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Abstract

We consider the flow of closed convex hypersurfaces in Eu-
clidean space Rn+1 with speed given by a power of the k-th mean
curvature Ek plus a global term chosen to impose a constraint in-
volving the enclosed volume Vn+1 and the mixed volume Vn+1−k

of the evolving hypersurface. We prove that if the initial hyper-
surface is strictly convex, then the solution of the flow exists for
all time and converges to a round sphere smoothly. No curvature
pinching assumption is required on the initial hypersurface.

1. Introduction

Let X0 : Mn → Rn+1 be a smooth embedding such that M0 =
X0(M) = ∂Ω0 is a closed strictly convex hypersurface in Rn+1. We
consider the smooth family of immersions X : Mn × [0, T ) → Rn+1

satisfying

(1.1)


∂

∂t
X(x, t) = (φ(t)− Eα/kk (x, t))ν(x, t),

X(·, 0) = X0(·),

where α > 0, ν(x, t) is the outward unit normal of the hypersurface
Mt = X(M, t) = ∂Ωt, k ∈ {1, · · · , n} and Ek is the k-th mean curvature
of Mt defined as the normalized k-th elementary symmetric functions
of the principal curvatures (κ1, · · · , κn) of Mt:

(1.2) Ek =

(
n

k

)−1 ∑
1≤i1<···<ik≤n

κi1 · · ·κik .

Clearly, E1 = H/n and En = K are the mean curvature and Gauss
curvature of Mt respectively. We also set E0 = 1. The global term φ(t)
in the flow (1.1) will be chosen to preserve a constraint involving the
enclosed volume Vn+1 = (n+ 1)|Ωt| and the mixed volume Vn+1−k(Ωt).
To describe this constraint precisely, we first briefly recall the mixed
volumes of convex bodies:
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Let Ω1, · · · ,Ωn+1 be convex bodies in Rn+1. The mixed volumes
are defined as the coefficients of the volume of the Minkowski sum∑n+1

i=1 εiΩi:

(1.3) V [Ω1, · · · ,Ωn+1] =
1

n!

∂n+1

∂ε1 · · · ∂εn+1
Vol

(
n+1∑
i=1

εiΩi

)
.

In particular, the mixed volume (or quermassintegral) Vj(Ω) of a convex
body Ω in Rn+1 is defined as the following mixed volume of Ω with the
unit ball B:

(1.4) Vj(Ω) = V [Ω, · · · ,Ω︸ ︷︷ ︸
j

, B, · · · , B︸ ︷︷ ︸
n+1−j

].

In particular, Vn+1(Ω) = (n+1)Vol(Ω) and V0(Ω) = (n+1)Vol(B) = ωn,
where ωn denotes the area of the unit sphere Sn. If ∂Ω is C2, the mixed
volumes of Ω are related to the integral of k-th mean curvature over the
boundary of Ω by the formula

(1.5) Vn−j(Ω) =

∫
∂Ω
Ejdµ, j = 0, 1, · · · , n.

For convenience we define the j-radius rj(Ω) of Ω for j = 1, · · · , n+1
by

rj(Ω) =

(
Vj(Ω)

Vj(B)

) 1
j

= ω−1/j
n Vj(Ω)1/j .

The j-radius is therefore the radius of the ball with the same value of
Vj as Ω. The Alexandrov-Fenchel inequalities (2.12) imply that rj(Ω)
is non-increasing in j.

Now we consider a general smooth function

G : {(a, b) : a ≥ b > 0} → R+

which is non-decreasing in each argument and has non-vanishing deriv-
ative at each point. We choose the global term φ(t) in the flow (1.1) to
keep the function G(rn+1−k(Ωt), rn+1(Ωt)) constant in t. Explicitly, the
choice of φ(t) is given by

φ(t) =
Gaω

1
n+1
n V

n
n+1

n+1

∫
Mt
E

1+α
k

k +Gbω
1

n+1−k
n V

n−k
n+1−k
n+1−k

∫
Mt
E

α
k
k

Gaω
1

n+1
n V

n
n+1

n+1 Vn−k +Gbω
1

n+1−k
n V

n−k
n+1−k
n+1−k Vn

,(1.6)

where Ga and Gb are the partial derivatives of G with respect to the
first and second variables respectively.

The main result that we prove in this paper is the following.

Theorem 1.1. Fix k ∈ {1, · · · , n} and α > 0. Then for any smooth
embedding X0 : Mn → Rn+1 such that M0 = X0(M) = ∂Ω0 is a closed
strictly convex hypersurface in Rn+1, the flow (1.1) with global term φ(t)
given by (1.6) has a smooth strictly convex solution Mt = ∂Ωt for all
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time t ∈ [0,∞), and Mt converges smoothly as t→∞ to a sphere Sn(r̄)
of radius r̄ determined by G(r̄, r̄) = G(rn+1−k(Ω0), rn+1(Ω0)).

Remark 1.2. The choices G(a, b) = b and G(a, b) = a correspond
to the flows which preserve the enclosed volume Vn+1(Ωt) or the mixed
volume Vn+1−k(Ωt) respectively, so Theorem 1.1 contains the result for
these flows as special cases.

Certain cases of this result have been proved previously, as well as
several other related results: The first case treated was the volume-
preserving mean curvature flow (k = 1, α = 1 and G(a, b) = b) which
was considered by Huisken [13]. The crucial estimate was a curvature
ratio bound, and the argument was adapted from that used previously
for the mean curvature flow [12]. Similar methods apply to the area-
preserving mean curvature flow (k = 1, α = 1 and G(a, b) = a), as
shown by McCoy [14]. In fact the argument using pointwise curvature
estimates holds very generally for flows with α = 1, allowing the treat-
ment of mean curvature flows preserving other mixed volumes [15] and
also flows by homogeneous degree one curvature functions in a large
class [16,17] with a constraint on any of the mixed volumes Vj(Ωt), de-
spite the fact that there is no variational structure and no monotone
isoperimetric ratios known for such flows.

Several works have treated flows with α > 1 by following the same
argument using curvature ratio bounds: For contraction flows (with
φ(t) = 0) it was observed that for α > 1, sufficiently strong curvature
ratio bounds are preserved [1, 5, 8, 19]. This is also true for the con-
strained flows with α > 1, allowing such flows to be understood provided
one can overcome the degeneracy which arises when the speed becomes
small: If one can show that solutions remain smooth, with uniform esti-
mates as time approaches infinity, then the curvature pinching estimate
implies that the limit must be a sphere. Several techniques have been
used to handle this degeneracy: For constrained flows by powers of Ek,
Cabezas-Rivas and Sinestrari [10] observed that (once the curvature ra-
tio bound is established) the equation equation for Ek has the structure
of a porous medium equation, and in particular estimates for porous
medium equations [11] imply that Ek is Hölder continuous (estimates of
this kind had been employed previously for contraction flows by powers
of mean curvature by Schulze [19] and for powers of scalar curvature by
Alesssandroni and Sinestrari [1]). This allows the proof of convergence
to a sphere to be completed. McCoy [17, Section 6] also showed that
with sufficiently strong curvature ratio bounds on the initial hypersur-
face, the convergence result can be established for α > 1 for a much
wider class of speeds, by using spherical barriers and an adaptation of
an estimate of Smoczyk [20] to derive a lower speed bound (here the
argument uses the fact that hypersurfaces with a strong curvature ratio
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bound are close to spheres, in order to make the spherical barriers effec-
tive). This removes the need for porous medium estimates, but requires
stronger curvature pinching assumptions.

It seems to be true, however, that curvature pinching estimates are
less decisive for constrained flows than they are for the corresponding
contraction flows: The first author treated anisotropic analogues of the
volume-preserving mean curvature flow [3], and proved that solution-
s converge to the Wulff shape corresponding to the anisotropy, despite
the fact that no curvature pinching estimate could be obtained. Instead,
the convergence argument was based on an improving isoperimetric ra-
tio (and the fact that a bound on isoperimetric ratio for a convex hy-
persurface implies bounds on the ratio of diameter to inradius). The
improving isoperimetric ratio was also used by Sinestrari [18] to prove
the convergence of the volume-preserving or area-preserving flows by
powers of mean curvature (this corresponds to the case k = 1 of Theo-
rem 1.1 with G(a, b) = b or G(a, b) = a). In that paper the result holds
for arbitrary powers α > 0, and no initial pinching condition is required.
Instead the isoperimetric bounds are used to deduce bounds above on
diameter and below on inradius, and the porous medium estimates of
[11] are applied to give Hölder continuity of the mean curvature. From
this it is possible to deduce that the solution remains regular and con-
verges to a smooth limit which has constant mean curvature and is
therefore a sphere.

