positive power L®" has a nontrivial strictly effective
section /, then Ay (x) > —1logl||/|| when I/(x)#0.



212 SHOUWU ZHANG

(i) — (iii): (ii) implies that e (L) > 0. By (5.2), we have CI(L)d >0, since
by assumption e,(L) > 0.

(ii1) — (i): By (1.9).

(iv) — (v): Trivial.

(v) — (vi): If a positive L®" has sections {I,,---, 1.} suchthat Ndiv/; =0
and ||/}l < 1, then e (L) > —max;log||/;|| > 0.

(vi) — (iv): Assume (vi). For any subvariety Y of X which is flat over
specZ, applying (5.2) to Y we obtain that cl(Ely)d’mY > 0. The assertion
follows from (4.2).

(5.8) Remark. Itisa interesting question to understand the relations between
numbers e,(L), e,(L), --- , ;(L). In the next section we will characterize
torsion subvarieties of a multiplicative group using these numbers with respect

to some canonical hermitian line bundles.
6. POSITIVITY OF NAIVE HEIGHTS

(6.1) Let us recall the definition of a canonical height function on P"(Q).

For each place p of Q, let |-| b denote the valuation on Q such that |p| p =

p_1 if p is finite, and let |- | denote the usual absolute value on Q. Let

Qp denote the completion of Q with respect to | - | b and let Qp denote an
algebraic closure of Qp. The height function A_, is defined as follows. For

a point x = (x,, X;, - ,X,) in P"(Q), let K denote the Galois closure of
0 1 n
Q(xy, -+ » X,) ; then we define
1
Poax (X) = KOl Z Z logmax |ox,],.
[K:Ql P o:K—Q !
° P

Consider G, as the open subset {xyx,---x, # 0} of P" . It is easy to see that
h . (x) >0 forany x € G, (Q), and A, (x) =0 if and only if x is a torsion
point of G, (Q). The main result of this section is the following theorem:

Theorem (6.2). Let X be an irreducible subvariety of G','n over Q. The following
two statements are equivalent :
(1) For any nonempty open subset U, we have

ey = }2{1 ha(X) = 0.
(2) X is a torsion subvariety of G, . This means that X can be written as

x-H in G"m , where x is a torsion point, and H is a subgroup.

(6.3) Remarks. (1) The assertion of the above theorem does not change if
we replace /. by a height function 4 on G, (Q) = Q™ with property that
there are two positive constants ¢, and ¢, such that for any x in G,(Q),
e P (%) S h(x) L chp,, (X).

(2) Let X be asubvariety of G"m defined over Q. We say a torsion subvariety
W of X is maximal if it is not contained in any larger torsion subvariety of X .
Then (6.2) implies the following two assertions: (i) X has only finitely many
maximal torsion subvarieties W, , --- , W, ; (ii) The height function h,. hasa
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positive lower bound on X —UW,. The assertion (i) is a theorem of Ihara, Serre,
and Tate (see §8.6 of [Lan] ) when dim X = 1, and is a theorem of Laurent [Lau]
and Sarnak [Sa] if dim X > 1. The assertion (ii) is an analogue of Lehmer’s
conjecture which claims that 4, (x) is bounded below by ¢/[Q(x) : Q] for
any nontorsion point x in Q°, where ¢ is a positive constant.

(6.4) We will prove (6.2) using intersection theory. Fix a free group V =
Zu+Zv of rank 2. Let P' denote the projective space associated to V ; then
u, v can be considered as homogeneous coordinates of P! ,and V can be
considered as space of sections of O(1). We define a hermitian metric || -||_

as follows. For any point x in ]PI(C) and any local section s of O(1) near x
such that s(x) #0,

_ ux)| |vx)
. = 1/max ([55-[ 565 )
Let O (1) denote the hermitian line bundle (O(1), |- || ). For a positive

integer n, let P, denote the scheme (IPI)" , and also let O_(1) denote the
hermitian line bundle ®i7z:0°o(l) , where =, is the i-th projection from P, to
P'. Let h,, denote the height function induced by O_ (1) on P,(Q). Consider
G','n as the open subscheme of the generic fiber of P, defined as the complement
of {u,v,u,v,--u,v, =0}, where u;, = uon; and v; = vom;. Then over G, (Q)
we have h , <h_<nh_, .

