IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.22, NO.8, AUGUST 2016

1933

Automatic Constraint Detection
for 2D Layout Regularization

Haiyong Jiang, Liangliang Nan, Dong-Ming Yan, Weiming Dong, Member, IEEE,
Xiaopeng Zhang, and Peter Wonka

Abstract—In this paper, we address the problem of constraint detection for layout regularization. The layout we consider is a set of two-
dimensional elements where each element is represented by its bounding box. Layout regularization is important in digitizing plans or
images, such as floor plans and facade images, and in the improvement of user-created contents, such as architectural drawings and
slide layouts. To regularize a layout, we aim to improve the input by detecting and subsequently enforcing alignment, size, and distance
constraints between layout elements. Similar to previous work, we formulate layout regularization as a quadratic programming
problem. In addition, we propose a novel optimization algorithm that automatically detects constraints. We evaluate the proposed
framework using a variety of input layouts from different applications. Our results demonstrate that our method has superior

performance to the state of the art.

Index Terms—Layout regularization, constraint detection, constraint analysis, linear integer programming

1 INTRODUCTION

WE propose an algorithm for the regularization of lay-
outs. In this paper, a layout refers to a two-dimen-
sional arrangement of objects. Layouts arise in a variety of
applications. For example, they can come from digitized
architectural floor plans, digitized facade images, image
and text layouts on slides, line drawings, and graph draw-
ings. In practice, when a layout is designed or digitized
from another source (e.g., images), it is inevitable that noise
will occur via imprecise user input. Elements in an idealized
layout exhibit some regularities, e.g., they are aligned, of the
same size, or uniformly distributed along a specific direc-
tion. However, in the aforementioned applications, these
regularities typically disappear due to approximate user
input. In this work, we seek to detect and restore these
regularities by eliminating the noise that occurs during the
layout design or digitization stage.

e H. Jiang is with the National Laboratory of Pattern Recognition (NLPR),
Institute of Automation, Chinese Academy of Sciences, Beijing 100190,
China, and KAUST, Thuwal 23955-6900, Saudi Arabia.

E-mail: haiyong jiang@nlpr.ia.ac.cn.

e L. Nan is with the KAUST, Thuwal 23955-6900, Saudi Arabia.
E-mail: liangliang nan@gmail .com.

o D.-M. Yan is with the KAUST, Thuwal, 23955-6900, Saudi Arabia, and
the National Laboratory of Pattern Recognition (NLPR), Institute of
Automation, Chinese Academy of Sciences, Beijing 100190, China.
E-mail: yandongming@gmail .com.

o W. Dong and X. Zhang are with the National Laboratory of Pattern
Recognition (NLPR), Institute of Automation, Chinese Academy of
Sciences, Beijing 100190, China.

E-mail: {weiming.dong, xiaopeng.zhang |@ia.ac.cn.

o P. Wonka is with the KAUST, Thuwal 23955-6900, Saudi Arabia, and
Arizona State University, Tempe, AZ 85287-8809.

E-mail: pwonka@gmail.com.

Manuscript received 13 Feb. 2015; revised 1 Sept. 2015; accepted 6 Sept. 2015.
Date of publication 18 Sept. 2015; date of current version 6 July 2016.
Recommended for acceptance by S.-M. Hu.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TVCG.2015.2480059

We offer three reasons for why this is an important prob-
lem. First, high-level shape analysis is a popular topic in com-
puter graphics. Many available methods rely on correctly
extracted relationships to analyze a scene [1]. Even if the input
and output of our regularization look similar, it is important
that correct relationships are extracted. Our motivation for
this paper is to build datasets for machine learning techniques
for layout synthesis. Second, a regularized layout compresses
better than a noisy one. Regularization is thus important to
the efficient representation of layouts. Third, in most cases,
the visual differences are noticeable and the regularized lay-
out looks better than the original one.

Regularization of layouts is challenging because of con-
straints. Here discuss a few such constraints: 1) Elements
can be partially aligned (e.g., elements are bottom aligned,
but not top aligned). 2) Large elements can be aligned with
multiple objects (e.g., top aligned with one and bottom
aligned with another). 3) Elements can be missing from a
regular pattern. 4) The spacing between rows and/or col-
umns can be irregular. Fig. 1 shows the complexity of possi-
ble constraints in an example layout.

A key ingredient in regularization is the design of the
layout model. A simple layout model has only a few param-
eters and therefore the fitting process is fairly robust. These
simple models, e.g., a set of regular grids, are popular for
automatic pattern analysis in images [2] and three-dimen-
sional (3D) shapes [3], [4]. Unfortunately, this simple data
model is limited in its applicability to a large class of lay-
outs, e.g., the layout shown in Fig. 1. A complex model typi-
cally has many parameters and can fit a large number of
layouts. However, such a model is not very robust to noise.

An initial framework for regularization was presented by
Pavlidis and Van Wyk [5]. They propose a simple greedy
algorithm to detect constraints from a layout. By constrast,
we use an optimization approach based on four steps. First,
we extract constraint candidates. Second, we score the likeli-
hood of constraints based on energy functions. Third, we

1077-2626 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:
mailto:
mailto:
mailto:

1934

=

AL
]

H I J K

Eu
[

Fig. 1. Complexity and multiformity of constraints in a facade layout.
Elements B and C are partially aligned (top aligned, but not bottom
aligned). The large element B is aligned with different objects at the top
(C ... F) and bottom (L). Elements are missing from a regular pattern
consisting of A, D, E, and F. The spacing between same-sized elements
H,1I,J, K isirregular.

use global optimization using linear integer program-
ming to select a subset of the constraint candidates that
work well together. Fourth, we regularize the layout by
transforming the contents of the layout such that the
change in both element locations and sizes is minimal
while the selected constraints are also respected. Our for-
mulation for layout regularization minimizes energy
expenditure from quadratic programming.

In our results, we show that our algorithm performs bet-
ter than [5] and also better than the independently devel-
oped algorithm in [6]. Further, our framework considers
more types of constraints than have been considered in pre-
vious work. The constraints we consider include the size,
spacing, and alignment of layout elements.

We make the following contributions:

e A formulation of the layout regularization problem
that performs better than previous work, as evalu-
ated on a test dataset consisting of layouts from a
variety of applications.

e An extension of previous work with a larger variety
of constraints that can be detected and considered in
the layout optimization.

