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2 S. W. ZHANG

1. Introduction and statements of results

In [20], Gross and Zagier proved a formula which relates the central derivatives of
certain Rankin L-series and the heights of certain Heegner points on elliptic curves.
Combined with Goldfeld’s work on L-series [14], this formula gives a solution to Gauss’
problem on class numbers; and combined with Kolyvagin’s work on Euler system
[16, 25], this formula gives the best evidence for the rank issue in the Birch and
Swinnerton-Dyer conjecture. In [17], Gross has proposed a program to generalize this
formula to totally real fields with anticyclotomic characters. In our previous paper
[31], we have worked out the program when the character is trivial and the nonsplit
level structure is small.

The present paper is devoted to working out the weight 2 case of the program.
One immediate application is to generalize the results of Kolyvagin and Logachev [26],
and Bertolini and Darmon [6] to obtain evidence toward the Birch and Swinnerton-
Dyer conjecture in the rank 1 case for modular elliptic curves over totally real fields
twisted by some anticyclotomic characters.

As a coproduct of the proof, we will also obtain a Gross-Zagier formula for the
central values of certain Rankin L-series for forms with mixed holomorphic and Maass
components at the archimedean places. There will be two applications of this Gross-
Zagier formula. One is to generalize the recent work of Bertolini and Darmon [7, 8] to
obtain evidence toward the Birch and Swinnerton-Dyer conjecture in the rank 0 case.
The other one is to use the recent work [4] of Cogdell, Piateski-Shapiro, and Sarnak to
prove the equidistribution of certain toric orbits of CM-points on quaternion Shimura
varieties. This equidistribution statement generalizes a result of Duke [11] and is also
recently announced by Cohen [5] using Duke’s original method.

If we further assume that the work [4] of Cogdell, Piateski-Shapiro, and Sarnak can
be extended to unramified anticyclotomic characters which is predicted by GRH and
(which holds over Q by recent work of Kowalski, Michel, and Vanderkam [27]), then
our Gross-Zagier formula will imply the equidistribution to certain Galois orbits of
CM-points and thus gives some evidence toward the André-Oort conjecture concerning
the Zariski topology of CM-points.

The applications to the Birch and Swinnerton-Dyer conjecture and the André-
Oort conjecture will be treated in later papers.

In the following, we will describe the main results about the Gross-Zagier formula
and proof.

1.1. Rankin-Selberg L-functions and kernels

Let F be a totally real field of degree g and discriminant d, with ring of adeles A. Let
¢ be a Hilbert modular form of weight (2,...,2,0,---,0) over F, which is a cuspidal
newform of level N and has trivial central character.

Let K be a totally imaginary quadratic extension of F'; and let w be the nontrivial
quadratic character of A* /F*NA% . The conductor ¢(w) is the relative discriminant
of K/F. Let x be a character of finite order of Ay /K*A*. The conductor ¢(y) is
an ideal of O, and we define the ideal D = ¢(x)?*c(w). The theory of theta series
allows one to define a Hilbert modular form 6, of weight (1,--- , 1), whose L-function
is equal to the Hecke L-series of .

In this paper we will study the Rankin-Selberg convolution L-function

L(57¢7 0X) = L(37¢7X)-
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This is defined by an Euler product over primes p of F', where the factors have degree
<4 in Np~*. This function has an analytic continuation to the entire complex plane,
and satisfies a functional equation. We will assume the following

[t = 1,
(L.1.1) hypothesis: {ordp(D) >1= ord,(N) <1

The functional equation is then
(1.1.2) L2 —s,x,¢) = (=1)" c(x. ¢)' ~°L(s,x, ¢)
where ¢(x, ¢) is the conductor of the L-function L(s, x, ¢),

c(x, ¢) = d'Np/q[N, D*(N, c(w))

(here [+, -] denotes the least common multiple, and (-,-) denotes the greatest common
divisor) and ¥ is the following set of places of F':

v is inifinite, and ¢ has weight 2 at v, or
(1.1.3) Y. =<wv| vis finite, vt D, and w,(N) = -1, or
v is finite, v | (N, ¢(w)), and ayb, =1

where a, and b, are v-th Fourier coefficients of ¢ and 6, respectively. If v is in ¥ and
unramified in K, x, = 1. Furthermore, if v is ramified in K, x, is unramified and
X, =L

The general theory of Rankin-Selberg convolutions is due to Jacquet [22], but we
will follow [20] in the case above, and will show that there is a form ©(s, g) of level
[NV, D] on GL3(A) which is a kernel for the convolution. More precisely, we will show
that for all new forms ¢ of level N:

(].].4) L(57X7¢)) = (¢7@(sag))[N7D]

where (-, )iy, p is the Peterson product of level [N, D].

We obtain the functional equation for L(s,x, ¢) from that of ©(s,g). Here our
approach differs from [20], which computes tr;y, p/n(0(s,9)) as a kernel of level N.
However, this trace is too difficult to compute in the general case (in [20], the authors
were forced to assume that D was square free, so ¢(w) was odd and ¢(x) = 1).

Notice that the projection O(s,g) in the representation space II(¢) is no longer a
newform. But it is a multiple of a unique form ¢ of level [V, D] which is perpendicular
to ¢ — ¢%. The multiplier is then

L(s,x, ) _
(6%, 08D

We call ¢! a quasi-newform and will give ¢! a direct definition in §3.1 in terms of
characters y, for v ramified in K.

1.2. Central derivatives

Our main formula expresses the central derivative L'(1,x, @) in terms of the heights of
CM-points on a Shimura curve, when ¢ is holomorphic and the sign of the functional



4 S. W. ZHANG

equation (1.1.2) is —1, so #X is odd. Let v be any real place of F', and let B =, B be
the quaternion algebra over F' which ramified at the places in ¥ — {v}. Let G be the
algebraic group over F', which is an inner form of PGL,, and has G(F) = B*/F*.

The group G(F,) ~ PGLy(R) acts on Hf = C—R. If F = Ay is the ring of finite
adeles of F', and U C G(ﬁ ) is open and compact, we get an analytic space

My(C) = G(F)\H* x G(F)/U.

Shimura proved these were the complex points of an algebraic curve My, which de-
scends canonically to F' (embedded in C, by the places v). The curve My over F' is
independent of the choice of v in X. R

To specify My, we must define U C G(F). To do this, we fix an embedding
K — B, which exists, as all places in X are either inert or ramified in K. Then
B = K + K\ with A € B* satisfing aA = Aa for a € K.

Let O, C F, be the local ring of integers, and let Og , C K, be the integral
closure of O,. For each finite place v of F, let A, be an order of B defined by

Ay = OC(XwJ) + Ok,v - A - c(Xv)

Here O.(,) is the order O, + Ok yc(xv) of K, and ), is chosen integral over O,
whose norm N, satisfies the following condition:

ord,(NX,) = ord, (N/(N, D)).
Define an open compact subgroup U, of G(F,) by
(1.2.1) U, = AX]OX.

Let U = [[,U,. This defines the curve My up to F-isomorphism. Let X be its
compactification over F, so X = My unless FF = Q and ¥ = {oo}, where X is
obtained by adding many cusps.

Notice that X admits a natural action by

Ar= [ 70 [ T(F)
vle(x) vle(w)

via right multiplication on G(Ay), since Ar normalizes U in G(A;). Let A denote
the subgroup of G(A) generated by Ar and U:

(1.2.2) A=U"-Ar
and let xa denote the character on A defined by
(1.2.3) Xa: A— Ap X5 C*.

We will now construct points in J, the connected component of Pic(X), from
CM-points on the curve X. The CM-points corresponding to K on My (C) form the
set

G(F){\G(F)4 -z x G(F)/U = T(F)\G(F)/U,

where z € HT is the unique fixed point of the torus points K*/F*. Let n, be a
divisor on X with complex coefficient defined by

W= > X 'O

T(F)\T(As)/Ur
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where

Ur =T(A)NU =0, /0.

If x is not of form x = v - N, with v a quadratic character of F*A*, then n,
has degree 0 on each fiber of X. Thus it defines a class z, in Jac(X)® C. Otherwise
we need a reference divisor to send 7, to Jac(X). In the modular curve case, one uses
cusps. In the general case, we use the Hodge class ¢ € Pic(X) ® Q: the unique class
whose degree is 1 on each connected component and such that

T = deg(Tm)¢

for all integral nonzero ideal m of Op prime to ND. The Heegner class we want now
is the class difference

x = [y — deg(ny)€] € Jac(X)(Ky) ® C,

where deg(n,) is the multi-degree of 1, on geometric components, and K, is the
abelian extention of K corresponding to the group T'(F)\T'(Af)/U.

Notice that this class has character ya under the action by A on Jac(kK,). Let
yy denote the ¢-typical component of 7,.

Our main theorem is now the following

THEOREM 1.2.1. Let ¢* be the quasi-newform as in §1 and §3.1. Then

L'(1,x,0) = 27 /2 - (|62 - o |1

where
e d,r is the relative discriminant of K over F';
o ||¢F||? is the L?-norm with respect to the Haar measure dg which is the product
of the the standard measure on N(A)A(A), and the measure on the standard
mazimal compact group with

VOI(SO(FOO)UO([Nv D]) =1;

o ||yl is the Neron-Tate height of y, .

Gross and Zagier [20] originally proved Theorem 1.3.2 in the following special
case:

F=Q

X is unramified, (D,2N) =1, and
p| N = pissplit in K.

The case treated in our previous paper [31] is when

F is totally real,
X is trivial, (D,2N) =1, and
p? | N = pis split in K.

One immediate application of our Gross-Zagier formula is to generalize the work of
Kolyvagin-Logachev and Bertolini-Darmon [16, 25, 6] to obtain some evidence toward
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the Birch and Swinnerton-Dyer conjecture in rank 1 case. The details will be given in
later papers. Here we just notice y, actually lives in some factor A whose L-function
is given by ¢ and its conjugates.

Let Z[x(A)] be the subring of C generated by values x(A). and let Z[¢] denote
the subring generated by eigenvalues a,, of T, for all p{ N. Then we have

THEOREM 1.2.2. There is a unique abelian subvariety of the Jacobian Jac(X)
which is isogenous to Z[x(A)] ®z A (compatible with action by A). Here “®” means
tensor product of abelian groups, and where A is an abelian variety over F of dimen-
sion equal to rank Z[@] with an action by Z[d] such that

L(s,A) = H L(s,¢%) mod (factors at places dividing N - o)
o:Z[p]—C

By Faltings’ theorem, A is uniquely determined by the above equality of L-
functions up to isogenies.

1.3. Central values

We now return to the case where ¢ has possible nonholomorphic components, but we
assume that the sign of the functional equation of L(s, x, ¢) is +1, or equivalently, ¥ is
even. In this case, we have an explicit formula for L(1, x, ¢), which has an application
to the distribution of CM-points on locally symmetric varieties covered by (HT)"
where n is the number of real places of F' where ¢ has weight 0.

More precisely, let B be the quaternion algebra over F' ramified at X, and G the
algebraic group associated to B*/F*. Then

G(F @ R) ~ PGLy(R)" x SO ™"
acts on (#*)". The locally symmetric variety we will consider is
My = GE)\(H*)" x G(F)/U,

where U = [[ U, was defined in the previous §. Then we have the following ¢-principle:

THEOREM 1.3.1 (§2.4). There is a unique cuspidal function ¢, on My with the
following properties:
1. ¢y has character xa under the action of A;
2. for each finite place v not dividing N - D, ¢, is the eigenform for Hecke
operators T, with the same eigenvalues as ¢.

The CM-points on My, associated to the embedding K — B, form the infinite
set

G(F){\G(F)yz x G(F)/U ~ H\G(F)/U

where z is a point in H" fixed by T and H C G is the stabilizer of z in G. Notice
that H is either isomorphic to T if n # 0 or H = G if n = 0. In any case there is a
finite map

CU = T(F)\G(Af)/U — My.

The Gross-Zagier formula for central value we want to prove is the following:
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THEOREM 1.3.2 (§4.4). Let ¢* be the form defined in §1, 1. Then

L(Lx: @) = 22 (1681 19a)? - 16 ()12

where
1. 0 (¢y) is the integral against x(t') on T(F)\T(Ay) with respect to the stan-
dard measure;
2. ||oxll? are L?-norms with respect to the measure on G(A) which is the prod-
uct of the standard measure on G(R) and the measure on G(Ay) such that
vol(A) = 1.

Notice that ¢, (¢, ) is actually the evaluation of ¢, at the cycle i, defined in §1.2:

Uy(dy) = Z Xﬁl(tﬁbx(t)-

teT(F)\T(As)/Ur

There are two applications of this theorem. The first one is to generalize a recent
work of Bertolini and Darmon [7, 8] to obtain some evidence about BSD-conjecture
in rank 0 case. The second application is to use a recent work of Cogdell, Pieteski-
Shapiro, and Sarnak [4] to obtain certain equidistribution statement of the toric orbits
of CM-points. The details will be given in later papers.

1.4. Remarks on proof

The proof in this paper will be based on the following principle used in the original
paper of Gross and Zagier [20]:

e The Fourier coefficients of a certain kernel form representing the derivative

of the Rankin L-series should be given by the height pairing of CM-points.
But the techniques used in their proof are difficult to apply in the more general
situation due to following fundamental obstructions:

e On a Shimura curve, there is no reference point such as a cusp, to send points
on the curve to its Jacobian.

e On a Shimura curve, there is no reference modular form such as a Dedekind
n-function to be used to compute the local self-intersection on CM-points.

e When an anticyclotomic character is ramified, since the trace computation is
very massive, there is no workable expression of the kernel form to represent
the derivative of the Rankin L-series,

e On a Shimura curve or even a modular curve, there is no explicit semistable
model which can be used to compute the local intersection index of CM-points
at supersingular points.

In our previous paper [31], we solved the first two problems by using multiplicity
one for modular forms and Hodge index theory in Arakelov theory [12, 13]. The
present paper is devoted to solve the remaining two issues with the following methods:

e We will work directly on kernel functions of high level but use quasi-newform
projection instead of newform projection.

e We will not compute directly the local intersection at places where the
Shimura curve has high level. Instead, we will obtain an asymptotic formula
and show that this formula is sufficient by a toric newform theory.

Besides these technical improvements, we will also develop a notion of geometric
pairing and prove a local Gross-Zagier formula. This formula replaces all mass com-
binatoric computations in the previous approaches and also provides a foundation for
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spectral decomposition used to prove the Gross-Zagier formula for central values of
Maass forms.
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plest cases of the program outlined by B. Gross. I would like to express my indebtness
to B. Gross for his deep insight concerning the arithmetic of the central values or
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for Adavanced Study of Qinghua University. I wish also to express my thanks to D.
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2. Automorphic forms on GLs

In this chapter, we want to review various facts about automorphic L-functions of
GL;y, GL3, and the Rankin-Selberg convolution of two forms on GL».. Our basic
references are the papers of Tate [29], Jacquet and Langlands [23], and Jacquet [22].

Beside the general theory, we will also try to make computations using certain
newforms with respect to the action of unipotent subgroups or the torus. The unipo-
tent newform theory, or Atkin-Lehner theory, is discussed in Casselman’s paper [3] in
the adelic setting, while the toric newform theory is mainly due to Waldspurger [30].

2.1. L-functions for GL;

We first start with Tate’s theory of L-functions for GL;.

Nonarchimedean case. Let F' be a nonarchimdean local field with a local pa-
rameter 7. We normalize the absolute value on F such that ¢ = |7|~! is the cardinality
of the residue field of F.

Let w be a character of F* with conductor ¢(w) := 7°*)Op, that is the maximal
ideal of OF such that w is trivial on (1 + ¢(w))*. The integer o(w) is called the order
of w. Then the L-function of w is defined as follows:

(2.1.1)

L(s,w) = (1 —w(m)g™®)~" if w is unramified,
R ! if w is ramified.

where s € C.

Let v be a fixed nontrivial additive character of F. For a function ® € S(F') (the
space of compactly supported and locally constant functions) we define the Fourier
transform by

(21.2) B(r) = /F B(y)p(zy)dy

where dz is a Haar measure on F such that &(z) = ®(—x). If ¢(z) is changed to
Vq(z) := ¥(azx) then dz is changed to |a|'/?dz and ®(z) is changed to |a|'/?®(ax).
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For example if ) has the conductor c(1p) := n°¥) O, that is the maximal fractional
ideal where ¢ is trivial, then dz is such that the volume of O is |7~ °¥)|'/2. The
integer o(v) is called the order of 1.

For any ® € S(F') we define the Mellin transform by

(2.1.3) 25,0, ®) = /F S()w(@)|z"d*z  (s€C, Re(s)>>0)

where d*z is a measure on F'* such that the volume of O is 1. Then Z(s,w, ®)
is really a rational function of ¢®,¢~%. One may show that the set of all Z(s,w, ®)
is a fractional ideal of C[g®,¢*] with L(s,w) as a generator. The local functional
equation shows the change when s is replaced by 1 — s:

Z(1 —s,w‘l,:I;)
L(1—s,w™l)

Z(s,w,®)

(2.1.4) 6.5

= e(s,w,9)

where €(s,w, ) is independent of ® and is called the e-factor of w with respect to .
If ¢ is changed to v, then €(s,w,)) is changed to w(a)|a|*~'/?€(s,w, ).

If w is unramified, and ¢ is of order 0, then we may use the characteristic function
®, on Of to compute the e-factor:

(2.1.5) Z(s,®1) = L(s,w), e(s,w, ) =1.

If w is ramified and o(y)) = 0, we may compute the e-factor by using the restriction
®,, of the function w™' on OF:
Z(s,®.) = L(s,w) =1,
(2.1.6) e(s,w, 1) = e(w, ) |72,
co,0) =o' [ wlea) wlza)ds,
OX

F

where a is a generator of c(w)!. Notice that €(w,) is a number of norm 1 if w is
unitary.

Archimedean case. First we consider the case where FF = R with the usual
absolute value. Then any nontrivial character will have the form

w(l,) — e27ri6z, ((5 c RX)

The self-dual measure dz is |§|'/? times the usual measure on R.
Let w be a quasi-character of R* of the form

w(t) = [t]"sgn(®)™,  (reC, m=0,1).

Then we define

(2.1.7) L(s,w) = x~(+rm)/2p (w) .

2

One may define the Mellin transform Zeta function as in the nonarchimedean case
and show that L(s,w) collecting all poles of these Zeta functions, and that the Zeta
functions and L-function satisfy the same functional equation as in nonarchimedean
case.
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Again to compute the e-factor we may assume that 6 = 1. We can use the function
o, (z) = gMe T
to compute the e-factor:
Z(s,®,) = L(s,w)
(2.1.8) e(s,w, ) =1".

We now consider the case where F = C with normalized absolute value |a|c = |2|?.
Any nontrivial character of C has the form

’QZJ(Z) — e47riRe(6z), (5 c (CX)

whose self-dual measure is |(5|(1C/2 times 2dzdy (z = = + yi).
Let w be a quasi-character of C* with the form

|2le2™
w(z) =< or (reC, m>0)

|2lez™,
We define the L-function of w to be
(2.1.9) L(s,w) = 2(2n)~CH ™D (s 4 1 4+ m).
Assume that 6 = 1. We may use the function

2
efﬂ'\z\ Fm

d,(z) =< or

e—w\z\2zm
to compute the e-factor:
(2.1.10) Z(s,®,) = L(s,w), e(s,w, ) =1i™.

Global theory. Let F' be now a global field and let A denote the ring of adeles
of F. Let ¢ : F\A — C be a fixed nontrivial additive adele classes character of F'.

Let w: AX /F* — C* be an idele class quasi-character of F. Then we define the
L-function L(s,w) and e-factor by the product:

(2.1.11) L(s,w) = [[ L(s,w0)
(2.1.12) e(s,w) = [ ] e(s,wu, tb0)

v

where v runs through the set of all places of F', and w, and ¢, are components of w and
1) at the places v. One can show that these products are convergent for Re(s) >> 0,
and can be continued to a meromorphic functions on the whole complex plane, and
that L(s,w) satisfies a functional equation

(2.1.13) L(s,w) = e(s,w)L(1 — s,w™").
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This functional equation can be proved by combining the local functional equation
with the global functional equation

HZ(Sawva@v) = HZ(I - Sawva(/I;v)

for some Schwartz functions ®, which are the characteristic function of O, for almost
all places. This last functional equation is essentially a consequence of the Poisson
summation formula.

2.2. L-functions for GL,

Nonarchimedean case. First we consider the case where F'is a nonarchimedean
local field. Let v be a fixed nontrivial additive character of F'.

Let II be an irreducible, infinite dimensional, admissible representation of GLq (F)
with central character w, and with the L-function L(s,II) which has the form

1

(2.2.1) L(s, 1) = (1 — a|n|®)(1 — B|x|*)”

Then II can be realized in a Whittaker model W(II, ), a space of locally constant
functions W on GLy(F) such that

(2.2.2) W ((é ”{) g> — (@)W(g), VeeF

The L-function L(s,II) can be determined analytically by this model just as in GL;
case.
More precisely, for any W € W(II,v) define

(2.2.3) T(s, g, W) = /F W ((g (1)) g) la*~/2d%a

where d*z is an invariant measure on F'* such that the volume of OF is 1. Then

one may show that this integral is actually a rational function of ¢*,¢~*, that L(s, IT)

collects all poles of these Mellin transforms, and that the Mellin transforms and the

L-function satisfy the following functional equation

‘II(]' — 5,Wg, W)
L(1 —s,1I)

U(s,g, W)

(2.2.4) ORI

— (s, I, ) (det g)

where
e II is the contragradient of II which has the form

ﬁ:H@w_l;

W(g) = W(g)w!(det g) which is in W(II, 1);
0 1

-1 0)’

€(s, 11, %) is independent of ®.

w =
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For 6 € F*, if we change ¢, W, W respectively to
6 0 —~
¢5a W5(g) =W 0 1 g, W((S)W(;’

then €(s,II,¢) is changed to w(d)|8]?* te(s,I,4). Thus in the computation of e-
factors we may assume that the conductor of ¢ is 1. In this case, the e-factor has the
form

(2.2.5) e(s, I, ) = |7 |71/ 2¢(11, 4))

where o(IT) is a nonnegative integer and is called the order of II. The ideal 7°(™ O is
called the conductor of I, and the complex number €(II, ¢) is called the root number
of II. Notice that the root number has norm 1 if w is unitary.

Archimedean case. We now consider the real case F' = R with additive charac-
ter ¢ (x) = e2™, Then an irreducible, admissible, and infinite dimensional represen-
tation IT of GL2(R) is really a representation of (G,U) rather than a representation
of GLy(R) itself, where G = M>(R) is the Lie algebra of GL2(R), and U = O2(R).
Such a representation can still be realized in a Whittaker model W(II, ¢)) of smooth
functions on GL2(R) with moderate growth where (G,U) acts by the right transla-
tion. One still can define the L-function L(s,II) which can then be determined (up
to invertible functions) by analytic properties of W(II, ¢).

Principal series. Let F' be a local field and let u1, uo be two quasi-character of
F>*. Let B(u1, u2) denote the space admissible functions f on GL2(F) such that

(5 5)) =m@mols] " s, v(5 7)<cnw

where admissible means locally constant in the nonarchimedean case, and means
smooth and Oz(R)-finite functions in the archimedean case. The B(ui,pu2) admits
an admissible representation by right translations. One may show that B(uq, us2) is
isomorphic to B(pe, p1) when it is irreducible. To construct a Whittaker model for
this representation, we notice that for any function f in B(u1, u2), there is a Schwartz
function ® € S(F?) such that

(2.2.6) f = folg) = pm (det )| det(g)| /> /F B0, glpnrz (Bl
The Whittaker function corresponding to f = fg is given by the following formula:
(227)  Walg) = i (det g)] det(g)|"/* /F (p(0)®)'[(t,t~ N piz (1)d*t

where p(g) is the right translation, and &' is the inverse Fourier transform with respect
to the second variable:

(0(9)®) (z,y) = / B{(z, u)g]tp(—uy)du.

F

Let ar denote the norm on F: ap(x) = |z|. If gy ' # af' the representation
B(u1, pe) is irreducible and is denoted by II(uq,pu2). We call this representation a
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principal representation. One has the following formula for the L-function and e-
factors of IT = IT(p1, u2) by the following formulas:

(228) L(Saﬂ) = L(S,Ml)L(S,M),
(2.2.9) e(s, I, ¢) = e(s, p1, V)e(s, p2, V).

The central character of IIis w := pjp2. The contragradient of TI(uq,us) is
M(p;t, puyt). If F is nonarchimedean then the order of TI is

(2.2.10) o(TI) = oi) + o{p2).

If F = R, we define the weight of II to be an integer k = 0, 1 such that w(—1) = (=1).
-1 . _ 1/2 o —1/2 .

If pup;” = ap, then we may write g = p-og”™, po = p-ap’'" with p a

quasi-character of F*. Then B(u1,pu2) contains a unique irreducible representation

of codimension 1. We call this representation a special representation with twist pu,

and denote it as o(u). We define the L-function and e-factor of II = o(u) by
(2.2.11) L(s,II) = L(s, 1),

L(l -5 :ul_l)

(2.2.12) e(s, I, v) = e(s, p1,v)e(s, p2, V) T
The central character of IT is w = puy 2 = p>. The contragradient of TI(y) is T(p™!).
If F' is nonarchimdean, then the order of IT is 1 if p is unramified, and 20(p) if u is
ramified. If F' = R, then the weight of II is defined to be 2.

One case we will use is when F' is nonarchimedean and p is unramified. In this
case o(u) has e-factor —u () by taking limit s — 1/2 in the above formula.

If F is nonarchimdean, a representation is called supercuspidal if it is not principal
or special.

Weil representation. Let K be a quadratic extension of F. Let 1 be a character
on F'* corresponding to the extension K/F. Let x be a quasi-character of K*. Then
there is a unique irreducible and admissible representation IT = II(y) of GL2(F’) such
that

(2.2.13) L(s,II) = Lk (s, x),
(2.2.14) e(s,IL ) = e(s,w, ¥)ex (s, X, ¥k ),
e(IL ) = e(w, ¥)ex (X, ¥k ),
where ¢ = 1) otrg/p. The central character of TI(x) is w = 7 - x|px. If the
residue character of F' is not 2, every irreducible, admissible, infinite dimensional

representation of GLo(F) is either principal, special, or isomorphic to II(y).
If K/F is nonarchimedean, and x is of the form p - N/, then

(2.2.15) II(x) = (g, - m)

where p is an unramified character of F'*.

If K/F is nonarchimedean, and x is not of the form as above, then II(y) is
supercuspidal in the sense that L(s,II(x) ® u) = 1 for any character p of F*.

If K = C, and x has a form

x(2) = [zle2™, (m 2= 0),

then TI(x) is discrete of weight m + 1. This means that II(x) appears in L?(GL2(R))
as discrete spectrum. More precisely, we may take this discrete spectrum generated
by a holomorphic modular form of weight m + 1.
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Jacquet-Langlands local correspondence. One may also construct repre-
sentations by using a definite quaternion algebra B. By Jacquet-Langlands corre-
spondence, there is a 1-1 correspondence between irreducible, admissible, and discrete
representations of GLs and irreducible representations of B*. In this correspondence,
one dimensional characters u - det of B> will give special representations o (u).

