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THE HOLOMORPHIC KERNEL OF THE
RANKIN-SELBERG CONVOLUTION

DORIAN GOLDFELD & SHOUWU ZHANG

1. Introduction

Fix positive integers k,¢, N, D. Let Si(I'o(N)) denote the C-vector
space of holomorphic cusp forms of weight & for the congruence subgroup

Ty(N) = {(Z 3) € SL(2,7)

c=0 (mod N)}

For a Dirichlet character € of (Z/DZ)*, let My(T'y(D),€) denote the C-
vector space of holomorphic modular forms of weight ¢ with character e
for the congruence group I'y(D)

Let f € Sk(To(N)) and g € My(To(D), €) have Fourier expansions of
the form

o0

§ : ,n 2 627rznz, +§ :b = 27rmz'

Rankin and Selberg [4], [6] proved that the convolution L-function (in
the case of equal weights k = ¢)

5,f®g) = Za

n=1

converges absolutely for complex s with Re(s) > 1, has a meromorphic
continuation in s with at most a simple pole at s = 1, and satisfies a
functional equation s — 1 — s. This result was later generalized [L] to

more general situations, and in particular, to arbitrary pairs of weights
kL.
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The proof of the meromorphic continuation and the functional equa-
tion of
L(s,f ® g) was obtained by expressing L(s,f ® g) as an inner prod-
uct of f - g with a nonholomorphic Eisenstein series. We shall give a
new proof of this result which does not use Eisenstein series at all, but
instead expresses the Rankin—Selberg convolution L—function as an inner
product of f with a holomorphic kernel function which depends on g and
s. The main result of the paper is the Fourier expansion of the kernel
function (when D is squarefree) which is given in Theorem 6.5. In the
case where € is a quadratic Dirichlet character (mod D), a simpler and
more explicit version of this result is given in Theorem 9.1. The func-
tional equation of the kernel is stated and proved in various important
cases in sections §10, §11.

In the special case that ¢ is a theta function attached to the imagi-
nary quadratic extension Q(v/—D), the value of the holomorphic kernel
function (or its derivative) at s = % coincides with the kernel function
computed by Gross and Zagier [1] in their celebrated formula relating
the derivative of an L—function of an elliptic curve with the height of
a certain Heegner point. Thus, our method simultaneously gives a new
simplified proof of the L—value computation in the Gross—Zagier formula
together with a new proof of the meromorphic continuation and func-
tional equation of the Rankin—Selberg convolution. The original method
of Gross—Zagier used non-holomorphic Eisenstein series defined on a
smaller group. The kernel was then obtained by a trace map and a holo-
morphic projection. In our method, all calculations are done directly on
Sk(To(IN)) and it is not necessary to go outside the holomorphic space
with different level and then project back in later.

2. Poincaré series

a b
For v = (c d) € SL(2,Z) let
j(y,2) =cz+d
denote the one—cocycle which satisfies j(v-v', z) = j(v,7'2)-j (v, 2) for all
matrices 7,7 € SL(2,7Z). Fix positive integers m, k. For Re(s) > 1 — %,

the series
Pu(z,5)=m's Y &M% j(y,2)7F (Imyz)*.
7€Ts0\Lo(N)

converges absolutely and uniformly to an automorphic form of weight
kE on T'o(N). This series was first introduced by Selberg [7] and shown



RANKIN-SELBERG CONVOLUTION

to have a meromorphic continuation to the entire complex s—plane. We
define the holomorphic Poincaré series

P(z) = ;1_1% Pp(z,s)

by analytic continuation.

Fourier Expansion. The Fourier coefficients p,,(n) of
s k=1 X
Py (z) = me(n) no2 min
n=1

are given by the formula (see [5]),

S st ()

c=1

¢=0 (mod N)

(21)  pm(n) =y + 2mik

where 6, , (Kronecker’s delta function) is 1 if m = n and zero otherwise;
S(m,n;c) is the Kloosterman sum

(2.2) S(m,n;c) = Z ez%i(m’””d),
ad=1 (mod c)
and
. 67%‘1‘7;00]:‘ (u N w) )\ 20
2. _ = — — 2 7 (Z d
7%72'00

is the Bessel function.

Petersson Formula. By unfolding the integral, one can show that
for any cusp form

h(z) = Z c(m)m%le%imz € Si(To(N)),

m=

—_

we have

(2.4) c(m) = < h,Pp, >.
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3. Outline of the method

Let (-,+) denote the Weil-Petersson inner product on Si(Tg(NV)).
Now, fix s € C and

+Zb 7 ¥ ¢ My(To(D),e).