2 RELATED WORK

The layout problem can be roughly classified into two major
categories, seamless layouts without gaps and layouts with
gaps between elements. Our work focuses on the latter cate-
gory of layout problem. We review related work in image
structure analysis, geometry structure analysis, and layout
enhancement.

2.1 Image Structure Analysis

There is a large literature that addresses different aspects of
image structure analysis. A common interest in computer
graphics and computer vision is facade layout analysis in
urban modeling [7]. The image labeling problem has been
addressed by considering both visual evidence and archi-
tectural principles [8]. Based on a perceptual grouping
approach, translational symmetry is exploited for single-
view image recognition [9]. A similar approach that uses
repeated information for facade image reconstruction is
proposed by Wu et al. [10]. To understand the structure of a
facade, a set of facade images are first recursively split and
labeled for training, and then the features are extracted

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.22, NO.8, AUGUST 2016

from the segmented facades and used to guide the labeling.
Riemenschneider et al. [11] combine both low-level and
mid-level classifiers for irregular facade parsing. Yang
et al. [12] use a binary split grammar to parse facade images.
Teboul et al. [13] parse facade layouts by using reinforce-
ment learning. Wu et al. [1] extract grammars from labeled
facade layouts and generate large scale variations by editing
the grammars. Shen et al. [14] adaptively partition urban
facades into hierarchical structures based on concatenated
and interlaced grids. Musialski et al. [15] developed an
interactive tool for facade image segmentation that requires
significant amount of user interaction. While most of these
analyses of facade layouts use a hierarchical representation,
Zhang et al. [16] propose modeling layouts using layered
grids with irregular spacing. In our work, we also use grids
with irregular spacing, but we can avoid the complexity of
the layered structure.

2.2 Geometry Structure Analysis

Quite a few papers focus on discovering regular patterns for
geometry structure analysis in the 3D space. Mitra et al. [17]
propose a pair-matching based approach to detect
partial and approximate symmetry in 3D shapes. Pauly
et al. [18] further introduce a framework for detecting
translational, scaling and rotational patterns in 3D
shapes. Tevs et al. [19] build a connection among similar
shapes via geometric symmetries and regularities. These
approaches have inspired many applications in shape
analysis, reconstruction, and synthesis. For example, Li
et al. [20] propose reconstructing 3D shapes from noisy
and incomplete point cloud data that simultaneously
detects surface primitives and their mutual relationships.
This approach involves both local and global shape anal-
ysis. A recent survey paper [21] presents more related
work in this topic.

2.3 Layout Enhancement

Layout enhancement (regularization and beautification)
has been studied in different areas, e.g., object align-
ment [22], handwriting and drawing beautification [23],
[24], [25], sketch and drawing beautification [5], [6], [26],
[27], and 3D shape symmetrization [28]. Nan et al. [29]
exploit and model conjoining Gestalt rules for grouping
and summarization of facade elements. AlHalawani
et al. [30] analyze and edit facade images with (semi-)
regular grid structures. Huang et al. [31] combine patch-
based image completion and translational symmetry
detection to fill in the missing part of an incomplete pla-
nar structure. More recently, Xu et al. [32] propose a
command-based arrangement tool for 2D layouts.

Pavlidis and Van Wyk [5] beautify drawings using a clus-
tering method, while Xu et al. [6] interactively enhance
global beautification with user guidance. We compare our
approach to these two methods in Section 6.

In this work, we are interested in processing digitized
two-dimensional (2D) images and drawings. By abstracting
each layout as a set of rectangles, our goal is to regularize
the layout such that the regularities of the elements in the
layout are enforced.

JIANG ETAL.: AUTOMATIC CONSTRAINT DETECTION FOR 2D LAYOUT REGULARIZATION

N N
I Iy =

(@) (b

1935

I0E

1]
1
I?I

| 1 1
L1 [13
L [|3
][] =E

]

§
I
I
|

(d

Fig. 2. An overview of our layout regularization approach. Given an input image or drawing (a), we first obtain the initial layout by manually marking
and labeling the elements in a pre-processing step (b). Then, appropriate constraints are automatically selected (c) and are used to generate the

regularized layout (d).

3 OVERVIEW

Given an image or drawing I, that is characterized by a set
of rectangles, the layout L = {e;,...e,} of I can be simply
described as the locations and sizes of the elements in I
Here, an element, ¢;, is defined by a label, /;, and its bound-
ing box, b; = {z;, yi, w;, h;}, depicting its bottom-left corner
(zi,y;) and the size (w;, h;) (see Fig. 4). We seek to regularize
the layout of the elements such that the regularities of these
elements are enforced.

Our proposed solution to the layout regularization prob-
lem uses both discrete and continuous optimization. Fig. 2
shows an overview of our layout regularization method.
Our method consists of the following three steps.

3.1 Preprocessing

To digitize the layout of a given image, the user manually
marks and labels the elements in the input image. The out-
put of the preprocessing step is the initial layout that will be
regularized in the next steps. Alternatively, the input can be
user-generated drawings or slide layouts.

3.2 Constraint Selection

We first detect a larger set of candidate constraints from the
initial layout using a simple thresholding-based method.
Then, we score each constraint using an energy function.
Finally, we select a set of constraints from the candidates
using global optimization (linear integer programming).
Details on constraint selection are presented in Section 4.

3.3 Layout Regularization

To regularize the input layout, we transform the contents of
the layout such that changes in both the element locations
and sizes is minimal while selected constraints are
respected. We use quadratic programming to minimize
energy use in layout regularization (Section 5).

4 CONSTRAINTS SELECTION

Given user-marked elements in a layout, our layout
regularization method tries to detect and enforce three types

of constraints: alignment, same-size, and same-spacing con-
straints. This problem is challenging in the following ways.
First, we have to detect reasonable constraints connecting
elements in the layout. Second, there may exist potential con-
flicts among these constraints. To address these problems,
we introduce an optimization-based constraint selection
algorithm. The selected constraints are then used in a qua-
dratic programming formulation to regularize the layout
(see Section 5).

4.1 Constraint Definitions

We consider the following relationships between elements
as potential regularity constraints: alignment constraints,
same-size constraints, and same-spacing constraints (see
Figs. 3 and 4).

4.1.1 Alignment Constraints

Two elements, e; and e;, can have one or multiple of the
following alignment constraints: top alignment, middle-Y
alignment, bottom alignment, left alignment, middle-X
alignment, and right alignment. For example, a bottom
alignment between e; and e; can be formulated as

yi —y; = 0. (6V)

Other alignment relations are defined in a similar way.