More recently, Bertini and Sinestrari [7] have considered flows by very
general non-homogeneous increasing functions of the mean curvature,
with a constraint on the enclosed volume. Again, the isoperimetric ratio
bound plays a crucial role in controlling the geometry, but the authors
also derive a lower bound on the speed directly from the maximum
principle, making the remaining analysis much easier and in particular
removing the need to use porous medium estimates.

Our argument to prove Theorem 1.1 exploits the isoperimetric bound-
s to control the geometry of the evolving hypersurfaces: For any k ∈
{1, · · · , n} and any α > 0, we show that Vn+1−k(Ωt) is non-increasing,
while Vn+1(Ωt) is non-decreasing. This implies a time-independent
bound on diameter and a time-independent lower bound on inradius,
and these allow us to derive an upper bound on Ek using the method of
Tso [23]. This is sufficient for us to deduce that the solution exists and
remains smooth and strictly convex for all positive times. However, for
k > 1 new ideas are needed to prove convergence to a sphere: Without
a curvature ratio bound, the flow can no longer be written as a porous
medium equation with uniformly elliptic coefficients, and so this route
to regularity cannot be used. The lower speed bound of Bertini and
Sinestrari is also not available without some kind of curvature pinch-
ing control. Instead, we use some machinery from the theory of convex
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bodies: In particular, we use the Blaschke selection theorem to show
that the enclosed regions Ωt of Mt converge in Hausdorff distance (for

a subsequence of times) to a limiting convex region Ω̂ as t → ∞. We

then deduce from the evolution of Vn+1−k that Ω̂ satisfies

Cn−k(Ω̂, β) = c Cn(Ω̂, β)

for any Borel set β in Rn+1, where Cn−k and Cn are the curvature mea-

sures of Ω̂, and c is a constant. A theorem of Schneider [21] (a gener-
alization of the classical Alexandrov Theorem) can be used to conclude

that Ω̂ is a ball. Using the monotonicity of the isoperimetric ratio again,
the Hausdorff convergence of the whole family Ωt to a ball follows easily.
With the help of the Hausdorff convergence, we can adapt an idea of
Smoczyk [20, Proposition 4] (see also [6,17]) to prove a uniform positive
lower bound on Ek. Then the smooth convergence of the flow follows
by a standard argument.

In the end of this paper, we discuss several generalisations of Theorem
1.1:

First, we consider generalisations in which the driving speed is a non-

homogeneous function µ(E
1
k
k ). The flows is question then have the form

(1.7)


∂

∂t
X(x, t) =

(
φ(t)− µ

(
E

1/k
k (x, t)

))
ν(x, t),

X(·, 0) = X0(·),
where µ is smooth and positive with positive derivative, and satisfies
some structural assumptions near zero and near infinity. Such flows
were treated in the case k = 1 by Bertini and Sinestrari [7], and the
methods of this paper allow us to produce a similarly general result for
all k.

Second, we generalise the constrained flows considered previously by
considering flows in which the enclosed volume is monotone: That is,
in the flow (1.1) (or non-homogeneous generalisations of the form (1.7))
we require the global term φ(t) to be smooth and satisfy

φ(t) ≥ 1

Vn(Ωt)

∫
Mt

µ(E
1/k
k )dµt.

Under this assumption (and some further asymptotic assumptions if µ
is not homogeneous) we can also show that the flow (1.1) has a smooth
strictly convex solution Mt for all time t ∈ [0,∞), and either

(i) the volume of Ωt is uniformly bounded above and Mt converges
smoothly as t→∞ to a sphere Snr̄ (p); or

(ii) the volume of Ωt goes to infinity and Mt is asymptotic to an ex-
panding sphere with radius depending on φ(t).

The monotonicity of an isoperimetric ratio is a key ingredient in proving
the above result.
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Third, we briefly discuss anisotropic generalisations of the flows. We
show that anisotropic analogues of the results of Bertini and Sinestrar-
i [7] hold (corresponding to k = 1), and also provide corresponding-
ly strong results for k = n by making use of some stability results
for inequalities between mixed volumes. We discuss the corresponding
problem for 1 < k < n, and identify an natural conjecture concerning
hypersurfaces satisfying relations between the corresponding anisotrop-
ic curvature measures which would allow the more general anisotropic
results to be proved.

Finally, we observe that the results for functions of mean curvature
can be generalised to volume-preserving flows involving much larger
classes of flows involving uniformly monotone functions of principal cur-
vatures. In these cases we no longer have a monotone isoperimetric
inequality, but we can deduce diameter bounds from an Alexandrov
reflection argument, and then derive inradius lower bounds from the p-
reservation of enclosed volume. In these cases the lower speed bound of
Bertini and Sinestrari [7] applies, so we can deduce smooth convergence
to a limiting hypersurface along a subsequence of times approaching in-
finity. The convergence to a sphere then follows from a strong maximum
principle applied in the Alexandrov reflection argument.

See §8 for the detailed discussion of these generalisations.

Acknowledgments. This research was supported by Laureate Fel-
lowship FL150100126 of the Australian Research Council. The authors
would like to thank James McCoy for discussions.

2. Preliminaries

In this section, we collect some evolution equations along the flow
(1.1) and preliminary results on convex bodies.

2.1. Evolution equations. Along the flow (1.1), we have the following
evolution equations on the induced metric gij , unit outward normal ν,
the induced area element dµt and l-th mean curvature of Mt:

∂

∂t
gij = 2(φ(t)− Eα/kk )hij(2.1)

∂

∂t
ν = ∇Eα/kk(2.2)

∂

∂t
dµt = nE1(φ(t)− Eα/kk )dµt(2.3)

∂

∂t
El =

∂El
∂hij
∇j∇iEα/kk − (φ(t)− Eα/kk )(nE1El − (n− l)El+1),(2.4)

where l = 1, · · · , n− 1, and ∇ denotes the Levi-Civita connection with
respect to the induced metric gij on Mt. The proof is by similar calcu-
lations as in [2, 12].
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2.2. Gauss map parametrisation of the flow. The convex hyper-
surfaces can be parametrised via the Gauss map. Given a smooth strict-
ly convex hypersurface M in Rn+1, the support function s : Sn → R of
M is defined by s(z) = sup{〈x, z〉 : x ∈ Ω}, where Ω is the convex body
enclosed by M . Then the hypersurface M is given by the embedding
X : Sn → Rn+1 with

X(z) = s(z)z + ∇̄s(z),
where ∇̄ is the gradient with respect to the round metric ḡij on Sn.
The principal radii of curvature of M , or the inverses of the principal
curvatures of M , are the eigenvalues of

τij = ∇̄i∇̄js+ ḡijs

with respect to ḡij .

Denote F = E
1/k
k and define the function F∗ by

F∗(x1, · · · , xn) = F (x−1
1 , · · · , x−1

n )−1,

which is concave in its argument. The solution of the flow (1.1) is then
given, up to a time-dependent diffeomorphism, by solving the scalar
parabolic equation on Sn

(2.5)
∂

∂t
s(z, t) = −F∗(τij)−α + φ(t), (z, t) ∈ Sn × [0, T ),

for the support function s(z, t), where F∗(τij) can be viewed as the
function F∗ evaluated at the eigenvalues of τij . Since F∗ is monotone
increasing in τij , from the equation (2.5) the short time existence of a
smooth solution of (1.1) for any smooth, strictly convex initial hyper-
surface follows immediately. We denote

(2.6) Ψ(τij) = −F∗(τij)−α

for the simplicity of the notation.

Lemma 2.1 (cf. Lemma 10 in [6]). Under the flow (2.5), the speed
function Ψ (defined in (2.6)) evolves according to

(2.7)
∂Ψ

∂t
= Ψ̇kl∇̄k∇̄lΨ + (Ψ + φ(t))Ψ̇klḡkl.

The inverse second fundamental form τij evolves by

∂

∂t
τij =Ψ̇kl∇̄k∇̄lτij + Ψ̈kl,pq∇̄iτkl∇̄jτpq

− Ψ̇klḡklτij + ((1− α)Ψ + φ(t))ḡij ,

and equivalently

∂

∂t
τij =Ψ̇kl∇̄k∇̄lτij + αF−α−1

∗ F̈ kl,pq∗ ∇̄iτkl∇̄jτpq

− α(α+ 1)F−α−2
∗ ∇̄iF∗∇̄jF∗
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− αF−α−1
∗ Ḟ kl∗ ḡklτij + ((α− 1)F−α∗ + φ(t))ḡij ,(2.8)

where Ψ̇kl, Ḟ kl∗ , Ψ̈
kl,pq and F̈ kl,pq∗ denote the components of the first and

second derivatives of Ψ and F∗ with respect to (τij).