We want to define heights for arithmetic subvarieties of P, with respect to
O, (1). Notice that, on PI(C) , the metric | - ||, is not smooth, but it is the
limit of {||-|l,,/=1,2,---}, where foreach / > 1, | -||, is defined as

s = (|2 o+ ]2 ) ™

Let O,(1) denote the corresponding hermitian line bundle. We define heights
with respect to O__ (1) as limits of heights with respect to 0,(1) by the following
lemma.

The curvature c; (O,(1)) as a measure is given locally as

0 1008 I dtd(p')
';;108||S||1—‘7';;108(1+|2|)—m,

1/1

where z =v/u = pez"it. It follows that for any continuous function f,

[ ré@m= [~ Uf@”mwhim

Let T denote the unit circle {(u, v) : |[u/v| = 1}; then lim,_, cl(O,(I)) =0r
Let Oy(1) also denote the hermitian line bundle }, n*0)(1) on P,. Then
o,(1) has positive curvature. It follows that O,(1) is semiample metrized. The
followmg lemma gives some justifications for working on line bundles with limit
metrics.
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Lemma (6.5). Let X be an arithmetic variety of dimension d . Let L be an am-

ple line bundle and L, --- , L, be line bundles which have nonnegative degrees
on any curves in any ﬁbers

(1) Oneach L;, let |-|; and || |I; be two semipositive smooth metrics, and let
g = logHL Lill-1), L=, Il ). Then for any nonzero rational

section s of Ld , one has

o Bl (L)€l (Lyy) - loglsllycy(Ly) -~ €1(Lyy)
X(C)

M&.

“g“sup ¢, (L 1,Q)"'Cl(Li_l,Q)Cl(LH.l,Q)“'Cl(Ld,Q)

Il
n_._.

Z Ig ”sup 1,0) o Cl(Li_l ,Q)Cl(LH.] ,Q) 41 (Ld_l ,Q)l diV(S)|Q,

wherezfdlv(s) Yn,Z, with Z; integral, then |div(s) =X 1InlZ,.
(2) On each L,, let || l; bea ‘continuous metric and {-llp,n=1,2,---}

be a sequence of smooth and semipositive metrics such that log 'Hfﬂ converges
uniformly to 0. Let L, = (L, || ll;,), L; = (L, |I-l;) ; then

,}Lngo ¢(Ly,) ¢y (Lgy)
exists and depends only on L ,--- ,L,. We let ¢,(Ly)---¢,(L,;) denote this
llm(l‘;) Let ||-|| be a continuous metric on L which is the limit of smooth and
semiample metrics. Let L= (L, ||-||); then

d
de,(L) > (L)

> C—l-(—zy—l _el(L)+ +ed(l-‘)'

Proof. For (1), one has

[ toglslle (E)--el(Ly_y) - [ tog Islc; (L) -+ €| (Lg_)
X(C) X(C)
- /X o ToBlst ~Toglll)el(£3) €l (L)

/

+§/X(C)1ogllslldc;(lil)... (L,_ (e (L)) = ey (L))ey(Liyy) - ey(Ly_y)

/ !

S R Z ARG
X(C)

d-1
+ 3 [ toglslyc; (L)l (L 02D gl (Ll (L),
i=1 Y X(C)
where 8,8 are in the distribution sense. Let Z = div(s); then

9 -
2 togllslly = ¢;(Ly) — 4,
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and
/

/ o 8ISl (L) (L 02D g (L) el (L)

86_ ! T
= [ g oBlsluel L) L) L) 6l L)

= [ 8L = 8L L )6l (L) €Ly

X(C)
Since ¢;(L,) and c|(L;) are all semipositive, the inequality of (1) follows by
replacing g; by |glls,, and —d, by 1zl -

For (2), let s be a nonzero rauonal section of L,, and let divs =3 n,Z
then

Cl(I‘l )"'61(Ld")=C1(L1n) : d 1,, (an i 108”3114,,)
= mel (Lynlz) - ei(Ly_y alz) - /X( log|Isll 4,¢; (L) -+ €y (Ly_ 1)

The assertion follows from (1) and induction on dim X .
For (3), let {||-|l,,/=1,2,---} be a sequence of smooth and semiample

Il’

metrics on L which is convergent uniformly to |- ||. Let L, = (L, ||-],); b
(5.2),
cl(Z,I)d -
del(L, 2 ———412 el(L ) . +€d(L1).
¢, (Lyg)

Since log%',‘—l'll — 0 as / — oo uniformly, it follows e,(L,) — e,(L) and
cl(l_,,)d - ¢ (L) . Letting / — oo in the above inequalities, we obtain the
inequality for L.