4.1.2 Same-Size Constraints

Two elements, ¢; and ¢;, may be linked by a same-width con-
straint or a same-height constraint or both. Elements with

pim 00U O
U | 1 |
EI D_EEED

(c) Same horizontal spacing

O ENE

(a) Left alignment

(b) Same size

Fig. 3. A subset of constraints in the example layout in Fig. 1. Colors
indicate different constraint groups in this figure.

1936
same horizontal spacing
i N
h| © € €;

l —wi)

bottom alignment same size

Fig. 4. lllustration of three types of constraints. The bottom alignment of
elements e; and e, can be formulated as y; — y» = 0. For the same-size
constraint of element pair (es, e3), we have wy — w3 = 0 and hy — hy = 0.
The horizontal same-spacing constraint on element pairs {e;,e,} and
{es,e3} turns outto be z» — (21 + wy) — (z3 — (z2 + w»)) = 0.

the same label are always considered to hold both same-size
constraints. Same-size constraints can be formulated as:

wi*w]‘:O, (2)
hi —hj =0.

4.1.3 Same-Spacing Constraints

Same-spacing constraints are defined on two-element pairs
and can be either in the horizontal or vertical direction. Cur-
rently, we only consider same-spacing constraints between
elements with the same labels. For example, assume the ele-
ment pairs (e;, ¢;) and (e, e,) should have the same spacing
in the horizontal direction. The equations for same-spacing
constraints depend on the relative position of the elements.
For the given example, assuming z; < z; and z,, < z,
would lead to

T +w; — Ty — (mm + Wy, — xn) =0. (3)

4.2 Candidate Group Generation

The candidate group generation step computes a set of can-
didate groups {g; }, where each group, g;, is a set of elements
that share an alignment, same-size, or same-spacing con-
straint. In this step, we use a threshold, ¢,, to limit the candi-
date groups to a reasonably small set. Note that the
threshold t, is a global control mechanism for the number
of candidate groups being generated. This threshold is set
high enough so that all reasonable candidates are generated.
Note that ¢, is only used for generating the candidate con-
straints, while the actual constraints are selected using the
linear integer programming formulation described later.
We describe the candidate group generation for each con-
straint type in the following.

4.2.1 Alignment Constraints

We use top-alignment as an example. We sort all the ele-
ments in the input layout according to the y value of their
top edge. Let {p1,...p,} denote the top positions of the
sorted elements. We generate a set of potential groups such
that the difference in the top positions of every pair of the
elements in each group is less than the threshold, ¢,.

4.2.2 Same-Size Constraints

For same-size constraints, we first group all elements
according to their label because we assume that elements

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.22, NO.8, AUGUST 2016

with the same label have the same size. Then, we com-
pute the average element size for each label and use this
element size to define a distance between labels using
the /; norm. For each label we find the k-nearest neigh-
boring labels, where k iterates from 1 to the number of
labels. This yields an initial set of candidate groups.
Then, we filter out candidate groups in which there
exist two elements with a size difference larger than the
threshold, t,.

4.2.3 Same-Spacing Constraints

We take horizontal same-spacing as an example. We sort
all the element pairs in the input layout according to
their horizontal intervals. Then, the same-spacing con-
strained groups are generated by combining element
pairs so that each group satisfies the following two con-
ditions: 1) The difference in the interval of every element
pair is less than the threshold, t,; 2) The elements over-
lap in the vertical direction.

4.3 Energy Functions

We now describe how to assign energy values to candidate
groups such that groups with lower energies are more likely
to be selected. We first describe a set of auxiliary heuristic
functions that will then be combined to obtain various
energy functions. In the optimization, we will use a linear
combination of the described energy functions as the objec-
tive function. A constraint group, g;, is composed of a set of
elements, {e;,...,e,} (two-element pairs for same-spacing).
We define the following functions on g;:

4.3.1 Standard Deviation

The function stdvar(g;) measures the standard deviation of
positions (for alignment constraints), sizes (for same-size
constraints), or spacings (for same-spacing constraints). For
example, if g; is a group of top-aligned elements, stdvar(g;)
is the standard deviation of the top positions of all elements
in group g;.

4.3.2 Maximal Element Distance

The function maxzDist(g;) computes the maximal distance
between positions, sizes, or spacings. For example, for a
group of top-aligned elements, maxDist(g;) is defined as
the difference between the maximal and the minimal top
position in the group.

4.3.3 Group Scale

The function scale(g;) is an intuitive measure for the scale of
group g; in the relevant direction (x or y). This function is
evaluated differently for alignment, same-size, and same-
spacing constraints. For example, for a group ¢; with hori-
zontal alignment, scale(g;) is equal to the minimal height of
elements in group g;. For same-size constraints, scale(g;) is
the maximum of the minimal width and minimal height of
the elements in group g;. For same-spacing constraints, we
define scale(g;) as the minimum spacing between element
pairs in g;.

To measure the quality of a constraint group, we con-
sider the following energy terms.

JIANG ETAL.: AUTOMATIC CONSTRAINT DETECTION FOR 2D LAYOUT REGULARIZATION

4.3.4 Intra-Group Distance

In our analysis, a good group should have a small variance
and a small maximal element distance. Further, these values
should be normalized by scale:

max(0, stdvar(g;) + maxDist(g;) — €)
Ey(g;) = o«
a(9:) scale(g;) @

where ¢ is the maximal allowed tolerance value so that dis-
tances smaller than e will be ignored. We set € to 3 pixels
based on our experiments.

4.3.5 Aspect Ratio Variance

For same-size constraints, the aspect ratio plays an impor-
tant role. Thus, we use an energy term, £,(g;), that captures
the standard deviation of the aspect ratio of all elements in
group g;. Here, the aspect ratio of an element is defined as ¥,
where w, and h are the width and height of the element.

4.4 Constraint Selection

We employ linear integer programming to select a set of
constraint groups among the candidate groups. There are
multiple goals: First, the energy values of the selected
groups should be low. Second, the complexity of the overall
model measured by the number of constraint groups used
should also be low. This motivates the use of an additional
sparsity term. In our formulation, each constraint type uses
a different energy function.

