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Geometry of algebraic points

Shouwu Zhang

Introduction

In this note, I will try to give an elementary introduction to the subject of
Diophantine geometry for people who are not familiar with either number theory or
algebraic geometry. My basic goal is to explain first of all, the important question
and their current solutions, and secondly how geometry (both in language and
technique) is used to address and answer these questions. This note consists of three
parts: rational points, algebraic points, and the ABC and discriminant conjectures.
We now informally discuss the contends of each of these sections.

The language used in the first part is completely elementary. Thus we don’t
assume any advanced knowledge of algebraic geometry. The basic question is how
to solve Diophantine equations in two variables in integers? Equivalently, in the
language of algebraic geometry, how to find rational poits on a plane algebraic
curve? It turns out that the nature of the solution sets really depends on the
degree of the equation. In the degree 1 and 2 case, once one solution is found,
then all other solutions can be found by using a ruler. This ruler method has an
obstruction for curves with higher degree which are precisely given by a new object,
the Jacobian variety, and the abelian group structure on the rational solution on the
Jacobian variety. This Jacobian variety is of fundamental importance in the study
of Diophantine questions related to curves. The Mordell-Weil Theorem and Faltings
Theorem give the finiteness of rational points on these Jacobian varieties and the
original curves respectively. Besides algebraic geometry, the proof of these theorems
uses the theory of heights. The heights are quantities that measure the complexity
(= logarithmic size) of points and varieties. A crucial question which remains today
is the effectivity of solutions: what is the mazimal size of the solutions? We will
present so called effective Mordell conjecture at the end of this section.

In the second part, we will study certain sets of algebraic points in the abelian
varieties ( a generalized notion of Jacobian varieties). First of all, we restrict our-
selves to either torsion points, or division points which is a mixed notion of torsion
points and rational points. ( Notice that the structure of the rational solutions is
the subject in the first part. ) Raynaud’s Theorem shows that Faltings’ theorem
can be extended to these division points. Secondly, we consider to points which
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are close to division points, which we call almost division points. The new phe-
nomenon is that the Galois orbits of these points in abelian varieties are uniformly
distributed, or equidistributed with respect to the invariant probability measure on
the associated complex torus. Of course the property to be equidistributed is much
stronger than the property to be Zariski dense. ( In the curves case, this means to
be infinite.) Thus, the equidistribution property implies Raynaud’s result. (Both
Raynaud’s result and equidistribution result extend Faltings’ theorem but do not
imply it as their proof use Faltings’ theorem.) Like the study of rational points, the
study of almost division points relies on a renovated theory of heights: Arakelov ge-
ometry. In this theory, the Grothendieck’s theory of schemes is naturally combined
with the differential geometry of Kdhler manifolds to provide a very fine tool to
study algebraic points with small heights and integral sections with small norms.
In the last part, we will discuss the ABC — conjecture which provides effective
bound on the heights of rational points for a variety of equations, including diagonal
equations like the Fermat equation. Moreover, the work of Szpiro, Moret-Bailly, and
Elkies suggests that some strong form of the ABC conjecture is actually equivalent
to the effective Mordell conjecture discussed in the first part of this note. The ABC
conjecture originated in Szpiro’s discriminant conjecture via Frey’s construction.
The analog of the discriminant conjecture in function field is a theorem of Szpiro.
The original proof of this theorem makes essential use of the differentials of the
function field. Thus it is impossible to move to the number field case. In this last
part of the note, we will provide a different proof for the case where the function
field has characteristic 0. (The original ideal of this proof is due to Bogomolov
etc., at least for case where the base curves are rational.) Our proof does not
use the differential of the function field but make essential use of the fact that
the fundamental group of the base acts on the cohomology of the generic fiber with
coefficients in integers. Such an action does exist in number fields (or function fields
of positive characteristic) but with coefficients in £-adic integers. Thus our proof
extends to neither the number field nor function field case of positive characteristic.

1. Rational Points

One of the major goals of number theory is to study the solution set of a system
of Diophantine equations. The simplest case is when this system is given by a single
equation in two variables:

(1.1) fz,y) =0
where f(z,y) = 3, ; a; o'y’ is an polynomial with integer coefficients a; ; € Z in
the variables  and y. Thus the main problem is to describe the set

{(z,y) € 2| f(z,y) = 0}.