Langlands local correspondence. First lets consider the case F' is nonar-
chimedean. Let Wr denote the Weil group: the subgroup of Gal(F/F) of ele-
ments whose images in the residue group Gal(F/F,) are integral powers of the Frobe-
nius. Then Langlands correspondence gives a 1-1 correspondence between irreducible
two dimensional representations of Wy and supercuspidal representations of GLy(F')
which is compatible with twists by characters and the formalism of L-functions and
e-facts. For example if IT = TI(x) with x a character of K*, here K is a quadratic
extension of F', then we may consider yx as a character of the Weil group Wx via local
class field theory. The representation of Wy corresponding to II(x) is the induced
representation Ind%ﬁ (x)-

We now consider the case where F' = R. Then the Weil group Wx is generated
by C* and j such that

§2 = -1, jr = %j, Vo € C*.
One has obvious homomorphisms
Wab ~ R* — R /R} ~ Gal(C/R).

The Langlands correspondence gives a 1-1 correspondence between irreducible repre-
sentation of Wxr and discrete series of GLy(R) which has the same properties as in
the nonarchimedean case.

2.3. Theories on newforms

We now continue to work on representations of GL2(F') for F' a local field.

Atkin-Lehner theory. Just as in the GL; case, the conductor or the order of
IT will measure the ramification of II. For any ¢ > 0, lets define

(2.3.1) Up(n°) = {7 € GLy(OF): 7= ( :) mod WC}.

(5 1) moan}.

We say that a function W in W(II,+) has level n¢ if it is invariant under U; (7°).
Then we have the following:
PROPOSITION 2.3.1 ([3]). The order o(I) is the minimal nonnegative integer c
such that W(I1, ) has a nonzero function of level 7¢. Moreover,
1. If ¢ = o(Il), then the space W(IL,¢)) has a unique element Wy of level 7¢ and
takes value 1 at the unit element e in GLo(F).
2. If ¢ > o(Il) then the space of functions in W(IL,¢) of level ©¢ has dimension
¢ —o(Il) + 1 and is generated by

*

o

*

o

(232) U1(7Tc) = {’)/ € GLQ(OF) 0

Wii(g) =W (g (”(;i ?)) (i=0,1,-,c—o(Il)).
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The function Wii(g) is called a Whittaker newform with respect to character .
With this function and definition in (2.2.3), one has the following

(2.3.3) L(s,II) = (s, Wn),

(2.3.4) Wi (gh) = €(IL, )W (9)w(det g) 7",
where

(2.3.5) h:= (—Src é) ) ¢ = o(II)

is the Atkin-Lehner operator of order c.
In this paper we will use a modified notion of newforms. To define it, we assume
that II is unitary. Then there is a hermitian and positive pairing

(,9): W, ¢) x W(II,¢) — C
such that

(p(g)Wlap(g)WQ) = (Wla WQ)
We say a vector W € W(II, ) is quasi-new, if W is nonzero, and
(W, Wy — W) =0.

Let V be a space of forms in W(II, ) containing the newvector Wy. Then the
correspondence

v—{weV, (v,w)=0}

gives a one-one correspondence between the quasi-newvector in V' and hyperplane not
containing Wryy.

For example, let ¢ > o(II) be a fixed integer, then we may take V to be the space
of forms of level 7¢. Then there is unique quasi-new vector perpendicular to

W((”Oi ?)) c—o(I) >i>1.

Weights. The analogue of the order of a representation in the archimedean case
is weight: we say a form W € W(II, ) has weight m if

cosf siné _ mime
(2.3.6) w (g <_ <inf  cos 9>) =Wi(g)e , Vo € R/7Z.

One can show that the weight & of a representation II is the minimal nonnegative
integer such that IT has a nonzero vector of weight k. Moreover for any integer n, the
space of forms in W(II, ¢) is one dimensional if [n| > k, n = k (mod 2). Otherwise it
is 0.

If I is not of the form IT = TI(a"sgn,a™sgn), then with definition in (2.2.3),
there is a unique and Whittaker functions Wy of weight £k such that

(2.3.7) L(s,II) = T(s, Wr),
(2.3.8) Wi (gw) = e(I1, 1) Wi (g)w ™" (det g).

Again, we call Wy the new vector for IT with respect to the additive character ).

In case II = II(a"sgn, a2sgn), we call a Whittaker function W (g) of weight 0 a
newform if W(g)sgn(det g) is a newform for II(a", a"™). Notice that ¥(s,W) =0 as
W(g (1)) is odd in a € R*.
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Waldspurger theory. Let F' be a nonarchimedean local field. Let K be a
quadratic extension of F' (which is either split K = F @ F or a field) embedded into
M>(F). Let T denote the torus K*/F* in G = PGLy(F).

Let G' = B*/F* where B is a quaternion division algebra over F. We also
embed K into B if K is nonsplit and also denote T', the torus K*/F* in G'.

Let II be an irreducible, admissible, and infinite dimensional representation of
G. If I is L?, let II' denote the corresponding representation of G’ by the Jacquet-
Langlands correspondence.

Let U1, T) (resp. U(IT',T)) denote the space of linear maps from II (resp. II')
to the space of continuous functions on T\G (resp. T'\G') with compatible G. (resp.
G') action. Set U(II',T') to be zero if it is can’t be defined as above.

If T is not split, let II” (resp. (II')T) denote the subspace of IT (resp. II') invariant,
under T'. Then we have the following fundamental criterion for the existence of T-
invariant vectors in II or II'.

THEOREM 2.3.2 ([30], Proposition 1, Lemma 1, Theorem 2). With notation as
above, one has that
dimU(I,T) + dim(Il',T) = 1
and that if T is not split then,
dimU(I1, T) = dim TT7, dimU(IT', T) = dim(11")7.

Moreover,
1. If T is split or 11 is principal, then U(I1,T) # 0.
2. If T is not split and Il = o(u) (u? = 1) is special, then

UL, T) #0 < poNg/p #1,
U(IT',T)#0 <= poNg/p =1

3. If T is nonsplit and K/F is unramified, then

UL, T)#0 < o(Il) is even,
UTT,T)#0 < o(ll) is odd.

Toric newforms and Gross-Prasad’s theory. In [19], Gross and Prasad stud-
ied the invariant vector from a different point of view, i.e., by analyzing the subspace
Y (resp. (I')') of vectors invariant under I' = R* where R is an order of M»(F) or
B of discriminant ¢(IT) containing Ok .

THEOREM 2.3.3 ([19], see also [31]). Assume either K/F is unramified, or II is

principal, or I is special with prime conductor. Then

dim " = dimU(11, T'), dim(IM")" = dim U1, T).

Everything is proved in [32] except the case where K/F is ramified and II = o(u).

LemMA 2.3.4 ([19])). If K/F is ramified and I = TI(u) is special of prime
conductor, then
1. TI' is one dimensional and stable under T with a unramified character which
sends mg to —u(m).
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2. ()Y is one dimensional and stable under T with a unramified character
which sends Ty to ().

Proof. Indeed, there is nothing to prove in the case of a one dimensional repre-
sentation. In case of II, T' is isomorphic to Up(7) while 7k acts like the Atkin-Lehner
operator. Thus the lemma follows from the functional equation of the Whittaker
newform and computation of the epsilon-factor e(Il, ¢) = —n(x). O

Let x now be a character of K*/F*. We want to study invariant vectors under
the action of T' with character x under the same conditions as in Theorem 2.3.3.
When y is unramified, then either x = 1 in the situation of Theorem 2.3.3, or in the
situation of Lemma 2.3.4 with described character. Thus we need only treat the case
where y is ramified.

We assume that o(II) < 1. Lets assume that Ok is embedded into M2(Op) and
let

(2.3.9) I'= (O + c(x)M2(OF)) .

Now x can be extended to a character of ' in the obvious way. We are concerned the
existence of a nonzero subspace IIX of vectors v in II such that

(2.3.10) yv = x(7)v, vel.

THEOREM 2.3.5. Assume that K/F is unramified, that x is ramified, and that
o(Il) < 1. Then dim ITIX = 1.

Proof. Our assumption implies IT is included in the space B(u,u~!) of locally
constant functions on GL2(F) such that

(5 5)a) = nemiapso)

where p is an unramified character of F*. Tt suffices to show the theorem for this
space because in the case II = II(u), u?> = ar, the one-dimensional subquotient of
B(p, 1) is isomorphic to u - det g which does not have y-eigen vectors.

The y-eigen subspace of B(u, 1) for T is the space of functions f on GLy(OF)
such that

f ((8 :Z) gv) = p(a/b) f(9)x(7)

for all y in T
First we treat the case where K is a field. Let u be a trace-free element of (’)[X(.
Then we have an embedding K — My (F) given by

a+bu—s (@ b
bu?> a)’
With this embedding one has the decomposition GLs(F) = By (F)T(F) where By (F)

is the set of matrices of the form > Since x is trivial on F*, the y-eigen

a
0 1
subspace for T is included in the x-eigen subspace for T'. But it is easy to see that
the x-eigen subspace of T' is one-dimensional and is generated by

i (5 9)1) =lalu@no.
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To show the theorem for this case, we need only show that fy is in the y-eigen subspace
of I'. In other words we want to show for any g € GLy(F'), v € ', that

folgy) = fola)x (7).

Since T normalizes I' and fixes the character x, one has the decomposition

g:Bta (BEBl(F),tET(F)),
tyt ' =a-T (a € B1(Op), ™ € T(OF).

Thus g has the decomposition Sa - 7t. The above equation follows easily.

It remains to consider the case where K = F @ F and x = (u,u1). Let K be
embedded into M, (F') diagonally. Then I" consists of matrices congruent to elements
in T(Op) modulo 7. Tt is not difficult to show that B(F)\G(F)/T is represented by

the following elements
(10 (1 0
=% 1) “~ 1 1)

Bm = <,n_]r-n (1)> y  Ym = (_01 ﬂ_lm> (0 <m< n)

One can verify explicitly that the x-eigen subspace of V' is one dimensional and is
generated by the following function supported on B(F)al":

i ((5 7)) = lasol 2t

a
We call the space ITX the space of toric newvectors with a prescribed character
X. Notice when x is ramified, our treatment is slightly different than [19], where

Gross-Prasad obtained the same result about invariants under B* with R an order
of B containing O,(,) optimally.

2.4. Automorphic forms on GL-

Automorphic forms and cusp forms. Let F' be a number field. Let A denote
the adeles of F'. Let w be a quasi-character of F*\A*. Let A(w) denote the space
of automorphic forms on GL3(A) which are the smooth functions with moderate
growth on GLa(F)\GL2(A), and with character w under the translation by the center
Z(A) = A*. The space A(w) admits a representation p of GLa(A):

(2.4.1) (p(9))(z) = f(zg)

For each place v of F' let II,, be a representation of F; such that for all but finite many
v, II, is unramified with a fixed newvector v,. Then we can define the representation
II := ®,I, of GLy(A) as a direct limit

IIs := ®yeslly

over finite subsets S of F such that for two S C S’ containing all archimedean places
and ramified places of II,, the structure map IIg — Ilg/ is given by tensoring with

® 5\ SVp-
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We say II is automorphic, if T is isomorphic to a subrepresentation of A(w).
Let 1 be a fixed nontrivial character of F\A. Then for ¢ € A(w) one has the
following Fourier expansion

(24.2) 0 = Cola)+ 3 Wo ((5 9)9)

EFX

where Cy(g) is the constant coefficient, and and Wy(g) is the Whittaker coefficient of
o:

(2:43) cow=[ o((o 7)o)

(2.4.4) Walo) = | X ((3 ”{) g) b(—2)dz.

Here dz is the associated self-dual measure on F'\ A which is actually the unique Haar
measure of volume 1.

A form ¢ € A(w) is called cuspidal if Cy(g) = 0 for all g € GLa(A). Let Ap(w)
denote the space of cusp forms in A(w) which is stable under the action by GL2(A).
An irreducible, admissible, and infinite dimensional representation II of GL2(A) of
central character w is called cuspidal if it appears in Ag(w). It is well known that if
IT is cuspidal then the multiplicity of II in p is 1:

THEOREM 2.4.1 (Strong multiplicity one, [3]). Let II = ®II, and II' = QII), be
two cuspidal representations of GLa(A) such that I1, ~ II! for all but finitely many
places v of F'. Then II ~ II'.

For a cuspidal representation II, we let A(II) denote the space of cuspidal forms.
Then for any collection of Whittaker functions in W, € W(II,.1,) with almost all
W, are newform, one may form a global Whittaker function W = ®,W,,, and a cusp
form

(2.45) s =Y w((§ 9)o):

EEFX

L-functions. Let IT = ®II, be a cuspidal representation of GL2(A). Let L(s,II)
denote the product of L(s,II,) and let €(s, IT) denote the product of (s, II,, 1, ) which
is convergent for Re(s) >> 0. Then we have

THEOREM 2.4.2. The function L(s,II) (Re(s) >> 0) can be continued to a
holomorphic function on the whole complex plane and satisfies the functional equation

(2.4.6) L(s,0) = e(s, ) L(1 — ,TI)

Proof. Indeed, for any place v, one may find a Whittaker function W, such that
U(s,e,W,) # 0, and that for almost all finite v, W, equals the standard spherical
function. Let ¢ be a form with Whittaker function W := [[ W,. Then one has

0\, .
Moeewa=[ o5 1)
- FX\AX
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and

H\I’(I—S,M,Wv) :/FX\AX gb((g ?) ’w) wfl(a)|a|1/2fsd><a.

These two quantities are equal since
a 0 _ 1 {a O _ a”!' 0
o6 9)m)=e (o (5 1)) =o'y 1):

Let 6 € A* be such that every local additive character

Uy (x) =y (8, ')

has conductor 1. Let W2(g) be the newform for II,. Then we may define a Whittaker
function W (g) = @W,(g) for % := @2 and a newform ¢ by

(247 onle) = 3 W (5 9)9)

With this newform, since |[§| = dz', one has

0 ad 0
(e v e
/FX\AX “ ) o [ (Y

=d; 2 L(s, ).

Hecke operators. Assume that w = 1 and let ¢ be a fixed form in Ap(w). Let
S be a finite subset of places such that if v ¢ S, then v is a nonarchimedean place
and ¢ is invariant under GL3(0,). For a nonzero a € O an integral finite S- idele,
let T, be the Hecke operator corresponding to the characteristic function on the set

(2.4.8) H(a) = {gEMQ((ag), detg-@%za-@%}.
Then H(a) has a disjoint decomposition:
a ~
(2.4.9) H() =[] (0 f) GLy(O3)
o8,y

where «a,~ are integral ideles modulo @\?X such that ay = a, and § is an integral
adele modulo a.
It follows that for g € GLa(Ag) and y € A%,

.17, (g (g 3)) S W, <g (yao/v y61/7)>

0By
— mzf;sa Wy (g (yOE)M 2)) ] ;d a@b(yﬁ/v)

= (v )

a,dlysd
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Thus we have the formula

(2.4.10) T Wy <g <g ?)) = |

It follows that if a is prime to yd,

(2.4.11) W, (g <y0a ?)) = |a|T, W, (g (g ?)) .

If ¢ belongs to an irreducible and cuspidal representation II, then we have |a|T,¢=
II(a)¢ where

> we (o ("7 1)) bl

(yf ‘570')

(2.4.12) fi(a) = WS (g ?)

It follows that

(2.4.13) > M(a)|a)" /2 = [ L(s, 10,).

pES

For p ¢ S, II,, is unramified, thus is uniquely determined by L(s,II,,) and then by
Q.

Jacquet-Langlands correspondence. Let B be a quaternion algebra over F'
and let G = B* as an algebraic group over F. Then we have the same notions of
automorphic forms, automorphic representations, and the multiplicity one or strong
multiplicity one.

Let II' = ®II), be an irreducible and admissible representation of G(A) and let
IT = ®II, be an irreducible and admissible representation of GL2(A) obtained by
applying Jacquet-Langlands correspondence componentwise. Then I’ is automorphic
and cuspidal if and only if IT is automorphic and cuspidal.

Proof of Theorem 1.2.2 and 1.3.1. We now return to the situation of Intro-
duction where a form ¢ over a totally real field F' and a character x of Ay, /K*A* are
given such that the hypothesis (1.1.1) is satisfied, where K is an imaginary quadratic
extension of F. The functional equation of L(s, ¥, ¢) has sign (—1)#> where ¥ is a
finite set of places defined in (1.1.3).

Let S be a finite set of archimedean places of F' such that

e S UX contains all archimedean places of F,

e ¥ — S has even cardinality.
Let B be a quaternion algebra over F' which is ramified exactly at places in ¥ — S and
let G be the inner form of PGL»  associate to B*/F*. Let A be an open compact
subgroup of G(Ay) defined in (1.2.2) and xa a character on A defined in (1.2.3).

THEOREM 2.4.3. There is a unique cusp form ¢, on G(A) with the following
properties:
1. ¢y has the same weight as ¢ at places in S, and has weight 0 at other infinite
places;
2. ¢y has character xa under the action of A;
3. for each finite place v not dividing N - D, ¢, is the eigenform for Hecke
operators T, with the same eigenvalues as ¢.
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Proof. Let II be the irreducible and cuspidal representation of GL2(A) generated
by ¢. For each place v in ¥, II, is nonprincipal. This is clear for v | co; for v finite,
we just need to notice that any principal representation has even order. Thus II will
have a Jacquet-Langlands correspondence II' of G(A). The existence and uniqueness
of ¢, now is determined by the local representation II), and follows from the results
in the last section §2.3. O

To prove Theorem 1.2.2, we take S to be the set {r}. Then the form ¢, in
Theorem 2.4.3 is on the Shimura curve X defined in §1.2. Theorem 1.2.2 now follows
from the standard Eichler-Shimura theory.

To prove Theorem 1.3.1, we take S = 0.

g-expansion principle. Let II, = (II,,v | co) be a fixed representation of
GL2(Foo) = [1,00 GL2(Fy) at the archimedean place with trivial central character.
Let N be an ideal of Op. For each representation IT with conductor N and infinite
component I, fix one quasi-newform ¢r. Let A*(TI, N) denote the space of cusp-
forms generated by ¢r. Notice that A*(II.,, N) is a finite dimension space with an
action by Hecke operators T, for (a, N) = 1.

Let £ be a unique linear functional on A*(Il.,, N) such that

{¢n) = 1.

THEOREM 2.4.4 (g-expansion principle). Let S be a set of places containing
infinite places and places dividing N. Let T* = TH(Ilo,, N) denote the ring of endo-
morphism of A* = A¥(Ilo,, N) generated by T, for a prime to S. Then the pairing

T x A* — C,  (t,¢) = L(to)
is nondegenerate in both variables.

Proof. The space A? is a direct sum of one dimensional space Cér;. The action
of T* is given by a character + — agr(t). The (strong) multiplicity one implies that
the characters ¢ —» an(t) are all different. The assertion now follows from the linear
independence of the characters ar(t). O

2.5. Rankin-Selberg convolution

In the rest of this chapter, we will review Jacquet’s theory [22] of Rankin-Selberg con-
volutions of L-functions for GLs. For our purpose, we only consider the convolutions
which can be written as a single Mellin-transform of Whittaker functions. First, lets
consider the nonarchimedean case.

Nonarchimedean case. Let F' be a nonarchimdean field. Let II; (i = 1,2)
be two admissible representations of GLy(F') with central characters w;. Then the
convolution L-function L(s,II; x II5) is the inverse of a polynomial of ¢~% which is
the common denominator of all the following Mellin transforms:

(251) \I’(37W17W27¢) :/ Wl(g)W2(€g)f¢(sawag)dg'
Z(F)N(F)\G(F)
where € = (_01 ?), W; € W(II;, ), & € S(F?), w = w; - wy, and

(25.2) fa(s,00,9) = | det g|* /F B0, gl )
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Again one has a functional equation:

U(1—s, Wy, Wy, ®) (s, Wy, W, ®)

(2.5.3) L0 s 0 x 1) = ¢(s, I} x Iy, 1)) L(o.00 x 1)
where

(2.5.4) Wilg) = Wi(g)wi(det(g)) ™"

(2.5.5) d(z,y) = /@(u,v)z/)(yu — zv)dudv.

The L-function L(s,II; x IIy) can also be defined by algebraic means. If one of
I1; is principal, say II; = IT(pu1, p2), then

(256) L(S,Hl X HQ) = L(S,/,Ll ® HQ) . L(S,/,LQ X HQ)
E(571_[1 X H27¢) = G(S,Ml ® HZa/(/}) : 6(57M2 ® H27¢)'

If one of II; is special, say IIy = o(u), then

(2.5.8) L(s,T0; x Ty) = L(s, pas!?> @ Ty),
(2.5.9) e(s, Tl x Iz, ) = e(s, poy!” @ Tha, P)e(s, pory > @ Ty, )

L1 — s, @a /2 1)
L(37H2 & 0471/2111)

Assume now that both II; are supercuspidal. Then each II; corresponds to some
irreducible two dimensional representation p; of the Weil group Wr. Then we have:

(2510) L(S,H1 X H2) = L(S,pl X pz)
(2.5.11) €(s, Iy x Ia,9) = €(s, p1 X pa2,1).

In general, L(s,II; x II5) is some combination of ¥(s, Wy, Wy, ®). But it will have
a nice expression as a single Mellin transform under the following hypothesis:
e One of Il; is either unramified or special with an unramified twist.
In this case, if we write

2 2

L(Saﬂl) = H(l - ai|ﬂ-|s)_17 L(57H2) = H(l - BJ'|7T|S)_17

i=1 j=1
then one can show that the Rankin-Selberg convolution L-function is given by:

2
(2.5.12) L(s, T x o) = [ (1 —aBylnl*) .

i,j=1
Without loss of generality, we assume that II; satisfies the above hypotheses and
(2.5.13) c1 = ord(Il}) < ¢z :=ord(Ilz),
and that the additive character ¢ has order 0. In the following we want to show that

L(S,Hl X HQ) = \I’(S,Wl,WQ,(I)),
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where W; be the Whittaker newfunction for II;, and

1 if o(w) =0, |z| < ||, |y| <1,
(2.5.14) Bla,y) = {wl(y) if o(w) >0, || < ||, Iyl = 1,
0 otherwise.

Notice that an invariant measure dg on Z(F)N(F)\GLy(F) has decomposition
dg = |a|~'dadk with respect to the decomposition G(F) = Z(F)N(F)A(F)U where
da corresponds to the Haar measure on F'* such that O has volume 1 and dk is a

measure on GL2(Op). We normalize the measure such that the volume of Up(7¢?) is
1.

PROPOSITION 2.5.1. Assume that either Iy or Iy is not special of prime con-
ductor. For each j between 0 and c2 — c¢1, one has

—J .
v (S’p (WO (1)) Wl’W2’(I)) =[x/ a;L(s, T x )
where a, is defined by

L(s,II) = Z ap|m|™e.

Proof. Using the decomposition G(F) = Z(F)N(F)A(F)U, we may write
v (Sap (Tro 1) Wla W27 ¢>
a 0 77 0
e (G )0 9)
/Fx YU 0 1 0 1
Wy ((‘0“ 2) k) F(s,0, k, ®)|a* " dkd*a
If ¢ = ¢; = j = 0, then by definition of ®, one can show that for k£ € U,

fls,w, k, @) = L(2s,w).
It follows that

(s, Wy, Ws, d) = L(2s,w)/FX Wi ((8 ?)) W, ((‘0“ ?)) la|* td*a.

The proposition now follows from the formula
n
ZW@ ﬁwwwzm&»
n

If 3 > ¢y +j then ® = ®; + & where &, is the restriction of w™" on 720p x O
while ®, is either zero or the characteristic function of 72Op x 7Op. It is easy to

see that @, is invariant under U; (7°2~1). Thus in the above formula, we may replace
—J
® by ®; since p FO (1)> Wi is invariant under U; (7r02*1) while IIs has conductor

ca. Now for k € U,

w(k)™t if k € Up(m2),
0 otherwise,

fls,w, k, @) = {
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a b
d
It follows that

—J
v (579 (770 ?) W17W27@)
-0 —a 0 _
Lo (0 ) (5 5) e
. 0 —am? 0 o

=i 1)/FXW1<(8 1>)W2<< %ﬁ 1>)|a| td*a
ey [l (6 1)) (1))

T e TPA\\O 1 >\\o0 1

:|7T|j(s_1/2)ajL(S, H1 X HQ)

where for k = ) € Up(n°) with ¢a > 0, w(k) is defined to be w(d).

Here we have used the fact that since Il is ramified, L(s, II5) is of degree 1 or 0 and
aja; = a;yj. It follows that for a integral,

—anl 0 ; —a 0
W2< 0 1) :|7T|]/204jW2(0 1)

It remains to treat the case where co = ¢y + j > 0. If w is ramified, then we may
use the same method to compute as above. If w is unramified then using the facts

that
—Jj
Wy (g <7T0 2)) = const - Wy (g (_202 (1))) wi (det g),

Wo (g (0 ) ) = const: Walghontaer ),

™

where WZ is the standard Whittaker function for ﬁi, we have

¥ <s,p (”0 (1)) Wl,W2,<I>> = cont - ¥ (s,Wl,Wg,p (_2 é) @) .

Since p (_ ® is invariant under GLy(Op ), the integral must be zero by using

1
7 0
the decomposition G(F) = Z(F)N(F)A(F)U. O
Archimedean case. Let II; (i = 1,2) be two irreducible, admissible and infinite
dimensional representations of GLy(R). Then we can define the Rankin-Selberg con-
volution in the same manner as in the nonarchimdean case. In particular if one of II;
is principal, say ITs ~ IT(u1, p2) then one can show that

(2515) L(S,H1 X Hg) = L(S,Hl ® ,Uq)L(S, H1 ® M2),
(2516) 6(5,H1 X H2) = G(S,Hl ® /Jl,’(/))L(S,Hl ® Mg,i/]).

If both II; are discrete, say II; = II(;), then one can show that

(2.5.17) L(s,II; x IIy) = Le(s, x1 @ x2)Le (s, x1 ® Xa)
(2.5.18) €(s, Iy x My, %) = ec(s, x1 ® x2,%c)ec(s, x1 @ X2, %c)-



26 S. W. ZHANG

Indeed, IT; corresponds to two representations of the Weil group Wg: Ind(y1) and
Ind(x2) by Langlands local correspondence. Thus II; ® II» corresponds to Ind(x1) ®
Ind(x2). The conclusion now follows from the fact that

Ind(x1) ® Ind(x2) ~ Ind (x1 ® Ind(x2)|cx ) =~ Ind(x1 ® x2 © X1 ® X2)-

As in the nonarchimedean case, we want to express L(s,II; x II5) as a canonical
Mellin transform ¥ (s, Wy, W, ®). For this, we assume the following
e For each i, I; is either discrete, or principal of type I(a™,a’?).
Without loss of generality, we assume further that their weights k; satisfies k; > k».
Then we have Whittaker functions W; of II; of weights k;, —ks such that

/ Wi ( 0) la*~"/?d*a = L(s,IL,).
e il0 1

Moreover our assumption implies that the function
a 0
a— ¢i(a) :=W; (0 1)

is either even or supported on one connected component of R*.

We fix a measure dg on N(R)Z(R)\GL2(R) which is a product |a|~*dadk with
respect to the decomposition GL2(R) = Z(R)N(R)A(R)SO2(R), where da is induced
by a usual measure on R*, and dk is such that SO2(R) has volume 1.