Given an input layout, L, consisting of n elements and
the candidate constraint groups, G = {g1,...,gn}, gener-
ated from L, our task is to choose a subset of these candidate
groups as constraints for the following layout regularization
step. Let C=C,|J Css U C, denote all the constraint
types, where C,, Cy,, and Cj, are alignment, same-size, and
same-spacing types, respectively. Z = {z,...zy} denotes
the binary label for each candidate group (1 for chosen and 0
for not chosen). We split Z into three subvectors, Z,, Zss, and
Z,, representing the labels for each type of constraint
group. Then, the energy functions for these types of con-
straint groups are defined as follows:

4.4.1 Alignment Constraints

E(Zy)= Y > Ead9)- 2z 8(9¢) +wa- IZally,)

¢;€C, gi€G

where | - ||, denotes the /°-norm, which counts the number
of nonzero entries in a vector. We add this term to encour-
age fewer and larger groups (i.e., groups that have more ele-
ments). Because z; € {0,1} in our problem, || -||, can be
simplified to the sum of all the entries in the vector. §(g;, c;)
is an indicator function that has value 1 if g; is a candidate
group of constraint type c;; otherwise it is zero. w, is a
weight that balances the two terms.

4.4.2 Same-Size Constraints

The energy function for same-size constraints is similar to
that for alignment constraints. To account for aspect ratio of
an element in the layout, we also involve the aspect ratio
variance F, into the formulation:

1937

E(Zs) = Z Z(Ed(gq) +w, - Eo(g:)) - zi - 8(gi,¢5)

¢€ Css gi€G (6)

+ Wgs - HZSSHO’

4.4.3 Same-Spacing Constraints

For same-spacing constraints, the energy function is similar
to that of alignment constraints:

E(Zsp) = Z Z Ea(gi) - zi - 8(gis¢j) + wep - ”ZSPHO' (7

C]'E Csp 9i eG

Afterwards, proper constraint groups are selected by
minimizing the following constrained objective function:

minimize
X

E(Za) + E(Zss) + E(Zsp)

N

subject t ill -z 8(gir¢5) =m, ¢
subject to ZHQH zi - 8(gi,cj) =n (8)

i=1
z €{0,1}, 1<i<N,

where the constraints Zf\il llgill - zi - 8(gi,c;) = n ensure that
every element in the layout is assigned to a constraint group
of type c;. The second group of constraints, z +z; <1,
ensure that groups do not have overlapping elements if g;
and g; are of the same constraint type.

The optimization problem above is a linear integer pro-
gram that can be efficiently solved using various open
source solvers, e.g., [33], [34], [35]. The solution is a set of
constraint groups. Each group gives rise to a set of linear
equations that serve as constraints during the layout
regularization step. For example, for an alignment group
gi ={ei1,...,e;n}, we combine adjacent elements to form
the constraint pairs, namely, (e;1,e€), ..., (€imn-1),€in).
Then, we generate one linear equation per constraint pair.

5 LAYOUT REGULARIZATION

With the optimal constraints detected and filtered from
the constraint selection step, our final goal is to regularize
the layout under these constraints. Our regularization
process has a similar format as the methods presented in
[36] and [37]. These works emphasize the facade structure
using a hierarchical layout, while ours deals with a layout
of rectangles. We address this regularization problem by
transforming the contents of the layout from the input
layout, L, to a regularized layout, L*, such that the change
to element locations Cf and element sizes C's is minimal
while respecting the constraints. The star (+ in L*) indi-
cates the regularized layout.

To facilitate user preferences, we use a weight, w (we set
it to 2.5 for our preference for position changes), to balance
between the two terms above. Then, the layout regulariza-
tion is formulated as an energy minimization problem as
below:

L* = arg min (Cp + o - Cy), 9

1938

= oA

00000 00000 w |
L I] J |
86000006 -

| @777

L =]
UUUU%QOUUU

- b= =

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.22, NO.8, AUGUST 2016

OOoodnn h
(@) '

Fig. 5. Four different layouts are regularized using our method. Each column (from top to bottom) shows the input floor plan, zoom in of the marked

region in the initial layout, and our regularized layout.

where

n w} w;\? h %
Cs =Y (w) —w;)* + (b} — hi)*.

i=1

In addition to the aforementioned constraints selected in
Section 4, we add additional constraints to Equation (9) to
ensure the validity of the optimized layout. In our formula-
tion, we include lower bound constraints and upper bound
constraints for the variables and sequential constraints for
the relative positions of the elements. These constraints are
as follow.

o Lower and upper bound constraints. These constraints
restrict changes in elements in reasonable ranges. Let
(wp, hy,) denote the size of the bounding box of the
layout. We add additional positional constraints,
0<z!<wyand 0 < y; < hy.

Further, to prevent the sizes of the elements from
being changed too much, we also add upper bound
constraints on their sizes. Let’s take the width bound
as an example, it is defined proportionally to the
widths of all elements that have the same label, /.
In our implementation, the maximal allowed
width change for an element, ¢;, is defined as
maz(0.5 - Awy,0.15 - w;), where Awy is the maximal
difference in width for elements that have the same
label, and w; is the width of e;. The size constraints
on element height are defined similarly.

e Sequential constraints. These constraints specify the
relative positions of pairs of elements. With these
constraints, we expect that the original layouts of the
elements will not be greatly altered by the regulari-
zation. Our experiments show that this type of con-
straint is crucial to layout regularization. Given two
X-ordered (ascending order) elements, ¢; and e;, the
constraints are z} +w; —z; <0 if z; +w; —x; <0.
The same goes for the vertical direction.

By solving the quadratic programming problem defined

in Equation (9), we obtain the regularized layout. In our

implementation, we add the constraints sequentially to
avoid potential conflicts. If any conflict is detected during
the optimization, we simply remove the current constraint.
However, the sequence of constraints will affect the results.
To incorporate our preferences for different constraints, we
sort all constraints according to their energy function,
stdvar(g;) (see Eq. (4)), and then we add them to the con-
straint set according to this order.

6 RESULTS AND DISCUSSION

6.1 Test Database

Our experiments are conducted on a database of 32 digitized
layouts from various applications. Our data set contains
examples covering facades, slide designs, web designs,
indoor scenes, and other graphical layouts. In Figs. 5, 6,
and 7, we show a set of different layouts regularized using
our method. In the supplemental materials, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TVCG.2015.2480059,
we provide more results showing detected relations and reg-
ularized layouts. From these applications, we can see that
our method enforces the regularity constraints, while pre-
serving high-level relations, such as symmetries and repeti-
tive patterns.

