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Abstract In this paper, we survey recent approaches to blue-noise sampling and discuss their beneficial applications.

We discuss the sampling algorithms that use points as sampling primitives and classify the sampling algorithms based on

various aspects, e.g., the sampling domain and the type of algorithm. We demonstrate several well-known applications that

can be improved by recent blue-noise sampling techniques, as well as some new applications such as dynamic sampling and

blue-noise remeshing.
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1 Introduction

Sampling is an essential technique in computer sci-

ence. Sampling translates a continuous signal into its

discrete counterpart or selects a subset from a discrete

set of signals, such that the signal can be represented

and processed by computers efficiently. For example,

one-dimensional (1D) sound waves, two-dimensional

(2D) images, and three-dimensional (3D) polygonal

meshes are captured by discrete sampling from conti-

nues signals.

In computer graphics, sampling plays an impor-

tant role in many applications, such as rendering[1],

stippling[2], texture synthesis[3], object distribution[4],

and simulation[5]. Among all the sampling techniques,

blue-noise sampling is the most popular method in

recent papers. The term “blue-noise” refers to any

noise with minimal low-frequency components and no

concentrated spikes in energy. Intuitively, blue-noise

sampling generates randomized uniform distributions.

Fig.1 shows a typical point set with blue-noise proper-

ties generated by Poisson-disk sampling.

In this paper, we first discuss the color of noise in

Section 2, and then summarize recent techniques for

blue-noise sampling in Section 3. We focus on recent

approaches in our survey as a complement to the com-

prehensive survey by Lagae and Dutré[6]. Furthermore,

we discuss several existing and new applications that

benefit from the blue-noise sampling techniques in Sec-

tion 4.

2 Color of Noise

We can classify point distributions by looking at

the Fourier spectrum. Different spectra are associated

with different colors 1○. For example, white noise refers
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Fig. 1. Example of Poisson-disk sampling and its spectral analysis. (a) A sampled point set. (b) Power spectrum from this point set.
(c) Radial means and normal anisotropy.

to noise with a flat spectrum, which contains an equal

amount of energy in all frequency bands. It is usually

used in random number generators[7]. Blue noise refers

to point distributions with weak low-frequency energy

rather than strong high-frequency energy. Pink noise

is the complement of blue noise and its spectral en-

ergy is concentrated in the low-frequency bands. Pink

noise occurs very frequently in nature and thus is used

for physical simulation and biological distributions[8-9].

Green noise is an uncommon term that can refer to the

mid-frequencies of white noise. It characterizes the dis-

tributions of a variety of natural phenomena and has

been used for digital halftoning[10].

There are also many other colors used for noise, with

or without precise definitions. In this paper, we focus

only on techniques that generate blue-noise sampling

patterns.

3 Blue-Noise Sampling

There are various ways to characterize existing blue-

noise sampling techniques. For example, the sampling

algorithms can be classified by the type of sampling

domain (2D, 3D, or surfaces), the metric used in the

domain (geodesic or Euclidean), the shape of the sam-

pling primitives (point, line, ball, etc.), the properties of

the sampling results (isotropic or anisotropic), the style

of the algorithm (dart throwing, relaxation, or tiling),

and so on.

3.1 Sampling Domain

Here, we briefly describe the common input do-

mains.

Euclidean Domain. Most previous blue-noise sam-

pling algorithms were first developed to handle the 2D

or 3D Euclidean space. The traditional domain is the

unit torus (i.e., the unit square and cube in 2D and 3D,

respectively, with periodic boundary conditions)[11], in

which the distance between two points is measured us-

ing the Euclidean metric. Some work also addresses

more complicated domains, such as non-convex poly-

gons with holes[12-13].

High Dimensions. Since high-dimensional point dis-

tributions have special applications, some approaches

are able to generalize blue-noise sampling to high

dimensions[13-16]. However, many high-dimensional

sampling methods do not scale well with high dimen-

sions because they typically suffer from the curse-

of-dimensionality, which means that the effectiveness

deteriorates very rapidly as the dimensions increase.

Ideas to overcome this problem have been suggested

by Ebeida et al.[17]

3D Surface. Blue-noise sampling has also been ex-

tended to mesh surfaces. In this case, the input is usua-

lly a two-manifold triangular mesh surface, which con-

sists of a set of triangles. The sampled points should

be located exactly on the surface.

