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SOLVING THREE DIMENSIONAL MAXWELL EIGENVALUE
PROBLEMS WITH FOURTEEN BRAVAIS LATTICES*

TSUNG-MING HUANGT, TIEXIANG LI¥, WEI-DE LI%, JIA-WEI LINY, WEN-WEI LIN ¥,
AND HENG TIAN Y

Abstract. Calculation of band structures of three dimensional photonic crystals amounts to
solving large-scale Maxwell eigenvalue problems, which are notoriously challenging due to high mul-
tiplicity of zero eigenvalues. In this paper, we try to address this problem in such a broad context
that band structures of three dimensional isotropic photonic crystals in all 14 Bravais lattices can
be efficiently computed in a unified framework. In this work, we uncover the delicate machinery be-
hind several key results of our framework and on the basis of this new understanding we drastically
simplify the derivations, proofs and arguments. Particular effort is made on reformulating the Bloch
condition for all 14 Bravais lattices in the redefined orthogonal coordinate system, and establishing
eigen-decomposition of discrete partial derivative operators by identifying the hierarchical structure
of the underlying normal (block) companion matrix, and reducing the eigen-decomposition of the
double-curl operator to a simple factorization of a 3-by-3 complex skew-symmetric matrix. With the
validity of the novel nullspace free method in the broad context, we perform some calculations on
one benchmark system to demonstrate the accuracy and efficiency of our algorithm to solve Maxwell
eigenvalue problems.

Key words. Maxwell Eigenvalue Problems, three-dimensional photonic crystals, Bravais lat-
tices, nullspace free method, FAME

AMS subject classifications. 15A18, 15A90, 65F15

1. Introduction. The photonic crystal (PC) is an essential device when light is
manipulated in optoelectronics industry. A PC is a one-, two- or three-dimensional
(1D, 2D, 3D) periodic structure which is composed of different optical media that
can purposefully affect the electromagnetic wave propagation. This term is coined
after Yablonovitch [40] and John [26]’s milestone work in 1987. In recent years, the
research about PC is booming due to the emergence of topological PCs (or photonic
topological insulators) [34], especially the 3D topological PCs. To determine whether
a PC is the topological PC, the calculation of band structures is indispensable [29]. To
practically know the band structure of a 3D isotropic/anisotropic PC, we need to first
recast the source-free Maxwell’s equations in frequency domain [38] as follows, with
a specific medium whose intrinsic properties are described by a 3-by-3 permeability
matrix pu and a permittivity matrix €, respectively,

(1.1a) VX E=wuH, V-(uH)=0,
(1.1b) VxH=—weE, V-:(cE)=0,

where + = v/—1, w is the frequency, E and H are the electric and magnetic fields,
respectively. The famous Bloch theorem [28] requires that the solutions E and H
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2 T.-M. HUANG, T.X. LI, W.-D. LI, J.-W. LIN, W.-W. LIN AND H. TIAN
satisfy the Bloch condition (BC) [35],
(1.2) E(x+ay) =e?™*E(x), H(x +as) = e?™ & H(x), {=1,2,3,

where {a,}3_, are lattice translation vectors and 27k is the Bloch wave vector within
the first Brillouin zone [24]. For simplicity, we only consider isotropic PC throughout
this work, i.e., both € and p are assumed to be diagonal, and further p is set to the
vacuum permeability ug.

Given a specific 3D PC, it can be proved that only certain nonzero real w’s can
satisfy (1.1a) and (1.1b) simultaneously. Our ultimate goal is to find a few eigenvalues
with smallest magnitude of the following Maxwell Eigenvalue Problem (MEP)

) o R ] A

(1.3b) V-(eE)=0, V-(uoH)=0.

To discretize the MEP (1.3), the plane-wave expansion method [20, 25, 27, 36],
the multiple scattering method [18, 37], the finite-difference frequency-domain method
(FDFD) [12, 13, 17, 21, 22, 39, 41, 42, 43], the finite element method [9, 10, 11, 19, 23,
30, 16, 31, 32, 33], to name a few, are available. In the case of diagonal matrix ¢, the
finite-difference scheme with staggered Yee grid [42], which is called Yee’s scheme for
short and originally proposed for time-domain simulation, is particularly attractive.
In [21, 22], Yee’s scheme has been used for the discretization of (1.3a), which results
in a generalized eigenvalue problem (GEP). For a 3D PC, due to the divergence-free
condition (1.3b), the dimension of the nullspace of the GEP accounts for one third of
the total dimension. The presence of the huge nullspace will pose an extraordinary
challenge to the desired solutions of the GEP. In fact, no frequency-domain method is
immune to this challenge. Besides, even though only smallest few positive eigenvalues
are desired, which can be calculated by the invert Lanczos method, to solve the
corresponding linear system of huge size in each step of the invert Lanczos process is
another challenge. In [21, 22], we have shown how we resolve these challenges in the
case of the face-centered cubic (FCC) lattice and the simple cubic (SC) lattice.

In this paper, we will generalize the key results and techniques in [21, 22] to solve
the MEP (1.3) for all 14 Bravais lattices. Since the triclinic lattice is the most gen-
eral one, which can become other 13 Bravais lattices with corresponding constraints
imposed, it suffices to consider triclinic lattice only. However, several obstacles stand
out. For example, since the unit cell of the triclinic lattice is a slanted parallelepiped
without any notable property, it is unclear how to formulate in matrix language the
discrete single-curl operator with the BC (1.2), then it is uncertain whether the ad-
vanced nullspace free method in [21] can be applicable in this case. Although it is
not uncommon to employ the oblique coordinate system in engineering and physics
community, we are not convinced that all our inventions in [21, 22] can still be ap-
plicable in the oblique coordinate system, so we decide to work with the orthogonal
coordinate system as before to overcome these obstacles.

We make the following contributions in this work:

e Foremost, we establish a complete and unified framework to solve the MEP
(1.3) for 3D isotropic photonic crystals in all 14 Bravais lattices.

e We exhaustively classify the unit cell of the triclinic lattice which is generated
by translation lattice vectors aj, as,az, and reformulate the BC within the
cubic working cell accordingly (see Sec.3 and SM2).
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SOLVING 3D MEP WITH 14 BRAVAIS LATTICES 3

e We demonstrate how to cleanly discretize d,, 0y, 0, including the reformu-
lated BC into matrices Cy, Cq, C3 with Yee’s scheme (see Sec.4). Although
Cs,C5 are usually quite complicated, they become much less daunting with
our derivations. Exhaustive expressions of Cy, C3 in the triclinic lattice and
other lattices can be similarly derived (see SM2 and SM3).

e With the novel perspective that Cy, Cy, C3 are built from shifted (block) com-
panion matrices, the Kronecker product structure of eigenvectors of Cy, Cs, Cs
is naturally inherited from the same structure of eigenvectors of a block com-
panion matrix. Moreover, we prove that these (block) companion matrices
are unitary and in the meantime prove that {C;,Cy : ¢,/ = 1,2,3} is a
set of commutative matrices. By Lemma 5.4, we uncover how Cs,C3 are
constructed hierarchically from integer powers of a basic unitary companion
matrix and that eigen-decompositions of {C},Cy : £,£' = 1,2,3} boil down
to the eigen-decomposition of this unitary companion matrix (see Sec.5).

e We show that C is unitarily similar to a block diagonal matrix consisting
of 3-by-3 skew-symmetric blocks, and base the analytic eigen-decomposition
of A = C*C on simple factorizations of these 3-by-3 matrices, by which the
orthonormal basis of the range space of A can be found explicitly (see Sec. 6).

e We confirm that the nullspace free method and the fast eigensolver developed
previously for the FCC and SC lattices can be extended to the triclinic lattice
and other Bravais lattices (see Sec. 7).

This paper is outlined as follows. In Sec.2 an orthogonal coordinate system
with which we actually work are built from non-orthogonal lattice translation vectors
aj, ag,ag. In Sec. 3 we reformulate the BC (1.2) within the cubic working cell. In Sec. 4
we discretize V x E into matrix-vector products CE, and discretize the MEP (1.3)
into a GEP AE = ABE with A\ = pow?, by eliminating H in (1.3). In Sec. 5 we prove
that Cq,Cy, (5 are commutative normal matrices and obtain their analytic eigen-
decomposition. In Sec. 6 we construct the factorization (I3 ® T)*C(I3 @ T) = U, I U}
and the analytic eigen-decomposition A = C*C = Q,.(T/ T',)Q%. In Sec. 7, the GEP is
transformed into a nullspace free standard eigenvalue problem (NFSEP) ATE' = \E.
For self-containedness, the fast eigensolver called FAME for the NFSEP is reviewed.
In Sec. 8 the efficiency of FAME are exemplified by some numerical results. In Sec.9
we conclude our present work.