6.2 Evaluation Metrics

To evaluate the effectiveness of our framework, we design an
interactive program to specify the ground truth relationships
for each layout. We use the marked relations to compute pre-
cision (P), recall (R), and F-measure (F), defined as follows:

B Dica, 2jec, Mum(gi(9;)

P ;
ZjeGd num(gj)
n— ZieGg ZjeGd num(g; (1 9;) (10)
> rec, (g
2-P-R
F=——-—
P+R’

where G, is the set of constraint groups in the ground truth,
G, is the set of constraint groups in the detected result, and

http://doi.ieeecomputersociety.org/10.1109/TVCG.2015.2480059
http://doi.ieeecomputersociety.org/10.1109/TVCG.2015.2480059

JIANG ETAL.: AUTOMATIC CONSTRAINT DETECTION FOR 2D LAYOUT REGULARIZATION

1939

tu&mnm&gml
I:LE‘E::LLEEH

[s

(a) (b)

Fig. 6. Layout regularization on a set of urban facade images. The top row shows the input facade images. The middle and the bottom rows show the
zoom in views of the highlighted regions and the regularized results with abstract boxes.

num(-) is the number of constraints in a constraint group.
The term g, () g; denotes the intersection of two constraint
groups. It is empty if g; and g; are different types of
constraint. For alignment and same-size constraints, an
n—element constraint group will contribute n — 1 constraint
pairs, while an n—pair spacing group will contribute n — 1
constraint pairs (see Section 4.1). Thus, we define the num-
ber of constraints of a constraint group as the number of
constraint pairs it yields. For example, consider that we
have the top alignment of elements G = {e, e, €3, €4, €5} as

—

Related Work

| * Fagade Parsing

Related Work

* Fagade Modeling

hLBA
e

Related Work |

+ Fagade Editing

(a) Initial design

(b) Input layout

ground truth, but the algorithm detects only elements
D = {ey, ey, e3,¢e5} as top aligned. Then, we have num(D) =
4—1,num(G) =5—1,and num(G(D) =4 — 1.

6.3 Comparison

We made comparisons with the methods of Xu et al. [6] and
Pavlidis and Van Wyk [5]. Pavlidis and Van Wyk [5] pro-
pose to use a clustering method to detect the constraints. Xu
et al. [6] employ the RANSAC method to get alignment con-
straints and a clustering method for same-spacing detection.

L1
I—

Related Work

* Fagade Parsing

Related Work

| * Fagade Modelng

T s

Related Work

* Facade Editing |

(c) Regularized layout

(d) Regularized design

Fig. 7. Slide design beautified using our approach. From left to right: (a) the initial design, (b) the bounding boxes of the elements in the design as

input layout, (c) regularized layout, and (d) the final design.

1940 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.22, NO.8, AUGUST 2016

12 Precision 12 Recall 12 F-measure

1.0 1.0 1.0

Ny WWN«‘W“ Ny Ny

0.6 0.6 0.6

0.4 0.4 0.4
——Pav85 ——Pav85 —-

0.2 —a-Xu2014 0.2 ——Xu2014 0.2 --2222514
——Ours —+—0urs —&—0urs

0.0 0.0 0.0

1 4 7 10 13 16 19 22 25 28 31 1 4 7 10 13 16 19 22 25 28 31 1 4 7 10 13 16 19 22 25 28 31

Fig. 8. The comparison of precision (left), recall (middle), and F-measure (right) of our method with Pav85 [5] and Xu2014 [6] on the alignment

constraints.

We first conduct a test of the alignment constraints. Fig. 8
shows the precision, recall, and F-measure for every layout
in our test database. As we can see, our algorithm has simi-
lar precision to previous work, but it has higher recall for
most layouts. This leads to the highest F-measure results on
93.8% of layouts in the database. The comparison is also
summarized in Table 1. In the next test, we compare the
same-spacing constraints. In Table 1, we present a compari-
son of the average values for precision, recall and F-mea-
sure. From this comparison, we see that the same-spacing
constraint is more difficult to detect than is the alignment
constraint. Additionally, it is very difficult to define a
ground truth for this constraint. From the above compari-
son, we can see that the precision of the same-spacing detec-
tion benefits from the label information. However, our
method works better than others even without the label
information. In Fig. 9, we also show an illustrative example
of a case where our method is more successful than Xu
etal’s [6]. We can see that Xu et al. cannot handle layouts in
which elements overlap with each other. Their method can-
not align the elements properly. In addition, we compare

TABLE 1
Comparisons with [5] and [6] on Alignment
and Same-Spacing Constraints

Method Alignment Same-spacing

P R F P R F
Pav85 [5] 0.927 0.726 0.804 0.782 0.366 0.453
Xu2014 [6] 0920 0.832 0.868 0.732 0498 0.540
Ours (nolabel) 0911 0.959 0936 0.750 0.706 0.710
Ours 0911 0.959 0936 0916 0.613 0.696

Our method is evaluated with and without labels. We show the average
precision (P), recall (R), and F-measure (F) for all layouts in the test dataset.

]] il 1

i il il 1]
pEne | ooeEm |

goom |

[= .

J

I I
(c) Ours

(a) Input layout (b) Xu et al. [6]

Fig. 9. A comparison of Xu et al. [6] (b) and our method (c). The yellow
circles indicate the differences.

the performance of these three methods by measuring the
average computation time for the examples in our dataset.
The method in [5] detected the constraints in 0.001 s because
of the simplicity of the method. Xu et al.’s method [6] needs
0.898 s, while ours needs about 0.914 s.

6.4 Running Time

We implement the proposed method in C++. All the experi-
ments are performed on a PC with two 2.70 GHz Intel Xeon
E5-2680 processors. We find that the running time depends
on the number of elements and the number of relations in the
input layout. On average, the constraint selection step takes
0.70 s, and the regularization step takes 3.59 s. The maximum
times for these steps were 3.71 s and 15.78 s, respectively.

6.5 Robustness and Scalability

We evaluate the robustness and scalability of our algorithm
on synthesized examples. We first generate a regular grid of
elements of two different sizes with eight columns and five
rows. We then perturb the corners of the elements with an
increasing amount of Gaussian noise (measured relative to
the element sizes). The performance of our method is dem-
onstrated in Table 2. We can see that our method works
well if the noise is less than 10 percent of the element size.
To evaluate the scalability, we use Gaussian noise with a
variance of 0.02 and measure the running time for grids
with a different number of elements. In Table 3, we present
the results of this test. We can see that the accuracy
decreases with larger grids. The reason for this decrease is
mainly that some of the same-spacing constraints are not
detected due to outliers.