3.2 Sampling Algorithm

Blue-noise sampling methods can be roughly clas-

sified into three types according to the techniques

they use: 1) Poisson-disk sampling and its variations;

2) relaxation-based sampling; and 3) patch/tile-based

sampling. In this subsection, we give an overview of

these methods and discuss several classic algorithms in

detail. Each type of algorithm is further classified by

the sampling domain. We emphasize methods that use
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points as primitives for isotropic blue-noise sampling in

lower dimensions.

3.2.1 Poisson-Disk Sampling

Poisson-disk sampling is a classic technique that

generates uniformly randomly distributed point sets.

An ideal Poisson-disk sampled point set, X =

{(xi, ri)}ni=1, in sampling domain Ω should satisfy the

following three properties: 1) minimal distance prop-

erty, which requires that the distance between any two

disk centers should be larger than the sampling radius,

i.e., ∀xi,xj ∈ P, ‖xi,xj‖ > min(ri, rj); 2) unbiased

sampling property, which requires that each point in

the domain has a probability that is proportional to

the sizing at this point to receive a sampling point; and

3) maximal sampling property, which requires that the

union of the disks covers the entire sampling domain,

i.e.,
⋃

(xi, ri) ⊇ Ω. The sampling is uniform if the

sampling radius, ri, is constant. Otherwise, it becomes

adaptive sampling.

Euclidean Domain. The traditional method for

Poisson-disk sampling is called dart-throwing and was

first proposed by Cook[18]. Given a sampling domain

and a sampling radius, the algorithm generates disks in

the sampling domain randomly. If the current gene-

rated disk conflicts with any previous sampled disk,

then it is rejected; otherwise, it is accepted. This pro-

cess is repeated until a continuous number of rejections

are observed. The algorithm complexity of the original

dart-throwing algorithm is O(n2). However, this ap-

proach is inefficient to achieve the maximal property.

Therefore, a lot of work has been expended on genera-

lizing and accelerating this algorithm.

Most recent work aiming for efficient Poisson-disk

sampling maintains a data structure to track and sam-

ple the empty regions (also called gap primitives). Dun-

bar and Humphreys[19] described an efficient imple-

mentation of the dart-throwing algorithm for maximal

Poisson-disk sampling (Fig.2(a)). They applied a data

structure called scalloped sectors to record the active

front of the sampled disk set. Their algorithm runs in

O(n log(n)) time, but the sampling is biased.

The simplest data structure for uniform Poisson-

disk sampling is the quad-tree. White et al.[20] first

proposed to use such a data structure for acceleration.

The cell size of the base grid equals r√
2
, such that each

grid cell can at most receive one disk with radius r.

During the sampling process, the partially covered cells

are subdivided into smaller fragments in a quad-tree

manner. Gamito and Maddock[16] extended White et

al.’s algorithm to higher dimensions. Later, Jones and

Karger[21] reported that they reduced the time com-

plexity of Poisson-disk sampling to linear time. The

follow-up work of Ebeida et al.[13] further accelerated

the sampling process by sampling a flat fragment array

instead of using the hierarchical quad-tree, as shown

in Fig.2(b). The grid-based sampling algorithm has

been implemented on recent graphics processing units

(GPUs)[15,22-23]. But the GPU extensions cannot gua-

rantee the unbiased sampling property.

Np
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p
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Fig.2. Data structures used for accelerating Poisson-disk sam-
pling. (a) Scalloped sectors[19]. (b) Quad-tree[13].

Jones[24] first proposed an algorithm for unbiased

maximal Poisson-disk sampling. A Voronoi diagram is

used to extract the uncovered regions, called gaps in the

sampling domain. These uncovered regions are further

resampled to achieve the maximal sampling property

in an unbiased manner. The core idea is that maximal

sampling can be obtained if and only if the Voronoi cell

of each vertex is fully covered by the disk centered at

the vertex. In the sampling process, disks are repeat-

edly generated and inserted in a global Voronoi diagram

one by one, until the sampling becomes maximal. Each

vertex in the Voronoi diagram records a value that indi-

cates the area of the empty region of the corresponding

Voronoi cell. A new sample is generated by first select-

ing a Voronoi cell based on the empty area. Once a

new sample is generated, the Voronoi diagram and the

value of each vertex are updated.

Ebeida et al.[12] proposed a hybrid approach that

first uses squares and later convex polygons bounding

the intersections of a square and multiple circles as gap

primitives. They developed a two-step unbiased maxi-

mal sampling framework. They first performed classic

dart-throwing on a uniform grid and then switched to

computing and filling empty regions by clipping the grid

cells against the neighboring disks.

