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1 Introduction and statements of results

The aim of this paper is to study the modified diagonal cycle in the triple product of a curve
over a global field defined by Gross and Schoen in [25]. Our main result is an identity be-
tween the height of this cycle and the self-intersection of the relative dualising sheaf. We
have some applications to the following problems in number theory and algebraic geome-
try:

• Hodge index and Bogomolov’s conjectures for heights of cycles and points. We will show
that the arithmetic index conjecture of Beilinson and Gillet–Soulé [5, 21] gives a conjec-
tural lower bound for the admissible self-dualising sheaf for arithmetic surfaces in term
of local integrations. This gives an approach toward an effective version of Bogomolov
conjecture [36, 41]. By applying Noether’s formula, this will also give an alternative ap-
proach toward a slope inequality for Hodge bundles (or Faltings heights) on moduli space
of curves, other than using stability in geometric invariant theory [10, 37].

• Beilinson–Bloch’s conjectures for special values of L-series and cycles. By conjectures
of Beilinson–Bloch, Swinnerton-Dyer, and Tate’s conjectures [4–6], the non-triviality of
Gross–Schoen cycles will imply the vanishing of the L-series for the triple product co-
homology of a curve. We have a Northcott property for vanishing of L-series on moduli
space of curves. In the case of function field, these are unconditional. Moreover, for non-
isotrivial curve over function field of with good reduction, the Arakelov–Szpiro theorem
implies the vanishing of the L-series of order ≥ 2.

• Non-triviality of tautological classes in Jacobians. We will show that the height of the
canonical Gross–Schoen cycle �ξ has the Northcott type property on the moduli spaces
of curves. We will give an expression of this height in terms of the cycles X1 and F (X1)

in Beauville’s Fourier–Mukai transform [1–3] and Künnemann’s height pairing [27]. This
implies in particular that the Northcott property holds for Ceresa [8] cycles X − [−1]∗X.

For a non-isogeny curve over function field with good reduction, these cycles are non-
trivial by using a theorem of Arakelov–Szpiro [32].

In the following, we will describe in details the main results and applications, and a plan of
proof.

1.1 Gross–Schoen cycles

Let us first review Gross and Shoen’s construction of the modified diagonal cycles in [25]
and definitions of heights of Bloch [6], Beilinson [4, 5], and Gillet–Soulé [21]. Let k be
a field and let X be a smooth, projective, and geometrically connected curve over k. Let
Y = X3 be the triple product of X over k and let e be a divisor on X with rational coefficients
of degree 1. Let e =∑aipi be a decomposition over k̄. Define the diagonal and the partially
diagonal cycles with rational coefficients with respect to base e as follows:



Gross–Schoen cycles and dualising sheaves 3

�123 = {(x, x, x) : x ∈ X},
�12 =

∑

i

ai{(x, x,pi) : x ∈ X},

�23 =
∑

ai{(pi, x, x) : x ∈ X},

�31 =
∑

ai{(x,pi, x) : x ∈ X},

�1 =
∑

i,j

aiaj {(x,pi,pj ) : x ∈ X},

�2 =
∑

i,j

aiaj {(pi, x,pj ) : x ∈ X},

�3 =
∑

i,j

aiaj {(pi,pj , x) : x ∈ X}.

Then define the Gross–Schoen cycle associated to e to be

�e = �123 − �12 − �23 − �31 + �1 + �2 + �3 ∈ Ch2(X3) ⊗ Q.

In this paper, Chow group always means the cycles with rational coefficients module rational
equivalence. Gross and Gross only consider the cycle when the divisor e is a point. But
results can translated to our more general cycles. In fact, if we let e0 to be a point, then it
is easy to check that �e − �e0 is algebraically equivalent to 0. In particular by Gross and
Schoen, �e is homologous to 0 in general, and that �e it is rationally equivalent to 0 if X

is rational, or elliptic, or hyperelliptic when e is a Weierstrass point. A natural question is:
When is �e non-zero in Ch2(X3) in non-hyperelliptic case?

Over a global field k, a natural invariant of �e to measure the non-triviality of a homo-
logically trivial cycle is the height of �e which was conditionally constructed by Beilinson–
Bloch [4–6] and unconditionally by Gross–Schoen [25] for �e . More precisely, assume that
k is the fractional field of a discrete valuation ring R and that X has a regular, semi-stable
model X over S := SpecR. Then Gross–Schoen construct a regular model Y over S of
Y = X3 and show that the modified diagonal cycle �e on Y can be extended to a codimen-
sion 2 cycle on Y which is numerically equivalent to 0 in the special fiber Ys .

If k is a function field of a smooth and projective curve B over a field over which X has
a regular semistable model X , then Gross and Schoen’s construction gives a cycle �̂e with
rational coefficients on a model Y of Y = X3 over B . We can define the height of �e as

〈�e,�e〉 = �̂e · �̂e.

The right hand here is the intersection of cycles on Y . This pairing does not depend on the
choice of Y and the extension �̂e of �e .

If k is a number field, then we use the same formula to define the height for the arith-
metical cycle

�̂ = (�̃e, g)

in Gillet–Soulé’s arithmetic intersection theory [18] where

• �̃e is the Gross–Schoen extension of �e over a model Y over SpecOk ;
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• g is a Green’s current on the complex manifold Y (C) of the complex variety Y ⊗Q C for
the cycle �e: g is a current on Y (C) of degree (1,1) with singularity supported on �e(C)

such that the curvature equation holds:

∂∂̄

πi
g = δ�e(C).

Here the right hand side denotes the Dirac distribution on the cycle �e(C) when integrate
with forms of degree (2,2) on Y (C).

Notice that this height can be also defined using Künnemann’s results in [27], see Theo-
rem 1.5.6 for more details. As the non-triviality of �e follows from the nonvanishing of its
height, a natural question is: When is 〈�e,�e〉 non-zero?

1.2 Admissible dualising sheaves

Our main result of this paper is an expression of the height 〈�e,�e〉 in terms of the self-
intersection ω2

a of the relative dualising sheaf defined in our early paper [39] which we
recall as follows. Let X be a curve over a field k of positive genus. We assume that k is
either the fraction field of a smooth and projective curve B or a number field where we still
set B = SpecOk , and that X has a regular and semistable model X over B .

When B is a projective curve, then one has a usual intersection pairing of divisors on
X and a usual relative dualising sheaf ωX /B which gives an adjunction formula for self-
intersections of sections.

In number field case, Arakelov theory gives intersections on the arithmetic divisors of
form D̂ = (D,G) formed by a divisor D on X and an admissible green’s function G on
X(C) in the sense that its curvature satisfies,

δDC
− ∂∂̄

πi
G = degD · dμ

where dμ is the Arakelov measure on X(C): on each connected component Xv(C) corre-
sponding to archimedean place v,

dμv = i

2g

g∑

n=1

ωn ∧ ω̄n

where g is the genus of X and ωn are base of �(Xv,	Xv ) normalized such that

i

2

∫

ωm ∧ ω̄n = δm,n.

Arakelov shows that there is a unique metric such that an adjunction formula is true for a
dualising sheaf with admissible metric. By Faltings [15], we have a Hodge index theorem.

In [39], we construct an intersection theory (for function field case or number field case)
on divisors of the form (D,G) formed by a divisor D of X and G an adelic green’s function
with adelic curvature dμa . More precisely, G has a component Gv as a continuous and sym-
metric function on the reduction graph R(Xv) × R(Xv) of X ⊗ kv [9] for each closed point
v of B , and as a usual green’s function on Xv(C) for each archimedean place v in number



Gross–Schoen cycles and dualising sheaves 5

field case. The admissible metric and the green’s function on R(Xv) are characterized in
Sects. 3.1 and 3.2 in [39]:

�yGv(x, y) = δx − μa,

∫

Gv(x, y)dμa(y) = 0,

Gv(δKXv
, x) + Gv(x, x) = constant.

Here �y is the Lapalacian operator on the graph with respect to the standard metric on the
graph [39, Appendix], and KXv is the canonical divisor associate to the degree function of
the usual relative dualising sheaf ωX /B [39, Sect. 2.1]. We show that in this intersection
theory [39], we still have Hodge index theorem and an adjunction formula with admissible
relative dualising sheaf ωa whose component at archimedean place is the metrized line de-
fined by Arakelov and at finite place is the usual relative dualising sheaf with a modification
by exp(Gv(R(x),R(x)) [39, Sect. 4], where R : Xv(k̄v) −→ R(Xv) is the reduction map.
We called such intersection pairing an adelic admissible pairing.

We have proved in [39], Theorem 4.4, the following inequalities:

ω̂2
X /B ≥ ω2

a ≥ 0.

Moreover the difference of the first two item is given by local integrations:

ω2
X /B = ω2

a +
∑

v

ε(Xv)deg(v) (1.2.1)

where v runs through the set of non-archimedean places, and

ε(Xv) :=
∫

R(Xv)

Gv(x, x)(δKXv
+ (2g − 2) dμv),

and deg(v) is the usual degree when B is a curve over field k0 and is log N(v) in the number
field case with N(v) the cardinality of the residue field. The first inequality is strict unless X

has genus 1 or X has good reductions at all non-archimedean place.

1.3 Main result and first consequences

The main result of this paper proved in Sect. 3.5 is an identity between the two canonical
invariants:

Theorem 1.3.1 Let X be a curve of genus g > 1 over a field k which is either a number
field or the fraction field of a curve B . Assume that X has a semistable model X over B or
SpecOk . Then

〈�e,�e〉 = 2g + 1

2g − 2
ω2

a + 6(g − 1)〈xe, xe〉 −
∑

v

ϕ(Xv)deg(v).

Here 〈xe, xe〉 is the Neron–Tate height of the class xe := e − KX/(2g − 2) in Pic0(X)Q, and
ϕ(Xv) are some contribution from places v of K :
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1. If v is an archimedean place, then

ϕ(Xv) =
∑

�,m,n

2

λ�

∣
∣
∣
∣

∫

Xv

φ�ωm(x)ω̄n(x)

∣
∣
∣
∣

2

where φ� are normalized real eigenforms of the Arakelov Laplacian:

∂∂̄

πi
φ� = λ� · φ� · dμv,

∫

φkφ�dμ = δk,�,

and ωi are basis of �(Xv,	Xv ) normalized by

i

2

∫

ωmω̄n = δm,n.

2. If v is a nonarchimedean place, then

ϕ(Xv) = −1

4
δ(Xv) + 1

4

∫

R(Xv)

Gv(x, x)((10g + 2) dμa − δKXv
)

where δ(Xv) is the number of singular points on the special fiber of the regular semistable
model X over v, Gv(x, y) is the admission Green function for the admissible metric dμv ,
and the KXv is the canonical divisor on R(Xv). In particular, ϕ(Xv) = 0 if X has good
reduction at v.

Replace k by an extension, we may fix a class ξ ∈ Pic(X) such that (2g − 2)ξ = KX . By
the positivity of the Neron–Tate height pairing, 〈�e,�e〉 reaches its minimal value precisely
when where

e = ξ + torsion divisor.

We call the cycle �ξ a canonical Gross–Schoen cycle for X. Notice that the class of �ξ in
the Chow group with rational coefficients does not dependent of choice of ξ . The height of
�ξ does not depend on the choice of ξ .

Corollary 1.3.2

ω2
a = 2g − 2

2g + 1

(

〈�ξ,�ξ 〉 +
∑

v

ϕ(Xv)deg(v)

)

.

If X is hyperelliptic, then we may take ξ to be a Weierstrass point. By Gross–Schoen, a
positive multiple of �ξ is rationally equivalent to 0. Thus we have the following identity:

Corollary 1.3.3 Assume that X is a hyperelliptic curve, then

ω2
a = 2g − 2

2g + 1

∑

v

ϕ(Xv)deg(v).

Combining with (1.2.1), this also gives an identity for the self-intersection of the usual
relative sheaf of hyperelliptic curve in term of bad reductions. Some explicit examples of
such formulae have been given by Bost, Mestre, and Moret-Bailly in [7]. It is an interesting
question to compare our formula with theirs.
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It is a hard problem to check when the height 〈�ξ,�ξ 〉 = 0 even in the function field
case. We have the following consequence of Theorem 1.3.1 in smooth case:

Corollary 1.3.4 Assume that k is the function field a projective and smooth curve B , and
that X can be extended to a non-isotrivial family X −→ B of smooth and projective curves
of genus g > 1. Then

〈�ξ,�ξ 〉 = 2g + 1

2g − 2
ω2

X /B > 0.

Proof The first equality follows from Corollary 1.3.2 and the formula (1.2.1) in Sect. 1.2.
The second inequality is due to the ampleness of ωX /B by proved by Arakelov in case of
characteristic 0 and by Szpiro in case of positive characteristic. �

We will show that 〈�ξ,�ξ 〉 is essentially a height function in Sect. 4.2:

Theorem 1.3.5 Let Y −→ T be smooth and projective family of curves of genus g ≥ 3 over
a projective variety T over a number field k, or the function field of a curve over a finite
field. Then the function

t ∈ T (k̄) 
→ (2g − 2)〈�ξ(Yt ),�ξ (Yt )〉

is a height function associate to Deligne’s pairing

(2g + 1)〈ωY/T ,ωY/T 〉.

Moreover if the induced map T −→ Mg from T to the coarse moduli space of curves of
genus g is finite, then we have a Northcott property: for any positive numbers D and H ,

#
{
t ∈ T (k̄) : deg t ≤ D, 〈�(Yt )ξ ,�(Yt )ξ 〉 ≤ H

}
< ∞.

Remarks

We would like to give some remarks about the upper bound for 〈�ξ,�ξ 〉.
When k is a function field of curve B of genus q ≥ 2 a field of characteristic 0, the

semi-stable model X is a surface of general type and one has the Bogomolov–Miyaoka–Yau
inequality:

c1(X )2 ≤ 3c2(X ).

Equivalently, in term of relative data,

ω2
X /B ≤ (2g − 2)(2q − 2) + 3

∑

b∈B

δ(Xb).

See Moret–Bailly [28] for details. By Corollary 1.3.2, we have a bound for the height of
Gross–Schoen cycle:

〈�ξ,�ξ 〉 ≤ (2g + 1)(2q − 2) +
∑

b∈B

(
6g + 3

2g − 2
(δ(Xb) + ε(Xb)) − ϕ(Xb)

)

.
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When k is a function field of positive characteristic, then the Bogomolov–Miyaoka–Yau
inequality is not true. Instead, one has a Szpiro [32, Theorem 3] inequality in which one
needs to add some inseparableness of f . So we have a similar inequality for the height of
Gross–Schoen cycle.

When k is a number field, then Parshin [30] and Moret–Bailly [28] have formulated
an arithmetic Bogomolov–Miyaoka–Yau inequality. It has been proved that this conjecture
is equivalent to the effective Mordell conjecture, Szpiro’s discriminant conjecture, and the
ABC conjecture. Conversely, Elkies [13] has proved that ABC-conjecture will imply the
effective conjecture. By our main theorem, these are equivalent to an upper bound conjecture
with ω2 replaced by the height of Gross–Schoen cycle.

1.4 Hodge index and Bogomolov conjectures

By the construction, the cycle �e has zero intersection in Ch3(X3) with p∗
i Pic(X) via the

projections pi : X3 −→ X. Thus, it is primitive with respect an ample line bundle L on
X3 of the form

∑
p∗

i L for an ample line bundle on X. In case where k is a function field of
characteristic 0, by Hodge index theorem (which is called Hodge–Riemann bilinear relations
in Griffiths–Harris [23, p. 123]), one can show that the height 〈�ξ,�ξ 〉 is non-negative, and
is vanishing precisely when �̂ξ is numerically equivalent to 0. There is nothing need to
prove if �̂ξ is numerically equivalent to 0. Otherwise, without loss of generality, we may
assume that k is a function field over C and then we may compute the intersection using class
[�̂ξ ] of �̂ξ in the de Rham cohomology H 2,2(Y). By Hodge index theorem, the intersection
〈[�̂ξ ], [�̂ξ ]〉 is non-negative, and is vanishing precisely when [�̂ξ ] = 0. Since [�̂ξ ] = 0
would have implied that �̂ξ is numerically equivalent to 0, we must have 〈�ξ,�ξ 〉 > 0.

In cases that k is a number field or a function field over a finite field, the Hodge index
theorem is part of the Standard Conjecture of Grothendieck, Beilinson, and Gillet–Soulé
[5, 21]:

Conjecture 1.4.1 Let k be a number field or a function field over a finite field, then

〈�ξ,�ξ 〉 ≥ 0

and this height vanishes precisely when �ξ = 0 in Ch2(X3).

Granting the first part of this conjecture or assuming that k is a function field of charac-
teristic 0, we then have a lower bound for ω2

a :

ω2
a ≥ 2g − 2

2g + 1

∑

v

ϕ(Xv)deg(v).

It is proved in [39] that ω2
a > 0 is equivalent to the Bogomolov conjecture about the finiteness

of points x ∈ X(k̄) with small Neron–Tate height in the map

X −→ Jac(X), x 
→ [(2g − 2)x − KX] ∈ Jac(X).

In number field case, the Bogomolov conjecture is proved by Ullmo [36, 41]. The conjecture
of Gillet–Soulé thus implies an effective version of Bogomolov conjecture as ϕ(Xv) can be
computed effectively for any given graph. In view of the Bogomolov conjecture, we would
to make the following:
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Conjecture 1.4.2 Let v be a finite place. Let δ0(Xv), . . . , δ[g/2](Xv) denote the numbers of
singular points x in the special fiber Xk(v) such the local normalization of Xk(v) at x is
connected when i = 0 or a disjoint union of two curves of genus i and g − i. Then

ϕ(Xv) ≥ c(g)δ0(Xv) +
∑

i>0

2i(g − i)

g
δi(Xv)

where c(g) is a positive function of g > 1.

The conjecture and Theorem 1.3.1 together imply that ϕ(Xv) ≥ 0 and that ϕ(Xv) = 0
precisely when X has a good reduction at v. In Sect. 4.3, we will show that it suffices to
show the conjecture when all δi = 0 for i > 0. More precisely, we will give an explicit
formula in Sect. 4.4 for ϕv for elementary graphs and prove the following:

Theorem 1.4.3 Assume that the reduction graph R(Xv) is elementary in the sense that
every edge is included in at most one cycle. Then the conjecture is true with

c(g) = g − 1

6g
.

Moreover, the equality in Conjecture 1.4.2 with above choice of c(g) is true if and only if
every circle has at most one vertex.

Recently, Xander Faber [14] has verified the conjecture for curves with small genera. For
example, he shows for genus 2 and 3, we may take c(2) = 1/27 and that c(3) = 2/81. Thus
he has a proof of the Bogomolov for all curves of genus 3.

The Bogomolov conjecture should hold for non-isotrivial curve over function field. Some
partial results have been obtained by Moriwaki [29], Yamaki [38], and Gubler [26]. The
work of Moriwaki and Yamaki are effective and follows from a slope inequality of Moriwaki
[29] for general semistable fiberation π : X −→ B:

λ(X /B) := degπ∗ωX /B ≥ g

8g + 4
δ0(X) +

∑

i>0

i(g − i)

2g + 1
δi(X)

where δi(X) =∑v δi(Xv)deg(v) is the intersection of B with i-the boundary component of
the moduli space. This formula is a generalization of a work of Xiao [37] and Cornalba–
Harris [10], and is proved based on the stability of the sheaf π∗ωX /B and by Noether’s
formula

λ(X /B) = 1

12

(

ω2
X /B +

∑

v

δ(Xv)

)

(1.4.1)

where δ(Xv) =∑ δi(Xv) be the total number of singular points in the fiber over v. Thus,
we have an equality

λ(X /B) = 2g − 2

2g + 1
〈�ξ,�ξ 〉 +

∑
λ(Xv)deg(v) (1.4.2)

where

λ(Xv) = g − 1

6(2g + 1)
ϕ(Xv) + 1

12
(ε(Xv) + δ(Xv)). (1.4.3)

Thus the Hodge index theorem gives
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Theorem 1.4.4 If k is a function field of characteristic 0, then

λ(X /B) ≥
∑

λ(Xv).