Here we briefly introduce some notations commonly used in this work. A vector
in real 3D space, which is equivalent to its coordinate representation in an orthogonal
coordinate system, is marked in bold lower case. AT, A, A* denote the transpose,
the complex conjugate and the conjugate transpose of a matrix A, respectively. I,
denotes the identity matrix of dimension n € N and ey is the ¢-th column of I,,.
|| - || denotes the Euclidean norm. We define £(6) := exp (+1276). OABCD refers to
rectangular ABCD. For convenience, we will employ MATLAB® [6] language with
little explanation. For example, floor denotes the function of rounding to the nearest
integer towards —oo. Let vec(X) denote the vectorization operation of a matrix X
of any size, i.e., X(:) = vec(X). A @ B = blkdiag(A, B) means the direct sum of
matrices A, B. ® denotes the Kronecker product, two of whose basic properties [5]
are very useful,

(1.4) (ZT ®Y) vee(X) = vec(YX Z),
(1.5) (X@Y)(ZaW)=(XZ)a (YW),

with X, Y, Z, W being matrices of compatible sizes. Recall that A is a normal matrix,

This manuscript is for review purposes only.
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i.e., AA* = A*A if and only if A is unitarily similar to a diagonal matrix.

PROPOSITION 1.1. [7] If Ay and Ay are normal with A1 As = As Ay, then both
A1As and Ay + Ay are also normal.

PROPOSITION 1.2. [3] If A is a normal matriz with one eigenpair (X, v), then it
holds that A*v = \v. Furthermore, eigenspaces of a normal matriz corresponding to
distinct eigenvalues are orthogonal.

2. Lattice translation vectors, the physical cell and working cell. A
crystal structure can be regarded as a lattice structure plus a basis. At present,
millions of crystals are known, and each crystal has a different nature. Fortunately,
there are only 7 lattice systems and 14 Bravais lattices in 3D Euclidean space [1].
The so-called primitive unit cell is a fundamental domain under the translational
symmetry and contains just one lattice point [8]. The non-primitive unit cell, including
body-centered, face-centered and base-centered unit cell, is preferred to reflect more
complicated symmetry. Basic knowledge of the unit cell of all 7 lattice systems, 14
Bravais lattices can be found in [2].

In fact a 3D unit cell is a (slanted) parallelepiped formed by lattice translation
vectors aj,as and as, as illustrated in Figure 1. In the triclinic lattice there is no
restriction on the length of a;, as, ag nor on the angle between any two of them, if we
are able to solve the MEP (1.3) in the triclinic lattice, we can also cope with other
lattices in almost the same manner. Therefore we will focus on the triclinic lattice
in the main body of this work and present selective results for other lattices in SM3.
For convenience, we dub the unit cell of the triclinic lattice as 3D physical cell.

In that it is inconvenient to discretize MEP (1.3) in the 3D physical cell using
finite difference, we need to define a cuboid unit cell generated by new vectors a, b, c
which form an orthogonal basis of aj,as,a3. The general procedure to determine
a, b, c is as follows:

1. Pick out the vector ay in the set {a;, as, a3} that is the longest. (Here ¢ can
be 1 or 2 or 3.) Let a = a, with @ = [|a||. (If more than one are equally
longest, then either one can be chosen as a.) Let a; = a. The rest two vectors
in the set {a;,a,a3} are renamed to ag, as.

2. Set a, = a; — a(ay - a)/||al|?, a3 = a3 — a(a3 - a)/||a||?. Pick out the vector
ay in the set {az,as} that is the longer. (Here ¢ can be 2 or 3.) Let b = a,
with b = ||b||, and a; = ay. The other vector ay with ¢ # ¢ in {as,a3} is
renamed to as, and let a3 = ay.

3. Let c = a3 — b(az - b)/||b||?> with ¢ = ||c]].

Clearly, the resulting a, b, ¢ are mutually orthogonal, and b x a = a; x aj, ¢ -
(a x b) =az - (a; x az). On the other hand, by letting

(21) m :52'a/a2, M2 :53'a/a2, 13 :53'b/b2,

vectors ap, as, az can be expanded by normalized a, b, ¢ as follows:

_ L B _
o abecll® m  mmn3 — 12
[ai,ay,a3] = {7 3 ] b 0 1 —n3
@ el c] [0 0 1
ab c (a any  ans a el | a2 COS (3 a3 COS P2
(22) = |:, E, :| 0 b b’l73 = |: s E, :| 0 as sin ¢3 a3€2 y
@ cdlo o0 ¢ “ 0 0 azls
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Fic. 1. Illustration of the 3D physical cell and working cell of the triclinic lattice.

where a; := |[a;]|, ¢; is the angle between a; and a, 7,7,k =1,2,3,i # j #k,

o = (cos @1 — cos B3 cos () /sin gz, Lf3 = \/sin? gy — £3.

Especially, we always have a3|ls| < ag sin ¢3.

Remark 2.1. Conventionally, in the crystallography database a;,as, as are spec-
ified by their coordinates in the Cartesian orthogonal coordinate system which is, to
avoid confusion, named as the prior orthogonal coordinate system in our work. Given
such a 3-by-3 real matrix [a;, as, a3], we can call the subroutine such as the function
qr of MATLAB® for QR factorization with column pivoting to find the orthonormal
basis of aj, as, ag, which yields +a/a, £b/b, £c/c with the same a, b, ¢ defined above.

However, there is one important variation of the procedure above in other Bravais
lattices than the triclinic lattice. That is, if, for example, agla; and azlas but
a; [ as, then we always choose ¢ = a3z and a as the longer one in {a;,as}. The
reason to do so will be clear later on.

Identifying normalized a, b, ¢ as unit vectors of z-,y-,z-axes of an orthogonal coor-
dinate system, we will work mainly in the cuboid unit cell D = {za/a+yb/b+ zc/c €
R3:x € [0,a],y € [0,b],2 € [0,c]}, dubbed as the 3D working cell. To convey basic
techniques of our framework of modeling of 3D PCs, we just work on one specific case
where ¢, 3 < 7/2, o > 0, a3 cos Py > ag cos ¢z, in the main body of this work.

Remark 2.2. The orthogonal coordinate system with z-,y-,2-axes can be either
right-handed if as - (a3 x ag) > 0 or left-handed if az - (a; x az) < 0. Anyhow, in
our work the bottom surface of D is always the one through the origin, while the top
surface of D is always the one away from the origin. Our formulation in this work will
be largely independent of the orientation of the axes.

3. BC within the working cell. Hereafter, for simplicity, we assume a;, as, ag
are just a;, as,as. Viewed in the 3D physical cell spanned by aj, as, as, the BC (1.2)
is very clear and is naturally compatible with the periodicity of a PC along a;, as, as.
However, in the 3D working cell, the formulation of the BC (1.2) needs some effort.

For convenience, given v € R3, the translation operator 7Ty is defined as Ty (x) :=
x + v, for any x € R3. Clearly, Ty, 1v, = Tv, Tvy, = Ty T, -

Since a; = a, the BC (1.2) along the z-axis is trivial, i.e.,

(3.1) E(x) =¢(k- (x = Toa(x)) E(T-a(x)), x=(2,y,2) €D.

This manuscript is for review purposes only.
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Note that £(0) = exp(«2mf). However, the BC (1.2) along the y- and z-axes are
nontrivial. For derivations in this work, we only need to consider the relation between
E((z,y,c)) and E(T_c((z,y,¢))) with (x,y,¢) € D, and that between E((x,b,z))
and E(T_p((2,b,2))) with (z,b,2z) € D. Given x = (z,9,0) € D, we just think of
(22,¥2,0) as the image of x+c¢ (a point of the top surface of D) under 7_,,, as shown
in Figure 2(a), and a3 = az — c is the projection of az onto the zy-plane, then the
BC (1.2) along the z-axis could be

E(T-c((z,y,0))) = £ (k- ((2,9,0)) — (z2,92,0)) E((22,¥2,0))
(32) =< (k : ((z,y,O)) - T—as((x’y7c))) E(T—as(('rv y7c)))7

with (z,9,0) — T_a, ((z,y, ¢)) being integer multiples of a;, as.

In Figure 2(b), OOR1R2Rs is the bottom surface of D, while OR4R5RgR7 is the
image of the top surface of D under 7_,, and overlaps with patch I of the former.
In short, there should be four patches within [JOR;RsR3, namely, I, II, I, IV, and
these four patches, equlpped with different linear mappings 7o, 7_ al,T ai—ass T—ay
are mapped to four patches I H HI IV respectively, within JR4RsR¢R7. We refer
the reader to SM1 to see how to obtain the patches and the mapping in Figure 2(b).
Then we can establish the correct BC (1.2) within the bottom surface of D, which
specifies x9,ys in (3.2). Letting x = (z,y,0) € D, given the conditions specified in
Sec. 2, it holds that

E(X)v ifxel

~Jé(k-a)E(x —ai), if x e II

(33) B = ¢k (a1 +a2))E((x —a; —ap)), if x € III
§(k-az)E(x —ay), if x e IV.