PROPOSITION 2.5.2. Assume that the conductor of 1 is 1. Let ® be the function
in S(R?) defined by

®(e,y) = cliz +y)" e,
where ¢ is a positive constant:

{1 if Iy are principal,
c=

2k2=1 4TI, is discrete.
Then

\IJ(S,Wl,WQ,(I)) = L(S,Hl X HQ)

Proof. First we use the decomposition G(F) = Z(F)N(F)A(F)U and the fact
that fg has weight ks — k1. We may write

U(s, W1, W, @) = o /OO ¢1(a)p2(—a) fo (s, w,e)|al*~ d*a
0

where ¢g = 1 unless both TI; are of weight 0. Otherwise ¢ = 1. Write w(z) =
|z|"sgn(x)¥*—*2 | then

fo(s,w,e) =cGa(2s +t + ki — ko).
We need to compute the integral here. Write

Gi(s) = 77%/*I(s/2), Ga(s) =2(2m)7°T'(s) = G1(s)G1(s + 1).
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Then we have o;, 7; such that

/ d1(a)|al*~?d*a = e L(s, 1)) = e1G1 (s + 01)G1(s + 03),
0

/ ¢2(a)lal* 2d*a = ¢ L(5,Th) = 2G1 (s +71)G1 (s + 7o),
0

where ¢; = 1 unless II; is of weight 0. Otherwise ¢; = 1/2. Now by Barnes lemma,
cc[[; ; Gi(s +oi + 7))
Gi(2s+o01+02+11 +72)

/OO ¢1(a)pa2(—a)lal® 'd a =2
0

In summary we have

25 +t+k —k
(s, W, W, 8) = 2ecoencs G125+t + ki —ky) )HG1(5+0i+Tj).

G1(28+0'1+0'2+T1 + T i

We now want to check if the right hand side equals L(s,II; ® IT5).
First case: both II; are principal of weight 0. We write

I =M(ag',ay?), I =I(ay,ag),
then

t=o01+09+ 1+ 72, L(s,H1®H2)=HG1(S+0i+Tj)~
i,
The identity follows.
Second case: II; is discrete and Il is principal. Then we may write

I =I(x), x(2)=lzlez™, I =T(a™,a™).
In this case
or=r+m, oce=r+m+1, kk=m+1, ky=0,
t=2r+m+7n+7n L(sI ®H2):HG1(S+0i+Tj).

%,J
Again, the identity follows also.
Last case: both II; are discrete. We write

Then
ki=m;+1, or=r1+my, o2=r1+mi+1,
7'1:7“2+m2, ngr2+m2+1, t:2r1+2T2+m1+m2,
L(s,II; x IIy) = Ga(s + 71 + 12+ m1 +m2)Ga(s +r1 + 72 +mq).
Equality now follows as we express everything in terms of G; (s +u) using the formula

G1 (28) = 23_1G2(S) = 23_1G1 (5)G1 (8 + ].)

If T1; is discrete and I = sgn - IT; where I, = (o™, o), then
L(S, Hl ® H2) = L(S, Hl ® HIQ)

Thus the proposition still works in this case.
Similarly, we may treat the case II; = sgn - IT} of the above type.
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Global case. Let F be a totally real field with nontrivial character ¢» = ®1, of
Ap /F. For i = 1,2, let II; be an irreducible and cuspidal representation of GLy(AF ).
Then we can define the global Rankin-Selberg convolution L-function and e-factors:

(2.5.19) L(s, Ty x M) =[] L(s, Ty x T5),

(2.5.20) e(s, 1 x Iy) = [[ (s, M1y x Moy, 1hy).

v

Of course the definition of €(s,II; x IIy) does not depend on the choice of ¢ even if
the local components €(s, Iy, % IIs,,%,) do. One may show that the above product
is absolutely convergent for Re(s) >> 0 and L(s,II; x II;) can be continued to a
holomorphic function to the whole complex plane. Moreover, L(s,IT; x II) satisfies
an obvious functional equation:

(2521) L(S,Hl X HQ) = E(S,Hl X HQ)L(I — S,Hl X HQ)

To prove the functional equation, one takes Whittaker functions W;(g) =
®yWiw(gy) for II; with respect to ¢ and a function ® = ®@®, in S(A?) such that
U (s, Wiy, Way, ®,) # 0 for every v. Let ¢; now be automorphic functions with Whit-
taker functions W;(g). Let fs(s,g) denote a function on C x G(A) defined by

(2.5.22) fa(s,9) =[] fo.(5:90)-

Then fs(s,g) is invariant under the left multiplication by B(F') and with character
w™! under the action by the center Z(A). Let F(s,g) be an Eisenstein series defined
by the following formula:

(2.5.23) Ba(s,9)= > fals,79)-

YEB(I\G(F)

Then

/ 61(9)2(9) Ea (s, 9)dg
Z(A)GLo(F)\GLa2(4)

_ / $1(9) s (€9) fa(s,9)dg
Z(A F)\GL2(A)

_ / $1(9)We (cg) fo(s, 9)dg
Z (A F)\GL2(4)

:/ Wi(9)Wal(eg) fo(s, g)dg
A\GL2(4)
—\I’ S Wl,WQ, ),

where the measures dg on PGL2(A) and N(A)Z(A)\GL2(A) are chosen such that
their “ratio” on N(F)\N(A) has volume 1. The functional equation now follows from
the local equations and the functional equation for Eisenstein series:

(2.5.24) Eg(s,g,w) = w(det g)Ez(1 — s,g,w™").
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Let § € AX such that the character ¢9(z) := ¢(§,1z) of F, has conductor 1 at
every place. Assume that with respect to ¢)° there are Whittaker functions W? of II;
and a function ® € S(A?) such that
L(s, I x IIy) = W(s, W2, W2, ®),

such as the selected cases we have treated in last two sections. Then if we define

win= (¢ 35

(s, Wy, Wa, ®) = |6]"/2720 (s, WO, WY, ®).

It follows that

In other words, if we take ¢; with Whittaker functions W;, then we have the simple
expression for the Rankin L-function:

(2.5.25) L(s, T x II,) = |6|s‘1/2/ $1(9)¢2(9)Ea (s, 9)dg.
Z()G(F)\G(A)

3. Kernel functions

In this chapter we will study the kernel function for certain Rankin-Selberg convolu-
tions. More precisely, we will first construct a kernel ©(s, g) as described in the end
of §1.1. This kernel depends only on the character xy and the type of ¢ but is not
be unique. We choose the simplest one so that a functional equation holds. Then
we compute the central value, the central derivative, and the holomophic projection.
These procedures are quite close to those used by Gross and Zagier [20].

The important difference is that we will not take the trace to the same level as ¢.
Actually some experimental computation shows that the trace is so complicated that
there is no way to compare with the geometric pairing. Of course, there will be some
problems created by high levels if we don’t take trace. But this can be taken care
of by our new notion of quasi-newforms in §2.3. On the other hand, since no trace
needed, this method has better flexibility than [20]. For example even in the classical
case F'=Q, x = 1, our method works for even discriminant D.

3.1. Kernel functions

We now start with our basic setting as in §1.1. Let F' be a totally real field. Let II be
an irreducible and cuspidal representation of GL2(A) with trivial central character,
and conductor N. Assume that at each archimedean place II is either principal, or
discrete of weight 2.

Let K/F be a totally imaginary quadratic extension. Let w denote the as-
sociated quadratic character of A* with conductor c¢(w). Let x be a finite char-
acter of Ag /A K> whose conductor ¢(y) is prime to ¢(w). Let II(x) be the in-
duced irreducible representation of GLa(A). Then II(x) has weight (1,---,1), level
D = c(x)?c(w), and central character w.
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Epsilon-factors. Assume that for p | D, ord,(N) < 1. (For applications we
need only assume this after both II, and II(x), are twisted by quadratic characters
at p.) Let ¢ = ®, be a nontrivial character of Arp/F. The e-factor is given as
follows:

(3.1.1) (I, x Ty, ) = {;uz_(l—)l) iz Z i
where

infinite places where II has weight 2,
(3.1.2) o finite places p t D such that w,(N) = —1,

finite places p | (IV, c¢(w)) such that p,v,(7) =1,
where IT,, = I, (110,), Xp = Vp © Nk /F, -

Notice that in the last case of the above list, u,(7) and v,(7) are actually the pa-
rameters of the local L-functions of II, and x:

1

1
L(s,,) = ——+—— L =
(87 s’)) ) (Saxs’)) 1 _ I/p(’]T)|7T|s

L= p(m)lml®
Kernel O7. We now want to apply §2.5 to IT; = II, Il = II(y). We write
(3.1.3) L(s,II; x ) =: L(s, I ® x).

Let ¢ be the newform for II, and let #, be the newform for II(x) defined in (2.4.7).
Then

(3.1.4) L@ﬂ®x%ﬂW””/ﬂm@@E@m@

where § € AX is the conductor of any fixed additive character. Thus |6|™! is the
discriminant d of F.

Let S be the set of places dividing ¢(w). For each v € S, fix a uniformizer 7, such
that w,(my,) = 1. For each subset T of S, let hr denote the Atkin-Lehner operator
of level ¢(w): an element in G(A) which has component 1 outside of T, and has
component

0 1
3.15 hy = ol
(3.1.5) (_m( o) 0)

at v € T, and let 71 denote the idele which has component 1 out side T' and has
elements

(3.1.6) L
at v. Also we define

(3.1.7) yr(s) = [T w(s),

veT
Yols) = wy(my) 70 |y |1 /270 - () #IT,
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Set
(3.1.8) O1(s,9) = vr(s)0x(ghs")E(s, ghy").
LEMMA 3.1.1. For any integral idele a dividing [N,D]/N = D/(N, D), one has

ot [o(a(% 1)) ereas

=las_r/ar|*""*v*(a)L(s, L @ ),

where

0 otherwise.

V(@) = {u(a) if ale(w),

Proof. Indeed, let h9- be the Atkin-Lehner operator of level ¢(IT) over places over
T, then by Proposition 2.5.1,

/¢ (g (a; 2)) Ox(ghT)E(s, ghr)dg
=/¢ (gth (a; ?)) Ox(9)E(s, 9)dg

—t/2,1m) [ o (o' (% 9) %) () B o)
—e(1/2, )35 - asrfarl~2er(@Lis, & ),

The conclusion now follows from the fact that

1 if I, i ified,
€(1/2,11,) = 1 is unramified

—po(my) if my =0 (p0).

a

Kernel 0. We define a kernel function by
(3.1.9) O(s,9) =27 151617172 3" O1(s,9).
TCS
Then
(3.1.10) Lis Moy = [ $(9)0(s.9)dg.
Z(AG(F)\G(A)

Notice that ¢ has level N but © has level [N, D]. By Lemma 3.1.1, we have:
LEMMA 3.1.2. For any integral idele a dividing [N,D]/N = D/(N, D), one has

a0
olol o 1)) O0s9)dg
Z(BG(F)\G(A)

s—1/2 1/2—s
+
[ et .
v|S
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The advantage of using O instead of ©p is that it has more symmetry. Actually
from Lemma 3.1.2, one sees that the projection of ©(s, g) on the space II should have
the same functional equation as L(s,II ® x). We will show this functional equation
in the next section.

But now let us give an important definition to describe this projection.

DEFINITION 3.1.3. The quasi-new form ¢ is defined to be the unique quasi-
newform of level [N, D] propotional to the projection of ©(s,g). In other words, ¢*
is perpendicular to the following hyperplane which is the orthogonal complement of
O(s,g) on the subspace of forms in I of level [N, D]:

> oo’y 1) Tem@=o

D
(N,D)

al
where

s—1/2

a aql,/%S v(a) if alc(w
(@), = ] [+ {() f ale(w),

2 0 otherwise.

Write ¢f = ¢ﬁ1/2.
By Lemma 3.1.2, we have

PROPOSITION 3.1.4. The projection of O(s,g) on Il is given by

L(s,T®x)

s
(¢!, 6%) ”

3.2. Functional equation

In this section we want to show the functional equation of the kernel function con-
structed in the last section:

THEOREM 3.2.1.
O(s,9) = e(s, 1@ x)O(1 - 5,9),
where
e(s, @ x) = (=1)#Z|e(y) e x) "/
and

c(M®x) = [N, DP*(N, c(w)).

By Lemma 3.1.2, this gives a new proof of the following functional equation of
Rankin-Selberg L-functions without using the local equations.

THEOREM 3.2.2.

L(s,TT®x) = e(s,T® x)L(1 = 5, 1T @ x).
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The main idea of the proof is to use the functional equation of the Eisenstein
series

(3.2.1) Es(s,g) = w(det g)Ez(1 —s,9)

and a precise computation of ®. Notice that @ is a product of local ®, in S(F?).
Thus we will compute ®, case by case.

LEMMA 3.2.3. Let 6, € F) such that ¢9(z) := (5, z) is of order 0.
1. For a finite place v,

B, (z,y) = 0,757 |@ (2, y)d,7"]
if wy is unramified, and
B, (2,y) = 0,7y e(w, ") @, [7 6, (z,y)hi]

if wy is ramified, where m, is a fized local parameter such that w,(m,) = 1,

and ¢, = ord, ([N, D)), and
0 1
ho = (—775” 0) ’

P, (2,y) = =10y P(20y, ydy).

2. For an archimedean place v,

Proof. Let 52 denote the Fourier transform with respect to ¢/9. Then
B (2,y) = 10,80 (25, y3,).
Let assume that v is nonarchimedean first. For each character p of F,* define

1 if e(n) =0, 2| <1,
Bu(2) = { i (@) if e(u) >0, |2 = 1,
0 otherwise.

Then
®y(2,y) = @1, (27, ) Pu, (¥)
where 1, denote the trivial character of F¢. It follows that
B (x,y) = [mo] @Y, (ymy) B ().

Notice that for a general character yu of F'*,

B (x) = |m |02 (w2 e (11, °) By (@O,
It follows that

B, (z,y) = |6,/ (2., 56.)
= |0,y | BT, (ymy 0u) B, (—2,)
= [y T () e(w, 0) @1, (yme 6) B (—2m )6, ).
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If w, is unramified, then

B, (2,y) =[0um5 | D1, (ymie 8,) 81, (26,)
=6y | (2, y) 0y
If w, is ramified, then ¢, = o(w,), and
‘iv(w,y) = |5U7Tgcv/2|w(775v)€(wa@Z’O)q)v(yﬂgcv‘sva _mﬂcv‘sv)
= |8, w2 w (S e(w, YO) @y [~ 6y (2, ) ho]
It remains to consider the case where v is archimedean. In this case

B (z,y) = (iz +y)e "),
q)g('ray) = _¢v(x7y)'

Lets now find a functional equation for fe(s,g). By definition,

fa, (1= 5.9) = |det g [ B0 0920 ft)ae.

v

LEMMA 3.2.4. Write f,(s,g) (resp. fu(s,9)) for fa,(s,g) (resp. f3.(5,9))- Let
By (s) denote the function

| [P~ o (m5Y) if v{ o0, o(wy) =0,
Bv(s) = |7T1?;Cv |s_1/2€(wva¢0) if v )f 00, O(Wv) >0,
1 if v | o0.

Then:
s _ |6v|2871w(_6v)ﬂv(3)fv(1 —8,9hy). ifvtoo, o(wy) >0,
foll=s,9) = {|(5|23_1wv(—6v)ﬂv(s)fv(1 —5,9) otherwise.

Proof of Theorem 3.2.1. Lets write S (resp. S) for finite places where w, is
ramified (resp. unramified). Let 3(s) be the product of 5,(s), then

f3(1—s,9) = [8]*""w(®)B(s)f(1 — s, ghs),

E(s,g) = w(det ) E5(1 — s,9) = 0] w(d det ) 3(s) E(1 — 5, ghs).

It follows that

O(s,9) =2 #5671/ 3" yr(s)fy(9hr ) E(s, gh7')
TCS
=27 #5527 w3 det g) Y vir(s)0x(9h ) E(L = 5, ghz'hs)
TCS

=2"#5|§* 325 det g) D 5 (5)0y (ghrhg")E(1 — s, ght),
TCS
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where T = S\ T,
vr(s) = B(s)yr(s).

Recall that 8, is a form whose Whittaker function is
6 0
e 1170

W)?(g) = H Wx,v(gv)a

where

with W, a newform in W(II(x,), ") unless v is infinite and IT, is of weight 2. If v

is infinite and IT, is of weight 2, p(e)W? ,(g) is a newform of IT,, where e = <_01 (1)) .

LEMMA 3.2.5. Let oot (resp. oo™ denote the archimedean places where 11, is
weight 2 (resp. 0). Then

W)?v(g) = WX,U(Q)va(det g) Yv € Su 00,
WO (ghyt) = wy (=75 det 9)vy (15 )e(w,, $O)WO (g) W € S,
0 _ 0
WP (9) =W, (g)ws(—detg),  VYveoot.

Proof. The first equality is true because both sides are newforms for IT,, = I, ®w,,.
The second one follows from our Atkin-Lehner theory in §2.3 and the fact that

e(H(X)va¢2) = G(Vv:"pg)e(’/v 'wva¢g) = Vv(ﬂqc;v)e(wva@bg)-

The last one is true because both sides are newforms after g is replaced by ge. O
By this lemma, we have the following functional equation of theta series:

Oy (ghs') = Ox(9) -w(ddet g)(=1)*> a,
where
a=[Taw  a=wm)ews,v)).
ves
It follows that
O(s,9) =2 #%10|"* %2 3" 17 (s)0x (ghT) E(1 — 5, gh),
TCS

where
Vi (s) =B(s) - yr(s) - (~1)#> -a
=TT tmer ot T mser 1o o () (- 1)# 77

veS veT

X H |7T30v+o(Hv)|s—1/2 . (_1)#2
veT

= (=1 T 2272 - T oo o420 (1 ),
veS vES

Theorem 3.2.1 now follows easily.
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3.3. Fourier expansion

In this paper we will study the Fourier expansion of © in great detail, i.e., the constant
term C) (s, g) and the Whittaker function W, (s, g). Let

(33.1) 9x<g>=cx(g>+nEZFX wo (5 1))
(3.3.2) E(s,g) = EF:XW( (g (1)) )

be Fourier expansions of 6, and E(s, g) respectively. Then O(s, g) will have Fourier
expansion

(333) 0n0) =i+ X W (s (5 1)),

aeFX%
with
(3.3.4) Cx(s,9)= > W(s,&m,9)+Ci(s,9),
§+n=0
EneF>
(3.3.5) Wy(s,g) = Y W(s,&m9)+Wi(s,9),
§+n=1
EneF>
where

(3.3.6) W(Safaﬂ,g)ZQ#S|5|51/227T(8)WX<<8 ‘f) gh;l)

TCS
€ 0\ ,
W (5 1))
(3.3.7) Cr(s,9) = 27515712 N " yr(s)Cy (ghg " )C (5, ghy ),
TCS
(3.3.8) Wy(s,9) = 27516172 N~ yr(s) (Cy (ghy YW (s, ghy')
TCS

+ W, (9)C(s, gh:,il)).

Notice that W (s,&,n,9), Cx(s,9), and W (s, g) share the same function equation as
L(s,II®y) by the same argument as above, since the functional equation of E(s, g) and
0, (g) will give the same functional equations to each term of their Fourier expansions.

In the following we want to compute the Fourier expansion explicitly for g of the

-1
form <a60 (1)) But first we need to compute them for E(s, ghy') and 8, (gh7").

Fourier expansion of Eisenstein series. Lets first compute the constant term
C(s,g) Using decomposition

(3.3.9) GLy(F P[] rF) w = (_01 é) :
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one may compute the Fourier expansion with respect to v to obtain

(33.10)  C(s,g) :/F\AE (s (é ”{)) de :f(g)+/Af <w ((1) ”1’) g) de

=f(s,9) +w(det g)f(s,q)

Since f(s,g) and f(l — s,9) are in the space of principal series B(a*~1/2, a'/?~5w),
we have the following

LEMMA 3.3.1.
1 rs
c ((a50 (1)) th) = [al* fr(s) + la]'“*w(a) fr (s),

where

fr(s) = "2 f(s,hg),  Fr(s) = 181> w(8) (s, hr')-
Lets now compute the Whittaker function.

v 23 ) [1(o(s o)

|det g|? /A RO /A B[(—t, —t)gli(—z)dz

—fdetgl [ (@0 (6t P Moty
AX
where ®' is the partial inverse Fourier transform:

¥(o) = [ B0, (-upiu

v

For each place v, write W, (s, g) using the same formula in local integrals. In the follow-
_ (ad;t 0), 4
_(0 Jm.

LeEmMA 3.3.2. Assume that v is finite and w, is unramified. For a € F)°,

—1
w <s, (a&v 0)) # 0 only if |a| < |75, In this case it is given by

-1
ing we want to compute f,(g) case by case for g = (a%’ (1)> or

0 1

jamy e+ 7172 —Jami == 12~ (amy )

w7 = TP o(m,)

|a|1/2|7rzu 5v|s_1/2wv(5v)

Proof. Recall that ®,(z,y) is given by

@y (z,y) = @1, (m, )1, (y)
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where 1, denotes the trivial character of F,*.

—1
vV'<s,<“5v 0)) :ﬂadglft/1 &' (ad7 ', ) 2w (t)d ¥
0 1 o

v

=|a|s/ 160 [*/2 2@y (ad, ey, )@y, (8716, 2 o(t)d "t

v

:|a|s|5v|1/2—s/ |t|23—1w(t)dxt
[75¥ a™tdy [ 2]t >]do]

ord, (a)—cy

=laP 16, Pw() Yo e,

=0
where the sum is zero if ¢, > ord,(a). O

LEMMA 3.3.3. Assume that v is finite and w, is ramified.

—1
1. Forae F}X, W <s, (a% 2)) # 0 only if |a| < 1. In this case it is given
by

|al*|00* 1 2w(=8u) g [ Pe(wn, v7).

-1
2. Forae F, W (s, (a%’ (1)

given by

) hvl) # 0 only if |a] < 1. In this case it is

al" 510,15 Y 2w(—ady) |7 ).
v

Proof. Again, we know that
B, (z,y) = &1, (m, " 2) P, ()
The Fourier transform of ®,,, with respect to the unramified character ¢)? is given by
g |2 e(wi, 00 B, ().
It follows that
-1
(1)

#myv/xwmg%JJWW*wmwt

=|a|s/ 160 ["2 7 0| P e(wu, 10) @1, (@8, My, o) B, (= o) 2 w(t)d ™t
F
=180 " P w(=80) g P 2 e(ws, ¥)) 81, (a)al”.

This proves the first part of the lemma. For the second part, we notice that

-1
¢ {(w,y) (a%’ (1)) hf] = By, —ad; 'm; ).
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It follows that

a(S;l 0 -1
(= (5 D))

:|a6;17r;“v|s/ @' (a0, M, t7 ) * T w(t)d >t

v

:|a|s/ |G/ 2 7 e [0y (g Bt~ ) B, (—ay, try, )P ()
F

=lal'=* |8, Pw(—ad,)|xf |* @1, (a).

LEmMA 3.3.4. Assume that F, = R, then

w ( (“‘5” 1 0)) 5| 2o (—asy) 12

0 1 st+1/2

2miax

1—s €
|a| /]R (Z -I-I‘)(l +1.2)sfl/2 T

Proof. In this case,
Py (2,y) = (iz +y)e ™,

First change the order of the Fourier transform and Mellin transform:
ad™! 0
()
=Ia5*1|3/ / B(ad't, x)e 2T 0T gy |t2 () d " t
rx JR
:|a|5|5,,|571/2w(5,,)/ / ®(at, —tz)e> ™ dz|t)* w(t)d*t
rR* JR

:|a|s|(5v|571/2w((5v)/62”i“”dx/ & (at, —xt)|t|**sgn(t)d*t,
R RX
The integral over R* is

(o]
2(ia — a:)/ 28 gt (@’ +2%) gy
0

=(ia — z) /000 (m) e e td*t
I'(s+1/2)

(W(a2 +_m2))s+1/2'

=(ia — x)

It follows that

")

10 0t ol [ e

ast+1/2 ® (a2 + 22)s+1/2

2max

I'(s+1/2) e

—I815=1/2,, (_ S SV P Sl
_|6| UJv( (7,5@) ast+1/2 |a’| /R(Z_i_l.)(]__l__lﬂ)s1/2d:Ij

39
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Fourier expansion of theta series. Recall that the series 6, is a form in the
space of the representation II(x) which has Whittaker function

where W)(g) = [IW} ,(g») and W (g,) are new vectors unless v is archimedean

where IT,, has weight 2. If II,, is of weight 2, then WQW <g <_01 (1) is a new vector.

In the following lets compute the Fourier expansion of #,. Again we will start with
the constant term.

LEMMA 3.3.5. The constant term C,(g) is nonzero only if x is of the form
v-Ng/p with v a quadratic character on F*\A* . In this case we have

ad™t 0\, ; 1/2 1/2~
Cx o 1) 0 ) =v@lal e +vwla)la] e r

where ¢, T, ¢y, are constants independent of a.

Proof. The representation II(x) is non-cuspidal only if x = v Ng,p. In this case,
it is the principle series II(v, vw). Thus there is a ® € S(A?) such that the constant
term is given by

f@(g,l/,llw) +f<f>(gayw7’/)

where for two characters p1, s,

fo(g, m1, p2) = pur (det g)| det g|'/ /A D[(0,t)glpapy ' (t)w(t)[t]d*t.

The conclusion of the lemma now follows easily. O
LEMMA 3.3.6. Assume that v is nonarchimdean.
1. IfK,=F,®F,, Xo = (pw, pt, 1), then

am)—p " w(aw .
”I(I(ﬂg—z’lwgﬂ)) if la| <1, o(n) =0,

a 0
wi(h ) = ifla) =1,
0

otherwise.

2. If K, /F, is unramified field extension, then

lal'/? if x, = 1, ord(a) € 2Z >,

a O .
W)? (0 1) =41 if la| =1,
0 otherwise.

8. If K,/ F, is a ramified field extension, x = v o Nk, /p, , then

o (a 0\ _ [la]'?v(a) iflal <1,
(5 9)-

0 1 0 otherwise.
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Proof. All the conclusions follow from the identity
wo, (* V) a1 /2% = L(s,(x,)) = L
Fx X,V 0 1 |a| a= (Sv (Xv)) - (Saxv)v

a 0
01

LEMMA 3.3.7. Assume that F, = R.
1. If 1T is of weight O, then

o <a 0) _ {2|a|1/26_2” ifa>0,
X,V -

and the fact that the value W ( ) depends only on |a|. O

0 1 0 otherwise.

2. If 11 is of weight 2, then

o (a 0)_ 2la|'/2e*™ if a <0,
xv\0 1) o otherwise.