Lemma (6.6). Let X be an irreducible arithmetic hypersurface of P, (n > 2)
which is defined by a polynomial F(x,,--- , x,) = Zail ’i"x;' ---x,';' on A"
with property that ifail i #0 then i, > i,. Assume that C1(Ooo(l)|x)n =0.
Then for any torsion point © in Q" we have c¢,(0_(1)| "' =0, where X,

is an arithmetic subvariety of X defined by the following polynomial over Z:
vix)= I @ -a(0w).
a:Q(1)—-Q

Proof. First of all we have that cl(Ooo(l))2 =0 on P'. This follows from
(6.5), (3). It follows that, for any subvariety Y of P, of dimension d,

GOl = 3 diey(m} 0, (ly) ¢, (2, O (D).

Let p, denote the restriction of m; on X and let d = [Q(7) : Q]. By
assumption F is not contained in closed fibers of m,, so y is not a zero
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section of p;(O(d)) . Representing dc,(p; 0,(1)) by (X, —log|y||,), we have

0=dc,(p;0,,(1))--¢,;(p, 0. (1))
= lim (X_, ~loglyl)c,(P;0,(D) -+ ¢, (2, O(1))
1 - - .
= a0l = Jim [ gl gy 8,
( ) t I—00 Jx(C)

where J,; = p;' c;(OI(l)). To prove that pl*l(r) has height 0, it suffices to prove
that

(6.6.1) Ay =/ log|lw||,0,, -, has limit 0 as / — oco.
X

We want to use induction on n to prove (6.6.1). It is trivial for F = cx,
for some constant ¢. So we assume that x, t+ F. Now F can be written as

x,F,+F, with F, apolynomial of (x,,---, x,) and F, a nonzero polynomial

of (x5, -+, x,). It follows that v, does not vanish on any component of any
fiber pl_l(a) for a € C. Since

29

00
d(5“ =70 log ”'//”1 + 6,\/{ s
we obtain that

00
Ay =/X(C)log”'//”[?i'10%“”2"1513“’51»1+/ |

_ log|lyl,0)3-- -0y,
P, (0)(C)

00
-/ 08102l 7 08 W0+ 4y

=a’/ log ||v 6(5--‘(5—/ log|lv,||,0i2-+6,, + A, 1,0
X© v, 11,6103 " Jr o gllv, 11,03 In 1,p5'(0)

T

We claim that
(6.6.2) cl(ow(l)qu_,(o))"“‘ =0and lim /X © log [|v,11,;,93 -9y, = O

Representing ¢, (p,0,(1)) by (p, I(O) , —log||v,[l,) , we obtain that
0=1¢,(p; 0 (1) ---¢,(p, 0., (1))
= Ilirlolo(p{l(o), —log [[v,ll,)¢, (P O,(1))e; (p30,(1)) - - - ¢,(p, O(1))
1 ~ -1 .
= (7,_—1),01(000(1)‘1:{'(0))" _,IL‘?O/X(C) log [|v, 1,019 - - - 8y,

The assertion (6.6.2) follows, since one can show that cl(Ooo(l)‘p;l(o))"—l is
nonnegative by (6.5), (3), and that ||v,||, <1 by definition.
Since p, l(0) is defined by the equation F, = 0, one has that p, 1(0) C

m, l(0) = P,_, satisfies the condition of the lemma. The assertion (6.6.1) for
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n = 2 follows by applying (6.6.2) and the fact p—l(O) = @ to the displayed
formula for 4, . For n > 2, by induction one has that lim,_, A,pz_.(o) = 0.

Combining with (6.6.2), one has
(6.6.3) lim 4,, = — lim / log ||v,l,0;3 - - ;-
[—00 |- 00 X,(C)

Forany x € C let f(x) = fpl.l(x) log ||v,ll,6,5---&,,- Then f,(x) is a nonpositive
pointwise continuous function on C. By (6.5), (1), as / — oo, this f, converges

uniformly. Let f_ denote the limit; then f_ must be a nonpositive pointwise
continuous function. From (6.6.2) one has

_ lim/ 10g““2“1511513"'51n = lim/f,C’l(Ol(l))=/foo(57.
I=o0 J x(c) fmeole ¢

It follows that f_(x) =0 for x € T. By (6.6.3), lim,_, _ 4,, = 0. This proves
(6.6.1) and therefore completes the proof of the lemma.

(6.7) Proofof (6.2). (2) — (1) is trivial, since the set of torsion points is Zariski
dense in a torsion subvariety.