In passing, considering that E(7a,(x)) = {(k - az) E(x), we can of course add a3 to
the argument of E on the right hand side of (3.3) with updated prefactor. Depending
on combinations of various as, as, @3, ¢2, f2, (3.3) could be quite different. In SM2,
we reformulate the BC (1.2) for altogether 16 cases, including (3.3).

As for the BC (1.2) along the y-axis, we observe that E(T_p((z,b,2))) with
(z,b,2) € D does not involve the influence of T,, we can just let z = 0 here for
simplicity. Letting x = (z,b,0) € D, we have the BC (1.2) along the y-axis for
different segments of RgRo shown in Figure 2(b):

_ (k- az) E(T-a,(x)), if x € RgRo
(3.4) (x) = {f(k (a2 — a1))E(Ta,-a, (X)), if x € R3Rs.

4. Matrix Representation of the Discretized Single-Curl. Let’s first dis-
cretize V x E in (1.3a) with finite-difference scheme, without worrying about (1.3b)
at the moment. Below we will use quantities in (2.2).

Given ni,ng,n3 € N, we can have a uniform grid along the x-,y-,z-axes of our 3D
working cell D, respectively, with constant grid spacing

0z =a/ny, 6, =0b/ng, 0,=c/ns,

respectively. Each component of the vector E(x) = [F;(x), Ea(x), E3(x)]" could be
sampled at different points in general. Hence we assume that Ey(x) is sampled at

(4.1) x(i, J, k) = %¢(0,0,0) + (i6z, joy, k0-),

This manuscript is for review purposes only.



247
248
249
250
251
252
253
254

255

259
260

261

SOLVING 3D MEP WITH 14 BRAVAIS LATTICES 7

(a) The action of T_a, on the top surface of D.

R3 Rs R,
a;

(1) 11

I 1V

R
Z1 5
(b) Correspondence between different patches of the bottom sur-
face of D and those of T_a;((x,y,c)).

F1G. 2. Tllustration of (3.3) between the bottom surface of D and T—a,y ((x,y,c)).

where x4(0, 0, 0) will be specified later in this section and £ =1,2,3, i =0,1,...,n1 —
1, 5=0,1,...,ne—1, k=0,1,...,n3 — 1. Unless otherwise stated, in this section
1,7, k always take on these values.

Given ¢, the three-way array FEy(x¢(:,:,:)) of number of elements n = ningns is
arranged in the column-major order, i.e., the first index varies fastest while the last
varies slowest. For convenience, Fy(x¢(:,:,:)), £ = 1,2, 3, are stored in a column vector
E = [E(:); E2(1); E5(2)]-

Part I. Discrete 9, FE,. Since the BC (3.1) is very similar to 1D case, using
matrix language, we recast

EZ(XE(i + laja k)) - Ee(Xg(i,j, k))

4.2 (=23
( ) (51 ) k) b
into Cy Fy(:), where
B Ky — I, _ 0 I, -1
(4.3) Cl_In3®In2®T, K, = £(k-ar) N
Part II. Discrete 9,E,. The BC (3.4) holds for continuous x, however, if we

want to recast

Eo(x(i,j+1,k)) — Ee(x0(i, 7, k))
Oy ’

(4.4) (=1,3,

This manuscript is for review purposes only.
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into a matrix-vector product, we need the discretized version of (3.4).

Although in Figure 3, with modulo operation defined in SM1, we have in principle
Rg = O mod ay, it is very rare that Rg coincides exactly with any of the grid point
in a given uniform grid within R3Rs. As an expediency to resolve this mismatch-
ing, we stipulate that the rightmost grid point within R3Rg be the substitute of Rg.
Putting it differently, when ¢3 < m/2, since the number of grid points in R3Rg is
my = floor ((az cos ¢3)/0.), then x4(mq,na, k) = x4(0,0,%k) mod as holds by force,
ignoring the discretization error.

In accordance with two cases in (3.4), Ey(x¢(:,n2,k)), a column vector of length
nq, is partitioned into 2 blocks, and the discretized BC (3.4) is

(4.5) Ey(x¢(:,n2,k)) = €(k - az) JoEy(x4(:,0, k),
(46) Jy = I (i 6(_1{ 'Oa1)1m1:| c Cmxn

Finally, (4.4) is recast into CoFEy(:), where

K2 - Inlng
6y

0 I’ﬂ271 ®In1

(4.7) Cy=1,,® , K= [{(k -ag)Ja 0

In passing, when ¢3 > /2, m; and Js are specified in SM2.
Part III. Discrete 0,F,. If we want to recast

El(xf(ivja k + 1)) — El(xf(ivja k))
0z
into a matrix-vector product, we need to know how Ey(x,(:,:,n3)) is related to Fy(x,(:

,:,0)) from the BC (3.3).
We have following observations about Figure 3,

(4.8) , 0=1,2,

e RgRg = a; — a3 cos ¢o, Rgﬁg) = a — (a3 cos ¢y — as cos ¢3),
L] R3R9 = a3€2, Rgo = a2 sin ¢3 — 04362.

m

Ry . _ Re R s Rs R:
II // * I
~ v 111
| / ag
== // R, R, R,
m 111 IV
I Y I II
i A a; Rs ap Ry
(a) Grid along edges of OR4RsReR7. (b) Grid along edges of JOR1R2Rs3.

Fic. 3. Illustration of uniform grid in the top and bottom surface of D.

Again, it is very rare that vertices of any patch in Figure 3 coincide exactly with any
of the grid point for a given uniform mesh in JOR;RoR3. Define

(4.9) mo = floor((as cos ¢2)/d,), ms =floor(asls/d,), ms=mg—m,

then along the x-axis RgRg contains nq — mo grid points and Rgf{5 contains ni — my
grid points, while along the y-axis RgRg contains mg grid points and RgO contains
ng — mg grid points.

This manuscript is for review purposes only.
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In accordance with Figure 3, matrices Fy(x¢(:,:,0)) and Ey(T_a,(x¢(:,:,n3))) of
size ny X ng are partitioned into four blocks,

B E E— E-
Bo(xo(:,,0 [ I IV} Eo(Tu (xo(caimg))) = |21 P

The size of each block becomes transparent in (4.10), (4.11), (4.12) below. Then the
discretized version of (3.3) is as follows:

E= | k.
(410) 1I _ [ 0 5( k a1)Im2} |:EI:| In27m37
Bi | ™ Lu-ma 0 Eqp
B ] 0 &(-k-a)ln,] [
4.11 111 :[ ! ”“} { IV] ~k-ay)ln,,
( ) Eﬁ/‘_ Inl—m4 0 EIII 5( 2) 3
Frv o Fy Ey E 0 I,
4.12 I\ [ I IVH ns ms]_
(4.12) [EIH Eqp} BT Bl L 0

Actually vec(Ey(x(:,:,0))) can be seen as the vertical concatenation of vec ([Ep; Eyp])
and vec ([E1y; Eypp) ), so can vec(Eg(T-a, (%4(:,:,n3))))-
Finally, with (4.10), (4.11), (4.12), (1.4), we can recast (4.8) into C3Ey(:), where

_ K3 — In o 0 I7l3—1 Y Inz ®I7l1
(4.13) C3=——1— Ks5= |:§(k . as)j3 0

Can
5 ] < ’

¢(—k-ay)l, ® [I 0 &(=k-ai)lm,

ny—maqg 0

J3z = X
3 Loy @ L (i &(-k- aé) ]
R
(18, %5+ on)
£(—k ag)Im3®L 0 &k aé) ]
(4.14) = 0 n1=ma
&(—k-ap)l,
Inyems ® [Im-mz (1) }

Different expression of J3 can be found in SM2 for different reformulated BC (1.2).
Particularly, if ¢ = ag, Js is simplified to I, p,-

Part IV. Discrete 0, Hy, 0y Hy,0.H,. In order to preserve the Hermiticity of the
operator on the left hand side of the MEP (1.3) at the discrete level, the single-curl
operator in (1.1b) should be discretized slightly differently. We will not detail the
derivations, but just present the results. Specifically, the discretized version of (3.1),
(3.3) and (3.4) can be immediately written down verbatim in terms of H (x) in place
of E(x), and we assume that H,(x) is sampled at

(415) yf(iaja k) = y[(OaO’O) + (Zérajéyakéz)a {= 132537
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where y,(0,0,0) will be specified later in this section. Then we can recast
HZ(Y@(i7j7 k)) — Hé(yf(l — 1aja k))

(4.16) 5 , (=23,

(417) Hf(yf(luya k)) 76[{5(}’5(7’7.771“1{:))7 (= 1,3,
Y

(4.18) Ho(ye(i, j, k)) —;Ie(ye(w, =D 1o

into —CTHy(:), —C3 Hy(:) and —C5H,(:), respectively.