Consider the linear map
(3'1) f _>L(5’f®g) :<(I)s,gaf>

for a unique holomorphic Riesz kernel (cusp form) ®,, € Si(I'o(V))
with Fourier expansion

(32) Z sts,g == 27rmz'

We now use the properties of the Poincaré series (Fourier expansion
and Petersson formula) to obtain a formula for the Fourier coefficients
of the Riesz kernel ®; , given in formula (3.2).

Set h = @, 4 in formula (2.4). It immediately follows from (3.1) that
( 47T)k 1
(k—2)!

By the Fourier expansion (2.1) for the Poincaré series, we have for
complex s with Re(s) > 1 + £51 that
(3.4) L(s, P ® g) = b(m)m ™% + 2mwi* T, (s)

where

(3.3) ps,g(m) =

L(S,Pm ®g)-

) PELLELLL:

=1 n=1
N|c
e—%-i—ioo f
L / F(T ’LU) 27'('\/ w
27 I'(EL —w) c
e—kgl—ioo
i 2
=> > e
Rf:'ire(Z/cZ)X
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and
1 (o7) = S

with r7 =1 (mod ¢).

In the remainder of this section we briefly illustrate our method in
the special case N = D =1, k = /¢, and ¢ is a cusp form. Complete
details for the more general case are given in §4 through §10.

Our assumptions imply that in this case Ly(s, %) has holomorphic
continuation to all s € C and satisfies the functional equation (see Propo-
sition 4.2)

k+1 _
ay (i)”sw (1-5-2)
Ly(s, c) i 5 TS5 ) Ly(1—s, .

where @ is the inverse of ¢ (mod c¢). If we apply this functional equation
to the formula for T;,,(s), given in (3.5), we obtain

m)2s—1 o0 n
(o) = B2 S5

S(s,m —mn) I (T>

nl=s n

n=1

where

[o¢] .
:Zc_is T exp<2ﬂzBr>,
c=1

€(Z/cz)*

is the classical Ramanujan sum, and

67%4»7200

1 F(kT—I—w)F(%— —w)
/ I (B —

y~ Y dw

k-1 _ .
EfolOO

is a hypergeometric function.

Formula for S(s,B). The formula

S(s,

d|B
was first given by Ramanujan [3]. When B =0,

C@2s —1) _ o532 T(1—5) ((2(1 ~ )
((2s) T(s—3) ¢(2s)

S(s,0) =
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Formula for I;(z). We will show in Proposition 8.3 that

((T(k—s) k=1 B )
Flzgc)(ss))wz(l_x)s 1F<1—ssk,x1> fo<z<l

. T(k— 223—21" 57; .
Ii(w) = § "1 ﬁr(kgsﬁgv if z=1

F(k)F(s)xT(:ﬁ —1)5F (1 — 8,8, k; ﬁ) , if > 1,

where F(a, 3,7;2) denotes the Gauss hypergeometric function defined
for |z] < 1 by the absolutely convergent series

a-f ala+1)B(B+1)

F cz) =1
(e, B,7; 2) + 7.1z+ Y1) 12 z°+

and for all values of z by analytic continuation.
Combining these formulas we obtain:

Proposition 3.6. Define y(s) = FISEGIZE(S’“)) é%?s, Then we have

Y($)L(s, Pn ® g) = ) bln) y(m,n; s),

n=1

where

k=1
( ) 2 oj_ 2s(m—n)F(l—s,s,k' n ) ifn <m,

' n—m

Y, nzs) = §y(apm= 4 (1L = me! ifn=m

k=1

(g) 2 of_g(n—m)F (1 —s,8,k; mﬁﬂ) ifn > m,

and o} (n) = n= 2 @” for positive integers n and complez v.

Note that Proposition (3.6) (for the group I' = I'¢(1)) is also easily
obtained by the standard Rankin—Selberg method. By unfolding the
Poincaré series P, instead of the Eisenstein series F(z, s) we obtain

dzdy
/ Y P (2)9(2) E(z,5) —
'\ !
_n' [ () Ba,s) W
T\b !

= (mn) "2 b(n) / e I e, (s, y)dy,
_ 0
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where e, (s,y) denotes the coefficient of e>™® in the Fourier expansion of

E(z,s). The formula for these Fourier coefficients is well-known: e, (s, y)
is the product of of_, (|r]) and a simple analytic function of |r|y for
r # 0, and a linear combination of ((2s)y® and ¢(2s — 1)y'~* for r = 0.
Substituting this into the above unfolding identity immediately gives
(3.6).

