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Abstract. Calculation of band structures of three dimensional photonic crystals amounts to5
solving large-scale Maxwell eigenvalue problems, which are notoriously challenging due to high mul-6
tiplicity of zero eigenvalues. In this paper, we try to address this problem in such a broad context7
that band structures of three dimensional isotropic photonic crystals in all 14 Bravais lattices can8
be efficiently computed in a unified framework. In this work, we uncover the delicate machinery be-9
hind several key results of our framework and on the basis of this new understanding we drastically10
simplify the derivations, proofs and arguments. Particular effort is made on reformulating the Bloch11
condition for all 14 Bravais lattices in the redefined orthogonal coordinate system, and establishing12
eigen-decomposition of discrete partial derivative operators by identifying the hierarchical structure13
of the underlying normal (block) companion matrix, and reducing the eigen-decomposition of the14
double-curl operator to a simple factorization of a 3-by-3 complex skew-symmetric matrix. With the15
validity of the novel nullspace free method in the broad context, we perform some calculations on16
one benchmark system to demonstrate the accuracy and efficiency of our algorithm to solve Maxwell17
eigenvalue problems.18
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1. Introduction. The photonic crystal (PC) is an essential device when light is22

manipulated in optoelectronics industry. A PC is a one-, two- or three-dimensional23

(1D, 2D, 3D) periodic structure which is composed of different optical media that24

can purposefully affect the electromagnetic wave propagation. This term is coined25

after Yablonovitch [40] and John [26]’s milestone work in 1987. In recent years, the26

research about PC is booming due to the emergence of topological PCs (or photonic27

topological insulators) [34], especially the 3D topological PCs. To determine whether28

a PC is the topological PC, the calculation of band structures is indispensable [29]. To29

practically know the band structure of a 3D isotropic/anisotropic PC, we need to first30

recast the source-free Maxwell’s equations in frequency domain [38] as follows, with31

a specific medium whose intrinsic properties are described by a 3-by-3 permeability32

matrix µ and a permittivity matrix ε, respectively,33

∇×E = ıωµH, ∇ · (µH) = 0,(1.1a)34

∇×H = −ıωεE, ∇ · (εE) = 0,(1.1b)3536

where ı =
√
−1, ω is the frequency, E and H are the electric and magnetic fields,37

respectively. The famous Bloch theorem [28] requires that the solutions E and H38
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satisfy the Bloch condition (BC) [35],39

(1.2) E(x + a`) = eı2πk·a`E(x), H(x + a`) = eı2πk·a`H(x), ` = 1, 2, 3,40

where {a`}3`=1 are lattice translation vectors and 2πk is the Bloch wave vector within41

the first Brillouin zone [24]. For simplicity, we only consider isotropic PC throughout42

this work, i.e., both ε and µ are assumed to be diagonal, and further µ is set to the43

vacuum permeability µ0.44

Given a specific 3D PC, it can be proved that only certain nonzero real ω’s can45

satisfy (1.1a) and (1.1b) simultaneously. Our ultimate goal is to find a few eigenvalues46

with smallest magnitude of the following Maxwell Eigenvalue Problem (MEP)47 [
ı∇×

−ı∇×

] [
E
H

]
= ω

[
ε

µ0

] [
E
H

]
,(1.3a)48

∇ · (εE) = 0, ∇ · (µ0H) = 0.(1.3b)4950

To discretize the MEP (1.3), the plane-wave expansion method [20, 25, 27, 36],51

the multiple scattering method [18, 37], the finite-difference frequency-domain method52

(FDFD) [12, 13, 17, 21, 22, 39, 41, 42, 43], the finite element method [9, 10, 11, 19, 23,53

30, 16, 31, 32, 33], to name a few, are available. In the case of diagonal matrix ε, the54

finite-difference scheme with staggered Yee grid [42], which is called Yee’s scheme for55

short and originally proposed for time-domain simulation, is particularly attractive.56

In [21, 22], Yee’s scheme has been used for the discretization of (1.3a), which results57

in a generalized eigenvalue problem (GEP). For a 3D PC, due to the divergence-free58

condition (1.3b), the dimension of the nullspace of the GEP accounts for one third of59

the total dimension. The presence of the huge nullspace will pose an extraordinary60

challenge to the desired solutions of the GEP. In fact, no frequency-domain method is61

immune to this challenge. Besides, even though only smallest few positive eigenvalues62

are desired, which can be calculated by the invert Lanczos method, to solve the63

corresponding linear system of huge size in each step of the invert Lanczos process is64

another challenge. In [21, 22], we have shown how we resolve these challenges in the65

case of the face-centered cubic (FCC) lattice and the simple cubic (SC) lattice.66

In this paper, we will generalize the key results and techniques in [21, 22] to solve67

the MEP (1.3) for all 14 Bravais lattices. Since the triclinic lattice is the most gen-68

eral one, which can become other 13 Bravais lattices with corresponding constraints69

imposed, it suffices to consider triclinic lattice only. However, several obstacles stand70

out. For example, since the unit cell of the triclinic lattice is a slanted parallelepiped71

without any notable property, it is unclear how to formulate in matrix language the72

discrete single-curl operator with the BC (1.2), then it is uncertain whether the ad-73

vanced nullspace free method in [21] can be applicable in this case. Although it is74

not uncommon to employ the oblique coordinate system in engineering and physics75

community, we are not convinced that all our inventions in [21, 22] can still be ap-76

plicable in the oblique coordinate system, so we decide to work with the orthogonal77

coordinate system as before to overcome these obstacles.78

We make the following contributions in this work:79

• Foremost, we establish a complete and unified framework to solve the MEP80

(1.3) for 3D isotropic photonic crystals in all 14 Bravais lattices.81

• We exhaustively classify the unit cell of the triclinic lattice which is generated82

by translation lattice vectors a1,a2,a3, and reformulate the BC within the83

cubic working cell accordingly (see Sec. 3 and SM2).84

This manuscript is for review purposes only.



SOLVING 3D MEP WITH 14 BRAVAIS LATTICES 3

• We demonstrate how to cleanly discretize ∂x, ∂y, ∂z including the reformu-85

lated BC into matrices C1, C2, C3 with Yee’s scheme (see Sec. 4). Although86

C2, C3 are usually quite complicated, they become much less daunting with87

our derivations. Exhaustive expressions of C2, C3 in the triclinic lattice and88

other lattices can be similarly derived (see SM2 and SM3).89

• With the novel perspective that C1, C2, C3 are built from shifted (block) com-90

panion matrices, the Kronecker product structure of eigenvectors of C1, C2, C391

is naturally inherited from the same structure of eigenvectors of a block com-92

panion matrix. Moreover, we prove that these (block) companion matrices93

are unitary and in the meantime prove that {C∗` , C`′ : `, `′ = 1, 2, 3} is a94

set of commutative matrices. By Lemma 5.4, we uncover how C2, C3 are95

constructed hierarchically from integer powers of a basic unitary companion96

matrix and that eigen-decompositions of {C∗` , C`′ : `, `′ = 1, 2, 3} boil down97

to the eigen-decomposition of this unitary companion matrix (see Sec. 5).98

• We show that C is unitarily similar to a block diagonal matrix consisting99

of 3-by-3 skew-symmetric blocks, and base the analytic eigen-decomposition100

of A = C∗C on simple factorizations of these 3-by-3 matrices, by which the101

orthonormal basis of the range space of A can be found explicitly (see Sec. 6).102

• We confirm that the nullspace free method and the fast eigensolver developed103

previously for the FCC and SC lattices can be extended to the triclinic lattice104

and other Bravais lattices (see Sec. 7).105

This paper is outlined as follows. In Sec. 2 an orthogonal coordinate system106

with which we actually work are built from non-orthogonal lattice translation vectors107

a1,a2,a3. In Sec. 3 we reformulate the BC (1.2) within the cubic working cell. In Sec. 4108

we discretize ∇ × E into matrix-vector products CE, and discretize the MEP (1.3)109

into a GEP AE = λBE with λ = µ0ω
2, by eliminating H in (1.3). In Sec. 5 we prove110

that C1, C2, C3 are commutative normal matrices and obtain their analytic eigen-111

decomposition. In Sec. 6 we construct the factorization (I3⊗ T )∗C(I3⊗ T ) = UrΓrU∗r112

and the analytic eigen-decomposition A = C∗C = Qr(Γ>r Γr)Q∗r . In Sec. 7, the GEP is113

transformed into a nullspace free standard eigenvalue problem (NFSEP) ArÊ = λÊ.114

For self-containedness, the fast eigensolver called FAME for the NFSEP is reviewed.115

In Sec. 8 the efficiency of FAME are exemplified by some numerical results. In Sec. 9116

we conclude our present work.117

Here we briefly introduce some notations commonly used in this work. A vector118

in real 3D space, which is equivalent to its coordinate representation in an orthogonal119

coordinate system, is marked in bold lower case. A>, A,A∗ denote the transpose,120

the complex conjugate and the conjugate transpose of a matrix A, respectively. In121

denotes the identity matrix of dimension n ∈ N and e` is the `-th column of In.122

|| · || denotes the Euclidean norm. We define ξ(θ) := exp (ı2πθ). �ABCD refers to123

rectangular ABCD. For convenience, we will employ MATLAB R© [6] language with124

little explanation. For example, floor denotes the function of rounding to the nearest125

integer towards −∞. Let vec(X) denote the vectorization operation of a matrix X126

of any size, i.e., X(:) = vec(X). A ⊕ B = blkdiag(A,B) means the direct sum of127

matrices A,B. ⊗ denotes the Kronecker product, two of whose basic properties [5]128

are very useful,129 (
Z> ⊗ Y

)
vec(X) = vec(Y XZ),(1.4)130

(X ⊗ Y )(Z ⊗W ) = (XZ)⊗ (YW ),(1.5)131132

with X,Y, Z,W being matrices of compatible sizes. Recall that A is a normal matrix,133
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i.e., AA∗ = A∗A if and only if A is unitarily similar to a diagonal matrix.134

Proposition 1.1. [7] If A1 and A2 are normal with A1A2 = A2A1, then both135

A1A2 and A1 +A2 are also normal.136

Proposition 1.2. [3] If A is a normal matrix with one eigenpair (λ, v), then it137

holds that A∗v = λv. Furthermore, eigenspaces of a normal matrix corresponding to138

distinct eigenvalues are orthogonal.139

2. Lattice translation vectors, the physical cell and working cell. A140

crystal structure can be regarded as a lattice structure plus a basis. At present,141

millions of crystals are known, and each crystal has a different nature. Fortunately,142

there are only 7 lattice systems and 14 Bravais lattices in 3D Euclidean space [1].143

