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DISTRIBUTION OF ALMOST DIVISION POINTS

SHOU-WU ZHANG

1. Introduction. In [10], we proved an equidistribution theorem for small points
on abelian varieties, based on the ideas in [7] and [8]. In this paper, we want to
generalize this result toalmost division points. In the following, we describe our
main theorem and its application to the discreteness of almost division points on
subvarieties.
Let A be an abelian variety defined over a number fieldK. Let xn (n ∈ N) be a

sequence of distinct points inA(K̄). We assume this is a sequence of almost division
points, which means

lim
n→∞ sup

σ∈G
∥∥xσn −xn

∥∥ = 0.

Here,G=Gal(K̄/K), and‖·‖ is the square root of the Neron-Tate height function,
with respect to some ample and symmetric line bundle onA. Obviously, the notion
of almost division does not depend on the choice of the Neron-Tate height functions.
If we drop the limit in the above equality, then allxn are division points forA(K).
We fix an embeddingσ : K̄ → C; thenA(K̄) can be considered a subgroup of

A(C) := Aσ (C). The Galois orbitsxGn therefore define a sequenceδxGn of probability
measures onA(C); if f is a continuous function onA(C), then∫

A(C)
f δxGn = 1∣∣xGn ∣∣

∑
y∈xGn

f (y).

In this paper, we address the convergence ofδxGn . More precisely, we want to know
whether there is a measuredµ onA(C) such that, for any continuous functionf on
A(C),

lim
n→∞

∫
A(C)

f dxGn =
∫
A(C)

f dµ.

Obviously, such a measuredµ does not exist in general; but, since the space of the
continuous functions onA(C) can be topologically generated by countably many
functions,dµ does exist if(xn,n ∈ N) is replaced with a subsequence. So, our
purpose becomes to describe the following:

• the property of the sequence(xn,n ∈N) which can be obtained by replacing it
with a subsequence;
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• the measuredµ.
Let B be an abelian subvariety ofA. We define the degreedB(xn) of xn modulo

B as the degree[K(x̄n) :K], wherex̄n is the image ofxn in A/B. SinceA has only
countably many abelian subvarieties, if we replace(xn,n ∈ N) with a subsequence,
we may assume that, for any abelian subvarietyB, eitherdB(xn) remains bounded or
limn→∞ dB(xn) = ∞. Obviously, there is a minimal abelian subvarietyC such that
dC(xn) remains bounded. ThisC is unique.
Let yn denote the image ofxn in A/C, via the projection

π : A−→ A/C.

Then the elementsyσn −yn with n ∈N,σ ∈G have the bounded degree and heights
going to 0. By the Northcott theorem, these elements are in a finite list of torsion
points forn sufficiently large. With(yn,n ∈N) replaced by a subsequence, we may
assume the following:

• there is a fixed subsetT of torsion points such that, for anyn,
{
yσn −yn : σ ∈G} = T ;

• the sequence(yn,n ∈N) has a limitb ∈ A(C)/C(C) in C-topology.
We callxn (n ∈ N), obtained in the above manner, a sequence of almost division

points with thecoherent limit(C,b+T ). The following is themain result of this paper.
Theorem 1.1. Let xn,n ∈ N be a sequence of almost division points with the

coherent limit(C,b+T ) as above. ThenδxGn converges to the measure

dµ= 1

|T |
∑
t∈T
δπ−1(b+t),

whereπ is the projectionA→ A/C andδπ−1(b+t) is theC(C)-invariant probability
measure supported inπ−1(b+ t).
As an application, we show the following theorem about subvarieties.

Theorem 1.2. LetX be a subvariety ofAK̄ that is not a translation of an abelian
subvariety. Then there is anε > 0 such that the subset

{
x ∈X(K̄) : d(x,A(K)⊗R) ≤ ε}

is not Zariski-dense. Here the distance function inA(K̄)⊗R is given by a fixed
Neron-Tate height pairing.