Remarks. The expression for y(s)L(s, P, ® g) (on the right hand
side in Proposition (3.6)) is absolutely convergent for all s and each term
is invariant under s — 1 — s except the first two, which are interchanged,
so one immediately deduces the meromorphic continuation and func-
tional equation. It follows that L(s, P, ® g) is holomorphic everywhere
except for a simple pole at s = 1 with residue proportional to b(m). The
classical results of Rankin [R] and Selberg [S1] are immediately recov-
ered.

The classical Rankin—-Selberg proof is simpler than our new method
if f and g are the same level and if g is a cusp form. Otherwise, unfolding
P,,, will force one to take the trace of gF first, and it will be necessary
to truncate Tr(gFE) in order to make the integral convergent. This is
more complicated than our new method given here and is very close to
the original Gross—Zagier method. Our method was discovered by trying
to simplify the proof of the Gross—Zagier formula. In that case g is a
theta function (not a cusp form) of different level than f and our method
avoids taking the trace and doing a holomorphic projection.

The formula (3.6) may yield new applications. For example, the rapid
convergence of this formula, and the fact that that it is true also for s out-
side the region of convergence of the original Dirichlet series L(s, f ® g),
might make it suitable for certain theoretical or computational appli-
cations. Also, the fact that F(1 — s,s,k;x) becomes a polynomial for
integral values of s might be useful for obtaining new results, or new
proofs of known results, about special values of L(s, f ® g) at such argu-
ments. [t would also be of interest to see if our new method can be used
to obtain higher convolutions of Rankin—Selberg type.

4. Functional equation for L,(s, )

In this section we derive the functional equation for

o0

T 2winr

L, (s,;) = glb(n)e e n ®
n=

where g € My(T'o(D),e). Here, we assume that ¢ is a fixed positive
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integer and that € is a Dirichlet character of (Z/DZ)*.
Let v = (CCL 2) be a matrix with real entries and positive deter-

minant. Given, F(z) a holomorphic function on the upper half plane,
define ,
F‘v(z) = (ad — be)2 (cz +d)tF(2)

which satisfies F‘w o= F‘W,.

Assume now that D is square free. Let € = Hp‘ p €p be the decompo-
sition of €. Set

D
(5 = — 5’ = D .
(C, D) ) (C, )
Since (4,4") = 1 it follows that there exist z,y € Z such that zd —yd’ = 1.
Define a matrix ws by the formula

(56,

Then ws normalizes the subgroup I'g(D).

Define

¢(2) = g, (2).

Then ¢° belongs to My(I'o(D), €’) where

(4.1) 66:651'651 :HGITI'HGP'

p|d pld’

Proposition 4.2. The function Ly(s,%) has a meromorphic contin-

uation to the entire complex s—plane with simple poles at s = &L, 1=¢

202
(with residue —b(0) at s = % ) and satisfies the functional equation

1
a ay (02 \2 7 T (4 —s) as
Lo(s ) =¢(3) (m) F(Elgs) Lrlms=0)

(2)=ra (5

and a 1is the inverse of a (mod c).

where

Proof. Since (¢, d) = 1, there exists a matrix vy = (Z Z) € SL(Z)

with 0|d. Write

r [z oy _1_ ad —bd'  —ay + bz
Y= 5) T\ \es—dd —ey+dz)
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Then +' € T'y(D) since d|d, ¢'|c, and §6' = D. Since
o sto

we obtain
9],(2) = e(—cy + )i 34" (Z).
Here
e(—cy + dz) = e5(—cy)ey (dz) = €5 <§> €5 (ad).
Write
aztb_a_ 1
cz+d ¢ clez+d)
and make the substitution z — —i - %. We have
C) ege(ad)dfég‘s <_5012z + %)

(Ee) e =l

where o’ = —d/$.
Let L;(s, ¢) denote the Mellin transformation

v @y % a . =1, dy
Lg(s’ E) - /0 |:g (E +7'y) - b(O):| Yy 2 ?
where b(0) = 0 if ¢ is a cusp form. Then we have
. (& +s) ,  a
Li(s, =) = —275—= Ly(s,-).
c (27T) 5 s c
Now
5[ d

% g . cVé g . - [7714»5 _y
Lg(s,c>—</0 +/%> 9 (2+iy) —b(0)] v .