To describe what we know about this question, we consider the homogenized
form

(1.2) F(zo,x1,12) := Zai7jmiyjz"_i_j =0,
i,j

where n = deg f, and assume for simplicity that
OF OF OF _

(13) or 0y 0z
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has only the trivial solution (z,y,z) = (0,0,0) in C*. Now the equation (1.2)
defines a curve X in the projective plane P2. Here, for any natural number n, the
n-dimensional projective space is defined by

P*(C) := C"*! — {0}/ ~, where wv; ~ vy <= Cuvy = Cuy.

Condition (1.3) says that X is a smooth curve. Now the question becomes how to
describe the set X (Q) of rational points on X ¢

Here X (Q) stands for points with rational coordinates. The answer to this
question depends on the degree n of F.

Case where n = 1. In this case, X is defined by a linear equation
ar +by+cz=0

with one nonzero coefficient, say a. Thus we can define a map
X(Q = PHQ), (z,y,2) = (y,2)

Case where n = 2. In this case, X (Q) could be empty. For example, if X is
defined by the equation 2 + 32 + 22 = 0. Assume that X (Q) is not empty and
choose an element O = («, 3,~). Without loss of generality, we assume that a # 0.
Then we have a map

X(Q) = {rational lines > O}, P+ line OP,

where OP stands for the line passing through both P and O if P # O, and the
tangent line passing through O if P = O. Notice that each line passing through O
is defined by an equation

Lope:ar+by+cz=0 with aa+b58+cy=0.
Since « # 0, we have a map

{rational lines 3 O} = PY(Q), Loy (byo).
Thus in case n = 2 we have the following conclusion:

either X(Q) = 0 or X(Q) = P(Q).

Hasse’s principal. When does X (Q) contain a rational point? By Hasse’s
principal, to see if X (Q) # 0 one needs only check if X (R) # 0, and if X(Q,) # 0
for every odd prime p dividing the discriminant of the quadratic form F(zg,z;,x2).
More precisely, after some linear transformation with coefficients in Q, we may
assume that X is defined by an equation:

(1.4) azr® + by* = 2°.

where a and b are two square free integers. For every odd prime p, we define the
Hilbert symbol (a,b), € {£1} which equals 1 if and only if (1.4) has solution for
every power of p. Then X (Q) # 0 if and only if

1. one of a and b is positive,
2. (a,b), =1 for all odd prime number p dividing ab.

For a = ap™ and b = Bp™, one has the formula

o= (3 ()
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Where (5) = =+1 is the residue quadratic symbol, which equals 1 if and only if

z is a square modulo p. Using the quadratic reciprocity law, one can compute
(a,b), quite effectively. (The reason I don’t care about the prime 2is because of
the product formula for Hilbert symbols. Thus above two conditions together will
imply that (a,b)s =1.)

For more details about quadratic forms, we refer to Serre’s book [4].

Case where n = 3. Again X(Q) could be empty, for example in the case
where X is defined by equation

32° + 49 + 52° = 0.

Assume X (Q) # 0 and pick up a point O € X(Q) inside, then X (C) has a unique
algebraic group structure such that O is the unit element. ( For example, after
certain transformation, we may assume that O is a reflection point on X- the
tangent line at O does not meet other points on X, then we may define the group
rule so that P + Q + R = 0 whenever P, @, R are three collinear points in X (C).)
The curve X together with the point O is called an elliptic curve. We let E denote
X with this distinguished point O.

As a Lie group, E(C) has dimension 2 and is isomorphic to (R/Z)?. But as an
abstruct group, E(C) is very large. Indeed,

e the subgroup E(C)¢,, of elements of finite order is isomorphic to (Q/Z)?,
e the non torsion part E(C)/E(C)to, is an Q-vector space of infinite dimension.

It is not difficult to show that E(Q) is closed under the group operation, and thus
defines a subgroup of E(C). The following theorem tells us the structure of this

group:

THEOREM 1.1 (Mordell). The group E(Q) is finitely generated, or equivalently,
E(Q)tor is finite and

E(Q/E(Qor = 2"

where T is a nonnegative integer.