The so-called primitive unit cell is a fundamental domain under the translational144

symmetry and contains just one lattice point [8]. The non-primitive unit cell, including145

body-centered, face-centered and base-centered unit cell, is preferred to reflect more146

complicated symmetry. Basic knowledge of the unit cell of all 7 lattice systems, 14147

Bravais lattices can be found in [2].148

In fact a 3D unit cell is a (slanted) parallelepiped formed by lattice translation149

vectors a1,a2 and a3, as illustrated in Figure 1. In the triclinic lattice there is no150

restriction on the length of a1,a2,a3 nor on the angle between any two of them, if we151

are able to solve the MEP (1.3) in the triclinic lattice, we can also cope with other152

lattices in almost the same manner. Therefore we will focus on the triclinic lattice153

in the main body of this work and present selective results for other lattices in SM3.154

For convenience, we dub the unit cell of the triclinic lattice as 3D physical cell.155

In that it is inconvenient to discretize MEP (1.3) in the 3D physical cell using156

finite difference, we need to define a cuboid unit cell generated by new vectors a,b, c157

which form an orthogonal basis of a1,a2,a3. The general procedure to determine158

a,b, c is as follows:159

1. Pick out the vector a` in the set {a1,a2,a3} that is the longest. (Here ` can160

be 1 or 2 or 3.) Let a = a` with a = ||a||. (If more than one are equally161

longest, then either one can be chosen as a.) Let ã1 = a. The rest two vectors162

in the set {a1,a2,a3} are renamed to a2,a3.163

2. Set â2 = a2 − a(a2 · a)/||a||2, â3 = a3 − a(a3 · a)/||a||2. Pick out the vector164

â` in the set {â2, â3} that is the longer. (Here ` can be 2 or 3.) Let b = â`165

with b = ||b||, and ã2 = a`. The other vector â`′ with `′ 6= ` in {â2, â3} is166

renamed to â3, and let ã3 = a`′ .167

3. Let c = â3 − b(â3 · b)/||b||2 with c = ||c||.168

Clearly, the resulting a,b, c are mutually orthogonal, and b × a = ã2 × ã1, c ·169

(a× b) = ã3 · (ã1 × ã2). On the other hand, by letting170

(2.1) η1 = ã2 · a/a2, η2 = ã3 · a/a2, η3 = ã3 · b/b2,171

vectors ã1, ã2, ã3 can be expanded by normalized a,b, c as follows:172

[ã1, ã2, ã3] =

[
a

a
,
b

b
,
c

c

]a b
c

1 −η1 η1η3 − η2
0 1 −η3
0 0 1

−1173

=

[
a

a
,
b

b
,
c

c

]a aη1 aη2
0 b bη3
0 0 c

 =

[
a

a
,
b

b
,
c

c

]a1 a2 cosφ3 a3 cosφ2
0 a2 sinφ3 a3`2
0 0 a3`3

 ,(2.2)174

175
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Fig. 1. Illustration of the 3D physical cell and working cell of the triclinic lattice.

where ai := ||ãi||, φj is the angle between ãi and ãk, i, j, k = 1, 2, 3, i 6= j 6= k,176

`2 = (cosφ1 − cosφ3 cosφ2) / sinφ3, `3 =

√
sin2 φ2 − `22.177

Especially, we always have a3|`2| ≤ a2 sinφ3.178

Remark 2.1. Conventionally, in the crystallography database a1,a2,a3 are spec-179

ified by their coordinates in the Cartesian orthogonal coordinate system which is, to180

avoid confusion, named as the prior orthogonal coordinate system in our work. Given181

such a 3-by-3 real matrix [a1,a2,a3], we can call the subroutine such as the function182

qr of MATLAB R© for QR factorization with column pivoting to find the orthonormal183

basis of a1,a2,a3, which yields ±a/a,±b/b,±c/c with the same a,b, c defined above.184

However, there is one important variation of the procedure above in other Bravais185

lattices than the triclinic lattice. That is, if, for example, a3⊥a1 and a3⊥a2 but186

a1 6⊥ a2, then we always choose c = a3 and a as the longer one in {a1,a2}. The187

reason to do so will be clear later on.188

Identifying normalized a,b, c as unit vectors of x-,y-,z-axes of an orthogonal coor-189

dinate system, we will work mainly in the cuboid unit cell D = {xa/a+yb/b+zc/c ∈190

R3 : x ∈ [0, a], y ∈ [0, b], z ∈ [0, c]}, dubbed as the 3D working cell. To convey basic191

techniques of our framework of modeling of 3D PCs, we just work on one specific case192

where φ2, φ3 < π/2, `2 > 0, a3 cosφ2 ≥ a2 cosφ3, in the main body of this work.193

Remark 2.2. The orthogonal coordinate system with x-,y-,z-axes can be either194

right-handed if ã3 · (ã1 × ã2) > 0 or left-handed if ã3 · (ã1 × ã2) < 0. Anyhow, in195

our work the bottom surface of D is always the one through the origin, while the top196

surface of D is always the one away from the origin. Our formulation in this work will197

be largely independent of the orientation of the axes.198

3. BC within the working cell. Hereafter, for simplicity, we assume ã1, ã2, ã3199

are just a1,a2,a3. Viewed in the 3D physical cell spanned by a1,a2,a3, the BC (1.2)200

is very clear and is naturally compatible with the periodicity of a PC along a1,a2,a3.201

However, in the 3D working cell, the formulation of the BC (1.2) needs some effort.202

For convenience, given v ∈ R3, the translation operator Tv is defined as Tv(x) :=203

x + v, for any x ∈ R3. Clearly, Tv1+v2
= Tv1

Tv2
= Tv2

Tv1
.204

Since a1 = a, the BC (1.2) along the x-axis is trivial, i.e.,205

(3.1) E(x) = ξ(k · (x− T−a(x)))E(T−a(x)), x = (x, y, z) ∈ D.206
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Note that ξ(θ) = exp(ı2πθ). However, the BC (1.2) along the y- and z-axes are207

nontrivial. For derivations in this work, we only need to consider the relation between208

E((x, y, c)) and E(T−c((x, y, c))) with (x, y, c) ∈ D, and that between E((x, b, z))209

and E(T−b((x, b, z))) with (x, b, z) ∈ D. Given x = (x, y, 0) ∈ D, we just think of210

(x2, y2, 0) as the image of x+c (a point of the top surface of D) under T−a3 , as shown211

in Figure 2(a), and a⊥3 = a3 − c is the projection of a3 onto the xy-plane, then the212

BC (1.2) along the z-axis could be213

E(T−c((x, y, c))) = ξ (k · ((x, y, 0))− (x2, y2, 0))E((x2, y2, 0))214

= ξ (k · ((x, y, 0))− T−a3
((x, y, c)))E(T−a3

((x, y, c))),(3.2)215216

with (x, y, 0)− T−a3
((x, y, c)) being integer multiples of a1,a2.217

In Figure 2(b), �OR1R2R3 is the bottom surface of D, while �R4R5R6R7 is the218

image of the top surface of D under T−a3 and overlaps with patch I of the former.219

In short, there should be four patches within �OR1R2R3, namely, I, II, III, IV, and220

these four patches, equipped with different linear mappings T0, T−a1
, T−a1−a2

, T−a2
221

are mapped to four patches Ĩ, ĨI, ĨII, ĨV, respectively, within �R4R5R6R7. We refer222

the reader to SM1 to see how to obtain the patches and the mapping in Figure 2(b).223

Then we can establish the correct BC (1.2) within the bottom surface of D, which224

specifies x2, y2 in (3.2). Letting x = (x, y, 0) ∈ D, given the conditions specified in225

Sec. 2, it holds that226

(3.3) E(x) =


E(x), if x ∈ I

ξ(k · a1)E(x− a1), if x ∈ II

ξ(k · (a1 + a2))E((x− a1 − a2)), if x ∈ III

ξ(k · a2)E(x− a2), if x ∈ IV.

227

In passing, considering that E(Ta3
(x)) = ξ(k · a3)E(x), we can of course add a3 to228

the argument of E on the right hand side of (3.3) with updated prefactor. Depending229

on combinations of various a2, a3, φ3, φ2, `2, (3.3) could be quite different. In SM2,230

we reformulate the BC (1.2) for altogether 16 cases, including (3.3).231

As for the BC (1.2) along the y-axis, we observe that E(T−b((x, b, z))) with232

(x, b, z) ∈ D does not involve the influence of Ta3
, we can just let z = 0 here for233

simplicity. Letting x = (x, b, 0) ∈ D, we have the BC (1.2) along the y-axis for234

different segments of R3R2 shown in Figure 2(b):235

(3.4) E(x) =

{
ξ(k · a2)E(T−a2(x)), if x ∈ R8R2

ξ(k · (a2 − a1))E(Ta1−a2(x)), if x ∈ R3R8.
236

237

4. Matrix Representation of the Discretized Single-Curl. Let’s first dis-238

cretize ∇×E in (1.3a) with finite-difference scheme, without worrying about (1.3b)239

at the moment. Below we will use quantities in (2.2).240

Given n1, n2, n3 ∈ N, we can have a uniform grid along the x-,y-,z-axes of our 3D241

working cell D, respectively, with constant grid spacing242

δx = a/n1, δy = b/n2, δz = c/n3,243

respectively. Each component of the vector E(x) = [E1(x), E2(x), E3(x)]> could be244

sampled at different points in general. Hence we assume that E`(x) is sampled at245

(4.1) x`(i, j, k) = x`(0, 0, 0) + (iδx, jδy, kδz),246
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(a) The action of T−a3 on the top surface of D.

(b) Correspondence between different patches of the bottom sur-
face of D and those of T−a3 ((x, y, c)).