First of all we reduce the proof of (1) — (2) to the case that X is a hyper-
surface of G"m. Assume (6.2) is true for all hypersurfaces of all multiplica-

tive groups. Let X be a subvariety of G:'n which satisfies (1) of (6.2) and

d =dimX < n— 1. There is a projection n from G”m to a factor Gf"“ of

the product of d + 1 components of G','n such that nX is a hypersurface of
G‘f:l . It is easy to verify that nX also satisfies (1) of (6.2). By assumption
nX can be written as xH, where x is a torsion point of G**! and H is

m
a subgroup of an“. Replacing X by x'x (the assertions are invariant),
we may assume that x = 1, i.e,, n.X is a subgroup. There is an isomorphism
D n_l(nX ) — G"m_l of groups induced by a change of coordinates in G"m . One
can prove that s__  and p*hmax are in the same equivalent class, as defined in
(6.3). This shows that pX satisfies (2) and therefore is a torsion subvariety by
induction on n,sois X.

Now let X be a hypersurface of G"m which satisfies (1) of (6.2). We want
to prove the assertion (2) for X using induction on n. If n =1 this is trivial,
since X must be a torsion point. We assume that n > 2. Let X be defined by
the equation F = 0 where

= il .. i"
F = Z a ...iX X,
i,>0, i, >0

n

is an irreducible polynomial. Let xf be the highest power of x, dividing

F(0, Xysooo s x,). Changing coordinates x, — xlx;‘ + , X 1is defined by the
equation
-k k+1
x, F(x;x; ", %, ,x,)=0.
It is not difficult to prove that x, kg (xlx;‘ o Xy, -, X,) is an irreducible

polynomial. So by changing coordinates we may assume that a .. #0
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implies that i, > i,. We claim that for any torsion point 7 in G,,(Q) the
preimage nl_l(t) N X is a torsion subvariety.

Consider G"m to be an open subscheme that is the complement of
{u,v,---u,v, = 0}, and let X denote the Zariski closure of X in P,. By
(6.5) we have that cl(Ooo(l)|X)" = 0. By Lemma (6.6), for any torsion point
7 €G,,(Q), the arithmetic subvariety X, has height 0. The geometric generic
fiber of X, over Q can be written as a union of p; 1(‘t) = {t} x Y and its
conjugates in Q, where Y is a hypersurface Y in G*'. By (6.5), p, ](‘t)

m
satisfies condition (1); so does Y, since 7 is a torsion point. By induction, Y

is a torsion subvariety in G”m_l ,s0is p;'(r) in G . This proves our claim.
Write
m
F(x;,»)=)_a,(x)y",
m

where m=(m,,---,m,), y=(x,,---, x,), a,(x,) are polynomials of x,,
and p™ = x;2---x". Then by our claim if x, = 7 is a root of unity, then every

irreducible component of the variety X in G"m—' defined by F, = F(7, y) is
torsion. Since torsion points in G,, are Zariski dense, there are infinitely many
7 such that X_ is irreducible and nonempty. In this case there are m,(7) and
m,(7) such that

1(7)

m,(1)

m
Ft(y) = aml(,)(r)y + amz(r)(":)y

where ap (T)(‘E) and amz(r)(T) are not zero and their ratio is a root of unity.

Since there are only finitely many such pairs (m,(t), m,(t)), one can find a
pair (m,, m,) such that m,(t) = m; and m,(t) = m, are true for infinitely
many roots 7 of unity. Let ¢(x) = :—'”2% as a rational map from G, to G, ,
my

and let I denote the graph of ¢ in an. Then I' has infinitely many torsion
points. By a theorem of Ihara, Serre, and Tate, I' must be a torsion subvariety
of an. It follows that ¢(x) = ax”, where a is a root of unity and n is an
integer. Without loss of generality, we may assume that n > 0; otherwise we
interchange m, and m,.

Let F(x,,y) =y™ +ax;y™ and let X denote the torsion subvariety of
G defined by F. Then X N X has dimension > n — 1. It follows that X
is an irreducible component of X. So X is a torsion subvariety of G:’n . This
completes the proof of the theorem.

APPENDIX: COHERENT SHEAVES WITH BOUNDED METRICS

(a.1) Let K be an algebraically closed valuation field. We assume that either
K is the archimedean field C, or a nonarchimedean field which is an algebraic
extension of a complete discrete valuation subfield K, with an algebraically
closed residue field k. The valuation on K is chosen such that each uniformizer
of K has valuation e .

