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DISTRIBUTION OF ALMOST DIVISION POINTS

SHOU-WU ZHANG

1. Introduction. In [10], we proved an equidistribution theorem for small points
on abelian varieties, based on the ideas in [7] and [8]. In this paper, we want to
generalize this result talmost division pointsin the following, we describe our
main theorem and its application to the discreteness of almost division points on
subvarieties.

Let A be an abelian variety defined over a number figldLet x, (n € N) be a
sequence of distinct points (K ). We assume this is a sequence of almost division
points, which means

lim sup|xJ —x,| =0.

I’l—)OOUeG
Here,G = Gal(K /K), and| - || is the square root of the Neron-Tate height function,
with respect to some ample and symmetric line bundledo®bviously, the notion
of almost division does not depend on the choice of the Neron-Tate height functions.
If we drop the limit in the above equality, then aj] are division points foA (K).

We fix an embedding : K — C; then A(K) can be considered a subgroup of
A(C) := A, (C). The Galois orbits¢ therefore define a sequenté’ of probability
measures or (C); if f is a continuous function oA (C), then

1
féx) = Tl > F.

AC) vexS

In this paper, we address the convergencéxdf. More precisely, we want to know
whether there is a measuf@ on A(C) such that, for any continuous functighon

A(C),
Iim/ fdx,?zf fdu.
=00 JA(C) A©)

Obviously, such a measurk: does not exist in general; but, since the space of the
continuous functions om (C) can be topologically generated by countably many
functions, du does exist if(x,,n € N) is replaced with a subsequence. So, our
purpose becomes to describe the following:
e the property of the sequence,, n € N) which can be obtained by replacing it
with a subsequence;
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o the measurd .

Let B be an abelian subvariety of. We define the degreés (x,,) of x, modulo
B as the degregX (x,) : K], wherex, is the image of, in A/B. SinceA has only
countably many abelian subvarieties, if we replace n € N) with a subsequence,
we may assume that, for any abelian subvartgitherdg (x,) remains bounded or
lim,— 00 dp(x,) = co. Obviously, there is a minimal abelian subvari€tysuch that
dc (x,) remains bounded. Thi§ is unique.

Let y, denote the image of, in A/C, via the projection

m:A— A/C.

Then the elementg? — y, with n € N, 0 € G have the bounded degree and heights
going to 0. By the Northcott theorem, these elements are in a finite list of torsion
points forn sufficiently large. With(y,,n € N) replaced by a subsequence, we may
assume the following:

o there is a fixed subsét of torsion points such that, for amy

g —y:0eG)=T;

o the sequencéy,,n € N) has a limitb € A(C)/C(C) in C-topology.
We callx,, (n € N), obtained in the above manner, a sequence of almost division
points with thecoherent limit(C, b+ T). The following is the main result of this paper.

THeEOREM 1.1 Letx,,n € N be a sequence of almost division points with the
coherent limit(C, b+ T) as above. Thefx¢ converges to the measure

1
du=— Z(Sn—l(bﬂ)’
|T| teT
wherer is the projectionA — A/C andé, -1, is theC(C)-invariant probability
measure supported im~1(b+1).

As an application, we show the following theorem about subvarieties.

THEOREM 1.2 LetX be a subvariety off ; that is not a translation of an abelian
subvariety. Then there is an> 0 such that the subset

[x e X(K):d(x,A(K)®R) <€}

is not Zariski-dense. Here the distance functiondink) ® R is given by a fixed
Neron-Tate height pairing.

Remarks. (1) Theorem 1.2 has previously been conjectured by B. Poonen. Re-
cently, he proved it independently in [5], using a slightly different argument. When
dimX =1, the above theorem is a special case of a conjecture in [10].

(2) Since the above subset contains the division points of the Mordell-Weil group,
the above theorem therefore implies the Mordell-Lang conjecture (see [6], [4]). Asin
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M. Raynaud’s proof, we assume Faltings’s theorem on Lang’s conjecture. However,
our arguments are purely in “height theory,” rather than Galois theory, on torsion or
division points.
(3) Both Theorem 1.1 and Theorem 1.2 can be generalized to semiabelian varieties

if we assume the equidistribution theorem in this case. H&(&)) is replaced by
any finitely generated subgroupof A(K), and almost division points (with respect
to I') mean that

lim d(x,;T®Q) =0.

n—oo

This is true, for example, for multiplicative group by a result of Y. Bilu [1], and for
the split case communicated to me by A. Chambert-Loir.

What can we say about the points with large distaneg(#%) ® Q? Using Faltings’s
proof in [2] and [3], we can strengthen Theorem 1.2 to the following theorem.