2.3. Mixed volumes and Alexandrov-Fenchel inequalities. For
any convex body Ω in Rn+1, we have defined the mixed volumes Vn+1−j(Ω)
in (1.4). The Alexandrov-Fenchel inequalities (see Equation (7.66) of
[22]) state that

(2.9) V k−i
n+1−j(Ω) ≥ V k−j

n+1−i(Ω)V j−i
n+1−k(Ω)

for any convex body Ω and all 0 ≤ i < j < k ≤ n+ 1. A special case of
(2.9) is the following

(2.10) V 2
n+1−j(Ω) ≥ Vn−j(Ω)Vn+2−j(Ω), j = 1, · · · , n

by letting i = j − 1 and k = i + 1 in (2.9). When j = n, the equality
holds in (2.10) if and only if Ω is homothetic to a ball. In fact, we have
a stability result for (2.10) when j = n:

Lemma 2.2 ([22, Theorem 7.6.6 and Lemma 7.6.4]).

(2.11) V 2
1 (Ω)− V0(Ω)V2(Ω) ≥ C(n)

V1(Ω)n
dH(Ω, BΩ)n+2,

where dH is the Hausdorff distance of two subsets in Rn+1, and BΩ is
a ball with the same Steiner point and mean width as Ω.

Lemma 2.2 will be used to prove the Hausdorff convergence of Mt to
a sphere as t→∞ in the case k = n of the flow (1.1). Another special
case of (2.9) is when k = n+ 1, it reduces to

(2.12) V n+1−i
n+1−j (Ω) ≥ ωj−in V n+1−j

n+1−i (Ω)

for all 0 ≤ i < j < n + 1. In this case, the equality of (2.12) also
characterizes balls.

We also need the following useful lemma concerning the continuity of
the mixed volumes.

Lemma 2.3. If 0 < R1 ≤ R2 < ∞, there exists a constant C =
C(R1, R2) such that any two convex bodies Ω1,Ω2 which can be trans-
lated to have R1B ⊂ Ω1,Ω2 ⊂ R2B, where B is the unit Euclidean ball,
satisfy ∣∣∣∣Vn−k(Ω1)

Vn(Ω1)
− Vn−k(Ω2)

Vn(Ω2)

∣∣∣∣ ≤ CdH(Ω1,Ω2)

Proof. Recall that the Hausdorff distance between two regions is de-
fined as

dH(Ω1,Ω2) = inf {δ : Ω1 ⊂ Ω2 + δB, and Ω2 ⊂ Ω1 + δB}
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Let δ = dH(Ω1,Ω2). Then δ < R2 and Ω1 ⊂ Ω2 + δB.

Vn−k(Ω1)− Vn−k(Ω2) = V [Ω1, · · · ,Ω1︸ ︷︷ ︸
n−k

, B, · · · , B︸ ︷︷ ︸
k+1

]

− V [Ω2, · · · ,Ω2︸ ︷︷ ︸
n−k

, B, · · · , B︸ ︷︷ ︸
k+1

]

≤ V [Ω2 + δB, · · · ,Ω2 + δB︸ ︷︷ ︸
n−k

, B, · · · , B︸ ︷︷ ︸
k+1

]

− V [Ω2, · · · ,Ω2︸ ︷︷ ︸
n−k

, B, · · · , B︸ ︷︷ ︸
k+1

]

≤ CδRn−k−1
2 ωn

Similarly,

Vn(Ω1)− Vn(Ω2) ≤ CδRn−1
2 ωn.

We also have

Rn−k1 ωn ≤ Vn−k(Ω1), Vn−k(Ω2) ≤ Rn−k2 ωn.

Hence,∣∣∣∣Vn−k(Ω1)

Vn(Ω1)
− Vn−k(Ω2)

Vn(Ω2)

∣∣∣∣ ≤ Vn(Ω1)−1 |Vn−k(Ω1)− Vn−k(Ω2)|

+
Vn−k(Ω2)

Vn(Ω1)Vn(Ω2)
|Vn(Ω1)− Vn(Ω2)|

≤ Cδ
(
Rn−k−1

2 R−n1 +R2n−k−1
2 R−2n

1

)
.

This completes the proof. q.e.d.

2.4. Curvature measures. To characterize the limit of the flow, we
will employ the curvature measure of convex bodies. Given a convex
body Ω in Rn+1, ρ > 0 and any Borel set β ∈ B(Rn+1), we consider the
following local parallel set

Aρ(Ω, β) := {x ∈ Rn+1 : 0 < d(Ω, x) ≤ ρ, p(Ω, x) ∈ β}

which is the set of all points x ∈ Rn+1 such that the distance d(Ω, x) ≤ ρ
and the nearest point p(Ω, x) belongs to β. By the theory of convex
geometry (see [22, §4.2]), the area of Aρ(Ω, β) is a polynomial in the
parameter ρ: Precisely,

Hn+1(Aρ(Ω, β)) =
1

n+ 1

n∑
m=0

ρn+1−m
(
n+ 1

m

)
Cm(Ω, β)

for β ∈ B(Rn+1) and ρ > 0. The coefficients C0(Ω, ·), · · · , Cn(Ω, ·) are
called the curvature measures of the convex body Ω, which are Borel
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measures on Rn+1. If Ω is (n+ 1)-dimensional, then (see Theorem 4.2.3
of [22])

(2.13) Cn(Ω, β) = Hn(β ∩ ∂Ω)

for β ∈ B(Rn+1). The function Ω 7→ Cm(Ω, ·) is weakly continuous
with respect to Hausdorff distance (equivalent to the statement that∫
fdCm(Ω) = limi→∞

∫
fdCm(Ωi) whenever f is a bounded continuous

function on Rn+1 and dH(Ωi,Ω) → 0). If Ω is a convex body of class
C2

+, and the boundary ∂Ω has principal curvatures κ = (κ1, · · · , κn),
then the curvature measure has the equivalent form

Cm(Ω, β) =

∫
β∩∂Ω

En−m(κ)dHn(2.14)

for any Borel set β ∈ B(Rn+1).
The following is a generalization of the classical Alexandrov Theorem

in differential geometry.

Theorem 2.4 (Theorem 8.5.7 in [22]). Let m ∈ {0, · · · , n− 1}. If Ω
is a convex body with nonempty interior, satisfying

Cm(Ω, β) = c Cn(Ω, β)

for any Borel set β ∈ B(Rn+1), where c > 0 is a constant, then Ω is a
ball.

3. Monotonicity of the isoperimetric ratio

For any convex body Ω in Rn+1 and any integer 1 ≤ l ≤ n, define the
following isoperimetric ratio:

I`(Ω) =
V`(Ω)n+1

Vn+1(Ω)`V n+1−`
0

.

By the Alexandrov-Fenchel inequality (2.12), we have

(3.1) I`(Ω) ≥ 1, 1 ≤ ` ≤ n,
with equality if and only if Ω is a ball.

We note that all of these isoperimetric ratios are comparable, in the
sense that a bound on any of these implies bounds on all of the others:

The fact that rm(Ω) is non-increasing in m implies that Im(Ω)
1

m(n+1) is
non-increasing in m. In the other direction, the Alexandrov-Fenchel

inequality V n+1−j
i (Ω) ≥ V i−j

n+1(Ω)V n+1−i
j (Ω) for i > j implies that

Im(Ω)
1

n+1−m is non-decreasing in m.

Proposition 3.1. Let Mt = X(M, t) = ∂Ωt be a smooth convex so-
lution of the flow (1.1) on [0, T ) with the global term φ(t) given by (1.6).
Then Vn+1(Ωt) is non-decreasing in t, Vn+1−k(Ωt) is non-increasing in
t, and the isoperimetric ratio In+1−k(Ωt) is monotone non-increasing
in t.
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Proof. Since Ωt is smooth and convex, we can write the mixed vol-
umes Vn+1−k(Ωt), Vn−k(Ωt), and Vn(Ωt) as in (1.5). Along the flow
(1.1), Vn+1(Ωt) evolves by

d

dt
Vn+1(Ωt) =(n+ 1)

d

dt
|Ωt| = (n+ 1)

∫
Mt

(φ(t)− Eα/kk )dµt

=(n+ 1)

(
φ(t)Vn(Ωt)−

∫
Mt

E
α/k
k dµt

)
.(3.2)

Combining (2.3)–(2.4), we also have

d

dt
Vn+1−k(Ωt) = (n− k + 1)

∫
Mt

Ek(φ(t)− Eα/kk )dµt

=(n+ 1− k)

(
φ(t)Vn−k(Ωt)−

∫
Mt

E
α
k

+1

k dµt

)
.(3.3)

The global term φ(t) is determined by the requirement that the flow
(1.1) preserves the function G(rn+1−k(Ωt), rn+1(Ωt)), i.e.,

0 =
d

dt
G (rn+1−k(Ωt), rn+1(Ωt))

=
d

dt
G

(
ω
− 1
n+1−k

n Vn+1−k(Ωt)
1

n+1−k , ω
− 1
n+1

n Vn+1(Ωt)
1

n+1

)
= Gaω

− 1
n+1−k

n Vn+1−k(Ωt)
k−n
n+1−k

1

n+ 1− k
d

dt
Vn+1−k(Ωt)

+Gbω
− 1
n+1

n Vn+1(Ωt)
− n
n+1

1

n+ 1

d

dt
Vn+1(Ωt)

= φ

(
Gaω

− 1
n+1−k

n V
k−n
n+1−k
n+1−k Vn−k +Gbω

− 1
n+1

n Vn+1(Ωt)
− n
n+1Vn

)

−
(
Gaω

− 1
n+1−k

n V
k−n
n+1−k
n+1−k

∫
Mt

E
1+α

k
k +Gbω

− 1
n+1

n Vn+1(Ωt)
− n
n+1

∫
Mt

E
α
k
k

)
.