Part V. Yee’s scheme and discretized MEP (1.3). To return to the famous
Yee’s scheme, x,(0,0,0), y¢(0,0,0) in (4.1), (4.15), respectively, are set to

x1(0,0,0) = (6,/2,0,0), x2(0,0,0) = (0,5,/2,0), x5(0,0,0) = (0,0,6./2),

Y1 (07 0, O) = (07 6y’ 62)/27 y2(07 0, 0) = (6:1?7 0, 62)/27 y3(07 0, O) = (6307 §y7 O)/2'
In addition, since £(x) is assumed to be diagonal, then with x, defined in (4.1) we
can define the following positive diagonal matrix B,

B = diag([vec(e(x1(:,:,:))); vec(e(xa(s, 5, :))); vee(e(xs(:, 1, :))])-

With Yee’s staggered grid x,(:,:,:), ye(:,:,:) specified above, using (4.2), (4.4),
(4.8) and (4.16), (4.17), (4.18), it can be proved that the divergence free condition
(1.3b) is automatically satisfied, hence, (1.3b) will not show up explicitly in the fol-
lowing discretized MEP (1.3):

(4.19) AE = \BE, \=pow?, A=C*C,
0 —C3 O
(4.20) C=| Cs (|-
—Cy O 0

This is the superiority of Yee’s scheme.

5. Eigen-decomposition of partial derivative operators. In order to deter-
mine the nullspace and range space of A in (4.19) analytically, following [21], we need
eigen-decompositions of K7, Ko, K3. The derivations which closely follow [21, 22] can
certainly be developed in our case, albeit much lengthy and boring. Another reason
that makes us turn away from derivations in [21, 22] is that they can not explain why
the Kronecker product structure shows up in Ksy’s and Kj3’s eigenvectors.

It has been proved in the case of the FCC lattice [21] that Cy,Cy,C5 defined
in Sec.3 commute with each other and are simultaneously diagonalized by the same
unitary matrix. This reminds us that C, Cs, C'5 in our case are probably commutative
normal matrices, too. Below we will prove this guess, but not by tedious verification
of C;Cy = CCy, £ =1,2,3.

In this section, we will partially uncover the underlying cause of the two facts
that eigenvectors of K5, K3 admit of Kronecker product and that Cy,Cy, C3 are com-
mutative normal matrices, which are both related to (block) companion matrices.

LEMMA 5.1. Given q¢ € N, let p(t) = Z?_lpjtj + t9 be a q-th degree complex
monic polynomial, then p(\) = det(Al, — Cp(p)) with

0 1 o 0
Cr(p) = 0 0 ;
—Po —P1 —DPg-1
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and the eigenvector of Cr(p) corresponding to the eigenvalue \; is [1, Aj, - - ,/\?_1]T
j=1,2,---,q. Moreover, if py =--- =pg_1 =0, |po| =1, then Cr(p)*Cr(p) = I,.

Since Lemma 5.1 can be directly verified, we skip its proof. Letting p(t) =
t" — ¢(k-ap) in Lemma 5.1, we have the following theorem.

THEOREM 5.2 ([21]). Kj in (4.3) is unitary and satisfies K1 X; = £(02)€(i/n1) X
where 0, =k-a/ny =k-a;/ny, i=1,...,nq,

1) Xi= [Lf(ea)s <Z) e € — 1)) ((’“nll”ﬂ "

ni

LEMMA 5.3 ([15]). Given g,m € N, let M(X\) = Zg;é N M; + NI, with M; €
Ccmxm j=0,1,---,q — 1, then det M(\) = det(A g — Cer(M)) with

0 I, - 0
Cpp(M) = : : - :
0 0 I,
My —M; - —M,
Particularly, if v € C™ and Ao € C satisfy M(Xo)v = 0, then the eigenvector of
Cpr(M) corresponding to eigenvalue \g is [1, g, A, - - - ,Ag_l]T ® v. Moreover, if
My = =My_1 =0, M{My = I,,, then Cpr(M)*Cpr(M) = I5.

Now in Lemma 5.3 letting M(X) = \"21,, — &(k - ag)Ja, we see that Cppr(M) is
just Ko in (4.7) and eigenpairs of Ko are made from those of Jy in (4.6). Specifically,
if (vp,v) is an eigenpair of Jy, then v = (£(k - ag)rp)/"2 is an eigenvalue of K, with
the corresponding eigenvector [1,v,v2,--- 1"~ !]T @ v, where one of ny branches of
z'/72 has been chosen. Similarly, in Lemma 5.3 letting M()\) = \"31,, ., —€(k-a3)Js,
we see that eigenpairs of K3 in (4.13) are made from those of J5 in (4.14). Therefore,
the emergence of the Kronecker product structure in eigenvectors of K5, K3 becomes
self-evident and below we just concern about eigen-decompositions of Jo and Js.

Lemma 5.4 below is the crucial apparatus in this section.

LEMMA 5.4. Given 0 #60 € R and ¢1,q2 € N and G € C1*% | for any q € Ind =
{1,2,...,q2}, we have

(5.2) Wai4:(G, 0, q) {5 Laa- q0®l ] (War42(G, 0, .

Proof. When ¢ = 1, (5.2) is obviously true. Suppose (5.2) is true when 1 < ¢ =
T < q2, Qe Wy (G, 0,7) = (W, 4,(G,0,1))", then by direct multiplication,

0 Ty ro1® 1y,
QIq2(G 0,7) qlqz(G 0,1) = |:€(9)Ir+1 Ye e 01 g

W(I1¢12 (G’ 0,7+ 1) = (quz (Gv 0, 1))T+1 :

By induction, (5.2) holds for all ¢ € Ind. d

COROLLARY 5.5. With K1, Jo, 04, X; defined in (4.3), (4.6) and Theorem 5.2,
respectively, we have

Jo=K[™, J3Jy=1I,,,
and the eigenpairs of Jo are (§(—m10.)€(—im1/n1), X;), fori=1,...,n
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Proof. Let ¢ = 1,G = 1,92 = n1, g = m1,0 = k-a; in Lemma 5.4, then
Waa.(G,0,1) = K1, Wy,4,(G,0,m1) = J5 = K{"'. Hence by Theorem 5.2, J, =
(K{™)" = K™, J3Jo = I, and JoX; = (§(—0a)&(—i/m))"™" Xi. U

Then, as mentioned above, by Lemma 5.3, we have the following theorem.
THEOREM 5.6. Ky in (4.7) is unitary. With X; defined in (5.1), Ko satisfies
KZ(Y;j ® Xl) = g(gb,l)f(J/nQ)(Y;J ® XZ)? 1= ]-7 RN ] = ]-7 s, N,

where

1 ) 1 ;
(5.3a) Obi = — (k~b - Zml) =— {k~ (ag - m1a1> - Zml] )

n2 ni n2 i ni

(5.3) Vi = [L&(eb,ng (Tf) e €2 — V)€ (W)]T

2

Remark 5.7. We have the approximation 173 = m/ny in (2.1), then b = as —
a;mq/ny in (5.3a) holds ignoring the discretization error.

LEMMA 5.8. With Ky, Ks, J3 in (4.3), (4.7), (4.14), respectively, and ma, m3 in
(4.9), it holds that

Ty = K3 (L, @ K1) 7™ = (L, @ K1) "2 K3 ™, J3J3 = Ly,

Proof. Let ¢ = n1, @@ = na, ¢ =mg, 0 =k -as, G = Jy in Lemma 5.4, with Jo
in (4.6), then Wy, 4,(G,0,1) = Ky and Wy, 4,(G,0,q) = K3**. By Corollary 5.5,

T — 0 Lny—ms ® Ki"z
37 |e(k-ag)l,, ® K™ 0
O I — ®I m m m
N |:§(k cag)ly, ® Jo " m(3) "1] (In, ® Ki"*) = K3 (In, ® K1)
m3
0 Lyy—my ® 1 m
— ma2 n2—ms3 ny | __ 2 ms
—(In2 ®K1 ) |:§(k'32)1m3®<]2 0 ] _(In2 ®K1) Kz .
Hence,

Iy = {K3" (In, ® K1)™*} = (In, ® K1) "™ Ky, J3J3 = Lnn,,
Jy3 ={(In, @ K1) K3} = Ky ™ (I, @ K1)~ ™. O

COROLLARY 5.9. It holds that Ky (I,, ® K1) = (I, ® K1) Ko. Hence, CyCy =
CoCy, C;Cp = CpCy, 0,0 =1,2,3, ¢ # U', where C1,Ca,C3 are defined in (4.3),
(4.7), (4.13), respectively.