However, most algorithms mentioned above can

only handle uniform sampling. Yan and Wonka[25]

presented an algorithm for the generation of maximal
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Poisson-disk sets with varying radii. Built on the regu-

lar triangulation and the power diagram, they con-

ducted a theoretical analysis of gaps in such disk sets.

Then they designed efficient algorithms and data struc-

tures for gap detection and gap updates when the disks

were changed. Their method works well both in Eu-

clidean space and on manifolds. Fig.3 compares the

gap extraction algorithms of [12, 24-25].

(a) (b) (c)

Fig.3. Comparison of three representative algorithms for gap
computation. (a) Voronoi diagram[24]. (b) Uniform grid[12]. (c)
Regular triangulation and power diagram[25].

Mitchell et al.[26] studied 2D Poisson-disk sampling

with various radii. They analyzed the conflicting condi-

tion under which a maximal sampling can be achieved.

Ebeida et al.[27] introduced a sifted disk technique for

locally resampling a point cloud to reduce the number

of points. The essence of this algorithm is still maximal

Poisson-disk sampling. More recently, Yuksel[28] pro-

posed a point set resampling approach for fast Poisson-

disk sampling; however, this approach is biased and not

maximal.

Surface Sampling. The classic dart-throwing al-

gorithm has been extended to mesh surfaces[25,28-36]

as well as to isosurfaces[37]. Euclidean distance is

used in these approaches. Besides the Euclidean met-

ric, the geodesic metric is also used for Poisson-disk

sampling[38-41]. Surface sampling techniques can be

also used for surface remeshing by computing the re-

stricted Delaunay triangulation[42]. We address this is-

sue as an application of blue-noise sampling in Subsec-

tion 4.4.

3.2.2 Relaxation-Based Sampling

Iterative relaxation is another important technique

for generating point distributions. This type of method

usually consists of two steps: 1) generating an initial

point set, and 2) optimizing the point positions using

Lloyd iterations[43] until convergence. In this type of

approach, the points X = {xi}ni=1 to be optimized are

called sites.

The methods are differentiated by different objec-

tive functions. For example, the original Lloyd algo-

rithm minimizes the quantization error in signal pro-

cessing. It is known as the centroidal Voronoi tessella-

tion (CVT) in computer graphics[44]. The energy func-

tion of CVT can be formulated as

ECVT(X) =
n
∑

i=1

∫

Vi

ρ(x)‖x− xi‖2dx, (1)

where {Vi}ni=1 is the Voronoi diagram of the points in

the sampling domain Ω and ρ(x) is a density function

defined over Ω.

The key ingredient of computing a CVT is to

construct the Voronoi diagram. The Voronoi dia-

gram in Euclidean spaces is well studied. It has

also been generalized on manifold surfaces. There

are multiple ways to compute CVT on mesh surfaces,

e.g., parameterization-based approaches[45-46], discrete

clustering[47], and the exact computation of the Voronoi

diagram on surfaces[34,42]. We compare these different

approaches in Subsection 4.4.

However, CVT tends to generate a point distri-

bution with regular patterns (i.e., hexagonal arrange-

ments) that lacks some blue-noise properties. Several

methods have been proposed to modify CVT to obtain

better blue-noise properties.

Balzer et al.[48] introduced a capacity constrained

Voronoi tessellation (CCVT) to generate point sets with

excellent blue-noise properties. In this method, Voronoi

cells should satisfy the constraints ‖Vi‖ =
∫

Vi

ρ(x)dx =

ci, where ci are capacity constraints with ci > 0. In-

tuitively, the capacity of a site can be understood as

the area of its corresponding Voronoi region weighted

by the density function. However, since this method re-

lies on a discretization of the capacities, it suffers from

quadratic complexity and converges slowly. Even when

implemented on a GPU[49], it is still inefficient for large-

scale optimization problems. Three variants were fur-

ther proposed to improve the algorithm performance.

Xu et al.[50] proposed capacity-constrained Delau-

nay triangulation (CCDT) for blue-noise sampling and

generalized the concept of CCDT to mesh surfaces[51].

