Error-Bounded Surface Remeshing with Minimal Angle Elimination
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Figure 1: The input (a) and the results ((b) to (g)) with different minimal angle threshold 6. The angle distributions and their approximation
error are shown below, in blue bar and red curves respectively. The error bound § is set to 0.2% of the input’s bounding box (%bb).

Abstract

Surface remeshing is a key component in many geometry process-
ing applications. However, existing high quality remeshing meth-
ods usually introduce approximation errors that are difficult to con-
trol, while error-driven approaches pay little attention to the mesh-
ing quality. Moreover, neither of those approaches can guarantee
the minimal angle bound in resulting meshes. We propose a novel
error-bounded surface remeshing approach that is based on minimal
angle elimination. Our method employs a dynamic priority queue
that first parameterize triangles who contain angles smaller than a
user-specified threshold. Then, those small angles are eliminated
by applying several local operators ingeniously. To control the ge-
ometric fidelity where local operators are applied, an efficient local
error measure scheme is proposed and integrated in our remeshing
framework. The initial results show that the proposed approach is
able to bound the geometric fidelity strictly, while the minimal an-
gles of the results can be eliminated to be up to 40 degrees.
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1 Introduction and Motivation

Surface remeshing is a key component in many geometry pro-
cessing applications. While many remeshing techniques are goal-
specified, a common goal of most of them is to find a compromise
among the following three aspects: (a) Geometric fidelity, which is
usually measured as approximation error, is the key requirement for
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most applications; (b) Element quality. The quality of the mesh el-
ements is crucial for numerical stability, which require fairly regular
meshes in terms of both geometry and connectivity. Particularly, a
lower bound on the minimal angle is vital for many numerical simu-
lations; and (c) Mesh complexity. Efficient representation of com-
plex shapes is of fundamental importance. Since mesh complexity
usually conflicts with geometric fidelity and elements quality, the
“just enough” resolution for the required elements quality and geo-
metric fidelity should be the goal.

However, to the best of our knowledge, most existing methods that
generate meshes with high elements quality often require high mesh
complexity or introduce high approximation error. The error-driven
methods, while preserving the results in controllable geometric fi-
delity and low mesh complexity, pay little attention to the elements
quality. To surmount the above limitations, we propose an error-
bounded surface remeshing method based on minimal angle elim-
ination. Our method requires the user only to specify the approxi-
mation error bound threshold (i.e., Hausdorff distance) and the de-
sired minimal angle. It then eliminates the minimal angle of the
input mesh up to the specified minimal angle threshold, with the
constraint of the specified error bound.

Contrary to the existing methods that iteratively apply the local op-
erators sequentially and globally [Alliez et al. 2008], we employ
a dynamic priority queue to parameterize all triangles that contain
angles smaller than the user specified threshold, and then locally ap-
ply these operators. Since our method only improves input meshes
in local regions where the elements quality is poor, it modifies the
models as little as possible with respect to the minimal angle thresh-
old and the error-bound constraint.

2 Technical Approach

Given an input 2-manifold triangular mesh M, the minimal an-
gle threshold 6 and the error bound §, the output result Mg is first
initialized as a copy of M;. Next, we parameterize all the small
angles in Mg by filling their opposite halfedges into a dynamic pri-
ority queue (). Each time when a halfedges h is removed from @,
we sequentially check whether the trigger conditions of collapsing
h or relocating the vertices of the facet that contains h can be sat-
isfied. If so, the according local operator is applied; otherwise, the
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Longest-Side Propagation Path [Rivara 1996] algorithm is applied
to find the local longest edge h; on Mg, and then apply the edge
split on h;. Each time when a local operator is applied, we optimize
the position(s) of the generated or affected vertex(es) for geometric
fidelity reduction. Finally, @) is updated for the next iteration. The
algorithm terminates when () is empty.

2.1 Local Error Measure Scheme

A reliable error measure scheme is necessary to bound the geomet-
ric fidelity between Mg and M. Since each local operator only
modifies a local area of M g, we design an efficient local error mea-
sure scheme based on the approximated Hausdorff distance, and
embed it into the trigger conditions of local operators.

To improve the efficiency, we use the limited samples to approxi-
mate the exact Hausdorff distance between Mpr and M. Suppose
the sample sets on M7 and Mg are St and Sg, respectively, then
the Hausdorff distance between M and Mg can be approximated

as du (M, Mr) = mazx (maﬂcaesld(a,&),maxbest(b, 13)) ,

where @ is the closest point to @ on Mg, and b is the closest point
to b on M. To better measure the approximation error on features,
we evenly sample facets, edges and vertices of M and Mrg.

In order to bound the error between Mg and M, we have to trace
the approximation error each time when a local operator is to be
applied. However, maintaining the global closest points of the sam-
ples is time-consuming, since each time when a local operator is
applied, the searching data structure of Mg has to be rebuilt. Based
on the observation that each local operator only modifies the geom-
etry and the topology of a small patch on Mg, we propose a local
error measure scheme based on local closest points update. The
key idea is that each time when a local operator is applied, only the
closest point pairs in the local affected patches are updated. Hence,
instead of searching the global closest points of the samples from
M on the whole My, we only search the closest points in a lo-
cal patch of Mg. Since the local data structure contains very few
elements and is easy to build, the proposed scheme is much more
efficient than the global error measure scheme, yet provides a reli-
able upper error bound between My and M;.

2.2 Trigger Conditions of Local Operators

‘We employ three basic local operators, namely edge split, edge col-
lapse and vertex relocate. As edge split operator neither alters the
topology of the mesh nor introduces approximation error, its trig-
ger condition is always specified as true. We only define the trigger
conditions of edge collapse and vertex relocate that helps to main-
tain the geometric fidelity and topological invariance of Mg while
improving its elements quality. Generally, there are four necessary
constraints for specifying the trigger conditions of local operators:

e Topology constraint. The local operator should always guar-
antee that Mg and M7 are isotopic [Edelsbrunner 2006];

o Geometry constraint. The local operator should not flip the
incident 1-ring facets with respect to the current 1-ring facets;

o Fidelity constraint. The Hausdorff distance between Mg
and M7 should stay below & when a local operator is applied;

e Quality constraint. The local operator should not introduce
new angles smaller than the current minimal angle.

We declare that the edge collapse can be applied if and only if when
all the four constraints are satisfied. For vertex relocate, we only
require the last three constraints since this kind of local operator
does not change the topology of Mpg.

3 Results and Future work
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Figure 2: Some selected results. Here the parameter ¢ is set to
0.2%(bb) and 0 is set to 35° in all inputs. In the Klein bottle and
Lion head models, the boundaries are visualized in red. The dark
part of the Klein bottle means the triangle normals are inside.

‘We have implemented a primary prototype of our algorithm in C++,
and tested some representative models in a 64-bit Windows 8.1 op-
erating system. See Fig. 2 for some selected examples. The re-
sults show that the proposed approach bounds the geometric fidelity
strictly and works well for models with different characteristics.
Since we can guarantee the minimal angle of the results, we believe
our methods will be more suitable in applications such as numeric
simulation and robust geometry processing.

In the future, we plan to investigate the theoretical and experimen-
tal convergence of our algorithm. We would also like to make a
thorough comparison between our results and the state-of-the-art
surface remeshing approaches in terms of geometric fidelity, ele-
ments quality and mesh complexity.
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