Proof. 1t is sufficient to show the first part. Notice that in this case, the values

01
now to show that this W (g) gives the right L-function when twisted with characters
of R*. O

of W at (a 0) determine the values of W(g) as it has weight 1. One only needs

-1
Fourier expansion of O(s,g). Lets start with W (s, ¢, n, g) for g = (a(50 (1))

From our definition, it is actually a product of W, (s, £, n, g,) where

(3.3.11) W (s,€,m,9)

_Lse- n 0 £ 0
o (¢ )6 99
+ %|5ls_”2%(8)W><,v ((3 ?) ghil) W, (s <g (1)) gh;1> ,

if w, is ramified; otherwise

(3.3.12) Wi(s, €, m.9) = 0] 2 Wy ((8 (1)> 9> We <S (g (1)> g> '

Thus, the value of W (s, &,7,¢g) has been computed in the previous lemmas. When w,,
is ramified, we have the following simplification:

LEMMA 3.3.8. Assume that w, is ramified. Then W (s,&,n,e) is nonzero only if
both |€ <1, and |n| < 1. In this case

5_1 0 1 s— c *+|5—
W, (s (% 0)) =310 0w 00) I Pl
[l 4 (-, (g e /2]

where

7T;+ = ﬂz(wv)+0(n)/2, ﬂ.:-i- — 7Tq{;(o.m)—o(H)/Q.
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Proof. Apply Lemma 3.3.3, 3.3.6, 3.2.5. O
Also it is not difficult to check the following

LEMMA 3.3.9. For each place v of F, {,n € FS,

Wv(safanag) = wv(_fn)e(sa oI® X,i/J)W(]. - Safanag)'

It remains to treat C; and WY.
LEMMA 3.3.10. The function C5(s,g) = 0 unless x is of form v-Ng,p. It is a
linear combination of functions in
fi(5,9) € B@*v,a~v),  fr(5,9) € Bla*vw, 0 ww),
fa(s,9) € B(a' P vw, 0 ww),  fals,g) € Ba'*v,a*'v),
which are holomorphic in s, of opposite weight as Il, and invariant under Uy ([N, D]).

Proof. 1t is clear that the function C;(s, g) = 0 unless x is of form v - Ng,p. In
this case it is a linear combination of constant terms of products of a form in II(v, vw)
and a form in II(a* /2, a!/?~5w) with coefficients holomorphic in s.

Notice that the constant term of a form Ey¢ € II(u1, 12) has constant term

@)+ flg),  feBlu,pu), f€DB(us,m)

Since the product of two principal in B(u1, u2), B(v1,v2) will be in
B(pva'?, povaa™"/?),
we see that C(s,g) is a linear combination of functions in

fl(S,g) S B(asy,afsy), f2(8,g) € B(asllw,afsyw),
fa(s,9) € B(a'*vw, 0 tww), fa(s,g) € B(a' *v,a* v).

710
0 1
function W (s,g) (a € A*) is a sum of WXi(S,g), where

LeEMMA 3.3.11. Let g denote (a . If x is not of the form voNg/p, the
s — 1—s
W;(Sa _) € W(H(X) ®a 71/})7 WX (57 _) € W(H(X) ®a 71/1)

If x =voNg/p, then W; (s,g) is a sum of the above two terms and two more terms
Wikt(s,g), where

W;(Sa _) € W(H(asyaalisyw)ﬂ/})a W; (37 _) € W(H(alisya OZSVW)M/J)-

Moreover, WXi (resp. Wit ) are invariant under U, ([N, D)) and holomorphic in s, and
has opposite weight as 0, (resp. E(s,—)).

Proof. This follows from the definition and Lemma 3.3.1, 3.3.5, and the fact that
every function f(s,g) in B(a®*~'/2,a'/>=%w) is holomorphic in s. O

3.4. Central values and derivatives

Depending on whether ¥ is even or odd, in this section we want to compute the values
or derivatives of the Fourier coefficients of ©(s, g) at s =1/2.
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Central values. Assume that X is even. We want to compute the Fourier coeffi-

-1
cients of @(1/2, g) for g = <a60 (1)

Lemma 3.3.10, 3.3.11. We now treat compute W, (1/2,£,n,g). First assume that F
is non-archimedean and w is unramified. In this case,

—1 1
wnca (5 ) (45 9)

If x, is unramified then by Lemma 3.3.6,

(4 9) e (6 )

only if a € N(Ok ). In this case

v (1))

| |1/2 1 if K, is a field,
= a y 3 . a—
Zi+j:0rd(a) M(ﬂ—l_]) if Ky, =F, ®F,, Xv = (,Uaﬂ 1)'

. The degenerate terms are easily deduced from

Similarly by Lemma 3.3.2,

(15 )

only if am, » € N(Ok). In this case,

W, (1, (aév—l 0)) — |a|"/?w, (8,) 1 . ?f K, is a field,
2 0 1 ord(ar;®)+1 if K, = F, ® F,,

where ¢, = ord, ([N, D]). We assume further that either ¢, or ord,(a) is zero. Then
we have the following;:

LEMMA 3.4.1. Assume that both x and w are unramified. The value
Wy (1/2,&,n,9) # 0
only if both na and £aw—° are in N(Ok). In this case it is given by

Wv(l/Qaganag) = Wv(50)|77£|1/2|a|

if K is a field, and

. 12y, Mmem) —p~ (mam) e
Wv(l/zaganag) - ((5v)|77§| | | ,u(7r) _ u_l(ﬂ_) d(£ )

ifK=F®F and x = (u, p~1).

(5 ) e

If x, is ramified, then
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only if a is invertible. In this case

(6 1)=

-1
LEMMA 3.4.2. Assume that x, is ramified. Let g9 = (6”

0
0 1>, Then the value
Wy (1/2,€,m,90) # 0 only if both |n|, =1 and {x~° are in N(Ok ). In this case it is
given by
Wo(1/2,€,1,9) = wi(8,) €],/

if Ky is a field, and

Wo(1/2,€,1m,9) = wo(6,)n€]L/? - ord(em' =)
Zf Kv = Fv D Fv.

Lets now treat the case where w, is ramified. In this case x, = v - N with v a
quadratic character of F}*.

LEMMA 3.4.3. Assume that w, is ramified. Then W,(1/2,£,n,90) # 0 only if
|f|v <1, wv(—nf) — (_1)#{0}02.
In this case,

W (1/2,6,m,90) = e(w, )~ Inéx 1/ v (n).

It remains to treat the archimedean case F,, = R. By Lemma 3.3.4, 3.3.7, the

. . ad~t 0
kernel function W,(1/2,g) with g =

1) is a product of two functions

2|a|1/26727m ifa> 0’ v E o,
Wyw(g) =< 2]a|t/2e*™  ifa <0, v € oo,

0 otherwise,

and

€2mam

dx

W,(1/2,9) :w(—adv)ﬂ_1|a|1/2/

RX Z + x
_J0 if a >0,
| —2iw,(6,)|alt/2e2™  otherwise.
Thus we have
LEMMA 3.4.4. Assume that ' =R. Then

—4iw, (8,)n€|Y?|ale*™ €M ifan > 0 and a& < 0
0 Otherwise

W (1/2,&,m,9) :{
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if I, is of weight 0, and

—4iw, (6,)|n€|Y/?|ale? &N if an < 0, af < 0
0 otherwise

Wv(1/2,€,n,g)={

if IL, of weight 2
The lemma actually implies that the complex conjugation of ©(1/2,g) is holo-

morphic of weight 2 (resp. nonholomorphic of weight 0) at infinite places where II is
of weight 2 (resp. non-holomorphic of weight 0).

Central derivatives. Assume that ¥ is odd. Then by Theorem 3.2.1,
©(1/2,9) = 0. We want to compute its derivative ©'(1/2,g9) at s = 1/2. Again
the degenerate term can be easily deduced from Lemma 3.3.10, 3.3.11. Lets now

ad~t 0
0 1) . Recall

that W (s,&,n,g) is a product of W, (s,£&,n,9), and that W, (s,&,n,g) satisfies the
functional equation

(341) WU(Své.:nvg) = wv(—@?)e(sa H'U ® X'U)Wv(l - S:é-vn:g)a
(3.4.2) e(1/2,1, @ x,) = (=1)#=N{vk,

compute the central derivative for W (s, &, n, g) for g of the form <

It follows that
(3.4.3) W'(1/2,6,m,9) = Y WU(1/2,1,€,9") - W,(1/2,n.€,9)

where W is the product of W, over places ¢ # v, and W) is the derivative for the
variable s, and v runs through the places with

wy(—€n) = (—1)PHEEME (=) = (—1)FEE ) e £

In particular we need only consider the finite places which are not split in K. In the
following we want to compute W) (1/2,&,n,g) such that

1 ifveX,

(3.4.4) w(=En) = (=TT = {—1 if v ¢ 3.

First, let’s consider the case where v is a place of F' which is inert and unramified
for the extension K/F, and such that y, is unramified. In this case

5t 0 ot 0
Wv(safanﬂg) = WX:” (naov 1) Wv (S, (gaov 1)) )

Then by Lemma 3.3.2, 3.3.6, the W, , term is nonzero only if ord(na) is even and
nonnegative in which case the value is given by |pa|'/?. Then the W, (s, —) term is
zero at s = 1/2 and has nonzero derivative only if ord({an~¢) is odd and nonnegative
in which case the derivative is given by

w(by)|€al'/* log |€ar' =],
LEMMA 3.4.5. Let v be a finite place of F which is inert and unramified in K

such that x, is unramified. Then the only non trivial contribution is when ord(na) is
even and nonnegative, and ord(£an™°) is odd and positive. In this case, we have

W,(1/2,6,1m,9) = wu(8) €}/ - lal, - log|éam' =],
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We now consider the case where v is inert in K and x, is ramified. Assume that
a=4d,'. The W, , term is nonzero only if n is invertible. In this case its value is 1.

LEMMA 3.4.6. Let v be a finite place of F' which is inert and unramified in K
such that x, is ramified. Then the only non trivial contribution is when ord(n) = 1
and ord(§x™°) is odd and positive. In this case, we have

W!(1/2,€,1,90) = we(6,)]€]Y/% - log |ex ¢,

Lets now treat the case where w is ramified. In this case, by Lemma 3.3.8,
Xv = V- Ng/p and for |n| <1,

1 _ c o 15—
W(Safﬂ?,go) :§€(w7¢v) 1|77£7T "|1/2V(77)|7T +| 1.

. (|ﬂ_£*7|s71/2 _ |ﬂ_€*7|1/27s) _

LEMMA 3.4.7. Assume that w, is ramified and x, = v o Ng/p. Then the only
case with nontrivial contribution is when both £ and n are integral and

1 ifveys,

wo(mnt) = {—1 ifvgs.

In this case
W' (1/2,€,1,90) = e(w, ) In&m® |/ 2v(n) log |7,

Finally we treat the archimedean place. The nontrivial case is when na < 0 (resp.
na > 0) when v € co™ (resp. v € co™) and £a > 0. In this case, W'(1/2,£,7,g) is the

product of
n 0 _ 1/2 ,—2x|nal
w 0 1)9)= 2|nal*’“e ,

and

I é_ 0 B ~ . 1/22 / e27ri§azdl.
WO (1/2, (0 1) g) —C«J( afév)ﬂ' |£a| Os —1/2Jr (Z +1.)(1 +x2)sfl/2

=2iwy (0y) |§a|1/2qo (47T§a)e2”§“,

where

1
qo(t) :/ e~ d* g,
0

Thus finally we have

LEMMA 3.4.8. The only trivial contribution is when na < 0 (resp. na > 0) if
v € oot (resp. v € 00~ ) and £a > 0. In this case,

W'(1/2,€,n, ) = 4iw,(6,)[n€["/? - |a] - go(47Ea) - e2m(Ee=Inad),
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3.5. Holomorphic projection

In this section we assume that ¥ is odd, and that at every infinite place II is discrete
of weight 2. We want to find the holomorphic projection of ©'(1/2,g). That is a
holomorphic form ® of weight 2 such that ©'(1/2,g) — ® is perpendicular to any
holomorphic form. Here a form ¢ of weight 2 is called holomorphic if its Whittacker
function satisfies

(3.5.1) W (ayoﬁ(s_l (1)) = @)W (ygo (1)>

where $ is a function of integral ideles a, and W, = [] W, is the Whittaker

function for weight 2 such that:

a 0 2ae~2" if a > 0,
3.5.2 W, =
( ) ! <<0 1)> {0 otherwise.

The number gg(a) is called the a-th Fourier coefficient of ¢.

Lets first state a formula for holomorphic projection. For any Whittaker function
W on GL2(A) of weight 2, any integral idele a € A}, and any complex number
Re(o) > 0, let’s define

(3.5.3) W,(a) = (21)9 /Fot W ((y ' ‘6‘5—1 ?)) =2y Xy

vtoo

provided the integral converges.

LEMMA 3.5.1. Letqz be an automorphic form for PGLy(A) which has asymptotic
behavior O(|a|* =) near each cusp. Then W5 ,(a) is holomorphic at o = 0 and the

holomorphic projection ¢ ofg; has Fourier coefficients given by the following formula:

$(a) = lim W3 _(a).

oc—0

Proof. For a fixed subgroup Up([D, N]) as before and a finite idele a lets de-
fine H, +(g) to be a Whittaker function on GL2(A) of weight 2, invariant under
Z(A)Up ([N, D]), supported on Z(A)A(A)Uy([D, N]), and such that

0 ~
yo~' 0 oW | [V if yr € aOp,
Ha,a' 0 1 = (o] 1
0 otherwise,

where o is a complex number. Let P, ,(g) denote the following Poincareé series

Puo(9) = Z Hao(79)-
YEZ(F)N(F)\GL2(F)

Then P, , is absolutely convergent for Re(o) > 0 and defines a nonholomorphic form
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of weight 2 for Uy ([N, D]). For any cuspform ¢ for Uy([N, D]) of weight 2, we have

@)= [ 30)Purlo)g = | 3(9) Ha o (9)dg
Z(H)G(F)\G(A) Z(A)N(F)\G(A)
_ _ 0 d*«
- W~Ha,0' g dg :/ W~Ha,a ((a )) -
/Z(A)N(A)\G(A)( ¢ )9) AX( ¢ ) 0 1 ||

- cad™t 0 oy o
=|d]|al /F+ Wd;((y % 1))6 2Ty d*y.

If ¢ is the holomorphic projection of ¢ then (¢, P) = (¢, P.). As Ws(g) =
Woo(900)We(gy), we have

b a a6_1 0 —4my, 1+0 3%
(¢7Pa) :(¢5Pa) = 29|5||a| W¢ f e yy d Y
0 1 Ft

aé;t 0 29T(1 + 0)¢
= 4 f il Sl
e (4 1)) T
Taking the limit ¢ — 0, the lemma follows. O

We want to apply Lemma 3.5.1 to ©'. First of all lets study the asymptotic
behavior at a cusp.

LEMMA 3.5.2. There is an automorphic form E'(g) on PGLo(A) which is a sum
of Eisenstein series or their derivatives such that for any g € GLy(A), a € AX, as

a — 00,
o (1125 1)a) =2 ((5 9)a) + 00t

More precisely, E'(g) #0 only if x =v - Ng/p. In this case il is a sum
E'(g) = E{(1/2,9) + E3(1/2,9)
where Ey(s,g) and Es(s,g) are Eisenstein series formed by functions
fi(s,g9) € B(va®,va?), f2(s,9) € B(vwa?®, vwa™?)

which are holomorphic in s near s=1/2, of weight 2, and invariant under Uy ([N, D]).

Proof. The constant term of an automorphic form the is always invariant from
left under B(F). Thus we can form Eisenstein series using the constant term of
0'(1/s,g). To get informations on the asymptotic behavior, we want to study this
constant more precisely. From the Fourier expansion, one easily sees that for any
g € GLa(A), a € A*|

o (112.( V) o) =i (12 (5 9) o) +0sar=)

as a — co. By Lemma 3.3.10, the function C} (s, g) # 0 only if x = v - Ng/p. In this
case it is a sum
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as in Lemma 3.3.10. When taking the derivative at s = 1/2, we may assume f3 =
fa=0as f4(1 —s,g) will be in the first space, and f5(1 — s, g) will be in the second
space.

Let E;(s,g), Ex(s,g) be Eisenstein series formed by f; and f,. We define E to be
the derivative at 1/2 of E; + E>. Then E has constant term f] + f5 + f1 + f2 where

]?1 € Bla *v,a’v), f2 € (a °vw,a’vw).

Thus f{ and f} has the bound O(log |a|) at the cusp. Thus, we have the right asymp-
totic behavior given in the lemma. O
Let us apply this lemma for the form

(3.5.4) 3(g) == 0'(1/2,9) — E'(9)

which has the same holomorphic projection as ©’(1/2,g). Let ® denote its holomor-
phic projection. With respect to the additive character 1, the Whittaker function of
® is a sum of following Whittaker functions:

(3.5.5) W(v,€,1,9) = W"(1/2,€,n,e9)W;(1/2,€,1,€g),
(3.5.6) Ag) =Wy (1/2,e9),  B(g) := W'(eg),
where € = _01 (1)>, W'(g) is the Whittaker function of E'(g), £&,n € F* and v is a

place of F' such that
E+n=1,  wi(=&n= (DI v

Let W, (v,&,1,a), Ay (a) and B, (a) denote the integrals defined at the beginning of the
section for these Whittaker functions. Then by Lemma 3.5.1, the Fourier coefficient
of ® is given by

(3.5.7) = lim | Y W,(v,&,m,a) + As(a) + B (a)

a—0
&mnv

Lets describe the contributions of the last two terms first. We need some notation.

DEFINITION 3.5.3. Let Np denote the semigroup of nonzero ideals of Op. For
each a € Np, let |a| denote the inverse norm of a. For a fized ideal M, let Np (M)
denote the sub-semigroup of ideals prime to M.

A function f on Ng (M) is called quasi-multiplicative if

flaraz) = f(a1) - f(a2)

for all coprime a1,as € Np (M). For a quasi-multiplicative function f, let D(f) denote
the set of all f-derivations, that is the set of all a linear combinations

g=cf+h
where ¢ is a constant, and h satisfies

h(aiaz) = h(a1)f(az) + h(az)f(a1)
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for all ay,ay € Ng (M) with (a1,a2) = 1.
For a representation I1, the Fourier coefficients Il(a) is defined to be

= a 0
I(a) := Wi <0 1> ,

where W is the product of Whittaker newvectors at finite places. In other words,
II(a) is defined such that the finite part of L-series has expansion

Ly(s, 1) = Y Ti(@)]al =2

Then T(a) is quasi-multiplicative.
Let f,(a) be a function on Np (M) which is meromorphically depends on o € C,
Re(o) > 0 with at most a simply pole at o = 0, then we denote the quasi-limit

lim f,(a)

oc—0

the constant term in the Laurent expansion:

N . T _ . 41
c}'ll&) fola) = 311}1}) (fs(a) — residue-o~") .

LemMA 3.5.4. The function f, is holomorphic at o = 0 with the constant term
A= lim A, € D(II(x) ® a'/?).
oc—0
The function B, is meromorphic at o = 0 with a simple pole with constant

B .= linb B, € D(I(a'?v, 0" ?v)) + DI(a"*vw, a™?vw)).
o

Proof. Let’s study Ay (a) first for a € Ng(ND). By Lemma 3.3.11, for g =

-1
(ayoB6 ?) , the Whittaker function W7 (s, g) is a sum of four Whittaker functions

+ +
Wis,g),  Wr(s,9),

where W # 0 only if y = vo Ng/r. We want to study the contribution of WXi The
argument for Wt is similar. Due to the symmetry s — 1 — s, when we compute
W;’(1/2,g), we may forget W . Since W) is invariant under I'i([N, D]), it has
spherical decomposition

wien =t (3 9) w5 (- ) i

where WQ is the product of the newvectors in the space of Whittaker functions for
the representation II(x) ® a® over places prime to ND, and where W°(s, —) is the
Whittaker function at oo with weight —1. It follows that the contribution to A, (a)
from WX+ is the derivative at s = 1/2 of the sum of the following integrals

Wyl s= 19 (5. (5 §)) W) L0,
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where

Ix(s,0) = (27r)g/ Wee <S, <_Oy (1)>> e 2™y d*.
F&

By explicit computation, one may show that I, (s,o) is holomorphic at (s,0) =
(1/2,0). It follows that the contribution of WXi part is the derivative of W, o(s,a) at
s =1/2. It is indeed in D(II(x) ® a!/?).

The computation for B, (a) is similar. The only difference is that when computing
the above integral with respect to the Whittaker function of II(a®, a*) of GL2(R) of
weight 2, one gets singularity near (s,o) = (1/2,0) of the form

g
po— 7
o s 12

Thus its value at s = 1/2 has no singularity at o = 0 but its derivative at s = 1/2

has a simple pole at ¢ = 0. O
It remains to compute

e
338 Woena=eor [ W (nen (79 9))e ey,
Fs

If v is finite, it is equal to the product

o1 ~ o1
w (26 (00 1)) (v2en (T 1)),

(2m)° /F+ Weo (1/2,6,17, (_Oy ?)) e My dy

=)

and

which is nonzero only if £éa and na are both integral. By Lemma 3.4.4, the last term
is nonzero only if 0 < £ < 1. In this case, it is given by

g2 T F )7
oo (Bo0) () €l =5

It follows that for a fixed a there are only finitely many triples &,7n,v such that
Wy (v,€,m,a) # 0. Thus, in the contribution from finite v, we may simply take special
values.

We now assume that v is an infinite place. Then W, (v, &, 7, a) is the product

_ —1
Wy <1/2,€,n,< agf ?))

v — T - 0 —27
I3, . (&m) = (2m)? 1/+ Weo— (o} (1/2,6,77, ( Oy 1)) e Pdxy,
LN

and

and

Loten = @n) [ (126 (1)) ey,
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By 3.4.4, I, ,(§,m) # 0 only if 0 < {_fy} < 1 and the value is given by
. 'l+o
H we(5e)(21)|77§|¥2%
m)
teco—{v}
By 3.4.8, I, »(&,n) # 0 only if {, < 0, and W'-term is equal to
4wy (80) €L |ylao (4 |€lwy)e ™.

Thus the integral is equal to
= i G)alénl [ anldnlel)e o dy
0

o 12 LA +0) [ dx
2w, (6,)]€n| (47)° /1 (1 + |E|pz)' o’

PROPOSITION 3.5.5. With respect to the standard Whittaker function for holo-
morphic weight 2 forms, the a-the Fourier coefficients ®(a) of the holomorphic pro-
jection ® of ©'(1/2,9) is a sum

B(a) = A(a) + B(a) + Y _ B, (a)

where A, B are given in Lemma 3.5.4, and the sum is over places of F' which are not
split in K, with ®,(a) given by the following formulas:
1. if v is a finite place then :I;v(a) is a sum over £ € F with 0 < £ < 1 of the
following terms:

—1 1
oz (mn (5 9) v ()

2. if v is an infinite place, then :I\)v(a) is the constant term at s = 0 of a sum
over £ € F such that 0 < &, < 1 for all infinite place w # v and &, < 0 of
the following terms:

) /2 R as;t O\ [ —dz
ertentls Wy (2en (Y ) [ e

4. Geometric pairing of CM-cycles

In this chapter, we will study the local term of the so called geometric pairing of
CM-cycles induced by a fixed multiplicity function. The height pairing of CM-points
on Shimura curves will be the sums of various geometric pairings by choosing dif-
ferent quaternion algebras and multiplicity functions (or Green’s functions). These
algebras are the ,B of the distance 1 from the odd set X, which admit an embed-
ding K —, B. Our main result is the local Gross-Zagier formula which relates the
linking number of the pairing to some local components of the Fourier coefficients of
the kernel functions and is given in the last chapter. This formula actually replaces
all the combinatoric computation in the original approaches of Gross and Zagier. As
an immediate application, we prove a Gross-Zagier formula for the central values of
Rankin L-functions by spectral decomposition of the geometric pairing when the the
multiplicity function is some Whittaker function.
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4.1. Geometric pairing of CM-cycles

CM-cycles. Let G be an inner form of PGLs over F. This means that G =
B*/F* with B a quaternion algebra over F. Let K be a totally imaginary quadratic
extension of F' which is embedded into B. Let T denote the subgroup of G given by
K*/F*. Then the set

(4.1.1) C = T(F)\G(A;)

is called the set of CM-points. This set admits a natural action by T'(Ay) (resp.
G(Ayr)) by left (resp. right) multiplications.
There is a map from C' to the Shimura variety defined by G

G(F) L \H" x G(4y)

as in §1.3 which sending the class of g € G(Ay) to the class of (z,g) where z € H" is
fixed by T. This map is an embedding if G is not totally definite. In our later study
of local intersection, there is a situtation where G is definite but H™ is replaced by
the formal neighborhood Y of a supersiggular point of a Shiumra variety. Thus in
this case, one has an embedding of CM-points into a formal Shimura variety.

The set of CM-points has a topology induced from G(Ay) and has a unique G(A;)-
invariant measure dz up to constants such that every open and compact subset has
finite and positive measure. Lets fix one measure on T'(Ay) such that the volume of
T(OF) = [10k ,F)/F) is 1. Then dz is uniquely determined by its quotient on
T(A;)\G(As) which we may define as a product of the measure on T'(F,)\G(F,) over
all finite places v of F. In practice, we will insist that vol(T'(F,)\T(Fy) - Uy) = 1 for
some compact and open subgroup of G(F,).

The set

(4.1.2) S(C) = S(T(F)\G(4y))

of locally constant functions with compact support is called the set of CM-cycles
which admits a natural action by T'(Ay) x G(Ay). The L*-norm induces a hermitian
structure on S(C) such that the action of T'(A;)xG(Ay) is unitary. Since T'(F)\T (Ay)
is compact, one has a natural orthogonal decomposition

(4.1.3) S(C) = B, S(x, C)

where the sum is over characters of T'(F)\T (Ay).
There is also a local decomposition for each character x:

(4.1.4) S(x,C) = @,S(xv, G(Fy))

where tensor product is a limit tensor product over the set of all finite places of F
and S(xy,G(Fy)) is the set of locally constant functions on G(F,) with character y,
under the left multiplication by T'(F;) and with compact support modulo T'(F;,). Fix
a maximal order Op of B. Thus any element ¢ in S(x, C) will have a decomposition

¢ = bs Dugs Oy
where S is a finite set of finite places which contains all places over which x, is
ramified, ¢?, supported on T'(F,)-G(O,) and takes value 1 on G(O,), where G(0,) =

Og, - F)X/F). The hermitian structure on S(x,C) is the product of a hermitian
structure on S(xp, G(Fy)).
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Geometric pairing. In the following we will define a class of pairings on CM-
cycles which are geometric. To do this, lets write CM-points in a slightly different
way,

(4.1.5) C=GIENG(E)/T(F)) x G(Ay),

then the topology and measure of C is still induced by those of G(Ay) and the discrete
ones of G(F)/T(F).