Fig. 2. Illustration of (3.3) between the bottom surface of D and T−a3 ((x, y, c)).

where x`(0, 0, 0) will be specified later in this section and ` = 1, 2, 3, i = 0, 1, . . . , n1−247

1, j = 0, 1, . . . , n2 − 1, k = 0, 1, . . . , n3 − 1. Unless otherwise stated, in this section248

i, j, k always take on these values.249

Given `, the three-way array E`(x`(:, :, :)) of number of elements n = n1n2n3 is250

arranged in the column-major order, i.e., the first index varies fastest while the last251

varies slowest. For convenience, E`(x`(:, :, :)), ` = 1, 2, 3, are stored in a column vector252

E = [E1(:);E2(:);E3(:)].253

Part I. Discrete ∂xE`. Since the BC (3.1) is very similar to 1D case, using254

matrix language, we recast255

(4.2)
E`(x`(i+ 1, j, k))− E`(x`(i, j, k))

δx
, ` = 2, 3,256

into C1E`(:), where257

(4.3) C1 = In3 ⊗ In2 ⊗
K1 − In1

δx
, K1 =

[
0 In1−1

ξ(k · a1) 0

]
.258

Part II. Discrete ∂yE`. The BC (3.4) holds for continuous x, however, if we259

want to recast260

(4.4)
E`(x`(i, j + 1, k))− E`(x`(i, j, k))

δy
, ` = 1, 3,261
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into a matrix-vector product, we need the discretized version of (3.4).262

Although in Figure 3, with modulo operation defined in SM1, we have in principle263

R8 ≡ O mod a2, it is very rare that R8 coincides exactly with any of the grid point264

in a given uniform grid within R3R2. As an expediency to resolve this mismatch-265

ing, we stipulate that the rightmost grid point within R3R8 be the substitute of R8.266

Putting it differently, when φ3 < π/2, since the number of grid points in R3R8 is267

m1 = floor ((a2 cosφ3)/δx), then x`(m1, n2, k) ≡ x`(0, 0, k) mod a2 holds by force,268

ignoring the discretization error.269

In accordance with two cases in (3.4), E`(x`(:, n2, k)), a column vector of length270

n1, is partitioned into 2 blocks, and the discretized BC (3.4) is271

E`(x`(:, n2, k)) = ξ(k · a2)J2E`(x`(:, 0, k)),(4.5)272

J2 =

[
0 ξ(−k · a1)Im1

In1−m1 0

]
∈ Cn1×n1 .(4.6)273

274

Finally, (4.4) is recast into C2E`(:), where275

(4.7) C2 = In3
⊗ K2 − In1n2

δy
, K2 =

[
0 In2−1 ⊗ In1

ξ(k · a2)J2 0

]
.276

In passing, when φ3 > π/2, m1 and J2 are specified in SM2.277

Part III. Discrete ∂zE`. If we want to recast278

(4.8)
E`(x`(i, j, k + 1))− E`(x`(i, j, k))

δz
, ` = 1, 2,279

into a matrix-vector product, we need to know how E`(x`(:, :, n3)) is related to E`(x`(:280

, :, 0)) from the BC (3.3).281

We have following observations about Figure 3,282

• R9R6 = a1 − a3 cosφ2, R9R̂5 = a− (a3 cosφ2 − a2 cosφ3),283

• R3R9 = a3`2, R9O = a2 sinφ3 − a3`2.284

(a) Grid along edges of �R4R5R6R7. (b) Grid along edges of �OR1R2R3.

Fig. 3. Illustration of uniform grid in the top and bottom surface of D.

Again, it is very rare that vertices of any patch in Figure 3 coincide exactly with any285

of the grid point for a given uniform mesh in �OR1R2R3. Define286

(4.9) m2 = floor((a3 cosφ2)/δx), m3 = floor(a3`2/δy), m4 = m2 −m1,287

then along the x-axis R9R6 contains n1 −m2 grid points and R9R̂5 contains n1 −m4288

grid points, while along the y-axis R3R9 contains m3 grid points and R9O contains289

n2 −m3 grid points.290
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In accordance with Figure 3, matrices E`(x`(:, :, 0)) and E`(T−a3
(x`(:, :, n3))) of291

size n1 × n2 are partitioned into four blocks,292

E`(x`(:, :, 0)) =

[
EI EIV
EII EIII

]
, E`(T−a3(x`(:, :, n3))) =

[
E

ĨII
E

ĨI
E

ĨV
E

Ĩ

]
.293

The size of each block becomes transparent in (4.10), (4.11), (4.12) below. Then the294

discretized version of (3.3) is as follows:295 [
E

ĨI
E

Ĩ

]
=

[
0 ξ(−k · a1)Im2

In1−m2 0

] [
EI
EII

]
In2−m3 ,(4.10)296 [

E
ĨII

E
ĨV

]
=

[
0 ξ(−k · a1)Im4

In1−m4
0

] [
EIV
EIII

]
ξ(−k · a2)Im3

,(4.11)297 [
EIV EI
EIII EII

]
= In1

[
EI EIV
EII EIII

] [
0 In2−m3

Im3
0

]
.(4.12)298

299

Actually vec(E`(x`(:, :, 0))) can be seen as the vertical concatenation of vec
([
EI;EII

])
300

and vec
([
EIV;EIII

])
, so can vec(E`(T−a3

(x`(:, :, n3)))).301

Finally, with (4.10), (4.11), (4.12), (1.4), we can recast (4.8) into C3E`(:), where302

(4.13) C3 =
K3 − In
δz

, K3 =

[
0 In3−1 ⊗ In2

⊗ In1

ξ(k · a3)J3 0

]
∈ Cn×n,303

304

J3 =

ξ(−k · a2)Im3 ⊗
[

0 ξ(−k · a1)Im4

In1−m4 0

]
In2−m3

⊗
[

0 ξ(−k · a1)Im2

In1−m2
0

]
×305

([
0 In2−m3

Im3 0

]>
⊗ In1

)
306

=

 ξ(−k · a2)Im3
⊗
[

0 ξ(−k · a1)Im4

In1−m4
0

]
In2−m3 ⊗

[
0 ξ(−k · a1)Im2

In1−m2 0

]
 .(4.14)307

308

Different expression of J3 can be found in SM2 for different reformulated BC (1.2).309

Particularly, if c = a3, J3 is simplified to In1n2
.310

Part IV. Discrete ∂xH`, ∂yH`, ∂zH`. In order to preserve the Hermiticity of the311

operator on the left hand side of the MEP (1.3) at the discrete level, the single-curl312

operator in (1.1b) should be discretized slightly differently. We will not detail the313

derivations, but just present the results. Specifically, the discretized version of (3.1),314

(3.3) and (3.4) can be immediately written down verbatim in terms of H(x) in place315

of E(x), and we assume that H`(x) is sampled at316

(4.15) y`(i, j, k) = y`(0, 0, 0) + (iδx, jδy, kδz), ` = 1, 2, 3,317

This manuscript is for review purposes only.



10 T.-M. HUANG, T.X. LI, W.-D. LI, J.-W. LIN, W.-W. LIN AND H. TIAN

where y`(0, 0, 0) will be specified later in this section. Then we can recast318

H`(y`(i, j, k))−H`(y`(i− 1, j, k))

δx
, ` = 2, 3,(4.16)319

H`(y`(i, j, k))−H`(y`(i, j − 1, k))

δy
, ` = 1, 3,(4.17)320

H`(y`(i, j, k))−H`(y`(i, j, k − 1))

δz
, ` = 1, 2,(4.18)321

322

into −C∗1H`(:), −C∗2H`(:) and −C∗3H`(:), respectively.323

Part V. Yee’s scheme and discretized MEP (1.3). To return to the famous324

Yee’s scheme, x`(0, 0, 0), y`(0, 0, 0) in (4.1), (4.15), respectively, are set to325

x1(0, 0, 0) = (δx/2, 0, 0), x2(0, 0, 0) = (0, δy/2, 0), x3(0, 0, 0) = (0, 0, δz/2),326

y1(0, 0, 0) = (0, δy, δz)/2, y2(0, 0, 0) = (δx, 0, δz)/2, y3(0, 0, 0) = (δx, δy, 0)/2.327328

In addition, since ε(x) is assumed to be diagonal, then with x` defined in (4.1) we329

can define the following positive diagonal matrix B,330

B = diag([vec(ε(x1(:, :, :))); vec(ε(x2(:, :, :))); vec(ε(x3(:, :, :)))]).331

With Yee’s staggered grid x`(:, :, :), y`(:, :, :) specified above, using (4.2), (4.4),332

(4.8) and (4.16), (4.17), (4.18), it can be proved that the divergence free condition333

(1.3b) is automatically satisfied, hence, (1.3b) will not show up explicitly in the fol-334

lowing discretized MEP (1.3):335

AE = λBE, λ = µ0ω
2, A = C∗C,(4.19)336

C =

 0 −C3 C2

C3 0 −C1

−C2 C1 0

 .(4.20)337

338

This is the superiority of Yee’s scheme.339

5. Eigen-decomposition of partial derivative operators. In order to deter-340

mine the nullspace and range space of A in (4.19) analytically, following [21], we need341

eigen-decompositions of K1,K2,K3. The derivations which closely follow [21, 22] can342

certainly be developed in our case, albeit much lengthy and boring. Another reason343

that makes us turn away from derivations in [21, 22] is that they can not explain why344

the Kronecker product structure shows up in K2’s and K3’s eigenvectors.345

It has been proved in the case of the FCC lattice [21] that C1, C2, C3 defined346

in Sec. 3 commute with each other and are simultaneously diagonalized by the same347

unitary matrix. This reminds us that C1, C2, C3 in our case are probably commutative348

normal matrices, too. Below we will prove this guess, but not by tedious verification349

of C∗`C` = C`C
∗
` , ` = 1, 2, 3.350

In this section, we will partially uncover the underlying cause of the two facts351

that eigenvectors of K2,K3 admit of Kronecker product and that C1, C2, C3 are com-352

mutative normal matrices, which are both related to (block) companion matrices.353

Lemma 5.1. Given q ∈ N, let p(t) =
∑q−1
j=0 pjt

j + tq be a q-th degree complex354

monic polynomial, then p(λ) = det(λIq − CF (p)) with355

CF (p) =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
−p0 −p1 · · · −pq−1

356
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and the eigenvector of CF (p) corresponding to the eigenvalue λj is [1, λj , · · · , λq−1j ]>,357

j = 1, 2, · · · , q. Moreover, if p1 = · · · = pq−1 = 0, |p0| = 1, then CF (p)∗CF (p) = Iq.358

Since Lemma 5.1 can be directly verified, we skip its proof. Letting p(t) =359

tn1 − ξ(k · a1) in Lemma 5.1, we have the following theorem.360

Theorem 5.2 ([21]). K1 in (4.3) is unitary and satisfies K1Xi = ξ(θa)ξ(i/n1)Xi361

where θa = k · a/n1 = k · a1/n1, i = 1, . . . , n1,362

(5.1) Xi =

[
1, ξ(θa)ξ

(
i

n1

)
, · · · , ξ((n1 − 1)θa)ξ

(
(n1 − 1)i

n1

)]>
.363

Lemma 5.3 ([15]). Given q,m ∈ N, let M(λ) =
∑q−1
j=0 λ

jMj + λqIm with Mj ∈364

Cm×m, j = 0, 1, · · · , q − 1, then detM(λ) = det(λImq − CBF (M)) with365

CBF (M) =


0 Im · · · 0
...

...
. . .