On the other hand, from the functional equation of g and ¢°, we have

eV a 1 s d
/0 o5 +iv) b y= o
-1 /
Vs a 1 dy
—a [T (<5am+ 2) 00| i) T Y
0 Yy Yy
+ Ab(0) (i) “(evB) L
s 2
1

DR =
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where c ,
A= (5) €5 (ad)d 5.

If we make the substitution y — %, we obtain

[l vm) oo

- A/j [95 (‘ * iy) = 5(0)| (ei)(Pdy) T d—yy

cVs
1
+ AB(0)(ei) (Vo) T
ST
-1 1
— b(0) (V) —.
s-i—eTl
C\ 1 L [ N 1 a’_l o\ =L lT—H—s@
€5 (5,>651 (ad)o 2/0 g ( 502iy+ - (ciy) ™"y 2 y

The functional equation

. a __ c\ _ . a'
Ly (3, E) =it (5) 65,1(a5)(502)1/2 *Lys (1 — 8, ?>

and Proposition (4.2) immediately follow. q.e.d.

5. Generalized Ramanujan sums

In this section we fix a decomposition D = ¢ - §' of the square—free
integer D. For any integer A we decompose

(5.1) A= A1As
so that A; is positive with prime factors dividing ¢’ and A, is prime to
5.

Definition 5.2. We define

G(5) = €p1<5_'> S Gl et
re

pld" P7 re@ipmy

Let ¢ be a positive integer and B € Z. The sum

Z €5 (,r)e27ricB7‘

re(Z/cZ)*
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is a generalized Ramanujan sum. We evaluate it in the next lemma using
the notation e” = exp(z).

Lemma 5.3. Let ¢, B positive integers with ¢ > 0, (¢, D) = ¢', and
B #0. Set c=cycy, B= BBy as in (5.1). Then the sum

Y () exp (%jBr)

re(Z/c)>

is equal to (with G(d) given in Definition 5.2)
By C2
G(5)3165/ <a> Z 1% (E) d
d|(c2,B)

if ¢ = B10'; otherwise it is zero.

Proof.  Let ¢ = []i_;p]" be the prime decomposition of ¢ with
n; > 0. Then every r € (Z/cZ)* can be uniquely written as Y, r;(c/p}'")
with r; € (Z/p;"Z)*. Since

ev (3o rie/pl) =TT ewi((e/pi I,
p; |’

one has

=11 > &'e/pf)rexp (2;2?7">'

pild’ TG(Z/p?iZ)X

I T o).

pild’ TG(Z/p?iZ)X

Let us evaluate the two products separately. If p;|0’, then every element
in Z/p;"Z can be uniquely written as r + tp; with r € (Z/p;Z)* and
t € Z/pi" 7. Tt follows that

> e (25Er)

1"6(Z/p?iZ)>< ¢

_ . 2miB 2miB
- Z epil((c/p?l)r) exp < P T) Z exp (Ft> .
z

r€(Z/pif )* t teZ/p?i_l i
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If ord,,(B) < n; — 1, the last sum is zero; otherwise it is

_ _ . 2miB
S Gletne ().

re(Z[piZ)* ¢

Again this sum is 0 if ord,,(B) > n;. Otherwise, replace r by
T(B/p?ifl)’l (mod p;) to obtain

. _ 279,
e, (Bpife) Y e,,f(mexp( )

re(Lpi)x bi

It follows that

H Z e;il((C/P?i)r) exp (QZZB r)

pild’ re(Z /p] ) ¢
is nonzero only if B1d’ = ¢;; in this case, it is equal to
BIE(;I(BQ/CQ)G((S).

Now, we assume that p; f0’, then

2miB 2miB
> ew(TE) = X ew ()
) D; )

re(2/pliL) i rez
2miB
— Z exp TP
reZ[p)t 'z ’
ng
b;
= d
> ()
d|(B:p;*)

It follows that

T Xexp@i?r): > u(8)a

pilb’ rE(Z/p?iZ)

This completes the proof of Lemma 5.3.

6. The holomorphic kernel @, ,
We recall formulas (3.4), (3.5) which we now relabel as (6.1), 6.2).
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(6.1) L(s, P, ® g) = b(m)m™° + 2mi* T,,,(s),

c=1 n=1
Nle
e—5=+i00
1 / (5 +w) (2ny/mn\~
Co— dw
2 I'(EL — w) ¢
e—k—;l—ioo
9]
2wimr
=2 > e
?\7=\ re(Z/cZ)*
(6.2)
e—%—l—ioo e
— L (3 + w, —) dw,
271 kl/ F(% _w) Cl—2w g
€—=5=—1i00
and

1o (s2) = S

with 77 = 1 (mod c). Since L, (s, Z) is holomorphic in s, formula (6.2)
holds for all s.