We believe that this is the sharpest slope inequality for fibred surfaces with given config-
uration of singular fibers. In particular, the Moriwaki’s inequality should follows from the
following

Conjecture 1.4.5 If v is a non-archimedean place, then

λ(Xv) ≥ g

8g + 4
δ0(Xv) +

∑

i>0

i(g − i)

2g + 1
δi(Xv).

In Sect. 4.3, we will reduce this conjecture to the case where δi = 0 and prove the con-
jecture for elementary graphs. Also Xander Faber [14] has verified the conjecture for curves
with small genera.

In number field case, Faltings [15] defines a volume form on detπ∗ωX /B for each
archimedean place v. The number λ(X /B) is called the Faltings height of X . He also proves
a Noether formula (1.4.1) with his δ(Xv). Thus we still have expression (1.4.2) with λ(Xv)

given in (1.4.3) when v is non-archimedean, and

λ(Xv) = g − 1

6(2g + 1)
ϕ(Xv) + 1

12
δ(Xv)

when v is archimedean, where ϕ(Xv) is given in Theorem 1.3.1. Now Theorem 1.4.4 is a
conjecture predicted by Hodge Index Conjecture 1.4.1:

Conjecture 1.4.6 If k is a number field, then

λ(X /B) ≥
∑

λ(Xv)deg(v).

1.5 Beilinson–Bloch conjecture and tautological classes

Assume that k is a number field or a function field of a curve defined over a finite field
and a prime �-prime to the characteristic of k. For a smooth and projective variety Y de-
fined over k, and an integer i between 0 and dimY , we should have a �-adic cohomology
Hi(Y ) := Hi(Yk̄,Q�) and a complete L-series L(H i(Y ), s) with a conjectured holomor-
phic continuation and a function equation. For each n between 0 and dimY , we also have a
Chow group Chn(Y )0 of codimension n-cycles on Y with Q-coefficients and trivial classes
in H 2n(Y )(n), the twist of H 2n(Y ). The conjecture of Beilinson [4, 5] and Bloch [6] asserts
that Chn(Y )0 is of finite rank and

rankChn(Y )0 = ords=0L(H 2n−1(Y )(n), s). (1.5.1)

If Y is a curve, then the above is the usual Birch and Swinnerton-Dyer conjecture for Jac(Y ).
If k is a function field, then the holomorphic continuation of the L-series and the functional
equation are known. The Beilinson–Bloch conjecture in function field case is equivalent to
Tate’s conjecture, see Tate [34, 35] and Beilinson [5].

Now we assume that Y = X3 is a power of a curve over k, n = 2. Then both sides of
(1.5.1) has decomposition by correspondences defined by action of symmetric group S3
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acting on X3, projections and embeddings between Xi and Xj . In Sect. 5.1, we will show
that �ξ lies in the subgroup Ch(M) of Ch2(X3)0 of elements z satisfying the following
conditions:

1. z is symmetric with respect to permutations on X3;
2. the pushforward p12∗z = 0 with respect to the projection

p12 : X3 −→ X2, (x, y, z) 
→ (x, y);
3. let i : X2 −→ X3 be the embedding defined by (x, y) −→ (x, x, y) and p2 : X2 −→ X

be the second projection. Then

p2∗i∗z = 0.

The operations induces some correspondences on X3. The same condition apply to coho-
mology gives the kernel M of

3∧
H 1(X)(2) −→ H 1(X)(1), a ∧ b ∧ c 
→ a(b ∪ c) + b(c ∪ a) + c(a ∪ b).

Here ∪ : H 1(X)⊗H 1(X) −→ Q(−1) is the Weil pairing on H 1(X). The cohomology M is
pure of weight −1 with an alternative pairing

M ⊗ M −→ Q�(1).

Moreover, it can be shown that M is a Chow motive with projector given in Sect. 5.1. It
is conjectured that the complete L-series of M has a holomorphic continuation to whole
complex plane and satisfies a functional equation

L(M, s) = ±c(M)−sL(M,−s)

where ε(M) = ±1 is the root number of M , and c(M) ∈ N is the conductor of M which is
divisible only by places ramified in M . See Deligne [12] and Tate [33] for details. In our
situation, the Beilinson and Bloch conjecture has a refinement:

Conjecture 1.5.1 (Beilinson–Bloch) The height pairing on Ch(M) is positive definite and

rankCh(M) = ords=0L(M, s).

If k is a number field, we don’t know in general that L(M, s) has a homomorphic con-
tinuation. But we attempt to guess that for most curve X over a field k, the L-series should
has vanishing order ≤ 2. In other words, for general X,

ε(M) = 1 =⇒ L(M,0) �= 0,

ε(M) = −1 =⇒ L′(M,0) �= 0.

The following are some formulae for computing epsilon factors proved in Sect. 5.2:

Theorem 1.5.2 The epsilon factor has a decomposition

ε(M) =
∏

v

εv(M)

into a product of local epsilon factor give as follows.
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1. If v is a real place,

εv(M) = (−1)g(g−1)/2 =
{

1, if g ≡ 0,1 mod 4
−1, if g = 2,3 mod 4

2. If v is a complex place

εv(M) = (−1)g(g+1)(g+2)/6 =
{

1 if g �≡ 1 mod 4
−1 if g ≡ 1 mod 4

3. If v is a non-archimedean place, then

εv(M) = (−1)e(e−1)(e−2)/6+ge · τ (e−1)(e−2)/2+g

where e is the dimension of toric part Tv of the reduction of Néron model of Jac(X) at
v, and τ = ±1 is the determinant of the Frobenius Frobv acting on the character group
X∗(Tv).

Let Chnum(M) be the quotient of Ch(M) modulo the numerical equivalence. If k is a
function field, we have an inequality

rankChnum(M) ≤ ords=0L(M, s). (1.5.2)

See Tate [35], Propositions 2.8, 2.9 and their proofs for details. If X is non-isotrivial and has
good reduction everywhere over places of k, then by Theorem 1.3.4, �ξ is non-zero. On the
other hand, we can show that the sign of the functional equation is 1. Thus we must have

Theorem 1.5.3 If X/k is a curve of over function field of a curve B over a finite field of
genus g ≥ 3. Assume that X can be extended into a non-isotrivial smooth family of curves
over B . Then

ords=0L(M, s) ≥ 2.

In view of Tate’s conjecture, we have

rankChnum(M) = ords=0L(M, s) ≥ 2.

Thus we have a natural question: how to find another cycle in Ch2(M)0 which is linear
independent of �ξ ?

In general it is very difficult to compute the special values or derivatives of L(M, s) at
s = 0. However the following is a consequence of Theorem 1.3.5 and Beilinson–Bloch’s
conjecture, we conclude the following:

Conjecture 1.5.4 Let Y −→ T be a smooth and projective family of curves of genus g ≥ 3
over a projective variety T over a number field k. Assume the induced map T −→ Mg

from T to the coarse moduli space of curves of genus g is finite, then we have a Northcott
property: for any positive numbers D,

#
{
t ∈ T (k̄) : deg t ≤ D, L(M(Yt ),0) �= 0

}
< ∞.
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Over function field, this is a theorem induced from Theorem 1.3.5 and formula (1.5.2).
In the following, we want to apply our result to the tautological algebraic cycles in the

Jacobian defined by Ceresa [8] and Beauville [3]. We will use Fourier–Mukai transform of
Beauville [1, 2] and height pairing of Künnemann [27].

Let f : X −→ J be an embedding given by taking x to the class of x − ξ . Then we define
the tautological classes R to the smallest subspace of Ch∗(J ) containing X closed under the
following operations:

• intersection pairing “·”;
• Pontriajan’s star operator “∗”;

x ∗ y := m∗(p∗
1x · p∗

2y)

where p1,p2,m are projection and addition on J 2;
• Fourier–Mukai transform

F : Ch∗(J ) −→ Ch∗(J )

x 
→ F (x) := p2∗(p∗
1x · eλ)

where λ is the Poincaré class:

λ = m∗θ − p∗
1θ − p∗

2θ.

Here θ is the theta divisor consisting of sums of g − 1-points in f (X).

Using Fourier–Mukai transform, we have spectrum decomposition

X =
g−1∑

s=0

Xs, Xs ∈ Chg−1(J )

with [k]∗Xs = k2+sXs. By Beauville [3], the ring R under the intersection pairing is gener-
ated by F (Xs) ∈ Ch1+s(J ). The pull-back of these cycles on X3 under the morphism

f3 : X3 −→ J, (x1, x2, x3) 
→ f (x1) + f (x2) + f (x3)

can be computed explicitly. In particular, we can prove the following formulae proposed by
Wei Zhang [42]:

Theorem 1.5.5 Consider the addition morphism f3 : X3 −→ J . Then

f ∗
3 F (X1) = �, f3∗�ξ =

∑

s

(32+s − 3 · 22+s + 3)Xs,

Xs = (32+s − 3 · 22+s + 3)−1
∑

i+j+k=s−1

(Xi ∗ Xj ∗ Xk) · F (X1), s > 0.

Moreover, the following are equivalent:

1. �ξ = 0 in Ch2(X3);
2. X − [−1]∗X = 0 in Chg−1(J );
3. X1 = 0 in Chg−1(J );
4. Xs = 0 in Chg−1(J ) for all s > 0.
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By this theorem, under the operators · and ∗, the ring R is generated by X0 and any one
of three canonical classes X1, Gross–Schoen cycle f3∗�ξ , and Ceresa cycle X − [−1]∗X.
The following gives a more precise relation between the height of �ξ and the height of class
X1 and F (X1):

Theorem 1.5.6 The cycle F (X1) is primitive with respect to theta divisor θ , homologically
trivial in Ch2(J ), and

〈F (X1),X1〉J = 1

6
〈�ξ,�ξ 〉X3 = 1

(g − 3)! 〈F (X1), θ
g−3 F (X1)〉J .

Plan of proof

The proof of Theorem 1.3.1 is proceeded in several steps in Sects. 2–3:

1. Reduction from X3 to X2: we express the height as a triple product on X×X of an adelic
line bundles with generic fiber (Theorem 2.3.5):

� − p∗
1ξ − p∗

2ξ.

2. Reduction form X2 to X: we express the triple as the self-intersection of the canonical
sheaf plus some local triple integrations (Theorem 2.3.5).

3. Local triple pairing: we develop an intersection theory on the reduction complex of the
product X × X at a non-archimedean place (Theorem 3.4.2) and use this to complete the
proof of Theorem 1.3.1.

The proof of other results about the estimate of the height follows form detailed calcula-
tion of constants φ and λ in Sect. 4. We first express these constants in terms of integration
of resistance on metrized graph and reduce the computation to 2-edge connected graphs,
and finitely compute everything for 1-edge graphs.

The last section is devoted to study the Beilinson–Bloch conjecture and the Beauville tau-
tological cycles. We first define a minimal cohomology M so that its Chow group contains
�ξ . Then we compute the ε-constant of its L-series. Finally, we translate the statements to
tautological cycles in the Jacobian varieties.

2 Gross–Schoen cycles and correspondences

The aim of this section is to prove some global formulae for the heights of Gross–Schoen
cycles in terms of the self-intersections of the relative dualising sheaves and some local
intersections:

2g + 1

2g − 2
ω2 + local contributions (Theorem 2.5.1).

These local contributions will be computed in the next section. More generally, for any
correspondences t1, t2, t3 on X × X, we compute the height pairing

〈�e, (t1 ⊗ t2 ⊗ t3)�e〉.
This pairing is positive if ti are correspondence of positive type by Gillet–Soulé’s Conjec-
tures 2.4.1 and 2.4.2. We will show that this is equal to the intersection number t̂1 · t̂2 · t̂3 on
X × X (Theorem 2.3.5).
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2.1 Cycles and heights

In this subsection, we will review intersection theory of Gillet–Soulé and some adelic ex-
tensions with some variations. The basic references are Gillet–Soulé [18–20], Faltings [16],
Deligne [11], and our previous paper [40].

Arithmetical intersection theory

Let k be a number field with the ring of integers Ok . By an arithmetical variety over Ok , we
mean a flat and projective morphism X −→ SpecOk such that Xk is regular. By (homologi-
cal) arithmetic cycle, we mean a pair Ẑ = (Z,g) where Z is a cycle on X with coefficients
in Q and g is a current such that curvature

h(Ẑ) := ∂∂̄

πi
g + δZ

is smooth on X (C). The cycle is called irreducible if either Z is irreducible and horizontal
(i.e., flat over Ok), or Z is irreducible and vertical (i.e. including in a closed fiber of X
over Ok), or Z = 0. We define (homological) arithmetic Chow group as a combination of
irreducible cycles with rational or real coefficients:

∑

i

ai(Zi, gi)

where ai ∈ Q if Zi is horizontal, and ai ∈ R if Zi is vertical, modulo the relations:

• (div(f ),− log |f |) = 0 for a rational function f on an integral subscheme Y of X ;
• (0, ∂α + ∂̄β) = 0;
• a(0, g) = (0, ag).

For a morphism φ : X −→ Y of arithmetic varieties, one has push forward morphism
φ∗ : Ĉh∗(X ) −→ Ĉh∗(Y) if φ is proper and generically smooth, and pullback morphism
φ∗ : Ĉh∗(Y) −→ Ĉh∗(X ) if φ is flat.

One may define cohomological arithmetical Chow group Ĉh
∗
(X ) as bivariant classes of

morphisms of homological arithmetical groups as in Fulton book [17, Chapter 17]. In this
paper, we only consider the classes defined by Chern classes of Hermitian bundles or by
smooth forms. More precisely, let K̂(X ) denote the arithmetic K-group of hermitan vector
bundles and smooth forms module the usual secondary Chern class relation for an exact
sequence. Then we have a Chern character:

ĉh : K̂(X ) −→ End(Ĉh∗(X )).

This is the usual Chern character for Hermitian vector bundles and the following formula
for smooth forms: α on X (C):

ĉh(α)x = (0, α · h(x)).

See Gillet–Soulé [22]. In this paper, we define the cohomological group Ĉh
∗
(X ) of arith-

metical cycles as the quotient of K̂(X ) modulo the subgroup of elements t such that

ĉh(φ∗t) = 0
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for any morphism of arithmetic varieties φ : Y −→ X . When X is regular, ĉh is an isomor-
phism, thus we have an isomorphism:

K̂(X ) = Ĉh
∗
(X ) = Ĉh∗(X ).

For later use, we make two remarks. First one is a natural paring:

Ĉh
p
(X ) × Ĉhp(X ) −→ R, [Ē , α] × z 
→ ĉh(Ē , α) · z.

The second is that the Chern classes can be computed using first Chern classes of line bun-
dles and smooth forms. More precisely, fix a hermitian vector bundle E on X of rank n as
above. Let π : P −→ X be the flag scheme over P and let

E1 := π∗E ⊃ E2 ⊃ E3 ⊃ · · · ⊃ En ⊃ En+1 = 0

be the universal filtration of π∗E . Let Li = Ei/Ei+1 be the line bundle with subquotient
metrics. Then for any x ∈ Ĉh∗(X ) then we have

ĉh(E) · x = π∗

(
∑

i

exp(ĉi(Li )) ·
n∏

j=1

ĉ1(Lj )
n−j · π∗x

)

+ (0, α(E))x (2.1.1)

where α(E) is a smooth form supported on X (C). This follows from two facts: for any
x ∈ Ĉh(X ),

x = π∗

(
n∏

j=1

ĉ1(Lj )
n−j · π∗x

)

π∗(ĉh(E )) =
∑

i

exp ĉ1(Li ) + (0, c̃h(E ))

where c̃h(E ) is the secondary Chern class associate to the filtration of E .

Cycles homologous to zero

Let X be a smooth and projective variety of dimension n over a number field or a function
field k. Let Ch(X) denote the Chow group of cycles with coefficient in Q. Then we have a
class map to �-adic cohomology:

Ch(X) −→ H ∗(X)

where H ∗(X) = H ∗(X ⊗ k̄,Q�) with � a prime different than the characteristic of k. The
kernel Ch(X)0 of this map is called the group of homologically trivial cycles. Beilinson
[4, 5] and Bloch [6] have given a conditional definition of height pairing between cycles in
Ch(X)0. We will focus on the case of number fields but all the results hold for case where
k is the function field of a smooth and projective curve B over some field k0, and where
we have the same height pairing with SpecOk replaced by B and with the condition about
green’s function dropped.
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Height pairing

One construction of this height pairing in number field case is based on Gillet and Soulé’s
intersection theory as follows. Assume that X has a regular model X over SpecOk , and that
every cycle z ∈ Ch(X)0 has an extension ẑ = (z̄, gz) to an arithmetic cycle which has trivial
intersection to vertical arithmetic cycles:

1. z̄ is a cycle on X extending z;
2. gz has curvature hz = 0;
3. the restriction of z̄ on each component in the special fibers of X is numerically trivial.

Then for any z′ ∈ Ch(X)0 extended to an arithmetic cycle ẑ′ on X , the height pairing is
defined by

〈z, z′〉 := ẑ · ẑ′.

It is clear that this definition does not depend on the choice of ẑ′, and that the pairing is
linear and symmetric.

Let C(X) = Chn(X × X) denote the ring of (degree 0) correspondences on X. Then
C(X) acts on Ch(X) and preserve Ch(X)0. Recall that the composition law is given by the
intersection pairing on X × X × X and various projections to X × X:

t2 ◦ t1 = p13∗(p∗
12t1 · p∗

23t2), t1, t2 ∈ C(X).

For any t ∈ C(X), z ∈ Ch(X), the push-forward and pull-back of z under t are defined by

t∗(z) = p2∗(p∗
1z · t), t∗(z) = p1∗(t · p∗

2z).

Let t −→ t∨ be the involution defined by the permutation on X2 then we have t∗ = (t∨)∗. It
can be shown that the involution operator is the adjoint operator for the height pairing:

Lemma 2.1.1 (Lemma 4.0.3 in Beilinson [5])

〈t∗z, z′〉 = 〈z, t∗z′〉 = 〈z, t∨∗ z′〉.

Adelic metrized line bundles

In the following, we want to review some facts about the adelic metrized bundles developed
in [40, Sect. 1]. For a smooth variety X defined over a number field k, let us consider the
category of arithmetic models X with generic fiber X, i.e. an arithmetic variety X −→
SpecOk and an isomorphism Xk � X. As this category is partially ordered by morphisms,
we can define the direct limit

lim−→ P̂ic(X ) ⊗ Q.

Every element in this group defines an algebraically metrized line bundle on X. The group
¯Pic(X) of integrable metrized line bundles are certain limits of these algebraically metrized

line bundles.
The intersection pairing

c1(L1) · · · c1(Ln) · α · [X ] ∈ R, Li ∈ P̂ic(X ), α ∈ Ĉh
dim X −n

(X )
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can be extend to a pairing with Li ∈ ¯Pic(X) with smooth metrics at infinite places. If α is
the identity element then this is proved in Theorem 1.4 in [40] without even assuming the
smoothness of metrics at infinity. In general case, we may use formula (2.1.1) to reduce to the
case that α is the Chern classes of hermitian line bundles, or a smooth form. The intersection
of line bundle case is already covered in [40], and form case is given by the product of α

with curvature of Li . The following lemma shows that the pairing can be represented by a
(homological) element on X .