Remarks. (1) Theorem 1.2 has previously been conjectured by B. Poonen. Re-
cently, he proved it independently in [5], using a slightly different argument. When
dimX = 1, the above theorem is a special case of a conjecture in [10].
(2) Since the above subset contains the division points of the Mordell-Weil group,

the above theorem therefore implies the Mordell-Lang conjecture (see [6], [4]). As in
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M. Raynaud’s proof, we assume Faltings’s theorem on Lang’s conjecture. However,
our arguments are purely in “height theory,” rather than Galois theory, on torsion or
division points.
(3) Both Theorem 1.1 and Theorem 1.2 can be generalized to semiabelian varieties

if we assume the equidistribution theorem in this case. Here,A(K) is replaced by
any finitely generated subgroup� of A(K), and almost division points (with respect
to �) mean that

lim
n→∞d(xn;�⊗Q)= 0.

This is true, for example, for multiplicative group by a result of Y. Bilu [1], and for
the split case communicated to me by A. Chambert-Loir.
What canwe say about the points with large distance toA(K)⊗Q?Using Faltings’s

proof in [2] and [3], we can strengthen Theorem 1.2 to the following theorem.

Theorem 1.3. There are positive numbersα andβ such that the subset
{
x ∈X(K̄) : d(x,A(K)⊗R) ≤ α‖x‖+β}

is not Zariski-dense in X.

By Theorem 1.2, it suffices to prove that the subset
{
x ∈X(K̄) : ‖x‖ ≥H, d(x,A(K)⊗R) ≤ ε‖x‖}

is not Zariski-dense for some positive numbersH andε. Since

d
(
x,A(K)⊗R) = ‖x‖ inf v∈A(K)⊗R‖v‖=1 sin � (x,v),

where � (x,v) ∈ [0,π ] denotes the angle betweenx andv, it suffices to show that,
for any unit vectorv of A(K)⊗R, the set

{
x ∈X(K̄) : ‖x‖ ≥H, � (x,v)≤ ε}

is not Zariski-dense for someε > 0. If this is not true, then we have a unit vector
v ∈ A(K)⊗R, and a sequence of points(yn,n ∈N) such that we have the following:

• limn→∞ ‖yn‖ = ∞;
• limn→∞ � (yn,v)= 0;
• the set{yn,n ∈N} has finite intersection with any proper subvariety ofX.

Now we can copy Faltings’s proof [3, Theorem 4.1] for pointsx1, . . . ,xm chosen in
{yn,n ∈N}. The only difference is thatxm’s are no longer defined overK.
Acknowledgment.I want to thank Bjorn Poonen for interesting discussions and

for his lemma on the limit measures, which is used in my proof of Theorem 1.2.

2. Some reductions. In this section we want to reduce Theorem 1.1 into a state-
ment about the equidistribution of small points. First, we notice that the condition
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almost division with the coherent limit(C,b+T ) on xn and the convergence ofδxGn
depend only on the sets{xn,n ∈N} and{δxGn ,n ∈N}, respectively, rather than par-
ticular orders put on them. So, we may simply talk about notions of aset of almost
division points with the coherent limit(C,b+T ) andconvergence of set of measures.

First reduction. We may reduce the theorem to the caseT = {0}. Indeed, sinceyn
is included in a finite generated subgroup ofA(K̄), we may find a finite extensionL
of K, such that allyn(n ∈ N) and all t ∈ T are rational overL. Now we can apply
the theorem toAL = A⊗L and the sets⋃

n

{
x ∈ xGn , π(x)= yn+ t}, t ∈ T .

These are sets of almost division points with the coherent limits(C,b+ t) (t ∈ T ).
Second reduction.Nowwe assumeT = {0} and reduce the theorem to the equidis-

tribution ofDn in C(C), where

Dn := 1

|Gxn|2
∑

x,y∈Gxn
δx−y, n ∈N.