In (6.2) we will apply the functional equation given in Proposition
4.2. The Mellin—Barnes integral (for z > 0,s € C, Re(s) > 1)

e—k—;l—l—ioo

SR STINC S

k-1 _ -
€ 2 100

naturally appears. This integral is evaluated in Proposition 8.3. Further,
the Kloosterman sums then turn into generalized Ramanujan sums (here
B € Z,s € C with Re(s) > 1)

64) Ss,B)= > 65(002/55’) Y elr)exp (QWiBT>'

C
c=1 re(Z/cZ)>
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These sums are evaluated by Lemma 5.3 in Proposition 7.1. This is the
key idea for obtaining the final formula for the holomorphic kernel as
given in Theorem 6.5 which is the main Theorem of this paper.

Theorem 6.5. Fiz positive integers k, £, N,D and g(z) = b(0) +
S b(n)nl_Tle%mz in My (To(D),€). Assume that D is square free, €
a Dirichlet character (mod D), and s € C. Then we have:

(a) The kernel function @ 4(2) defined in (3.1), (3.2) has the Fourier
erpansion

4m)-1 X .
( 77) Z L(S,Pm ®g)627r7,mz.

P 0(2) = 77—
(k—2)! 2=
(b) The function L(s, Py, ® g) is given by

L(s, P, ® g) = b(m)m* + 2mi* > T (s)
8D

with

riw =i (1) g3 2 st ma -y 1, (M),

where b (n) are fourier coefficients of ¢° defined in §3, I,(z) is
the Mellin-Barnes integral (6.3), and S°(s, B) is the generalized
Ramanujan sum 6.4.

Proof. Tt follows from the functional equation given in Proposition
4.2 that

(27y/m) "2 T

701727” Lg <S + w, E)
_e(ey (o L (5 s w)
—\e c? 472 L5 +s+w)

w
" Lgs (1—s—w,—a—5>.
c

If we use this identity in equation (6.2) and recall that

96(2) — Z b&(n)n%e%rinz,
n>0
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and
T e 2winr
Lgs (5,;) = Zb5(n)e e on ®
n=1

it follows that

(6.6) Tn(s) =) _ To(s)
51D
where
27° 2 (n om
(6.7) TO (s) =" 0 5,2 (0) b (_) S%(s,mé —n) I, | —
(47T2> 0 ; nl < n >
q.e.d.

7. Evaluation of S%(s, B)

As before, we work with a fixed decomposition D = § - &’ of the
square—free integer D and e is a Dirichlet character (mod D). Recall
the definition of € given in (4.1):

66 :6(;1 Y :HG;I'HGP.

p|d pld’

For any given number e prime to D, let L2(s) denote the Dirichlet L-

function 5

(L
Li(s)= > T(Zg).

(n,De)=1

When e = 1 we simply denote it by L%(s).
Proposition 7.1. Let B be an integer with decomposition B = B1Bs
as in (5.1). Let N = N1Ny as in (5.1). Define

G(é();s)(szg)%?L(le) D 2 dl-2s¢0 (5) . B#0, N|B,d'

(d,D)=1
S2(s,B) = { L°(2s — 1) B=0,6=D,
(N,D)=1
0 otherwise
Then
55( B) 66(1/N2)N21725 N € 55( B)
s == £ — ] —=5Y(s .
’ LY, (2s) e ) N7
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Proof. Assume that B # 0 first. By Lemma, 5.3, if S%(s, B) # 0 then
there is a positive integer ¢ such that N|c, (¢, D) = ¢, and ¢; = B1d'.
This implies that N1|B1¢’. Assuming this, Lemma 5.3 then gives

5 -y e5(Bica) 3
S (S,B) == WG((S)BIG(V(BZ/CZ) [L(Cg/d)d
Ny|ep d|(c2,Bz2)
(Cz,D):l

Interchanging the summation, we obtain

S(S(S,B) — G((S)EJ Bl 66’ B2 Zd Z 1/02) (CQ/d)

BI(SI 2s 25
d\Bz Noleo 2

dlco
(C2aD):1

If S°(s, B) # 0 then (N2, D) = 1. Assume this and let e|Ny be a factor
such that N
N ) — 2
( d’? e

Substituting ¢ by d%f, then (e,#) = 1, and we obtain

G((S)E(s(BI(S 65/ B2 1/ dN2€ )),U,(NQ/B)
d —
5°(s, B) = (5/)2s325 1 Z Zd (dNy/e)?s )
d|By €e|Ngy
(d,D)=1 e|d

O(1/0)u(l
ySRALIC)

(6 Naje) =1

Interchange the sums over e and d and replace d by d-e. The Proposition
follows in the case B # 0. The case B = 0 can be treated similarly.
q.e.d.