Chen et al.[52] combined CCVT[48] with the CVT

framework in [42] for surface blue-noise sampling, which

they called capacity-constrained centroidal Voronoi tes-

sellation (CapCVT). Their energy function is defined

as:

ECapCVT(X) = ECVT(X) + λECapVT(X),
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where ECVT is the same as (1) and ECapVT(X) =
∑n

i=1(
∫

Vi

ρ(x)dx)2. Then, using an efficient optimiza-

tion framework based on the L-BFGS method[53], they

achieved significant performance improvement.

de Goes et al.[54] reformulated CCVT as a conti-

nuous constrained minimization problem based on op-

timal transport, instead of the discretized approxima-

tion suggested in [48]. In addition, they used a power

diagram, as opposed to a Voronoi diagram, to perform

density-adapted sampling. They formulated their con-

strained minimization as:

EBNOT(X,W ) = ε(X,W ) +
∑

i=1

λi(ci − c),

where ε(X,W ) =
∑n

i=1

∫

Vi

ρ(x)‖x− xi‖2dx, W =

{wi}ni=1 is the weight defined at each site.

Another kind of relaxation technique, called farthest

point optimization (FPO), maximizes the minimal dis-

tance of a given point set. The energy function of FPO

is discrete and can be optimized only by discrete op-

timization method. The original FPO algorithm was

proposed by Schlömer et al.[11] An equivalent algorithm

was proposed by Kanamori et al.[55], which is based

on Delaunay triangulations. They successively moved

each point to the farthest point (i.e., the Voronoi ver-

tex farthest from its immediate neighbors), by remov-

ing it and reinserting it at the farthest point. Chen

and Gotsman[56] parallelized the FPO framework of [11]

via local Delaunay triangulation. However, these two

FPO approaches could handle only 2D uniform sam-

pling. By introducing the regular triangulation and the

power diagram, Yan et al.[57] proposed two important

generalizations of the original FPO framework: adap-

tive sampling and sampling on surfaces. Fig.4 shows an

example of applying FPO to a mesh surface.

Apart from the above two categories, there are many

other approaches that aim at high-quality sampling

based on relaxation techniques. Öztireli et al.[58] solved

the problem of finding optimal sampling conditions

based on the spectral analysis of manifolds. Fattal[2]

presented an adaptive sampling algorithm based on ker-

nel density estimation. Chen et al.[59] introduced bilate-

ral blue-noise sampling that is suitable for dense point

set sub-sampling. Ebeida et al.[60] proposed an iterative

optimization method to improve blue-noise properties

starting from a Poisson-disk sampled point set.

3.2.3 Patch/Tile-Based Sampling

Possion-disk sampling and relaxation-based meth-

ods can generate high-quality point sets, but the com-

putational overhead can become an issue for real-time

applications. Patch/tile-based sampling is able to gene-

rate large point sets in real time while sacrificing the

sampling quality.

The core of a tile-based sampling method is that

one or more tiles are pre-computed and then placed

next to each other to form point sets of arbitrary sizes.

Hiller et al.[61] first utilized Wang tiles[62-63] to gene-

rate non-periodic point sets with blue-noise properties.

Lagae and Dutré[64] extended Wang tiles to Poisson-

disk tiles aiming at the rapid generation of Poisson-

disk distributed point sets. A recursive tile subdivi-

sion proposed by Kopf et al.[65] also uses Wang tiles

to produce a higher level of noise. However, Wang-tile

approaches usually generate sampling artifacts because

the low count of prototiles and their placement on a

square lattice induce a grid of peaks in Fourier spectra.

Ostromoukhov et al.[66] proposed to utilize non-

periodic Penrose tiling for generating blue-noise pat-

terns on 2D domains. They hierarchically subdivided

(a) (b) (c) (d) (e)

Fig.4. Example of relaxation-based optimization[57] . (a)∼(e) Results of increasing the number of iterations. The top row: the sampling
results, the bottom row: the results of spectral analysis.
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a Penrose tiling and used the Fibonacci number sys-

tem to label the sampled point. This technique is well

suited for the generation of non-uniform sampling pat-

terns. However, this method yields rather strong ar-

tifacts in the spectral domain. Ostromoukhov then

improved the previous work[66] for general fast hierar-

chical importance sampling[67]. This approach is built

on self-similar tiling of the plane or the surface of a

sphere with rectifiable polyominoes, as opposed to Pen-

rose tiling. Each polyomino contains just one sample

and it is recursively subdivided until the desired local

density of samples is reached. The exact position of

the sampling point within the polyomino is determined

by a pre-computed structural index. However, these

two approaches result in poor Fourier spectra, as the

single-sample tiles they use exacerbate the presence of

tiling structures that are very simple or regular. Con-

sidering the drawbacks of Wang tiles and single-sample

tiles, Wachtel et al.[68] proposed a new fast tile-based

method for adaptive 2D sampling. At its heart is an

adaptive non-periodic tiling with a deterministic, hier-

archical construction of self-similar, equal-areal, tri-hex

tiles. Then an offline computation of a lookup table of

optimized (spectrally controlled) point sets is used to

populate the tiles.