Infinite decent. The proof this theorem uses infinite decent, a technique used
in Fermat’s own proof of his last theorem for the exponent is 4. In our case, this
technique is a combination of Kummer’s theory and Neron-Tate height theory.
More precisely, the proof has two steps:

1. E(Q)/2E(Q) is finite,

2. E(Q)tor is finite and E(Q) is discrete in E(Q) ® R.
The second step implies that the rank of E(Q)/2E(Q) over Z/2Z is equal to or
great than the rank of E(Q) over Z.

To prove the first step, one embeds E(Q)/2E(Q) into the Galois cohomology
group H'(Q, E[2]) using Kummer’s sequence,

0—ER —EZE—0

where E[2] is the subgroup of 2-torsion points in E(C) which is actually algebraic
and thus admits an action from the Galois group over Q. Then one finds that the
image is unramified except for a finite set of primes. Thus the image is finite, so is

E(Q/2E(Q).
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For the second step, let us assume that O is a reflection point on X. Then we
define the height of a point p € E(Q) by

h(P) = logmax{la;| : i=0,1,2}

where P has homogeneous coordinates ag, a;, a; which are relatively prime integers.
Then one can show that this function on E(Q) is almost quadratic: the function
h(2p) — 4h(p) on E(Q) is bounded. Thus one can normalize this height by taking
limit:
E(p) = lim 47"h(2"p).
n—o0

Now it is easy to show that h on E(Q) satisfies the following properties:

1. for any positive integer H, the set of points p € E(Q) with height h(p) < H
is finite;

2. E(m) is nonnegative on E(Q), and h(z) = 0 <= z € E(Q)tor;

3. E(p) is quadratic on E(Q).

By these properties, one can show that E(Q)¢o, is finite and % induces a positive and
quadratic norm on E(Q) ® R. Again, the first property implies that E(Q)/E(Q)tor
can’t have limit point in E(Q) ® R. Thus E(Q) is discrete in E(Q) ® R.

Tate-Shafarevich group. When is X(Q) nonempty? Unlike the case where
n = 2, Hasse’s principal is false in the case n = 3. Indeed, by a theorem of Hasse,
every X has solution in R and @, for every prime number p. There is even an
analogue of Galois theory which gives a group that allows one to measure how
difficult for X to have a solution. Indeed, one may assign to X an elliptic curve
E, the Jacobian of X, which acts on X. This makes X a principal homogeneous
space. Thus E has a rational point over Q and E is isomorphic to X over C. Let |||
denote the group of isomorphic classes of principal homogeneous spaces of E over
Q which have rational points over R and @, for every prime p. Then X defines an
element in |||. The group ||| is torsion and is called the Tate-Shafarevich group. It
may be nontrivial but is conjectured to be finite.

For more details about elliptic curves, we refer to Silverman’s book [5].

Case where n > 4. In this case, X(C) is not a Lie group any more. But it
can be embedded into a complex Lie group J of dimension g = (n — 1)(n — 2)/2
which is called the Jacobian of X. Thus, as a real Lie group,

J(©) = (R/Z)*,  J(Clror = (Q/Z)*.

The group J is an abelian variety, this means that

1. J is defined by some equations with rational coefficients in a higher dimen-
sional projective space,

2. the origin of J has coordinates in Q,

3. the addition operator is defined by functions with coefficients in Q.

Thus, we can talk about the set J(Q) rational points, which is again a subgroup of
J(C). The natural generalization of Mordell’s theorem is the following:

THEOREM 1.2 (Weil). The group J(Q) is finitely generated. More generally,
for any number field F, J(F) is finitely generated.
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The set X (Q) could be empty or nonempty. If it is nonempty and contains a
point O then we can define an algebraic morphism X — J which takes O to be the
unit element. This morphism takes rational points to rational points. In this way
we have a picture:

(1.5) X(Q =XOnJQ

THEOREM 1.3 (Faltings). The set X (Q) is finite. More generally, for any sub-
variety Y of an abelian variety A defined over a number field F' which is not a
translate of an abelian subvariety, Y (F) is not Zariski dense.