8. Evaluation of I;

Let

L) = a-f alat)(BE+1)
Flafmz =1+ A IS R &
ala+1)(a+2)6B+1)(6+2) 3

Yy +1)(y+2)-1-2-3

_l’_
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denote the hypergeometric function. It is well known that the hyperge-
ometric function F' satisfies the following identities:

(8.1) Fla, B,7;2) = F(B,,7; 2)
82 Floya) = (-2 F (e -y 7).

We use these identities to prove the following:

Proposition 8.3. Assume that Re(s) < Y. Then Iy(z) is given
by the following formulae:

i D(5E—s)

Ry (k=L k—¢
(1—xz) F<—2 +s5,——+1 s,kz,—x_1>,

T'(k)T(5E + 5) 2
if 0<x<l1;
F(%—s I'(2s — 1)
F(5%t+s)T (S +s) T (BE+s-1)
ifc=1;

U8k —-s) e b=ty g (=K l—k 1
ror (B es” - Y7 PG +i-s ek,
if x> 1.

Proof. Recall formula (6.3)

67%4»7200
DA L) (&L — 5 —
IS(IE) — i / ( 2 w) (43 s w)ZL‘iwd’w.
27 I (B2 —w)T (5L +s+w)
k-1

EfolOO

For 0 < x < 1, we compute the integral by shifting the line of integration
to the left. The integrand has poles at w = —% —nwithn =0,1,2,....
Consequently

AT I ) o= LA G s i) B

— n! T'(k+n)l (Z*Tk + s —n)

Lemma 8.4. For z >0

= (=1 I(a+n) . D(a) '
2 n Th+n)l(c—n)" —WF(aﬂl—c,byw).

n=0

17
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Proof. By the properties zI'(x) = I'(z + 1), I'(1) = 1 of the Gamma
function, and the definition of the hypergeometric function F', we have

— (-1)"  T(a+n) n
2 T+ n)l(c—n) "

_ Ia) (l_a-(c—l) +a(a+1)(c—1)(c—2) 2_.“>

T(b)T(c) T 2 b(b + 1) v
= 7F(a) a — C,0, T
N I‘(b)I‘(c)F( 1 - bia),

which concludes the proof of Lemma 8.4. q.e.d.
It follows from Lemma 8.4 that

bk _ _
Is(:zi):gc’%1 F(2 S) F<k+g—s,k ¢
I'(k)T (52 + s) 2 2

—i—l—s,kz;x).

We apply to this the first transformation (8.1) and then the functional
equation (8.2) with z — z/(z — 1). The first formula in Proposition 8.3
immediately follows.

For x > 1, we must shift the line of integration to the right. The
integrand has poles at w = HTI —s+nwithn=20,1,2,.... We have

_1\n (kL —
IS(IB) _ Z ( nl') - k,g( 2 s+ ’I’L) :L,—“'Tl-i-s—n'
n>0 (%5 +s—n)D({+n)

Applying Lemma 8.4, we have

ey, T (B =) F(k+£_sﬁ—k
I (55 +5)T(0) 2 2

+1—s,€;x1>.

Again, the transformation (8.1) and the functional equation (8.2) 1 —

1/(2 —1) = 1/(z — 1) gives the formula in Proposition 8.3 in the case
> 1.

In the remaining case when x = 1, we require the following lemma.
Lemma 8.5.

L(e)'(c—a—b)

Flab,e1) = T(c—a)l(c—b)
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Proof. Using the identity

I(z)l !

M — / tl‘*l(l _ t)yfldt

I'(z +y) 0
and the Tayler expansion of (1 —¢z)* at z = 0, we obtain:

I'(c) /1 —ab-1 —b-1
F(a,b,¢;2) = = 1—t2)" %" (1 —¢)° dt.

This gives the formula in lemma 8.5 after setting z =1. q.e.d.