(3.4)

Rearranging this gives the expression (1.6). Since Ga ≥ 0 and Gb ≥ 0,
from the expression (1.6) and Jensen’s inequality

(3.5)

∫
Mt

E
1+α

k
k dµt ≥

1

|Mt|

∫
Mt

Ekdµt

∫
Mt

E
α/k
k dµt

we always have

(3.6)
1

Vn(Ωt)

∫
Mt

E
α/k
k ≤ φ(t) ≤ 1

Vn−k(Ωt)

∫
Mt

E
1+α

k
k .

From the first inequality of (3.6) and equation (3.2) we deduce that
d
dtVn+1(Ωt) ≥ 0, while from the second inequality of (3.6) and equa-

tion (3.3) we deduce that d
dtVn+1−k(Ωt) ≤ 0. The monotonicity of the

isoperimetric ratio follows. q.e.d.
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Proposition 3.2. Let Mt be a smooth convex solution of the flow
(1.1) on [0, T ) with the global term φ(t) given by (1.6). Then there exist
constants c1, c2, c3, R1, R2 depend only on n, k,M0 such that

(3.7) 0 < c1 ≤ |Mt| ≤ c2, |Ω0| ≤ |Ωt| ≤ c3

and

(3.8) 0 < R1 ≤ ρ−(t) ≤ ρ+(t) ≤ R2,

where ρ+(t) = ρ+(Ωt), ρ−(t) = ρ−(Ωt) are the inner radius and outer
radius of Ωt respectively.

Proof. (i). Firstly, since the volume of Ωt is non-decreasing along the
flow (1.1), we have |Ωt| ≥ |Ω0|. The isoperimetric inequality (3.1) then
implies that

(3.9) |Mt|
1
n ≥ ω

1
n(n+1)
n |Ωt|

1
n+1 ≥ ω

1
n(n+1)
n |Ω0|

1
n+1 ,

which gives the lower bound of |Mt|. On the other hand, since Vn+1−k(Ωt)
is non-increasing along the flow, by the Alexandrov-Fenchel inequality
(2.12) we have

Vn+1−k(Ω0) ≥ Vn+1−k(Ωt) ≥ ω
k−1
n

n Vn(Ωt)
n+1−k
n = ω

k−1
n

n |Mt|
n+1−k
n .

(3.10)

This gives an upper bound of |Mt| by a constant depending only on
n, k,M0. This in turn gives an upper bound of |Ωt| with the help of
(3.9).

(ii). From the Alexandrov-Fenchel inequality (2.12) and Proposition
3.1, we can estimate the isoperimetric ratio In(Ωt):
(3.11)

σ(t) := In(Ωt)
1

n(n+1) =
rn(Ωt)

rn+1(Ωt)
≤ rn+1−k(Ωt)

rn+1(Ωt)
= In+1−k(Ωt)

1
(n+1)(n+1−k) .

The right-hand side is bounded by the initial value In+1−k(Ω0)
1

(n+1)(n+1−k)

(which we denote by σ0) for any t ≥ 0. The Diskant inequality [22, E-
quation (7.28)] then gives a lower bound on the inradius:

ρ−(t) ≥ rn(Ωt)− (rn(Ωt)
n+1 − rn+1(Ωt)

n+1)
1

n+1

= rn+1(Ωt)
(
σ(t)−

(
σ(t)n+1 − 1

) 1
n+1

)
≥ rn+1(Ω0)

(
σ0 −

(
σn+1

0 − 1
) 1
n+1

)
.

Note that the diameter is also controlled, since

r1(Ωt)

rn+1(Ωt)
= I1(Ωt)

1
n+1 ≤ In+1−k(Ωt)

n
k(n+1) ≤ σ

n(n+1−k)
k

0 .
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The 1-radius r1(Ωt) controls the diameter, since V1(Ωt) ≥ V1(L) =
c(n)D(Ωt) where L is a line segment of maximal length in Ωt. Finally,
the diameter controls the circumradius, so we have

ρ+(t) ≤ C(n)σ
n(n+1−k)

k
0 rn+1(Ωt).

q.e.d.

4. Upper bound of Ek

By (3.8), the inner radius of Ωt is bounded below by a positive con-
stant R1. This implies that there exists a ball of radius R1 contained in
Ωt for all t ∈ [0, T ). The following lemma shows the existence of a ball
with fixed centre enclosed by our flow hypersurfaces on a suitable fixed
time interval.

Lemma 4.1. Let Mt be a smooth convex solution of the flow (1.1)
on [0, T ) with the global term φ(t) given by (1.6). For any t0 ∈ [0, T ),
let B(p0, ρ0) be the inball of Ωt0, where ρ0 = ρ−(Ωt0). Then

(4.1) B(p0, ρ0/2) ⊂ Ωt, t ∈ [t0,min{T, t0 + τ})

for some τ depending only on n, α,Ω0.

Proof. Without loss of generality, we assume that p0 is the origin.
Then 〈X, ν〉 ≥ 0 as long as 0 ∈Mt, since Mt is convex for each t ∈ [0, T ).
Then

∂

∂t
|X|2 = 2(φ− Eα/kk )〈X, ν〉 ≥ −2E

α/k
k 〈X, ν〉.

Denote r(t) = minMt |X|. At the minimum point, we have 〈X, ν〉 =
|X| = r and the principal curvature κi ≤ r−1. Then

d

dt
r(t) ≥ −r−α

which implies that

r(t) ≥
(
ρ1+α

0 − (α+ 1)(t− t0)
) 1

1+α ≥ ρ0/2

provided that t− t0 ≤ (1 +α)−1(1−2−α−1)ρα+1
0 . Let τ = (1 +α)−1(1−

2−α−1)Rα+1
1 , which depends only on n, α,Ω0. Then B(p0, ρ0/2) ⊂ Ωt

for any t ∈ [t0,min{T, t0 + τ}). q.e.d.

Now we can use the technique that was first introduced by Tso [23]
to prove the upper bound of Ek along the flow (1.1).

Theorem 4.2. Let Mt be a smooth convex solution of the flow (1.1)
on [0, T ) with the global term φ(t) given by (1.6). Then maxMt Ek ≤ C
for any t ∈ [0, T ), where C depends on n, k, α,M0 but not on T .
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Proof. For any given t0 ∈ [0, T ), using (4.1) and the convexity of Mt,
the support function u = 〈X − p0, ν〉 satisfies

(4.2) u− c ≥ c > 0, ∀ t ∈ [t0,min{T, t0 + τ}),
where c = ρ0/4. Define the function

W =
E
α/k
k

u− c
,

which is well-defined for all t ∈ [t0,min{T, t0 + τ}). Combining (1.1)
and (2.2) gives the evolution equation of u(x, t) along the flow (1.1)

∂

∂t
u =

α

k
E

α
k
−1

k

∂Ek
∂hij
∇j∇iu+ φ(t)− (1 + α)E

α/k
k

+
α

k
E

α
k
−1

k (nE1Ek − (n− k)Ek+1)u,(4.3)

where∇ is the Levi-Civita connection on Mt with respect to the induced
metric. By (2.4) and (4.3), we can compute the evolution equation of
the function W

∂

∂t
W =

α

k
E

α
k
−1

k

∂Ek
∂hij

(
∇j∇iW +

2

u− c
∇iu∇jW

)
− φW

(
α

k
(nE1 − (n− k)

Ek+1

Ek
) +

1

u− c

)
+ (α+ 1)W 2 − αc

k
W 2(nE1 − (n− k)

Ek+1

Ek
).

The Newton-MacLaurin inequality and (4.2) implies that

nE1 − (n− k)
Ek+1

Ek
≥ kE1, and W ≤ Eα1 /c.

Then we obtain the following estimate

∂

∂t
W ≤α

k
E

α
k
−1

k

∂Ek
∂hij

(
∇j∇iW +

2

u− c
∇iu∇jW

)
+W 2

(
α+ 1− αc1+ 1

αW 1/α
)

(4.4)

holds on [t0,min{T, t0 + τ}). Let W̃ (t) = supMt
W (·, t). Then (4.4)

implies that
d

dt
W̃ (t) ≤ W̃ 2

(
α+ 1− αc1+ 1

α W̃ 1/α
)

from which it follows from the maximum principle that
(4.5)

W̃ (t) ≤ max

{(
2(1 + α)

α

)α
c−(α+1),

(
2

1 + α

) α
1+α

c−1(t− t0)−
α

1+α

}
.