Proof. Without loss of generality, let m3 = 1 = mg in Lemma 5.8, then Ks([,,®
K1) = (In, ® K1) Ko, which immediately implies C;Cy = C5C}, considering (1.5).
Also (I, ® K1) Kj = K (I, ® K1) holds, which immediately implies C1C5 = C5C4.
Yet, by Lemma 5.8, J3 commutes with Ky, I,,, ® K1, K3, I,, ® K{, which implies
0203 == 0302, 0103 == C3C17 0503 = 0305, CTC;; = CgCik, considering (15) 0

THEOREM 5.10. K3 in (4.13) is unitary. With X; and Y;; defined in (5.1) and
(5.3b), respectively, K3 satisfies

K3(Ziji @ Yij ® Xi) = §(0c,iz)§(k/n3)(Zijr @ Yij @ Xi),
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where
1
) o= [ Ty (MM ),
ns n2 ny N2 n
k (ns — DE\1"
Gab) = |LECes)e () ol - 1806 ,
n3 ng
(5.4c) c=ay— May (mm - m)
no ny N9 ni1
fOTi: 1, ny, .7: 1.+, ng, k= 1.+ n3.
Proof. By Lemma 5.8 and Lemma 5.3, we have K5Ks = I,. Given 4,7, by
Theorem 5.6, Ky has an eigenvector v;; = Y;; ® X;, then by (1.5) and Theorem 5.2,

(€(62)&(i/n1), v45) is an eigenpair of I,,, ® K. By Lemma 5.8, v;; is also an eigenvector
of {(k - a3)Js, and the corresponding eigenvalue of £(k - ag)Js is

60 a0 () € (<22 ) € (mata) € (<772 ) = elnates),
2 n

1

where 0 ;; is defined in (5.4a). Then by Lemma 5.3, the ns-th root of £(nsfe,;),
which equals £(0c.;)¢(k/ns) with k& € {1,---,n3}, is an eigenvalue of K3, and the
corresponding eigenvector of K3 is just (Z;j; ® Yi; ® X;) with Z;j; in (5.4b). 0

Remark 5.11. We have approximations 03 = mgs/na, 12 = ma/n1, 71 = my/ny in
(2.1), then the equality in (5.4c) holds ignoring the discretization error.

COROLLARY 5.12. With Cy, Co, C3 defined in (4.3), (4.7), (4.13), respectively, we
have CyC; = C3Cy, £ =1,2,3.

Proof. By Theorems 5.2, 5.6, 5.10, K7, Ko, K3 are normal and commute with iden-
tity matrices with compatible sizes, hence Cy, Co, Cs are normal by Proposition 1.1.0

We summarize key results in this section for a nonzero k in (1.2) as follows:
(5.5) C/T=TAy, C;T=TA, (=1,2,3,
where
Ay =An, @I, ®In,, Ay, =diag (£(6a)E([1:m1]" /ny) — 1) /65,
Ay = &7 (Niny © Iny),  Niny, = diag (£(0b.0)E([1: na] " /ng) — 1) /6y,
As = B2 (721 Nijny ) o Aijng = diag (§(0e,ii)([1: ns] " /) — 1) /6,

and
(56) T(]. tn, k + (] - 1)?7,3 + (Z - 1)n2n3) = (lek & Y;'j & XZ)/\/E,
fori=1,--- m, j=1,--- ,n9, k=1,--- ;n3. By Theorem 5.10, all eigenvalues of

K3 are distinct, therefore, by Proposition 1.2, T defined in (5.6) is unitary.

Remark 5.13. In this work, eigen-decompositions in (5.5) are an immediate con-
sequence of the fact that {C}, Cy : £,¢' = 1,2,3} is a set of commutative matrices.
This fact is compatible with the common sense that partial derivatives of a smooth
field along any two of a-,y-,z-axes can be exchanged. In [14, 21], eigen-decompositions
(5.5) have been derived for the SC and FCC lattices only. It becomes clear now that
the formalism is the same for all Bravais lattices, though 6,, 0 ; and 0. ;; depend on
the specific lattice.
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6. Range space of C and eigen-decomposition of A. On the basis of the
results in Sec. 5, we proceed to determine the range space and eigen-decomposition of
A = C*C analytically, without forming C*C explicitly.

From (4.20) and (5.5), we have

6.1) C=UI30T)A(Is®T)",

0 —T*C3T T*C.T 0 —-As; A,
(6.2) A= | T°C5T 0 =T*C\T| = | A3 0 —A|=-AT.
-T*C,T T*CWT 0 Ay A 0

By doing a perfect shuffle A can be further transformed to a block diagonal matrix,

(6.3) P = le1,€nt1,€2n41,€2,€n42,€2n12, " * ; En, Ean, €3] € RIP
(6.4) PTAP=a} Ly, L;=—L;] €C¥3,
This means we can just deal with each block L, separately. Instead of the singular

value decomposition of Ly, the unitary congruence transformation of L, preserves the
skew-symmetric structure and is very helpful in finding the range space of L,.

THEOREM 6.1. Given a nonzero g = [g1,g2,93]" € C2, it holds that

0 g ¢] 00 0
—92 g1 0 0 8 0

where V' is a Householder matriz satisfying V*g = Be; and VV* = I3.
In Theorem 6.1, V'(:,1) is the nullspace of L, hence can be pruned. Then

0 -1

L= ;(6]?2)‘7*, where I'y = L 0

} LV =V([2,3) e C¥>?2 V*V =1,.
Similarly, for each L, = —L; € C3*3 in (6.4), we have

(6.5) Lo = VBTV, ViVe= I,

where [y, ‘7@ are defined in terms of entries of L, as in Theorem 6.1.
Consequently, A is unitarily congruent to a real quasi-diagonal skew-symmetric
matrix and eigen-decomposition of A can be derived as follows.

THEOREM 6.2. Given a nonzero k in (1.2), from (4.19), (4.20) and (6.1)—(6.5),
we have

(6.6) (LRT)C(I3T)=UT,U, A=CC=Q,\QF,
where

F'r - @?:1(651_‘2) c R2n><2n’ A'r = EB?:l(ﬂZIQ) c RQHXQH,
V, : = blkdiag (1, V2, -+ , V) € €2,
U.: =PV, Q,:=I30T)PV, with UU, = I, = Q*Q,.
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Proof. From (6.1), (6.4) and (6.5), we simply have
(oT)CI3®T)=A=PV,IV:P" =U,T,U*.
It is easily seen from (6.5) that L; L, = Vil ?IQ)‘//\ZF. Then

= (I3 ® T)P)blkdiag(L; L1, L5 Ly, - , Ly, Ly) (P (I3 ® T))
= (T)PV.A2VIPT (I3 2T)" = Q,.A2Q". 0

Remark 6.3. When k vanishes, Q,. defined in Theorem 6.2 does not strictly span
the range space of A and (7.1) below is not strictly NFSEP. But in practice, this makes
little difference on the efficacy and efficiency of our numerical method discussed in
next section. Therefore, we will not discuss this case specifically.

7. Eigensolver for NFSEP (7.1). Eventually, all previous derivations show
that the nullspace free method proposed in [21] works for all Bravais lattices. With
(6.6) in Theorem 6.2, the GEP (4.19) AE = ABE is transformed into the NFSEP:

(7.1) AE = \E,

where R
A, = ArQﬁBle,«AT =A">0 and E = A;leBE.

Now the nullspace of GEP (4.19) has been completely deflated, therefore poses no
threat to the desired solution of GEP (4.19).

To calculate a couple of smallest positive eigenvalues and associated eigenvec-
tors of (7.1), a fast eigensolver was proposed in [21] originally for the SC and FCC
lattices, and can also be similarly applied to all Bravais lattices. In brief, the in-
vert Lanczos method is employed to calculate smallest few positive eigenvalues and
associated eigenvectors of A,. The conjugate gradient (CG) method without pre-
conditioner is employed to solve the linear system in each step of the invert Lanczos
process, where the condition number of the coefficient matrix Q*B~1Q,. is bounded by
that of B~1[21]. In the case of positive diagonal B with moderate condition number,
the CG method turns out very appealing.

In the CG method, multiplying any column vector by Q*B~1Q, is essentially
reduced to T'q and T*p except some diagonal scalings, where ¢ and p are some inter-
mediate vectors. Fortunately, we discover that the most expensive operations T'q and
T*p can be efficiently computed via Algorithm 1 and Algorithm 2 in [21], respectively,
with slight modifications. In a nutshell, these two algorithms are just wrappers for
the backward and forward FFTs, respectively, harnessing (1.4).

A preliminary MATLAB® implementation of our eigensolver has been devel-
oped into a software package called FAME [4], which stands for Fast Algorithm for
Maxwell’s Equations. The advanced functionality of FAME and other auxiliary com-
ponents of FAME such as graphical user interface are still under development.