Let m be a real valued function on G(F) which is T'(F)-invariant and such that
m(y) =m(y~"). Then m can be extended to G(F)/T(F) x G(Ay) such that

m(y) if g =1,
4.1.6 , =
( ) m(y gf) {0 otherwise.
We now have a kernel function
(4.1.7) Kz,y)= Y m ')
YEG(F)

on C' x C. Then we can define a pairing on S(C) by
(418) (0.6) = [ | )k, y)dy)dody
CQ

= lim . ()kv (z,y) (y)dzdy

where U runs through the open subgroup of G(Ay) and
ku(z,y) = vol(U)*2/ k(zu, yv)dudv.
U2

This pairing is called a geometric pairing with multiplicity function m. For two
function ¢ and ¢ in S(x, T (Ar)\G(At), one has

(4.1.9) (q&,w):/ o(z) Z m(z " yy) ) (y)dady
TN Lalr)
- S mMe,
YET(F)\G(F)/T(F)
where
(4.1.10) 0.0) = [ S 6wy
T(EW\G(Af) seT(F)\T(F)yT(F)
= / d(vy) (y)dy
Ty (F)\G(Ay)
and where
_ T if’)/ENT
4.1.11 T, =~ 'TyNnT = ’
( ) VET AT {1 otherwise.

where N7 is the normalizer of T in G. The integral (¢, 1) is called the linking number
of ¢ and ¥ at .
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Local linking numbers. Let x be a character of T'(F)\T'(Ay). In the following
we want to compute the linking number of the pairing on the space S(x,C). In this
case

(4.1.12) (6,10, = / 31 9)B ) dy
T(As)\G(Ar)

where

(4.1.13) s = [ ot~ yty)
Ty (F)\T(Af)

If v € Np, then

e g(%y) ~ AT ) etm) {(1) i)ft}?efwj’:sz.r b

If v ¢ Ny and ¢ = ®¢,, then we have decomposition

(4.1.15) CENES | EXCATS NI HCR™S Z/G(F)cﬁ(tlvty)dt

Notice that when v ¢ Ny, 51, (7,y») depends on the choice of 7 in its class in

T(F)\G(F)/T(F) while their product ¢(v,y) does not. This problem can be solved
by taking v to be a trace free element in its class which is unique up to conjugation
by T(F). This can be seen for example by writing B = K + Ke where ¢ € B is an
element such that €2 € F* and ez = ze. Notice that the function

(4.1.16) £(a+ be) = %
defines an embedding
(4.1.17) T(F)\G(F)/T(F)— F

such that £(y) = 0 (resp. 1) iff £ € T (resp. £ € Ny — T'). The image of G(F) \ Nr
is the set of £ € F such that £ # 0,1 and where for any place v of F,

| _¢le N(K>) if B, is split,
F*\N(K*) if B, is not split,
or equivalently,
(4.1.18) wy (=€) = (=1)°P),

where n = 1—-¢, and §(B,) = 0if B, is split and 6(B,) = 1 if B, is nonsplit. Then we
may write y(&) for a trace free element v € G(F) with £(y) = £&. We may write m(§)

for m(y(€)) and ¢(£,y) for ¢(y(€),y). We extend m(€) to all F by setting m(£) = 0
if £ is not in the image of (4.1.17).
In the following computation, we will fix one order R of B such that

(4119) Rv = OK,v + OK,vAv

where
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e )\, € B such that A,z =z, for all z € K,
e \2 € FX, and )\, is divisible by ¢(x,).
Let A be a subgroup of G(Af) generated by images of R* and K for v ramified
in K:

A= [[ rIEX/FS- [] RIKS/ES

vie(wy) v[e(wy)

and take an a € AJT, such that ord,(a) = 0 if R, is not maximal. Then we set
the measure on C such that the quotient measure on T'(A;)\G(A;) has volume 1 on
T(A;)\T(Ar)A. Now the character can be naturally extended to a character of A.
We will compute the geometric pairing for

(4.1.20) ¢$=Tada, VY=0¢a, ¢a=]]¢a.
with ¢a, supported on T'(F,) - A, and such that
(4.1.21) oa(tu) = x(t)x(w), u € A.

The Hecke operator here is defined as

4.1.22 T, = || T(ay)dw, To, v = v(2g)dyg,
(4.1.22) o) = [ Tlao 6 /H el
where

(4.1.23) H(ay) :={g € M2(O,) : |detg|=lay|},

and dg is a measure such that GLy(O,) has volume 1. Then we have
(4.1.24) (Tadpa, da)
—vol(T(F)\T (A7) (m(0)Tapa(€) +m(1)Tada(€)y2—1)
+ Z m(§) HZU(Ordv(av),f)

£0,1
where € € Ny \ T, and

(4.1.25) ly(n, &) = /T(F ) T () pa, (t~ v (E)t)dt.

4.2. Linking numbers

In this section we want to compute the local linking numbers defined at the end of
the last section. Thus, we change the notation to let F' denote a nonarchimedean
local field. Let B denote a quaternion algebra over F, and let G denote the algebraic
group B*/F*.

Let K/F be a quadratic extension of F' embedded into B. Let R be an order of
B of the type

(4.2.1) R =0k + Ok, A =mRe

where
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e ¢ € Ny \ T such that ord(¢?) = 0 unless B is nonsplit and K/F is unramified
where ord(e?) = 1;

e T € K* is a local parameter if K is nonsplit; otherwise it is the local
parameter of one component of K = F & F;

e m > ordg(x).

Let T = K*/F* denote the subgroup of G. Let x be a character of T'(F) and
let A denote R* if K/F is unramified, and R* - T'(F) if K/F is ramified. Then
the character x can be extended to R*. Let ¢ be a function on G(F') supported on
T(F) - A such that

(4.2.2) o(tu) = x(t)x(u) teT(F), ueA.

Let n be a nonnegative integer such that n = 0 if A is not maximal. Then we
want to compute the following degenerate terms

(4.2.3) U(n,0) := Tunip(e),  £(n,1) := Trnd(e)

where € € Ny \ T and local linking number is
(1.2.4) (,9= [ Taost 9O
T(F)

where the dz is a Haar measure on T'(F) normalized such that the volume of T'(O,)
is one if v is split, and the volume of T'(F}) is one if v is nonsplit. Here £ € F' such
that £ # 0,1 and such that

X . . .
(4.2.5) 1—¢'e {N(K ) if B is split,

F*\N(K*) if B is non-split,

and y(£) € B* is a trace free element such that £(y) = £&. We extend this definition
to all £ € F by insisting that £(n,&) = 0 if £ does not satisfy the above condition.
Lets start with the degenerate terms.

Degenerate terms.

LEMMA 4.2.1. Ifn =0, then

1 ifxy?=1 =0
(,0=1, (o,g=4" X =Lm=0
0 otherwise.
If n >0, K/F is nonsplit, then

1 ofn=0 d2
(n,0) = f(n, 1) = { - T =0 mod2,

0 otherwise.
Ifn>0and K =F & F with x = (u,u" '), then

(n,0) =, 1) = 3 w7,

i+j=n

Proof. The case of n = 0 is clear.
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If n > 0, then B is split and A is maximal so we may fix one isomorphism
G ~ PGL; such that A = PGLy(OF). We are thus reduced to the computation of
the local integrals

/ $(g)dg = / o(eq)dg,
H(zx™) H(x™)

where
H(n") ={g € M3(0,): ordy(detg) =n}.

Lets evaluate this integral in two cases.
Case 1: K is an unramified field extension of F. Then we may write

MQ(Fv) = Ky + Kye,

where €2 = 1 such that ez = Ze for all z € Og,. Now H(n") is a sum of H;
(t=0,---,[n/2]) where

H;={r'(a+be) € H(x"): (a,b)=1}.
Notice that H; is not disjoint with K> if and only if i = n/2. It follows that

1 ifn=0 mod 2,
| sty = {
H(m™)

0 otherwise.

Case 2: K = F® F, and x = (i, ™). Then H(7") has the following represen-
tatives modulo GL2(O,):

i )
(76 7@) i+j=n,z mod 7.

The term with z # 0 has trivial contribution to the integral. Thus we have

dg = )i,
/H(Wn)¢(g) g= > u(r)

i+j=n

Unramified case. We now assume that both K/F and x are unramified, that
B = M,(F) is split, and A = PGL2(Op) is maximal. We want to compute £(n, &).

LEMMA 4.2.2. Assume that K is a field. Let n=1—¢&. Then £(n, &) # 0 only if
both ord({x™) and ord(nzx™) are even and nonnegative. In this case,

L(n, &) =1.

Proof. By definition £(n,£) # 0 only if ord(1 — ¢=1) = ord(né~1') is even or
equivalently, £ = £(v) for some trace free v € My (F).

Under our assumption, y = 1 and ¢(g) # 0 only if g € 7" A for some n. In this
case it is 1. It follows that £(n, &) # 0 only if ord,(dety) + n is an even number, say
2m. It follows that

_ —myg—1
9= [ [ o tgdga
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Without loss of generality we assume that v is given by u(1+4a€) where u is a trace-free
unit of Ok, and €2 = —1. Let |7|* = |dety| = |1 — aa|. Then 2m = n + w.
Now H (™) is the union of H; (0 < i < [n/2]):

Hi:’iTi {a+b€€H(7Tn72i)a (aab):]‘}'
Thus

(n, &) =Y tin,§),

i>0

where
b = [ [ otm e atgydga.
T(F) JH;
If i =n/2, then H(1) = A and

li(n, &) = /T(F) ¢ (7'Mt yt) dt.

This is nonzero only if v € 7%/?A and is given by
vol(T'(F)) = 1.

Notice that the condition vy € 7%/2A is equivalent to w < 0.

If i < n/2, as det(a + be) = aa — 7°°bb, one even has |a| = |b| = 1 for every a + be
in H;. Thus there is a finite subset B; of b € Ok such that [N(b) — 1| = |x|"~% such
that

H; = U (14 be)m'A.
bEB;

To give a nice description of B;, we notice that for b, b’ € Ok with
|bb— 1| = |bb — 1] = |7|"%,
we have
(7€ + be) (" + b'e) ' € A,

if and only if b = b’ (mod 7"~*'). Thus the projection Ox — (O /7"7*)* is
injective on B;. The image of B; is exactly the set (O /7" > )N=" of elements of
norm 1, since every element b € (Og /7" 2'Of)* with norm 1 can be lifted to an

element b of Oj; such that |N(B) — 1| = |x|n2.
The contribution from H; is given by

¢ (7"~ (1 + ate)(1 + be)) dt.
beB; ’ ItI=1

The matrix inside the integral is

7™ [(1 + abt) + (b+ at)e] .
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If we first sum over b and then compute the integral, then the integral simply counts
the number of b such that this matrix is integral. Write j = m —i = (n — 2i + w)/2
then 2§ — w = 2n — ¢ > 0 and the contribution is

_ b mod 7%~V b1 + o < |n)!
o =#{ L | Ny i

Recall that |1 — aa| = |7|¥. If |o|] < 1, then w = 0 and the last equation gives
j <0 < w/2. This is a contradiction. If |a| > 1, then w < 0 and |a| = |7|*/2. The
last equation implies that w/2 > j, which is again a contradiction. Thus we must
have |a| =1 and w > 0.

The last two equations imply that |b=* — b| < |z| (resp. |a~! — a| < |7]’) or
equivalently, |bb — 1| < |x]/ (resp. |aa — 1| < |7]7). By the first equation (resp.
definition of w) we have 2j — w > j (resp. w > 7). Thus we have j = w > 0. Notice
that in this case the system has a unique solution.

In summary, we obtain that £(n,£) # 0 only if n — w is even and nonnegative. In
this case,

L(n, &) =1.

The lemma now follows since

LEMMA 4.2.3. Assume that K = F & F is split, and x = (u,u~Y). Then £(n, &)
is nonzero only if |{x™| < 1. In this case,

pm™ ) — p (g

p !t (prm )
u(m) = p1(m)

t(n,§) = ~ord(én" )

wheren =1 —¢.

Proof. In this case, we identify T" with the group of matrices (3 ?) in PGL,,
and set
_ {0 1 (-1 « ¢
‘o) T \1 1) T E
Now H(zx™) is the union
ny a0 =z
H(m") = U (o Wj> (0 1>A.
i+j=n
2€(OF /m*)*
The function ¢(g) is nonzero if and only if this matrix is in <7T0 ﬂ(-)v> A for some

u,v such that |7|“*Y = |det g|. In this case the value of ¢ is given by x(7“~?). Thus

(&)= > p(m)" " ln, & u,),

utv=n+w
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where u, v are integers, |7 = |dety| = |1+ «|, and
% 0 -1 at ™\ (7 =z
e T (5 246 2)
i+j=n
€0 /7t

The product of these 3 matrices is

—piTt gt 4 iUl
tni— tn Vx4 wiY

Change variable t — t7V~% we obtain

<—7ri_“ T (—x 4+ om“_“’t_l))

t a7 (tr + i)
Notice that the value
—iT% U=z + art W)
Z ¢ t 77 (tr 4+ W)
z€OF /7t
depends only on [t|. Tt follows that

0<i<n, i>u
ln, & u,v) = H# k>0 |z — amt~v=k| < |x|*
r mod 7t | |z + v k| < |n|ik

First we assume that w > 0. Let 8 = (a+ 1)~ ™ € Of then

0<i<n, 1>u
t(n, & u,v) = # k>0 | fotauvt = pre k] < fnlt
x mod w* |z + 7wk < |pfik

If u—w—k < 0 then the third condition implies that u—w—k > i—k or u > w14 which
contradicts to the first condition. Thus the quantity is nonzero only if n > u > w; in
this case, we may replace x by 74~V ~F 471y for y € O /7*. The equation becomes

u<i<n,
U, & u,v) =#{ u—w>k>0 | |y— frv=i| < |x|eth=i
y mod 7

If u < i, then the condition implies u —i > w4+ k — i or simply £ = 0 and y = 0. The
contribution in this case is n — u. If u = 4, then the equation has a unique solution in
y. Thus the contribution is v — w + 1. Thus we have

n—w+1 ifn>u>w,

w> 0= E(TL, 57 u, U) = {O otherwise

We now consider the case w = 0. Write a = Bx? with ¢ > 0 and 8 € Op. Then

0<i<n, 1>u
(n,&uv) =9 k>0 | |z— Btk < rl
x mod 7’ |z + 7 k| < |x|ik
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If u—k < 0, then the last equation gives u—k > i—k or u > i. Combining with the first
equation we have u = i. The second equation is solvable only if u +¢ — k > 0. In this
case it has the unique solution z = Su¥*+t=*  which also satisfies the third equation.
Thus this case has nontrivial solution only if 0 < u < n; and the contribution is ¢ ( =
the number of k’s such that u +t > k > u).

Assume now that v > k. Then i > k and we may replace z by —n% % 4+ xi=ky
with y € Op/m*. The contribution is

u<i<n,
#q u>k>0 | |y—(1+a)m ' < [x[vh
y mod 7k

If w < %, the condition implies that w —¢ > w — ¢ + k. Thus £ = 0. The equation
has a unique solution and the contribution in this case is n —u ( = the number of i’s
such that u < i < n). If u =14, then still the equation has a unique solution and the
contribution is u 4+ 1. Thus we obtain

n+t+1 ifn>u>0,

w=0={(n,&u,v) = )
0 otherwise.

It remains to treat the case where w < 0. Let § = (a + 1)7~" € O} then

0<i<n, 1>u
l(n, & u,v) = # k>0 | |z + 7t = Brvk| < faf
x mod w* |z + 7wk < |pfik

It u — k < 0 then the second equation implies that © — k > u. Thus k = 0 and u < 0;

in this case the second equation trivially holds for all . The last equation is solvable

only if u —w > 0 then it has a unique solution z = —7%»~%. The contribution in the

case 4 < k is nonzero only if 0 > u > w. Then it is given by n +1 ( = number of i’s).
If w — k > 0, then we may replace = by

_Trufwfk + B,]Tufk + ,ﬂuy, y € OF/,n_ifu'
The contribution is then

u<i<n,
#{ u>k>0 | |BrF 4y < |n[Th
y mod 7%

If £ > 0, then the equation implies that —k > i — k —u. Thus u = i. The contribution
is w (number of k’s). If k = 0, then the equation still has a unique solution. The
contribution is n —u + 1 ( = number of i’s). Thus the contribution in the case u > k
is nonzero only if n > u > 0, and then it is given by n + 1. Thus we have

n+1 ifw<wu<n,

w< 0= {l(n,& u,v) = )
0 otherwise.

We now apply the following formula for integers n > ¢,

PIRELTEED DEE S T

a+b=n+c a+b=n—c
c<a<ln 0<a<n—c

n—c+1 _ ,n—c+1

Y
r—=y
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We obtain that £(n, ) is nonzero only if w < n. In this case,

n—w+1 _ n—w+1

p(m)

_ p(m)
8 =

-n+t—w+1)

where v = <_11 ?), |7|* = |det |, ||t = |a|. The lemma now follows since

1 ¢ = o
+a’ T l4a’

77:1

Ramified case. It remains to compute £(0,&) in the ramified case where A is
not maximal.

LEMMA 4.2.4. Assume that K is split, that x = (u, u~"). Then £(0,&) is nonzero
only if || < |det A|. In this case,

£(0,€) = u(—1)ord(&m det A™H).

Proof. We now embed K into the diagonal of M>(F) such that 7 is sent to
<g 2) Then R is the order of matrices <j 3}) € GLy(OF) with |z| < |7|™. As
-1 «
1 1

wos (7 )

is nonzero only if there are some elements u,v,t € F* such that

u 0\ (-1 at™'\ _ [(—u wat™! cA

0 v t 1 ) \ot v '
This implies that u,v € OF, that |7|°4®) < |¢| < |z|™, and that ord(a) > m.
Conversely, if ord(a)) > m, then

-1 at™!
0(0,¢) = d
( E) /ﬂ'|°rd(ﬁ)<|t<ﬂ'|m (b (( t 1 )) '

= p(—1)(ord(a) — m + 1).

before we may take v = ) with o = £/(1 + £). The integral,

The lemma follows. O

LEMMA 4.2.5. Assume that K is an unramified extension of F. Then £(0,§) is
nonzero only if £det A\™! is even and non-negative. In this case

£(0,8) = x(u).

Proof. Write ord(det \) = §(B) + 2m where 6(B) = 0 if B is split and 6(B) =1
if B is nonsplit, and where u is any trace free unit of O.

By definition, £(0,&) # 0 only if ordv(nﬁ_lwg(]g)) is even or equivalently, & = £(7)
for some trace free element in B*.
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In this way, we may write v = u(1 + ae) with u a trace free unit of Og. Now
o= [ o
T(OF)

The integral is nonzero only if v € T'A. This is equivalent to the fact that the
number w = ord(det~y) is even and < 0, and that |a| < |7|™~%/2. This in turn is
equivalent to |a| < |7|™ (then w = 0). In this case the integral equals x(u). Since
€ = N(a)w®B) /(1 4+ N(a)n?(B)), the lemma follows. O

LEMMA 4.2.6. Assume that K/F is ramified, that x is unramified with the form
x =voN. Then £(0,&) is nonzero only if

€] < |det N,  wy(—&n) = (=1)°F)

where n = 1 —¢, and 6(B) = 0 if B is split and 6(B) = 1 if B is nonsplit. In this

case,
€(0,8) = v(nm)
where v is a (quadratic) character of F* such that x = voN.
Proof. By definition, £, (0, &) is nonzero only if
wo(1=€71) = wy(=n) = (=1)°P

or equivalently, £ = £(vy) for some trace free element v € B*. In this case, the integral
is a sum

—_ —1 —1
0= [ RCGECIE / o, A

- / (647 2t) + ot mymict)) dit
T(OF)

= ¢(7).

In the last step, we have used the fact that 7x normalizes A.

Now ¢(7) is nonzero only if v € TA, or equivalently, |{] < |x|™. In this case
#(y) = v(dety). We may choose vy of the form 7k (1 + ae) with 7% = 7 to be a
parameter of F. Then

6(7) = v(=n(1 — EN(@)) = v(~m~") = v(mn).

4.3. Local Gross-Zagier formula

We now go back to the global setting in §3.1 and §4.1 with even ¥ and the quaternion
algebra B ramified exactly at places in ¥ and the elements A\, € B> given by the
following formula:

(4.3.1) ord(det Ay) = {ordv([D,N]) if v is unramified in K,

if v is ramified in K.
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In this section we want to prove a local Gross-Zagier formula by comparing the
local Fourier coefficients W, (1/2,&,n,g) computed in §3.4 and the linking numbers
ly(n, &) computed in §4.2. Then we apply this to the global case to get some pre-
Gross-Zagier formula with arbitrary multiplicity function.

Let v be a fixed finite place of F. We have extended the definition to all £ €
F\ {0,1} by insisting that £,(n,£) = 0 when & is not in the image of (4.1.17).

ns—1
LeEMMA 4.3.1 (Local Gross-Zagier formula). Letn=1—¢ and g = <7T” g" (1)>

such that n = 0 if A, is not mazimal. Then
- 1
1, (60 e0) = )2 el )0 0) - Il 212 -0,

where u is any trace free element in K*.

Proof. First lets consider the unramified case: ¢, = 0. This case follows easily
from Lemma 3.4.1, Lemma 4.2.2, and 4.2.3.

Lets consider now the ramified case: ¢, > 0 but w, is unramified. The formula
follows from Lemma 3.4.1, 3.4.2, 4.2.4, 4.2.5.

The case where w,, is ramified follows from Lemma 3.4.3 and 4.2.6. O

COROLLARY 4.3.2 (pre-GZF). Let (-,-) be the geometric pairing on the CM-cycle
with multiplicity function m on F such that m(§) = 0 if £ is not in the image of
(4.1.17). Assume that 6, =1 for v | co. Then there are constants c¢1, ca such that for
an integral idele a prime to ND,

le(@)["?[al(Tada, $a) =(c1m(0) + exm(1))[a]/* Wy 4 (g)
+ilC N el W (1/2,6,m, 9)m(&),
geF\{0,1}
where g = (aégl (1)> .

Proof. This follows from the above theory and the fact that [], e(w,,%,) =1 and
that for v | oo, €(wy,v,) =i. O

This pre-GZF will be used for odd ¥ with ¥ replaced by ,% for each place v,
where

S\ {v} ifvex,

(4.3.2) b= {2 U{v} ifvgs.

Let , B denote the quaternion algebra ramified at ,X.

4.4. Gross-Zagier formula for special values

We now want to apply the pre-Gross-Zagier formula for multiplicity function to be
the product of the Whittaker function on GL2(F},) (v | 00):

(4.4.1) m(€, goo) = €| iAW (1/2,€,1, €g00)

where g € GLa(Fy) is viewed as a parameter. We set

m(0, goo) = m(1, goo) = 0.
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By corollary 4.3.2, one obtains:

LEMMA 4.4.1. The complex conjugate of the kernel function © has Whittaker
function:

= a5_1 0 1/2

W (120600 (0 0)) = lelw)2lal(Tut, 6) (9:0)
where a is a finite integral idele which has component 1 at those places where either
X, I, or K/F is ramified.

Let oo™ (resp. co™) be the infinite places of F' where II is discrete (resp. princi-
pal). Then m(¢, go) is a product of m, (&, g) where m, (&, g) has weight 2 (resp. 0) if

v € coT (resp. v € 00~). By Lemma 3.4.4, its value at 8 (1) is given as follows:
0 4|ale2ma if1>€6>0,a>0,v€0",
(4.4.2) My <§, <8 1)) = ¢ 4|ale?™*EM if € < 0,an>0,v €00,
0 otherwise.

Spectral decomposition. Let Uy =[], U, be an open and compact subgroup of
G(Ay) defined in §4.1 with A, given in §4.3, and let U be the subgroup U, Uy of G(4)
where Uy, is the unique maximal connected compact subgroup of G(R) containing
T(R). Take a measure on G(F)\G(A) induced by a standard measure on G(R) and
such that vol(U) = 1. We now consider m as a function on G(R) for a fixed g, €
GL2(R). Let k(z,y) to be the kernel function

(4.4.3) ko)=Y mu(z™"vy)
~EG(F)

where

(4.4.4) my (x) :/UmU(a:u)du.

In this section we want to decompose k(z,y) into the eigenfunctions in z,y.
LEMMA 4.4.2. As Whittaker functions on GLo(Fy),

k(z,y)(goo) = 2170 Z Wi(goo) - ¢i(2)pi(y) + continuous contribution
@i

where n = #oo~, and the sum is over all cuspidal eigenforms ¢ of Laplacian and
Hecke operators on G(F)\G(A)/U. Here “continous contribution” means a sum of
integrations of Eisenstein series. Thus for a cuspidal eigenform ¢,

/ k(e 1)d(y)dy = 250, (g.) b(x).
GIF\G(8)

Proof. Notice that for a function ¢ on G(F)\G(A)/U one has the identity

G(a)

y
/ m(y)¢
G(R)
=:p(m)(9) ().

o (zy)dy
(zy)

/ ke y)o)dy = | mul
G(F)\G(4)
dy
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Thus, it suffices to study the action defined by m, on the space of functions on
G(F,) U, = H*

for v € oo™
It is well known that the action of p(m,) commutes with the action of the product

of Laplacians
0? 0?
A=’ | ==+ =—
Y (3:62 " 31/2) ’

and that the induced action of p(m,) on each eigenspace of the Laplacian with fixed
eigenvalue is constant. Thus if ¢ an eigenform for A with eigenvalue i+t2 with t € C,
then ¢ is also an eigenfunction of p(m,):

p(my)d = [ my(x)p(zy)dy = Ag(z)

HE

where A is a number depending only on t.
For example, one may compute A by choosing a function ¢ of weight 0 supported

on GL2(R)4 such that
y T o 1/2+4it
(5 7)) =0

A= Gpmae) = [m (5 7)) v retaoty,

Using coordinates
ef(v = _ -1+’
0 1)) 4y ’

£U2+y2+1
2

Then

one obtains

A= 4|a| exp [—27ra
ay>0

|y|_3/2+itd$dy

=4|a|1/2/ exp [—7lal(y +y~ )] y*d*y
0

(5 )

where W is the Whittaker newfunction for the representation II(a®, a~ %) O

It follows that the pairing (-, -) on functions on G(F)\G(A) with compact support
is automorphic. More precisely, for any two functions ¢ and ¢ on G(F)\G(A)/U, let
ay(¢,1) denote the form of PGLy(A) of weight 2 (resp. 0) at places of oo™ (resp.
00~ ) by the following formula:

(4.4.5) alp,¥)(z) = Z ¢:(2)* (i, 9)(¢i,1) + continuous contribution
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where ¢§ is a quasi-newform of weight (2,---,2,0,---,0) in the representation II; of
PGL2(A) corresponding to the representation IT} of G(A) generated by ¢; via Jacquet-
Langlands theory. We now have

LEMMA 4.4.3.
Olin a 0
[al{Tad, ) (g) = 27" Woo ) (g‘”' (o 1)) |

Proof.

lal{Tug, V) (9oo) =lal(Tag @ ¥, k(z,y)(9o0))
=2[F=@1+"Zwi 9o0) (63, |a| T ) (65, 7))

:2[FQ]+n Z Wz(goo)(|a|Ta¢la ¢)(¢27 1/})
=2 ST (0 (1)) G000

F: n a 0
:2[ Ql+ Wa(¢7¢) (goo . (0 1)) . 0

Gross-Zagier formula for central values. Fix a character x of T(F)\T'(Ay).
We have defined a certain function ¢ = ¢a on S(x,T(Af)\G(Ay)) in §4.1. Let ¥
denote the form 2[FCH47|¢(w)|'/2a(, ¢) which has the form

(4.4.6)  U(z) = 2 QU+n ()| L/ Zgbﬁ ) 1€y (9ix) |” + continuous contribution

where
(4.4.7) U (bin) = / Gix ()X (t1)d*t
T(F)\T(Ar)

where d*t is a Haar measure such that @IX( has volume 1, and where ¢; , is a toric
newform in II' which satisfies the following conditions:

¢i,x has character x under action by A.

LEMMA 4.4.4. The forms ©(1/2,—) and ¥ have the same projection to quasi-
newforms.

Proof. Then by Lemma 4.4.1, 4.4.3, 4.3.2, 3.3.11, for fixed go,, we have shown
that the form

0(1/2,—) — 2 U e(w) 2w

has Whittaker function in W(II(x) ® a'/?) for

_ aéJIl 0
g= 0 1 Joo

with a integral and prime to ND. It must be zero as II(x) ® a'/? has nontrivial
central character. Thus ©® and ¥ must have the same projection to quasi-newforms.
O
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Proof of theorem 1.4.1. Let II be an irreducible and automorphic represen-
tation of weight (2,---,0,---) of PGLy(A), and let ¢* and ¢, be the corresponding
forms for II and II', then

[l

(4.4.8)  L(1/2,T1® x) = (¢},0) = (¢}, ¥) = 2P C+n(p)[1/2. ENE
X

|6 (&)1

where ¢,, is a toric newform with character x under A via Jacquet-Langlands. Notice
that the measures on PGL2(A) and G(A) are taken by taking a standard measure at
archimedean place such that Uy([D, N]) and R* both have volume 1. Theorem 1.4.1
now follows easily.