Kalantari and Sen[69-70] proposed other efficient

methods for fast generation of a large number of blue-

noise samples. Their main idea is to generate an initial

set of Poisson-disk samples first using any existing ap-

proach, and then replicate this set at various locations

in the final space using the convolution theorem. This

method is very fast, but its blue-noise properties are

not so good as the previously mentioned Poisson-disk

sampling methods since it is approximate.

3.2.4 Other Approaches

There are several other approaches that cannot be

classified by the categories discussed above. For exam-

ple, Zhou et al.[71] and Heck et al.[72] studied the rela-

tionships between spatial statistics and spectral proper-

ties of point distributions, and they proposed efficient

methods to generate point sets that match the given

spectra. Mitchell et al.[73] generated a blue-noise quad-

mesh using two-color Poisson-disk sampling. Beyond

the point dart, high-dimensional darts were also in-

vestigated for blue-noise sampling[17,74-76]. Other sam-

pling methods focus on anisotropic sampling instead of

isotropic sampling[77-79]. We do not discuss the details

of these approaches here because they are out of the

scope of this paper.

3.3 Evaluation

Different sampling algorithms result in point distri-

butions that have different characteristics. Hence, how

to choose the right method for a given application is

very important. So far, there are mainly two metho-

dologies for evaluating the quality of samples: spectral

properties and geometric analysis.

Spectral Evaluation. Spectral analysis is a common

method for evaluating the quality of point distributions

and has been demonstrated to be effective in detecting

sampling artifacts. The first technique was introduced

by Ulichney[80] to study dither patterns. The power

spectrum is estimated by averaging the periodogram of

distributions, determined by Fourier transforms. Then,

two useful one-dimensional statistics from the power

spectrum are derived from the power spectrum. The

first is the radially averaged power spectrum, in which

the typical blue-noise characteristic should start in a

sharp transition region, with a low-frequency cutoff and

a flatter, high-frequency region. The second one is

anisotropy that measures the radial symmetry of the

power spectrum. This tool was used by [6] to compare

different methods for generating Poisson-disk distribu-

tions. Schlömer and Deussen[81] extended the work of

[80] and [6] to investigate accuracy issues regarding the

spectral analysis of 2D point sets. In addition, Öztireli

and Gross[82] and Subar and Kautz[83] proposed ap-

proaches to analyze the quality of samples. The former

is based on the statistical measure pair correlation func-

tion (PCF), while the later utilizes the amplitude and

variance of the sampling spectrum.

The evaluation of blue-noise sampling on surfaces

is difficult since a typical Fourier analysis cannot be

directly used. Bowers et al.[30] first proposed a spec-

tral analysis method for surface sampling, but it could

only be used for analyzing uniform sampling. Wei and

Wang[84] introduced the differential domain analysis

(DDA) technique for analyzing the spectral properties

of non-uniformly sampled point sets, as well as for sur-

face sampling. With this tool, it is possible to analyze

the blue-noise properties of various methods on sur-

faces.

Fig.5 compares selected blue-noise sampling algo-

rithms by using the spectral analysis tool PSA provided

by Schlömer and Deussen[81]. Fig.6 does the compari-

son on mesh surfaces by applying the differential do-

main analysis of Wei and Wang[84].

Geometric Evaluation. Various spatial quantities

have been proposed to measure the spatial distribution
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Fig.5. Comparison of recent 2D blue-noise sampling algorithms, including (a) CVT[44,53], (b) CCVT[48], (c) CapCVT[52], (d) BNOT[54],
(e) MPS[25], and (f) FPO[11]. From top to bottom: distributions of 1 024 points in a periodic square, Voronoi cells (each cell is color-
coded by its degree: green is valence 6, orange is valence 7, light blue is valence 5, dark blue is valence 4 and brown is valence larger
than 7), Delaunay triangulation (triangles with the minimal angle less than 30◦ are shown in dark gray and the obtuse triangles are
shown in red), the power spectrum, radial means and anisotropy.