...
0 0 · · · Im
−M0 −M1 · · · −Mq−1

 .366

Particularly, if v ∈ Cm and λ0 ∈ C satisfy M(λ0)v = 0, then the eigenvector of367

CBF (M) corresponding to eigenvalue λ0 is [1, λ0, λ
2
0, · · · , λ

q−1
0 ]> ⊗ v. Moreover, if368

M1 = · · · = Mq−1 = 0, M∗0M0 = Im, then CBF (M)∗CBF (M) = Imq.369

Now in Lemma 5.3 letting M(λ) = λn2In1
− ξ(k · a2)J2, we see that CBF (M) is370

just K2 in (4.7) and eigenpairs of K2 are made from those of J2 in (4.6). Specifically,371

if (ν0, v) is an eigenpair of J2, then ν = (ξ(k · a2)ν0)1/n2 is an eigenvalue of K2 with372

the corresponding eigenvector [1, ν, ν2, · · · , νn2−1]> ⊗ v, where one of n2 branches of373

z1/n2 has been chosen. Similarly, in Lemma 5.3 letting M(λ) = λn3In1n2−ξ(k ·a3)J3,374

we see that eigenpairs of K3 in (4.13) are made from those of J3 in (4.14). Therefore,375

the emergence of the Kronecker product structure in eigenvectors of K2,K3 becomes376

self-evident and below we just concern about eigen-decompositions of J2 and J3.377

Lemma 5.4 below is the crucial apparatus in this section.378

Lemma 5.4. Given 0 6= θ ∈ R and q1, q2 ∈ N and G ∈ Cq1×q1 , for any q ∈ Ind =379

{1, 2, . . . , q2}, we have380

(5.2) Wq1q2(G, θ, q) :=

[
0 Iq2−q ⊗ Iq1

ξ(θ)Iq ⊗G 0

]
= (Wq1q2(G, θ, 1))

q
.381

Proof. When q = 1, (5.2) is obviously true. Suppose (5.2) is true when 1 ≤ q =382

r < q2, i.e., Wq1q2(G, θ, r) = (Wq1q2(G, θ, 1))
r
, then by direct multiplication,383

Wq1q2(G, θ, r)Wq1q2(G, θ, 1) =

[
0 Iq2−r−1 ⊗ Iq1

ξ(θ)Ir+1 ⊗G 0

]
384

= Wq1q2(G, θ, r + 1) = (Wq1q2(G, θ, 1))
r+1

.385386

By induction, (5.2) holds for all q ∈ Ind.387

Corollary 5.5. With K1, J2, θa, Xi defined in (4.3), (4.6) and Theorem 5.2,388

respectively, we have389

J2 = K−m1
1 , J∗2J2 = In1 ,390

and the eigenpairs of J2 are (ξ(−m1θa)ξ(−im1/n1), Xi), for i = 1, . . . , n1.391
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Proof. Let q1 = 1, G = 1, q2 = n1, q = m1, θ = k · a1 in Lemma 5.4, then392

Wq1q2(G, θ, 1) = K1, Wq1q2(G, θ,m1) = J∗2 = Km1
1 . Hence by Theorem 5.2, J2 =393

(Km1
1 )∗ = K−m1

1 , J∗2J2 = In1
, and J2Xi = (ξ(−θa)ξ(−i/n1))

m1 Xi.394

Then, as mentioned above, by Lemma 5.3, we have the following theorem.395

Theorem 5.6. K2 in (4.7) is unitary. With Xi defined in (5.1), K2 satisfies396

K2(Yij ⊗Xi) = ξ(θb,i)ξ(j/n2)(Yij ⊗Xi), i = 1, · · · , n1, j = 1, · · · , n2,397

where398

θb,i =
1

n2

(
k · b− im1

n1

)
=

1

n2

[
k ·
(

a2 −
m1

n1
a1

)
− im1

n1

]
,(5.3a)399

Yij =

[
1, ξ(θb,i)ξ

(
j

n2

)
, · · · , ξ((n2 − 1)θb,i)ξ

(
(n2 − 1)j

n2

)]>
.(5.3b)400

401

Remark 5.7. We have the approximation η1 = m1/n1 in (2.1), then b = a2 −402

a1m1/n1 in (5.3a) holds ignoring the discretization error.403

Lemma 5.8. With K1,K2, J3 in (4.3), (4.7), (4.14), respectively, and m2,m3 in404

(4.9), it holds that405

J3 = K−m3
2 (In2

⊗K1)
−m2 = (In2

⊗K1)
−m2 K−m3

2 , J∗3J3 = In1n2
.406

Proof. Let q1 = n1, q2 = n2, q = m3, θ = k · a2, G = J2 in Lemma 5.4, with J2407

in (4.6), then Wq1q2(G, θ, 1) = K2 and Wq1q2(G, θ, q) = Km3
2 . By Corollary 5.5,408

J∗3 =

[
0 In2−m3 ⊗K

m2
1

ξ(k · a2)Im3
⊗Km2−m1

1 0

]
409

=

[
0 In2−m3 ⊗ In1

ξ(k · a2)Im3
⊗ J2 0

]
(In2
⊗Km2

1 ) = Km3
2 (In2

⊗K1)
m2

410

= (In2 ⊗K
m2
1 )

[
0 In2−m3

⊗ In1

ξ(k · a2)Im3 ⊗ J2 0

]
= (In2 ⊗K1)

m2 Km3
2 .411

412

Hence,413

J3 = {Km3
2 (In2 ⊗K1)

m2}∗ = (In2 ⊗K1)
−m2 K−m3

2 , J∗3J3 = In1n2 ,414

J3 = {(In2 ⊗K1)
m2 Km3

2 }∗ = K−m3
2 (In2 ⊗K1)

−m2 .415416

Corollary 5.9. It holds that K2 (In2
⊗K1) = (In2

⊗K1)K2. Hence, C`C`′ =417

C`′C`, C
∗
`C`′ = C`′C

∗
` , `, `

′ = 1, 2, 3, ` 6= `′, where C1, C2, C3 are defined in (4.3),418

(4.7), (4.13), respectively.419

Proof. Without loss of generality, let m3 = 1 = m2 in Lemma 5.8, then K2(In2⊗420

K1) = (In2
⊗K1)K2, which immediately implies C1C2 = C2C1, considering (1.5).421

Also (In2
⊗K1)K∗2 = K∗2 (In2

⊗K1) holds, which immediately implies C1C
∗
2 = C∗2C1.422

Yet, by Lemma 5.8, J3 commutes with K2, In2
⊗ K1, K

∗
2 , In2

⊗ K∗1 , which implies423

C2C3 = C3C2, C1C3 = C3C1, C
∗
2C3 = C3C

∗
2 , C

∗
1C3 = C3C

∗
1 , considering (1.5).424

Theorem 5.10. K3 in (4.13) is unitary. With Xi and Yij defined in (5.1) and425

(5.3b), respectively, K3 satisfies426

K3(Zijk ⊗ Yij ⊗Xi) = ξ(θc,ij)ξ(k/n3)(Zijk ⊗ Yij ⊗Xi),427

This manuscript is for review purposes only.



SOLVING 3D MEP WITH 14 BRAVAIS LATTICES 13

where428

θc,ij =
1

n3

[
k · c− m3

n2
j +

(
m1

n1

m3

n2
− m2

n1

)
i

]
,(5.4a)429

Zijk =

[
1, ξ(θc,ij)ξ

(
k

n3

)
, · · · , ξ((n3 − 1)θc,ij)ξ

(
(n3 − 1)k

n3

)]>
,(5.4b)430

c = a3 −
m3

n2
a2 +

(
m1

n1

m3

n2
− m2

n1

)
a1,(5.4c)431

432

for i = 1, · · · , n1, j = 1, · · · , n2, k = 1, · · · , n3.433

Proof. By Lemma 5.8 and Lemma 5.3, we have K∗3K3 = In. Given i, j, by434

Theorem 5.6, K2 has an eigenvector vij = Yij ⊗Xi, then by (1.5) and Theorem 5.2,435

(ξ(θa)ξ(i/n1), vij) is an eigenpair of In2⊗K1. By Lemma 5.8, vij is also an eigenvector436

of ξ(k · a3)J3, and the corresponding eigenvalue of ξ(k · a3)J3 is437

ξ(k · a3)ξ (−m3θb,i) ξ

(
−jm3

n2

)
ξ (−m2θa) ξ

(
− im2

n1

)
= ξ(n3θc,ij),438

where θc,ij is defined in (5.4a). Then by Lemma 5.3, the n3-th root of ξ(n3θc,ij),439

which equals ξ(θc,ij)ξ(k/n3) with k ∈ {1, · · · , n3}, is an eigenvalue of K3, and the440

corresponding eigenvector of K3 is just (Zijk ⊗ Yij ⊗Xi) with Zijk in (5.4b).441

Remark 5.11. We have approximations η3 = m3/n2, η2 = m2/n1, η1 = m1/n1 in442

(2.1), then the equality in (5.4c) holds ignoring the discretization error.443

Corollary 5.12. With C1, C2, C3 defined in (4.3), (4.7), (4.13), respectively, we444

have C`C
∗
` = C∗`C`, ` = 1, 2, 3.445

Proof. By Theorems 5.2, 5.6, 5.10, K1,K2,K3 are normal and commute with iden-446

tity matrices with compatible sizes, hence C1, C2, C3 are normal by Proposition 1.1.447

We summarize key results in this section for a nonzero k in (1.2) as follows:448

(5.5) C`T = TΛ`, C∗` T = TΛ`, ` = 1, 2, 3,449

where450

Λ1 = Λn1
⊗ In2

⊗ In3
, Λn1

= diag
(
ξ(θa)ξ([1 : n1]>/n1)− 1

)
/δx,451

Λ2 = ⊕n1
i=1(Λin2

⊗ In3
), Λin2

= diag
(
ξ(θb,i)ξ([1 : n2]>/n2)− 1

)
/δy,452

Λ3 = ⊕n1
i=1

(
⊕n2
j=1Λijn3

)
, Λijn3

= diag
(
ξ(θc,ij)ξ([1 : n3]>/n3)− 1

)
/δz,453

454

and455

(5.6) T (1 : n, k + (j − 1)n3 + (i− 1)n2n3) = (Zijk ⊗ Yij ⊗Xi)/
√
n,456

for i = 1, · · · , n1, j = 1, · · · , n2, k = 1, · · · , n3. By Theorem 5.10, all eigenvalues of457