Then the upper bound on Ek follows from (4.5) and the facts that
c = ρ0/4 ≥ R1/4 and u− c ≤ 2R2. q.e.d.
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Using the upper bound of Ek, we can prove the following estimate on
the global term φ(t).

Corollary 4.3. Let Mt be a smooth convex solution of the flow (1.1)
on [0, T ) with the global term φ(t) given by (1.6). Then for any p > 0
we have

(4.6) 0 < C1 ≤
1

|Mt|

∫
Mt

Epkdµt ≤ C2

on [0, T ), where the constants C1, C2 depend only on n, k, α, p,M0. In
particular,

(4.7) C1 ≤ φ(t) ≤ C2

on [0, T ).

Proof. The upper bound in (4.6) follows from the upper bound on Ek.
For the lower bound in (4.6), if 0 < p ≤ 1, by the Alexandrov-Fenchel
inequality (2.12) and the upper bound on Ek,

|Ωt|
n−k
n+1 ≤ ω

− k+1
n+1

n

∫
Mt

Ekdµt ≤ω
− k+1
n+1

n sup
Mt

E1−p
k

∫
Mt

Epkdµt

≤C(n, k, α, p,M0)

∫
Mt

Epkdµt

Then the lower bound in (4.6) follows from the above inequality and
the upper bound on |Mt|. If p > 1, the lower bound follows similarly by
using the following inequality

|Ωt|
n−k
n+1 ≤ ω

− k+1
n+1

n

∫
Mt

Ekdµt ≤ ω
− k+1
n+1

n

(∫
Mt

Epkdµt

)1/p

|Mt|1−
1
p .

q.e.d.

5. Long-time existence

Let [0, Tmax) be the maximum interval such that the solution of the
flow (1.1) exists.

Lemma 5.1. If M0 is strictly convex, then Mt is strictly convex for
all t ∈ [0, Tmax).

Proof. We consider the inverse second fundamental form τij , which
evolves by (2.8). At a maximum point and maximum eigenvector of τij ,

the first term on the right of (2.8) is non-positive. Also, since F = E
1/k
k

is inverse-concave, i.e., F∗ is concave, the second and third terms on
the right of (2.8), involving ∇̄τ , are non-positive. The remaining terms
applied to the maximum eigenvector of τ can be written as −F−α∗ −
αF
−(1+α)
∗

∑
i Ḟ

i
∗ (τmax − τi) + φ(t) ≤ φ(t). Moreover, φ(t) ≤ C2 by

(4.7). It follows that the maximum eigenvalue of τij is bounded by
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the maximum at t = 0 plus C2t, and in particular is bounded on any
finite time interval. The principal curvatures are the reciprocals of the
eigenvalues of τ , and so have a positive lower bound on any finite time
interval. q.e.d.

Theorem 5.2. Let M0 be a closed and strictly convex hypersurface
in Rn+1 and Mt be the smooth solution of the flow (1.1) with the global
term φ(t) given by (1.6). Then Mt is strictly convex and exists for all
time t ∈ [0,∞).

Proof. As shown in Lemma 5.1, Mt is strictly convex for all t < Tmax

and the principal curvatures are bounded below by a positive constant
ε (which may depend on Tmax). Theorem 4.2 gives us a uniform upper
bound on Ek. By the definition (1.2) we have (ordering the principal
curvatures in increasing order)

Ek ≥
(
n

k

)−1

κn−k+1 · · ·κn ≥
(
n

k

)−1

εk−1κn.

Thus the principal curvatures are uniformly bounded from above on
[0, Tmax). Then we can argue as [10, §6] using the procedure in [4,16] to
derive estimates on all higher derivatives of the curvature on [0, Tmax),
and a standard continuation argument then shows that Tmax = +∞.
q.e.d.

6. Hausdorff Convergence

In this section, we will prove that the flow (1.1) converges to a sphere
in Hausdorff sense as t→∞. Denote

Ēk =
1

|Mt|

∫
Mt

Ekdµt =
Vn−k(Ωt)

Vn(Ωt)
.

Lemma 6.1. Let M0 be a closed and strictly convex hypersurface in
Rn+1 and Mt be a smooth solution of the flow (1.1) with global term
φ(t) given by (1.6). Then there exists a sequence of times ti →∞ such
that ∫

Mti

(
Ek − Ēk

)2
dµti → 0, as i→∞(6.1)

and

(6.2) Vn+1−k(Ωti)− Vn−k(Ωti)
Vn+1(Ωti)

Vn(Ωti)
→ 0, as i→∞.

Proof. Proposition 3.1 says that the isoperimetric ratio In+1−k(Ωt) is
monotone non-increasing along the flow (1.1) with φ(t) given by (1.6).
Since In+1−k(Ωt) ≥ 1 for all t, there exists a sequence of times ti →∞
such that

d

dt

∣∣∣∣
ti

In+1−k(Ωt) → 0, as i→∞.
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Then from the proof of Proposition 3.1, the Jensen’s inequality (3.5)
approaches equality as ti →∞, or equivalently

∫
Mti

E
α/k
k

(
Ek − Ēk

)
dµti =

∫
Mti

(
E
α/k
k − Ēα/kk

) (
Ek − Ēk

)
dµti → 0

(6.3)

as i → ∞. Now we observe that for α ≥ k, the convexity of z 7→ zα/k

implies that(
E
α/k
k − Ēα/kk

) (
Ek − Ēk

)
≥ α

k
Ē
α/k−1
k

(
Ek − Ēk

)2
.

On the other hand, if 0 < α < k then

(E
α/k
k − Ēα/kk )(Ek − Ēk) =

α

k

(∫ 1

0
((1− s)Ek + sĒk)

α/k−1 ds

)
(Ek − Ēk)2

≥ α

k

(
sup
Mt

Ek

)α/k−1 (
Ek − Ēk

)2
.

Since Ek is bounded above by Theorem 4.2 and Ēk is bounded below
by Corollary 4.3, we conclude in either case that

(6.4)
(
E
α/k
k − Ēα/kk

) (
Ek − Ēk

)
≥ C

(
Ek − Ēk

)2
,

so that (6.1) follows immediately from (6.3).
For each time ti, let pti be the center of the inball Bpti (ρ−(Ωti)) of

Mti . By the estimate (3.8), the support function uti = 〈X − pti , ν〉
of Mti with respect to pti satisfies |uti | ≤ 2R2 for all ti. The Hölder
inequality and (6.1) then imply that∫

Mti

(
Ek − Ēk

)
uti dµti → 0, as i→∞.

The estimate (6.2) follows since the Minkowski formula gives that

Vn+1−k(Ωti)− Vn−k(Ωti)
Vn+1(Ωti)

Vn(Ωti)

=

∫
Mti

Ek−1dµti −
(n+ 1)|Ωti |
|Mti |

∫
Mti

Ekdµti

=

∫
Mti

(
Ek − Ēk

)
uti dµti .

q.e.d.

Remark 6.2. Note that the Alexandrov-Fenchel inequality (2.10)
implies that

Vn+1−k(Ω)− Vn−k(Ω)
Vn+1(Ω)

Vn(Ω)
≥ 0

for any convex body Ω.
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Lemma 6.3. Let M0 be a closed and strictly convex hypersurface
in Rn+1 and Mt be the smooth solution of the flow (1.1) with global
term φ(t) given by (1.6). Then there exists a sequence of times ti →∞
such that Mti converges to a round sphere Sn(r̄) in Hausdorff sense as
ti →∞, where the radius r̄ is determined by Ω0.

Proof. (1). We first give an argument for the case k = n: In this case
the stability result of Lemma 2.2 can be applied to prove the Hausdorff
convergence. We note that

V1Vn − V0Vn+1 =
V 2

1 V
2
n − V 2

0 V
2
n+1

V1Vn + V0Vn+1

=
V 2
n (V 2

1 − V0V2) + V0(V2V
2
n − V0V

2
n+1)

V1Vn + V0Vn+1

≥ V 2
n

V1Vn + V0Vn+1

(
V 2

1 − V0V2

)
.

It follows from (6.2) that V 2
1 (Ωti) − V0V2(Ωti) → 0 as i → ∞. By the

stability inequality (2.11) there is a sequence of balls Bi such that

dH(Ωti , Bi)→ 0.

Here the diameter of Bi equals r1(Ωti) (which is bounded above and
below by (3.8), and the centre of Bi is the Steiner point of Ωti , which
remains in a bounded region by the Alexandrov reflection argument of
[9]. Therefore we can pass to a further subsequence along which Bi
converges in Hausdorff distance to a fixed ball B, and then we have

dH(Ωti , B)→ 0.