properties of samples. One common choice is the rela-

tive radius, δX = dmin/dmax, defined in [6, 81], where

dmin is the global minimum distance for any pair of

points in point set X and dmax is the theoretically

largest minimum distance between any two points (i.e.,

dmax =
√

(2/
√
3n)). Other spatial measures used in

recent meshing/remeshing papers are listed in Table 1

and Table 2. The quality of a triangle is measured

by Qt = 6√
3

st
ptht

, where st is the area of t, pt is the

half-perimeter of t and ht is the longest edge length of

t[85]. Here, Qmin and Qavg are the minimal and the

average triangle quality respectively; θmin and θmax are

the minimal and the maximal angle respectively, and

θ̄min is the average of the minimal angles of all trian-

gles; θ<30◦ and θ>90◦ are the ratios of the triangles with

θmin smaller than 30◦ and with θmax larger than 90◦;

V567 is the percentage of vertices with valences 5, 6 and

7; dH and dRMS are the Hausdorff distance and the root

mean squared distance between the input mesh and the

remeshing result (divided by the diagonal length of the

input mesh bounding box), measured with the Metro

tool[86].



446 J. Comput. Sci. & Technol., May 2015, Vol.30, No.3

0 50 100 150 200 250
-20

-10

0

10

20
0 50 100 150 200 250

0

1

2

3

0 50 100 150 200 250

0

0

50 100 150 200 250

0 50 100 150 200 250
0

1

2

3

-20

-10

0

10

20

0

1

2

3

50 100 150 200 250
-20

-10

0

10

20

0 50 100 150 200 250

0 50 100 150 200 250
0

1

2

3

-20

-10

0

10

20

0 50 100 150 200 250
0

1

2

3

0 50 100 150 200 250
0

1

2

3

0 50 100 150 200 250
0

1

2

3

0 50 100 150 200 250
0

1

2

3

0 50 100 150 200 250
-20

-10

0

10

20

0 50 100 150 200 250
-20

-10

0

10

20

0 50 100 150 200 250
-20

-10

0

10

20

0 50 100 150 200 250
-20

-10

0

10

20

(a)

(b)

(c)

(d)

Fig. 6. Comparison of surface sampling and remeshing. (a) CVT[42]. (b) CapCVT[52]. (c) MPS[25]. (d) FPO[57]. From left to right:
sampling points, the power spectrum, radial means and anisotropy. For each method, the first image shows uniform sampling on the
Venus mode with 1 800 samples, and the fourth image from the left shows adaptive sampling on the Bunny model with about 6 300
samples.

4 Applications

In this section, we discuss several applications that

can benefit from blue-noise sampling.

4.1 Rendering

Rendering algorithms typically face the challenge

of numerically computing high-dimensional integrals.

Most of the time, sampling algorithms are used and

therefore sample generation is a core problem in ren-

dering. Due to its low discrepancy and randomness,

blue-noise sampling has been exploited to improve ren-

dering quality and efficiency. Spencer and Jones[87] ap-

plied blue-noise sampling to caustics rendering powered

by photon mapping. They presented a method that

progressively removes noise from photon maps, which
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Table 1. Statistics of 2D Sampling and Meshing Qualities

Method δX Qmin Qavg θmin θ̄min θmax θ<30◦% θ>90◦% V567%

CVT 0.793 0.643 0.932 38.97 54.37 98.28 0.00 0.19 100.00

CCVT 0.778 0.518 0.832 28.82 47.13 113.26 0.05 8.74 098.54

CapCVT 0.741 0.512 0.847 28.67 48.44 116.83 0.17 6.81 099.91

BNOT 0.766 0.570 0.848 31.67 48.23 107.08 0.00 6.34 099.02

MPS 0.781 0.487 0.806 30.19 45.30 117.11 0.00 15.07 096.53

FPO 0.925 0.567 0.856 35.12 50.90 107.51 0.00 6.50 099.61

Table 2. Statistics of Remeshing Qualities

Model Method |X|(×103) Qmin Qavg θmin θ̄min θmax θ<30◦% θ>90◦% V567% dRMS(× 10−3) dH(×10−2)