The Jacobian variety J as a generalization of an elliptic curve, is a very impor-
tant companion of the curve X. There are two proofs of Faltings’ theorem for the
curves case. In this case, it was called Mordell’s conjecture.

The first proof which works only for the case of curves uses the fact that J is
faithful to X in the sense that if two curves have the same Jacobian then these
two curves should be same. Thus, using some construction of Parshin, Mordell’s
conjecture is reduced to Shafarevich conjecture for abelian varieties. This can be
further reduced to Tate’s conjecture and Weil’s theorem for the Riemann-Hypothesis
for Abelian varieties over finite fields. Many steps of the proof has been reduced
to some boundedness of Faltings’ heights for Abelian varieties with semiabelian
reductions. For more details, we refer to Cornell and Silverman’s book [2] for the
first proof and background material.

The second proof, originally due to Vojta for the case of curves and extended
to the general case by Faltings, uses the fact that J includes X as a subvariety,
(i.e., the formula (1.5)), and performs the Diophantine approximation method on
J. The basic technique includes finding small sections of a hermitian line bundle
which is not very vanishing at a given point. (This will implies that the bundle has
small degree at the given point.) Of course, as Roth did in the classic case, the
lower vanishing index can be reached only by considering the product of varieties.
Again the heights for sub varieties of an abelian variety has been defined and used
in the whole proof. For the second proof, we refer to Faltings’ original paper [3]

Effectivity. How to effectively find X (Q)? To make this question more precise
for n > 4, we define the heights of X and points P in P?(Q) as follows:

h(X) =complexity of X
=1+ logmax{|a; ;| : 1,5 >0},
It is the general belief that the following should be true:

CoNJECTURE 1.4 (Effective Mordell). For each natural number n > 4, there
exists a positive number c(n) such that all points in X (Q) have heights bounded by

e(n)h(X).
We refer to Vojta’s book [7] for a detailed discussion for conjectured bounds of
rational points.

2. Algebraic points

Let Q be the field of algebraic numbers in C. For a projective space PY,
let PN (Q) denote the points P with some homogeneous coordinates (ag, - ,an)
in QV*!. Similarly we may define Y(Q) for sub varieties Y of PN. Let Y be a
subvariety of an abelian variety A defined over a number field F in Q. For example,
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Y is a curve of genus g > 2 and A is the Jacobian variety of Y. What can we say
about Y (F) and A(F)?

The first answer to this question, which is almost trivial, is that both sets
are very large. First of all, Y (F) is infinite. For example, when Y is defined by
f(x,y) = 0, one may solve z in f(x,y) = 0 for any given y € F. Secondly, since
the operations on A are defined by algebraic equations, and since the origin is an

algebraic point we see that all torsion points of A(C) are in A(F'). Thus
A(F)tor = A(C)tor ~ (@/Z)2g'

Finally, one may show that A(F)/A(F)i = A(F) ® Q is infinite dimensional. To
give some less trivial answer to this question, we have to restrict ourselves to some
special class of points in A(F).

Division points. A point P in A(F) is called a division point if some positive
multiple of it nP is in A(F). Let A(F)aiv denote the subgroup of A(F') of division
points, then we have an exact sequence

0— A(F')tor — A(F')div — A(F)F —0

where A(F')q stands for A(F') ® Q. A natural generalization of Faltings theorem is
the following

THEOREM 2.1 (Raynaud). IfY is a subvariety of A defined over a number field

F which is not a translate of an abelian variety by a torsion point, then Y (F) N

A(F)aiv is not Zariski dense in'Y'.
COROLLARY 2.2. In particular, the set Y (F) N A(F )0 is not Zariski dense.

It is obvious that Raynaud’s theorem is more general than Faltings’ theorem
and the above Corollary. But Raynaud actually first proved the above corollary and
then used some Galois theory argument to obtain his theorem from this corollary
and Faltings’ theorem.