The formula for I4(1) in Proposition 8.3 follows by applying lemma
8.5 to the case of the first formula for I;(z) when 0 < z < 1. This
completes the proof of Proposition 8.3.  q.e.d.

Proposition 8.6. Define

~ r (H + s)
I (z) = —2—2L1I,(z).
R C i
Then for ¢ # 1 we have the functional equation
1:1*5(33) k—t I~S($)
A St A -1 .
P A C A A P TE

Proof. Assume first that 0 < z < 1. It follows from Proposition 8.3
that

I~1,s($)

|z —1|1=

T (%) N A T z
_F(k)l“(%ﬂ)(l_x“ F( 3 9T +1_S’k’x—1>‘

By property (8.1), the hypergeometric function F' above is invariant
under the transformation s — 1 — s. Further, since £ = ¢ (mod 2), we
may set a = % € %Z. Then we must have

M - (_I)ZaM
T(—ats) I'(—a+1-—3s)’
Fla+s)'(l—a—-s)= m

— (_1)\2a
=(=1) sin(m(—a + s))

= (—1)*D(—a+s)I'(1 — (—a + ).

19
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The functional equation immediately follows. In the case z > 1, the
proof is even easier since the gamma, factors cancel out.  q.e.d.

9. The holomorphic kernel 5519 for real characters

In general, ®, ,, does not have a simple functional equation. However,
in the case € is a real quadratic character, then we can replace ®,, by a
new function ®, , which has simpler Fourier coefficients.

Proposition 9.1. Fiz positive integers k,£, N, D and g(z) = b(0) +
oo b(n) n's 2min? My (To(D), €) with € a real quadratic Dirichlet
character (mod D). For s € C define

Z) — Zés,g( mm 2 emez

with
N ~ b(m) No\ e T (%% +5) Le(2s)
Ps,g(m) = s dZJ\fg“( o ) Ny T (B = 5) (2m)Zse(e)el 2
+ 21T v, (8)
where

_g o0

T kT 52 (n) g0 5 om
m,Ng( ) (%_ Z 27l n1 s (5 m ) 7 )
5|D 1

n=

SR

2

(s,mé —n) is given in Proposition 6.5, and I (Tm) is given in (6.3).

Then <I>s,g( z) is a cusp form of weight k for To(N). Further, for any
newform f of weight k for To(N), we have

(4r)k-1T (% — s) (27T)256(N2)N21_25.

(k_2)! F(%-FS) LNZ(QS) (I)S,g’f >

L(s,f®g) =

Proof. Since € is real we have €2 = 1 and € = e. By Proposition
6.5, S%(s, B) # 0 only if N|B¢' and (N,§) = 1. In the decomposition
N = NN, (as in (5.1)) we may, therefore, assume that Ny is maximal
and prime to D.

For any factor e of Na define

Tm,e = Zng e

3D
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with ng,e given by the formula

73u) = S o s (%)

ot nl—s 7€

where I, is defined by

Define ¢ 4(m) by the formula
s.(m) = b(m)m™* By(N3) + 2mi* Ty v, (3)

where

B = Eou () e

e| N>
and
L (5 —5) @m* efe)el 2

As(e) = T (% + 8) Le(25) .

By definition, T}, ((s) depends only on Nie and m. It follows from
(6.6), (6.7), and Proposition 6.5 that

(9:2) T(6) = Au(02) 3 (22 ) 5 Tone o)

(& N2
e| N>

It further follows from (6.1) and (9.2) that

bsg(m) =Y p (&> N%As(e)L(s,Pm,e ® g)

(&
8‘N2

where Py, . denotes the m'™ Poincaré series for I'y(Nie). q.e.d.

10. The functional equation of (55,9 when D =1

Theorem 10.1. Fiz positive integers k,¢, N with k = £ (mod 2).
Fiz a modular form g € My (T'o(1)) . Define ®, 4 as in Theorem 9.1 with
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the choice D = 1. Then &)s,g has the Fourier coefficients

; k=t 1= (1 —s)I(s) .
s, g(m) =" N T (G 41— ) T (G _S)g(2 )
k—f A7l—s (1 —s)(s)
+1 N' (27T)2 gsF(é—l—k +S)F(L—1+$)C(2_28)
_*_iklelfs Z b(n)
n>1,n#mD

n=m (mod N)

1
2 dydy "

[y = dids

1-s .
2o E )
n n

and we have the functional equation

= _ arl—2s%
@l_sag - N ¢579'

Proof.  The formula follows from Proposition 9.1 by taking D =
1 and Ny = 1. The functional equation follows from the functional
equation of ((s) and Proposition 8.6.  q.e.d.