Venus MPS 3.0 0.67 0.85 32.7 48.6 90.0 0.00 0.00 100.0 0.67 0.68

FPO 3.0 0.57 0.85 34.2 50.8 107.1 0.00 6.29 99.7 0.64 0.71

CapCVT 3.0 0.39 0.78 20.5 43.3 128.9 4.41 17.7 98.8 0.68 0.61

CVT 3.0 0.65 0.93 39.5 54.5 97.3 0.00 0.25 100.0 0.76 0.59

Bunny MPS 8.3 0.40 0.83 33.9 53.9 103.0 0.00 0.29 100.0 0.47 0.34

FPO 8.0 0.39 0.84 22.6 48.7 128.5 0.56 0.29 98.0 0.45 0.34

CapCVT 8.0 0.39 0.84 15.6 47.3 125.1 1.04 8.46 98.7 0.43 0.24

CVT 8.0 0.64 0.93 34.8 54.2 98.8 0.00 0.06 99.9 0.53 0.37

are view-independent. The resulting photon distribu-

tion holds blue-noise properties, which improve the ren-

dering quality while avoiding a huge amount of pho-

tons. Chen et al.[59] further improved the blue-noise

distribution of the photons. The so-called “bilateral

blue-noise sampling” method[59] considers not only the

photon positions, but also the photon properties during

relaxation, resulting in a better quality both in smooth

regions and sharp features. A comparison of the ren-

dering results is shown in Fig.7.

4.2 Image/Video Stippling

Stippling is a kind of art form using points to rep-

resent a drawing/painting. The contrast of the image

is controlled by using different densities of point dis-

tribution in different regions. The distribution of the

points cannot be regular or there would be visual ar-

tifacts. Blue-noise sampling is well suited for this ap-

plication. Secord[88] used a weighted Voronoi diagram

for image stippling. Then, various techniques were pro-

posed to improve the quality of stippling[2,48,52,54,89].

More recently, Ge et al.[90] used bilateral blue-noise

sampling[59] for video stippling. Fig.8 shows two recent

examples of image and video stippling.

4.3 Dynamic Sampling

We propose two new applications for dynamic sam-

pling based on maximal Poisson-disk sampling[25].

(a) (b) (c) (d)

Fig. 7. Comparison of photon mapping results of different methods. (a) Unrelaxed result. (b) Result of [87]. (c) Result of [59]. (d)
Reference 40X photons.
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(a) (b)

Fig.8. Blue-noise sampling for image and video stippling. (a)
Image stippling[54]. (b) Video stippling[90].

Plant Growth Simulation. We adapt a plant growth

simulation[4] to formulate it as an adaptive Poisson-disk

sampling problem[25]. Starting with a set of seeds (disks

with minimal radii), the radius of each plant (disk) in-

creases over time. Different species have varying growth

speeds. The plants whose centers are covered by oth-

ers are removed due to insufficient light. New gaps are

created and filled by new seeds repeatedly. Fig.9 shows

the simulation in different stages.

(a) (b) (c)

(d) (e) (f)

Fig.9. Plant simulation with Poisson-disk sampling. (a) Time
= 0. (b) Time = 300. (c) Time = 600. (d) Time = 1 200. (e)
Time = 1 800. (f) Time = 3 000.

Dynamic Point Set. We consider time varying blue-

noise triangulations as another application of dynamic

sampling. We choose to represent the changes over time

as a dynamical system where the vertex positions are

integrated according to a vector field. Fig.10(a) shows

an example. This application uses efficient operations

for inserting, deleting, and moving points as proposed

in [25]. The spectral analysis of the first and the last

frame shows that the blue-noise properties of the trian-

gulation are maintained over time (Fig.10(b)).

Frame=0

Frame=10 Frame=20

Frame=40 Frame=60 Frame=148

Last Frame
First Frame

1.5

1.0

0.5

0

10
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-10

0 180 360 540 720

0 180 360 540 720

(a)

(b)

Fig.10. Dynamic point set with Poisson-disk sampling.

4.4 (Re)Meshing

As another new application, we show here that blue-

noise sampling can be used directly for high-quality sur-

face remeshing and 2D/3D mesh generation.

Surface Remeshing. Recent work of Ebeida et al.[91]

and Guo et al.[92] showed that the triangulation of a

maximal Poisson-disk set has many elegant geometric

properties, such as the edge-length bound, the angle

bound, which coincide with the theoretical analysis of

[93]. Yan and Wonka proposed to use MPS for blue-

noise surface remeshing[25]. Yan et al.[57] further im-

proved the blue-noise properties by generalizing far-

thest point optimization for surface remeshing. In this

subsection, we compare the remeshing quality of differ-

ent blue-noise sampling approaches, including CVT[42],

CapCVT[52], MPS[25], and FPO[57]. Fig.11 illustrates

the remeshing results of the different approaches. The

recent papers [25, 57] present more details on the qual-

ity comparison between the different methods.