Lemma 2.1.2 Let X be an arithmetical scheme and let L̄1, . . . , L̄n be some adelic metrized
line bundles on X. Assume that the metrics of Li at infinite places are smooth. Then the
functional

Ĉh
dim X −n

(X ) −→ R : α 
→ α · c1(L̄1) · · · c1(L̄n)

is represented by an element in ĈhdimX−n(X ) denoted by

c1(L̄1) · · · c1(L̄n) · [X ] ∈ Ĉhdim X −n(X ).

Moreover, this element has the following restriction on the generic fiber:

c1(L1) · · · c1(Ln)[X].

Proof It suffices to deal with the case where bundles are ample and are limits of some
integral-ample models (Xi , Mi1, . . . , Min) of (Xi, Lei

i1, . . . , Lei

in). Without loss of gener-
ality, we may assume that Xi dominates X , that L1k, . . . , Lnk have arithmetic modes
M01, . . . , M0n, and that the metrics on the archimedean places induce the same metrics
on each Lik(C). Let πi denote the projection Xi −→ X .

For any cohomological arithmetical cycles α on X , we can define intersection pairings:
(

1

en
i

c1(Mi1) · · · c1(Min)

)

· π∗
i α = πi∗

(
1

en
i

c1(Mi1) · · · c1(Min)

)

· α

which has a limit denoted by

c1(L̄1) · · · c1(L̄n) · α.

We claim that the cycles

πi∗
(

1

en
i

c1(Mi1) · · · c1(Min · [Xi])
)

have a limit in Ĉh
∗
(X )R introduced in Gillet–Soulé [21]. Indeed, subtract them by

c1(M01) · · · c1(M0n)[X ],
we obtain vertical cycles

Vi := πi∗
(

1

en
i

c1(Mi1) · · · c1(Min) · [Xi]
)

− c1(M01) · · · c1(M0n) · [X ]

supported in finitely many fibers of X over Ok .
Let F be the union of these fibers as a closed subscheme of X . If F is smooth, then we

can use étale cohomology to compute the intersection. In general, we may use de Jong’s
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alternation to work on a quasi-finite domination map π : Y −→ F such that Y is projective
and smooth. Let f : Y −→ X denote the induced morphism. Then Vi can be written as
Vi = f∗Wi with Wi a cycle on Y . In this way,

Vi · β = Wi · f ∗β, β ∈ Ĉh
∗
(X ).

In other words, the intersection pairing of Vi with Ĉh
∗
(X ) can be written as intersection of

Wi with f ∗Ĉh
∗
(X ).

So we may work on the intersections of cycles on the smooth variety Y . Let N∗(Y)

denote the group of group of cycles modulo numerical equivalence. Let M be the image
of f ∗Ĉh

∗
(X ) in N∗(Y). The elements Wi thus define a sequence of convergent functionals

on M . Then N∗(Y) is finite dimensional (see Tate [35]), this sequence will converge to a
functional represented by an element W of Ch∗(Y) ⊗ R. Let V = f∗(W). Thus we have
shown that

lim
i

πi∗
(

1

en
i

c1(Mi1) · · · c1(Min) · [Xi]
)

= c1(M01) · · · c1(M0n) · [X ] + V.

In this way we define a correspondence

c1(L̄1) · · · c1(L̄n) · [X ] = lim
i

πi∗
(

1

en
i

c1(Mi1) · · · c1(Min) · [Xn]
)

. �

Deligne pairing

In the following, we want to construct Deligne pairing of metrized line bundles. Let f :
X −→ Y be a flat and projective morphism of two smooth varieties over valuation field k of
relative dimension n. Let L̄0 = (L0,‖ · ‖0), L̄1 = (L1,‖ · ‖), . . . , L̄n = (Ln,‖ · ‖n) be n + 1
integrable metrized line bundles over X. We want to define a Deligne paring

〈L̄0, L̄1, . . . , L̄n〉 = (〈L0, L1, . . . , Ln〉,‖ · ‖)
as an adelic metrized line bundle over Y . Recall that L̄i can be approximated by models
over Ok :

(Xi , Mi0, . . . , Min)

of (X, Lei

0 , . . . , Lei
n ) for some ei ∈ N. Without loss of generality, we may assume that Xi is

flat and projective over a model Yi over Ok . Indeed, for a model Y of Y , we may replace Xi

by Zarisk closure of X in Xi ×SpecOk
Y , we may assume that Xi has a morphism to Y . Then

we apply Raynaud’s flattening [31], Theorem 1, chapter 4, to blow up Y , and to replace Xi

by its pure-transform to get a flat family Xi −→ Yi . In this way, we have a Deligne’s pairing:

〈Mi0, . . . , Min〉 ∈ Pic(Yi ).

It is easy to see that this bundle is semiample if all Li is semiample, and that the induced
metrics on 〈L0, . . . , Ln〉 is convergent using estimate in the proof in [40], Theorem 1.4. Thus
this sequence of bundles on models Mi defines an adelic metrized line bundle on Y .

In the following, we would like to describe a formula for computing norm of a section of
Deligne’s pairing. Let �0, �1, . . . , �n be non-zero sections of Li on X. By writing Li as linear
combination of very ample line bundles and applying Bertini’s theorem, we may assume that
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any intersection of any subset of div(�i)’s is a linear combination of subvarieties which are
smooth over Y . Then the pairing 〈�0, . . . , �n〉 is well-defined as a section of 〈L0, . . . , Ln〉.
The norm of this section can be defined by the following induction formula:

log‖〈�0, . . . , �n〉‖ = log‖〈�0|div�n , . . . , �n−1|div�n〉‖

+
∫

X/Y

log‖�n‖c1(L̄0) · · · c1(L̄n−1). (2.1.2)

We need to explain the integration in the above formula in terms of models (Xi , Mi0, . . . ,

Min) as above. In this case �
ei
n extends to a rational section m of Mn. The divisor div(m)

has a decomposition of Weil divisor:

div(m) = eidiv(�n) + Vi

where div(�n) is the Zariski closure of div(�n) on Xi and Vi is a divisor in the special fiber
of Xi over SpecOk . Then the integral is defined as

∫

X/Y

log‖�n‖c1(L̄0) · · · c1(L̄n−1) = lim
i→∞

1

en
i

Vi · c1(Mi0) · · · c1(Min−1).

2.2 Correspondences on a curve

In this subsection we want to construct arithmetic classes for divisors on a product without
using regular models.

Decompositions

Lemma 2.2.1 Let X1 and X2 be two varieties over a field k with product Y = X1 ×k X2. Let
e1, e2 be two rational points on X1 and X2, and let Pic−(Y ) be the subgroup of line bundles
which are trivial when restrict on {e1} × X2 and X1 × {e2}. Then we have a decompositions
of line bundles on Y :

Pic(Y ) � p∗
1Pic(X1) ⊕ p∗

2Pic(X2) ⊕ Pic−(Y ). (2.2.1)

Proof For any class t ∈ Pic(Y ), the equation

t = p∗
1α1 + p∗

2α2 + s, αi ∈ Pic(Xi), s ∈ Pic−(Y )

is equivalent to

α2 = t |{e1}×X2 , α1 = t |X×{e2}. �

For any line bundle L ∈ Pic−(Y ), we can define a homomorphism Alb(X1) to the picard
variety Pic0(X2) which sends a zero cycle

∑
i ni(xi) to the bundle

∏
i Lni |{xi }×X2 . In this

way we can get an isomorphism of groups:

Pic−(Y ) = Hom(Alb(X1),Pic0(X2)). (2.2.2)
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Now we assume that Xi are curves over a number field. Consider an embedding

Y = X1 × X2 −→ A := Alb(Y ) = Jac(X1) × Jac(X2)

(x1, x2) 
→ (x1 − e1, x2 − e2).

This induces a homomorphism of groups of line bundles:

Pic(A) −→ Pic(Y ).

We also have a decomposition for line bundles on A with respect to the base points (0,0)

on A:

Pic(A) = p∗
1Pic(Jac(X1)) ⊕ p∗

2Pic(Jac(X2)) ⊕ Pic−(A).

Lemma 2.2.2 The morphism Pic(A) −→ Pic(Y ) is surjective. More precisely, it induces the
following:

1. An isomorphism Pic0(A) � Pic0(Y );
2. An isomorphism Pic−(A) � Pic−(Y ).

Proof The first statement is the duality between Alb(Y ) and Pic0(Y ). The second statement
follows from (2.2.2) applying to X1 × X2 and Jac(X1) × Jac(X2) identities

Alb(X1) = Jac(X1) = Alb(X1), Pic0(X1) = Pic0(Jac(X2)). �

Admissible metrics

Since the class map gives an embedding from Pic−(A) ⊗ Q to H 2(A), every line bundle
in Pic−(A) ⊗ Q is even under action by [−1]∗ and thus have eigenvalues n2 under action
[n]∗. In this way, we may construct admissible, integral, and adelic metrics ‖ · ‖ on each
line bundle in Pic−(A). In other words, after a positive power, each L in Pic−(A) can be
extended into an integrable metrized line bundle L̂ = (L,‖ · ‖) such that

[n]∗L̂ � L̂n2
.

See our previous paper [40] for details.
The abelian variety A has an action by Z2 by double multiplications: for m,n ∈ Z,

[m,n] : A = Jac(X1) × Jac(X2) −→ A

(x,y) 
→ (mx,ny).

In this notation the multiplication on A by Z is diagonally embedded into Z2. In particular
these action are commutative. By the uniqueness of the admissible metrics, the admissible
metrics are admissible with respect to the multiplication by Z2:

[m,n]∗L̂ � L̂mn.

This shows that the bundle L̂ is admissible in each fiber of A2 −→ A of two projection.
Thus we have shown the following:
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Lemma 2.2.3 For any class t ∈ Pic−(A), the restriction on Y = X1 × X2 with admissible
metric gives an adelic metrized line bundle t̂ satisfies the following conditions

• for any closed points pi ∈ Xi , the restrictions of t̂ on {p1} × X1 and X1 × {p2} defines
admissible bundles L̂i on Xi over some number fields ki of degree 0. In other words, over
some regular models Xi , some positive multiples of L̂i is induced by line bundles Mi on
Xi which has zero degree on any vertical curve in Xi and curvature 0 at archimedean
places.

• t̂ is trivial on {e1} × X2 and on X1 × {e1}.
Moreover, such an adelic structure over t is unique.

Proof The difference of two different adelic structures on t satisfying the above conditions
will give an adelic structure t̂0 on the trivial bundle t0 = OY satisfying the condition in the
lemma. This is certainly trivial by checking on the curves {p}×X1 and X1 ×{p2} on closed
points pi on Xi . �

Our method above also shows that the line bundles in Pic0(A) (which is odd) on any
abelian variety A also have integrable, admissible, integrable metrics. Indeed, let P be the
Poincaré universal bundle on A × Pic0(A) with trivial restriction on {0} × Pic0(A) and
A × {0}. Then P is an even line bundle thus admits an integrable metrized bundles. The
action by Z2 shows that this admissible metric is admissible fiber-wise. The following are
some expressions for bundles on Pic−(A) and Pic(Y ):

Lemma 2.2.4 Assume X1 = X2 =: X.

1. Any line bundle L ∈ Pic−(A) is induced from a unique endomorphism α ∈ End(Jac(X))

by the following way:

L = (α,1)∗P.

Moreover L is symmetric if and only if α is symmetric with respect to Rosati involution;
2. A bundle L in Pic−(Y ) is symmetric (with respect to involution on Y = X × X) if and

only if there is a symmetric line bundle M on Pic(X) such that

L2 � s(M) := m∗M ⊗ p∗
1 M−1 ⊗ p∗

2 M−1 ⊗ 0∗M.

Moreover such an M is isomorphic to �∗L where � is the diagonal embedding
Jac(X) −→ A.

Proof Indeed, any such L induces an endomorphism

α : Jac(X) −→ Pic(Jac(X)) = Jac(X), x 
→ L|x×Jac(X).

By universality of the Poincaré bundle we have that

L = (α,1)∗P.

The rest of statements in (1) is clear. If L is symmetric, we take

M = �∗L = �∗(α,1)∗P.

Then we can show that

s(M) = L2. �
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Example

Let e be a class in Pic1(X). The class s(�) := � − p∗
1e − p∗

2e on X × X is the pull-back of
Poincaré bundle via the embedding X −→ A via e. It is also induced from the theta divisor:

2s(�) = −s(�)|X×X.

Composition of arithmetic correspondences

Let Xi (i = 1,2,3) be three curves over a number field. Let (L̄,‖ · ‖) and M̄ = (M,‖ · ‖)
be integrable metrized line bundles on X1 × X2 and X2 × X3 respectively. We can define a
composition L̄ ◦ M̄ by Deligne pairing for the projection

π13∗ : X1 × X2 × X3 −→ X1 × X3

L̄ ◦ M̄ := 〈π∗
12 M,π∗

23 L〉.
It is easy to see that the composition is compatible with the induced action on Chow groups
of models of Xi .

If L and M are in Pic−(X1 × X2) and Pic−(X2 × X3) with respect to some base
points ei and the metrics are admissible then the composition is also an admissible class
in Pic−(X1 × X3).

2.3 Gross–Schoen cycles

In this subsection, we will study the height of Gross–Schoen cycles. We will deduce a for-
mula between the height of Gross–Schoen cycles and the triple pairing of correspondences
in Theorem 2.3.5.

Let X3 be a triple product of a smooth and projective curve X over k. Let e be a rational
point on X. For each subset T of {1,2,3} define an embedding from X to X3 which takes
x to (x1, x2, x3) where xi = x if i ∈ T and xi = e otherwise. Let �T be the image of X

under iT . Then we define the modified diagonal by

�e =
∑

T �=∅
(−1)#T −1�T .

We may extend this cycle for case where e is a divisor on X of degree 1 as in Introduction:

Lemma 2.3.1 (Gross–Schoen) The cycle �e is cohomologically trivial. In other words, its
class in H 4(X3) has zero cup product with elements in H 2(X3).

Proof As

H 2(X3) =
⊕

i+j+k=2

Hi(X) ⊗ Hj(X) ⊗ Hk(X),

any element in the above group is a sum of elements of the form p∗
ij α where pij is the

projection to (i, j) factors X × X and α ∈ H 2(X2). For such form, the pairing is given by

〈�e,p
∗
ij α〉 = 〈pij∗�e,α〉.

It is easy to show that pij∗�e = 0. Thus �e is homologically trivial. �



24 S.-W. Zhang

Arithmetical Gross–Schoen cycles and heights

Gross and Schoen have constructed a vertical 2-cycle V in certain regular model of X3 such
that �̄e − V is numerically trivial on each fiber, where �̄e is the Zariski closure of �e . One
may further extend this to an arithmetic cycle �̂e = (�̄e − V,g) by adding a green current
g for �e with curvature 0. Thus we have a well define pairing. More generally, let t1, t2, t3
be three correspondence, then t = t1 ⊗ t2 ⊗ t3 ∈ Ch3(X3 × X3) is a correspondence of X3,
and we have a pairing

〈�e, t
∗�e〉. (2.3.1)

Triple pairing on correspondences

In the following we want to sketch a process to relate this pairing to some intersection
numbers of cycles ti on X2.

First let δ denote an idempotent correspondence on X defined by the cycle

δ := �12 − p∗
1e.

Let δ3 = δ ⊗ δ ⊗ δ ∈ Ch3(X3 × X3) denote the corresponding correspondence on X3. Then
it is not difficult to show that

�e = (δ3)∗(�123). (2.3.2)

Indeed, the pull-back of the cycle p∗
1e ∈ C(X) takes every point to e on X.

The projection in Lemma 2.2.1 is given by the idempotent δ:

t 
→ te := δ ◦ t ◦ δ∨ = t − p∗
1(t

∗e) − p∗
2(t∗e) ∈ Pic−(Y ).

Since δ ◦ δ = δ, (δ3)∗�e = �e ,

〈�e, t
∗�e〉 = 〈(δ3)∗�e, t

∗(δ3)∗�e〉 = 〈�e, (δ
3
e )∗t∗(δ3)∗�e〉 = 〈�e, t

∗
e �e〉.

If follows that in the expression (2.3.1) we may assume that ti ∈ Pic−(X × X).
Notice that the cycle δ in X2 has degree 0 for the second projection. Thus we can con-

struct arithmetic class δ̂ extending δ as an integrable adelic metrized line bundles so that it
is numerically zero on fibers of X2 via the second projection. In other words, for any point
p ∈ X and vertical divisor V on a regular model of X, the intersection

V · i∗
p(δ̂) = 0

where ip is the embedding x −→ (x,p). For example, we may construct such a metric by
decomposition

δ = (�12 − p∗
1e − p∗

2e) + p∗
2e

and put the admissible metric on the first class as in the last subsection, and put any pull-back
metric on p∗

2e. We may further assume that δ̂ has trivial restriction on X × {e}.

Lemma 2.3.2

δ̂ ◦ δ̂ = δ̂.
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Proof Let L̄ be the adelic metrized line bundle corresponding to δ̂. Let � be a rational section
of L with divisor δ. By definition, δ ◦ δ is a divisor of a rational section

〈π∗
12�,π

∗
23�〉

of the line bundle 〈π∗
12 L,π∗

23 L〉 for the projection π13 : X3 −→ X2. By formula (2.1.1), the
norm 〈π∗

12�,π
∗
23�〉 at a place v can be written as

log‖〈π∗
12�,π

∗
23�〉‖ = log‖〈π∗

12�|divπ∗
23�〉‖ + π13∗(log‖π∗

12�‖c1(π
∗
23 L̄)).

For the first term, notice that

divπ∗
23� = π∗

23δ = X × � − X × {e} × X.

Both terms are isomorphic to X × X via projection π13. Thus the Deligne’s pairing is given
by inversion of π13

〈π∗
12 L|divπ∗

23�〉 = L ⊗ α∗L−1 = L

where α is the morphism

α : X2 −→ X2, (x, y) 
→ (x, e).

The second equality is given by the assumption that L has trivial restriction on X ×{e}. It is
easy to check that this isomorphism takes 〈π∗

12 L|divπ∗
23�〉 to �.

For the second term, the restriction of the integration on a point (q,p) ∈ X2 is given by
integration

∫

X

log‖j ∗
q �‖c1(ī

∗
p L̄)

where jq : X −→ X2 is a morphism sending x to (q, x). This integral is a limit of inter-
section of L̄ with some vertical divisors on models of X. Thus it is zero by assumption
of δ̂. �

We want to apply the above Lemma to construct an extension �̂e on �e on some model
which are numerically trivial on special fiber. We will use regular models X3 constructed in
Gross–Schoen [25]. Let X −→ B be a good model X in the sense that the morphism has
only ordinary double points as singular point, and that every component of fiber is smooth.
Then we can get a good model X̃ 3 of X3 by blowing up all components in fiber product X 3

in any fixed order of components. Let �̂123 be any arithmetical cycle on X̃ 3 extending �e .
By Lemma 2.1.2, the divisors δ̂3 defines a correspondence on X̃ 3. Thus we have well defined
arithmetical cycle (δ̂3)∗�̂e .

Lemma 2.3.3 The cycle (δ̂3)∗�̂123 is numerically zero on every fiber of X̃ 3 over Spec Ok .

Proof In other words, we want to show that for any vertical cycle V

0 = (δ̂3)∗�̂123 · V = �̂123 · δ̂3
∗V = 0.

Actually we will to show the following

δ̂3
∗V = 0. (2.3.3)
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First let us consider an archimedean place. The curvature of δ̂ is zero on each fiber of p2.
Thus it has a class in

p∗
2H

2(X) + p∗
1H

1(X) ⊗ p∗
2H

1(X).

In particular it is represented by a form ω(x, y) of degree 2 whose degree on x is at most 1.
It follows that the curvature of δ̂3 is represented by a form

ω(x1, y1)ω(x2, y2)ω(x3, y3)

on X3 ×X3 whose total degree in xi ’s is at most 3. It follows that for any smooth form φ on
the first three variable (x1, x2, x3) of degree 2 the integral on x-variable

p456∗(ω(x1, y1)ω(x2, y2)ω(x3, y3)φ(x1, x2, x3)) = 0.