6.6 Parameters

Our method includes multiple parameters. One parameter is
the threshold, ¢,, that is used to generate candidate groups. To
verify the influence of this parameter on the results, we

TABLE 2
Performance of our Algorithm on a Data Set with Increasing
Amount of Gaussian Noise Relative to the Element Size

Level of noise #C P R F

0.00 321 1.000 1.000 1.000
0.02 321 1.000 1.000 1.000
0.04 319 1.000 0.993 0.996
0.06 297 1.000 0.915 0.956
0.08 290 1.000 0.894 0.944
0.10 263 1.000 0.795 0.886

#C is the number of detected constraints.

JIANG ETAL.: AUTOMATIC CONSTRAINT DETECTION FOR 2D LAYOUT REGULARIZATION

TABLE 3
Performance of Our Algorithm on a Data Set with an
Increasing of Number of Rows and Columns

Grid size #C P R F Time(s)
5x 8 321 1 1 1 2.245
10x 8 678 0.987 0.983 0.985 6.428
5x 16 676 0.975 0.986 0.981 6.996
10 x 16 1420 0.964 0.971 0.967 25.789
20 x 16 2,940 0.947 0.964 0.955 121.822

Note that all the grid elements are perturbed by 2 percent Gaussian noise
(relative to the element sizes).

Threshold evaluation

pe >

—

0.9 /-\//\'\'—-—-

4
p
4

| S——

—m-Precision

0.85
—o—Recall
F-measure
08 T T T T T T T
0.05 0.1 0.15 0.18 0.2 0.25 0.3

Fig. 10. The robustness of our method with respect to the threshold, ¢,.
We show the change in average precision, recall, and F-measure for the
alignment threshold uniformly sampled in the range [0.05, 0.3].

Sparsity evaluation

1.05
1
0.95
0.9
0.85 —8—Precision
0.8 ——Recall
0.75 —4—F-measure

03 06 09 12 15 18 21 24 27 3

Fig. 11. The robustness of our method with respect to the sparsity term,
Wy

evaluate our method with different values of the threshold, ¢,,
on the alignment constraints (see Fig. 10). Our method can
generate high-quality results after a value of 0.2 times the
average element size, which makes our method reliable even
without user intervention. Another important parameter is
the weight of the sparsity term. Here, we evaluate the perfor-
mance with respect to the sparsity term w, as shown in
Fig. 11. The sparsity term plays an important role in selecting
the trade off between precision and recall.

6.7 Applications

Our method is designed for general 2D layouts. One applica-
tion is the regularization of digitized layouts, e.g., the facade
layouts shown in Fig. 6. Another application is the beautifica-
tion of user-drawn layouts, e.g., slide design (see Fig. 7),
poster design, and other graphical designs (see Fig. 5).

6.8 Extensions

Our current implementation is developed for axis-aligned
layouts, but we can extend our framework to consider more
types of constraints and elements enclosed in oriented

1941

&5
oo B of
¢

(c) Regularized layout

QTS
= W o
€ g

(b) Initial layout

(a) Initial design

Fig. 12. An extension of our algorithm. In this example, elements (i.e.,
chairs or the tableware) are expected to be placed along concentric
circles with same included angles. The black dot in (b) indicates the cen-
ter of the circles. (c) shows the result of our algorithm applied to this
case by using a simple coordinate system conversion (from the Carte-
sian coordinate system to the polar coordinate system).

S
3_? ; '; ..\\ T e g "o i
~—~— / Y by LR Q°o
_’ oo °
\ o -}
— o a
— a a
B o o
. i |8 : : o N R =] o N . o
i ° ? ° °
(a) Initial design (b) Initial layout (c) Regularized layout

Fig. 13. The same-arc-length distance constraint on points (yellow
squares). Our method successfully detects two kinds of arc-length in
this example and regularizes the curve points. Our framework can be
applied to such input by constructing a parameterization of the points.

bounding boxes. In Fig. 12, the elements are distributed on
circles. For this example, we introduce two new types of
constraints that consider spacing and alignment in radial
layouts. Our algorithm can be directly used for these con-
straints with a polar coordinate system.

Another type of useful constraint is the same-arc-length
distance constraint. The same-arc-length constraint enforces
a constant arc length along a curve between two adjacent
points that are sampled on this curve. In Fig. 13a, we show
a set of markers (the yellow squares) that are placed along
the centerline of the road (in yellow). We can see that some
adjacent markers exhibit the same-arc-length constraint.
Directly fulfilling this constraint is difficult, considering that
we do not know the curve function. We construct a map
from a parameter vector to the points by a B-spline interpo-
lation with chord length parameterization. Thus, every
parameter corresponds to a point, and the interval between
two parameters is equivalent to the chord length of two
adjacent points. Then, we achieve the same arc-length by
accomplishing the same spacing constraint on the paramet-
ric vectors. In Fig. 13c, we show the result of this regulariza-
tion. Another example is given in Fig. 6 of the supplemental
materials, available online.

Our method does not fully explore the hierarchical struc-
turing of constraints. However, we are able to consider a
case in which a given hierarchy defines the grouping infor-
mation of elements (see Fig. 14). The regularization is
achieved by applying our method from bottom to top.

6.9 Limitations and Future Work

Although our algorithm works well on most cases, we notice
that in some cases the result could be further improved with
the availability of semantic information. For example, if there

1942

(a) Input design

h

]

(c) The first level of the input layout

[HIH A
SHHAIED

(d) The second level of the input layout

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.22, NO.8, AUGUST 2016

LONE 2nE 2= 20ne
ENEENEENE=N=
oo alls olle all=
I o o o
= | 0 I 0 5
\JT:L :qr\ | EeE=
SIS SME sme =0

(b) Regularized result of the 3rd level

|
0
]
=

| o o [\

[1]] [

] o) i s)

= | —) [(-] 1

olle oiiE o= Eile

o e o o e e = [

ollmE] s O o |
e) e i
{0 i) ef = M

(e) The third level of the input layout

Fig. 14. The regularization of a hierarchical layout. The second row shows the hierarchy from top to bottom, which is marked by the user. We use only

the marked hierarchy to define the group information of lower-level layouts.

is an ornament on top of a window we can assume that there
is a high probability that the two shapes are center aligned
(see Fig. 15). Not using domain-specific semantic priors is
one limitation of our algorithm. Another limitation is that
these possible constraints need to be known in advance.
When there is a large number of complex patterns, e.g., a set
of elements aligned along a spiral with regularly decreasing
spacing, it is unclear how our framework would perform if
we would extend it using a large number of different com-
plex constraint types. We consider this a very interesting ave-
nue of future work. Further, we also plan to involve users in
the layout optimization stage to provide more control over
the regularization process.