THEOREM 1.3 There are positive numbessand 8 such that the subset
{x € X(K): d(x, A(KK)®R) < al|x| + B}

is not Zariski-dense in X.

By Theorem 1.2, it suffices to prove that the subset
[xeX(K): x| = H, d(x, A(KK)®R) < €l|x|}
is not Zariski-dense for some positive numbéfsande. Since
d(x, ACK)®R) = ||x[inf | R sins (x, v),

where /(x,v) € [0, 7] denotes the angle betweerandv, it suffices to show that,
for any unit vector of A(K)® R, the set

{x e X(K): |lx|| > H, L(x,v) <e}

is not Zariski-dense for some > 0. If this is not true, then we have a unit vector
v e A(K)®R, and a sequence of points,, » € N) such that we have the following:
o lim, oo [[ynll = o0;
o lim,_ o0 £(yn,v) =0;
o the sef{y,,n € N} has finite intersection with any proper subvarietyXof
Now we can copy Faltings’s proof [3, Theorem 4.1] for poimts..., x,, chosen in
{yn,n € N}. The only difference is that,,’s are no longer defined ové¥.

Acknowledgment.l want to thank Bjorn Poonen for interesting discussions and
for his lemma on the limit measures, which is used in my proof of Theorem 1.2.

2. Some reductions. In this section we want to reduce Theorem 1.1 into a state-
ment about the equidistribution of small points. First, we notice that the condition
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almost division with the coherent limitC, b+ T') on x,, and the convergence 6&,?
depend only on the sets,,n € N} and{6xY, n € N}, respectively, rather than par-
ticular orders put on them. So, we may simply talk about notions sdtabf almost
division points with the coherent limiC, b+ T") andconvergence of set of measures

First reduction. We may reduce the theorem to the c@se {0}. Indeed, since,
is included in a finite generated subgroupAafk ), we may find a finite extensioh
of K, such that ally,(n € N) and allz € T are rational oved.. Now we can apply
the theorem tod; = A® L and the sets

U{x ex,?, m(x) =yn+t}, teT.
n
These are sets of almost division points with the coherent lialt$ +1¢) (r € T).
Second reduction.Now we assumé& = {0} and reduce the theorem to the equidis-
tribution of D, in C(C), where

1
|Gxn|2

n -

Z 8x—y, neN.

x,yeGxy,

Indeed, ifsx$ does not converge @y, then, after replacing, by a subsequence,
we may assume thakC converges to a measude* not equal tadu. It is easy to
show thatdu* is supported inr ~1(s) and thatD, has the limit measure defined by

f —>/ fx—y)ydu*(x)du*(y),
A(C)JA©)

for any continuous functiory on A(C). AssumeD,, is equidistributed; then we
must have
f(x—y)du*(x)du*(y)=/ fdx,
AQ) JA(O) (@)

wheredx is the Haar measure ofi(C). Let a be a fixed point inr~1(b); then
7~1(b) =a+C. Sodu* is induced by a measueg:’ such that

/ fawr = flatxdy .
A((C) C((C)

Since every continuous function @ C can be extended to a continuous function
on A(C), the above formula implies that

f fx—y)ydu' (x)du'(y) = fdx
c(C) Jc© c(©

for any continuous functiorf on C(C). In particular, ifx is any nontrivial character

on C(C), we obtain
2
/ xdu'
fel(®)

=0.
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/ Xdu’zf xdx
cO cO

for all characters. Since the space of continuous functio@ @) is generated topo-
logically by all characters o€ (C), we must havelu’ = dx. In other words, the
measurel* is C(C)-invariant. We therefore obtain a contradiction.

In other words,

3. Equidistribution of D,. For Theorem 1.1, it remains to prove the following
proposition.

ProrosiTiON 3.1 The sequence of measurBg converges to the Haar measure
dx of C(Q).

Proof. First, we note thaD,, is a linear combination of the uniform probability
measures of some Galois orbits of small points. Indeed, for ealet H,, be a finite
guotient that corresponds to a finite Galois extengigof K such thaty, is rational
overL,. Then we can rewrit®x, as

1 1
Dxy=—r0 D ) Sugoxar =g 2 S —x)C.
| Hy| |67 |

oeH, teH, xex,?

Here, as beforej(x —x,)¢ denotes the uniform probability measure of the Galois
orbits ofx —x,,.