Indeed, ifδxGn does not converge todµ, then, after replacingxn by a subsequence,
we may assume thatδxGn converges to a measuredµ∗ not equal todµ. It is easy to
show thatdµ∗ is supported inπ−1(s) and thatDn has the limit measure defined by

f −→
∫
A(C)

∫
A(C)

f (x−y)dµ∗(x)dµ∗(y),

for any continuous functionf on A(C). AssumeDn is equidistributed; then we
must have ∫

A(C)

∫
A(C)

f (x−y)dµ∗(x)dµ∗(y)=
∫
C(C)

f dx,

wheredx is the Haar measure onC(C). Let a be a fixed point inπ−1(b); then
π−1(b)= a+C. Sodµ∗ is induced by a measuredµ′ such that∫

A(C)
f dµ∗ =

∫
C(C)

f (a+x)dµ′(x).

Since every continuous function ona+C can be extended to a continuous function
onA(C), the above formula implies that∫

C(C)

∫
C(C)

f (x−y)dµ′(x)dµ′(y)=
∫
C(C)

f dx

for any continuous functionf onC(C). In particular, ifχ is any nontrivial character
onC(C), we obtain ∣∣∣∣

∫
C(C)

χ dµ′
∣∣∣∣
2

= 0.
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In other words, ∫
C(C)

χ dµ′ =
∫
C(C)

χ dx

for all characters. Since the space of continuous function onC(C) is generated topo-
logically by all characters ofC(C), we must havedµ′ = dx. In other words, the
measuredµ∗ is C(C)-invariant. We therefore obtain a contradiction.

3. Equidistribution of Dn. For Theorem 1.1, it remains to prove the following
proposition.

Proposition 3.1. The sequence of measuresDn converges to the Haar measure
dx of C(C).

Proof. First, we note thatDn is a linear combination of the uniform probability
measures of some Galois orbits of small points. Indeed, for eachn, letHn be a finite
quotient that corresponds to a finite Galois extensionLn of K such thatxn is rational
overLn. Then we can rewriteDxn as

Dxn = 1

|Hn|2
∑
σ∈Hn

∑
τ∈Hn

δ(xσn−xn)τ = 1∣∣xGn ∣∣
∑
x∈xGn

δ(x−xn)G.

Here, as before,δ(x− xn)G denotes the uniform probability measure of the Galois
orbits ofx−xn.
There are only countably many closed reduced subvarieties ofC which are unions

of varieties of the formB+C[N ], with B a proper abelian subvariety ofC, andN a
positive integer. We may find a sequenceXi of reduced closed subvarieties ofC over
K such that we have the following:

• eachXi is a union of subvarieties of the formB+C[N ];
• Xi ⊂Xi+1;
• for anyB+C[N ], there is anXi includingB+C[N ].

By the equidistribution theorem for small points [9], the set
{
δ(y−xn) : y ∈ xGn , y−xn /∈Xn

}

of measures converges to the Haar measure ofC(C). We apply this fact to some
subsequence ofxn.
For any proper closed subvarietyX defined overK, we define a positive rational

numberαX,n by the formula

αX =
∣∣xGn ∩X∣∣∣∣xGn ∣∣ .

We want to reduce the equidistribution ofDn to the fact

lim
n→∞αX,n = 0,
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for eachX of the formB+C[N ]. As for any two closed subvarietiesX andY of C,

αX∪Y,n ≤ αX,n+αY,n,
we see that

lim
n→∞αXi,n = 0,

for any Xi . Now by thediagonal process, we may find a subsequenceni of N,
such that

lim
i→∞αXi,ni = 0.

If Dn does not have the limitdµ, then there is a continuous functionf , such that∫
fDn does not converges to

∫
f dµ. Since

∫
fDn has its absolute value bounded by

‖f ‖sup, if we replacexn with a subsequence, we may assume that
∫
fDn converges

to a number not equal to
∫
f dµ. Now consider the expression

∫
C(C)

fDni = 1∣∣xGni
∣∣
x∈xGni∑
x∈Xi

∫
C(C)

f δ(x−xni )G+ 1∣∣xGni
∣∣
x∈xGni∑
x /∈Xi

∫
C(C)

f δ(x−xni )G.