We remark that this argument also applies for k < n if Conjecture 7.6.13
in [22] is true, since we have Ek bounded above. In particular, in the case
where Ω0 is antipodally symmetric, then [22, Theorem 7.6.20] provides
the required statement, so this argument applies to prove Hausdorff
convergence to a ball in this case for any k.

(2). Next we provide a different argument which applies for all k,
using the curvature measures Cm introduced in Section 2.4: By the esti-
mate on the outer-radius of Ωt in (3.8), the Blaschke selection theorem
(see Theorem 1.8.7 of [22]) implies that there exists a subsequence of

time ti and a convex body Ω̂ such that Ωti converges to Ω̂ in Hausdorff
sense as ti → ∞. As each Ωti has inner radius ρ−(Ωti) ≥ R1, the limit

convex body Ω̂ has positive inner radius. Without loss of generality, we
may assume that the sequence ti is the same sequence such that (6.1)
holds.

We will show that Cn−k(Ω̂, .) = c Cn(Ω̂, .) where c =
Vn−k(Ω̂)

Vn(Ω̂)
.

The weak continuity of Cm is equivalent to the statement that
∫
fdCm(Ωi)

converges to
∫
fdCm(Ω) whenever f is a bounded continuous function
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on Rn+1 and Ωi is a sequence of convex sets converging to Ω in Haus-
dorff distance. In particular we have that

∫
fdCn−k(Ωti) converges to∫

fdCn−k(Ω̂), and
∫
fdCn(Ωti) converges to

∫
fdCn(Ω̂), as i→∞. Since

Ωti is smooth and uniformly convex, we have for any bounded continu-
ous f ∣∣∣∣∫ fdCn−k(Ωti)− c

∫
fdCn(Ωti)

∣∣∣∣
=

∣∣∣∣∣
∫
Mti

fEkdHn −
∫
Mti

fcdHn
∣∣∣∣∣

≤ sup |f |
∫
Mti

|Ek − c|dHn

≤ sup |f |
∫
Mti

|Ek − Ēk|dHn

+ sup |f |Vn(Ωti)

(
Vn−k(Ωti)

Vn(Ωti)
− Vn−k(Ω̂)

Vn(Ω̂)

)
.

The left-hand side converges to
∣∣∣∫ fdCn−k(Ω̂)− c

∫
fdCn(Ω̂)

∣∣∣ by the

weak continuity of the curvature measures, while the first term on the
right-hand side converges to zero by (6.1), and the second does also by

Lemma 2.3. It follows that
∫
fdCn−k(Ω̂) = c

∫
fdCn(Ω̂) for all bound-

ed continuous functions f , and therefore that Cn−k(Ω̂, .) = c Cn(Ω̂, .) as
claimed.

By Theorem 2.4, Ω̂ is a ball. This completes the proof of Lemma 6.3.
q.e.d.

Now we show that the whole family Mt converges to a sphere as
t→∞.

Theorem 6.4. Let M0 be a closed and strictly convex hypersurface
in Rn+1. Then the solution Mt of (1.1) converges to a round sphere
Snr̄ (p) in Hausdorff distance as t→∞.

Proof. By Proposition 3.1, Vn+1(Ωt) is non-decreasing and Vn+1−k(Ωt)
is non-increasing. It follows also that Vn+1(Ωt) is bounded above, since
rn+1(Ωt) ≤ rn+1−k(Ωt) ≤ rn+1−k(Ω0) by the Alexandrov-Fenchel in-
equality (3.1) and the monotonicity of Vn+1−k(Ωt). Similarly Vn+1−k(Ωt)
is bounded from below. It follows that both converge as t → ∞, and
by Lemma 6.3 we have that In+1−k(Ωti) → 1 as i → ∞ and hence
In+1−k(Ωt) → 1 as t → ∞. It follows that there exists r̄ > 0 such
that rn+1(Ωt) → r̄ and rn+1−k(Ωt) → r̄ as t → ∞. It follows from the
stability estimate (7.124) in [22] that dH(Ωt, Br̄(p(t))) → 0, where p(t)
is the Steiner point of Ωt.
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To complete the argument we control the Steiner point p(t) using an
Alexandrov reflection argument: For each z ∈ Sn and λ ∈ R we define
a reflection Rz,λ by Rz,λ(x) = x − 2(x · z − λ)z, which reflects in the
hyperplane {x · z = λ}.

We define S+(z, t) = {λ ∈ R : Rz,λ(Ωt ∩ {x · z > λ}) ⊂ Ω} and λ+(z, t) =
inf S+(z, t). The Alexandrov reflection argument [9] implies that λ+(z, t)
is non-increasing in t for each z. Note also that λ−(z) := −λ+(−z) sat-
isfies λ−(z) ≤ λ+(z) and λ−(z, t) is non-decreasing in t for each z.

Lemma 6.5. If dH(Ω(t), Br̄(p(t))) < ε, then λ+(z, t) ≤ p(t)·z+2
√
εr̄.

Proof. We fix t, and write Ω = Ωt and p = p(t), so that by assumption
dH(Ω, Br̄(p)) < ε. Fix orthogonal unit vectors z and e, and let P =
p+span{z, e} ⊂ Rn+1. Then ΩP := Ω∩P is a convex body in the plane
P which contains B̄r̄−ε(p) and is contained in Br̄+ε(p). For each s we
can write

ΩP ∩ {x : (x− p) · z = s} = p+ sz + (−u−P (s), u+
P (s))e

where u±P are concave functions with√
(r̄ − ε)2 − s2 ≤ u±P (s) <

√
(r̄ + ε)2 − s2

for each 0 ≤ s < r̄ − ε. In particular we have r̄ − ε < u±P (0), and

u±P (2
√
r̄ε) <

√
(r̄ + ε)2 − 4r̄ε = r̄ − ε.

It follows by concavity of u±P that u±P (s) > uP (2
√
r̄ε) for 0 ≤ s ≤ 2

√
r̄ε,

and u±P (s) < u±P (2
√
r̄ε) for s > 2

√
r̄ε. It follows that x = p+ sz + ye ∈

ΩP with s > 2
√
r̄ε implies that

Rz,p·z+2
√
r̄ε(x) = p+ (4

√
r̄ε− s)z + ye

∈ p+ (4
√
r̄ε− s)z + (−u−P (s), u+

P (s))e

⊂ p+ (4
√
r̄ε− s)z + (−u−P (2

√
r̄ε), u+

P (2
√
r̄ε))e

⊂ p+ (4
√
r̄ε− s)z + (−u−P (4

√
r̄ε− s), u+

P (4
√
r̄ε− s))e

⊂ ΩP ⊂ Ω

for each s ∈ [0, 4
√
r̄ε]. Furthermore for x ∈ Ω with (x − p) · z > 4

√
r̄ε

we have

Rz,p·z+2
√
r̄ε(x) ∈ Br̄−ε(p) ⊂ Ω.

Since e is arbitrary, we have that Rz,p·z+2
√
r̄ε(Ω∩{(x−p) ·z > 2

√
r̄ε}) ⊂

Ω, and so p · z+ 2
√
r̄ε ∈ S+(z, t) and λ+(z, t) ≤ p · z+ 2

√
r̄ε as claimed.

q.e.d.

It follows from the monotonicity of λ+(z, t) that if dH̄(Ω(t), Br̄(p(t))) <
ε then for t′ > t we have

p(t)·z−2
√
r̄ε ≤ λ−(z, t) ≤ λ−(z, t′) ≤ λ+(z, t′) ≤ λ+(z, t) ≤ p(t)·z+2

√
r̄ε
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so that ∣∣p(t) · z − λ±(z, t′)
∣∣ < 2

√
r̄ε.

It follows that λ±(z, t′) is Cauchy, hence convergent, as t′ → ∞, and
that p(t) · z converges to the same limit. Since z is arbitrary, this
proves that p(t) converges to a point p ∈ Rn+1, and we conclude that
dH(Ω(t), p)→ 0 as t→∞. q.e.d.

7. Smooth convergence

We proved in the previous section the Hausdorff convergence of the
solution Mt of (1.1) to a round sphere Sn(r̄) as t→∞. In this section,
we prove that the convergence is in the C∞ sense. Firstly, we prove the
following lower bound for Ek along the flow (1.1), by adapting an idea
of Smoczyk [20, Proposition 4] (see also [6, 17]).

Proposition 7.1. Let M0 be a closed and strictly convex hypersurface
in Rn+1 and Mt, t ∈ [0,∞), be the smooth solution of the flow (1.1).
Then there exists a positive constant C = C(n, α,Ω0) such that Ek ≥ C
on Mt for all t ≥ 0.