Almost division points. Now we want to treat points which are very close
to division points with distance defined by the Neron-Tate height pairing on A(F).
Recall that the Neron-Tate height pairing on A(F’) is a bilinear, symmetric pairing:

(2.1) (-,y: A(F)x A(F) = R
such that
1. (z,z) >0,

2. (z,z) =0 if and only if z € A(F)tor = (Q/Z)%.
Thus the pairing in (22) defines a pre-Hilbert space structure on the Q-vector space
A(F)JA(F)tor = A(F) ® Q. Now for any two points z and y in A(F) ® Q we can
define the distance

Iz =yl = (z —y,z — y)*/*.
In particular for z € A(F), we can define its distance to be a division point:
d(z) =inf{llz -yl : y€ A(F)ai}-

So d(z) = 0 if and only if z € A(F)qiy.
Raynaud’s theorem can be generalized to the following
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THEOREM 2.3 (Poonen, Zhang). There is positive number € > 0 such that the
subset
{zeY(F): d(z)<e}
is not Zariski dense in'Y .

COROLLARY 2.4 (Bogomolov conjecture). There is positive number € > 0 such
that the subset
{zeY(F): |z <€}
s not Zariski dense in'Y .

Again, Theorem 2.3 clearly implies Faltings’ theorem and the above Corollary
2.4. But all proofs of Theorem 2.3 we know actually make use of Faltings theorem
and Bogomolov’s conjecture. To prove Bogomolov’s conjecture, one first develops a
theory of positive line bundles in Arakelov geometry, then deduces an equidistribu-
tion theorem about Galois orbits of small points. We should mention that in some
cases of curves, Szpiro makes first link between Bogomolov conjecture and Arakelov
geometry, and then Ullmo finds a clever use of some equidistribution theorem. We
refer to our paper [8] for some historic remarks about the proof of Bogomolov’s
conjecture.

Distribution of almost division points. If X contains one point = € A(F)
then it contains every conjugate z° (o € Gal(F/F)). One ideal to prove Corollary
2.2 and 2.4 is that the Galois orbits of torsion points or small points tends to be
uniformally distributed with respect to the Haar measure on A(C). Thus X can’t
contain infinitely many such points. In the following we want to explain this ideal
more precisely.

Let 2, (n = 1,2,---) be a sequence of points in A(F). We say z,, is a sequence
of almost division points if d(x,) converges to 0 as n — co. We say that the Galois
orbits

O(zy) :={a}: o€ Gal(F/F)}
are equidistributed with respect to a measure du on A(C), if the uniform probability

measure
( 2

yGO(rn)
converges to du as n — oo. Here, §, is the Dirac measure at y. Equivalently, this
means that for any continuous function f on A(C),

nlgrolo#o o Y fy Fy)du(y).

y€O(z) A(©)

THEOREM 2.5. Let (x,,,n € N) be a sequence of almost division points. There is
a subsequence (yn,n € N) of (xn,n € N), an abelian subvariety B of A defined over
F, and a finite subset T of A(C) such that the Galois orbits of y,, are equidistributed
to the B(C)-invariant uniform measure on T + B(C). Moreover, B = 0 if and only
if there is a finite extension F' of F' such that all z,, are rational over F'.

Now it is easy to see the following

e Theorem 2.5 + Faltings’ theorem =—> Theorem 2.3.

e Theorem 2.5 = Corollary 2.4.
But to prove Theorem 2.5, one must prove Bogomolov’s conjecture first. See our
paper [9] for more details.
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Scatteredness of big points. What can we say about the points which are
far away from division points? For a point z € A(F'), instead of the distance d(x)
to A(F)qiv we consider the angle () to A(F)giv:

0(z) = sin™" (d(z)/||z]))-
Then from Faltings’ proof of Theorem 1.3 for higher dimensional case, we have

THEOREM 2.6. Assume thatY is a subvariety of A defined over F which is not
a translate of an abelian subvariety. Then there is a positive number € such that
the subset
{zeY(Q): 6(z)<e}

18 not Zariski dense.

3. The ABC conjecture and the discriminant Conjecture

When discussing Diophantine equations, it is unavoidable to mention the ABC-
Conjecture:

CONJECTURE 3.1 (Masser, Osterlé). Let A, B,C be relative prime positive in-
teger satisfying A + B = C, then for any e > 0,
1+¢

c<we)| I[

p|ABC

where k(€) is a number depending only on €.