Let V' be a finite-dimensional vector space over K . A function |-||: ¥V = R
is called a K norm if the following conditions are verified:
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(1) llkx]l = [k|l|x]l 5

(2) x| >0,and ||x||=0 iff x =0;

(3) if K is archimedean, then ||x + y|| < ||x|| + ||l¥||, and if K is nonar-
chimedean, then |x + y| < max(||x||, |I¥|).

Let X be a projective scheme on specK , and let F be a coherent sheaf on

X . Bya K-metric ||-|| on F we mean a collection of K-norms on each fiber
F(x), xe X(K).

Two metrics ||| and | ||’ are said to be in the same bounded class if the
number

sup |log||f]| - log || f1]
x€X(K), feF(x)—{0}

is finite.

(a.2) Let L be a line bundle on X. Sometimes, we need to consider the
“good” metrics. If K = C, this means that the metrics are continuous on
X(K). If K is nonarchimedean, this means that the metrics are “algebraic” as
described as follows.

Let E be a finite extension of K, in K, and let R ¢ denote the valuation
ring of E. Let X be a projective variety on spec R, with an isomorphism
a: X - X=X X spec R, specK. Let L be a line bundle L on X with an
a-isomorphism ¢ : L — i,K =L® R, K . Then we can define a metric ||-||; on
L asfollows. Via « and ¢ we may identify X and L with X, and L, . Let
x :specK — X be any algebraic point, and let E' denote the field E (x); then
x can be factored through a R, morphism X : specR e = X . One has that
x*(L) = x"(L) ®g,, K. Forany /e x*(L), we define

Il = inf{lal : I € ax™(L)}.

We say that the metrized line bundle L = (L, ||-||;) is algebraic and is induced
by the model (X, L).

Notice that any two “good” metrics on L are in the same bounded class.
So this bounded class depends only on L. We call any metric in this class a
bounded metric. For any bounded metric |||, each section / of L on X has
a finite supremum norm ||/ llup = SUP,¢ X(K) [l7]l(x). If K is nonarchimedean

and ||-|| is induced by a model (X, L), then ||-|| «p 18 induced by R, module
I'(L) as follows. For / € T'(L),
Illsu, = inf{lal : 1 € al(L) ®p Ry}

(a.3) For any coherent sheaf F, let ¢, : P — X denote projective scheme
proj,(sym F) over X associated to F and let L, denote the O(1) bundle on
Pp . Let ||-|| be a bounded metric on L . It induces a metric ¢, ||-|| on F as
follows: for any x € X(K) and any f € F(x) which we consider as a section
of L, on qb'l(x),
¢rlfll="sup [ f(p)Il.
pe¢™"(x)

Notice that the bounded class of ¢, | - | does not depend on the choice of
bounded metric || -||; we call any metric in this class a bounded metric of F .
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Theorem (a.d). Let F = (F,||-||) and G= (G, | -||) be two coherent sheaves
with bounded metrics and let h: F — G be a morphism. The the norm

" N 10)]

S ex(k), reF)—(0y IS

is finite.

Proof. Since the assertion does not depend on the choice of the bounded met-
rics, we may assume that the metrics on F, G are induced from bounded
metrized line bundles L, = (Lg, |- ), L; = (Lg, [l-]). On P; we have a
composite morphism

W geF ®Lg' > ¢5GoLg — 0.

It is easy to see that ||h'||sup = ||h||sup . Replacing X, F, G by P, d)*GF , OPc
we may assume that G = O, . Let I denote the image of h; then h is
decomposed into 4, : F — I and h,:1 — Oy. Puta bounded metric on I.
We need only prove that both 4, and 4, have finite norms.

Replacing 4 : F — G by h, : F — I in the above paragraph, we may assume
that I = O, . This defines a morphism j : X — P, and an isomorphism
hy : j*Lp — Oy such that A is the composition of 4, and the canonical
morphism A, : F — j*L;. Now |/h,]| <1 by definition, and [|A,]| is bounded
since h, is an isomorphism of line bundles with bounded metrics. So A, has
finite norm.

For h,,let y : B — X denote the blow up of X with respect to I; then
10, is an invertible ideal sheaf. The morphism y/*(hz) is decomposed into
hs : vl — IO, and hg : 105 — Op. Puta bounded metric on 10,. Now
hg is surjective, and it has finite norm by the above paragraph. A, has finite
norm since it is a morphism of two line bundles. This completes the proof of
the theorem.
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