7 CONCLUSIONS

We have presented an optimization-based approach for reg-
ularizing general layouts. Our method takes as input a
general layout represented as a set of labeled rectangles,
and detects regularity constraints based on a linear integer
programming formulation. The layout is regularized by

==l ==
=l j=p

(a) Initial design (b) Initial layout () Regularized layout
Fig. 15. A failure case of our algorithm. In this example, the user marks a
wrong left edge of the ornaments below the windows in the highlighted
region due to occlusions caused by perspective projection. Semantic
prior information (e.g., an ornament and window are more likely to be

center aligned) is necessary to correct this error.

minimizing the deformation of the initial layout while
respecting the detected constraints. We have evaluated our
method using various input layouts. Experimental results
show that our method enforces the regularities in the layout
and that it is superior to alternative approaches in the litera-
ture. We have also shown the usefulness of our method in
various applications.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their
helpful comments and the authors of [6] for making
their software publicly available and for their help on the
comparison. This work was supported by the KAUST
Visual Computing Center, the China National 863 Program
(No. 2015AA016402), the National Natural Science Founda-
tion of China (Nos. 61372168, 61331018, 61372190, and
61272327), and the U.S. National Science Foundation.
Dong-Ming Yan is the corresponding author.

REFERENCES

[11 F. Wu, D.-M. Yan, W. Dong, X. Zhang, and P. Wonka, “Inverse
procedural modeling of facade layouts,” ACM Trans. Graph.,
vol. 33, no. 4, pp. 121:1-121:10, Jul. 2014.

[2] C. Wu, J.-M. Frahm, and M. Pollefeys, “Detecting large repetitive
structures with salient boundaries,” in Proc. 11th Eur. Conf. Com-
put. Vis., 2010, pp. 142-155.

[3] M. Pauly, N. J. Mitra, J. Wallner, H. Pottmann, and L. J. Guibas,
“Discovering structural regularity in 3D geometry,” ACM Trans.
Graph., vol. 27, no. 3, pp. 43:1-43:11, 2008.

[4] N.]J. Mitra, A. Bronstein, and M. Bronstein, “Intrinsic regularity
detection in 3D geometry,” in Proc. 11th Eur. Conf. Comput. Vis.,
2010, pp. 398—-410.

[5] T.Pavlidis and C.]J. Van Wyk, “An automatic beautifier for draw-
ings and illustrations,” ACM Comput. Graph., vol. 19, no. 3,
pp- 225-234, Jul. 1985.

[6] P.Xu, H. Fu, T. Igarashi, and C.-L. Tai, “Global beautification of
layouts with interactive ambiguity resolution,” in Proc. 27th Annu.
ACM Symp. User Interface Softw. Technol., 2014, pp. 243-252.

[7] P. Musialski, P. Wonka, D. G. Aliaga, M. Wimmer, L. van Gool,

[8]

and W. Purgathofer, “A survey of urban reconstruction,” Comput.
Graph. Forum, vol. 32, no. 6, pp. 146-177, 2013.

D. Dai, M. Prasad, G. Schmitt, and L. Van Gool, “Learning domain
knowledge for facade labelling,” in Proc. 12th Eur. Conf. Comput.
Vis., 2012, pp. 710-723.

JIANG ETAL.: AUTOMATIC CONSTRAINT DETECTION FOR 2D LAYOUT REGULARIZATION 1943

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

M. Park, K. Brocklehurst, R. T. Collins, and Y. Liu, “Translation-
symmetry-based perceptual grouping with applications to urban
scenes,” in Proc. 10th Asian Conf. Comput. Vis., 2011, pp. 329-342.
C. Wu, J.-M. Frahm, and M. Pollefeys, “Repetition-based dense
single-view reconstruction,” in Proc. IEEE Conf. Comput. Vis. Pat-
tern Recog., 2011, pp. 3113-3120.

H. Riemenschneider, U. Krispel, W. Thaller, M. Donoser, S.
Havemann, D. Fellner, and H. Bischof, “Irregular lattices for com-
plex shape grammar facade parsing,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recog., 2012, pp. 1640-1647.

C. Yang, T. Han, L. Quan, and C.-L. Tai, “Parsing facade with
rank-one approximation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recog., 2012, pp. 1720-1727.

O. Teboul, I. Kokkinos, L. Simon, P. Koutsourakis, and N.
Paragios, “Parsing facades with shape grammars and reinforce-
ment learning,” IEEE Trans.Pattern Anal. Mach. Intell., vol. 35,
no. 7, pp. 1744-1756, Jul. 2013.

C.-H. Shen, S.-S. Huang, H. Fu, and S.-M. Hu, “Adaptive parti-
tioning of urban facades,” ACM Trans. Graph., vol. 30, no. 6,
pp. 184:1-184:9, 2011.

P. Musialski, M. Wimmer, and P. Wonka, “Interactive coherence-
based facade modeling,” Comput. Graph. Forum, vol. 31, no. 23,
pp- 661-670, May 2012.

H. Zhang, K. Xu, W. Jiang, J. Lin, D. Cohen-Or, and B. Chen,
“Layered analysis of irregular facades via symmetry maxi-
mization,” ACM Trans. Graph., vol. 32, no. 4, pp. 121:1-121:10,
2013.

N. J. Mitra, L. Guibas, and M. Pauly, “Partial and approximate
symmetry detection for 3d geometry,” ACM Trans. Graph., vol. 25,
no. 3, pp. 560-568, 2006.

M. Pauly, N. J. Mitra,]J. Wallner, H. Pottmann, and L. Guibas,
“Discovering structural regularity in 3D geometry,” ACM Trans.
Graph., vol. 27, no. 3, pp. 43:1-43:11, 2008.

A. Tevs, Q. Huang, M. Wand, H.-P. Seidel, and L. Guibas,
“Relating shapes via geometric symmetries and regularities,”
ACM Trans. Graph., vol. 33, no. 4, pp. 119:1-119:12, Jul. 2014.