8. Numerical Experiments. To demonstrate the accuracy and efficiency of
our framework, the band structure of the double gyroid PC [29] in the Body-Centered
Cubic (BCC) lattice is calculated using FAME in MATLAB'Y R2017b environment.
Key steps in our eigensolver are implemented calling functions eigs, pcg, fft and ifft
of MATLAB®. mn our calculation, the tolerance for convergence of eigs and pcg
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a

3
(a) The 3D physical cell of the BCC  (b) The Brillouin zone and its vertices
lattice and double gyroid structure. of the BCC lattice.

Fic. 4. Illustration of the PC in the BCC lattice and its Brillouin zone

is set to 10712 and 107'3, respectively. All computations are performed on an Intel
(R) Xeon (R) E5-2643 3.30GHz processor with 96 GB RAM in 64-bit IEEE double
precision arithmetic.

In the prior orthogonal coordinate system, coordinates of lattice translation vec-
tors a, as, a3z of the BCC lattice are

a; =al[-1;1;1] /2, as = a[l;-1;1] /2, ag = a[l;1; —1] /2,

where @ is the lattice constant. Reciprocal lattice vectors [by, ba, bs] are defined by
27[ay, ag, a3]*T. The coordinates of the vertices I', H, P, N, H' of the Brillouin zone
(see Figure 4(b)) with respect to the basis by, bs, bs are

1 11 111 1 , 111
P_[07070]7H_ |:27_2a2:|,P_ |:474a4:|7N_ |:07270:|7H - |:_272a2:|

In the prior orthogonal coordinate system, let r = [2;3'; 2’]. The double gyroid
region in Figure 4(a) can be described by the set DG := {r € R?®| f(r) > 1.1} U
{r € R®| f(-r) > 1.1}, where f(r) = sin(2n[a’,y’,2']/a)cos(27[y’; 2';2']/a). For
convenience, we set a = 1, e(r € DG) = 16, e(r ¢ DG) = 1. Ten smallest positive
eigenvalues and associated eigenvectors of the NFSEP (7.1) are computed.

The band structure in Figure 5(a) does not show any discernible discrepancy
with the one in [29], which partially evidences the accuracy of our method. Even the
dimension of the NFSEP (7.1) is as large as 3, 456, 000, it takes at most 7 x 10® seconds
to finish the task at each k-point as shown in Figure 5(b) (1), which is acceptable in
the case of serial implementation. More detailedly, in Figure 5(b) (2) the number of
iterations in eigs versus k is plotted, where we can see that the invert Lanczos process
converges in 60 to 170 steps for the ten target eigenpairs given k. In Figure 5(b) (3),
the number of iterations in pcg without preconditioner versus k is plotted, where on
average it takes 34 to 42 iterations to solve the linear system in one step of the invert
Lanczos process. The overall efficiency of our eigensolver is impressive.

9. Conclusions. In a word, the major contribution we have made in the present
work is the establishment of a complete and unified framework to solve the Maxwell
Eigenvalue Problem for 3D isotropic photonic crystals in all 14 Bravais lattices. It is
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time(lO3 sec.)

T

frequency(w / (27 a))

H r e H N T H P N H r e H N T H P N

Wave Vector Wave Vector
(a) w = /Ao versus k (b) The number of iterations and wall clock
time

F1G. 5. (a) The band structure of the double gyroid PC. (b)(1) The average number of iterations
in peg without preconditioner. (b)(2) The number of iterations in eigs. (b)(8) The wall clock time
spent on ten target eigenvalues.

highlighted that our FAME is remarkably efficient. Compared with O(n?) of other
methods, the overall computational complexity of ours is O(nlogn), thanks to the
feasibility of FFT algorithm in our framework, which is actually rooted in the eigen-
decomposition of discrete partial derivative operators Cy, Cs, C3 including the refor-
mulated Bloch condition. Particularly, the novel discovery of the relations among
unitary (block) companion matrices Ky, Jo, K3, J3 (see Corollary 5.5, Lemma 5.8)
goes hand in hand with the hierarchical structure of the block companion matrices
K5, K3 (see Lemma 5.3), which plays a central role in deriving important eigen-
decompositions of C1, Cy, C5. With these apparatus, the whole process of derivations
turns out uncluttered and reader-friendly. On the other hand, the fast convergence
of our eigensolver is guaranteed by the novel nullspace free method that thoroughly
removes the considerable nullspace of the discrete double-curl operator A.

Extension of our present framework to 3D anisotropic photonic crystals is under
investigation. Details of our package FAME and test of FAME in the high performance
computing environment will be reported in near future.
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SM1. Derivation of Figure 2(b) and BC (3.3). It is best to visualize the in-
vestigation starting from Figure SM1(a), where we have ¢, ¢3 < 7/2, €3 > 0, a3 cos ¢o
> ag cos ¢3. Results of other possibilities will be discussed in SM2.

In Figure SM1(a), let DOR;R2R3 be the bottom surface of D, and OR4R5R6R7
be the image of the top surface of D under 7_,,, which contains the origin in this
case. We naturally have the 2D oblique coordinate system with a;-,as-axes. With
slight abuse of notation, LLILIII,IV denote four patches of the DJR4R5R¢R7, located
in the first, second, third, fourth quadrant, respectively, of this oblique coordinate
system. Our goal is to map OR4R5RgR7 to DOR;RoR3, respecting the periodicity
along aj, as.

We have the 2D physical cell generated by ajp, as, i.e., the set {aa; + fas : «, f€
[0,1)}, and its periodic images under T,,, Ta, which fill up the whole plane, i.e., the
set {aa; + Bas : «, 8 € R}. Due to the periodicity, it is best to narrow our attention
to the 2D physical cell. The rule is that whenever a point is outside the 2D physical
cell, i.e., a, 8 ¢ [0,1), we evaluate its image within the 2D physical cell under the
modulo operation

aa; + fag = (a — floor(w)) a; + (B8 — floor(8)) az mod aj,as.

For example, with respect to the nonorthogonal basis a;, as coordinates of points in
patch IIT satisfy «, 8 € [—1,0), then due to

aa; + fag = (1 + a)a; + (1 + B)ag = Ta, Ta, (@@ + faz) mod ay, a,

patch IIT is mapped to its counterpart in the 2D physical cell shown in Figure SM1(b).
Other patches are similarly relocated.

As shown in Figure SM1(c), it is easy to map the 2D physical cell to JOR;R2R3,
which is realized if triangle €25 in the 2D physical cell is mapped to its counterpart in
the second quadrant.

Finally in Figure SM1(d), by composition of operations in Figure SM1(b) and
Figure Sl\[l(L), DR4R5R6R7 is mapped to DOR1R2R3.

In summary, there should be four patches within JOR;RoR3, namely, (IIN Q) U
LIINQ, 1IN, (IIINQ2) UIV. The linear mapping of each patch to OR4R5R¢R7 is
To, T—ays T—a;—ay, T—a,, respectively, comparing Figure SM1(a) with Figure SM1(d).
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Furthermore, comparing Figure SM1(d) and Figure 2(b) we identify four patches
Figure SM1(d) with four patches within DOR;R2R3 in Figure 2(b), namely
e IIN)UI—=I IINQ; —II,
o IIINQ; — I, (1IN Q) UIV 5 IV.

SM2. J; and J3 in the triclinic lattice. Recall that a;, as, a3 are assumed to
be a;,as, a3 and that agL is the projection of az onto the xy-plane in the orthogonal
coordinate system with z-,y-,z-axes. The four quadrants in the zy-plane partitioned
by x-,y-axes are denoted by J,737,337, 3. As illustrated in Figure SM2, SM3, SM4
and SM5, we classify the triclinic lattice into four categories according to the quad-
rant in which a3 is located, and further divide each category into four subcategories
according to the quadrant in which as is located and the first coordinates of a;, as, as,
i.e., a1(1),a2(1),a3(1). We will reformulate the BC (1.2) for each subcategory.

The image of the top surface of D under 7_,, is partitioned into I H IH IV
while the bottom surface of I is accordingly partitioned into I, II, III, IV. It is clear
that there is always one patch in the former which overlaps with another patch in the
latter and is associated with the identity mapping 7y. Following the same reasoning
in SM1, we present the results as follows. Let x = (z,y,0) € D be the point in the
bottom surface of D, and recall that £(0) := exp(:276).

e Case (1-i): a3 €7, as €7, ax(1) < az(1),

E(x), if x €1

~Jé(k-a)E(x —ai), ifxell
(SM2.1) Bx) = ék-(a;+a2)E(x—a; —ap), ifxelll
¢(k-ag)E(x — ag), if x e IV.

e Case (1-ii): a3 €7, ay €7, ax(1) > az(1),

E(x), ifxel

~Jé(k-a)E(x —ai), if x €11

(5M2:2) BG) =1 ek an) B(x — a), if x € 111
ék-(—a; +a))E(x+a; —ay), ifxelV.

e Case (1-iii): a3 € J, a € 37, —aq(1) < a;(1) —as(1),

E(x), itxel

_Jék-a)E(x —an), itxell
(SM2:3) B3 =\ ek (ay + a0) E(x —ay — ), if x € ITI
é(k-az)E(x — ag), if x e IV.

e Case (1-iv): a3 € 7, ap € 37, —as(1) > a;(1) — az(1),

E(x), if x €1
¢k-a))E(x—ay), if x eIl
(k- (2a; +ag))E(x —2a; —ay), ifxelll
¢k-(a; +a2))E(x—a; —ag), ifx eIV.