5. Shimura curves and CM-points

In this chapter we want to review the theory of Shimura curves, following Shimura,
Deligne[9], Caroyal[2], and the author’s earlier work [31]. We will start with some
canonical local system on the Shimura curves which is an analogue of the elliptic curve
on modular curves. For example, CM-points now become the points with nontrivial
endomorphisms. These system will be used to construct the integral models, and
to study the reduction of CM-points. Finally we will study the local intersection
index of distinct CM-point on the generic fiber on the model when the Shimura curve
has minimal level structure. This is basically a consequence of Gross’ theory [15] of
canonical and quasi-canonical liftings.

For high level structure, the local intersection numbers are difficult to compute
as one has no explicit semistable model for Shimura curves. But the local index
formula for minimal level will give an asymptotic formula for the index of high level.
Thanks to the toric newform theory in §2.3, this asymptotic formula is sufficient for
our computation in the next chapter. It may not be a bad idea in the future to recover
the index formula for high level structure from the Gross-Zagier formula proved in
the next chapter.

5.1. Some local systems

Lets fix a totally real field F' and a quaternion algebra B of F indefinite at one place
7 = 11 of F' and definite at other real places. In applications, B will be the algebra
+B, with v = 7, associated to an odd set ¥ containing all real places. In this chapter,
we will let G denote the algebraic group B* rather than B> /F*.

Let hy denote an embedding S — GRr of algebraic groups over R with trivial
coordinates at 7; (1 > 2), where S = C* as an algebraic group over R. Now for any
compact open compact subgroup U of G(Ay) we have the Shimura curve

(5.1.1) My = G(F)\H* x G(A;)/U.

where H* is the conjugacy class of hy under G(R) which is isomorphic to C — R.

Write V; for B as a left B-module. Then the right multiplication of G on Vj gives
an identification G = GLp(Vp). The embedding hg : S — Ggr now defines a Hodge
structure on Vo g.
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By the strong approximation theorem, the set of canonical component of My is
identified with

(5.1.2) GIN\{£1} x G(As) /U ~G(F)\G(A7)/U
TFN\AF [ det(U) =: Zaer -

Moduli interpretation of M. We want to show that My parameterizes the
pairs of a Hodge structure and an U-level structure on Vp (see Deligne [9]). More
precisely, My parameterizes the set of the isomorphism classes of the following objects
(V, h,R) where

1. V is a free B-module of rank 1;

2. h is an embedding from S — GLp(V&) which has trivial component at 7;

fori > 1;

3. K is a class in Isom(Vp, V) /U;
where an isomorphism of two objects (V, h,&) and (V',h',&') is an isomorphism ¢ :
V' — V' of B-modules satisfying the following conditions:

e b =1ohoy 1,

e i =10R.

Indeed, for any object (V, h, k) as above we may fix an isomorphism ¢+ : V — V}
of B-modules. Then h, := 1o ho (" is an embedding of S into G(R) with trivial
components at 7; for i > 1. Thus h, is conjugate to hg. It follows that h, defines an
element in H*. Also tk defines an element in G(A;)/U. Thus the object (V,h, &)
defines an element in M. Conversely, for a given point x in My represented by (h, g)
one may define an object (Vp, h, &) where & is the class of multiplication by g on V.

Moduli interpretation of Zp. One may also show that for a compact open
subgroup D of A, the set

Zp := FX\A%/D

parameterizes the objects (L, \) where Fj_( denotes the set of totally positive ele-
ments in F, and

1. L is a free F-module of rank 1;

2. € is an orientation of L: € € F*\Isom(L, F);

3. X is a D-level structure: \ € Isom(ﬁ, E)/D
Indeed, the correspondence is given by

(L,e,\) — F[ - (eoX(1))-U € Zp.
Moduli interpretation of det : My — Zp. Let D = det(U). For any object

(V, h, &) parameterized by My, one may define an object (Ly, &, \.) as follows:
1. Lp is the F-vector space det(V) generated by symbols (x,y) modulo rela-
tions such that the pairing is symmetric, F-bilinear, and B-hermitian in the

following sense:
(bz,y) = (z,by), beEB.

It can be showed that det(V") is one dimensional.
2. let v : V. — B =V} be a B-linear isomorphism such that ¢ o ho (™! is in the
connected component as hg. Then €, is the class of

det(¢) : F = det(B) — det(V),
where F' = det(B) is identified by sending 1 to (1,1).
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3. X is the class of

A~ ~

det(k) : det(V) —> det(B) = F.

Then it can be shown that the map My — Zgeru is given by this correspondence of
objects.

Universal objects. When U is sufficiently small, the universal object
(Vu, hu, k) does exist in the sense that Vi is a local system of invertible B modules
on My with a Hodge structure hyy which makes V(} = Vu ®; R an algebraic vector
bundle on My of rank 2 with one action by B whose trace is the standard one on
B, and & is a level structure s, : Vo — V, for each geometric point z € My.
Here for an abelian group M, M denotes M ® Z. Physically, one has the following
identification:

(5.1.3) Vi = G(F)\Vp x H* x G(Ay)/U,
(5.1.4) Vi = GF)\Vy x HE x G(Ap) /U

where Vj = Vp ®,, R such that U has trivial action on V; and such that vy € G(F)
acts on V by right multiplication by y~!. It follows that

(5.1.5) Vo = G(F)\H* x G(As) x Vo/U

where the action of G(F) on V is trivial and the action of U on Vj is given by right
multiplication. The map Viy — Vs is given by

('U,Z,g) — (Z,g,’l}g)

and the level structure % is given by the class of the identity map.
Similarly, Zp has a universal object

(5.1.6) Lp =F\Fx F*/D,
(5.1.7) Lp =F\F* x F/D.

Here the action of (a,b) € F* x D sends (z,y) € FxFto (za~!,yb). The map Lp —>
Lp is given by (z,y) € F x F* to (y,zy) € F* x F. The pairing Vyy x Viy — Lp
and Vi x Vy — Lp are given in the obvious manner.

Galois actions. By Shimura’s theory, My is defined over F' with Galois action
on the set Zp of connected components given by class field theory

v:Gal(F/F) — F\A} /D.

One may show that with this canonical structure, the vector bundle V;} is defined
over F. Thus for one object z = (V,h,&) € X(F) and o € Gal(F/F), the C-vector
spaces V! and V., both have some F-structure V) pand V., - and o induces an o
-linear isomorphism (which is still denoted as o) from V! ;. to V|, 1.

Similarly, the local system V is also defined over F. Thus for one object x =
(V,h,k) and one o € Gal(F/F), there is a morphism which is still denoted as o
from f/\'z — Vma such that i, = & o 0. The determinant of this map induces a
similar map on the local systems on Zp. More precisely, if z = (L, €, \) is one object
parameterized by Zp, then 27 = (L,€,6 - v(0)) and the morphism o : L —Lis just
the multiplication by v(o).
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Integral structure. To get an integral structure of local systems, we may take
a maximal order Og such that U C (’)E. Let V5,7 be the lattice in Vj corresponding to
Opg. Then the lattice k; (Vo z) =: V7 in V; is independent of the choice of k, € Rs.
Thus My also parameterizes integral objects (Vz, h, k) where V7 is an invertible Op-
module, h is Hodge structure on Vg as before, and & is an U-class of isomorphism
Op — V7.

Similarly, for any fixed Op-fractional ideal Ly, Zp parameterizes objects (Lz, €, \)
where Lz is an invertible Op-module, and € is an orientation of L := Lz ® Q, and A
is a D-class of isomorphism A : Ly z — L.

For the morphism My — Zp, we take Lo 7z to be the Op-submodule det(Og)
of F generated by (z,y) for z,y € Bz. Then the image of an object (Vz, h,&) will
be (LV,Za gh, ;\n) with LV,Z = det(VZ). Thus VU = VU/VU,Z and ZD = LD/LD,Z form
systems of divisible groups on My and Zp.

For any fixed positive integral idele n, one has a Weil pairing

(z,y)n = nla',y")

on ‘7U[n] with values in ED[n], where z,y € Vi represented by z,y € Vy. f U
contains U(n) := (1 +nB)*, then the level U structure can be described as a class of
isomorphism

Violn] — Vir[n]

modulo U.

If B = M>(Q), then My parameterizes objects of elliptic curves with level struc-
ture with a universal object (€, kg). Then V4 = Lie(£)? with a natural action by B,
and VU =&

tor-

5.2. Homomorphisms and CM-points

For any two objects x = (V, h,&) and z' = (V' h',k) of My, one can define the F-
module Hom®(z, z') of homomorphisms o € Homp(V, V') such that for any z € C*,

B (2) o agr = ag o h(z).

Write End®(z) for Hom®(z,2). Then End®(z) is either F or a totally imaginary
quadratic extension K of F. In the second case, we call z a CM-point by K. The
induced action of K on the complex space V! = V ®, R is given by a complex
embedding of K which we still denote as 7.

For two points , z’, the F-vector space Hom®(z, z') has rank < 2. If this space
is nonzero, then we say x and ' are isogenous and any nonzero element in this vector
space is called a quasi-isogeny. It is easy to show that Hom"(z,z') has dimension 2 if
and only if both z and z' has CM by isomorphic imaginary quadratic extensions K
and K'. We may further fix an isomorphisms K ~ K’ with respect to the embeddings
into C defined in the previous paragraph.

For a fixed imaginary quadratic extension K of F' and an embedding 7: K C C
extending that of F', the set Cy of CM-points on My by K is not empty. Indeed, we
may fix an embedding « : K — B which induces a Hodge structure hy on Vo = B
with trivial component at places 7; for 7 # 1 and equal to a ®, R at ;. We now may
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take zo to be a point on My corresponding to the object (Vp, ho, %) where & is the
identity map B — V. For the identification

(5.2.1) My = G(F)\H* x G(A;)/U,

xo corresponds to the point represented by (hg, 1) where hy € X is one of two fixed
points by K> C G(F). (The other one is the complex conjugation of hg). All CM-
points by K with fixed 7 are then given by

(5.2.2) Cu = GE)\G(F)ho x G(Ar)/U = T(F)\G(Ay)/U

where T'= K * is the torus in G.

By Shimura’s theory, the Galois action of Gal(F/K) is given by class field theory
and multiplication of T'(Ay) from left hand side. More precisely, if o € Gal(F/K),
x = (V,h,R), then 7 = (V, h,v(0)-&) and the action on local system is given by right
multiplication by v(o), where v is the reciprocity map Gal(K/K) — K*\Ag ;.

5.3. Canonical models

Integral model. It is well known that My has a canonical integral model My
over O which is regular if U is sufficiently small. Let Oy be the ring of the abelian
extension Fyr of F' corresponding to the class

FX\F*/ det(U).

Then Zy has a model Z;; over F' and is isomorphic to SpecFy. The map My — Zy
induces a map

(5.3.1) My — Zy := SpecOy.

The local system V(} and ‘~/U can be extended to My to a vector bundle and a
local system of divisible groups such that Lie(Vy) = Vi

Let F denote the algebraic closure of F in C. We want to study the reduction of
points on My ® F. Notice that Zy ® F is naturally isomorphic to Zy (F) x SpecF.
Thus Zy has an integral model

(5.3.2) Zy = Zy(F) x SpecOp := [[ SpecOr
Zy (F)

Notice that this scheme has a natural map to Zy. Let My be the tensor product of
Zy and My over Zy.

Formal modules. We now fix one prime p of F' and let ¢ be an extension of p
to F. We assume that U is a product U = U¥ - U, and want to study reduction of
My at B, following the method of Carayol [2] where p was assumed to be unramified
in B. See also Katz-Mazur [24] for the case of modular curves. Lets write O, for
OF7P7 6p for Op@, MU7p for My ®o, Op, and MU@ for MU ®@F 660

Then over My, , the prime to p-part of (VU,R) can be extended to an etale
system on My, but p-part

(Vg @ Oy, k2 O,)
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can only be extended to a system of special formal Opg ,-module with a Drinfeld level
structure,

V,a).

Here special modules and Drinfeld level structure are defined as follows:
e Vis special means that Lie(V) is a locally free sheaf over O, ® Op of rank
1 where OF is an unramified quadratic extension O, in Og .
e A Drinfeld level structure means an U-class of morphisms

o : p‘"OB/C’)B — V[pn]

such that cycles of the latter space is generated by the image.
When U¥? is sufficiently small, My, is regular and is locally a universal deformation
of V with its level structure in the special fiber. We write V° for the isogeny class of
V.
Similarly the local system (L, X) will also extend to a divisible group over Zye =
Spec(Ov,,,) whose prime to p-part is etale, and its p-part is a formal O,-module with
a level structure

(£, B)

such that the induced action of O, on £ is the usual multiplication of O, inside Oy,,.
The level structure again is also defined by a det(U)-class of surjective morphism

B "Lo/Lo— Llp "]

where Lo = det(Op) is the pairing module of Op. For any generator ¢t € O of order
1 at g, the level structure is compatible with the pairing;:

(@), a(y))e = Bz, y)e)-

The map Zy,, — Zy,, then classifies the lifting (£, 3) to the geometric generic
fiber.

Homomorphism. Let z and z' be two geometric points in the special fiber of
My.,. Then we define Hom"(z, 2') to be the subgroup in

Hom((V2, V#), Vo, Vi)

generated by Hom®(y, y') for all liftings y, y’ of z, 2’ to the geometric points of M.
We say 2 and z' are isogenous if Hom®(z,2') # 0 and any nontrivial element in this
group is called a quasi-isogeny.

5.4. Reductions

In this section we want to study the reduction of the integral model of a Shimura
curve for a fixed prime p of F. More precisely, we will study the set of irreducible
components in the fiber over p, and the set of three classes of closed geometric points
in the special fiber: ordinary points, supersingular points, and super special points.
We will also identify the reduction of CM-points in each fiber.
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Case of unramified prime. First let’s consider the case where g is unramified
in B. We want to study the smoothness of the special fiber of M. Let Uy denote
U#-0Op,,. Then one can show that My, ,, has good reduction when U¥ is sufficiently
small, see Carayol [2] when g is unramified in B, and Katz-Mazur [24] when B =
M>(Q).

To study the general case, lets fix one isomorphism Og , = M2(O,,). Then every
OB,, module M can be uniquely written as

(5.4.1) M=N&N N = (é 8>M

as Op-modules such that the action of Op , is given by left multiplication on N2. One
symmetric pairing M x M — P is equivalent to an alternative pairing N x N — P.
By this convention, the formal Op ,-module V is then given by two copies of one
formal module £ of dimension 1 with a usual Weil pairing with values in £. The level
structure is then a usual level structure

(Pinop/opy — E[p"].

A geometric point x at the special fiber of My, is called supersingular, if &, is
connected. Otherwise, it is called ordinary. If it is ordinary, then the level structure
has a kernel of rank 1 and thus defines an element in A € P'(F,)/U,. One may
show that for any given A € P'(F,,)/U,, and a fixed connected component M&p, the
points in the special fiber which are either supersingular or ordinary corresponding to A
actually form an irreducible component I, of the special fiber. Thus, the supersingular
points are only singular points in the special fiber. These I)’s are called the Igusa
curves. The nature map My, — My, , induces an isomorphism between each Iy
and the special fiber of the M?fo,p'

Let F be the algebraic closure of the residue field of F, and let My r (resp. MU,F)
be the geometric special fiber of My, (resp. My,,). Since Oy is totally ramified
over Ory,, the set of connected component of My r is the same as that of My, r thus
the same as Myy,. It follows that the set of irreducible component of My r is given
by

G(F)$\G(Af)/Uo x P(Fy)/Us.
From this one easily obtains the following;:

LEMMA 5.4.1. If ¢ is split in B, then the set of irreducible components of My
is given by

G(F)+\G(Af)/U x B(Fy) /U,

Ordinary points. Let = be a fixed ordinary point on My . Then it can be
shown that K := End’(z) is a totally imaginary quadratic extension of F which is
split at p. We may fix one splitting K, = Fg, such that the divisible group &, is
isogenous to a direct sum £ @ 2 compatible with the action of K, where £ is a
formal group of dimension 1 and £ is etale. In this way, one obtains the diagonal
embedding K — B such that at g, it is given by the diagonal embedding. Let ©°, ©°
denote two induced primes of K. It also can be shown that two ordinary points = and
z' are isogenous if and only if they have isomorphic endomorphism rings. We may fix
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such isomorphisms such that they induce the same action on tangent spaces of the
associated formal groups.

Let K be a fixed totally imaginary quadratic extension of F' with a fixed splitting
K, ~ Fg. Then the set of geometric ordinary points on My r with endomorphisms
by K and with given splitting can be identified with

K\ (5 1) \6L00) <.

where K* denotes the subgroup of K* of elements with order 0 at two places of K
over g. B

Indeed, let zog = (€, Vg, Ko) be a fixed ordinary point with CM by K. Using one
K € K, we may identify £5' with F,,/O,,, and V¥ with B®/O%. Then for any ordinary
point z = (€, ‘7@, k) with CM by K, there is an isogeny a : £ — zp which induces
an isomorphism on divisible groups at . Such an a is unique up to multiplication by
elements in K. Such an isogeny now induces an element

(2,9) € Hom*(Oz,Op) x G(A])

such that the surjective map a o k = (2, g), where Hom™ means the set of surjective
homomorphisms. In this way we may identify the set of ordinary points with CM by
K with

Ky \Hom™(02,0,) x G(AF)/U.

Our assertion now follows from the identity

. 1
Hom*(02,0,) = pr, - GLs(0,,) = (0 :)\GLQ(OQ)

where pry denote the projection of O, onto the first factor.
The maps from CM-points by K over Fy,, to CM-points by K over [, and to
irreducible components over I are given by the obvious ones, via the identity

P'(F,) = (; I)\GL2(F9).

We now want to study the ordinary points on My which are exactly ordinary
points on My with an lifting of determinant level structure to the geometric generic
fiber. In the above setting, for a given isogeny « : £ — &y, we will have a triple
(z,9,a) with a € OF. The set of ordinary points on My is then identified with

Ky \Hom™(02,0,) x OF x G(AY)/U

where K and U, acts on O by determinants. It is easy to show that the map
g — (pr; - g,det g) induces a bijection:

Hom*(02,0,) x OF = N(0,)\GL2(0,)

with compatible action by K and U,,. Thus we have shown that the set of ordinary
points on My, is identified with

K\ (N(0p)\GL2(0p)) x G(A7)/U.
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Using the decomposition

GLy(F,) = K - N(F,) - GLy(0,)

we then obtain the following
LEMMA 5.4.2. The set of ordinary points on My with CM by K is identified
with
K\ (N(F,)\GL2(Fy,)) x G(A7)/U.

The reduction maps from the CM-points on My®rF to ordinary points and irreducible
components on My are given by the following obvious ones:

K*\G(Ay)/U — K*\ (N(F,)\GL2(F},)) x G(A})/U
—s FX\AY / det(U) x P(F,)/U,

where the second map sends the class of (g, 9%) to the class of (det(9,9%),9,).

Supersingular points. We now want to give a description of the set of super-
singular points on My which is the same as on My, r, where Uy = GL2(O,,)U?.
It can be shown that all supersingular points are isogenous to each other, and for a
fixed supersingular point zo = (Vy, V', Ro), the endomorphism ring B’ := End®(z)
is a quaternion algebra which can be obtained from B by changing invariants at 7
and p. In other words, in our notation B =, B and B’ =, B with ramification set ,%
and ¥ defined at (4.3.2) respectively. Let G' denote the algebraic group (B’)* over
F. Fix one kg € Ko. We may embed B into G(A}) and identify V¥ with B®. Then

for any supersingular point z = (V, V¥, k), we have an isogeny a : z —» z¢ of degree
prime to p which is unique up to composition with elements of G'(F)q of order 0 at
p. The level structures now induce one element g € G (A?) such that

g:=aok € G(A]).

By this way we may show that the set of supersingular points on My r can be identified
with

G'(F)o\G(A})/U? = G'(F)\G'(Ay)/U’

where U’ = (’)E,7 o U¥. The morphism from supersingular points to the set of con-
nected components

det : B — F,
and the map from CM-points by K to the set of supersingular points is given by
T(P\G(A7)/U — G(F)\G'(As) /U’
[9] — [g5, - 9°),

where g;, € B(p), is any element with norm det g,,. Similarly, one can show the
following.

LEMMA 5.4.3. The set of supersingular points on My is identified with

G'(F)o\O x G(AD) /U = G'(F)\F) x G(A9)/U
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where G'(F) and U, act on F\ by determinant. The maps from CM-points on My ®p

F to supersingular points and to the set of connected components on My are given
by the following obvious ones:

KX\G(Af)/U — G'(F)\FX x G(A9)/U
— FY\AY / det(U)

where the first map sends the class of g to the class of (det gy, g®) and the second map
sends the class of (x,g%) to the class of x det g%.

Case of ramified primes. It remains to study the reduction of My, in the

case that B is not split at p. In this case, the group V is a connected formal group.
It follows that the map

./VlU’p — MUO,K,

is purely inseparable at the fiber over p. So the set of irreducible components of My
over p is the same as that of My, .

In this nonsplit case, one can show that all points in the special fiber are F-
isogenous, and the F-endomorphism ring is a quaternion algebra B’ over F' obtained
by changing the invariants of B at 7 and p. Again, we let G’ denote the algebraic
group (B')* over F.

To study the irreducible components of My, r over p we can use the uniformiza-
tion theorem of Cerednik — Drinfeld [1, 10]. We need some notations to state this
theorem. Let M v, denote the formal completion of My, along its special fiber over
p. Fix an isomorphism:

B' ~ My(F,) - B®

where the superscript p means that the component at the place g is removed. Let 0
denote Deligne’s formal scheme over O, obtained by blowing-up P! along its rational
points in the special fiber over the residue field k& of O, successively. So the generic

fiber Q of {1 is a rigid analytic space over F,, whose F, points are given by P'(F,) —

P!(F,). The group GL»(F},) has a natural action on 2. The theorem of Cerednik-
Drinfeld gives a natural isomorphism

(5.4.2) My, ~ G (F)\QBOY x B¢ /U

where O denote the completion of the maximal unramified extension of O, with an
action by G'(F’) given by

g€ B(p)x — Frfordp detg'
Since € is connected, the set of geometric components of My is identified with
G'(F)\Z x B®* JU® = G'(F)o\B** JU?,

where G'(F)p means elements of B’ of order 0 at p. Taking det, this set is then
identified with

FX\E* Uy,
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To obtain a description of the special fiber of M\UO, we notice that the irreducible
components of special fiber of Q correspond one-to-one to the classes modulo F* of
O,, lattices in Fg. Consequently, one has the following.

LeMMA 5.4.4. The set of geometric irreducible geometric components of M\UO
over @ is indezed by the set

G'(F)\GLy(F,)/FXGLy(0,) x Z x B*% |U®
~G'(F)\G'(Ar)/GL2(0,)U°,

where G'(F). means the set of elements in B' with even order at .

Superspecial points. A point z in the special fiber of My, ,, is called super-
special if the corresponding formal Op ,-module Vr is a direct sum of two formal
O,-module of dimension 1 and height 2. Let Qp be a fixed formal Oy-module over F
of dimension 1 and height 2 which is unique up to isomorphism. Let Op,, ~ Endo, ()
be a fixed isomorphism which is unique up to conjugation. Then there is an isomor-
phism

Vi~ Qr © QF

which is unique up to conjugation by GL3(Og,,). The action of Op,, on V is given
by an embedding

L OB,K, — MQ(OB’Q).

It is easy to see that the set of isomorphism classes of superspecial Vg is in 1-1
correspondence with the set of conjugacy classes of +. For a fixed ¢, let R, denote the
centralizer of the image of «. R

Fix one superspecial point zg = (Vo, Vg, k¥) of conjugacy class [¢]. Via k§, one
may identify V® with B\p, and B'? with B®. Then for any superspecial point & =
Ve, V£, k8) we may find a quasi-isogeny « : ¥ — o which induces an isomorphism
between V, and Vy. Such an ¢ is unique up to multiplication by elements of G'(F)q
of elements whose components at g is in R . The level structure x££ now induces one
9¥ € G'(A7). Thus we have the following:

LEMMA 5.4.5. The set of superspecial points of class [i] is identified with
G'(F)o\G'(A7)/U?,
where G'(F)o denotes the elements in G'(F) with images in R).

Now, let K be a totally imaginary quadratic extension embedded in B. We want
to study the reduction Cyy of CM points by K. We will only consider special points in
Cy, i.e., those points whose endomorphism has maximal component at p. We want
to show that the special CM-points have superspecial reduction. First, let’s construct
some special formal Op, ,-module over O,,.

Then Op,, can be written as

(5.4.3) Os,p = Ok,p + Ok p€
where € € BX such that ze = ez for any x € K,,, and that € € F, with order

1 if K,/F, is unramified,

5.4.4 do(€%) =
( ) ordy (€”) {0 if K,/ F, is ramified.
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Let Q be a formal Ok ,-module of height 1 and dimension 1 over O,,. A K-special
module over O,, is the following module:

V~QoQ,
such that for 2,y € Q,a € Ok,
e(z,y) = (€y,2),  alz,y) = (az,ay).
In this case all K-special points have superspecial reduction with the same con-
jugacy class and the corresponding ring R, := R, is given by the following

0 e!
R, = Ok + €0k¢, e = (e 0 ) }

LEMMA 5.4.6. All K,-special points have K, -special module at ©. Moreover the
set of special CM -points by K is given by

T(F)o\G'(A)/U?
where T'(F)o denotes the set of elements in T'(F) whose components at p has order 0.

Moreover the map from special CM-points by K to the set of superspecial points and
to the set of irreducible components are given by the following natural projection:

T(F)o\G'(A})/UY — G'(F)o\G'(AF)/U*
— G'(F)\G'(Ar)/GLy(0p)U®

Proof. For any special CM-point = = (V, h, k), it suffices to show that the Tate
module T, := ']I‘KJ(V) is isomorphic to Op,, with action by Op ,, by left multiplication
and with action by Og ,, by right multiplication.

First, we consider the case where K, is unramified. As

Ok,p ® Ok,p = Oiﬂp’

any Op,, ® Ok, ,-module is a direct sum with an action by e. The conclusion follows
easily.

We now consider the case where K, over F|, is ramified. Then any Op,, ® Ok,
module is a module M over the discrete valuation ring A := O ,[e] with an action

a: Ok, — Endo, (M),

such that a(a)e = ea(a) for any a € Ok ,,. The Op,, ® Ok ,-module T, := T,(V,,)
now has rank 1 over A, thus is free of rank 1. Lets fix one isomorphism

¢p: T, ~A,

and let n € End(T,,) be the endomorphism over Ok, given by the conjugation of
A/Ok, . Then for any a € Ok, which is trace free, a(a)n commutes with e. Thus it
must be given by

a(a) = ¢ onaz o ¢

where z € AX. Since a(a?) = a? we have that 27 = 1. Thus, there is an y € R*,
x = y/y. By replacing ¢ by y o ¢, we may assume that = 1. The conclusion follows
easily. O
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5.5. Local CM-intersections

In this section we are going to compute the local intersection index of CM-points at
their reduction. When the level structure is minimal, the formula can be proved using
Gross’ theory of canonical and quasi-canonical lifting. When the level structure is not
maximal then there are some fundamental obstructions to computing the local index,
since no explicit semistable model is known. We will prove asymptotic formulas which
are apparently sufficient for the applications in the next chapter.