Now let us consider finite places. Now let V be an irreducible vertical 2-cycle on X̃ 3

over a prime v of Ok . Then there are three components A1,A2,A3 of X over v such that V

is included in the proper transformation Ã1A2A3 of the product A1 ×A2 ×A3 in X 3. Notice

that Ã1A2A3 is obtained from A1 × A2 × A3 by blowing up from some curves of the form
A1 × {p} × {q}, etc. Thus V is a linear combination of exceptional divisor and pull-back
divisors from A1 × A2 × A3. By the theorem of cube, V is linear equivalent to a sum of
pull-back of divisors Vi,j via the (i, j)-projection:

V ≡ p∗
12V12 + p∗

23V23 + p∗
31V31.

We may assume that V is one of this term in the right, say

V = (p∗
12V12)A1×A2×A3 = (p∗

12V12)X 3 · p∗
3A3.

Now the intersection con be computed as follows:

δ̂3
∗V = (δ̂2

∗V12)(δ̂∗A3).

By definition,

δ̂∗A3 = p2∗(p∗
1A3 · δ̂).

The cycle p∗
1A3 · δ̂ in X 2

v over each point y of Xv is a divisor A3 × {y} · δ̂. This is zero by
assumption on δ̂. Thus we have shown (2.3.3). �

Now we go back to the intersection number in (2.3.1) for ti ∈ Pic−(X ×X). Let t̂i be any
arithmetic model of ti . There product t̂ is an arithmetic extension of the product t of ti . By
our construction, we see that

〈�e, t
∗�e〉 = (δ̂3)∗�̂123 · t̂∗(δ̂3)∗�̂123 = �̂123 · δ̂3

∗ t̂
∗(δ̂3)∗�̂123.

Recall that t ∈ Pic−(X × X)3
e , δ3 ◦ t ◦ (δ∨)3 = t . We may replace t̂i by δ̂ ◦ t̂i ◦ δ̂∨ to assume

that

t̂i = δ̂ ◦ t̂i = t̂i ◦ δ̂∨. (2.3.4)
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Under this assumption, the height pairing is given by

〈�e, t
∗�e〉 = �̂123 · (t̂1 ⊗ t̂2 ⊗ t̂3)

∗�̂123

= p∗
123�̂123 · (t̂1 ⊗ t̂2 ⊗ t̂3) · p∗

456�̂123.

Here the intersection is taken X6.
As the product of the operators t̂i annihilated any vertical cycles, the above intersection

number is equal to the following expression on X × X via embedding

X 2 −→ X 6, (x, y) 
→ (x, x, x, y, y, y).

This is simply the intersection product of t̂i since the tensor product of cycles t̂i are the
pull-back via pi,3+i . Thus we have shown the following identity:

〈�e, (t1 ⊗ t2 ⊗ t3)
∗�e〉 = t̂1 · t̂2 · t̂3 (2.3.5)

for cycle ti ∈ Pic−(X × X) and its extension satisfying equation (2.3.4).
In the following we describe the arithmetic class t̂i satisfying (2.3.4).

Lemma 2.3.4 The arithmetic divisors t̂ on X 2 satisfying (2.3.4) are exactly the arithmetic
divisors t ∈ Pic−(X × X) with admissible metrics.

Proof By Lemma 2.2.3, we need only check conditions in Lemma 2.2.3. Assume that t̂

satisfies (2.3.4). From the definition of δ̂ we see that for any vertical component

δ̂∗(v) = 0, δ̂∗(ē) = 0.

From the expression t̂ = δ̂ ◦ t̂ we see that

t̂∗(v) = δ̂∗(t̂∗v) = 0, t̂∗(ē) = t̂∗δ∗ē = 0.

Similarly we can prove other two equalities by expression t̂ = t̂ ◦ δ̂.
Now assume that t̂ satisfies the condition in the Lemma. Consider the divisor

ŝ := t̂ − δ̂ ◦ t̂ ◦ δ̂∨.

By what we have proved, ŝ is trivial on fibers over closed points and divisor {ē} for both
projection. This divisor must be trivial. Thus we must have t̂ = δ̂ ◦ t̂ ◦ δ̂∨. Then the property
(2.3.4) follows immediately. �

In summary, we have shown the following:

Theorem 2.3.5 For any correspondences t1, t2, t3 in Pic−(X × X) we have

〈�e, (t1 ⊗ t2 ⊗ t3)
∗�e〉 = t̂1 · t̂2 · t̂3

where t̂i are arithmetic cycles on some model of X2 extending ti and satisfying conditions in
Lemma 2.2.3.
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2.4 Gillet–Soulé’s conjectures

By the standard conjecture of Gillet–Soulé [21] the pairing should be positively on the prim-
itive cohomologically trivial cycles. This implies the following

Conjecture 2.4.1 The following triple pairing is semi-positive definite:

Pic−(X × X)⊗3 × Pic−(X × X)⊗3 −→ R

(t1 ⊗ t2 ⊗ t3, s1 ⊗ s2 ⊗ s3) 
→ ŝ1 ◦ t∨1 · ŝ2 ◦ t∨2 · ŝ3 ◦ t∨3
= 〈(t1 ⊗ t2 ⊗ t3)

∗�e, (s1 ⊗ s2 ⊗ s3)
∗�e〉.

Indeed, �ξ is perpendicular to
∑

p∗
i Pic(X) for projections pi : X3 −→ X, so is (t1 ⊗ t2 ⊗

t3)
∗�ξ by translation. Thus (t1 ⊗ t2 ⊗ t3)

∗�ξ is primitive respect to an ample line bundle on
X3 of the form

∑
p∗

i L with L ample on X.
Notice that for any t ∈ Pic−(X×X), the correspondence t ◦ t∨ is a symmetric and positive

correspondence in Pic−(X × X) in the sense that there is a morphism φ : X −→ A from X

to an abelian variety A with ample and symmetric lines bundle L such that −t ◦ t∨ (up to a
positive multiple) is the restriction on X × X of the Chern class of the following Poincaré
bundle on A × A:

−t ◦ t∨ = s(L) := m∗L ⊗ p∗
1 L−1 ⊗ p∗

2 L−1 ⊗ 0∗L

where m : A2 −→ A is the addition map.
Based on the conjectured positivity of height pairing of zero cycles, we make the follow-

ing:

Conjecture 2.4.2 Let X be a curve in abelian variety A passing through 0. Let Li be three
semipositive and symmetric line bundle on A and let s(Li ) be the induced Poincaré bundles:

s(Li ) := m∗Li ⊗ p∗
1 L−1

i ⊗ p∗
2 L−1

i ⊗ 0∗Li .

Let ti be the correspondence induced by the restriction of s(Li ) in X × X. Then

s(L̂1) · s(L̂2) · s(L̂3)|X×X ≤ 0,

where L̂i is the admissible adelic metric on Li . Then this number vanishes if and only if
cycle

(t1 ⊗ t2 ⊗ t3)
∗�e

is trivial.

2.5 Height pairing and relative dualising sheaf

In this subsection we want to give a formula for the self-intersection of �e in terms of
intersection theory of admissible metrized line bundles in our previous paper [39]. Recall
that in this theory, an adelic line bundle O(�̂) := (O(�),‖ · ‖) has been constructed for a
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curve over a global field. More precisely, for an archimedean place v, − log‖1‖v is the usual
Arakelov function on the Riemann surface Xv(C). For non-archimedean place v,

− log‖1‖(x, y) = iv(x, y) + Gv(x, y),

where iv(x, y) is the local intersection index and Gv(x, y) is a green’s function on the
metrized graph R(Xv). We will prove in Sect. 3.5 that this adelic metric line bundle is
actually integrable in sense of [40]. In the following we assume this fact and try to prove a
formula for height of Gross–Schoen cycle.

Now fix a divisor e on X of degree 1 and put a metric on it by restriction of O(�̂) on
X × {e}. Then we have the admissible (adelic) divisor on X × X satisfying conditions in
Lemma 2.2.3:

t̂e = �̂ − p∗
1 ê − p∗

2 ê + ê2 · F.

Here the last number ê2 · F means ê2 multiple of a vertical fiber F .

Theorem 2.5.1 Assume that g ≥ 2 and that the adelic metric line bundle O(�̂) is integrable.
Then with notation as above

〈�e,�e〉 = t̂3
e = 2g + 1

2g − 2
ω̂2 + 6(g − 1)‖xe‖2

− log‖1�‖ · (�̂2 − 6�̂ · p∗
1 ê + 6p∗

1 ê · p∗
2 ê).

Here the last term is an abbreviation for the adelic integration in (2.1.1) of − log‖1�‖
against the product of the first Chern class of various arithmetic divisors involved.

Proof By Theorem 2.3.5, we have a formula

〈�e,�e〉 = t̂3
e = (�̂ − p∗

1 ê − p∗
2 ê)

3 + 3ê2 · (�̂ − p∗
1 ê − p∗

2 ê)
2

= �̂3 − 3�̂2 · (p∗
1 ê + p∗

2 ê) + 3�̂ · (p∗
1 ê + p∗

2 ê)
2

− (p∗
1 ê + p∗

2 ê)
3 + 3ê2F · (�̂ − p∗

1 ê − p∗
2 ê)

2.

The last four terms can be simplified as follows:

−3�̂2 · (p∗
1 ê + p∗

2 ê) = −6�̂2 · p∗
1 ê,

3�̂ · (p∗
1 ê + p∗

2 ê)
2 = 3�̂ · (p∗

1 ê
2 + p2ê

2
2 + 2p∗

1 ê · p∗
2 ê) = 6ê2 + 6�̂ · p∗

1 ê · p∗
2 ê,

3ê2F · (�̂ − p∗
1 ê − p∗

2 ê)
2 = 3ê2(2 − 2g − 2 − 2 + 2) = −6gê2,

−(p∗
1 ê + p∗

2 ê)
3 = −(p∗

1 ê
3 + p∗

2 ê
3 + 3p∗

1 ê
2 · p∗

2 ê + 3p∗
1 ê · p∗

2 ê
2) = −6ê2.

In this way we have the following expression:

〈�e,�e〉 = �̂3 − 6�̂2 · p∗
1 ê + 6�̂ · p∗

1 ê · p∗
2 ê − 6gê2

= −6gê2 + �̂ · (�̂2 − 6�̂ · p∗
1 ê + 6p∗

1 ê · p∗
2 ê).
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The last term can be written as a sum of the restriction on �̂, and an intersection of
− log‖1�‖ against other cycles:

〈�e,�e〉 = −6gê2 + ω̂2 − 6ω̂ · ê + 6ê2

− log‖1�‖ · (�̂2 − 6�̂ · p∗
1 ê + 6p∗

1 ê · p∗
2 ê). �

When the genus of X is one this formula gives t̂3
e = 0. Assume that g > 1. Then we can

get a formula in terms of the class of xe := e − 1
2g−2ω in Pic0(X)Q using the formula for the

Neron–Take height:

−‖xe‖2 =
(

ω̂

2g − 2
− ê

)2

= ω̂2

4(g − 1)2
− ω̂ê

g − 1
+ ê2

= ω̂2

4(g − 1)2
−
(

ωê

g − 1
− ê2

)

.

Corollary 2.5.2 The pairing 〈�e,�e〉 gets its minimum when e = ξ . More precisely, we
have

〈�e,�e〉 = 〈�ξ,�ξ 〉 + 6(g − 1)‖xe‖2.

The last term in Theorem 2.5.1 is a sum of local contribution over places of k. The
contributions from archimedean place is easy to compute:

Proposition 2.5.3 At an archimedean place, the contribution in the last term of Theo-
rem 2.5.1 is given by

−2
∑

i,j,�

1

λ�

∣
∣
∣
∣

∫

X

φ�(x)ω̄i(x)ωj (x)

∣
∣
∣
∣

2

.

Proof At an archimedean place, − log‖1�‖ = G(x,y) is the usual Arakelov Green’s func-
tion, and O(�̂) has curvature

h�(x, y) = dμ(x) + dμ(y) − √−1
∑

i

(ωi(x)ω̄i(y) + ωi(y)ω̄i(y))

where ωi is a bases of �(X,	) such that

√−1
∫

ωiω̄j = δi,j .

It follows that

h� dμ(x) = h� dμ(y) = dμ(x)dμ(y)

also
∫

G(x,y) dμ(x)dμ(y) = 0. Thus we get the formula

∫

G · [h2
� − 3h� · (p∗

1 dμ + p∗
2 dμ) + 3(p∗

1 dμ + p∗
2 dμ)2] =

∫

Gh2
�.
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Let φ� be the real eigen function on X of the Laplacian for the Arakelov metric with
eigenvalue λ� > 0 then

G(x,y) =
∑

�

φ�(x)φ�(y)

λ�

.

Since
∫

X
G(x, y) dμ(x) = ∫

X
g(x, y) dμ(y) = 0, it follows that

∫

Gh2
� =

∫

X2
G(x,y)

[
dμ(x) + dμ(y) − √−1

∑
(ωi(x)ω̄i(y) + ωi(y)ω̄(x)

]2

= −
∫

X2
G(x,y)

(∑
(ωi(x)ω̄i(y) + ωi(y)ω̄(x)

)2

= −
∫

G(x,y)
∑

i,j

[ωi(x)ω̄j (x)ω̄i(y)ωj (y) + ω̄i(x)ωj (x)ωi(y)ω̄j (y)]

= −
∑

i,j,�

1

λ�

[∫

φ�(x)ωi(x)ω̄j (x)

∫

φ�(y)ω̄i(y)ωj (y)

+
∫

X

φ�(x)ω̄i(x)ωj (x)

∫

X

φ�(y)ωi(y)ω̄j (y)

]

.

Since φ� are all real, it follows that

∫

Gh2
� = −2

∑

i,j,�

1

λ�

∣
∣
∣
∣

∫

X

φ�(x)ω̄i(x)ωj (x)

∣
∣
∣
∣

2

.
�

Remark 1 The quality in the proposition is negative. Indeed it vanishes only when ω̄iωj

is perpendicular to all φ�. As dμ is the only measure satisfying this property, ωiω̄j are all
proportional to each other. Thus we must have g = 1, and thus a contradiction. This leads to
a conjecture that all local contributions at bad place are all negative.

Remark 2 When X is hyperelliptic, Gross and Schoen have shown that �ξ is rationally
equivalent to 0. It follows that t̂3

ξ = 0. Our conjecture thus gives a formula for ω̂2 in terms
of local contributions.

3 Intersections on reduction complex

The aim of this section is to describe an intersection theory on the product Z of two curves
X and Y over a local field k and use this to finish the proof of Main Theorem 1.3.1. The
reduction map on the usual curves over local field gives a reduction map

Z(k̄) −→ R(Z) := R(X) × R(Y )

where the right hand side is the product of the reduction graphs for X and Y . The space R(X)

has a simplicial structure with triangulation given by sides corresponding to vertices in R(X)

and R(Y ) and the diagonals D. The semistable models X and Y over finite extensions k′
gives a model X ×Ok′ Y . Blow-up these models at its singular points to get regular (but not
semistable) models Z for Z. We will show that the vertical divisors of Z can be naturally
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identified with piece-wise linear functions on R(Z). The intersection pairing on vertical
divisors can be extended into a pairing on continuous functions fi (i = 1,2,3) on R(Z)

which are piece-wise smooth except on sides:

(f1, f2, f3) =
∫

R(X)×R(Y)

(�x(f1)(f2yf3y) + �x(f2)(f3yf1y)

+ �x(f3)(f1yf2y)) dx dy + 1

4

∫

D

δ(f1)δ(f2)δ(f3) dx,

where �x and �y are Laplacian operators on piece-wise smooth functions, and δ(fi) are
some invariants of fi on the diagonal to measure the difference of two limits of first deriva-
tives defined in [39, Appendix].

3.1 Regular models

In this subsection, we will study local intersection theory on a product of two curves with
semi-stable reduction. We first blow-up the singular points in the special fiber to get a reg-
ular model. This model has non-reduced exceptional divisors isomorphic to P1 × P1 but is
canonical in the sense that it does not depend on the order of blowing-ups. Also one can
get semistable models by blowing-down exceptional divisor to one of two factors P1. Then
we give an explicit description of the intersections of curves and surfaces in this threefold.
Finally, we show that the inverse of the relative dualising sheaf on a semistable model can be
written as in a similar way as the restriction of the ideal sheaf on the proper transformation
of the diagonal.

Let R be a discrete valuation ring with fraction field K and algebraically closed residue
field k. Let X and Y be two smooth, absolute connected, and projective curves over K , and
Z = X × Y their fiber product over R. Assume that X and Y have regular and semistable
models XR and YR with no self intersections. Then Z has a model XR ×R YR which is
singular at products of two singular points on special fibers Xk and Yk . Blowing-up these
singular points we obtain a regular model ZR over R.

Covering charts

The special fiber of ZR consists of proper transformations ÃB of the products of components
A and B of XR and YR and exceptional divisors Ep,q indexed by singular points p and q

of Xk and Yk . To see this, we cover XR and YR formally near their singular points by local
completions of the open affine schemes of the form:

V = SpecR[x0, x1]/(x0x1 − π), W = SpecR[y0, y1]/(y0y1 − π).

Then ZR is covered by blow-up at the singular point (x0, x1, y0, y1) of

V ×R W = SpecR[x0, x1, y0, y1]/(x0x1 − π,y0y1 − π).

It is clear that ZR is covered by four charts of spectra of subrings of the fraction field
K(x0, y0) of V × W :

Ux0 = SpecR[x0, y0/x0, y1/x0]/((y0/x0)(y1/x0)x
2
0 − π),

Ux1 = SpecR[x1, y0/x1, y1/x1]/((y0/x1)(y1/x1)x
2
1 − π),



Gross–Schoen cycles and dualising sheaves 33

Fig. 1 Reduction complex

Uy0 = SpecR[y0, x0/y0, x1/y0]/((x0/y0)(x1/y0)y
2
0 − π),

Uy1 = SpecR[y1, x0/y1, x1/y1]/((x0/y1)(x1/y1)y
2
1 − π).

We use ord to denote the valuation (or order as called in this paper) on K and extend
it to an algebraic closure K̄ so that ord(π) = 1. Let R̄ be the valuation ring of elements
of non-negative order. Then R̄ points in V and W has coordinates xi, yi ∈ R with orders
αi := ord(xi), βi := ord(yi) non-negative rational numbers satisfying

α0 + α1 = β0 + β1 = 1.

We consider the reduction map:

ZR(R̄) −→ [0,1]2, p 
→ (ordx0(p),ordy0(p)).

The R̄-points in these charts are can be described by the following inequalities:

Ux0 : min(β0,1 − β0) ≥ α0,

Ux1 : min(β0,1 − β0) ≥ 1 − α0,

Uy0 : min(α0,1 − α0) ≥ β0,

Uy1 : min(α0,1 − α0) ≥ 1 − β0.

These are exactly four domains in the unit square divided by two diagonals. We call the
square [0,1]2 with triangulation by diagonals the reduction complex of ZR .

Figure 1 shows the reduction complex associated to ZR placed on (α0, β0)-coordinate
axes. The four corners and the center point of the square correspond to the four prod-
uct components and the exceptional divisor of ZR , respectively. The eight segments in the
square correspond to the curves of intersection of the components in ZR . The four 2-cells
labeled Ux0 ,Ux1 ,Uy0 ,Uy1 correspond to the four points of ZR where three components meet
transversally.

Let A0,A1,B0,B1 be divisors in V and W defined by x1, x0, y1, y0 respectively. Then
the special fiber of ZR is a union of five divisors

Ã0B0, Ã0B1, Ã1B0, Ã1B1, E.