Y. Li, X. Wu, Y. Chrysanthou, A. Sharf, D. Cohen-Or, and N. J.
Mitra, “Globfit: Consistently fitting primitives by discovering
global relations,” ACM Trans. Graph., vol. 30, no. 4, pp. 52:1-52:12,
2011.

N. J. Mitra, M. Wand, H. Zhang, D. Cohen-Or, and M. Bokeloh,
“Structure-aware shape processing,” in Proc. EUROGRAPHICS
State-of-the-art Report, 2013.

P. Baudisch, E. Cutrell, K. Hinckley, and A. Eversole, “Snap-and-
go: Helping users align objects without the modality of traditional
snapping,” in Proc. Conf. Human Factors Comput. Syst., 2005,
pp- 301-310.

S. Murugappan, S. Sellamani, and K. Ramani, “Towards beautifi-
cation of freehand sketches using suggestions,” in Proc. 6th Eur.
Symp. Sketch-Based Interfaces Model., 2009, pp. 69-76.

C. L. Zitnick, “Handwriting beautification using token means,”
ACM Trans. Graph., vol. 32, no. 4, pp. 53:1-53:8, Jul. 2013.

P. O'Donovan, A. Agarwala, and A. Hertzmann, “Learning lay-
outs for single-page graphic designs,” IEEE Trans. Vis. Comput.
Graph., vol. 20, no. 8, pp. 1200-1213, Aug. 2014.

B. Plimmer and J. Grundy, “Beautifying sketching-based design
tool content: Issues and experiences,” in Proc. 6th Australasian
Conf. User Interface, 2005, pp. 31-38.

B. Paulson and T. Hammond, “Paleosketch: Accurate primitive
sketch recognition and beautification,” in Proc. 13th Int. Conf.
Intell. User Interfaces, 2008, pp. 1-10.

N. J. Mitra, L. Guibas, and M. Pauly, “Symmetrization,” ACM
Trans. Graph., vol. 26, no. 3, pp. 63:1-63:8, 2007.

L. Nan, A. Sharf, K. Xie, T.-T. Wong, O. Deussen, D. Cohen-Or,
and B. Chen, “Conjoining Gestalt rules for abstraction of architec-
tural drawings,” ACM Trans. Graph., vol. 31, no. 6, pp. 185:1-
185:10, 2012.

S. AlHalawani, Y.-L. Yang, H. Liu, and N. J. Mitra, “Interactive
facades: Analysis and synthesis of semi-regular facades,” Comput.
Graph. Forum, vol. 32, no. 22, pp. 215-224, 2013.

J.-B. Huang, S. B. Kang, N. Ahuja, and J. Kopf, “Image completion
using planar structure guidance,” ACM Trans. Graph., vol. 33,
no. 4, pp. 129:1-129:10, 2014.

P. Xu, H. Fu, C.-L. Tai, and T. Igarashi, “GACA: Group-aware
command-based arrangement of graphic elements,” in Proc. ACM
33rd Annu. Conf. Human Factors Comput. Syst., 2015, pp. 2787-2795.
Lpsolve [Online]. Available: http:/ /Ipsolve.sourceforge.net/

[34] CBC [Online]. Available: https:/ /projects.coin-or.org/Cbc
[35] GLPK [Online]. Available: http://www.gnu.org/software/glpk/
[36] M. Dang, D. Ceylan, B. Neubert, and M. Pauly, “Safe: Structure-

aware facade editing,” vol. 33, no. 2, pp. 83-93, 2014.

F. Bao, M. Schwarz, and P. Wonka, “Procedural facade
variations from a single layout,” ACM Trans. Graph., vol. 32, no. 1,
pp- 8:1-8:13, 2013.

Haiyong Jiang received his Bachelor's degree
from the University of Science and Technology
Beijing in 2012. He is currently working toward
the PhD degree at the National Laboratory of
Pattern Recognition of the Institute of Automa-
tion, Chinese Academy of Sciences. His research
interests include computer graphics and com-
puter vision.

Liangliang Nan received his Bachelor's degree
from Nanjing University of Aeronautics and Astro-
nautics (NUAA) in 2003 and his PhD degree from
Shenyang Institute of Automation (SIA), Chinese
Academy of Sciences in 2009. He is currently a
research scientist at King Abdullah University of
Science and Technology (KAUST). His research
interests include computer graphics, computer
vision, and human-computer interaction.

Dong-Ming Yan received his Bachelor's and
Master's degrees from Tsinghua University in
2002 and 2005, respectively, and the PhD degree
from Hong Kong University in 2010. He is a
research scientist at King Abdullah University of
Science and Technology (KAUST) and an associ-
ate professor at the National Laboratory of Pat-
tern Recognition of the Institute of Automation,
Chinese Academy of Sciences. His research
interests include computer graphics, geometric
processing and visualization.

Weiming Dong received the BSc and MSc
degrees in computer science in 2001 and 2004,
respectively, both from Tsinghua University, PR.
China. He received the PhD degree in computer
science from the University of Henri Poincaré
Nancy 1, France, in 2007. He is an associate pro-
fessor in the Sino-French Laboratory (LIAMA)
and National Laboratory of Pattern Recognition
(NLPR) of the Institute of Automation, Chinese
Academy of Sciences. His research interests
include image synthesis and image analysis.

He is a member of the ACM and IEEE.

1944

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.22, NO.8, AUGUST 2016

Xiaopeng Zhang received his PhD in computer
science from the Institute of Software, Chinese
Academy of Sciences, in 1999. He is a professor
at the National Laboratory of Pattern Recognition
of the Institute of Automation, Chinese Academy
of Sciences. He received the National Scientific
and Technological Progress Prize (second class)
in 2004. His main research interests include
computer graphics and image processing.

Peter Wonka received his PhD in computer sci-
ence and his MS in urban planning from the Tech-
nical University of Vienna, Vienna, Austria, in 2001
and 2002, respectively. He was a postdoctoral
researcher at the Georgia Institute of Technology,
Atlanta, GA, for two years. He is currently a profes-
sor at the Computer, Electrical and Mathematical
Science and Engineering Division, King Abdullah
University of Science and Technology, Thuwal,
Saudi Arabia, and also an associate professor at
Arizona State University, Tempe, AZ, USA. His
research interests include computer graphics, visualization, computer
vision, remote sensing, image processing, and machine learning.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