K3 are distinct, therefore, by Proposition 1.2, T defined in (5.6) is unitary.458

Remark 5.13. In this work, eigen-decompositions in (5.5) are an immediate con-459

sequence of the fact that {C∗` , C` : `, `′ = 1, 2, 3} is a set of commutative matrices.460

This fact is compatible with the common sense that partial derivatives of a smooth461

field along any two of x-,y-,z-axes can be exchanged. In [14, 21], eigen-decompositions462

(5.5) have been derived for the SC and FCC lattices only. It becomes clear now that463

the formalism is the same for all Bravais lattices, though θa, θb,i and θc,ij depend on464

the specific lattice.465
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6. Range space of C and eigen-decomposition of A. On the basis of the466

results in Sec. 5, we proceed to determine the range space and eigen-decomposition of467

A = C∗C analytically, without forming C∗C explicitly.468

From (4.20) and (5.5), we have469

C = (I3 ⊗ T )Λ(I3 ⊗ T )∗,(6.1)470

Λ =

 0 −T ∗C3T T ∗C2T
T ∗C3T 0 −T ∗C1T
−T ∗C2T T ∗C1T 0

 =

 0 −Λ3 Λ2

Λ3 0 −Λ1

−Λ2 Λ1 0

 = −Λ>.(6.2)471

472

By doing a perfect shuffle Λ can be further transformed to a block diagonal matrix,473

P = [e1, en+1, e2n+1, e2, en+2, e2n+2, · · · , en, e2n, e3n] ∈ R3n×3n,(6.3)474

P>ΛP = ⊕n`=1L`, L` = −L>` ∈ C3×3.(6.4)475476

This means we can just deal with each block L` separately. Instead of the singular477

value decomposition of L`, the unitary congruence transformation of L` preserves the478

skew-symmetric structure and is very helpful in finding the range space of L`.479

Theorem 6.1. Given a nonzero g = [g1, g2, g3]> ∈ C3, it holds that480

L =

 0 −g3 g2
g3 0 −g1
−g2 g1 0

 = V

0 0 0
0 0 −β
0 β 0

V ∗, β = ||g||,481

where V is a Householder matrix satisfying V ∗g = βe1 and V V ∗ = I3.482

In Theorem 6.1, V (:, 1) is the nullspace of L, hence can be pruned. Then483

L = V̂ (βΓ2)V̂ ∗, where Γ2 =

[
0 −1
1 0

]
, V̂ = V (:, [2, 3]) ∈ C3×2, V̂ ∗V̂ = I2.484

Similarly, for each L` = −L>` ∈ C3×3 in (6.4), we have485

(6.5) L` = V̂ `(β`Γ2)V̂ ∗` , V̂ ∗` V̂` = I2,486

where β`, V̂` are defined in terms of entries of L` as in Theorem 6.1.487

Consequently, Λ is unitarily congruent to a real quasi-diagonal skew-symmetric488

matrix and eigen-decomposition of A can be derived as follows.489

Theorem 6.2. Given a nonzero k in (1.2), from (4.19), (4.20) and (6.1)–(6.5),490

we have491

(6.6) (I3 ⊗ T )∗C(I3 ⊗ T ) = UrΓrU∗r , A = C∗C = QrΛ2
rQ∗r ,492

where493

Γr : = ⊕n`=1(β`Γ2) ∈ R2n×2n, Λr := ⊕n`=1(β`I2) ∈ R2n×2n,494

Vr : = blkdiag
(
V̂1, V̂2, · · · , V̂n

)
∈ C3n×2n,495

Ur : = PVr, Qr := (I3 ⊗ T )PVr with U∗r Ur = I2n = Q∗rQr.496497
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Proof. From (6.1), (6.4) and (6.5), we simply have498

(I3 ⊗ T )∗C(I3 ⊗ T ) = Λ = PVrΓrV∗rP> = UrΓrU∗r .499

It is easily seen from (6.5) that L∗`L` = V̂`(β
2
` I2)V̂ ∗` . Then500

A = C∗C = (I3 ⊗ T )Λ∗Λ(I3 ⊗ T )∗501

= ((I3 ⊗ T )P ) blkdiag(L∗1L1, L
∗
2L2, · · · , L∗nLn)(P>(I3 ⊗ T )∗)502

= (I3 ⊗ T )PVrΛ2
rV∗rP>(I3 ⊗ T )∗ = QrΛ2

rQ∗r .503504

Remark 6.3. When k vanishes, Qr defined in Theorem 6.2 does not strictly span505

the range space of A and (7.1) below is not strictly NFSEP. But in practice, this makes506

little difference on the efficacy and efficiency of our numerical method discussed in507

next section. Therefore, we will not discuss this case specifically.508

7. Eigensolver for NFSEP (7.1). Eventually, all previous derivations show509

that the nullspace free method proposed in [21] works for all Bravais lattices. With510

(6.6) in Theorem 6.2, the GEP (4.19) AE = λBE is transformed into the NFSEP:511

(7.1) ArÊ = λÊ,512

where513

Ar = ΛrQ∗rB−1QrΛr = A∗r > 0 and Ê = Λ−1r Q∗rBE.514

Now the nullspace of GEP (4.19) has been completely deflated, therefore poses no515

threat to the desired solution of GEP (4.19).516

To calculate a couple of smallest positive eigenvalues and associated eigenvec-517

tors of (7.1), a fast eigensolver was proposed in [21] originally for the SC and FCC518

lattices, and can also be similarly applied to all Bravais lattices. In brief, the in-519

vert Lanczos method is employed to calculate smallest few positive eigenvalues and520

associated eigenvectors of Ar. The conjugate gradient (CG) method without pre-521

conditioner is employed to solve the linear system in each step of the invert Lanczos522

process, where the condition number of the coefficient matrix Q∗rB−1Qr is bounded by523

that of B−1[21]. In the case of positive diagonal B with moderate condition number,524

the CG method turns out very appealing.525

In the CG method, multiplying any column vector by Q∗rB−1Qr is essentially526

reduced to Tq and T ∗p except some diagonal scalings, where q and p are some inter-527

mediate vectors. Fortunately, we discover that the most expensive operations Tq and528

T ∗p can be efficiently computed via Algorithm 1 and Algorithm 2 in [21], respectively,529

with slight modifications. In a nutshell, these two algorithms are just wrappers for530

the backward and forward FFTs, respectively, harnessing (1.4).531

A preliminary MATLAB R© implementation of our eigensolver has been devel-532

oped into a software package called FAME [4], which stands for Fast Algorithm for533

Maxwell’s Equations. The advanced functionality of FAME and other auxiliary com-534

ponents of FAME such as graphical user interface are still under development.535

8. Numerical Experiments. To demonstrate the accuracy and efficiency of536

our framework, the band structure of the double gyroid PC [29] in the Body-Centered537

Cubic (BCC) lattice is calculated using FAME in MATLAB R© R2017b environment.538

Key steps in our eigensolver are implemented calling functions eigs, pcg, fft and ifft539

of MATLAB R©. In our calculation, the tolerance for convergence of eigs and pcg540

This manuscript is for review purposes only.
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(a) The 3D physical cell of the BCC
lattice and double gyroid structure.

(b) The Brillouin zone and its vertices
of the BCC lattice.

Fig. 4. Illustration of the PC in the BCC lattice and its Brillouin zone

is set to 10−12 and 10−13, respectively. All computations are performed on an Intel541

(R) Xeon (R) E5-2643 3.30GHz processor with 96 GB RAM in 64-bit IEEE double542

precision arithmetic.543

In the prior orthogonal coordinate system, coordinates of lattice translation vec-544

tors a1,a2,a3 of the BCC lattice are545

a1 = ã [−1; 1; 1] /2, a2 = ã [1;−1; 1] /2, a3 = ã [1; 1;−1] /2,546

where ã is the lattice constant. Reciprocal lattice vectors [b1,b2,b3] are defined by547

2π[a1,a2,a3]−>. The coordinates of the vertices Γ, H, P,N,H ′ of the Brillouin zone548

(see Figure 4(b)) with respect to the basis b1,b2,b3 are549

Γ = [0; 0; 0] , H =

[
1

2
;−1

2
;

1

2

]
, P =

[
1

4
;

1

4
;

1

4

]
, N =

[
0;

1

2
; 0

]
, H ′ =

[
−1

2
;

1

2
;

1

2

]
.550

In the prior orthogonal coordinate system, let r = [x′; y′; z′]. The double gyroid551

region in Figure 4(a) can be described by the set DG := {r ∈ R3 | f(r) > 1.1} ∪552

{r ∈ R3 | f(−r) > 1.1}, where f(r) = sin(2π[x′, y′, z′]/a) cos(2π[y′; z′;x′]/a). For553

convenience, we set a = 1, ε(r ∈ DG) = 16, ε(r /∈ DG) = 1. Ten smallest positive554

eigenvalues and associated eigenvectors of the NFSEP (7.1) are computed.555

The band structure in Figure 5(a) does not show any discernible discrepancy556

with the one in [29], which partially evidences the accuracy of our method. Even the557

dimension of the NFSEP (7.1) is as large as 3, 456, 000, it takes at most 7×103 seconds558

to finish the task at each k-point as shown in Figure 5(b) (1), which is acceptable in559

the case of serial implementation. More detailedly, in Figure 5(b) (2) the number of560

iterations in eigs versus k is plotted, where we can see that the invert Lanczos process561

converges in 60 to 170 steps for the ten target eigenpairs given k. In Figure 5(b) (3),562

the number of iterations in pcg without preconditioner versus k is plotted, where on563

average it takes 34 to 42 iterations to solve the linear system in one step of the invert564

Lanczos process. The overall efficiency of our eigensolver is impressive.565

9. Conclusions. In a word, the major contribution we have made in the present566

work is the establishment of a complete and unified framework to solve the Maxwell567

Eigenvalue Problem for 3D isotropic photonic crystals in all 14 Bravais lattices. It is568
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SOLVING 3D MEP WITH 14 BRAVAIS LATTICES 17

H' P H' N H P N

Wave Vector

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

fr
eq

ue
nc

y(
 / 

(2
 a

))

(a) ω =
√
λ/µ0 versus k

H' P H' N H P N

4

6

tim
e(

10
3  s

ec
.)