Here the first four terms are proper transforms of the products of curves in V ×R W and E

is the exceptional divisor. Each divisor is defined by an element in each of the above charts.
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Fig. 2 Special fibers of blow-ups

For example, E is defined by equations x0, x1, y0, y1 in the above four charts, and Ã0B0 is
defined by y1/x0,1, x1/y0,1 respectively.

Figure 2 shows the configuration of special fibers before and after blow-ups. On the left
is a diagram representing the various product components in the special fiber of V ×R W

and how they project onto each factor. On the right is a diagram representing ZR , which is
the blow-up of V ×R W . The components ÃiBj are strict transforms of product components
in V ×R W . The component shaped like a diamond in the diagram on the right collapses to
the singular point at the center of the cross in the left diagram.

Intersections

Back to the global situation. The following properties are easy to verified:

• each component ÃB is obtained from A×B by blowing at the singular points of XR ×YR

on A × B , and has multiplicity one in divisor (π);
• two different components Ã0B0 and Ã1B1 intersect if and only if either A0 = A1 and

B0 ∩ B1 �= ∅, or B0 = B1 and A0 ∩ A1 �= ∅;
• each exceptional divisor is isomorphic to P1 × P1 and has multiplicity 2 in (π);
• two component ÃB and Ep,q intersect if and only if p ∈ A and q ∈ B;
• two different exceptional divisors do not intersect.

In the following we want to compute the intersection numbers more precisely. Assume
that p = A0 · A1, q = B0 · B1. The intersection can be described as follows:

• Ã0B0 · Ã0B1 is given by the proper transformations Ã0q of A0 × q in Ã0B0 and Ã0B1;
• one may choose an isomorphism Ep,q � P1 × P1 so that the following hold:

Ã0B0 · Ep,q = P1 × 0, Ã1B1 = P1 × ∞,

Ã0B1 · Ep,q = 0 × P1, Ã1B0 = ∞ × P1.

We may also compute the self intersection of vertical divisors in Chow group using the
following equation: for any vertical divisor F in Zk ,

0 = F · (π) = F ·
(∑

A,B

ÃB + 2
∑

p,q

Ep,q

)
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where the sums are over components A,B and singular points p and q of Xk,Yk . It follows
that

ÃB
2 = −

∑

q

Ãq −
∑

p

p̃B − 2
∑

p,q

exceptional divisors over (p, q),

E2
p,q = −P1 × 0 − 0 × P1.

Here the sums are over singular points p,q in A,B .
In the following we want to compute the intersection numbers between a curve C and a

surface F included in the special fiber Zk of Z . Assume that C is included in a surface G

then

C · F = (C · FG)G

where FG is the pull-back of F in G via the inclusion G −→ ZR , and the right hand is
an intersection in G. Thus to study intersection pairing it suffices to study the intersection
pairing of Z with the subgroup B(G) of divisors of G generated by FG = F · G in NS(G),
the Néron–Severi group of G.

Lemma 3.1.1 The intersection pairing on B(G) is non-degenerate.

Proof If G = ÃB , this group is generated by NS(A), NS(B) via projections and the ex-
ceptional divisors. It is clear that the intersection pairing on B(G) is non-degenerate.
If G = P1 × P1, then B(G) = NS(G) and the intersection pairing is clearly non-
degenerate. �

By this lemma, we may replace C by its projection B(C) in B(G). As all B(G)’s are
generated by intersections F · G, we need only describe the intersection of three surfaces in
Zk . Let F1,F2,F3 be three components.

• If they are all distinct, then the intersection is non-zero only if they have the following
forms after an reordering

F1 = ÃB0, F1 = ÃB1, F3 = Ep,q

where p is a singular point on A and q = B0 · B1. In this case the intersection is 1:

F1 · F2 · F3 = 1.

• If F1 = F2 �= F3 then

F1 · F2 · F3 = i∗(F1)
2, i : F3 −→ X.

Furthermore if F1 = ÃB0, F3 = ÃB1, then i∗F1 = Ãq and

F 2
1 · F3 = i∗(F1)

2 = −s(A) := −number of singularity of Xk on A.

• If F1 = ÃB , F3 = Ep,q with p ∈ A and q ∈ B , then i∗F1 is a P1 on F3 � P1 × P1 of
degree (1,0) or (0,1). It follows that

F 2
1 · F3 = 0.
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• If F1 = Ep,q,F3 = ÃB with p ∈ A, q ∈ B , then i∗F1 is one exceptional divisor on F3 and
then

F 2
1 · F3 = −1.

• Finally if F1 = F2 = F3 then

0 = F 2 · (π) = F 2 ·
(∑

A,B

ÃB + 2
∑

p,q

Epq

)

.

It follows that

ÃB
3 = 2s(A)s(B), Ẽ3

p,q = 2.

Relative dualising sheaf

Now assume that X = Y . Let �̃R ⊂ ZR be the Zariski closure of the diagonal in ZR . Then
�̃R is the blowing-up of XR at its double points in the special fiber. Let i : �̃R −→ ZR and
f : �̃R −→ XR be the induced morphisms and let ω be the relative dualising sheaf on XR .

Lemma 3.1.2

f ∗ω = i∗OZR
(−�̃R).

Proof Since the question is local, we may assume that XR is given by

SpecR[x0, x1]/(x0x1 − π)

then the relative dualising sheaf is given by the subsheaf of 	1
XR/R ⊗ K(X) generated by

dx0/x0 = −dx1/x1. The scheme ZR is obtained by blowing up the singular point on XR ×R

XR and is covered by

Ux0 , Ux1 , Uy0 , Uy1 .

The subscheme �̃R is defined by an ideal I generated by y0/x0 −1, y1/x1 −1 in these charts
and has coverings given by

Vx0 = SpecR[x0, x1/x0]/((x1/x0)x
2
0 − π),

Vx1 = SpecR[x1, x0/x1]/((x0/x1)x
2
1 − π).

As dx0 and dx1 are the image of y0 − x0 and y1 − x1 on �̃R , we see that I/I 2 is generated
by dx0/x0 = −dy0/y0. �

3.2 Bas changes and reduction complex

In this subsection, we describe the pull-back of vertical divisors respect to base changes.
The direct limit of vertical divisors can be identified with piece-wise linear functions on the
reduction complex which is the product of metrized graphs.

Let S be a ramified extension of R of degree n with fraction field L. Let ZS be the model
of ZL obtained by the same way as ZR . In the following we want to describe the morphism
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ZS −→ ZR in terms of charts. As this question is local, we may assume that XR and YR are
given by

XR = SpecR[x0, x1]/(x0x1 − π), YR = SpecR[y0, y1]/(y0y1 − π).

Then ZR is obtained by blowing up at the singular point (x0, x1, y0, y1) of XR ×R YR and is
covered by four charts of spectra of subrings of the fraction field K(x0, y0) of XR × YR :

Ux0 , Ux1 , Uy0 , Uy1 .

Let t be a local parameter of S such that π = tn. For integers a, b ∈ [0, n − 1], set

x0a = x0/ta, x1a = x1/tn−1−a, y0b = y0/tb, y1b = y1/tn−1−b.

Then XS and YS are unions of the following spectra:

Va = SpecR[x0,a, x1,a]/(x0,a · x1,a − t), 0 ≤ a ≤ n − 1,

Wb = SpecR[y0b, y1b]/(y0b · y1b − t), 0 ≤ b ≤ n − 1.

In terms of valuations on R̄-points, α = ordπ (x0), β = ordπ (y0), Vα and Wβ are defined by
inequalities

a/n ≤ α ≤ (a + 1)/n, b/n ≤ β ≤ (b + 1)/n.

The special component of XS has n-singular points with one on Va each and is the union
of n + 1-components An,a (a = 0 . . . n) defined by x1a in Ua if a ≤ n − 1, by x0,a−1 in Ua−1

if a ≥ 1, and by 1 on other components. Similarly, we have components Bn,b for YS . The
product Va × Wb has the special fiber to be a union of

An,a × Bn,b, An,a × Bn,b+1, An,a+1 × Bn,b, An,a+1 × Bn,b+1.

The scheme ZS is covered by the blowing up Ua,b of Va × Wb at its singular point. Here we
have diagrams of the schemes XS ×S YS and the blow-up along the singular points, denoted
ZS (for the case n = 3). We have labeled a general product component An,a × Bn,b as well

as its strict transforms ÃBn,a,b. We have also labeled one of the exceptional divisors Ea,b

that arises from the blow-up
The scheme Ua,b is covered by four affine schemes with equations:

Ux0,a,b :
(

y0b

x0a

)(
y1b

x0a

)

(x0a)
2 = t,

Ux1,a,b :
(

y0b

x1a

)(
y1b

x1a

)

(x1a)
2 = t,

Uy0,a,b :
(

x0a

y0b

)(
x1a

y0b

)

(y0b)
2 = t,

Uy1,a,b :
(

x0a

y1b

)(
x1a

y1b

)

(y1b)
2 = t.

The divisor (t) has five components over Va × Wb:

ÃBn,a,b, ˜ABn,a,b+1, ˜ABn,a+1,b, ˜ABn,a+1,b+1, Ea,b.



38 S.-W. Zhang

Fig. 3 Special fibers of base changes

Fig. 4 Reduction complex of
base changes

In terms of valuations α = ordπ (x0), β = ordπ (y0), Ua,b are defined by following in-
equalities:

min(α0 − a/n,1/n − (α0 − a/n)) ≥ β0 − b/n,

min(β0 − b/n,1/n − (β0 − b/n)) ≥ 1/n − (α0 − a/n),

min(β0 − b/n,1/n − (β0 − b/n)) ≥ (α0 − a/n),

min(α0 − a/n,1/n − (α0 − a/n)) ≥ 1/n − (β0 − b/n).

These are parts divided by diagonals in the square [a/n, (a+1)/n]×[b/n, (b+1)/n]. Thus
the morphism from ZS to ZR is given by the inclusion of the parts in [0,1]2.

Here is a diagram of the reduction complex associated to the special fiber in Fig. 3.
The vertices of the complex correspond to the components of ZS , with the nine fat points
corresponding to the 9 exceptional divisors. (They have multiplicity 2 in the special fiber.)
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Pull-back of vertical divisors

In the following we want to compute the pull-back of vertical divisors ZR in ZS . Let ϕ :
ZS −→ ZR denote the morphism. Let us index divisors using set �n on [0,1]2 of the form
( a

2n
, b

2n
):

Da
n , b

n
:= ÃBn,a,b, a, b ∈ Z,

Da
n , b

n
:= 2Ea−1

2 , b−1
2

, a, b ∈ Z + 1

2
,

Da
n , b

n
:= 0, a + b ∈ Z + 1

2
.

Lemma 3.2.1

ϕ∗ÃB = n
∑

(a,b)∈�n

max(1 − a − b,0)Da,b,

ϕ∗(E) = n
∑

(a,b)∈�n

min(a,1 − a, b,1 − b)Da,b.

Proof First we notice that ϕ∗Ã0B0 is defined as zeros of x1/y0 = y1/x0 on Ux0 and Uy0 , and
1 on Ux1 and Uy1 . Thus it is defined by 1 on Uxi ,a,b and Uyi ,a,b if a + b ≥ n. It follows that

the multiplicity of ÃBn,a,b and Ea,b are zero if a + b ≥ n. Now we assume that a + b < n.
Then x1/y0 = y1/x0 on Ux0 has the following expressions in the charts Ux0,a,b and Uy0,a,b:

y1

x0
= y1b

x0a

tn−1−a−b =
(

y0b

x0a

)n−a−b (
y1b

x0a

)n−1−a−b

(x0a)
2(n−1−a−b),

x1

y0
= x1a

y0b

tn−1−a−b =
(

x0a

y0b

)n−1−a−b(
x1a

y0b

)n−a−b

(y0b)
2(n−1−a−b).

Either one of these formulae shows that the pull-back of Ã0B0 has multiplicity n− a − b

at ÃBn,a,b , and 2(n − 1 − a − b) at Ea,b . This proves the first formula in lemma.
For exceptional divisor, we may using the following decompositions

div(π) =
1∑

i,j=0

ÃiBj + 2E,

div(t) =
∑

(a,b)∈�

Da,b.

The fact ϕ∗div(π) = ndiv(t) implies that

ϕ∗(E) = n
∑

(a,b)∈�

min(a,1 − a, b,1 − b)Da,b.
�
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Remarks

Alternatively, we may compute pull-back of an exceptional divisor directly by using charts:

x0 =
(

y0b

x0a

)a (
y1b

x0a

)a

(x0a)
2a+1,

x1 =
(

y0b

x1a

)n−a−1(
y1b

x1a

)n−a−1

(x1a)
2n−2a−1,

y0 =
(

x0a

y0b

)b (
x1a

y0b

)b

(y0b)
2b+1,

y1 =
(

x0a

y1b

)n−b−1(
x1a

y1b

)n−b−1

(y1b)
2n−b−1.

Reduction complex

Let R(X) and R(Y ) be the reduction graphs of X and Y respectively with reduction mor-
phisms

rX : X(K̄) −→ R(X), rY : Y (K̄) −→ R(Y ).

Recall that R(X) and R(Y ) are metrized graphs with edges of lengths 1 parameterized by
irreducible components and singular points in special fibers of XR and YR . The reduction
map is given as follows. An edge E � [0,1] corresponds to a singular point near which XR

has local structure

R[x0, x1]/(x0x1 − π)

such that 0 and 1 correspond to x1 = 0 and x0 = 0 respectively. Then the reduction morphism
is given by

(x0, y0) −→ ord(x0).

Here ord(x0) is a valuation on K̄ such that ord(π) = 1. The reduction map of a point is a
vertex (resp. a smooth point in a edge) if and only if the reduction modulo π of this point
is in a corresponding smooth point in a component (resp. a singular point). After a base
change L/K of degree n, the dual graph is unchanged if we change the lengths of edges to
be 1/n. In other words, the irreducible components of XL and singular points corresponding
to rational points on R(X) with denominator n and intervals between them.

Let us define the reduction complex of Z = X × Y over R to be

R(ZR) := R(X) × R(Y )

with a triangulation by adding diagonals. We have induced reduction map:

r : Z(K̄) −→ R(ZR).

The vertices in the complex correspond to irreducible components in ZR ; the edges corre-
spond to intersection of two components; the triangle correspond to intersection of three
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components. For an irreducible component C of in the special component of ZR , we let
r(C) ∈ R(Z) to denote the corresponding vertex.

The reduction complex of base change [L : K] = n after a change of size coincides
with the same complex with an n-subdivision of squares and then an triangulation on it.
Thus we may define R(Z) to be the underline metric space of the complex R(ZR) without
triangulation.

Let V (ZR) denote the group of divisors with real coefficients supported in the special
fiber. Let R(R(Z)) denote the space of continuous real functions on R(Z). Then we can
define a map

V (ZR) −→ R(R(Z)), F 
→ fR,F

with following properties: write

F =
∑

C

aCC +
∑

E

2bEE

where C runs through all non-exceptional components of ZR , and E all exceptional compo-
nents, then

• fR,F is linear on all triangles,
• fR,F (r(C)) = aC ,
• fR,F (r(E)) = bE .

Let V (Z) denote the direct limit of V (ZS) via pull-back map in the projective system
XS defined by finite extensions of R in R̄. The main result in the last subsection gives the
following:

Lemma 3.2.2 The map [S : R]−1fS induces a map

φ : V (Z) = limV (ZS) −→ R(R(Z)).

Moreover the image of this map are continuous function which are linear on some n-
triangulation. So it is dense in the space of continuous functions.

3.3 Triple pairing

In this section we are try to define a triple pairing for functions on R(Z). More precisely,
let f1, f2, f3 be three continuous functions on R(Z). Then for any positive integer n, let
us define piece wise linear functions fi,n such that fi,n is linear on each triangle of the n-
triangulation, and has the same values as fi at vertices of triangles. Then fi,n will correspond
to vertical divisors Fi,n in V (ZRn) where Rn is a ramified extension of degree n. Lets define
the triple pairing

(f1,n, f2,n, f3,n) = n2(F1,n · F2,n · F3,n)

where the right hand side is the intersection pairing on ZRn . Notice that if fi = fi,1, then
fi,n = fi and Fi,n = n−1ϕ∗

nDi,1 by Sect. 3.2, where ϕn is the projection ZRn −→ ZR . It
follows that

n2(F1,n · Fi,n · Fi,n) = n−1ϕ∗
nF1,1 · ϕ∗

nF2,1 · ϕ∗
nF3,1 = F1,1 · F2,1 · F3,1.
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Thus the above pairing does not depend on the choice of n if every fi = fi1. We want to
examine when the limit does exist and what expression we can get for this limit.

Proposition 3.3.1 Assume that the functions f1, f2, f3 on R(Z) are smooth on each square
with bounded first and second derivatives. Then the intersection pairing on vertical divisors
induces a trilinear pairing

(f1, f2, f3) =
∫

R(Z)

(f1xf2yf3xy + permutations) dx dy,

where the integrations are taken on the smooth part of the complex and f1x , f2y , etc. are
partial derivatives for any directions on edges of R(X) and R(Y ).

Proof Our first remark is that from the formulae given in Sect. 3.1, the computation can
be taken as a sum of intersections on squares. In other words, we may assume that both
XR and YR have one singular point. Then the complex R(Z) can be identified with the
square [0,1]2. By calculation in Sects. 3.1 and 3.2, we have the following expression of
divisors:

Fi,n =
∑

(a,b)∈�n

fi(a, b)Da,b.

Again the intersection can be taken on sum of small squares:

n2(F1n · F2n · F3n)

= n2
∑

(a,b)∈�n

3∏

i=1

(

fi(a, b)Da,b + fi

(

a + 1

n
,b

)

Da+ 1
n ,b + fi

(

a, b + 1

n

)

Da,b+ 1
n

+ fi

(

a + 1

n
,b + 1

n

)

Da+ 1
n ,b+ 1

n
+ fi

(

a + 1

2n
,b + 1

2n

)

Da+ 1
2n

,b+ 1
2n

)

a,b

where the last product is the intersection on the square starting at (a, b). As the sum

Da,b + Da+1/n,b + Da,b+1/n + Da + 1/n, b + 1/n + Da+1/2n,b+1/2n

has zero intersection with products, we subtract each coefficient by Da+1/2n. Thus the last
product has the form

3∏

i=1

(aiDa,b + biDa+1/n,b + ciDa,b+1/n + diDa+1/n,b+1/n)

with

ai = fi(a, b) − fi(a + 1/2n,b + 1/2n),

bi = fi(a + 1/n, b) − fi(a + 1/2n,b + 1/2n),

ci = fi(a, b + 1/n) − fi(a + 1/2n,b + 1/2n),

di = fi(a + 1/n, b + 1/n) − fi(a + 1/2n,b + 1/2n).
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We use the following facts to compute this product among the divisors in the sum:

• the product of three distinct element will be 0;
• the product of the square of one divisor with another divisor is −1 if they intersect, and 0

otherwise;
• the cube of any element is 2.

Then we have

3∏

i=1

(aiDa,b + biDa+1/n,b + ciDa,b+1/n + diDa+1/n,b+1/n)

= 2(a1a2a3 + b1b2b3 + c1c2c3 + d1d2d3)

− (a1a2 + d1d2)(b3 + c3) − (b1b2 + c1c2)(a3 + d3) + permutations.

Write Taylor expansions for ai, bi, ci, di at a′ = a + 1/2n,b′ = b + 1/2n:

αi = 1

2n
(fix(a

′, b′) + fiy(a
′, b′)), βi = 1

8n2
(�fi(a

′, b′) + 2fixy(a
′, b′)),

γi = 1

2n
(fix(a

′, b′) − fiy(a
′, b′)), δi = 1

8n2
(�fi(a

′, b′) − 2fixy(a
′, b′)).

Then

ai = −αi + βi + O(1/n3),

bi = γi + δi + O(1/n3),

ci = −γi + δi + O(1/n3),

di = αi + βi + O(1/n3).