Proof. The convexity estimate of Lemma 5.1 implies a lower bound
on Ek on any finite time interval, so we need only control Ek from below
for sufficiently large times. As shown in Corollary 4.3, φ(t) is bounded
from above and below by positive constants:

0 < φ− ≤ φ(t) ≤ φ+,

where φ−, φ+ are positive uniform constants depending only on n, k, α
and M0. Since Ωt converges to the ball B(r̄) in Hausdorff sense as
t → ∞, for any small ε > 0, there exists a large time t0 > 0 such that
for all t ≥ t0, the outer radius ρ+(t) and inner radius ρ−(t) of Ωt satisfies

(7.1) (1− ε)r̄ ≤ ρ−(t) ≤ ρ+(t) ≤ (1 + ε)r̄.

In the following, we only consider times t ≥ t0. Let t1 > t0 and set

ϕt1(t) =

∫ t

t1

φ(s)ds.

We use the Gauss map parametrization of the flow (1.1) described in
§2.2. Define f(z, t) by

(7.2) f(z, t) = −(1 + α)(t− t1)Ψ(z, t)− (1 + α)ϕt1(t) + s(z, t)

on Sn for t ≥ t1, where s(z, t) is the support function of the evolving
hypersurface Mt and Ψ(z, t) is the function defined in (2.6). Combining
(2.5) and (2.7) gives the the evolution equation of f(z, t)

∂

∂t
f(z, t) = Ψ̇kl(z, t)∇̄k∇̄lf(z, t)− αφ(t)



22 B. ANDREWS & Y. WEI

+

(
s(z, t)− (1 + α)(t− t1)(Ψ + φ(t))

)
Ψ̇klḡkl.(7.3)

We now show that the last term on the right hand side of (7.3) is
nonnegative for a short time after time t1. Choose the origin to be the
center of the inball of Ωt1 . Then

s(z, t1) ≥ s(z1, t1) = ρ−(t1) ≥ (1− ε)r̄,

where z1 is the minimum point of s(z, t1). By Theorem 4.2, Ek is bound-

ed above by a uniform constant. Therefore Ψ = −Eα/kk is bounded be-
low by a uniform negative constant −c+. Then the evolution equation
(2.5) of s(z, t) gives that

s(z, t) ≥ s(z, t1) + (φ− − c+)(t− t1)

≥(1− ε)r̄ + (φ− − c+)(t− t1).

Let t2 > t1 be the time such that

(7.4) t2 − t1 =
(1− ε)r̄

c+ − φ− + (1 + α)φ+
,

which is positive and independent of time t1. Then for any t ∈ [t1, t2],
we have

s(z, t)− (1 + α)(t− t1)(Ψ(z, t) + φ(t))

≥ −(1 + α)(t− t1)φ+ + (1− ε)r̄ + (φ− − c+)(t− t1) ≥ 0.(7.5)

Since Ψ̇klḡkl ≥ 0, combining (7.5) with (7.3) gives that

∂

∂t
f(z, t) ≥ Ψ̇kl(z, t)∇̄k∇̄lf(z, t)− αφ(t)(7.6)

for all time t ∈ [t1, t2]. The maximum principle implies that

f(z, t) ≥min
Mt

f(z, t)

≥min
Mt1

f(z, t1)− αϕt1(t)

=s(z1, t1)− αϕt1(t)(7.7)

for all time t ∈ [t1, t2]. By the definition (7.2) of f(z, t), (7.7) implies
that

(7.8) − (1 + α)Ψ(z, t) ≥ ϕt1(t)− s(z, t) + s(z1, t1)

t− t1
for all t ∈ (t1, t2] with t2 defined in (7.4).

To estimate the lower bound of −Ψ, it remains to estimate the right
hand side of (7.8). Let r(t) = maxMt |X|. Recall that the origin is
chosen to be the center of the inball of Ωt1 , then

(7.9) r+ := r(t1) ≤ (1 + 2ε)r̄.
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From the flow equation (1.1), and noting that the principal curvature
κi ≥ r(t)−1 at the maximal point of |X|, we deduce that

(7.10)
d

dt
r(t) ≤ φ(t)− r(t)−α ≤ φ+,

which implies that

r(t) ≤ r+ + φ+(t− t1).

Then

(7.11) r(t) ≤ 2r+, ∀ t ∈ [t1, t3],

where t3 is given by t3 − t1 = φ−1
+ r+. Since

d

dt
(ρ−(t1) + ϕt1(t)− r(t)) ≥ r(t)−α ≥ 2−αr−α+ , ∀ t ∈ [t1, t3],

we have

ρ−(t1) + ϕt1(t)− r(t) ≥ ρ−(t1)− r+ + 2−αr−α+ (t− t1)

≥ 2−1−αr−α+ (t− t1)(7.12)

provided that

t ≥ t1 + 21+αrα+(r+ − ρ−(t1)) =: t4.

By (7.1) and (7.9), we know that

r+ − ρ−(t1) ≤ 3εr̄

can be arbitrary small by assuming t0 is sufficiently large. Then the
waiting time t4 − t1 can be made small such that t4 < min{t2, t3} by
choosing t0 sufficiently large. Combining (7.8) and (7.12) yields that

(7.13) − (1 + α)Ψ(z, t) ≥ ρ−(t1) + ϕt1(t)− r(t)
t− t1

≥ 2−1−αr−α+

for all time t ∈ [t4,min{t2, t3}]. Since −Ψ = E
α/k
k , the estimate (7.13)

gives the uniform positive lower bound on Ek. q.e.d.

The lower speed bound allows us to obtain a uniform lower bound on
principal curvatures:

Proposition 7.2. If M0 is smooth and uniformly convex, then there
exists ε > 0 such that κi(x, t) ≥ ε for all i and for all (x, t) ∈M×[0,∞).

Proof. In the evolution equation (2.8) for τij , all terms are non-
positive except for the last one. The lower bound on Ek implies a lower
bound on F−1

∗ , so the last two terms are bounded by −C1τij + C2ḡij .
This is negative if τij is sufficiently large, so any sufficiently large upper
bound on the eigenvalues of τ is preserved. Equivalently, and sufficient-
ly small lower bound on principal curvatures is preserved by the flow.
q.e.d.
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The uniform upper bounds on Ek, together with the uniform lower
bound on κi, implies a uniform upper bound on principal curvatures by
the argument of Theorem 5.2. It follows that the flow (1.1) is uniformly
parabolic for all t > 0. Then an argument similar to that in the proof
of Theorem 5.2 can be applied to show that all derivatives of curvatures
are uniformly bounded on Mt for all t > 0. Since Mt converges in
Hausdorff distance to Sr̄(p), this implies that Mt converges in C∞ to
Sr̄(p). By an argument similar to that in [2], we can further prove that
X(·, t) converges exponentially fast to a smooth limiting embedding with
image equal to the sphere Sr̄(p) as t→∞.

8. Generalizations

In this section, we discuss some generalisations of Theorem 1.1.

8.1. Nonhomogeneous functions of Ek. Recently Bertini and Sines-
trari [7] have considered constrained flows by rather general increasing
functions of the mean curvature, preserving either the enclosed volume
or the n-dimensional area of the evolving hypersurfaces. Our methods
allow a similar result for constrained flows by powers of the elementary
symmetric functions Ek:

Theorem 8.1. Let µ : R+ → R+ be a smooth function with µ′(z) > 0
for z > 0, and with limz→0 µ(z) = 0 and limz→∞ µ(z) = ∞. Sup-
pose further that µ(ξ−1) is a convex function of ξ (equivalently, µ′′(z) +
2
zµ
′(z) ≥ 0 for all z > 0), and such that limx→∞

µ′(x)x2

µ(x) = ∞, while
zµ′(z)
µ(z) = O(1) as z → 0. Then the flow

(8.1)
∂X

∂t
(x, t) =

(
φ(t)− µ(E

1
k
k (x, t))

)
ν(x, t)

with φ(t) chosen to keep G(rn+1−k(Ωt), rn+1(Ωt)) fixed, has a smooth
solution for any smooth, uniformly convex initial embedding X0, which
exists for all positive times and converges smoothly as t → ∞ to a
limiting embedding X∞ with image equal to a sphere Snr̄ (p) for some
p ∈ Rn+1, where G(r̄, r̄) = G(rn+1−k(Ω0), rn+1(Ω0)).

We briefly mention the key steps involved: The requirement to pre-
serve the constraint G implies that the global term φ(t) is given by the
following expression:

φ =
Gaω

1
n+1−k
n V

n−k
n+1−k
n+1−k

∫
M µ+Gbω

1
n+1
n V

n
n+1

n+1

∫
M Ekµ

Gaω
1

n+1−k
n V

n−k
n+1−k
n+1−k Vn +Gbω

1
n+1
n V

n
n+1

n+1 Vn−k

.
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As in the homogeneous cases, the enclosed volume is non-decreasing and
the mixed volume Vn−k(Ωt) is non-increasing: We have

d

dt
Vn+1(Ωt) =

(n+ 1)Gbω
1

n+1
n V

n
n+1

n+1

Gaω
1

n+1−k
n V

n−k
n+1−k
n+1−k Vn +Gbω

1
n+1
n V

n
n+1

n+1 Vn−k

×
(
|Mt|

∫
Mt

Ekµ−
∫
Mt

Ek

∫
Mt

µ

)
.