For application purposes, it suffices to have a weaker form where 1+¢€ is replaced
by any fized constant.

There are two ways to link this conjecture to Diophantine equations. First of all
this conjecture applies directly to the diagonal (or generalized Fermat’s) equation:

(3.1) aX™ +bY" = cZ"

where a, b, c are positive and relative prime integers, and n is a positive integer.
The conjecture implies that there is a constant C(a, b, ¢) such that the equation has
no nontrivial solution if
n > C(a,b,c).

The second link is that this conjecture can be generalized to a form which holds
for an arbitrary number field. Then the generalized conjecture is equivalent to a
certain effective Mordell conjecture like Conjecture 1.4. This follows from some
work of Szpiro, Moret-Bailly, and Elkies. We won’t discuss this matter here.

We want to discuss a third link that relates the ABC-conjecture to an early
conjecture of Szpiro on discriminants of elliptic curves.

Szpiro’s conjecture. Recall that an elliptic curve E over QQ is a projective
curve of genus 1 with a rational point O. Any elliptic curve E can be defined by a
Weierstrass equation

(3.2) Ey : Y2 + arzy + asy = 2° + axx® + aux + ag

where a; € Z. The origin O is at infinity. One may use various affine transforma-
tions to obtain different form of Weierstrass equation. For such an equation one
can define a discriminant A which a positive integer with the property that p | A if
and only if equation (3.2) modulo p defines a singular curve. We say a Weierstrass
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equation is minimal if A is minimal. In this case, we call Ez the minimal integral
model of E and write A by Ag.

Recall also that an elliptic curve Fz given by a minimal Weierstrass equation
f(z,y) = 0 over Z has stable reduction at a prime p, if this equation modulo p
defines a smooth curve (which we called a good reduction), or a curve with node
(which we called a bad reduction). In the stable but bad reduction case, in a
strict henselian neighborhood node, the definition equation of Ez has the form
xy = p"*, where n, is a positive integer. If Ey has stable reduction everywhere,
the discriminant of Ez has the form Hp p" where p runs through the set of bad
reductions. Write N = ][, A p.

CONJECTURE 3.2 (Szpiro). Let E be an elliptic curve defined over Q whose
minimal model Ey, has stable reduction everywhere. Then for any € > 0,

Ap < K(e)(Np)**
where k(€) is a constant depending only on e.

Again for application, it suffices to have a weaker form where 6+ ¢ is replaced by
any fixed constant e. The link between the ABC-conjecture and Szpiro’s conjecture
is given by the following construction of Frey.

Frey curve. Let A, B,C be three relative prime, positive integers such that
A+ B =C, and such that 16 | A and B = —1 (mod 4). Consider the curve E4 p ¢
defined by the equation

y*> = z(z + A)(z — B).
Frey proves the following:

1. The minimal Weierstrass equation of E4 p ¢ is given by

2, —x3+A_B_1m2—ABa:
Y Y= 74 —4 .
2. The above minimal model of E4 g ¢ has stable reduction modulo every

prime p.
3. Under the hypothesis of (1), the discriminant of E4 g ¢ is equal to (ABC/16)>.
If you apply Szpiro’s conjecture then you immediately obtain the A BC-conjecture,
at least in their weak forms.

Szpiro’s Theorem. Szpiro proposed this based on his theorem over a function
field. Let f : E — C be a proper and flat morphism from a surface E, smooth
over algebraically closed field k, to a curve C, smooth and projective of genus g
and geometrically connected over k. Suppose the generic fiber of f is a smooth
and geometrically connected elliptic curve over the function field of C. Suppose in
addition that f is not iso trivial and the degenerate fibers are stable. Then we have
a non constant morphism

j:C— P
by taking j-invariants.

Let A denote the discriminant divisor of f, and let S denote the set of points
on C' over which f is not smooth. Let p is the characteristic of £ and p€ is the degree
of inseparability of the morphism j. (If k has characteristic 0, we write p¢ = 1 for
convenience).