It is clear that the product is an even function in αi and γi . It follows that their appearance
in the product have the even total degree. Also we have neglected term O(1/n5). Thus we
can write

3∏

i=1

(aiDa,b + biDa+1/n,b + ciDa,b+1/n + diDa+1/n,b+1/n)

= 4(α1α2β3 + γ1γ2δ3) − 4α1α2δ3 − 4γ1γ2β3 + permutations

= 4(α1α2 − γ1γ2)(β3 − δ3) + permutations.

By a direct computation, we see that

α1α2 − γ1γ2 = 1

2n2
(f1x(a

′, b′)f2y(a
′, b′) + f1y(a

′, b′)f2x(a
′, b′)),

β3 − δ3 = 1

2n2
fixy(a

′, b′).
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It follows that

3∏

i=1

(aiDa,b + biDa+1/n,b + ciDa,b+1/n + diDa+1/n,b+1/n)

= 1

n4
f1x(a

′, b′)f2y(a
′, b′)fixy(a

′, b′) + permutations + O(1/n5).

Put everything together to obtain

n2(F1n · F2n · F3n) = 1

n2

n−1∑

a,b

(f1x(a
′, b′)f2y(a

′, b′)fixy(a
′, b′) + permutations) + O(1/n).

This is of course convergent to

∫ 1

0

∫ 1

0
(f1xf2yf3xy + permutations) dx dy.

Adding all integrals over squares we obtain the identity in lemma. �

3.4 Intersection of functions in diagonals

Now we want to treat case where fi has some singularity lying on edges of some n-
triangulation. For this we decompose the intersection into smooth and singular parts:

(f1, f2, f3) = (f1, f2, f3)smooth + (f1, f2, f3)singular

with smooth contribution given by the formula in Proposition 3.3.1:

(f1, f2, f3)smooth =
∫

R(Z)

(f1xf2yf3xy + permutations) dx dy.

As the additive property stated in the last subsection, we need only consider the diagonal
in a square. More precisely, we consider functions fi on the square [0,1]2 with following
properties:

• fi is continuous on [0,1]2, and smooth in the interior part of two triangles divided by
diagonal y = x;

• the first and second derivatives of fi has continuous limits at sides;
• the restriction of the function on the diagonal is smooth.

Let us write

δfi = f +
ix − f −

ix = f −
iy − f +

iy

where we use super script ± to denote the limits of derivatives in upper and down triangles
on the diagonals. The second identity follows from the fact that the restriction of f on the
diagonal is smooth.

Proposition 3.4.1 If fi has only singularity on some union D of diagonals in n-
triangulation, the singular contribution is given by

(f1, f2, f3)singular =
∫

D

(

−1

2
δf1δf2δf3 + f1xf2yδf3 + permutations

)

dx.
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Proof The total contribution in the diagonal is given by

n2(F1n · F2n · F3n)D

= n2
n−1∑

a,0

3∏

i=1

(fi(a, a)Da,a + fi(a + 1/n, a)Da+1/n,a + fi(a, a + 1/n)Da,a+1/n

+ fi(a + 1/n, a + 1/n)Da+1/n,a+1/n + fi(a + 1/2n,a + 1/2n)Da+1/2n,a+1/2n)a,a.

Again we may replace the last product by

3∏

i=1

(aiDa,a + biDa+1/n,a + ciDa,a+1/n + diDa+1/n,a+1/n)

= 2(a1a2a3 + b1b2b3 + c1c2c3 + d1d2d3)

− (a1a2 + d1d2)(b3 + c3) − (b1b2 + c1c2)(a3 + d3) + permutations

with

ai = fi(a, a) − fi(a + 1/2n,a + 1/2n),

bi = fi(a + 1/n, b) − fi(a + 1/2n,a + 1/2n),

ci = fi(a, a + 1/n) − fi(a + 1/2n,a + 1/2n),

di = fi(a + 1/n, a + 1/n) − fi(a + 1/2n,a + 1/2n).

We have Taylor expansions for ai, bi, ci , di at (a′, a′) with a′ = a + 1/2n:

ai = − 1

2n
(f −

ix + f −
iy )(a′, a′) + O(1/n2),

bi = 1

2n
(f −

ix − f −
iy )(a′, a′) + O(1/n2),

ci = 1

2n
(−f +

ix + f +
iy )(a′, a′) + O(1/n2),

di = 1

2n
(f +

ix + f +
iy )(a′, a′) + O(1/n2).

Write

fix = 1

2
(f +

ix + f −
ix ), fiy = 1

2
(f +

iy + f −
iy ),

then,

f ±
ix = fix ± 1

2
δfi, f ±

iy = fiy ∓ 1

2
δfi .

Then we have the following expressions:

ai = − 1

2n
(fix + fiy)(a

′) + O(1/n2),
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bi = 1

2n
(fix − fiy − δfi)(a

′) + O(1/n2),

ci = 1

2n
(−fix + fiy − δfi)(a

′) + O(1/n2),

di = 1

2n
(fix + fiy)(a

′) + O(1/n2).

As ai + di = O(1/n2), it follows that

3∏

i=1

(aiDa,a + biDa+1/n,a + ciDa,a+1/n + diDa+1/n,a+1/n)

= 2(b1b2b3 + c1c2c3) − 2a1a2(b3 + c3) + permutations + O(1/n4)

= −1

2n3
δf1δf2δf3(a

′) + 1

n3
f1xf2yδf3(a

′) + permutation + O(1/n4).

The total diagonal intersection is

n2(F1n · F2n · F3n)D

= 1

n

n−1∑

a=0

(−1

2
δf1δf2δf3(a

′) + f1xf2yδf3(a
′) + permutation

)

+ O(1/n).

Taking limits of sum over all, we get singular contribution:

∫ 1

0

(

−1

2
δf1δf2δf3 + f1xf2yδf3 + permutations

)

dx. �

In the following we want to apply integration by parts to the smooth formulae in Proposi-
tions 3.3.1 and 3.4.1. For simplicity, we will only consider the space F (R(Z)) of continuous
functions f on R(Z) with following properties for its restriction on a triangle T for a trian-
gulation R(ZS) defined in Sect. 3.2:

1. f is smooth in the interior T 0 of T ;
2. fx and fy has continuous limits on the boundary ∂T ;
3. the restriction of f on the interior part (∂T )0 is smooth.

We need to recall the definition of Laplacian operator in [39, Appendix]. For a metrized
graph G and piece-wise smooth function f on G, we define the Laplacian operator � on
the space F (G) of continuous and smooth functions on G by the formula:

(�(f ), g)G = (f ′, g′)G.

For each f , �(f ) is sum of piece-wise continuous and smooth function and a Dirac distri-
bution:

�(f ) = −f ′′ +
∑

p

δ(f )(p) · δp.
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Here for each p ∈ G, δp denotes the Dirac distribution attached to p, and

δ(f )(p) = −
∑

i

lim
xi

f ′(xi)

where the sum runs through the edges Ei of G with vertices p, and xi are local coordinates
on Ei at p.

Theorem 3.4.2 Assume fi ∈ F (R(Z)). Then the intersection is given by

(f1, f2, f3) =
∫

R(Z)

(�x(f1)(f2yf3y) + �x(f2)(f3yf1y) + �x(f3)(f1yf2y)) dx dy

+ 1

4

∫

D
δ(f1)δ(f2)δ(f3) dx

where D is the union of diagonal in a triangulation R(ZS).

Proof Let us first group the smooth contribution as product of derivatives of x:

(f1, f2, f3)smooth =
∫

R(Z)

[f1x(f2yf3y)x + f2x(f3yf1y)x + f3x(f1yf2y)x]dx dy.

Now we apply integration by parts to obtain

(f1, f2, f3)smooth =
∫

R(Z)\D
�′

xf1(f2yf3y) dx dy +
∫

D
(f +

1xf
+
2yf

+
3y − f −

1xf
−
2yf

−
3y)dy + · · · .

Here D is the union of diagonals in an n-triangulation, and the coordinates in each square
are chosen such that D is given by x = y,

�′
xfi = �xfi − δ(fi) · δD

which is the Laplacian of fi calculated on the complement of D, and f +
i and f −

i are re-
strictions of fi in the upper and lower triangles respectively. Define the derivatives of fi at
the diagonal as the average of two limits of derivatives at two sides separated by diagonals.
Then we have the formulae:

f ±
ix = fix ± 1

2
δfi, f ±

iy = fiy ∓ 1

2
δfi .

The integrand in the diagonal on D has the following expression:

(

f1x + 1

2
δf1

)(

f2y − 1

2
δf2

)(

f3y − 1

2
δf3

)

−
(

f1x − 1

2
δf1

)(

f2y + 1

2
δf2

)(

f3y + 1

2
δf3

)

.

It is clear that the above expression is odd in δ; thus it has an expression

δ(f1)f2yf3y + 1

4
δ(f1)δ(f2)δ(f3) − f1xf2yδ(f3) − f1xf3yδ(f2).
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As the restriction of �xfi on D is δ(fi),

(f1, f2, f3)smooth =
∫

R(Z)

�xf1(f2yf3y) dx dy

+ · · · +
∫

D

(
3

4
δ(f1)δ(f2)δ(f3) − f1xf2yδ(f3) − · · ·

)

dy.

Combined with singular contribution, we have the following expression for the total pairing:

(f1, f2, f3) =
∫

R(X)2

(
�x(f1)(f2yf3y) + �x(f2)(f3yf1y) + �x(f3)(f1yf2y)

)
dx dy

+ 1

4

∫

D
δ(f1)δ(f2)δ(f3) dx. �

Example

In the following we would like to use Theorem 3.4.2 to compute the self-intersection of
an exceptional divisor E. We need only consider the case where X and Y both have only
one singularity. Thus R(Z) is a unit square and the function f corresponding to E has the
graph like a pyramid over R(Z) of height 1

2 . If we parameterize R(Z) using coordinates
(x, y) ∈ [−1/2,1/2]2, then

f (x, y) = 1

2
− max(|x|, |y|).

The function f is smooth on the 4 open triangles divided by 4 sides and two diagonals. The
first derivatives are given by

fx(x, y) =

⎧
⎪⎨

⎪⎩

−1, x > |y|,
1, x < −|y|,
0, |x| < |y|,

fy(x, y) =

⎧
⎪⎨

⎪⎩

−1, y > |x|,
1, y < −|x|,
0, |y| < |x|.

From this, the x-Laplacian of f on R(Z) and the average y-derivative of f on the diagonal
|x| = |y| are given by

�xf = −δ|x|= 1
2
+ δ|x|=|y|, fy(x, y) =

{
− 1

2 , y = |x|,
1
2 , y = −|x|.

Here the Dirac measures are push-forwards of the usual measure dx on the sides or diago-
nals. Bring this to the formula in Theorem 3.4.2, we obtain

E3 = (f,f,f ) = 3
∫

|x|=|y|

1

4
dx + 1

4

∫

|x|=|y|
dx = 3

2
+ 1

2
= 2.

This agrees with formula computed in Sect. 3.1.

3.5 Completing proof of main theorem

In this subsection, we will complete the proof of Main Theorem 1.3.1. By Theorem 2.5.1 and
Proposition 2.5.3, it remains to compute the quantity in Theorem 2.5.1 in the local setting.
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More precisely, let X = Y be a curve of genus g ≥ 2 on over a local field K . Let G be the
admissible green’s function on the reduction graph constructed in our inventions paper [39].
Then we have a metrized line bundle O(�̂) with norm ‖ · ‖ given by

− log‖1�‖ = i(x, y) + G(R(x),R(y))

where R : X(K̄) −→ R(X) is the reduction map. We want to show the following

Proposition 3.5.1 The adelic metrized bundle O(�̂) is integrable and

− log‖1�‖ · (�̂2 − 6�̂ · p∗
1 ê + 6p∗

1 ê · p∗
2 ê)

= −1

4
δ(X) + 1

4

∫

R(X)

G(x, x)((10g + 2) dμa − δKX
).

To see that O(�̂) is integrable, we let ξ denote a class of degree 1 such that (2g − 2)ξ =
ωX and put an admissible metric on it. Then we have seen that the class

t̂ := �̂ − p∗
1 ξ̂ − p∗

2 ξ̂

is integrable. On the other hand the adjunction formula gives

�∗ξ = −ω̂X − 2ξ̂ = −2gξ̂ .

Thus ξ̂ is integrable and then �̂ is integrable.
In the following, let us give precise models of � over OK which converges to �̂. We

consider integral models Z OL
of XL × XL for finite Galois extension L of K . The special

fiber Zw of Z OL
over a finite place w over a place v of K has components parameterized by

some e(w)-division points in the reduction complex R(Zw) where e(w) is the ramification
index of w over v. Let Gw be the restriction of the Green’s function G on these points. Then
we get a vertical divisor Vw in Zw with rational coefficients. The divisor �̃ +∑w Vw with
Green’s function at archimedean place defines an arithmetic divisor �̂L.

We claim that this divisor is the pull-back of some divisor on some model Z L
OK

over OK .
Indeed, let L be an ample line bundle on Z OL

invariant under Gal(L/K); for example, we
may take

L = O
(∑

-Exceptional divisors

)

⊗ π∗
1 ωn ⊗ π∗

2 ωn,

where n is some big positive number. In this way, we may write

Z OL
= Proj

⊕

m≥0

π∗Lm

where π is the projection Z OL
−→ SpecOK . It is well known that the algebra

(
⊕

m≥0 π∗Lm)Gal(L/K) of Gal(L/K) invariants is finitely generated and thus defines
a OK -scheme:

Z L
OK

= Proj

(⊕

m≥0

π∗Lm

)Gal(L/K)

.
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It is well known that the inclusion of rings defines a morphism:

φL/K : Z OL
−→ Z L

OK
.

In this way, we get a divisor

�̂L := [L : K]−1φL/K∗(�̂L).

To get a metrized line bundle on Z L
OK

, we may take positive integer t such that t�̂ has
integral coefficients, and then take a norm

NφL/K
(O(t�̂L))

which is an arithmetical model of t�. By our definition the integration of − log‖1�‖ against
curvatures of line bundles is the limit of intersection of Vi with arithmetic divisors. Thus we
may replace − log‖1�‖ in the proposition by Green’s function G on the reduction complex.
We will finish the proof of the Proposition by computing the triple pairings one by one in
the following three lemmas.

Lemma 3.5.2

(G, �̂,p∗
1 ê) = 0.

Proof Using formulae �̂ = �̃ + G and ê = ē + Ge , we have decomposition

(G, �̂,p∗
1 ê) = (G,p∗

1 ê)�̃ + (G,G,p∗
1 ê)

= (G,p∗
1 ê)�̃ + (G,G)p∗

1e + (G,G,p∗
1Ge).

Let us to compute each of these of term:

(G,p∗
1 ê)�̃ =

∫

R(X)

G(x, x) dμ,

(G,G)p∗
1e = −

∫

R(X)

G(e, y)�yG(e, y) dy

= −
∫

R(X)

G(e, y)(δe(y) − dμ(y)) = −G(e, e),

(G,G,p∗
1Ge) =

∫

�xp
∗
1Ge(Gy)

2 dx dy

=
∫

R(X)2
(δe(x) − dμ(x))(Gy(x, y)2) dy

=
∫

R(X)

Gy(e, y)2 dy −
∫

R(X)2
Gy(x, y)2 dy dμ(x)

=
∫

R(X)

�yGy(e, y) · Gy(e, y) dy −
∫

R(X)2
�yGy(x, y) · Gy(x, y) dy dμ(x)
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= G(e, e) −
∫

R(X)2
(δx(y) − dμ(y))Gy(x, y) dy dμ(x)

= G(e, e) −
∫

R(X)2
Gy(x, x) dμ(x).

The lemma follows from the above three formulae. �

Lemma 3.5.3

(G,p∗
1 ê, p

∗
2 ê) = 0.

Proof Using the decomposition of cycles, we have the following expression:

(G,p∗
1 ê, p

∗
2 ê) = (G,p∗

2 ê)p∗
1e + (G,p∗

1Ge)p∗
2e + (G,p∗

1Ge,p
∗
2Ge).

We compute each term as follows:

(G,p∗
2 ê)p∗

1e =
∫

G(e, y) dμ(y) = 0,

(G,p∗
1Ge)p∗

2e = −
∫

G(x, e)�xG(x, e) = −G(e, e),

(G,p∗
1Ge,p

∗
2Ge) =

∫

�xGe(x, e) · (Gy(x, y)Gy(e, y)) dx dy

=
∫

(δe(x) − dμ(x) · (Gy(x, y)Gy(e, y)) dy

=
∫

R(X)

Gy(e, y)Gy(e, y) dy −
∫

Gy(x, y)Gy(e, y) dμ(x)dy

=
∫

�yG(e, y) · G(e, y) dy = G(e, e).

The lemma follows from the above three computations. �

Lemma 3.5.4 Let g be the genus of the curve, then

(G, �̂, �̂) = 1

4
δ(X) + 1

4

∫

G(x,x)(KX − (10g + 2) dμ).

Proof Using the formula, �̂ = �̃ + G, the left hand side can be decomposed as follows:

(G, δ̂)� + (G,G)� + (G,G,G)

=
∫

R(X)

−G(x,x)c1(ω) −
∫

R(X)

G(x, x)�G(x,x) + (G,G,G).

The curvature c(ω) is (2g −2)dμ where dμ is the admissible metric. To compute Laplacian
of G(x,x) we use the following formula

c + Ga(KX,x) + G(x,x) = 0.



52 S.-W. Zhang

It follows that the curvature of �(G(x, x)) is given by

−�G(KX,x) = (2g − 2)dμ − KX.

Here KX is the canonical divisor on R(X). Thus we have the formula

(G, �̂, �̂) =
∫

R(X)

G(x, x)(KX − 4(g − 1) dμ) + (G,G,G).

It remains to compute the triple pairing (G,G,G). Notice that Gx (resp. Gy ) are contin-
uous in y (resp. x) except on diagonal. By the main formula in the last section, we have

(G,G,G) = 1

4

∫

D

(δG)3 dx + 3
∫

�xGG2
y dx dy.

By definition,

(�xG)dx = δy(x) − dμ.

It follows that δ(G) = 1 on the diagonal and thus the first integral is

1

4
�(R(X)) = 1

4
δ(X).

The second integral is given by

3
∫

R(X)

G2
y(y, y) dy − 3

∫

R(X)2
G2

y(x, y) dμ(x)dy.

Recall that Gy(y, y) is defined to be

1

2
(G+

y (y, y) + G−
y (y, y)) = 1

2
(G+

y (y, y) + G+
x (y, y)) = 1

2
G(y,y)y.

It follows that the above integral is given by

3

4

∫

G2(y, y)y dy − 3
∫

R(X)2
�yG(x, y)G(x, y) dμ(x)dy

= 3

4

∫

�yG(y, y)G(y, y) dy − 3
∫

R(X)2
�yG(x, y)G(x, y) dμ(x)dy

= 3

4

∫

G(y,y)((2g − 2) dμ − KX) − 3
∫

R(X)2
G(x,y)(δx(y) − dμ(y)) dμ(x)

= 3

4

∫

G(y,y)((2g − 2) dμ − KX) − 3
∫

R(X)

G(x, x) dμ

=
∫

R(X)

G(x, x)

(
3

2
(g − 3) dμ − 3

4
KX

)

.

The lemma follows from the above computations. �
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4 Integrations on metrized graph

In this section, we reformulate Conjectures 1.4.2 and 1.4.5 in terms of metrized graphs. We
will verify the conjectures in the elementary graphs where every edge is included in at most
one circle. We will conclude the section by reducing the conjecture to the case that the graph
is 2-edge connected in the sense that the complement of any point is still connected.