Ordinary case. First lets consider a prime p of F' which is split in K. Let 7 be
a fixed local parameter of F;. Then all CM-points in Cyy will have ordinary reduction
over F. In particular all these reductions are smooth points in the special fiber. If U
is sufficiently small so that My, is representable, the geometric intersection index
(z,y)u,p of two distinct CM points z and y in My can be defined to be the maximal
rational number ¢ such that

Z=¢ mod x'

where Z and § are closures of  and y in My. This definition can be extended to
divsiors with disjoint support in Cy. For general U, we take U' a subgroup of U such
that My, is representable and then define

(xay)U,p = [U : UI]_I(a*'Taa*y)U’,p

where a* denote the pull-back map of divisors induced by the projection ﬂUr,p —
MU,@' —

We have shown that the reduction of ordinary CM-points on My is given by the
following projection:

(5.5.1) T(F)\G(Ap)/U — T(F)\[N(F,)\G(Fp)] x G(A?)/U.

Thus the intersection of CM-points is taken in the set N(F},). More precisely, let z,y
be two CM-points with the same ordinary reduction. Then x and y can be represented
by elements g, h € G(As) such that

h¥ = g¥, hy =ng,

with n € N(F,). Then the intersection of z and y depends only n when U¥% is
sufficiently small. In order to describe intersection precisely, lets give a modular
interpretation of N(F},).

Let £ be the unique formal O,-module over O, of dimension 1 and height 1 with
a fixed base ¢ of T,,(L). By a polarization on an O,-module & over O, we mean a
system of Weil pairings of group schemes

(0 Elp"] x Elp"] — L]p"]

with respect to a uniformizer 7 of . This pairing thus induces a pairing on T, ().
Let X be the set of isomorphism classes of objects (£, a, 3) where
1. & is a polarized divisible O,-module over Of of height 2;
2. « is an isomorphism from & to F,/O, & Lr;
3. B is an isomorphism from 02 — T,(€);
such that the following two conditions are verified:
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e det 3 is of determinant 1 in sense that when composing with the Weil pairing,
det 3 as a level structure of £ is given by the base (;
e the morphism

Ty(a)of: O; — Ty (Fy,/Oy)

is given by the first projection and the base & = lim, 7™ of of T,,(F,,/O,,).
Then X, may be identified with N(F},). Indeed, let & be the divisible group £ &
F,/0O, with a canonical polarization, a canonical deformation ap, and a canonical
level structure

Bo: F2 — Vo (&), Bo(a,b) = a& + bC.

Then for any object (£, a, ) there is a unique isogeny ¢ : £ — &y so that ¢ respects
the reduction maps a’s. Now ¢ and (’s induce an element g € N(F,) which acts on
Fg by right multiplications on row vectors.

For any = € F,, let (E;, ag, 3;) be the object corresponding to

n(z) = (é 9{) € N(F,)

in the above correspondence. For n a positive integer, let m(n,z) be the maximal
rational number ¢ such that modulo 7t, the (E,,a,) is isomorphic to (Fp,ap) and
that 8 and Sy induces the same level structure modulo ™.

LeEMMA 5.5.1. Assume that n > ord(z) + 1. Then

1
qn—ord(x)—l (q _ 1) :

m(n,z) =

Proof. Under the quasi-isogeny ¢ : E, — Fy with respect to the reduction
morphism «’s , the image T,(E,) is the following lattice of T}, (Ep) = O3:

O?) ’ (é T) ’ (E) = Op(wC +&)+ 0,(¢,
with the level structure
K(a,b) = a(x( + &) +bC.

We first consider the case where € O,. Then ¢ is an isomorphism of divisible
modules. We may take E, = E, with the above level structure. Modulo p™ this level
structure gives two generators

xCp” +£p"a Cp”-
Thus for n > ord(z) + 1,

1
qord(m)—n—l(q _ 1) ’

m(n,x) = ord(x(yn) = ord((,n-oma(=)) =

Here we have used the fact that OF((,n) is a totally ramified Galois extension of Of
with group

(Op/e"™) "
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It remains to treat the case where z ¢ O,. Let z = 2'7~* with 2’ € 0. Let
u : Ey — Ey be an isogeny inducing the map

a +b¢ — z7 al + b

on V,(Ey) ~ Fg. Then there is an isogeny v : Ey — E such that ¢ ov = u. For ¢
to be an isomorphism over some O p-scheme S if and only if the isogeny ug and vg
have the same kernel. By construction,

@) o
ker(u) = W = Opé.ps
@) o
rto) = 2 e o = Ol )

Thus if ¢ is an isomorphism of formal groups over some O{f-scheme S, then one must
have (,- = 0 on S. Assume now this is the case. Then ¢ is an isomorphism which
transform the level structure x modulo p™ on Ej to the level structure

(a,b) — a(€pn + 2" Cpnts) + bCon.

(Notice that (,n+s € Ep(S)[p"] as (p» = 0) The condition f = fp modulo p" is
equivalent to (,n+s = 0. Thus

1

m(n,z) = ord((yn+s) = g =)

This completes the proof of the proposition. O

Supersingular case. We now consider a prime p of F' which is nonsplit in K
but split in B =, B. As usual, let B’ =, B and let G and G’ denote the algebraic
groups over F' associated to BX and (B')*. Let F,, be an algebraic closure of K,
with algebraically closed residue field F. Then all points in Cy have supersingular
reductions at IF and the reduction is given by the following map

(5.5.2) T(F)\G(Ay)/U — G'(F)\F, x G(A?)/U.
If we write CM-points as

(5.5.3) G'(P)\ (G(F) x1(r) G(Fy)) x G(A7)/U,
then this reduction map is given by

(5.5.4) G'(F) xr(r) G(Fy) /Uy — Fy,
g1 X go —» det(gl) ~det(g2).

It follows that the local intersection of CM-points is given by a distribution on

{(g1,92) € G"(Fy) xp(r,) G(F,) | det(gr)det(gz) € det(U,) }.

More precisely, let z and y be two CM-points with the same reduction. Then z and
y can be represented by g,h € G(Ay) such that

h? =~g%,  det(hy) = det(y) - det(g)
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for an v € G'(F). The intersection of  and y depends only on (v, g, - h;l) in the
above set when U¥ is sufficiently small.
To describe the local intersection moreprecisely we need a description of this set
in terms of formal O,-modules. Let £ be a polarized formal O,-module of height 2
over ' with an endomorphism given by pr which is unique up to isomorphism. Let
X, denote the set of isomorphism classes of objects (£, a, f) where
1. £ is a polarized formal O,-module of height 2 over O,, with endomorphism
by some order in K;
2. a: & — € is an isomorphism of formal Oy,-modules with degree 1 (with
respect to the polarizations);
3. B: F) — V,(Er) is an isomorphism of degree 1.
Then we have an identification

X, = {(91,92) € G'(Fy) x1(p,) G(Fp) :  det(gn) - det(gz) =1}

To see this let £ be the canonical deformation of £ with respect to the embedding
K, — B, with the canonical rigidification ag and a fixed U,-level structure $p. Then
for any object (£,a, ), we have an isogeny ¢ : £ — &, with compatible action by
elements in K. The isogeny ¢ induces element (g1, g2) € G'(F,) x G(F,):

—1
g1 g¢—F>gFi>g

—1
o F25v,e0) W v, (&) 2 P2
It is easy to see that the class of (g1,92) in G'(F,) x7(F,) G(F,) is independent of
choice of ¢.

Conversely, for any pair [(g1,g2)] as above, there is an isogeny ¢ : £ — & and an
U-level structure 8 such that g, is given by the above formula. The isogeny ¢ induces
an isogeny ¢ : & — £. There is a unique isogeny « : & — £ such that g; is given
by the above formula.

The intersection theory on X, is difficult to describe because the universal defor-
mation ring of supersingular points with level structure is singular in general. But
for the minimal level structure, the intersection theory can be formulated by Gross’
theory of canonical and quasi-canonical liftings. In the following lets describe the
intersection for the minimal level structure: U, = GL2(O,,).

Fix one element (g1,g2) of X,. Modulo GL»(O,), we may assume that g» =
(é 7?C> for some ¢ > 0. Indeed, write Ox = O, + 0,0 and take an embedding of
T into GLy by the obvious isomorphism (’)?, ~ Og. Then by multiplying g» by some
element of K, we may assume that Ok C ¢2(Ok) and g2(Ok)/g2(Ok) is cyclic and
is generated by the image of w~¢. This implies that

e <0
92(0k) = Opp™“ + 06 = (WO 1) Ok

0
of (g1,92). Let (&, ., B:) be the object of conductor ¢ and let m(g1, g2) denote the
maximal rational number ¢ such that this object is isomorphic to (&g, g, B9) modulo

7t

for some ¢ € N. Consequently, g2 € (W ?) GL»(0,). We call ¢ the conductor
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Let € be a trace free element in pr such that ze = €% for any x € K,. Then

B, = K, + Ke. For any g = a + be € (B[,)* define
_detbe  —€2N(b)
~ detg  N(a) —e2N(b)’

(5.5.5) £(9)

LeEMMA 5.5.2. If ¢ =0, then

1
m(g1,g2) = jord(n¢(g1))-
If ¢ > 0, then
g1 g) = m if Ko/ Fy is unramified,
’ L if Ko/ F, is ramified.

2q¢

Proof. By construction, g;l is integral thus ¢! gives an isogeny 1 : & — &,
with kernel generated by a ¢ € &[p°]. Now ¢, is given by

g1 = a - r.

The number m(g;, g-) is the maximal rational number ¢ such that a can be extended
to isomorphism modulo 7t. Thus m(gy,g2) is also the maximal rational number ¢
such that g; can be extended to an endomorphism of & modulo 7t, and such that g;
kills kernels of ¢, or equivalently, g, kills (.

First we assume that ¢ = 0. Then g; and 1 are isomorphisms and Gross’ theorem
shows that m(g1,g2)e(K,/F,) is the maximal integer m such that ¢1 € Ok, +
ﬂ?ilC’)B. We may choose a decomposition B, = K+ K€ such that ez = Ze for any
x € K, and € € F¥ with order given by

ord(e?) = {1 ?f K,/F, ?s unrz%miﬁed,
0 if K,/F, is ramified.

Write g1 = a + ﬂ%_lbe with a € Og,b € (’)IX(, then
&(gr) = =720 det(gr)

We now assume that ¢ > 0. Then over O% , all cyclic submodules D; of &lgp°]
are conjugate to each other. The total intersection is 1. Thus

(e(Kp/Fp)m(glaQQ))il = #(Ok o /7) " [(Op/7°) "

d

We want to treat now the case where U,, is not maximal where My need to be
replaced by some resolution of singularities after a base change. We will only consider
so called special CM-points CP, which are represented by g € G(A;) whose component
at p is in T'(F,,) - U,. Thus we have identification:

Cp = T(F)o\G (A7) /U®

where T'(F)o denotes the elements in T'(F') whose image in T'(F,,) is in U,,. Let G'(F)
denote the elements in G'(F') whose image in G’ (F},) has determinant in det(U,).
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LEMMA 5.5.3. Let L be a finite extension of OF over which all points in CY; are
rational. Let My; , be the minimal resolution of singularities of My ® Oy, Then the

reduction of CY, is given by
T(F)o\G(A})/UY — G'(F)o\G'(As) /U’
where U' = U[,-U¥ with U/, an open compact subgroup of G'(F,)o containing T (F},)o.
Proof. Then the reduction on My, is given by
T(F)o\G(A})/UY — G'(F)o\G(A])/U®.

Let X be the formal neighborhood of a supersingular point in My, structure
when U¥ is sufficiently small. Then X is isomorphic to the universal defomation
scheme of a formal O,-module of height 2 with level U,-structure. It is wellknown
that X is regular and has an action by G'(F,,)o. Let X' be the inverse image of X in

v, o which is also the minimal resolution of sigularities of X ® Or. By functoriality,
X' has an action by G'(F,)o. It induces an action on the special fiber X} of X'.
By continuity, it is factored by an open subgroup Uy, of G'(F},)o. Thus reduction of
CM-points which is given locally by

G'(Fy)o/T(Fy)o — Xz

has a finite image Y. The reduction of CM-points in the minimal regular model
My ® L is given by

T(F)\G(AS)/U® — G'(F)o\Y x G(A?)/U".

Since we may rewrite Cp; in the form
Cr = G'(F)o\G'(F)o/T(F)o x G'(A7)/U?,
thus the reduction of CM-points is induced by the map
G(Fy)o/T(Fy)o — G'(Fy,)/U,.

The intersection theory is given by some function m(g) on G'(F,)o/T (Fy)o in the
following sense when U¥® is sufficiently small. Let x,y be two special CM-points in
CY, represented by g,h € G (A?). Then z and y have the same reduction only if there
is a v € G'(F) such that h = vg. Then the local intersection of x and y is given by

m(y).

LeMMA 5.5.4. The local intersection of CM-points with respect to U -level struc-
ture is given by a function on G'(Fy,)o/T(Fy)o such that

m(g) =mo(g) +m'(g),  g¢ T(F,)

where mo(g) is supported on U], and is the restriction of sordé(g) and m'(g) is a

locally constant function on G'(F,).

Proof. Let X, denote X in the proof of the previous lemma corresponding to
the maximal group GL2(0O,,). Let X denote the base change Xo ® Or. Then X is
smooth and the map X' — X| is generically etale. Let y be a point in Y. Then the
local ring of y at Y is isomorphic to Or[[T]], so is the local ring of z in X}. Thus the
map X' — X is given by a power series f(T) = >, a;T" € OL[[T]] with a; # 0. It
follows that ord(f(7")/T) is locally constant. O
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Superspecial case. It remains to treat the case where p is a prime of F' which
is not split in B. First, let’s consider the case where U, is maximal. The reduction
from the special CM-points to superspecial points takes the form

(5.5.6) T(F)o\G(A})/U® — G'(F)o\G'(Af)/U*,

where G'(F)g is the subgroup of elements on G'(F') whose components at g are in
R;, where R,, is constructed in the last section which takes the form

R, = Ok + €0xe €= 0 e
o — K K€, - € 0 .
Thus the local intersection occurs in G'(F)o/T(F)y. More precisley if z and y are

two special CM-points with the same reduction. Then z and y can be represented by
g9,h € G(AY) such that

h =~g

with a vy € G'(F')o. When U¥ is sufficiently small, the intersection of z and y depends
only on . As in previous cases, we need a modular interpretation in the formal
Op,,-module level.
Let V be a superspecial Op ,-module over F. Consider the set X,, of the following

objects (€, @) where

1. Vis a formal Op , ® Ok,,-module;

2. a:V — Vr is an isomorphism.
It is easy to see that this set is identified with

R:/O% -

More precisely, let (Vo, ag) be a fixed object. We identify V with Vy 7 via ap. Then
for any object (V,a) there is an isomorphism ¢ : V — V; of Op , ® Ok, -modules
which is unique up to action by (’);(7 o There is an element g € R} = Aut(Vy) such
that gpoa = g.

LEMMA 5.5.5. Let (V,a) be an object corresponding to an object g € R. Then
the mazimal rational number t such that (V,a) and (Vo,ap) are isomorphic modulo
7t is given by

(g) = %ordf(g) if Ko/ Fy, is unramified
)= %ordwf(g) if K,/ Fy, is ramified

Proof. Let Vo m denote Vo ® O /7 and Vy, denote V ® Of /. Then the
intersection number times e(K,/F,) is the maximal integer m such that o : Vo r —
Vr can be extended to an isomorphism from Vj ,,, to V,,, or the maximal integer m
such that

g=¢roa€ R, :=Endo, ,(Vo,m)-

By Lemma 5.4.6, we may decompose Vp as a direct sum Vy = Q ®  where  is
a Ok p-module of dimension 1 and height 1 over Og" with standard action by

OB = Okp + Ok €
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given as follows. For z,y € Q, a € Ok,

alz,y) = (az,ay),  e(z,y) = (€y,2).

Let 2,,, denote the reduction of 2 modulo 7. Now R,, is the centralizer of Op , in
End(Vo,m) and, therefore,

R, = R, N M>(End(Qo,:m)).
By Gross’ theorem,
End(Q,) = Ok, + 7~ Ok pe.
It is easy now to see that
Ry, = Ok + € 1 Oke'.

For g = a+ 2br ‘e € R} with b € Ok, then

2m it K,/ F,, is unramified,

ordn, (£(g)) = ordx, (N(Em™")) = {Q(m —1) if K,/F, is ramified
o/t :

O
We consider now the general case of U,. The same proof of Lemma 5.5.3, 5.5.4
gives the following:

LEMMA 5.5.6. Let C denote the set of special points with level U structure. Let
L be a finite extension of OF over which all points in C{, are rational. Let /\/l’U7p
be the minimal resolution of singularities of My @ Or. Then the reduction of Cy; is
given by

T(F)o\G(A7)/UY — G'(F)o\G'(Ay)/U'

where U' = U, -U? with U/, an open compact subgroup of G'(Fy,) containing T (F},)o.
Moreover the local intersection of CM-points with respect to U -level structure is given
by a distribution on G'(F,)o/T (Fy)o such that

m(g) =mo(g) +m'(g),  g¢ T(F,)

where mo(g) is supported on U/, and is the restriction of %ordf(g) and m'(g) is a

locally constant function on G'(F,).

6. Gross-Zagier formula

In this chapter, we are going to compute the height pairing and finish the proof of the
Gross-Zagier formula. We will start with a review of Arakelov theory on an arithmetic
surface, and the arithmetic Hodge index theorem which will express height pairings
as a sum of Green’s functions over places of number fields with respect to a fixed
arithmetic polarization. Then, we apply this theory to Shimura curves polarized by
the Hodge class, and compute the Green’s functions of distinct CM-points on Shimura
curves. Strictly speaking, we can only compute the height pairing of CM-points
modulo (1) the contributions from intersections of CM-points with Eisenstein class,
(2) self-intersections of CM-points, and (3) the coefficients of some forms on compact
quaternion algebras. Finally, we will show that all these non-computable contributions
are negligible.
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6.1. Calculus on arithmetic surfaces

In this section we will reviewing the Arakelov theory on arithmetic surfaces and
arithmetic Hodge index theory. The basic references are [12, 13, 28, 32]. The only
new concept is the Green’s function over nonarchimedean places.

Arithmetic divisors and hermitian line bundles. Let F' be a number field.
By an arithmetic surface over SpecOp, we mean a projective and flat morphism
X — SpecOp such that that X' is a regular scheme of dimension 2. Let Div(X)
denote the group of arithmetic divisors on X. Recall that an arithmetic divisor on X
is a pair D := (D, g) where D is a divisor on X’ and g is a function on

x(@© =] %.(©

with some logarithmic singularities on |D| such that for each archimedean place 7 of
F, and each point zg € X, (C) with local coordinate ¢, the function

z — g(x) + ordy, (D7) log#(x)]

can be extended to a smooth function in a neighborhood of xy. The form —?T—? g on
X(C) \ |D| can be extended to a smooth form ¢; (D) on X(C) which is called the

curvature of the divisor D. If f is a nonzero rational function on X then we can
define the corresponding principal arithmetic divisor by

(6.1.1) divf = (divf, —log|f]).

An arithmetic divisor (D, g) is called vertical (resp. horizontal) if D is supported in
the special fibers (resp. D does not have component supported in the special fiber).

The group of arithmetic divisors is denoted by ]5;/(X ) while the subgroup of

principal divisor is denoted by f’;(X ). The quotient /C\I(X ) of these two groups is
called the arithmetic divisor class group which is actually isomorphic to the group
Pic(X) of hermitian line bundles on X'. Recall that a hermitian line bundle on X is a
pair £ = (L, ||-]]), where L is a line bundle on X and || -|| is hermitian metric on £(C)
over X (C). For a rational section £ of £, we can define the corresponding divisor by

(6.1.2) div(e) = (dive, —log ||¢]]).

It is easy to see that the divisor class of (Tl\v(é) does not depend on the choice of £.
Thus one has a well defined map from f)l\(l(X ) to 6\1(2\’ ). This map is an isomorphism
with converse defined by assigning an arithmetic divisor D = (D, g) to an arithmetic
line bundle O(D) = (O(D), ||-||) such that the canonical section £ of O(D) has metric

10]l(z) = e~9).
One may show that the curvature of an arithmetic divisor depends only on its class
and thus can be defined on Pic(X) such that the curvature of hermitian line bundle

L is

—~. 00
(6.1.3) er(£) = = log]|e].
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Let D; = (D;, g:) (i=1, 2) be two arithmetic divisors on X with disjoint support
in the generic fiber:

|Dir| N |Darp| = 0.

Then one can define an arithmetic intersection pairing

where v runs through the set of places of F'. To define the intersection we may assume
that D; are irreducible. Then the local intersection is defined as follows:
e if D is vertical, and v is finite place

(131 'BQ)U = deng(O(D2)) log gy,

where degp, (O(D2)) is the geometric degree.
e if D5 is horizontal and v is finite, then

(D1 D)y =Y log#0x./(f1, f),

€| X, |

where z runs through the set of closed point of X over v, and f; are defining
equation of D; near x;
e if v is infinite, then

~

(ﬁl 'ﬁ2)v = 91(Day)€y +/ g2¢1(D1)ey,
X, (0

where €, = 1 if v is real and €, = 2 if v is complex.
One may show that the principal arithmetic divisor has 0-intersection with any other
divisors. Thus the intersection pairing only depends on the divisor class. On the other
hand, for any two arithmetic divisor classes, we can always find representatives with
disjoint support at the generic fiber. It follows that we have a well defined pairing on
Pic(X):

(L,M) — ¢ (L) -e1(M) € R

Let V(X) be the group of vertical metrized line bundles: namely L € Pic(X) with
L ~ Ox. Then we have an exact sequence

0 — V(X) — Pic(X) — Pic(Xp) — 0.

0
Define the group of flat bundles Pic (X) as the orthogonal complement of V(X).
Then we have an exact sequence

—~ 0 —~0
0 — Pic (Or) — Pic (X) — Pic®(Xr) — 0.

Recall that the Jacobian Jac(X) has a Neron-Tate hight papring on its algebraic
points defined by theta functions [12]. The following theorem gives a relation between
intersection pairing and height pairing:

THEOREM 6.1.1 (Hodge index theorem [12]). For £, M € PAico(X),
(Lp,Mp) = —¢1(L) - &1 (M)
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where the left hand side denotes the Neron-Tate height pairing on PicO(X) =
Jac(X)(F).

In the following we want to introduce a projection formula for the intersection
pairing or the height pairing. Let L be a finite extension of F' and ) — Opr, be an
arithmetic surface over Or,. Let f : Y — X be a morphism over O which is finite
at the generic fiber. Then we can define the pull-back map

F*: Div(x) — Div(Y).

The intersection pairing satisfies the following projection formula: for D; € Div(X)
(i=1,2)

(614) f*ﬁl . f*ﬁQ = degf . (Bl . 132)

Moreover, if lA)l are disjoint at the generic fiber, then projection formula is true for
local intersection:

(6.1.5) > (f*Dy - f*Ds)y = deg f - (D1 - Da)y.

wlv

For X a curve over F, let Pic(X) denote the projective limit of Pic(X) over all
models over X. Then the intersection pairing can be extended to Pic(X). Let F
be an algebraic closure of F' and let Pic(X) be the direct limit of Pic(Xy) for all
finite extensions L of F, then the intersection pairing on ﬁ:(XL) times [L : F]~! can
be extended to an intersection pairing on lsi\c(XF). One still has the Hodge index

theorem to relate the normalized heights pairing on Jac(X)(F') and the intersection
0
pairing on the flat bundles of Pic (Xz).
Adelic Green’s functions. Let X be an arithmetic surface as before and let

X be the generic fiber of X. Let £ € lgﬂ:(X)Q be a fixed class with degree 1 at the
generic fiber. Let 2 € X (F') be a rational point and let Z be the corresponding section

X(Op). Then Z can be extended to a unique element = (x4 D, g) in ﬁiT/(X)Q such
that
e the bundle O(z) ® £ is flat;
e for any finite place v of F', the component D, of D on the special fiber of X
over v satisfies

e for any infinite place v,

/ gel (L) = 0.
X.(C)

We define now the Green’s function g, (z,y) on

X(F) x X(F) \ diagonal

(6.1.6) go(w,y) = (T~ ?/J\)v/log(ha
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where log g, = 1 or 2 if v is real or complex. It is easy to see that g, (x,y) is symmetric,
and does not depend on the model X' of X in the following sense: if X' is different
model of X and Z is a hermitian line bundle on A", such that over some model X"
which dominates both X and X, Z and Z have the same pull-back, then the Green’s
functions defined by (X, £) and (X’,Zl) are same. Also, the Green’s function g,(z,y)
is stable under base change. Thus we have a well-defined Green’s function on X (F)
for each place v of F.

In fact one can define a Green’s function g,(z,y) on X(C,) where C, is the
completion of F' at a place over v. We don’t need this fact in this paper.

Practically, one may construct g,(z,y) in the following manner. If v is a complex
place then g,(z,y) is a solution to the equation

9,0,

e

(6.1.7) 90(2,y) = 02(y) — 1 (£)(y)-
Let v be a finite place. Then it is easy to see that
(EU\:'/J\)v = (i' g)v + (Dv ?;l)

Thus we have decomposition

(6.1.8) 90(2,y) = iv(Z,9) + Ju(T, )
where
(6-1-9) iv(ii',g) = (CE ’ ?;I)U/Iquv ]v(jvg) = (Dv : gj)/logqv_

Notice that i,(z,y) is the usual geometric intersection indez in the sense of algebraic
geometry over algebraically closed fields, and j,(z,y) actually depends only on the
reductions of x and y in the set of irreducible components of the special fiber of X
over v.

The decomposition g, = i, + j, depends on the model X'. But if we only work on

semistable model, we can actually get a well-defined function i, and j, over X (F).
We will not need this fact in this paper.

6.2. Global heights of CM-points

Heights and intersection on tower of Shimura curves. We now want to
apply the general theory of the previous section to intersections of CM-points to
Shimura curves Xy over a totally real field F' as defined in §1.3. Recall that Xy has
the form

(6.2.1) Xy = G(F)\H* x G(As)/U U {cusps}

which is a smooth and projective curve over F' but may not be connected. Let’s first
try to extend the theory in the last section to the projective limit X of Xy. Let
Pic(X) denote the direct limit of Pic(Xy) with respect to the pull-back maps. We
fix one measure on G(Ay). Then the intersection pairing can be extended to 151\C(X)
if we modify the pairings on Pic(Xy) by the scale vol(U). Similarly, we can modify
local intersection pairing and extend the height pairing to Jac(X) = Pic’(X), which
is the direct limit of Pic®(Xy;) where Pic®(Xyr) is the subgroup of Pic(Xy) with class
whose degree is 0 on each connected component.
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Hodge classes and Eisenstein classes. To define Green’s function we need to
define a canonical class in Pic(X)g. On each Xy, there is a unique adelic metrized
line bundle ¢y € Pic(Xy)g of degree 1 on each connected component such that

(6.2.2) Toly =o1(a)-&  oi(a) :=degT, = » N(b),
bla

for any integral idele a prime to the level of Xy;. The uniqueness is clear as the differ-
ence of two such class will be a class in Pic’(Xy)o = Jac(Xy)(F)g which is cuspidal
under the action of the Hecke algebra. For existence, we let U’ be a sufficiently small
normal subgroup such that every geometric connected component of Xy does not
have any elliptic fixed point. Then [Qx,,] will have the same degree on each compo-
nent and satisfies the above equation. Certainly some power of this class will descend
to a class & in Pic(Xy) with the same positive degree on each geometric connected
component. We may now define £y to be a constant multiple of ¢ in Pic' (Xy)g. We
call & the Hodge class on Xy.