GEOMETRY OF ALGEBRAIC POINTS 149

THEOREM 3.3 (Szpiro).
deg Ap < 6p°(29 — 2 + #5)

Szpiro’s proof makes essential use of the derivative map induced by j on C'—S.
We refer to Szpiro’s paper [6] for his conjecture and his theorem.

In the following we want to present a proof using monodromy action on ho-
mology. We will assume that £ = C, because we will make essential use of integral
coefficients in homology. When the base C is a Riemann sphere, this proof is due
to J. Amord6s, F. Bogomolov, L. Katzarkov, and T. Pantev [1].

Monodromy action on homology. We let f : E — C be as above with
k = C. Fix a point p on C then we have a monodormy action

p:  m(C—S,p) — SL(H\(E,,Z))

where the fundamental group means topological fundamental group and SL means
automorphisms with determinant 1. Let U be a simply connected neighborhood
in C(C) of p in C containing S. For each s € S, let ¢; € m(C — S,p) be an
element which can be represented by a simple loop around only s in U with positive
orientation. There are a;,b; (i,j =1,---,¢) in m (C — S, p) such that = (C — S, p)
is generated by a;,b;,cs with a single relation
g
H[ai,bj] . H Cs = 1.
i=1 sES
Recall that the intersection pairing gives an alternative pairing
() : H,(E,,Z)® H\(Ep,Z) — Z.
Fix a basis e; and e» such that (e;,es) = 1. This defines an isomorphism
SL(H:(Ep,Z)) ~ SLy(Z) which is unique up to conjugation by elements in SL(Z)
(not only GL2(Z)!) Now we have the following equality in SLo(Z):
g

(3.3) [Tletas), pp)1- T ples) =1.

i=1 seS
We will actually show that Szpiro’s inequality follows from (3.3) and the fol-
lowing monodromy theorem:

THEOREM 3.4. For each s € S, p(cs) is conjugate in SLay(Z) to
1 ng
0 1

Proof: ~ This is a well known theorem but we provide here a proof for the
convenience of reader. Let ¢ be the local parameter of C' at s. We may enlarge ¢
such that D := {q € C,|g| < 1/e} is embedded in C. Let D* denote D —{0}. Then
the restriction of E on D* is a Tate curve with the form

(3.4) E* ~ D* x C* /q™".

Obviously, the theorem does not depend on the choice of p in C. Thus we
may assume that p = 1/e and ¢, is a simple loop in D* with counter clockwise
orientation:

where ng = ords(Ag).

cs(t) =™ (0<t<1).
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By (3.4), the fiber E; over c4(t) has the form
E; =C* /™ = C/(Z + (i + t)nsZ)

Thus if we use e; = 1 and e; = in, as a base of Hy(Ep,Z), then they are moved
to 1 and (i + t)ns, and they have limits 1 and (i + 1)ng as ¢ — 1. Thus, we have
shown that

1
cs - (e1,e2) = (e1,nse1 +e2) = (er,e2) - (0 "f) )

Groups SL, (R) and SL, (R). The action of SLy(R) on R? induces a topological
action on
R/27Z ~ R?* /RT
where t € R/277Z corresponds to (cost, —sint)-RT and R is the group of positive
numbers. Let SL (R) be the group of topological homeomorphism % of R which
induces an element «y in SLo(R). Thus for all ¢t € R,

7(t) mod 27 =~(t mod 27).

LEMMA 3.5. The homomorphism from §f42(R) to SL2(R) induced by ¥ — v is
surjective with kernel a free group generated by 2%, where z(t) = t + w. Thus we
have an exact sequence:

1 < 2% >— SLy(R) — SL(R) — 1.
Moreover SLa(R) has center generated by z.

Proof: ~ We need only prove that the homomorphism §f42(R) — SL(R) is
surjective. Let v € SLo(R). We want to explicitely construct a canonical lifting
which commutes with z.

Case where v = —I. We take an obvious lifting ¥(¢) = z.

Case where 7 is parabolic. This means that v has a fixed point 6 on R/277Z
or equivalently, v has a positive eigenvalue. In this case, v has a unique lifting 5
fixing pointwise all points in the preimage of 6.

General case. We claim that + is a product of two elements in the above cases.