H' P H' N H P N

80
100
120
140
160

#i
te

r(
ei

gs
)

H' P H' N H P N

Wave Vector

35

36

37

#i
te

r(
pc

g)

(1)

(2)

(3)

(b) The number of iterations and wall clock
time

Fig. 5. (a) The band structure of the double gyroid PC. (b)(1) The average number of iterations
in pcg without preconditioner. (b)(2) The number of iterations in eigs. (b)(3) The wall clock time
spent on ten target eigenvalues.

highlighted that our FAME is remarkably efficient. Compared with O(n2) of other569

methods, the overall computational complexity of ours is O(n log n), thanks to the570

feasibility of FFT algorithm in our framework, which is actually rooted in the eigen-571

decomposition of discrete partial derivative operators C1, C2, C3 including the refor-572

mulated Bloch condition. Particularly, the novel discovery of the relations among573

unitary (block) companion matrices K1, J2,K2, J3 (see Corollary 5.5, Lemma 5.8)574

goes hand in hand with the hierarchical structure of the block companion matrices575

K2,K3 (see Lemma 5.3), which plays a central role in deriving important eigen-576

decompositions of C1, C2, C3. With these apparatus, the whole process of derivations577

turns out uncluttered and reader-friendly. On the other hand, the fast convergence578

of our eigensolver is guaranteed by the novel nullspace free method that thoroughly579

removes the considerable nullspace of the discrete double-curl operator A.580

Extension of our present framework to 3D anisotropic photonic crystals is under581

investigation. Details of our package FAME and test of FAME in the high performance582

computing environment will be reported in near future.583

Acknowledgments. T.-M. Huang was partially supported by the Ministry of584

Science and Technology (MoST) 105-2115-M-003-009-MY3, National Centre of The-585

oretical Sciences (NCTS) in Taiwan. T. Li was supported in parts by the NSFC586

11471074. W.-W. Lin was partially supported by MoST 106-2628-M-009-004-, NCTS587

and ST Yau Centre in Taiwan. H. Tian was supported by MoST 107-2811-M-009-588

002-. Prof. So-Hsiang Chou is greatly appreciated for his valuable feedback and589

suggestion on this manuscript. Mr. Jyun-Wei Lin at National Chiao Tung University,590

who prepared many figures in this work, also deserves our gratitude.591

REFERENCES592

[1] Bravais lattice. https://en.wikipedia.org/wiki/Bravais lattice.593
[2] Crystal systems and lattices. http://aflowlib.duke.edu/users/egossett/lattice/lattice.html.594
[3] Eigenvectors of normal matrices. https://proofwiki.org/wiki/Eigenvalues of Normal595

Operator have Orthogonal Eigenspaces.596
[4] Fast algorithms for maxwell’s equations. https://sites.google.com/g2.nctu.edu.tw/fame/home.597

This manuscript is for review purposes only.

https://en.wikipedia.org/wiki/Bravais_lattice
http://aflowlib.duke.edu/users/egossett/lattice/lattice.html
https://proofwiki.org/wiki/Eigenvalues_of_Normal_Operator_have_Orthogonal_Eigenspaces
https://proofwiki.org/wiki/Eigenvalues_of_Normal_Operator_have_Orthogonal_Eigenspaces
https://proofwiki.org/wiki/Eigenvalues_of_Normal_Operator_have_Orthogonal_Eigenspaces
https://sites.google.com/g2.nctu.edu.tw/fame/home


18 T.-M. HUANG, T.X. LI, W.-D. LI, J.-W. LIN, W.-W. LIN AND H. TIAN

[5] Kronecker product. https://en.wikipedia.org/wiki/Kronecker product.598
[6] Mathworks. https://www.mathworks.com.599
[7] Normal matrix. https://en.wikipedia.org/wiki/Normal matrix.600
[8] Primitive cell. https://en.wikipedia.org/wiki/Primitive cell.601
[9] A. Bossavit and J.-C. Verite, A mixed fem-biem method to solve 3-D eddy-current problems,602

IEEE Trans. Magnetics, 18 (1982), pp. 431–435.603
[10] A. Chatterjee, L. C. Kempel, and J. L. Volakis, Finite Element Method for Electromagnet-604

ics: Antennas, Microwave Circuits, and Scattering Applications, IEEE Press, Piscataway,605
NJ, 1998.606

[11] Z. Chen, Q. Du, and J. Zou, Finite element methods with matching and nonmatching meshes607
for Maxwell equations with discontinuous coefficients, SIAM J. Numer. Anal., 37 (2000),608
pp. 1542–1570.609

[12] R. Chern, C. C. Chang, C.-C. Chang, and R. Hwang, Large full band gaps for photonic610
crystals in two dimensions computed by an inverse method with multgrid acceleration,611
Phys. Rev. E, 68 (2003), p. 26704.612

[13] R.-L. Chern, C.-C. Chang, C.-C. Chang, and R.-R. Hwang, Numerical study of three-613
dimensional photonic crystals with large band gaps, J. Phys. Soc. Japan, 73 (2004), pp. 727–614
737.615

[14] R.-L. Chern, H.-E. Hsieh, T.-M. Huang, W.-W. Lin, and W. Wang, Singular value decom-616
positions for single-curl operators in three-dimensional Maxwell’s equations for complex617
media, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 203–224.618

[15] J. E. J. Dennis, J. F. Traub, and W. R. P., On the matrix polynomial, Lambda-matrix619
and block eigenvalue problems, Tech. Report 71-109, December 1971. Available online at620
https://ecommons.cornell.edu/handle/1813/5954.621

[16] D. C. Dobson and J. Pasciak, Analysis for an algorithm for computing electromagnetic Bloch622
modes using Nedelec spaces, Comp. Meth. Appl. Math., 1 (2001), pp. 138–153.623

[17] S. Guo, F. Wu, S. Albin, and R. S. Rogowski, Photonic band gap analysis using finite-624
difference frequency-domain method, Opt. Express, 12 (2004), pp. 1741–1746.625

[18] B. C. Gupta, C.-H. Kuo, and Z. Ye, Propagation inhibition and localization of electro-626
magnetic waves in two-dimensional random dielectric systems, Phys. Rev. E, 69 (2004),627
p. 066615.628

[19] M. Hano, Finite-element analysis of dielectric-loaded waveguides, IEEE. Trans. Microwave629
Theory Tech., 32 (1984), pp. 1275–1279.630

[20] K. M. Ho, C.-T. Chan, and C. M. Soukoulis, Existence of a photonic gap in periodic dielec-631
tric structures, Phys. Rev. Lett., 65 (1990), p. 3152.632

[21] T.-M. Huang, H.-E. Hsieh, W.-W. Lin, and W. Wang, Eigendecomposition of the discrete633
double-curl operator with application to fast eigensolver for three dimensional photonic634
crystals, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 369–391.635

[22] T.-M. Huang, H.-E. Hsieh, W.-W. Lin, and W. Wang, Matrix representation of the double-636
curl operator for simulating three dimensional photonic crystals, Math. Comput. Model.,637
58 (2013), pp. 379–392.638

[23] J. Jin, The finite element method in electromagnetics, John Wiley, New York, NY, 2002.639
[24] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals:640

Molding the Flow of Light, Princeton University Press, Princeton, NJ, 2008.641
[25] J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Photonic crystals: putting a new twist642

on light, Nature, 386 (1997), p. 143.643
[26] S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev.644

Lett., 58 (1987), pp. 2486–2489.645
[27] S. G. Johnson and J. D. Joannopoulos, Block-iterative frequency-domain methods for646

Maxwell’s equations in a planewave basis, Opt. Express, 8 (2001), pp. 173–190.647
[28] C. Kittel, Introduction to solid state physics, Wiley, New York, NY, 2005.648
[29] L.-Z. Lu, L. Fu, J. D. Joannopoulos, and M. Soljačić, Weyl points and line nodes in gyroid649
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SUPPLEMENTARY MATERIALS: SOLVING THREE DIMENSIONAL
MAXWELL EIGENVALUE PROBLEMS WITH FOURTEEN BRAVAIS

LATTICES∗

TSUNG-MING HUANG† , TIEXIANG LI‡ , WEI-DE LI§ , JIA-WEI LIN¶, WEN-WEI LIN ¶,

AND HENG TIAN ¶

SM1. Derivation of Figure 2(b) and BC (3.3). It is best to visualize the in-
vestigation starting from Figure SM1(a), where we have φ2, φ3 < π/2, `2 > 0, a3 cosφ2
≥ a2 cosφ3. Results of other possibilities will be discussed in SM2.

In Figure SM1(a), let �OR1R2R3 be the bottom surface of D, and �R4R5R6R7

be the image of the top surface of D under T−a3
, which contains the origin in this

case. We naturally have the 2D oblique coordinate system with a1-,a2-axes. With
slight abuse of notation, I,II,III,IV denote four patches of the �R4R5R6R7, located
in the first, second, third, fourth quadrant, respectively, of this oblique coordinate
system. Our goal is to map �R4R5R6R7 to �OR1R2R3, respecting the periodicity
along a1,a2.

We have the 2D physical cell generated by a1,a2, i.e., the set {αa1 + βa2 : α, β∈
[0, 1)}, and its periodic images under Ta1

, Ta2
which fill up the whole plane, i.e., the

set {αa1 + βa2 : α, β ∈ R}. Due to the periodicity, it is best to narrow our attention
to the 2D physical cell. The rule is that whenever a point is outside the 2D physical
cell, i.e., α, β /∈ [0, 1), we evaluate its image within the 2D physical cell under the
modulo operation

αa1 + βa2 ≡ (α− floor(α)) a1 + (β − floor(β)) a2 mod a1,a2.

For example, with respect to the nonorthogonal basis a1,a2 coordinates of points in
patch III satisfy α, β ∈ [−1, 0), then due to

αa1 + βa2 ≡ (1 + α)a1 + (1 + β)a2 = Ta1Ta2(αa1 + βa2) mod a1,a2,

patch III is mapped to its counterpart in the 2D physical cell shown in Figure SM1(b).
Other patches are similarly relocated.

As shown in Figure SM1(c), it is easy to map the 2D physical cell to �OR1R2R3,
which is realized if triangle Ω2 in the 2D physical cell is mapped to its counterpart in
the second quadrant.

Finally in Figure SM1(d), by composition of operations in Figure SM1(b) and
Figure SM1(c), �R4R5R6R7 is mapped to �OR1R2R3.