4.1 Some conjectures on metrized graphs

In this subsection we want to reformulate Conjectures 1.4.2 and 1.4.5 in terms of metrized
graphs. We will also give some trivial formula which can be used to prove Theorem 1.3.5.

Let � be a connected metrized graph and let q be a function on � with a finite support.
We define the canonical divisor of (�, q) by

K :=
∑

x∈�

(v(x) + 2q(x) − 2)x.

The genus of the metrized graph is defined to be

g = 1 + 1

2
degK =

∑

x

q(x) + b(�)

where b(�) is the first Betti number of the (topological) graph � without metric. We say
that the pair (�, q) is a polarized metrized graph if the following conditions hold

• q is non-negative;
• K is effective.

Notice that the reduction graph R(X) of any semistable curve X of genus g over a discrete
valuation ring is a polarized metrized graph of genus g.

Let G(x,y) and dμ be the admissible green’s function and metric associate to the pair
(�, q). We are interested in the following constants:

ϕ(�) := −1

4
�(�) + 1

4

∫

�

G(x, x)((10g + 2) dμ − δK),

λ(�) := g − 1

6(2g + 1)
ϕ(�) + 1

12
(ε(�) + �(�))

where �(�) is the total length of � and

ε(�) :=
∫

G(x,x)[(2g − 2) dμ + δK ].

When � = R(X) is the reduction graph for a curve, then notation of invariants here coincides
with the invariant defined in the introduction except we use �(�) for δ(X) there.

A point p ∈ � is called a smooth point if it is not in the support of K . For such a smooth
point p, let �p be the subgraph obtained from � by removing p and attached two points
p1,p2. More precisely, �p is a metrized graph with a surjective map to � which is injective
and isometric over � \ {p} and two-to-one over p. The function q defines a function on �p .
We call p of type 0 if �p is connected. In this case �p has genus g − 1. If p is not of type 0,
then �p is a union of two connected graphs of genus i and g − i for some i ∈ (0, g/2]. In
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Fig. 5 Type of smooth points

this case, we say that p is of type i. For each number i in the interval [0, g/2] let �i be the
subgraph of � of points of type i. Let �i(�) denote the length of �i . It is easy to see that
there are only finitely many i ∈ [0, g/2] with non-zero �i(�).

Here is a diagram illustrating the definition of the type of a point for a graph with q = 0.
In the left figures, p is a smooth point of �. In the top, p is of type 0 because �p is connected.
In the bottom, p is of type 1 because the minimum genus of the two connected components
of �p is 1.

Conjecture 4.1.1 There is positive function c(g) of g > 1 such that

ϕ(�) ≥ c(g)�0(�) +
∑

i∈(0,g/2]

2i(g − i)

g
�i(�),

λ(�) ≥ g

8g + 4
�0(�) +

∑

i∈(0,g/2]

i(g − i)

2g + 1
�i(�).

Formulae for Green’s functions and admissible metrics

We need to have a formula for G(x,x) in terms of resistance r(x, y). Recall that we always
have a formula like

r(x, y) = G(x,x) − 2G(x,y) + G(y,y). (4.1.1)

See formula (3.5.1) in [39]. Double integrations gives

τ(�) :=
∫

G(x,x) dμ(x) = 1

2

∫

r(x, y) dμ(x)dμ(y). (4.1.2)

One integral with dμ(y) gives

G(x,x) =
∫

r(x, y) dμ(y) − 1

2

∫

r(x, y) dμ(x)dμ(y). (4.1.3)
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Bring this to the definition of ε(�) to obtain

ε(�) =
∫

r(x, y)δK(x) dμ(y). (4.1.4)

The constants ϕ(�) and λ(�) can be expressed in terms of �(�), τ(�) and ε(�):

ϕ(�) = 3gτ(�) − 1

4
(ε(�) + �(�)) (4.1.5)

λ(�) = g(g − 1)

2(2g + 1)
τ (�) + g + 1

8(2g + 1)
(�(�) + ε(�)). (4.1.6)

Recall form Lemma 3.7 in [39] that dμ has an expression

dμ = 1

g

(∑
q(x)δx +

∑ dxe

�e + re

)

. (4.1.7)

We will reduce Conjecture 4.1.1 to the case where � is 2-edge connected. In this case,
the conjecture is equivalent to the following

Conjecture 4.1.2 Assume that � is 2-edge connected. Then the following two inequalities
hold:

g − 1

g + 1
(�(�) − 4gτ(�)) ≤ ε(�) ≤ 12gτ(�) − (1 + c(g))�(�),

here c(g) is a positive number for each g > 1.

4.2 Proof of Theorem 1.3.5

In this subsection, we give a trivial bound for ϕ(�) and use it to complete the proof of
Theorem 1.3.5.

Lemma 4.2.1

−2g − 1

4
�(�) ≤ ϕ(�) ≤ 3g

2
�(�).

Proof From formulae (4.1.5) and (4.1.2), we obtain

ϕ(�) ≤ 3gτ(�) ≤ 3g�(�)

2

where we use an inequality r(x, y) ≤ �(�) for any points x, y ∈ �. Similarly, we can get a
lower bound:

ϕ(�) ≥ −1

4
(ε(�) + �(�)) ≥ −1

4
(2g − 2 + 1)�(�). �

Proof of Theorem 1.3.5 To prove Theorem 1.4.4, we need only to prove that the following
difference function is bounded, for all closed point t ∈ T :

f (t) = 1

deg t
((2g − 2)〈�ξ(Yt ),�ξ (Yt )〉 − (2g + 1)〈ωY/T ,ωY/T 〉).
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Replace T by a finite covering, we may assume that the family can be extended into an semi-
stable family Y −→ T of integral schemes over OK . Let δT be the boundary divisor induced
from the morphism T −→ M̄g and the boundary divisor M̄g \ Mg . Then δT is supported
over finitely many closed fibers of T −→ SpecOk , say over points in a finite subset S of
SpecOk . Now by Theorem 1.3.1, the function is given by

f (t) = 2g − 2

deg t

∑

w

ϕw(Yt )

where the sum is over all places of K(t). When w is archimedean over an archimedean place
v of K , φw(Yt ) is a continuous function on t ∈ Tv(C) thus it is bounded by a constant Cv

depends only on place v.
If w is archimedean, then by Lemma 4.2.1, ϕw(Yt ) is bounded by a constant multiple of

the length �(�) of the reduction graph of Yt at w. We notice that this length is equal to the
number of singular points on Yt over w and can be computed by divisor δT :

�(�) = (δT · t̄ )w

where the right hand side is the local intersection number of δT and the Zariski closure t̄ of t

over w. This number is also bounded by a number Cv as δT is a vertical divisor. In summary
we have shown that

|f (t)| ≤ 1

deg t

∑

w

Cv =
∑

Cv

where Cv are some constant which is zero at all but finitely many places of k. Thus this is a
finite number. This shows the boundedness of f (t). �

4.3 Additivity of constants

In this section we want to reduce Conjecture 4.1.1 to the case where � is either a line
segment or a 2-edge connected in the case that for any smooth point p ∈ �, the complement
�p is still connected. If �p is not connected, then it is the union of two graphs �1 and �2

and � is a pointed sum of �1 and �2.

Lemma 4.3.1 Any metrized graph � is a successive pointed sum of graphs �i such that
each �i is either 2-edge connected or an edge with all inner points smooth.

Proof Let �+ be closure of the subgraph of points p such that �p is not connected. Then
�+ is a finite disjoint union of trees, and the closed complement �0 of �+ in � is a finite
disjoint union of the maximal 2-edge connected subgraphs. The graph �+ can be further
decomposed to edges with smooth inner points. We let �i be the components of these 2-edge
connected points or edges with smooth inner points. �

Assume that we have a decomposition of � into a pointed sum of connected subgraphs
�i as in Lemma 4.3.1. For each i and each A ∈ �i , let �A be the closure of the connected
component of A in complement the �i \ {A}. Then for all but finitely many A, �A = A. We
have a map πi : � −→ �i with fiber �A over A ∈ �i . Let qi(A) be the genus of the polarized
graph (�A, q|�A

).
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Fig. 6 Quotient graphs

Here is a figure of a graph � that draws attention to one of its 2-edge connected com-
ponents �i . The point A ∈ �i gives rise to the graph �A, which is the fiber over A of the
projection map πi : � → �i . The point B satisfies π−1

i (B) = {B}.
Our main result is as follows:

Theorem 4.3.2 Each pair (�i, qi) is a polarized metrized graph with the same genus g as
(�, q). Moreover all invariants have the additivity:

ε(�) =
∑

i

ε(�i, qi), τ (�) =
∑

i

τ (�i, qi),

ϕ(�) =
∑

i

ϕ(�i, qi), λ(�) =
∑

i

λ(�i, qi).

Proof By definition, we need to show that qi is non-negative and K�i
is effective. By defin-

ition, the genus of �A with restriction genus function q(x) is given by

q(�A) =
∑

x∈�A

q(x) + b(�A)

where b(�A) is the first Betti number of the topological space �A. It is clear that q(�A) ≥ 0.
We need to compute the degree of the canonical divisor Ki of (�i, qi). Notice that the canon-
ical divisor KA of (�A, q|�A

) and K on a point x ∈ �A have the same multiplicities respec-
tively:

2q(x) − 2 + v�A
(x), 2q(x) − 2 + v(x).

These two numbers are equal except at x = A where the difference is v�i
(A). It follows that

ordAKi = 2q(A) − 2 + v�i
(A) =

∑

x∈�A

ordxK.

This implies that Ki is effective and thus (�i, qi) is polarized. Take sum over A to obtain
that

2g(�i, qi) − 2 = 2g(�) − 2.
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It follows that g(�i) = g(�).
For four identities, by (4.1.5) and (4.1.6), it suffices to prove the first two. For any two

points x, y ∈ �, the resistance r(x, y) can be computed using �i :

r(x, y) =
∑

i

r(πi(x),πi(y))

where right side is the resistance on �i which is the same as the resistance on �. We have a
decomposition

τ(�) =
∑

i

τi(�), ε(�) =
∑

εi(�), (4.3.1)

where

τi(�) = 1

2

∫

r(πi(x),πi(y)) dμ(x)dμ(y),

εi(�) =
∫

r(πi(x),πi(y))δK(x) dμ(y).

We may compute these last two integrations over fibers of πi : � −→ �i :

τi(�) = 1

2

∫

�2
i

r(x, y) dμi(x) dμi(y),

εi(�) =
∫

r(x, y)δK,i(x) dμi(y)

where dμi(x) is the sum of smooth part of dμ(x) supported on �i plus the Dirac measure
A in �i with mass

∫

�A

dμ(x) = qi(A)

g
.

Similarly, δK,i(x) is the Dirac measure with mass
∫

�A

δK = 2qi(A) − 2 + v�i
(x) = degA Ki.

It follows that

τi(�) = τ(�i, qi), εi(�) = ε(�i, qi).

The formulae (4.3.1) thus finishes the proof. �

4.4 Reduction and elementary graphs

In this section, we want to reduce Conjecture 4.1.1 to the case where G is 2-edge connected.
Then we prove the conjecture for elementary graphs.

Proposition 4.4.1 Let D1, . . . ,Dm be the set of maximal 2-edge connected subgraphs of �i .
Then

ϕ(�) =
∑

i∈(0,g/2]

2i(g − i)

g
�i(�) +

∑

D

ϕ(D,qD),
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λ(�) =
∑

i∈(0,g/2]

i(g − i)

8g + 4
�i(�) +

∑

D

λ(D,qD).

Proof By Lemma 4.3.1 and Theorem 4.3.2, we need only prove the proposition when � is
an edge with smooth inner points. Let i and g − i be values of genus function at two ends a

and b. Then

K = (2i − 1)a + (2g − 2i − 1)b, dμ = 1

g
(iδa + (g − i)δb).

As r(x, y) is the distance between x and y, it follows that

τ(�) = 1

2

∫

r(x, y) dμ(x)dμ(y) = i(g − i)

g2
�(�),

ε(�) =
∫

r(x, y)δK(x) dμ(y) =
(

4
i(g − i)

g
− 1

)

�(�).

The formulae in the proposition follows from (4.1.5) and (4.1.6). �

Corollary 4.4.2 Conjecture 4.1.1 in general case follows from the case where � is 2-edge
connected.

A graph is called elementary if every edge is included in at most one circle. In the fol-
lowing, we give some explicit formulae for ϕ(�) and λ(�) for elementary graphs and then
deduce Conjecture 4.1.1. For each circle C in �, let VC be the set of points on C such that
q(x) > 0, and write C0 = C \VC . Then � \C0 is a union of subgraphs �A for A ∈ VC . Let gA

denote the genus of �A for the restriction of genus function gA, and let rC(A,B) denote the
resistance between two points A and B on the circle C. We want to prove Conjecture 4.1.1
for elementary graph:

Proposition 4.4.3

ϕ(�) = g − 1

6g
�0(�) +

∑

i∈(0,g/2]

2i(g − i)

g
�i(�) +

∑

c∈C

∑

A,B∈VC

gAgB

g
rC(A,B),

λ(�) = g

8g + 4
�0(�) +

∑

i∈(0,g/2]

i(g − i)

8g + 4
�i(�) +

∑

c∈C

∑

A,B∈VC

gAgB

4g + 2
rC(A,B).

Proof By Proposition 4.4.1, it suffices to prove the proposition for case where � is a circle.
Let us compute the integrals ε(�) and τ(�):

τ(�) = 1

2

∫

r(x, y) dμ(x)dμ(y), ε(�) =
∫

r(x, y)δK(x) dμ(y).

For A,B ∈ � the resistance r(A,B) is given by �(A,B)�′(A,B)/� where �(A,B) and
�′(A,B) are the lengths of two segments of in the complement of A,B in �. The measures
in the integrals are given by

dμ = 1

g

(∑

A

q(A)δA + �−1dx

)

, δK =
∑

A

2q(A)δA.
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Let �0 be the complement of the support of q . Then we have discrete contribution when
both x and y are not in C0. The contributions in this case are given by

τA,B(�) = q(A)q(B)

2g2
r(A,B), εA,B(�) = 2

q(A)q(B)

g
r(A,B).

Next we consider the case where x /∈ C0, y ∈ C0. We assume that x = A. Let us choose
coordinate t on C such that t (A) = 0. Then we have contributions:

τ 1
A(�) := q(A)

2g

∫

�0

t (�c − t)

�c

dμ = q(A)

2g2

∫ �

0

t (� − t)

�

dt

�
= q(A)

6g2
�,

ε1
A(�) := 2q(A)

∫

�0

t (� − t)

�
dμ = q(A)

3g
�.

Now let us consider the case x ∈ �0, y = A. Then we have contribution:

τ 2
A(�) :=1

2

∫

�0

t (x)(� − t (x))

�
dμ(x) · q(A)

g
= gA

12g2
�,

ε2
A(�) :=

∫

�0

t (� − t)

�
δK · q(A)

g
= 0.

Finally, lets us consider the case where both x and y are in �0. Then we have contribution:

τ 0(�) := 1

2

∫

�0

∫

�0

|t (x) − t (y)|(� − |t (x) − t (y)|)
�

dμ(x)dμ(y)

= 1

2g2

∫ �

0

∫ �

0

|t (x) − t (y)|(�e − |t (x) − t (y)|)
�

dx dy

�2
= �

12g2
.

Thus a total contribution from a circle is

τ(�) =
∑

A,B

τA,B(�) +
∑

A

(τ 1
A(�) + τ 2

A(�)) + τ 0(�)

=
∑

A,B

q(A)q(B)

2g2
· r(A,B) + 1

6g2

(∑

A

q(A)

)

� + �

12g2
,

ε(�) =
∑

A,B

εA,B(�) +
∑

A

(ε1
A(�) + ε2

A(�)) + ε0(�)

=
∑

A,B

2
q(A)q(B)

g
· r(A,B) + 1

3g

(∑

A

q(A)

)

�.

It is easy to verify that
∑

q(A) + 1 = g. Thus we have formulae

τC(�) =
∑

A,B

q(A)q(B)

g2
· r(A,B) + 2g − 1

6g2
�,
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εC(�) =
∑

A,B

2
q(A)q(B)

g
· r(A,B) + g − 1

3g
�.

By formulae (4.1.5) and (4.1.6), we obtain the formulae in proposition.

ϕ(�) =
(

g − 1

6g
+
∑

A,B∈�

q(A)q(B)

g
r(A,B)

)

�c,

λ(�) =
(

g

4(2g + 1)
+ 1

2

∑

A,B∈VC

q(A)q(B)

2g + 1
r(A,B)

)

�c. �

5 Triple product L-series and tautological cycles

In this section, we define a subgroup containing the Gross–Schoen cycle of homologous to
zero cycles of codimension 2 on the triple product X3 of a curve X. The Beilinson–Bloch
conjecture relates the rank of this group and the order of vanishing of L-series at s = 0
associated to the cohomology M defined as the kernel

3∧
H 2(X) (2) −→ H 1(X)(1).

We will list some formulae for L-series and root numbers in the semistable case. At the end
of this section, we want to rewrite heights of �ξ in terms of Künnemann’s height pairing
of tautological cycles X1 and F (X1) in the Beauville–Fourier–Mukai theory. In particular,
we can show that the non-vanishing of height of �ξ will implies the non-vanishing of the
Ceresa cycle X − [−1]∗X in the Jacobian.

5.1 Beilinson–Bloch’s conjectures

In this subsection, we define some groups of cycles homologous to 0 of codimension 2
on a product of three curves and state the Beilinson–Bloch’s conjectures for corresponding
cohomologies.

Let Xi (i = 1,2,3) be three curves over a number field with three fixed points ei . We
consider the triple product Y = X1 × X2 × X3, the group Ch2(Y ) of cycles of dimension 1
on the Y , and the class map

Ch2(Y ) −→ H 4(Y )(2).

The kernel of this map is called the group of cycles homologous to 0 and is denoted by
Ch2(Y )0. We have the following Beilinson–Bloch’s conjecture [4–6]:

Conjecture 5.1.1 (Beilinson–Bloch) The rank of Ch2(Y )0 is finite and is equal to the order
of vanishing of L(H 3(Y ),2).

By the Künneth formula, we have a decomposition:

H 3(Y ) = H 1(X1) ⊗ H 1(X2) ⊗ H 1(X3) ⊕ ⊕iH
1(Xi)(−1)⊕2. (5.1.1)

Thus, the right hand side is the product of L-series corresponding to the decomposition.
We would like to decompose the group Ch2(Y )0 into a sum of subgroups and formulate a
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conjecture for these subgroups. For this, we need only find correspondence decomposition
of the identity correspondence which gives decomposition. In the following we want to
describe the group Ch2(Y )0 in terms of projections and embeddings.

Lemma 5.1.2 Let Ch2(Y )0 be the subgroup of elements with trivial projection onto Xi ×Xj

and Ch1(Xi)
0 be the group of zero cycles on Xi of degree 0. Then

Ch2(Y )0 = Ch2(Y )0 ⊕
⊕

i

(Ch1(Xi)
0)⊕2.

Moreover, this decomposition is compatible with Künneth decomposition in the sense that
they are given by same correspondences on Y .

Proof Let i, j, k be a reordering of 1,2,3. For any factor Xk , we have an injection ιk :
Xk −→ Y by putting ei, ej for other factors; similarly we have an embedding ιi,j : Xi ×
Xj −→ Y be the inclusion by putting component ek on Xk . Then we have an inclusion
Ch0(Xk) −→ Ch2(Y ) and Ch1(Xi × Xj) −→ Ch2(Y ) by push-push forward. Let πk and
πi,j denote the projections to Xk and Xi × Xj .

For any cycle Z on Y , let Zi,j and Zk denote push forwards of Z under ιi,j ◦ πi,j and
ιk ◦ πk respectively. We define the following combinations:

Z0 = Z −
∑

i,j

Zi,j +
∑

k

Zk,

Z0
i,j = Zi,j − Zi − Zj .