It is an interesting question to construct an adelic metric on £y such that the
above equation holds for &. But in [32], Corollary 4.3.3, we have constructed a
metric on &y such that

(6.2.3) T.év = o1(a)éy + ¢(a)
where ¢(a) € Pic(F) is a o-derivation, i.e., for any coprime a’,a’
p(a'a") = o(a')p(a") + o(a")p(a’).

Let Pic(X U)Eis be the subgroup of elements whose restriction on each connected
component is a multiple of the restriction of £. It is easy to show that

(6.2.4) Pic(Xy)g = Pic(Xy)5* & Pic’(Xy)q.

We define I/)l\c(X U)Eis to be the class whose restriction on each irreducible component
is a sum of a constant class and a multiple of the restriction of that of £. Let Pic(X)g"
(resp. lsi\c(X)gis) denote the limit of Pic(Xy)g".

The action of the G(Ay) on Pic(X)g" is Eisenstein. Indeed, let’s define

dU : PiC(XU)Q — S(ZU)

to be the degree map times vol(U) where Zy = FX\A} / det(U) is the set of connected
components of Xy . It is easy to extend dyy to a map

(6.2.5) d: Pie(X)g — S(FF\AY).

It is easy to see that this map is G(Ay)-equivariant and its restriction on Pic(X)g'
is injective. Thus the action of G(Ay) on Pic(X)g™ is Eisenstein. Similarly, one may
show that the action of G(Ay) on ﬁi\c(X)gis is quasi-Eisenstein.

We can now define Green’s functions g, on divisors on X (F') which are disjoint
at the generic fiber for each place v of F' by multiplying the Green’s functions on X¢r
by vol(U).
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Height pairing of CM-points. Let n = 1, be a divisor on Xy defined by an
anticyclotomic idele class character y of K of degree x, where U = ker ya. Notice
that  is nonzero only if x is trivial. Let z = [ — & - £] denote the class of n — k- £
in Jac(Xy ). Notice that this class actually lives in Jac(X)(L) ® C where L is a finite
abelian extension fixed by the kernel of y. The linear functional

a — |al(z, Tq2)
is now the Fourier coefficient of a cuspform ¥ of weight 2:
(6.2.6) U(a) = |al(z, Taz).

In the following we want to express this height in terms of intersections modulo some
Eisenstein series and theta series.

Let 7 be the arithmetic closure of 1 with respect to £. Then the Hodge index
theorem gives

|a|<27 Tllz) = |a| (77 - E_a Taﬁ - deg Taf_)
= — |a|(7, Ta7)) + E(a),

where E(a) is the Fourier coefficient of certain derivations of Eisenstein series.

The divisor n and T,n has some common component. We want to compute its
contribution in the intersections. Let r, (a) denote the Fourier coefficients of the theta
series associated to x:

(@) = x(0).
bla

The we have the following:

LEMMA 6.2.1. The divisor
Ton := Tan — ry(a)n
is disjoint with n.
Proof. The multiplicity of n in T,,n is given by the following integral

/ To(2)B(z)dz = Tup(1)
T(M\G(Af)

where ¢(z) is supported on T'(Ay)U with character x. In our terminology in §4.2,
this is £(m,0) and is computed previously in Lemma 4.2.1. O
In summary, we have shown that the functional

a — |al(z, T,2)

is essentially given by the sum of local intersections

1 o
ST 2 e(Tannlallogay
. v 1eGal(L/F)
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modulo some derivations of Eisenstein series, and TI(x) ®al/?, (where L is the subfield
of F fixed by the kernel of ). The Galois action of Gal(K?"/F) is given by class field
theory

v: Gal(K*/F) — Np(F)\Nr(A;),

and the left multiplication of the group N7 (Ay). It follows that if n is defined by a
function ¢(g) on T(F)\G(Ay), and n* is defined by ¢(v(1) g).
If v(e) € T(F)\T(Ay), then ¢(v(1)~'g) = x7'(t)d(g). Otherwise,

v(e) = v(t') e € T(F)\T(Af)e,
then
d(v(1)g) = x(V')¢(eg) = Tcp(ege).

Notice that ¢(ege) define the divisor 7 corresponding to the character . Since T, is
self-adjoint and commutes with complex conjugation,

Gv (Tgﬁa ﬁ) =9Gv (ﬁa Tgﬁ) = gv(Tgﬁﬁ) = gv(Tgn, 77)-
Thus, we have proved the following.

LEMMA 6.2.2. Modulo the derivations of o1 and ry, the functional of height
pairing

a — |a|(z, Tqz2)
is the sum

—lal’>_ gu(n, T9n) log go.
v

Notice that for two CM-divisors A and B on Xy with disjoint support represented
by two functions ¢ and ¢ on T'(F)\G(Ay), the Green’s function at a place v depends
only on ¢ and . Thus we may simply denote it as

gv(AaB) = gv(‘ba/‘/})'

6.3. Green’s functions

In this section we are going to compute the Green’s function of CM-points using
formulas obtained in Chapter 4.

Archimedean case. For each archimedean place 7; of F', the Riemann surface
X ®,, Cis actually defined by the same way as X ®, C with 7 replaced by 7;. Thus
it suffice to compute the Green’s function over the original place 7.

The complex points of X = Xy are identified with

(6.3.1) X(Q) = G(F)\H* x G(As)/U
which is really a disjoint union of curves of the type

D\A.
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In this case, the 7j has curvature proportional to the hyperbolic metric dzdy/y? for
z =a +yi € H. The set of CM-points is identified with T(F)\G(A¢)/U.

The Green’s g,(z,y) on X is nonzero only if both z and y are in the same
connected component. In this case, it is given by the constant term as s — 0 of the
following convergent series for Re(s) > 0:

|z — vyl
6.3.2 s |14+ ———
( ) ;Q ( + 2ImzIm~yy
where
o0 —1—s
(6.3.3) Qs(t) = / (a: +Vt2 — 1cosh ar) dzx.
0

We refer to Gross [18] and Gross-Zagier [20] for more details.
Notice that if © = gi,y = hi then
|z —y|? -1
=2 h
2ImzImy Elg™ h),
where £ is a function on T(R)\GL2(R)/T(R) defined as before.
Lets define a function ms on T(F)\G(F)/T(F) as follows:

(6.3.4) ms(g) = {? o= 2o i)ftfu(j;f)isz.o’

Then

LEMMA 6.3.1. For two CM-points xz,y € X(C), the Green’s function at T is
given by the constant term of a geometric pairing as defined in §4.1 with multiplicity
function ms.

Proof. Extend m to a function on T'(F)\G(F)/T(F) x G(Af) with support on
T(F)\G(F)/T(F) x {e}. Then we need to show that

g9s(z,y) = Y malg yh),

YEG(F)

where g, h are two elements in G(Ay) representing « and y. Indeed, if the right hand
side is nonzero then there is a 79 € G(F) such that g~!'vh has finite component in
U and such that v has positive determinant. It follows that « and y are in the same
connected component. It is easy to show that gs(xz,y) has the same expression as
before. O

Ordinary case. We now want to consider the Green’s function at a prime g of
F which is split in K. For U = U,U® we have shown the following for the model
My
1. the set of ordinary points is given by

K*\(N(Fy)\GL2(Fy,)) x G(A7)/U;
2. the special fiber My over p has connected components indexed by

G(F)+\G(Ar)/U;
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3. each component is a union of irreducible components indexed by
P! (F, p)/ Ups

4. every two irreducible components intersects at the set of supersingular points
indexed by

G(F)\G(Ap)/U",

where U’ = U/, - U? with U, is the maximal compact subgroup of G(Fy,).

In the following we want to compute the Green’s function g, for CM-divisors A, B
represented by functions ¢ and ¢ on T'(F)\G(Ay)/U. Let L be a finite extension of
F where every point in A, B is rational and let Ay, be the minimal resolution of
singularity of M ® Op,. Then we have the decomposition

gKJ(AaB) = iKJ(AaB) +j@(A7B)'

Notice that in general i,j depends on U but when U¥ is sufficiently small, then
i(A4, B), j(A, B) will not depend on U for fixed ¢ and . This is because the morphism

MULK’ MUz,K’

is smooth at ordinary points when U} are sufficiently small. So we have a well defined
decomposition

gp(¢7¢) = lp(¢7¢) + ]6’3(¢7¢)

First let’s start to compute the geometric intersection index i, (7, T97) using
Lemma 5.5.1. Let dp(g) be a distribution on G(Ay) supported on N(F,) over which
it is induced by the multiplicative measure on F:

1 =z 1 dzx

Define a distribution du(z,y) on [T(F)\G(Af)]2 such that for any ¢(x,y) €
S(T(F)\G(Ay))

6.3.5 d = d d
(6.3.5) / o, y)du(z, ) /T e, /C 0l gto),

where dz is a measure on G(Ay).

LEMMA 6.3.2. The geometric intersection index of CM-divisors is given by the
following distribution. Let A and B be two CM-divisors on Xy represented by two
functions ¢ and ¢ on T(F)\G(Af)/U. Then

ip(4, B) = / H(2)P () du(z,y).

Proof. Tt is easy to see that both sides are additive in both B and A and are
invariant under the action by G(Ay). Thus it is sufficient to prove the lemma in the

case where A=U, B = (é (11) U,

Up = (14" M5(0y)),
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and n > ord(a) + 1. Then Lemma 5.5.1 gives

1
qnford(z)fl(q _ 1) ’

iy(A,B) = vol(U)
where ¢ = N(p). On the other hand, its is easy to obtain that

/ ()6 (y)du(z,y) = vol(U) / d*z = vol(U)

lz—a|<|r|n (1—g1)al’
The lemma now follows. O

LEMMA 6.3.3. The local intersection index is given by

io(n, Ton) = r\(a) Z ()= jlog N(p) =: r¥(a)

i+j=n,
where a = a'p™v is the primary decomposition.

Proof. The intersection we want is

(n,Ton)y = Too(x)d(y)du(z, y)

/[T(F)\G(Af )2

= / X(y)dy / T2¢(gy)du(g)
T(F)\T(4y) G(ay)

—vol(T(F)\T (A)) / TO8(g)dp(g)-

G(Ay)

Write @ = a’'p" with ' prime to p. Recall that T ¢ is simply the part of T,¢
restricted to the complement of T'(Ay)U. Thus, on the support of the distribution of
m, T%¢ is simply

Tn g - Tar”.

Thus the last integral here is a product of two integrals
/ Ta¢?(z)dp(z) = Tard”(1) = ry(a’),
G(AT)

and

0 1 =z
/FTM;)(O 1>darx.

v

This integral is zero if n = 0.
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If n > 0, then U,, is the maximal GL,(O,,), and this last integral is

[l Yo
Lz el )

i+j=n,
yeO, /n*

a0 1 yr i oni—i «
[ Z (6 2) (3

it j=n.
yeO, /m*

= Y () > ¢ @ (g —1)?

i+j=n, zer=i0, /0, —{0}

= > wm)i

i+j=ny

a
Write 7 (a) for the sum of all 7£(a), which is a finite sum over p | a. Then it is
easy to see that r} (a) is one derivative for ry (a), i.e., for any coprime a, n,

ri (ab) = ry (a)r} (b) + 7 (a)ry (b).

We now compute the Green’s function for CM-points. Since the Hecke operator
T, for £ # p acts trivially on P!(F,)/U,, the set of ordinary components. Thus, we
have the following identity of the pairings

3(n,Tan) = deg(Tq)j(n, ).
In summary, we have shown the following

LEMMA 6.3.4. For an ordinary place p, the function

a —> |alge(n, Ton)

is a sum of an Eisenstein series and a derivation of the theta series

M(y) @ a'/?.

Supersingular case. We now want to handle the case where p is a finite prime
of F which is split in B but not split in K. Then all CM-points will have supersingular
reduction. The reduction takes the following form:

(6.3.6) T(F)\G(Af)/U — G'(F)\F) x G(A})/U,

where G' = (B')* with B’ a definite quaternion algebra obtained from B by changing
invariants at o and 7. Notice that this reduction is taken on some base changes of
the original models. So the reductions may not be regular points. To do intersection
theory one must use the minimal regular models. The reduction should then take a
different form.

First, let’s treat the simplest case where K/F is unramified at p and where U,
is the maximal compact subgroup GL2(O,,). In this case the reduction is given by

(6.3.7) T(EN\G(Ap)/U — G'(F\G'(Ap) /U,



100 S. W. ZHANG

where U’ = Ué) -U® with Ué) = C’)E,’p. Here we have used the identification
G(F,) /U, ~G'(F,) /U, ~7]2Z.

Notice that My, has smooth spacial fiber if U¥ is sufficiently small. The inter-
section is given by a distribution on

Xg = {(:U,y) € G'(F,) Xr(F,) G(Fy) | det(x) det(y)], = 1}

given in Lemma 5.5.2. More precisely, we have:

LEMMA 6.3.5. For any g» € G(F,), Let m(g1,g2) be a function on
G'(F) x G'(Ay)

with support on G'(F) given by Lemma 5.5.2. For two disjoint CM divisors repre-
sented by two functions ¢ and ¢ on T(F)\G(AT)/U supported on

T(F)tU, x G(A?),  T(F)aU, x G(AY)

respectively, with t € T(F,) and o € G(F,,). Then, the Green’s function is given by

9u(00) = [ d@) Y malyaly)d (y)dedy

TENG AP i
where ¢ and ' are functions on T(F)\G'(A;)/U'" supported on
T(F)U,, x G'(A]),
such that

¢'(1,9%) = o(t,g%),  ¥'(1,9°) = ¢(a,g%).

Proof. Tt is easy to see that both sides are additive in ¢ and v and invariant under
the action of G (A?). Thus, we may assume that ¢ is the characteristic function of
T(F)tU, and that ¢ is the characteristic function of some T'(F)yU for some y € G(Ay)
with y, = a. Now g,(¢, ) # 0 only if they have the same reduction or equivalently,
for some o € G'(F), y € vU'. In this case, the intersection is given by

vol(U)m('y(;la:,yp) = vol(U)m('ygl,yp).

On the other hand the integral is given by

vol) > m(yy) =vol@)m(y, ' yp). O
YEG'(F)

LEMMA 6.3.6. Assume that K, is unramified over F,. For n a non-negative
integer, define a function on G'(F') by

gordy (E(Y)' ) if £(7) # 0, ordg(E(y)7™) is odd,
mp(y) = ¢ n/2 if £(v) =0, n is even,
0 otherwise.



GROSS-ZAGIER FORMULA FOR GL» 101

For two disjoint CM divisors represented by two functions ¢ and ¢ on
T(F)\T(F,)U, x G(A?)/U ~ T(F)\T(Fp)Ufp X G(A?)/U’

which are invariant under the action from left hand side by T(F),), the local intersec-
tion index is given by the geometric pairing for the multiplicity function m.,:

gp(¢an"¢):/ dx) > mn(e” y)(y)dedy.

[TENG AP Carim

Proof. Consider the decomposition

6 =178 (7 1) cLaton).
c=0

and define constants,

Ye = Tpnthy, (766 ?) - vol (T(Fp) (766 ?) GL2(Op)> :

Then by Lemma 6.3.5,

9p(¢,9) = dx) > m (¢ yy) P(y)dady,

/[T(F)\G(Af > VEG! (F)

where m/(g) is a distribution on G'(Ay) supported on G'(F),) such that

m'(y) =Y m (7 (WOC ?)) Ye-

c>0

We now want to compute .. Notice that in our case, ¢, is actually the charac-
teristic function of PGL2(O,,). It follows that

s 9= 2o (6 06 2)

+j=n
z mod 7

7.{.i—i-c J g
Z o 0 )
i+j=n
z mod xt

_{1 if n — ¢ is even and > 0,

0 otherwise.

On the other hand,

ol (1) 7) GLa(00)) =0k /5)" /Ol

1 if c=0,
Mg +1) ife>o0.
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It follows that

[y

if c=0, n is even,
Ye=%q¢"g+1) ifn—ciseven,n>c>0,

0 otherwise.
By Lemma 5.5.2, we have

ford, (£(y)7™ ') if both n, ord,,(det ) are even, and £(v) # 0,

') n/2 if both n, ord,(det v) are even, { =0,
m =
7 (n+1)/2 if both n, ord(det y) are odd

0 otherwise.

We want to show that m' = m,,. Write v = a + be with a,b € Ok, ex = Te € € T,
(a,b) = 1. Then

§(v) = —N(b)w/det(y),  dety = N(a) = N(b).

If @ is invertible then ord,(dety) = 0 and &(y) = 0 or ord,({(7)) is odd. If a is not
invertible, then ord,(det(y)) = 1, and ord,(£{(y)) = 0. O

We want now to treat the case where U,, is not maximal. We will only consider
so called special CM-points. By blowing up the models we may assume that the
reduction factors the following map

(6.3.8) T(F)\T(F,)U, x G(A?)/U — G'(F)\G'(Ay)/U',

where U' = U/, - U® with

(6.3.9) U,, = (Ok,p + c(X)Ok p€) ",

where € is as before: ez = Ze for any z € K, and € € F,, with ord(e?) =0, 1.

LeEMMA 6.3.7. The local intersection is given by a certain distribution m on
G'(Ay). For any two CM-divisor represented by functions ¢ and v on T(F)\G(A;)/U
whose components at p are supported on T (F,)U,, with character x, we have

90(0,0) = (00" + [ $(a)k(a, ) (v drdy.
[T(F)\G'(Ar)]?
Here (-,-)0 is the geometric pairing defined by the multiplicity function
l .
() = {20rdp(€(7)) 0 <M<,

0 otherwise,

and k(z,y) is a locally constant function on [G'(F)\G'(Ay)]?.

Proof. We will use the minimal resolution of the singularly Ay, of Xy ® L to
compute Green’s function. Thus we have a decomposition

By Lemma 5.5.2, 5.5.4, 6.3.6, the intersection index i, (¢, ) can be given by a formula
with the same property described in the lemma. The function j,(¢,v) is locally
constant so must be given by a locally constant kernel. O
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Superspecial case. We now assume that ¢ is not split in B. The reduction of
CM-points which is secial at p factors the following map

(6.3.10) T(Fp)\T(Fp)UpG(A?)/U — G'(Fp)\G(A?)/U'
where U’ = Ufp -U® with
(6.3.11) Ué) = (Ok,p + c(x)Ok,p€) ™.

LEMMA 6.3.8. The local intersection is given by a certain distribution m on
G'(Ay). For any two CM-divisor represented by functions ¢ and v on T(F)\G(A;)/U
whose components at o are supported on T(F,)U,, with character x, we have

Go(6,10) = (6,0)° + / o)k, y) b (y) dady.

[T(EO\G' (Af)]?

Here (-,-)0 is the geometric local pairing defined by the multiplicity function
3 ' 1
() = {2ordp<s<v>> if0 < 6] <1,

0 otherwise.

and k(z,y) is a locally constant function on [G'(F)\G'(Ay)]?.

Proof. Use Lemma 5.5.5, 5.5.6 and the same argument as in the proof of Lemma
6.3.7. 0

6.4. Gross-Zagier formula for central derivatives

In this section we will complete the proof of Gross-Zagier formula (Theorem 1.3.2) for
the derivatives of Rankin’s L-series, by comparing heights of CM-points and Fourier
coefficients of the kernel function of the Rankin-Selberg convolution. The principle is
as same as that in Gross-Zagier’s original paper [20]. Up to a constant and modulo
some negligible forms, the new form ¥ with Fourier coefficient

(64.1) ¥(a) := |al(n, Tan)
is equal to the holomorphic cusp form @ defined in §3.5 which represents the derivative

of Rankin L-function L'(1/2,I1I ® x). Thus we need to show that the functional
a —s U(a) is equal to the Fourier coefficient a —s ®(a) for for a € Np(ND), the
semigroup of integral ideals of Op prime to ND.

In §3.5 and §6.2, up to derivations of Eisenstein series and theta series IT(x)®a'/?,
we have decomposed both EI;(a) and \/I\l(a) into a sum of local terms EI;,,(a) and U,
where

(6-4-2) {I\'v(a) = _|a'|gv(77v: Tgn)v log gy -

Thus, it suffices to compare these local terms for each place v of F' and each idele
class a € Ng(ND). We need only consider v which is not split in K, since &, = 0
and ¥, is quasi-Eisenstein.

Our main tool is the pre-Gross-Zagier formula, Corollary 4.3.3, for quaternion
algebra , B with ramification set

SUu{v} ifoégl,

(6.4.3) vE = {2 \{v} ifvex.

Let ,G denote the algebraic group ,B*/F*.
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Archimedean case. LEMMA 6.4.1. For v an infinite place,
®,(a) = 2T e(w)|'* T, (a).
Proof. By Proposition 3.5.5, :I;v(a) is the constant term at s = 0 of a sum over

& € F such that 0 < &, < 1 for all infinite place w # v and &, < 0 of the following
terms:

. /2 17 ad;t 0 . e —dx
el wr (1260 (0 ) [ s

By the pre-Gross-Zagier formula, Corollary 4.3.2, :I;v(a) is thus equal to the con-
stant term at s = 0 of

~2%e(w)|'/*(al(Tad, ¢)s,

for a geometric pairing of CM-points T'(F')\,G(Ay) with multiplicity function m? on
T(F)\,G(F)/T(F). Further, m¥(g) # 0 only if £(g)», < 0; in this case it is given by

v _ > dz
ms(g)‘/l w0+ )

Now, by Lemma 6.3.1, g,(n, T9n) is the constant term of a geometric pairing of
¢ and T,¢ with multiplicity function ms = Qs(1 — 2¢) supported on ¢ < 0. Notice
that as a function of &, one has

e dt e x —1)%dx
2Q,(1+2[¢)) = /OO (24 V22 — Tcosh)i+s :/1 a:1+£(1 T |)£|a:)1+s'
It follows that
(a) — 2% je(wn) /> B(a)
is the constant term of a geometric pairing of ¢ and T,¢ with multiplicity function
mg — 2Q)s.
It is not difficult to show that
ms —2Qs = O(¢|°7?)

as |{] — oo, and vanishes at s = 0. Thus if we use the difference to defined the
intersection pairing, then it vanishes at s = 0. O

Unramified case. If v is a finite place, by Proposition 3.5.5 ®,(a) is a sum over
&£ € F with 0 < £ < 1 of the following terms:

e wy (2 () w (1zen (5 0).

We want to write this as the geometric pairing on T'(F)\,G(Ay) of ¢ and T, ¢ where
a=7"a (pta'), and ¢ is the standard function on T'(F')\G'(As)/U" with character
X, and U' = U U? with

U, = (Ok,p + c(x)Ok €)™
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First we consider the unramified case

LEMMA 6.4.2. Let v be a place of F where w and x are both unramified and
ord,(N) = 0. Then there is a constant ¢ such that

,(a) — 297 |c(w)|'/* T, (a) = clog]al, - |a|'/*TI(x)(a).

Proof. By Lemma 3.4.5,

i (i (5 9)) o

only if ord,(na) is even and nonnegative, and ord,(£a) is odd and positive; in this
case it is given by

€(w, wv)|77€|11)/2 |lal, log |€al,.

Thus, we see that up to a multiple of
[af*/*TT(x) (@) log |al..
the functional :I;(a) is equal to
29|e(w)|'* (¢, Ta )

for a geometric local pairing on T'(F)\,G*(Ay) with multiplicity function m®(¢) which
is nonzero only if ord,(£a) is odd and positive, and ord,(na) is even and nonnegative.
In this case

m*(§) = log |¢arl,.

Here ¢ is the standard function on G(A;) with maximal support at T(Af)ﬁf>< with
character x, where R,, is as before for w # v, and R, is the maximal order of the
definite quaternion algebra , B, .

As a function of £ = £(y), we claim that

m®(y) = —2mu(v)log g,

if £ #0,1, where m,, is given by Lemma 6.3.6. In other words, we want to show that
mp(7y) # 0 only if ord((1 — &)7™) is even and nonnegative, and ord({x™) is positive
and odd, and in this case In this case,

ma(y) = gord(en™).

We need only check the positivity. Write
vy =a+ be

whose norm at g is either 0 or 1. In the first case, ord(¢) is odd and positive, and in
the second case, ord(1 — &) is odd and positive. O
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Ramified case. We now want to treat the case where v is a ramified place for f,
X, or w. In this case we will not be able to prove the identity as in the archimedean
case, or the unramified case. But we can prove the following:

LEMMA 6.4.3. For v a finite place, the difference
®(a) = 27" ()| ¥ (a) = cla] *TI() (@) +o f

where c is a constant, and ,f is a form on +G(F)\vG(Ay). Moreover, the function
of has character x under the right translation by K'.

Proof. We will only consider so called special CM-points. As in the unramified
case, using Lemma 3.4.6 and 3.4.7, one can show that ® is equal the geometric local
pairing of

27|e(@))'/*|al(, Tad)
for a multiplicity function m(g) on ,G(F') with singularity

log [¢],-
On other hand, by Lemma 6.3.7, and 6.3.8, we know that

~

\Il(a) = _gv(¢7 Tg(b) lOg Qv

is also a geometric pairing with singularity
1
) log [€]o-
Thus,
®(a) — 207 e(w)|'/* ¥ (a),

is a geometric pairing without singularity. In other words, it is given by

/ o(2)k(z, y) Tad(y)drdy,
[T(F)\wG(Af)]?

for k(z,y) a locally constant function of (,G(F)\,G(As))?. The lemma now follows,
since we decompose

k(z,y) = Zci(m)fi(y)

i

into eigenfunctions f; for Hecke operators on ,G(F)\,G(Ar) to obtain
Z Ai(a) /
- T

where A(a) is the eigenvalue of T, for f;. Thus we may take

of = i(z)dx - (y)o(y)dy.
=% /T e, AP /T e, S

$(2)ci(z)d - / Fi)dw)dy,

(F)\wG(Ar) T(F)\oG(Af)
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Conclusion of Proof of Theorem 1.3.2. In summary, at this stage we have
shown that the quasi-newform

& — 29+ ¢(w) |2 W

has Fourier coefficients which are a sum of the following terms:
e derivations A of Eisenstein series,
e derivations B of theta series II(y) ® a'/?,
e functions , f appearing in ,G(F)\,G(Ay) with character x under the right
translation of K¢, where v are places dividing DN.

By linear independence of Fourier coefficients of derivations of forms [31] Propo-
sition 4.5.1, we may conclude that A = B = 0.

Let IT now be the representation defined by the form f in the introduction and
let , fir be its projection in II. If , fi # 0 then both IIX and (II )X are nonzero.

If x is trivial, then this is a contradiction by Theorem 2.3.2.

If x is nontrivial then II, must be special with unramified twist. Thus, (II}) is
given by an unramified character. Thus x is unramified and K/F is ramified at v.
This contradicts Lemma 2.3.4.

In summary we have shown that & — 291|c(w)|'/?® has trivial quasi-newform
projection. By Proposition 3.1.3, we thus obtain

L'(1/2,TT® x) = 297 e(w)[V/2 - (6%, &%) - (s U )-
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