In summary, there should be four patches within �OR1R2R3, namely, (II∩Ω2)∪
I, II∩Ω1, III∩Ω1, (III∩Ω2)∪ IV. The linear mapping of each patch to �R4R5R6R7 is
T0, T−a1

, T−a1−a2
, T−a2

, respectively, comparing Figure SM1(a) with Figure SM1(d).
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Furthermore, comparing Figure SM1(d) and Figure 2(b) we identify four patches
Figure SM1(d) with four patches within �OR1R2R3 in Figure 2(b), namely

• (II ∩ Ω2) ∪ I 7→ I, II ∩ Ω1 7→ II,
• III ∩ Ω1 7→ III, (III ∩ Ω2) ∪ IV 7→ IV.

SM2. J2 and J3 in the triclinic lattice. Recall that ã1, ã2, ã3 are assumed to
be a1,a2,a3 and that a⊥3 is the projection of a3 onto the xy-plane in the orthogonal
coordinate system with x-,y-,z-axes. The four quadrants in the xy-plane partitioned
by x-,y-axes are denoted by I, II, III, IV. As illustrated in Figure SM2, SM3, SM4
and SM5, we classify the triclinic lattice into four categories according to the quad-
rant in which a⊥3 is located, and further divide each category into four subcategories
according to the quadrant in which a2 is located and the first coordinates of a1,a2,a3,
i.e., a1(1),a2(1),a3(1). We will reformulate the BC (1.2) for each subcategory.

The image of the top surface of D under T−a3
is partitioned into Ĩ, ĨI, ĨII, ĨV,

while the bottom surface of D is accordingly partitioned into I, II, III, IV. It is clear
that there is always one patch in the former which overlaps with another patch in the
latter and is associated with the identity mapping T0. Following the same reasoning
in SM1, we present the results as follows. Let x = (x, y, 0) ∈ D be the point in the
bottom surface of D, and recall that ξ(θ) := exp(ı2πθ).

• Case (1-i): a⊥3 ∈ I, a2 ∈ I, a2(1) ≤ a3(1),

(SM2.1) E(x) =


E(x), if x ∈ I

ξ(k · a1)E(x− a1), if x ∈ II

ξ(k · (a1 + a2))E(x− a1 − a2), if x ∈ III

ξ(k · a2)E(x− a2), if x ∈ IV.

• Case (1-ii): a⊥3 ∈ I, a2 ∈ I, a2(1) > a3(1),

(SM2.2) E(x) =


E(x), if x ∈ I

ξ(k · a1)E(x− a1), if x ∈ II

ξ(k · a2)E(x− a2), if x ∈ III

ξ(k · (−a1 + a2))E(x + a1 − a2), if x ∈ IV.

• Case (1-iii): a⊥3 ∈ I, a2 ∈ II, −a2(1) ≤ a1(1)− a3(1),

(SM2.3) E(x) =


E(x), if x ∈ I

ξ(k · a1)E(x− a1), if x ∈ II

ξ(k · (a1 + a2))E(x− a1 − a2), if x ∈ III

ξ(k · a2)E(x− a2), if x ∈ IV.

• Case (1-iv): a⊥3 ∈ I, a2 ∈ II, −a2(1) > a1(1)− a3(1),

(SM2.4) E(x) =


E(x), if x ∈ I

ξ(k · a1)E(x− a1), if x ∈ II

ξ(k · (2a1 + a2))E(x− 2a1 − a2), if x ∈ III

ξ(k · (a1 + a2))E(x− a1 − a2), if x ∈ IV.
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(a) �R4R5R6R7 is partitioned into 4 patches by a1-,a2-axes.

(b) All 4 patches are relocated to the first quadrant.

(c) The 2D physical cell is mapped to �OR1R2R3 if triangle Ω2 is relocated to
triangle OR8R3.

(d) �R4R5R6R7 is finally mapped to �OR1R2R3 if II ∩ Ω2 and III ∩ Ω2 are
relocated to the second quadrant.

Fig. SM1. Derivation of the BC (3.3) along the z-axis.
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(a) case (1-i) (b) case (1-ii)

(c) case (1-iii) (d) case (1-iv)

Fig. SM2. Four subcategories of the first category where a⊥3 ∈ I.

• Case (2-i): a⊥3 ∈ II, a2 ∈ I, a2(1) ≤ a1(1) + a3(1),

(SM2.5) E(x) =


ξ(−k · a1)E(x + a1), if x ∈ I

E(x), if x ∈ II

ξ(k · a2)E(x− a2), if x ∈ III

ξ(k · (−a1 + a2))E(x + a1 − a2), if x ∈ IV.

• Case (2-ii): a⊥3 ∈ II, a2 ∈ I, a2(1) > a1(1) + a3(1),

(SM2.6) E(x) =


ξ(−k · a1)E(x + a1), if x ∈ I

E(x), if x ∈ II

ξ(k · (−a1 + a2))E(x + a1 − a2), if x ∈ III

ξ(k · (−2a1 + a2))E(x + 2a1 − a2), if x ∈ IV.

• Case (2-iii): a⊥3 ∈ II, a2 ∈ II, −a2(1) ≤ −a3(1),

(SM2.7) E(x) =


ξ(−k · a1)E(x + a1), if x ∈ I

E(x), if x ∈ II

ξ(k · a2)E(x− a2), if x ∈ III

ξ(k · (−a1 + a2))E(x + a1 − a2), if x ∈ IV.
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(a) case (2-i) (b) case (2-ii)

(c) case (2-iii) (d) case (2-iv)

Fig. SM3. Four subcategories of the second category where a⊥3 ∈ II.

• Case (2-iv): a⊥3 ∈ II, a2 ∈ II, −a2(1) > −a3(1),

(SM2.8) E(x) =


ξ(−k · a1)E(x + a1), if x ∈ I

E(x), if x ∈ II

ξ(k · (a1 + a2))E(x− a1 − a2), if x ∈ III

ξ(k · a2)E(x− a2), if x ∈ IV.

• Case (3-i): a⊥3 ∈ III, a2 ∈ I, a2(1) ≤ −a3(1),

(SM2.9) E(x) =


ξ(−k · (a1 + a2))E(x + a1 + a2), if x ∈ I

ξ(−k · a2)E(x + a2), if x ∈ II

E(x), if x ∈ III

ξ(−k · a1)E(x + a1), if x ∈ IV.

• Case (3-ii): a⊥3 ∈ III, a2 ∈ I, a2(1) > −a3(1),

(SM2.10) E(x) =


ξ(−k · a2)E(x + a2), if x ∈ I

ξ(k · (a1 − a2))E(x− a1 + a2), if x ∈ II

E(x), if x ∈ III

ξ(−k · a1)E(x + a1), if x ∈ IV.
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(a) case (3-i) (b) case (3-ii)

(c) case (3-iii) (d) case (3-iv)

Fig. SM4. Four subcategories of the third category where a⊥3 ∈ III.

• Case (3-iii): a⊥3 ∈ III, a2 ∈ II, −a2(1) ≤ a1(1) + a3(1),

(SM2.11) E(x) =


ξ(−k · (a1 + a2))E(x + a1 + a2), if x ∈ I

ξ(−k · a2)E(x + a2), if x ∈ II

E(x), if x ∈ III

ξ(−k · a1)E(x + a1), if x ∈ IV.

• Case (3-iv): a⊥3 ∈ III, a2 ∈ II, −a2(1) > a1(1) + a3(1),

(SM2.12) E(x) =


ξ(−k · (2a1 + a2))E(x + 2a1 + a2), if x ∈ I

ξ(−k · (a1 + a2))E(x + a1 + a2), if x ∈ II

E(x), if x ∈ III

ξ(−k · a1)E(x + a1), if x ∈ IV.

• Case (4-i): a⊥3 ∈ IV, a2 ∈ I, a2(1) ≤ a1(1)− a3(1),

(SM2.13) E(x) =


ξ(−k · a2)E(x + a2), if x ∈ I

ξ(k · (a1 − a2))E(x− a1 + a2), if x ∈ II

ξ(k · a1)E(x− a1), if x ∈ III

E(x), if x ∈ IV.
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(a) case (4-i) (b) case (4-ii)

(c) case (4-iii) (d) case (4-iv)

Fig. SM5. Four subcategories of the fourth category where a⊥3 ∈ IV.

• Case (4-ii): a⊥3 ∈ IV, a2 ∈ I, a2(1) > a1(1)− a3(1),

(SM2.14) E(x) =


ξ(k · (a1 − a2))E(x− a1 + a2), if x ∈ I

ξ(k · (2a1 − a2))E(x− 2a1 + a2), if x ∈ II

ξ(k · a1)E(x− a1), if x ∈ III

E(x), if x ∈ IV.

• Case (4-iii): a⊥3 ∈ IV, a2 ∈ II, −a2(1) ≤ a3(1),

(SM2.15) E(x) =


ξ(−k · a2)E(x + a2), if x ∈ I

ξ(k · (a1 − a2))E(x− a1 + a2), if x ∈ II

ξ(k · a1)E(x− a1), if x ∈ III

E(x), if x ∈ IV.

• Case (4-iv): a⊥3 ∈ IV, a2 ∈ II, −a2(1) > a3(1),

(SM2.16) E(x) =


ξ(−k · (a1 + a2))E(x + a1 + a2), if x ∈ I

ξ(−k · a2)E(x + a2), if x ∈ II

ξ(k · a1)E(x− a1), if x ∈ III

E(x), if x ∈ IV.
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In summary, the sixteen BCs (SM2.1)–(SM2.16) can be recast into

E(x) =


ξ(−k · t1)E(x + t1), if x ∈ I

ξ(−k · t2)E(x + t2), if x ∈ II

ξ(−k · t3)E(x + t3), if x ∈ III

ξ(−k · t4)E(x + t4), if x ∈ IV,

where definitions of {ti}4i=1 are self-evident in (SM2.1)–(SM2.16).
Similar to what is done in Part III of Sec. 4, we can express J3 for (SM2.1)–

(SM2.16) using {ti}4i=1 in a unified form. Define

(SM2.17) m2 = floor

(
R9R1

δx

)
, m3 = floor

(
R10R3

δy

)
, m4 = floor

(
R11R2

δx

)
,

then we have
(SM2.18)

J3 =

 Im3
⊗
[

0 ξ(k · t3)Im4

ξ(k · t4)In1−m4 0

]
In2−m3

⊗
[

0 ξ(k · t2)Im2

ξ(k · t1)In1−m2
0

]
 .

However, to derive the eigen-decomposition of J3, a more useful form of J3 should be
used, e.g., the one in the proof of Theorem SM2.2.