The bracket on the right is non-negative, since

|Mt|
∫
Mt

Ekµ−
∫
Mt

Ek

∫
Mt

µ

=

∫
Mt

∫
Mt

(Ek(x)µ(x)− Ek(x)µ(y)) dHn(x)dHn(y)

=
1

2

∫
Mt

∫
Mt

(
Ek(x)µ(x) + Ek(y)µ(y)

− Ek(x)µ(y)− Ek(y)µ(x)

)
dHn(x)dHn(y)

=
1

2

∫
Mt

∫
Mt

(Ek(x)− Ek(y)) (µ(x)− µ(y)) dHn(x)dHn(y)(8.2)

which is non-negative since µ(E
1/k
k ) is an increasing function of Ek.

The argument to show that Vn+1−k(Ωt) is non-increasing is similar,
and it follows that the isoperimetric ratio In+1−k is strictly decreasing
unless the hypersurface is a sphere. This gives an upper bound on
diameter and a lower bound on inradius. As in [7], an upper bound
on Ek follows by an argument similar to that in Theorem 4.2, provided

that limx→∞
µ′(x)x2

µ(x) = ∞. The argument of Lemma 5.1 to preserve

convexity of the evolving hypersurface also applies, provided we assume
that µ(ξ−1) is a convex function of ξ for ξ > 0 (equivalently zµ′′(z) +
2µ′(z) ≥ 0 for all z > 0). The Hausdorff convergence argument of
Lemma 6.3 applies without change since we can find a subsequence
of times ti along which d

dtIn+1−k approaches zero. This implies that
|Mti |

∫
Mti

Ekµ −
∫
Mti

Ek
∫
Mti

µ approaches zero, which is sufficient to

ensure that
∫
Mti
|Ek − Ēk| dHn approaches zero. The lower bound on

Ek given in Proposition 7.1 holds provided that we assume that zµ′(z)
µ(z)

is bounded as z → 0, and this also suffices for the uniform lower bound
on principal curvatures, following the argument of Proposition 7.2. As
before, the flow is then uniformly parabolic and concave in τ , and higher
regularity and smooth convergence follow.
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8.2. Volume non-decreasing flows. We can more generally consider
Equation (8.1) with the global term φ(t) satisfying

(8.3) φ(t) ≥ µ̄ :=
1

Vn(Ωt)

∫
Mt

µ(E
1/k
k )dµt.

By (3.2), this means the volume of Ωt is monotone non-decreasing along
the flow. We can check that the isoperimetric ratio In+1−k(Ωt) is non-
increasing along the flow: We have

1

(n+ 1)(n+ 1− k)

d

dt
In+1−k

=(φ(t)− µ̄)
V n
n+1−k

V n+2−k
n+1 V k

0

(Vn+1Vn−k − Vn+1−kVn)

+
V n
n+1−k

V n+1−k
n+1 V k

0 Vn

(
Vn−k

∫
Mt

µ− Vn
∫
Mt

Ekµ

)
.

The bracket on the first line is non-positive by the Alexandrov-Fenchel
inequality, while the second is non-positive by the expression (8.2).

In the case where the volume Vn+1 remains bounded, the analysis
is essentially the same as in the previous case. Otherwise the volume
tends to infinity, and the Alexandrov reflection argument implies that
dH(Ωt, Brn+1(Ωt)(p)) remains bounded, for some fixed p ∈ Rn+1. This
implies in particular that rescaling about p to fixed enclosed volume
gives Hausdorff convergence to a ball. However it seems likely that
further assumptions are required to prove smooth convergence in this
case.

8.3. Anisotropic generalisations. If W is a smooth, uniformly con-
vex body containing the origin in Rn+1, then there is an associated
‘relative differential geometry’ defined by W : On any smooth (orient-
ed) hypersurface, νW : M →W is the (smooth) map which takes each
point x ∈ M to the point in W with the same oriented tangent plane.
The relative curvature WW is the derivative of νW , which is a linear
map from TxM to TxM at each point. The relative principal curvatures
are the eigenvalues of WW .

In general we can consider flows of the form

∂

∂t
X(p, t) = (φ(t)− F (WW ))νW ,

where F is a symmetric, monotone function of the relative principal
curvatures.

A large part of the analysis we have given for the isotropic flows
carries through directly for their anisotropic analogues: If we replace the
mixed volumes Vj by their anisotropic analogues (defined by replacing
the ball B by the Wulff shape W ), then the evolution equations for the
mixed volumes are formally unchanged, and in particular choosing F =
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µ(Ek), where µ is an increasing function and Ek is the kth elementary
symmetric function of the relative principal curvatures, and choosing
φ(t) to preserve a monotone function of Vn+1 and Vn+1−k, one can show
that the enclosed volume is non-decreasing, while the relative mixed
volume Vn+1−k(Ωt) is non-increasing.

The only point of departure from our analysis for the isotropic case is
that there is no known anisotropic analogue of Theorem 2.4. Thus the
analogous result holds for k = n (using the first of the two arguments
in the proof of Lemma 6.3), but the result for k < n cannot so far
be deduced. The full result for anisotropic cases would follow from a
natural conjecture concerning the anisotropic curvature measures, which
we now define:

First we define a (non-symmetric) distance relative to W , by setting

dW (x, y) = inf{r > 0 : y ∈ x+ rW}.
The relative distance of a point from a set Ω is then defined by

dW (Ω, y) = inf{dW (x, y) : x ∈ Ω}.
If Ω is a convex body, then the infimum in the last definition is attained
at a single point which we denote by pW (Ω, y) ∈ ∂Ω. Finally, if Ω ⊂
Rn+1 is an open bounded convex body, β is an open set in Rn+1, and
ρ > 0, then we define

AWρ (Ω, β) = {x ∈ Rn+1 : 0 < dW (Ω, x) < ρ, pW (Ω, x) ∈ β}.
The anisotropic curvature measures are then defined by the expansion

Hn+1(AWρ (Ω, β)) =
1

n+ 1

n∑
m=0

ρn+1−m
(
n+ 1

m

)
CWm (Ω, β).

Conjecture 8.2. If Ω is an open bounded convex body in Rn+1 with
CWm (Ω, .) = c CWn (Ω, .) for some m ∈ {0, · · · , n − 1} and c > 0, then
Ω = λW + p for some λ > 0 and p ∈ Rn+1.

This conjecture would suffice to prove the analogue of our Theorem
1.1 for the anisotropic flows corresponding to any smooth, uniformly
convex Wulff shape W containing the origin.

The case k = 1 can be dealt with by different arguments: Following
the argument in [7], one can prove a lower bound on the speed µ(E1)
directly from the maximum principle (under assumptions on µ identical
to those in [7]). Once the lower speed bound is obtained, the flow is uni-
formly parabolic and estimates on all higher derivatives can be deduced
by standard arguments. It follows that the solution converges smoothly
to a limiting hypersurface which is smooth, uniformly convex, and has
constant E1(WW ) (by the evolution equation for the isoperimetric ra-
tio). By a rigidity result for equality cases in the Alexandrov-Fenchel
inequalities under the assumption of uniform convexity [22, Theorem
7.6.8] the limit is a scaled translate of the Wulff shape W .
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8.4. Flows without divergence structure. The maximum princi-
ple argument of Bertini and Sinestrari [7] to obtain a lower bound on
mean curvature under flows by functions of mean curvature cannot be
extended to flows involving other elementary symmetric functions Ek,

since the functions E
1/k
k are not uniformly elliptic unless a curvature

pinching estimate is known. However, their argument can be usefully
employed for a large class of other flows:

Consider flows of the form

∂X

∂t
= (φ(t)− µ(F (W))ν,

where µ has positive derivative, and F is uniformly elliptic (so that
F (A) + λTr(B) ≤ F (A + B) ≤ F (A) + ΛTr(B) for any positive defi-
nite matrices A and B). Then the argument of [7] applies to produce
a lower speed bound, and then the flow is uniformly parabolic so that
the solution has all higher derivatives bounded, provided that F is ei-
ther concave or inverse-concave so that Hölder continuity of the second
derivatives can be deduced.

For these class of flows it is no longer the case that an isoperimet-
ric ratio improves, but we can proceed by considering the Alexandrov
reflection argument outlined in the proof of Theorem 6.4. The higher
derivative estimates allow us to produce a limiting solution of the flow
as t → ∞, and for this limit the monotone quantities λ±(z, t) arising
from the Alexandrov reflection argument must be constant in time. A
strong maximum principle then implies that the hypersurface must have
reflection symmetries in every direction z, and so is a sphere.
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