(SM2.4) E(x) =



SUPPLEMENTARY MATERIALS: SOLVING 3D MEP WITH 14 BRAVAIS LATTICESSM3

ay (z — axis)

R4 R5

(a) OR4R5R6R7 is partitioned into 4 patches by aj-,as-axes.

A

y — axis

az

IIT

(o]

a;(x — axis)
(b) All 4 patches are relocated to the first quadrant.

A
y-axis
Rs Ry R,

N 2y
9

o Ry
aj (x-axis)
(¢) The 2D physical cell is mapped to OOR;1R2R3 if triangle Q2 is relocated to
triangle ORgR3.

T y — axis R,

ai(x —axis) Ry
(d) OR4RsReR7 is finally mapped to JOR1R2R3 if IIN Qg and IIIN Qg are
relocated to the second quadrant.

Fic. SM1. Derivation of the BC (3.3) along the z-axis.



SM4

R Rs Ry R
v 111
R Rio Re
IT (1) I
o Ry .
TR
R4 -
(a) case (1-i)
a, Rs Ry, Rg 2
1AY 111
Ry Rio . Rg
11 (1) II
5 Ry a1> R,
IO IV
R4'”l( R

e Case (2-i): a3 € 37, az € J, ax(1) < a;(1) +az(1),

(SM2.5)

e Case (2-ii): a3 € 77, az € J, ax(1) > a;(1) + asz(1),

(SM2.6)

(c) case (1-iii)

E(x)

E(x)
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&(=k-a)E(x + ay),

E(x),

(k- as)E(x —a),

&(—k-a))E(x+a;),

E(x),
§(k

(=
Ek- (=

e Case (2-iii): a3 € 37, ap € 77, —ay(1) < —az(1),

(SM2.7)

E(x)

{(-k-a)E(x +a),

E(x),

(k- az)E(x — ay),

Fic. SM2. Four subcategories of the first category where aé' S

R Rg R,
v 111
R Rio - Rg
i @M u
o Ry » R1
111 v
R R;
(b) case (1-ii)
as R;3 Rg Ru R,
IV 11
R6
Ry Rio ar
I ) 11
Ry
& [e) Ry ap
Ry R;
(d) case (1-iv)
ifxel
ifxell
if x € I11
ék-(—a; +a))E(x+a; —ay), ifxelV.
ifxel
ifx eIl
aj +a2))E(x+a1 —ag), if x € II1
2a; +as))E(x + 2a; —ay), ifxelV.
ifxel
if x e II
if x e II1
¢k-(—a; +a2))E(x+a; —ay), ifxelV.
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R Rg Ry R
IV I1I
ay Rio R, Re
I II(11) 1
Ry » R1
o ay
III 3%
Ry Rs
(a) case (2-1)
R Ri Rs R,
1A% 111
ay Rio ® Re
I II(I1) 1
Ry - R1
[0 ap
III 13%
Rs

R,
(c) case (2-iii)

az

R. R Ry R,
IV 11
Ry Re
Rr
I II(II) 1
Ry 1381
o a
111 IV
Ry Rs
(b) case (2-ii)
R Ry R 2
IV I1I
Rio Re
R7
I (I I
Ry o Ri
™. __ o
R 1 ] 1A%
. .

R,
(d) case (2-iv)

F1a. SM3. Four subcategories of the second category where aé [SAR

e Case (2-iv): a3 €77, ap € 37, —ay(1) > —a3(1),

&(-k-a))E(x+ay),

E(x),

(SM2.8) E(x) =

e Case (3-i): a3 € 337, ay € J, az(1) < —az(1),

§(-k-
(SM2.9) E(x) = 5(1;'
k-

E(x
&(-

e Case (3-ii): ag € 337, ay € 7, as(1) > —az(1),

—k-a))E(x+ ay),

az
ay

)E(X + al)a

(k- (ag +ag))E(x —a; —ag),
{(k-az)E(x — az),

(a1 +a2))E(x+ a1 + az),
)E(X + a2)a

&(
{(k- (a1 —az))E(x — a1 +az),

(SM2.10) E(x) =

E(x),

&(=k-a;)E(x+ay),

ifxel

if x eIl
if x € I1I
if x e IV.

ifxel

ifxell
if x € I11
if x eIV.

ifxel

ifx ell
if x e III
ifx eIV.
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Rr7 Re
Rs Rg R II R I
IV | IIIII) 1V
Rio Ry Rs
I I
0 Ry aTRl
(a) case (3-1)
R Re
R3 Ry I Rs I
ay Ro
IV | III(II) IV
Rio Ry Rs
-1 I
5 R, rhe

(c) case (3-iii)

R~ 6
R Ry II Rs I
2y R
IV | IIIIIO) IV
Rio Ry Rs
I g 11 y
(b) case (3-ii)
Ry
Rs; Rsg Ry I1 ‘ I
| B
IV | HOIIO) IV
Rio R4
T o,
(0] R.Q a1>‘
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(d) case (3-iv)

Fic. SM4. Four subcategories of the third category where aé' € J37.

e Case (3-iii): a3 € 337, ap € 37, —aq(1) < a;(1) + a3(1),

E(-k-(a; +a2))E(x+a; +ag), ifxel
~k-a))E if II
(SM2.11)  E(x) = §(-k-az)B(x + ), hxe
E(x), if x € TIT
£(-k-a;)E(x+ay), if x e IV.
e Case (3-iv): a3 € 337, ap € 37, —ay(1) > a;(1) + az(1),
&(=k-(2a; +a))E(x+2a; +ay), ifxel
(SM212)  E(x) = ke (anta)Blxtarta),  ifxell
E(x), if x € 111
¢(-k-a))E(x+ay), if x e IV.
o Case (4-i): a3 € JU, ay € 7, ax(1) < as(1) — a3(1),
{(—k-ag)E(x + ag), ifxel
k-(a; — E(x — if 11
(SM2.13) Bx) = | (k@ —a))Blx—ar+ag), ifxe
Ek-a)E(x—ap), if x e I11
E(x), if x € IV.
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Ry R R~ Rg
iy RN N 1 noon o
111 IV(IV)  III I11 IVIV) III
Rig Rs Ry Rs
R4=\_‘ R4“~~\
I II I II
’ » R1 Ro IR,
(o) Ry ay a
(a) case (Z—i) (b) case (Z:—iii)
Ry Rg Rr Rg
11 1 11 I
Rg Ry  a, Rg R R,
az R Ri1 R
1 IvVAv) III 1 Ivav) I
Ry~ Rio Rs Ryl Rio Rs
: I IT 1 11
- » Ry E Ry » R
[0) Ry a; o ax

(c) case (4-iii)

(d) case (4-iv)

Fic. SMb5. Four subcategories of the fourth category where aé' € J93.

o Case (4-ii): a3 € JU, ap € J, as(1) > a; (1) — az(1),

(k- (a; —a2))E(x —aj + ay),
(k- (2a; —ag))E(x — 2a; + ag),

(SM2.14)  E(x)

g(k . al)E
E(x),

(X - 31)7

o Case (4-iii): a3 € 30, ay € 37, —as(1) < az(1),

(k- az)E(x+ ag),
)&k (a1 —az)) E(x — a; + a),
(SM2.15) E(x) = Sk o) Bl — ),
E(x),
e Case (4-iv): a3 € JU, ay € J7, —aq(1) > a3(1),

E( )

(SM2.16)  E(x)

(X+ 32)7

(X — a1),

(al +a2))E(x+a; + ag),

ifxel

ifx eIl
if x € I11
if x e IV.

ifxel

ifxell
if x € III
if x e IV.

ifxel

if x ell
if x € I1I
if x e IV.
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In summary, the sixteen BCs (SM2.1)—-(SM2.16) can be recast into

E(-k-t1)E(x+1ty), ifxel
Bl — SR BB+ t), ifx el

£(—k-t3)E(x +t3), if x €Il

E(-k-t)E(x+ty), ifxelV,

where definitions of {ti}?zl are self-evident in (SM2.1)—(SM2.16).
Similar to what is done in Part III of Sec.4, we can express J3 for (SM2.1)—
(SM2.16) using {ti}?zl in a unified form. Define

(SM2-17) mz = floor (R RI) , m3 = floor (R?R:),) , my = floor (RI;R2> >
x y "

then we have
(SM2.18)

I, ®

0 £k - t2) i,
Inz—ms ® |:€(k . tl)Inlfmg 20 :|

0 &k t3) I,
g(k ' t4)In1*m4 0

Jz =

However, to derive the eigen-decomposition of J3, a more useful form of J3 should be
used, e.g., the one in the proof of Theorem SM2.2.