This is clear if «y is either upper triangular or lower triangular. If this is not the
case, then there is a unique = such that

det(y —ug) =0, where u, = <(1) Cf) .

Thus v = 71 -u, where y; has an eigenvalue equal to 1. So 714, gives a lifting for ~.

It is well known that SL2(Z) is generated by the following elements and rela-

tions:
(11 (1 0 6 .
u= <0 1) , v= (_1 1) , (uwv)® =1, UvU = VUV

Let A and B be canonical liftings of A and B constructed in the proof of Lemma
3.5.

LEMMA 3.6. Let SLy(Z) be the inverse image of SLy(Z) in SLa(R). Then

1. SLy(Z) is generated by U and T with the relation Wou = vu.
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2. z = (uv)3.

Proof: Tt can be checked directly that

(3.5) 0§ﬂm—x<g, 0§5w—w<g
Thus

(3.6) 0< (@)Pr — 1z < g x 6 = 2.
(3.7) 0 <uvuxr —z <, O0<vuver —z<mw

As (uv)? is a liftings of —I, then (u0)® must be equal to kz with k an odd integer.

y (3.6), k = 1, or equivalently z = (uv)?. Same reasoning gives the equality
uou = vuv.

As the subgroup < u,v > contains the center < z > and maps surjectively

to SLo(Z), this subgroup must be SLy(Z). Since uv has infinite order in SLy(Z),

SLo(Z) is generated by @ and v with only one relation uot = vuv.

Proof of Szpiro’s inequality. We start with a lifting of equation (3.3) to
SLy(Z). Let oy, B;, and s be canonical liftings of some liftings of p(a;) and p(b;)
and p(cs) respectively in SLo(Z) as constructed in the proof of Lemma 3.5. Then

we have a new equation in SLo(Z):
9

(3.8) H[ai,ﬂj] : H vs = 22™

i=1 SES
where m is some integer.
Lets determine m. By Lemma 3.6, there is a degree homomorphism

deg : §£2(Z) — Z such that degu =degv = 1.

Applying this degree map to equation (3.8), we obtain 12m = ) _cdeg~v;. By
Theorem 3.4, p(cs) is conjugate to u™. As ~y; is the canonical lifting of p(c;), 7vs is
conjugate to u™ in SLy(Z). Thus deg~ys = ns. So we obtain

(3.9) 12m = Zns =degAg.
seES
For any a € §]:2(R), define its length by
{(a) = sup|a(z) — x| € RT.
z€ER

(The right hand side is finite, because az = za, or equivalently a(z+7) = a(z)+7.)
This length function has properties:

HaB) < @) +0(B),  €(z") = mn,

Thus equations (3.8) gives us

(3.10) 2mm < Zé ([as, Bi]) + Zf(%)-

seS

LEMMA 3.7.
U(vs) <, C([ag, Bi]) < 2m.
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Proof:  The first one is easy, as s has fixed points on R with period . For
the second one, from the construction in the proof of Lemma 3.5, upto a factor z
which does not change the bracket, a; is a product of two elements conjugate in
SLy(R) to elements @, and u,. Thus [ay, 8] = a; - (Bia;B; ') is a product of four
elements conjugate to Uy, U—_z, Uy, U—y. Notice that two of these four elements
will move points in positive direction, and two of them will move points in negative
direction. All of them have length bounded by . Thus [«;, 3;] has length bounded
by 2.

By (3.9) and (3.10) we have 2m < 2¢g — 1 + s. Combining with (3.8), we have
(3.11) degAp <6(s+2g—1)

This inequality is not as sharp as Szpiro’s. But for ¢ > 0, then one may apply this
equality to an unramified base change

E=FExcC' =
where 7 : C' — C is an unramified extension. Then we have equalities
deg Ap: = degm - deg Ap,
29(C") —2 =degm - (29 — 2),
s’ = deg-ms
where s’ is the number of bad fibers of E' — C'. Now (3.11) for E' — C' gives
deg Ap <6(s+2g—2+1/degm).

As 7 can be chosen such that deg 7 arbitrary large, one obtains Szpiro’s inequality.
However this argument doesn’t apply to the case where g = 0.
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