2D/3D Meshing. We slightly modify the sampling

framework for mesh generation. The boundary of the

input 2D polygon or the 3D mesh is first sampled, and

then the interior of the domain is further sampled. Fi-

nally, the samples are triangulated with respect to the

boundaries. The triangulation can be further optimized

using the randomized optimization operators proposed

by [25]. Fig.12 and Fig.13 show two examples of 2D

and 3D blue-noise mesh generation, respectively.
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(a) (b) (c) (d) (e)

Fig. 11. Blue-noise surface remeshing. Top row: uniform remeshing. Bottom row: adaptive remeshing. The result of CVT always has
the best meshing quality but lacks blue-noise features, while the other blue-noise remeshing methods are able to generate competitive
results. The red triangles have angles larger than 90◦, and the gray triangles have angles smaller than 30◦. (a) Input. (b) CVT. (c)
CapCVT. (d) FPO. (e) MPS.

Fig.12. 2D meshing with blue-noise sampling[25]. The angle
bounds of the triangles are [30◦, 120◦].

Fig.13. 3D tetrahedral meshing with blue-noise sampling. The
dihedral angle bounds of the tetrahedra are [15.5◦, 156.8◦].

5 Conclusions

This paper reviewed recent work on blue-noise sam-

pling and its related applications. In this section, we

briefly summarize these methods and discuss several

future research topics.

Poisson-disk sampling is the traditional algorithm

for blue-noise sampling and has been studied exten-

sively. Most previous approaches cannot guarantee all

three sampling criteria, especially the maximal sam-

pling property, except for the recent studies of [12,

24-25]. It has been shown that the lack of maxi-

mal sampling has a drastic influence on the meshing

quality[12,25], an important aspect for applications like

physical simulations.

Relaxation-based methods are able to generate

high-quality point distributions. These methods are

most suitable for applications like stippling and remesh-

ing. However, relaxation-based methods are time con-

suming and not suitable for real-time applications.

Tile-based approaches can generate large-scale point

sets in real time, but they sacrifice blue-noise proper-

ties, and it is not clear whether this type of method

can be used for mesh generation. This is an interesting

topic for further study.

As shown in Subsection 4.4, CVT-based remesh-

ing generates meshes with the best meshing quality,

whereas other approaches result in meshes with better

blue-noise characteristics. The question of which appli-

cations need the meshes with such blue-noise properties

is worth exploring in the future.
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[11] Schlömer T, Heck D, Deussen O. Farthest-point opti-

mized point sets with maximized minimum distance. In

Proc. ACM SIGGRAPH Symposium on High Performance

Graphics, August 2011, pp.135-142.

[12] Ebeida M S, Patney A, Mitchell S A et al. Efficient maximal

Poisson-disk sampling. ACM Trans. Graphics, 2011, 30(4):

49:1-49:12.

[13] Ebeida M S, Mitchell S A, Patney A et al. A simple al-

gorithm for maximal Poisson-disk sampling in high dimen-

sions. Computer Graphics Forum, 2012 31(2): 785-794

[14] Bridson R. Fast Poisson disk sampling in arbitrary dimen-

sions. In Proc. ACM SIGGRAPH 2007 Sketches, August

2007, Article No. 22.

[15] Wei L Y. Parallel Poisson disk sampling. ACM Trans.

Graphics, 2008, 27(3): 20:1-20:9.

[16] Gamito M N, Maddock S C. Accurate multidimensional

Poisson-disk sampling. ACM Trans. Graphics, 2009, 29(1):

8:1-8:19.

[17] Ebeida M S, Mitchell S A, Patney A et al. Exercises

in high-dimensional sampling: Maximal Poisson-disk sam-

pling and k-d Darts. In Topological and Statistical Meth-

ods for Complex Data, Bennett J, Vivodtzev F, Pascucci

V(eds.), Springer-Verlag, 2015, pp.221-238.

[18] Cook R L. Stochastic sampling in computer graphics. ACM

Trans. Graphics, 1986, 5(1): 51-72.

[19] Dunbar D, Humphreys G. A spatial data structure for

fast Poisson-disk sample generation. ACM Trans. Graph-

ics, 2006, 25(3): 503-508.

[20] White K B, Cline D, Egbert P K. Poisson disk point sets

by hierarchical dart throwing. In Proc. IEEE Symposium

on Interactive Ray Tracing, Sept. 2007, pp.129-132.

[21] Jones T R, Karger D R. Linear-time Poisson-disk patterns.

Journal of Graphics, GPU, and Game Tools, 2011, 15(3):

177-182.

[22] Wei L Y. Multi-class blue noise sampling ACM Trans.

Graphics, 2010, 29(4): 79:1-79:8
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