We also need to consider the BC (1.2) along the y-axis when ay € 37, which
should differ from (3.4). Letting x = (z,b,0) € D, we have the BC (1.2) for different
segments of RgRy shown in, say, Figure SM2(c):

B(x) é(k-ag)E(T-a,(x)), if x € R3Rs
| é(k-(ag +a1)E(T a,—a,(x)), if x € RgRo.
Define
(SM2.19) my = floor (RgRg/(sx) ,

which is consistent with the one in Sec. 4. Then, depending on the quadrant in which
ay is located, Jo in the discretized BC (4.5) has different form,

{ 0 &(~k-ay)l,,
ITL1—7’7L1 0

0 I,y
|:§(k : al)ITu—ml 0

:|:K1_m1, ifay €7
(SM2.20) Jy =

:| :K?l_ml, lfaQij.

Consequently, we have a more general version of Theorem 5.6 as follows. Recall
that in (2.2) a,b,c can also be expanded by a;,as, a3 with expansion coefficients
M, N2, N3 defined in (2.1).

THEOREM SM2.1. Ky in (4.7) is unitary. With X; defined in (5.1), Ky satisfies

Ko(Yij @ Xi) = &(0b,)€(5/n2)(Yi; © Xi), i =1,--- ,m1, j =1, na,
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where
ml/nh Zf as €7J

Ob; = (k-b—im)/na, m =
b,i = ( m)/n2, M {(ml—m)/"h if az €77,

(SM2.21) 5%={Lﬂ%ﬁé@i)w-KWQ—D%JECWéfMﬂT.

Then we have a more general version of Theorem 5.10 as follows.
.

THEOREM SM2.2. K3 in (4.13) is unitary. With X; andY;; defined in (5.1) and
(SM2.21), respectively, K3 satisfies
K3(Zijr @ Yi; @ X;) = £(0c,i5)E(k/n3)(Zijr @ Yij @ X;),
where

Oc,ij = [k - ¢ —n3j + (mns — n2) i] /ns,
Zu = [0t ()t e (1228

n3
fori:la"'7n17j:15"'an2a kzla"'7n37 with

. ml/nl, ifag €J
= (m1 — ’n1>/7’L1, ifag S jj,

(ma/n1, ms/na), ifag €7
(1, ms) = ((mg —ny)/n1, ms/ng), if a3 €37
’ ((my —n1)/n1, (M3 —ng)/n2), ifag € 33T
(mg/n1, (M3 —n2)/na), if a3 € JU.

Proof. Here we will just present the sketch of the proof, and the omitted details
can be found in the proof of Theorem 5.10. For any of four categories mentioned
above, say, j-th category, we have the following observations from Figure SM2, SM3,

SM4 and SM5,
mg —myq, Case (j — 1)
ny —mq +ms, Case (j —ii
(SM2.22) my =TT (7 =)
ny —my +ma, Case (j — iii)
mg —myq, Case (j — iv).
Eq. (SM2.20) is also equivalent to

J {Klml =¢(—k-a)KP ™™, ifay €
L =

(SM2.23) N _ .
f(k-al)Kl mi :K{Ll ml, if ay € J7.

If a3 € J, considering (SM2.22) and (SM2.23), we have

0 Inz—m3 ® Kinz ) N
Jr [f(k cag) Iy, ® K7™ 0 ) ifap €3
3 =
0 In2_m3 ® Kiﬂz )
|:€(k . a2)§(k . al)Img ® Klmz—Tnl 0 5 if as € jj,

= (I, ® K1)™ K3".
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If a3 € 37, considering (SM2.22) and (SM2.23), we have

0 In27m3 ® K;ﬂz*’n1 .
P [f(k cag)é(—k-ay)l,,, ® K"T™ 0 , ifased
3 - —
0 In27m3 ® KIVLQ ni . .
[f(k ag)l,, © K 0 ’ if ay € 77,
= (In, ® K1)™ ™" K.
If a3~ € 337, considering (SM2.22) and (SM2.23), we have
0 I, @ K7 . -
—my— f J
Jy— L(k . a2)]n2_m3 ® K?I mi1—mgq 0 } , I as €
0 Img ® KIH—WM . -
|:£(k'a2)§(k'al)ln2—m3 ®K?17m17m4 0 :l ’ if a; € JJ
= ([n2 ® Kl)n17m4 K;”_ms.
If a3 € 39, considering (SM2.22) and (SM2.23), we have
0 Lny ® Ky ““} .
ni—mi—m s fa, €7
7. — [g(k'aQ)g(_k'al)Ing—mg ®K11 1 4 0 1I ag
3 =
0 I, @ K™ . .
ni—mi—m ) fas €77,
|:£(k'32)1n2m3 ®K11 1 4 0 :| 1I ag
— ([m ® Kl)_m4 ng—wm' 0

SM3. J; and Js in other 13 Bravais lattices. As mentioned in Sec. 1, with
necessary constraints imposed, the triclinic lattice can become other 13 Bravais lat-
tices. Therefore, many results in other Bravais lattices can be directly inherited from
those in the triclinic lattice.

Lattice translation vectors ai,as,as of all 14 Bravais lattices can be found in
[SM1]. The 3-by-3 matrix below is coordinates of aj,as,as in the prior orthogonal
coordinate system used in the crystallography database. Zij, ¢ are lattice constants of
the 3D physical cell. With the procedure to construct the orthogonal basis a, b, c of
aj, ag, az and its important variation described in Sec. 2, we can similarly define the 3D
working cell for other 13 Bravais lattices. For a specific Bravais lattice, we will present
the matrix Js in (SM2.20) in terms of integer power of K in (4.3). As for the matrix
Js in (SM2.18), we either specify J3 = I, or specify the subcategory in (SM2.1)—
(SM2.16) to fix J3. Recall that m; are defined in (SM2.19) and ms, m3, my4 are defined
in (SM2.17). However, if there are nothing special about mi,ma, m3, my, n1, o, we
will not mention them below.

e Cubic system

(1) Primitive: a

S O =
o = O

0
0 ’ Jo = In17 JB = In1n2~
1

(2) Face-Centered:

[NIEN
O~
— = O

1
0], case (1-i),
1

mip = mo :77,1/2, ms :n2/3, may :0, J2 :Kl_ml
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-1 1 1
1 =1 1|, case (3-iii),
1 1 -1

(3) Body-Centered:

[N

mip =my = 2’[7,1/3, mo :711/3, ms :TLQ/Q, J2 = Kiﬂz

a a 0
e Hexagonal system: 3 [—v3a v3a 0|,mi =%, Jo =K, J3= Iy,
0 0 2c
a/2 0" —a/2

e Rhombohedral system: |—+/3a/6 a/v3 —v/3a/6],
¢/3 ¢/3 ¢/3
(1) if v/2¢ < v/3a, then case (3-iii), my = my > n1/2, Jo = KJ* 7.
(2) if v/2¢ > V/3a, then case (1-i), my = mag, my =0, Jo = K; ™.
e Tetragonal system

a 0 O
(1) Primitive: |0 @ 0, Jo=1I,,, J3 = Inn,.
0 0 ¢
-a a a
(2) Body-Centered: é —~5 5~ , with @ < ¢,
¢ ¢ —c

(a) if ¢ < V/2a, then case (3-iii), m1 = 2(ny —my), Jo = K7™
(b) if € > +/2a, then case (3-i), ny —my = 2my, Jo = K{ ™.
e Orthorhombic system

a 0 0
(1) Primitive: [0 b 0], Ja=1In,, J3 = Lnn,-
0 0 ¢
2a 0 0

b b|, withb <@ Jo= KM ™™ Js =L,
—Cc C

(2) A-Base-Centered:

N

(3) C-Base-Centered:

0
0|, witha <b, Jo=K"™™ Js=1I,,..
2%

N|—=
SN @zolﬂ@zoo
O DN

0 a
(4) Face-Centered: b b|, with @ < b < ¢, case (1-ii), J, = K; ™.
c 0
-a a a
(5) Body-Centered: 3 b b b|,witha<b<g
¢ ¢ —c

(a) if @ > a2+ b2, then case (3-), Jo = K; ™.
(b) if @ < a2 + b2, then case (3-iii), J, = Kimm.
e Monoclinic system
a 0 ccosgps
(1) Primitive: [0 b 0 , with @ < ¢, ¢3 # 7/2,
0 0 csings
(a) if ¢3 < 7/2, then Jo = K;™, J3 = I, n,.
(b) if g3 > w/2, then Jo = K" ™™, J3 = I n,.
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a/2 a2 ¢cosy
(2) A-Base-Centered: —5/2 b/2 0 |, with v # m/2, which is almost the
0 0 ©csiny
same as the triclinic lattice.
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