We also need to consider the BC (1.2) along the y-axis when a2 ∈ II, which
should differ from (3.4). Letting x = (x, b, 0) ∈ D, we have the BC (1.2) for different
segments of R3R2 shown in, say, Figure SM2(c):

E(x) =

{
ξ(k · a2)E(T−a2

(x)), if x ∈ R3R8

ξ(k · (a2 + a1))E(T−a1−a2
(x)), if x ∈ R8R2.

Define

(SM2.19) m1 = floor
(
R3R8/δx

)
,

which is consistent with the one in Sec. 4. Then, depending on the quadrant in which
a2 is located, J2 in the discretized BC (4.5) has different form,

(SM2.20) J2 =


[

0 ξ(−k · a1)Im1

In1−m1
0

]
= K−m1

1 , if a2 ∈ I[
0 Im1

ξ(k · a1)In1−m1 0

]
= Kn1−m1

1 , if a2 ∈ II.

Consequently, we have a more general version of Theorem 5.6 as follows. Recall
that in (2.2) a,b, c can also be expanded by a1,a2,a3 with expansion coefficients
η1, η2, η3 defined in (2.1).

Theorem SM2.1. K2 in (4.7) is unitary. With Xi defined in (5.1), K2 satisfies

K2(Yij ⊗Xi) = ξ(θb,i)ξ(j/n2)(Yij ⊗Xi), i = 1, · · · , n1, j = 1, · · · , n2,
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where

θb,i = (k · b− iη1) /n2, η1 =

{
m1/n1, if a2 ∈ I

(m1 − n1)/n1, if a2 ∈ II,

Yij =

[
1, ξ(θb,i)ξ

(
j

n2

)
, · · · , ξ((n2 − 1)θb,i)ξ

(
(n2 − 1)j

n2

)]>
.(SM2.21)

Then we have a more general version of Theorem 5.10 as follows.

Theorem SM2.2. K3 in (4.13) is unitary. With Xi and Yij defined in (5.1) and
(SM2.21), respectively, K3 satisfies

K3(Zijk ⊗ Yij ⊗Xi) = ξ(θc,ij)ξ(k/n3)(Zijk ⊗ Yij ⊗Xi),

where

θc,ij = [k · c− η3j + (η1η3 − η2) i] /n3,

Zijk =

[
1, ξ(θc,ij)ξ

(
k

n3

)
, · · · , ξ((n3 − 1)θc,ij)ξ

(
(n3 − 1)k

n3

)]>
,

for i = 1, · · · , n1, j = 1, · · · , n2, k = 1, · · · , n3, with

η1 =

{
m1/n1, if a2 ∈ I

(m1 − n1)/n1, if a2 ∈ II,

(η2, η3) =


(m2/n1, m3/n2) , if a⊥3 ∈ I

((m2 − n1)/n1, m3/n2) , if a⊥3 ∈ II

((m4 − n1)/n1, (m3 − n2)/n2) , if a⊥3 ∈ III

(m4/n1, (m3 − n2)/n2) , if a⊥3 ∈ IV.

Proof. Here we will just present the sketch of the proof, and the omitted details
can be found in the proof of Theorem 5.10. For any of four categories mentioned
above, say, j-th category, we have the following observations from Figure SM2, SM3,
SM4 and SM5,

(SM2.22) m4 =


m2 −m1, Case (j − i)
n1 −m1 +m2, Case (j − ii)
n1 −m1 +m2, Case (j − iii)
m2 −m1, Case (j − iv).

Eq. (SM2.20) is also equivalent to

(SM2.23) J2 =

{
K−m1

1 = ξ(−k · a1)Kn1−m1
1 , if a2 ∈ I

ξ(k · a1)K−m1
1 = Kn1−m1

1 , if a2 ∈ II.

If a⊥3 ∈ I, considering (SM2.22) and (SM2.23), we have

J∗3 =


[

0 In2−m3
⊗Km2

1

ξ(k · a2)Im3 ⊗K
m2−m1
1 0

]
, if a2 ∈ I[

0 In2−m3
⊗Km2

1

ξ(k · a2)ξ(k · a1)Im3 ⊗K
m2−m1
1 0

]
, if a2 ∈ II,

= (In2 ⊗K1)
m2 Km3

2 .
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If a⊥3 ∈ II, considering (SM2.22) and (SM2.23), we have

J∗3 =


[

0 In2−m3 ⊗K
m2−n1
1

ξ(k · a2)ξ(−k · a1)Im3
⊗Km2−m1

1 0

]
, if a2 ∈ I[

0 In2−m3
⊗Km2−n1

1

ξ(k · a2)Im3 ⊗K
m2−m1
1 0

]
, if a2 ∈ II,

= (In2
⊗K1)

m2−n1 Km3
2 .

If a⊥3 ∈ III, considering (SM2.22) and (SM2.23), we have

J3 =


[

0 Im3
⊗Kn1−m4

1

ξ(k · a2)In2−m3 ⊗K
n1−m1−m4
1 0

]
, if a2 ∈ I[

0 Im3
⊗Kn1−m4

1

ξ(k · a2)ξ(k · a1)In2−m3 ⊗K
n1−m1−m4
1 0

]
, if a2 ∈ II,

= (In2
⊗K1)

n1−m4 Kn2−m3
2 .

If a⊥3 ∈ IV, considering (SM2.22) and (SM2.23), we have

J3 =


[

0 Im3
⊗K−m4

1

ξ(k · a2)ξ(−k · a1)In2−m3
⊗Kn1−m1−m4

1 0

]
, if a2 ∈ I[

0 Im3 ⊗K
−m4
1

ξ(k · a2)In2−m3
⊗Kn1−m1−m4

1 0

]
, if a2 ∈ II,

= (In2 ⊗K1)
−m4 Kn2−m3

2 .

SM3. J2 and J3 in other 13 Bravais lattices. As mentioned in Sec. 1, with
necessary constraints imposed, the triclinic lattice can become other 13 Bravais lat-
tices. Therefore, many results in other Bravais lattices can be directly inherited from
those in the triclinic lattice.

Lattice translation vectors a1,a2,a3 of all 14 Bravais lattices can be found in
[SM1]. The 3-by-3 matrix below is coordinates of a1,a2,a3 in the prior orthogonal

coordinate system used in the crystallography database. ã, b̃, c̃ are lattice constants of
the 3D physical cell. With the procedure to construct the orthogonal basis a,b, c of
a1,a2,a3 and its important variation described in Sec. 2, we can similarly define the 3D
working cell for other 13 Bravais lattices. For a specific Bravais lattice, we will present
the matrix J2 in (SM2.20) in terms of integer power of K1 in (4.3). As for the matrix
J3 in (SM2.18), we either specify J3 = In1n2

or specify the subcategory in (SM2.1)–
(SM2.16) to fix J3. Recall that m1 are defined in (SM2.19) and m2,m3,m4 are defined
in (SM2.17). However, if there are nothing special about m1,m2,m3,m4, n1, n2, we
will not mention them below.
• Cubic system

(1) Primitive: ã

1 0 0
0 1 0
0 0 1

 , J2 = In1 , J3 = In1n2 .

(2) Face-Centered: ã
2

1 0 1
1 1 0
0 1 1

, case (1-i),

m1 = m2 = n1/2, m3 = n2/3, m4 = 0, J2 = K−m1
1 .
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(3) Body-Centered: ã
2

−1 1 1
1 −1 1
1 1 −1

, case (3-iii),

m1 = m4 = 2n1/3, m2 = n1/3, m3 = n2/2, J2 = Km2
1 .

• Hexagonal system: 1
2

 ã ã 0

−
√

3ã
√

3ã 0
0 0 2c̃

 , m1 = n1

2 , J2 = Km1
1 , J3 = In1n2 .

• Rhombohedral system:

 ã/2 0 −ã/2
−
√

3ã/6 ã/
√

3 −
√

3ã/6
c̃/3 c̃/3 c̃/3

,

(1) if
√

2c̃ <
√

3ã, then case (3-iii), m1 = m4 ≥ n1/2, J2 = Kn1−m1
1 .

(2) if
√

2c̃ >
√

3ã, then case (1-i), m1 = m2, m4 = 0, J2 = K−m1
1 .

• Tetragonal system

(1) Primitive:

ã 0 0
0 ã 0
0 0 c̃

 , J2 = In1
, J3 = In1n2

.

(2) Body-Centered: 1
2

−ã ã ã
ã −ã ã
c̃ c̃ −c̃

, with ã < c̃,

(a) if c̃ ≤
√

2ã, then case (3-iii), m1 = 2(n1 −m4), J2 = Kn1−m1
1 .

(b) if c̃ >
√

2ã, then case (3-i), n1 −m1 = 2m4, J2 = K−m1
1 .

• Orthorhombic system

(1) Primitive:

ã 0 0

0 b̃ 0
0 0 c̃

 , J2 = In1
, J3 = In1n2

.

(2) A-Base-Centered: 1
2

2ã 0 0

0 b̃ b̃
0 −c̃ c̃

, with b̃ < c̃, J2 = Kn1−m1
1 , J3 = In1n2

.

(3) C-Base-Centered: 1
2

 ã ã 0

−b̃ b̃ 0
0 0 2c̃

, with ã < b̃, J2 = Kn1−m1
1 , J3 = In1n2 .

(4) Face-Centered: 1
2

0 ã ã

b̃ 0 b̃
c̃ c̃ 0

, with ã < b̃ < c̃, case (1-ii), J2 = K−m1
1 .

(5) Body-Centered: 1
2

−ã ã ã

b̃ −b̃ b̃
c̃ c̃ −c̃

, with ã < b̃ < c̃,

(a) if c̃2 ≥ ã2 + b̃2, then case (3-i), J2 = K−m1
1 .

(b) if c̃2 < ã2 + b̃2, then case (3-iii), J2 = Kn1−m1
1 .

• Monoclinic system

(1) Primitive:

ã 0 c̃ cosφ3
0 b̃ 0
0 0 c̃ sinφ3

, with ã < c̃, φ3 6= π/2,

(a) if φ3 < π/2, then J2 = K−m1
1 , J3 = In1n2

.
(b) if φ3 > π/2, then J2 = Kn1−m1

1 , J3 = In1n2 .
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(2) A-Base-Centered:

 ã/2 ã/2 c̃ cos γ

−b̃/2 b̃/2 0
0 0 c̃ sin γ

, with γ 6= π/2, which is almost the

same as the triclinic lattice.
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