There are only countably many closed reduced subvarieti€swdfich are unions
of varieties of the formB + C[N], with B a proper abelian subvariety 6f, andN a
positive integer. We may find a sequereof reduced closed subvarieties@fover
K such that we have the following:

e eachX; is a union of subvarieties of the for®+ C[N];

o X; C Xit1;

e for any B+ C[N], there is anX; including B + C[N].
By the equidistribution theorem for small points [9], the set

[8(—x):yexl, y—xa ¢ Xu}

of measures converges to the Haar measuré€ (@). We apply this fact to some
subsequence aof,.
For any proper closed subvarieky defined overk, we define a positive rational
numberay , by the formula
o |an ﬂX}
TR
We want to reduce the equidistribution Bf, to the fact

lim ax, = 0,
n—00
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for eachX of the form B + C[N]. As for any two closed subvarietiegsandY of C,

oAxUY,n < OX n+ Ay,

we see that
lim X, n = 0,
n—oo

for any X;. Now by thediagonal processwe may find a subsequeneg of N,
such that
lim X, n; =0.

1—00

If D, does not have the limidu«, then there is a continuous functigh such that
| f D, does not converges tbfd . Since[ f D, has its absolute value bounded by
Il £ llsup, if we replacex, with a subsequence, we may assume thaD, converges
to a number not equal tp fd .. Now consider the expression

) )6+
fc@ Z B

XEX ni

Z/ F3x =1,

X¢X; c(©

The first summand in the right-hand side has the absolute value boundeg Ry
| fllsup While the second summand approaches

(1_OlX[,n,-) fdx,
(@)
by the equidistribution theorem of small points. The right-hand side therefore has the
limit fC(Q fdx. This shows that the subsequergg (i € N) has the limitdx. This
gives a contradiction.
Now we fix anX of the form B + C[N] and prove that

lim axn = 0.
n—oo

ReplacingA by A/B, we may assume thd = 0. Our assumption o@ implies that
degx, — oo. Consider the multiplication by:

u :x,(,; — (an)G.

Then we have
degx,

degNx,)’
since the Galois grou@ acts transitively on the set of fibersofIt follows that, for
n>0,

|t (Vx| =

|ufl(an)‘ 1 N2dimC
x| degNx,) — degx, O

odxX.n=
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4. Proof of Theorem 1.2. ReplacingK by a large field, we may assume that
is defined ovek . Assume that the theorem is not true. Then we can find a sequence
(xn,z,) of pairs of points, withx, € X(K) andz, € A(K)® Q such that we have
the following:

o lim, oo lxn — 2zl =0;

e the sequence, converges to the generic point &f with respect to the Zariski

topology onX.

As the Galois group acts trivially oA(K) ® Q and preserves the Neron-Tate height
pairing onA(K), we see thatx,,n € N) is a sequence of almost division points in
A(K). With (x,, n € N) replaced by a subsequence, we may assume that this sequence
has the coherent limitC, b+ T'). Again, we may enlarg& and replacéx,,n € N)
by a subsequence in the unionxff, as in §2, we may assume tHat= {0}. Now
Theorem 1.1 implies that the measuse$ converges to the Haar measuie in the
fiber overb of the mapr : A — B:=A/C.

Now consider the following diagram with = 7 (X):

X——A

)

Y“—— B.

Our assumption implies that the sequenge=  (x,,) is rational overk and Zariski-
dense inY. By Faltings’s theoremy must be the translate of an abelian subvariety.
As X itself is not the translate of any abelian subvarigfy 7 ~1(Y). This implies
that

dimX <dimY +dimC.

As the measuresx¢ are supported in the fibef (C) over y,, we obtain a contra-
diction by the following lemma.

Lemma 4.1 (B. Poonen) Letrw : X — Y be a surjective morphism of projective
and integral complex varieties. Lé¥y,,n € N) be a sequence of points i that
converges to the generic point Bf with respect to the Zariski topology. Lét,, be
a sequence of probability measures¥that converges (weakly) to a measue on
X. Assume eachiu,, is supported in the fiber of overy,. Thendu is supported in
a closed subvariety of of the dimension=dimX —dimY.

Proof. We take an embedding — PV and consided ., anddu as measures in
PV. Let P be the Hilbert polynomial of the generic fiber ofand let¥ — PV x %
be the universal family of the subvarieties Bf' with the Hilbert polynomialP.
Then, forn sufficiently larger is flat at points ovey,, and the fibeiX,, is therefore
given by a pointp,, in %. Since the Hilbert schen® is projective,p, converges to
a point p in %, with respect to the -topology. So the measutu, as the limit of
some measures on the fibersiof> Y over p,,, is supported in the fiber over. This
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shows that the Zariski closure (as a subvariety?8) of the support o/ has the
dimension less than or equal to ddn-dimY. O
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