11. The functional equation of (T)s,g when ¢ is a theta function

We now assume that N is prime to D and ¢(—1) = —1. Extend € to
a character on A* /Q*. Assume that

+ Z b 27rmz

transforms like a theta function attached to an imaginary quadratic field
Q(v/—D): In this case the Fourier coefficients b(n) (with n > 0) satisfy
the following properties.

(11.1) For any 6|D, b(6) = 1

(11.2) b(n) # 0 only if e(n) = 1.

(11.3) For é|d, b(nd) = b(n) b(d).
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(11.4) For 8D, let x(8) = /es(—1). Then b°(n) = x(8) *b(nd)es(n).

Theorem 11.5. The function &)s,g defined in §9 has Fourier coeffi-
cients given by

N o s \N2s—1 r(f—s\r(Lf+s P (m
¢s,g(m) :Zk ZL(257 6) (27‘(’)5 (Tk : 1) F(EZTIC )_ 3) TT(I,S )
D235 F(s—%)I‘ 3-5)  bP(m)

+iFtL(2 — 2s,€)

> AL ()

n>1,n#mD
mD=n (mod N)

with
Jo(t) = €(mD = Nt) Y e(d)d > Y ey(Nt(Nt—mD))t}, >
dlt 0'|(D,t)
(d,D)=1

where € = 6'651 and ty denotes the mazimal positive divisor of t whose
prime factors are those of .
Further, we have the functional equation,

&) .4 =e(~N)(DN > 1o, .

Proof. By definition, we have

bs g(m) = BS(N)% + 2miF Ty N ()

with

612 S b0 (n om
T (s) = ot > e = S (md —n)I; <7>
0|D n=1

One precise computation of Bg(N) will give the first term in the formula

of Theorem 11.5. Replacing n by n/d’, interchanging the sums, and using
the formula for b’ (equation (11.4)), we have

DY2=sp(D b(n . (Dm
Tm,N(s) = W(l())) Z (1—_)5‘]5*(”)[5 <—>

mD=n (mod N)
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where

Z V' k(6)es(n)8')SY <%>

&' |(D,n)
If n =mD, then

J;(mD) = e(mD)L(2s — 1,¢).

Applying the functional equation of L(s,¢€), the term n = mD in the
last formula of Ty, n(s) will give the second term in the formula of the
Theorem. Now we assume that n # mD. Then

Z )\Fﬁ )es(n)6")S% <%>

Notice that S is nonzero only if mD = n (mod N). Write ¢t = 2B=1
then

S%(Nt/8') = (?)(f)gé(;gt)/f_)l S edya
(4,D)=1

Since G(8) = x(6')V/d, and
ex (—1)es(n/8 ey (NH/8') = € (n)ey (~nN1),

we have J;(n) = Js(t) as in the last term in the formula of Theorem
11.5.
We now obtain the functional equation for

Jo(t) = "(mD —Nt) Y e(d)d > > ey (Nt(Nt —mD))ty .
dJt &' |(D,t)
(d,D)=1

Replace d by [t|/(tpd) in the first sum, and replace ¢’ by (D,t)/d" in the
second sum to obtain

Jis(t) = 257 ([H1/£D)e( my (= Ntn) Iy (4).
Notice that ep(|t|/tp) = sgn(t)ep(t), and for any p not dividing (¢, D),
ep(—Ntn) =
because —Ntn = (Nt)? (mod p). We, therefore, obtain that

e([tl/tp)e,p(=Ntn) = sgn(t)ep(t)ep(—Nin) = sgn(t)e(—N)e(n).
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It follows that J,(t) satisfies the functional equation
Jis(t) = t*Lsgn(t)e(—N)e(n) Js(t).

Combining this with the functional equation for I, in Proposition 8.6,
we obtain the functional equation for ®;,.  q.e.d.

Remark. In the case that ¢ is a theta series attached to an imagi-
nary quadratic field, and m is prime to N, Gross and Zagier [1] have com-
puted the value (when ¢(N) = 1) and the derivative (when ¢(N) = —1)
of és,g(m). It is not difficult to see that our results coincide with those
of Gross—Zagier in this case. Our results go beyond [1] in that we give
the whole kernel (not only the special value or derivatives) in terms of
divisor functions and hypergeometric functions.
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