Then we have a decomposition

Z = Z0 +
∑

i,j

Z0
i,j +

∑

k

Zk. (5.1.2)

It can be proved that Z0 has the trivial projection to Xi × Xj , and that Zi,j has trivial
projection on Xi and Xj . These imply that Z0 is cohomologically trivial, and that Z0

i,j and
Zk have cohomological classes in the following groups respectively:

H 1(Xi) ⊗ H 1(Xj ) ⊗ H 2(Xk), H 2(Xi) ⊗ H 2(Xj ) ⊗ H 0(Xk).

Assume now that Z is homologically trivial. Then Zk = 0 (as it is a multiple of {ei} ×
{ej }×Xk) and the class Zi,j are cohomologically trivial with decomposition by the theorem
of square of line bundles algebraically equivalent to 0 on Xi × Xj :

Zi,j = A × Xj × {ek} + Xi × B × {ek}
where A and B are divisors on Xi and Xj with degree 0 respectively. �

The group Ch1(Xi)
0 is nothing other than the Mordell–Weil group of Jac(Xi). The Birch

and Swinnerton–Dyer conjecture gives

ords=1L(H 1(Xi), s) = rankCh1(Xi)
0.

Thus Conjecture 5.1.1 is equivalent to the following:
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Conjecture 5.1.3 The rank of Ch2(Y )0 is finite and is equal to

ords=2L(H 1(X1) ⊗ H 1(X2) ⊗ H 1(X3), s).

In the following we try to discuss the conjecture in the spacial case X1 = X2 = X3 = X,
where X is a general curve of genus g ≥ 2. In this case, we have more correspondences
to decompose the cohomology H 1(X)⊗3. We will decide a subgroup whose Chow group
containing the modified diagonal.

First of all, we notice that the modified diagonal is invariant under the symmetric
group S3. Thus it corresponds to the component of H 1(X)⊗3 under the action of S3. No-
tice that the action of S3 on this group is given by the following: for αi ∈ H 1(X) then it
defines an element α1(x1) ∧ α2(x2) ∧ α3(x3) in H 1(X)⊗3. The group S3 acts by the permu-
tations of xi ’s. Thus the invariant under S3 is exactly the subspace

∧3
H 1(X) of H 1(X)⊗3.

Indeed, invariant space are generated by elements of the form

∑

σ∈S3

α1(xσ(1)) ∧ α2(xσ(2)) ∧ α3(xσ(3)) =
∑

σ∈S3

sgn(σ )ασ(1)(x1) ∧ ασ(2)(x2) ∧ ασ(3)(x3).

Thus the Beilinson–Bloch conjecture gives

ords=2L
(
s,

3∧
H 1(X)

)
= dim Ch2(Y )

S3
0 .

Here Ch2(Y )
S3
0 is the group of cohomologically trivial cycles with trivial projection under

πi,j and invariant under permutation. Both sides are nontrivial only if g ≥ 2.
Using the alternating paring on H 1(X), we can define a surjective morphism

3∧
H 1(X)(2) −→ H 1(X)(1), a ∧ b ∧ c 
→ a(b ∪ c) + b(c ∪ a) + c(a ∪ b),

where a ∪ b is the canonical alternating pairing of a, b ∈ H 1(X) with values in Q�(−1).
This morphism is defined by a correspondence between X3 and X as follows:

X2 −→ (X3) × (X) : (x, y) 
→ (x, x, y) × (y).

Thus the kernel M is fitted in a splitting:

3∧
H 1(X)(2) = M ⊕ H 1(X)(1),

with embedding

H 1(X)(1) −→
3∧

H 1(X)(2)

given by

α 
→ 1

6

∑

σ∈S3

σ ∗(α ∧ δ)

where δ ∈∧2
H 1(X) (1) is the projection of class of the diagonal which gives the alternative

pairing of H1(X).
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The corresponding decomposition is given by

Ch2(Y )
S3
0 = Ch(M) ⊕ Pic0(X)(K)

where Ch(M) is a subgroup of Ch2(Y 3)0 consists of elements z satisfying the following
conditions:

1. z is symmetric with respect to permutations on X3;
2. the pushforward p12∗z = 0 with respect to the projection

p12 : X3 −→ X2, (x, y, z) 
→ (x, y);

3. let i : X2 −→ X3 be the embedding defined by (x, y) −→ (x, x, y) and p2 : X2 −→ X

be the second projection. Then

p2∗i∗z = 0.

For any η ∈ Jac(X)(K), the corresponding element in Ch2(Y )
S3
0 is given by

α(η) =
∑

i,j,k

�0
i,j × ηk

where ηk ∈ Xk is corresponding to η.
The Beilinson–Bloch conjecture gives the following

Conjecture 5.1.4 The group Ch(M) has finite rank and

ords=0L(s,M) = dim Ch(M).

Let us check if the modified diagonal is in the above group:

Lemma 5.1.5

�ξ ∈ Ch(M).

Proof Indeed, it is easy to show that

i∗�ξ = (2 − 2g(X))ξ� − (2 − 2g)ξ × ξ − 2ξ� + 2ξ × ξ.

It is clear that

p2∗i∗�ξ = (2 − 2g)ξ − (2 − 2g)ξ − 2ξ + 2ξ = 0. �

5.2 L-series and root numbers

In this section we want to compute L-series and the epsilon factor for L(s,M) when the
curve has semi-stable reduction. Our reference for definitions is Deligne [12]. For conve-
nience, we will work on homology H1(X) = H 1(X)(1). Recall that M is the kernel of a
canonical surjective morphism on homology groups:

3∧
H1(X)(−1) −→ H1(X).
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It follows that the cohomology M is of weight −1 with a non-degenerate alternative pairing

M ⊗ M −→ Q(1).

It is conjectured that the L-series L(s,M) should be entire and satisfies a functional equation

L(s,M) = ±f (M)−sL(s,M)

where f (M) ≥ 1 is the conductor of M (an integer divisible only by finite places ramify
in M).

Local L-functors

By definition, the L-series is defined by an Euler product:

L(s,M) =
∏

v

Lv(s,M)

where v runs through the set of places of K , and Lv(s,M) is a local L-factor of M at v. For
v an archimedean place, the local L-factor is determined by the Hodge weights. Notice that
we have a decomposition

H1(X,C) = H−1,0(X,C) ⊕ H 0,−1(X,C)

of Hodge structure into two spaces of dimension g, and that C(−1) has Hodge weight (1,1).
As M is the kernel of a surjective morphism of Hodge structure

3∧
H1(X,C)(−1) −→ H1(X,C),

it follows that M has Hodge numbers given by

h1,−2 = h−2,1 = g(g − 1)(g − 2)

6
, h0,−1 = h−1,0 = g(g − 2)(g + 1)

2
.

The L-factor then is given by

Lv(s,M) = �C(s + 2)h−2,1
�C(s + 1)h−1,0

, �C = 2 · (2π)−s�(s). (5.2.1)

For v a finite place with inertia group Iv , residue field Fqv , and geometric Frobenius Fv ,
the L-series is given by

Lv(s,M) = det(1 − q−s
v Fv;MIv

� )−1 (5.2.2)

where M� is the �-adic realization of M at a prime � � qv . For v unramified, the L-series
can be computed simply by Weil numbers. For v a ramified place, then Jac(X) has a semi-
abelian reduction: the connected component J of the Neron model of Jac(X) is an extension
of an abelian variety A by a torus

0 −→ T −→ J −→ A −→ 0.
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Here A is the product of Jacobians of the irreducible components in the semistable reduction
of X and T is a torus determined by homology group in the reduction graph of X. We have
a filtration of V := H1(XK̄,Q�):

H1(T̄ ,Q�) ⊂ H1(J̄ ,Q�) ⊂ H1(X̄,Q�).

This filtration is compatible with action of the decomposition group Dv . By Serre–Tate, we
have an identity:

H1(J̄ ,Q�) = H1(X̄,Q�)
Iv ,

and H1(T̄ ,Q�) is the orthogonal complement of H1(J̄ ,Q�) with respect to the Weil pairing
on H1(X̄,Q�). In particular, the action of Fv on these space are semiample with eigenvalues
of absolute value q−1, q1/2, and 1. Thus Fv on H1(X̄,Q�) is semi-simple.

By Grothendieck, the action of Iv on H1(X̄,Q�) is given by

σx = x + t�(σ )Nx, x ∈ H1(X̄,Q�), N ∈ End(H1(X̄,Q�)),

where t� : Iv −→ Q� is a nonzero homomorphism. We may decompose V := H 1(X̄,Q�)

into an orthogonal sum of two dimensional spaces Vi (i = 1, . . . , g) invariant under Dv . The∧3
H1(X̄,Q�) is then a direct sum of tensors

3∧
H1(X̄,Q�) =

⊕

n1+n2···=3

n1∧
V1 ⊗

n2∧
V2 ⊗ · · · .

The invariants of Iv must have decomposition:

3∧
H1(X̄,Q�)

Iv =
⊕

n0+n1+n2···=3

( n0∧
V0

)Iv

⊗
( n1∧

V1

)Iv

⊗ · · · .

Thus M(1) has the following orthogonal decomposition of Dv-modules:

M(1) =
∑

i<j<k

Vi ⊗ Vj ⊗ Vk +
∑

i

Vi ⊗
(∑

j �=i

( 2∧
Vi

))0

(5.2.3)

where superscript 0 means kernel in the Weil pairing. The space MIv has a decomposition

MIv (1) =
∑

i<j<k

V
Iv
i ⊗ V

Iv
j ⊗ V

Iv
k +

∑

i

V
Iv
i ⊗

(∑

j �=i

2∧
Vi

)0

. (5.2.4)

In this way, we have a precise description of the Galois action on M and therefore a formula
for L-factor.

Local root numbers

In the following we want to compute the root numbers of the functional equation. Recall
that the root number ε is the product of local root numbers εv .
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Lemma 5.2.1 For v complex we have

εv = i6h−2,1+2h−1,0 =
{

1, g ≡ 0,1 (mod 4),

−1, g ≡ 2,3 (mod 4).

For v a real place

εv = i4h−2,1+2h−1,0 =
{

1, g �≡ 1 (mod 4),

−1, g ≡ 1 (mod 4).

Lemma 5.2.2 Let v be a non-archimedean place. Let τ = ±1 be the product of αi . Then the
root number is given by

εv := (−1)e(e−1)(e−2)/6τ (e−1)(e−2)/2(−1)e(g−2)τ (g−2)

= (−1)e(e−1)(e−2)/6+geτ (e−1)(e−2)/2+g.

Here e is the rank of the first homology group of the reduction graph of X at v, and τ is the
determinant of Fv acts on the character group of (e-dimensional) toric part of the reduction
of Jac(X).

Proof If v is finite unramified place, then εv = 1. It remains to compute the root number at
a ramified finite place. It is given by

εv = det(−Fv|M�
)

det(−Fv|MIv
�

)
.

Now we want to compute εv using decompositions (5.2.3) and (5.2.4). Notice that on each
Vi , −Fv has determinant −q−1, and on V

Iv
i , it has eigenvalues q−1 for i ≤ e. We assume

that Vi �= V
Iv
i exactly for the first e Vi ’s. Let Fv have eigenvalues αi on Vi/V

Iv
i which has

absolute value 1. The contribution to root number from each term is given as follows:

Vi ⊗ Vj ⊗ Vk : 1,

Vi ⊗
(
∑

j �=i

∧2
Vi

)

: 1,

V
Iv
i ⊗ V

Iv
j ⊗ V

Iv
k : −αiαjαk, i < j < k ≤ e,

V
Iv
i ⊗ V

Iv
j ⊗ V

Iv
k : α2

i α
2
j , i < j ≤ e < k,

V
Iv
i ⊗ V

Iv
j ⊗ V

Iv
k : α4

i , i ≤ e < j < k,

V
Iv
i ⊗

(
∑

j �=i

∧2
Vi

)

: (−αi)
g−2, i ≤ e. �

5.3 Tautological classes in Jacobians

In this subsection, we would like to study tautological algebraic cycles in the Jacobian de-
fined by Ceresa [8] and Beauville [3]. We will use Fourier–Mukai transform of Beauville
[1, 2] and height pairing of Künnemann [27].

Let A be an abelian variety of dimension g ≥ 3 over a global field k with a fixed sym-
metric and ample line bundle L. Let L be the operator on cohomology h(A) induced by
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intersecting with c1(L) which thus induces operator on Chow group and cohomology group.
For each integer p in the interval [0, (g + 1)/2], it is conjectured that the map

Lg+1−2p : Chp(A)0 −→ Chg+1−p(A)0

is an isomorphism of two vector spaces of finite dimensional. Let Chp(A)00 denote the
kernel of Lg+2−2p which is called the group of primitive class of degree p. By the same way,
we can define the primitive cohomology classes H 2p−1(A)00. Then the Beilinson–Bloch
conjecture says that

rankChp(A)00 = ords=pL(H 2p−1(A)00, s).

Moreover, Künnemann has constructed a height pairing on Ch∗(A)0:

〈·, ·〉 : Chp(A)0 ⊗ Chg−p+1(A)0 −→ R.

The index conjecture of Gillet–Soulé says

(−1)p〈x,Lg+1−2px〉 > 0, 0 �= x ∈ Chp(X)00.

Using Mukai–Fourier transform, we may decompose the group Chp(A) into a direct sum
of eigen spaces under multiplications:

Chp(A) =
∑

s

Chp
s (A)

where s are integers and Chp
s (A) is the subgroup of cycles x ∈ Chp(A) with the property

[k]∗x = k2p−sx, ∀k ∈ Z,

where [k] is the multiplication on A by k. It has been conjectured that Chp
s (A) = 0 if

s �= 0,1. By the projection formula

〈k∗x, y〉 = 〈x, k∗y〉
we see that Chp

s (A)0 are perpendicular to Chq
t (A)0 unless

p + q = g + 1, s + t = 2.

Let X be a curve over a global field k with Jacobian J . For an integer n ∈ [0, g], we can
define morphism fn : Xn −→ J by sending (x1, . . . , xn) to the class of

∑
(xi − ξ). Notice

that the image does not depend on the choice of ξ . We view X as a subvariety of J via
embedding f1 and define the theta divisor θ as the image of fg−1. We use θ for the primitive
decomposition and Fourier–Mukai transform:

F : Ch∗(J ) −→ Ch∗(J )

x 
→ F (x) := p2∗(p∗
1x · eλ)

where λ is the Poincaré class:

λ = p∗
1θ + p∗

2θ − m∗θ.
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The decomposition into s-space can be made explicit as follows: Define a decomposition
F =∑Fs by

Fs(x) = p2∗
(

p∗
1x · λ2g−2p+s

(2g − 2p + s)!
)

.

Then we have decomposition x =∑xs with

xs = F −1(Fs(x)) ∈ Chp
s (J ),

where F −1 is the inverse of F which has an expression:

F −1 = (−1)g[−1]∗ ◦ F .

Following Beauville, we define the ring R of tautological cycles of Ch∗(J ) as the small-
est Q-vector generated by X under the following operations: the intersection, the star op-
erator, and the Fourier–Mukai transform. By Beauville, in the decomposition R =⊕s Rs ,
Rs = 0 if s < 0 and R0 is generated by θ . Thus R0 maps injectively into cohomology group.
Thus cohomological trivial cycles have components s > 0. The height intersection on these
cycles factors through the first component:

〈x, y〉 = 〈x1, y1〉.
The key to prove Theorem 1.5.5 is the following pull-back formula:

Theorem 5.3.1 Consider the morphism f3 : X3 −→ J . Then

f ∗
3 F (X) = −g

∑

i

p∗
i ξ −

∑

ij

pij∗δξ + �ξ,

where δξ is the class

δξ = p∗
1ξ + p∗

2ξ − � ∈ Ch1(X2).

Proof By discussion above,

F (X) = p2∗(p∗
1X · eλ).

Consider the morphism

g : X4 −→ J × J, (xi) 
→ (x0 − ξ, x1 + x2 + x3 − 3ξ).

Then it is easy to see that

f ∗
3 F (X) = p123∗g∗eλ = p123∗ expg∗λ.

Let us compute the class g∗λ:

g∗λ = p∗
0θ + p∗

123f
∗
3 θ − f ∗

4 θ.

We want to use the theorem of cube to decompose this bundle into a sum of pull-backs of
bundles of a face X2 of X4. More conveniently, we may consider this bundle as pull-back of
bundle on A4 of the following bundle:

m∗
0θ + m∗

123θ − m∗
0123θ
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where for a subset I of {0,1,2,3,4}, mI is the sum of elements in I . By the theorem of
cube, this bundle has an expression

∑

ij

Lij +
∑

i

Mi

where Lij are line bundles on J 2 with trivial restriction on {0} × J and J × {0} and Mi are
line bundles on J . Now lets us restrict the bundle on ij -factors with 0 on other factors to
obtain:

L0i = λ, Lij = 0, ∀i, j > 0.

Similarly, restrict on a single factor to get Mi = 0. In summary, we have shown that

g∗λ =
3∑

i=0

f ∗
0iλ

where f0i is the projection X3 −→ A2. To compute the bundle f0iλ we consider the embed-
ding X2 −→ A2. It is easy to see that the restriction of λ is given by δξ . It follows that

g∗λ =
∑

i

p∗
0iδξ .

Thus we have

f ∗
3 F (X) = p123∗ expg∗λ =

∑

ijk

1

i!j !k!p123∗(p∗
01δ

i
ξ · p∗

02δ
j

ξ · p∗
03δ

k
ξ ).

The identity in Theorem follows from a direct computation. �

Proof of Theorem 1.5.5 The first formula follows from Theorem 5.3.1. The second follows
form the identity

f3∗�ξ = [3]∗X − 3[2]∗X + 3X, X =
∑

Xs.

For the third formula, we notice the star operator and intersection operator respect to the
s-graduation. Push the first formula in the Theorem to J to obtain:

X∗3 · F (X1) = [3]∗X − 3[2]∗X + 3X.

Decompose this into s-components to obtain:

F (X1) ·
∑

i+j+k=s−1

Xi ∗ Xj ∗ Xk = (32+s − 3 · 22+s + 3)Xs.

This proves the identity in the third formula. The list of equivalence is clear by three identi-
ties and the following expression for Ceresa cycle:

X − [−1]∗X = 2
∑

s odd

Xs. �
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Proof of Theorem 1.5.6 By Theorem 1.5.5, f ∗
3 F (X1) = �ξ . The first inequality follows

from the projection formula:

〈�ξ,�ξ 〉X3 = 〈F (X1), (f3∗�ξ)1〉X3 .

Now we use the identity

f3∗�ξ = [3]∗X − 3[2]∗X + 3X = 6X1 + · · · .

For the second inequality, we use another projection formula

〈�ξ,�ξ 〉X3 = 〈f ∗
3 F (X1), f

∗
3 F (X1)〉X3 =〈F (X1), f3∗f ∗

3 F (X1)〉J
=〈F (X1),X

∗3 · F (X1)〉.
As the intersection pairing depends only on the s = 1 component, we may replace X∗3 by

X∗3
0 = 6

(g − 3)!θ
g−3.

Here for a subvariety Y of X, Y ∗d denote d-th star product power of Y . This proves the
identity in the Theorem. To show that F (X1) is primitive, we use the following identity:

L · Lg−3 F (X1) = (g − 3)!
6

(θ · X∗3 F (X1))1 = (g − 3)!
6

f3∗(f ∗
3 θ · �ξ).

Thus it suffices to prove

f ∗
3 θ · �ξ = 0.

By Theorem 5.3.1,

f ∗
3 θ = −f ∗

3 F (X0) = g
∑

ip∗
i ξ +

∑

ij

p∗
ij δξ .

It is easy to show all of these terms have zero intersection with �ξ . �
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