The first summand in the right-hand side has the absolute value bounded byαXi,ni
‖f ‖sup, while the second summand approaches

(
1−αXi,ni

)∫
C(C)

f dx,

by the equidistribution theorem of small points. The right-hand side therefore has the
limit

∫
C(C) f dx. This shows that the subsequenceDni (i ∈N) has the limitdx. This

gives a contradiction.
Now we fix anX of the formB+C[N ] and prove that

lim
n→∞αX,n = 0.

ReplacingA byA/B, we may assume thatB = 0. Our assumption onC implies that
degxn → ∞. Consider the multiplication byN :

u : xGn −→ (Nxn)
G.

Then we have ∣∣u−1(Nxn)
∣∣ = degxn

deg(Nxn)
,

since the Galois groupG acts transitively on the set of fibers ofu. It follows that, for
n� 0,

αX,n =
∣∣u−1(Nxn)

∣∣∣∣xGn ∣∣ = 1

deg(Nxn)
≤ N2dimC

degxn
−→ 0.
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4. Proof of Theorem 1.2. ReplacingK by a large field, we may assume thatX
is defined overK. Assume that the theorem is not true. Then we can find a sequence
(xn,zn) of pairs of points, withxn ∈ X(K̄) andzn ∈ A(K)⊗Q such that we have
the following:

• limn→∞ ‖xn−zn‖ = 0;
• the sequencexn converges to the generic point ofX with respect to the Zariski
topology onX.

As the Galois group acts trivially onA(K)⊗Q and preserves the Neron-Tate height
pairing onA(K̄), we see that(xn,n ∈ N) is a sequence of almost division points in
A(K̄). With (xn,n ∈N) replaced by a subsequence, wemay assume that this sequence
has the coherent limit(C,b+T ). Again, we may enlargeK and replace(xn,n ∈N)
by a subsequence in the union ofxGn , as in §2, we may assume thatT = {0}. Now
Theorem 1.1 implies that the measuresδxGn converges to the Haar measuredµ in the
fiber overb of the mapπ : A→ B := A/C.
Now consider the following diagram withY = π(X):

X

��

� � �� A

��
Y

� � �� B.

Our assumption implies that the sequenceyn = π(xn) is rational overK and Zariski-
dense inY . By Faltings’s theorem,Y must be the translate of an abelian subvariety.
As X itself is not the translate of any abelian subvariety,X �= π−1(Y ). This implies
that

dimX < dimY +dimC.

As the measuresδxGn are supported in the fiberX(C) overyn, we obtain a contra-
diction by the following lemma.

Lemma 4.1 (B. Poonen). Let π : X → Y be a surjective morphism of projective
and integral complex varieties. Let(yn,n ∈ N) be a sequence of points inY that
converges to the generic point ofY , with respect to the Zariski topology. Letdµn be
a sequence of probability measures ofX that converges (weakly) to a measuredµ on
X. Assume eachdµn is supported in the fiber ofπ overyn. Thendµ is supported in
a closed subvariety ofX of the dimension= dimX−dimY .

Proof. We take an embeddingX→ PN and considerdµn anddµ as measures in
PN . Let P be the Hilbert polynomial of the generic fiber ofπ and let� → PN ×�
be the universal family of the subvarieties ofPN with the Hilbert polynomialP .
Then, forn sufficiently large,π is flat at points overyn, and the fiberXyn is therefore
given by a pointpn in �. Since the Hilbert scheme� is projective,pn converges to
a pointp in �, with respect to theC-topology. So the measuredµ, as the limit of
some measures on the fibers of� → � overpn, is supported in the fiber overp. This



46 SHOU-WU ZHANG

shows that the Zariski closure (as a subvariety ofPN ) of the support ofdµ has the
dimension less than or equal to dimX−dimY .
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