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a b s t r a c t

The Voronoi diagram is a fundamental geometric structure widely used in various fields, especially in
computer graphics and geometry computing. For a set of points in a compact domain (i.e. a bounded and
closed 2D region or a 3D volume), some Voronoi cells of their Voronoi diagram are infinite or partially
outside of the domain, but in practice only the parts of the cells inside the domain are needed, as when
computing the centroidal Voronoi tessellation. Such a Voronoi diagram confined to a compact domain
is called a clipped Voronoi diagram. We present an efficient algorithm to compute the clipped Voronoi
diagram for a set of sites with respect to a compact 2D region or a 3D volume.We also apply the proposed
method to optimal mesh generation based on the centroidal Voronoi tessellation.

Crown Copyright© 2011 Published by Elsevier Ltd. All rights reserved.

1. Introduction

The Voronoi diagram is a fundamental geometric structure
which has numerous applications in various fields, such as shape
modeling, motion planning, scientific visualization, geography,
chemistry, biology and so on.

Suppose that a set of sites in a compact domain in Rd is given.
Each site is associated with a Voronoi cell containing all the points
inRd closer to the site than to any other sites; these cells constitute
the Voronoi diagram of the set of sites. Voronoi cells of those sites
on the convex hull are infinite, and some of Voronoi cells may
be partially outside of the specified domain. However, in many
applications oneusually needs only the parts of Voronoi cells inside
the specific domain. That is, the Voronoi diagram restricted to the
given domain, which is defined as the intersection of the Voronoi
diagram and the domain, and is therefore called the clipped Voronoi
diagram [1]. The corresponding Voronoi cells are called the clipped
Voronoi cells (see Fig. 1).

Computing the clipped Voronoi diagram in a convex domain
is relatively easy—one just needs to compute the intersection of
each Voronoi cell and the domain, both being convex. However,
directly computing the clipped Voronoi diagram with respect to
a complicate input domain is a difficult problem and there is no
efficient solution in the existing literature. There has been no
previous work on computing the exact clipped Voronoi diagram
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for non-convex domains with arbitrary topology. A brute-force
implementation would be inefficient because of the complexity of
the domain.

The motivation of the work is inspired by the recent work [2,3].
They showed in [2] that the CVT energy function is C2-continuous,
which can beminimized by the Newton-like algorithm, such as the
presented L-BFGS method. In [3], an efficient CVT-based surface
remeshing algorithm was presented with an exact algorithm for
computing the restrictedVoronoi diagramonmesh surfaces. In this
paper, we aim at applying this fast CVT remeshing framework to
2D/3Dmesh generation. Tominimize the CVT energy function, one
needs to compute the clippedVoronoi diagram in the input domain
for function evaluation and gradient computation (see Section 2).

In this paper, we shall present practical algorithms for com-
puting clipped Voronoi diagrams based on several simple opera-
tions. The main idea of our approach is that instead of computing
the intersection of Voronoi diagram and the domain directly, we
first detect the Voronoi cells that have intersections with domain
boundary and then apply computation for those cells only. We use
a simple and efficient algorithm based on connectivity propaga-
tion for detecting the cells that intersect with the domain bound-
ary (i.e., polygons in 2D andmesh surfaces in 3D, respectively). We
also utilize the presented techniques for mesh generation as appli-
cations. The contributions of this paper include:

• introduce new methods for computing the clipped Voronoi
diagram in 2D regions (Section 3) and 3D volumes (Section 4);

• present practical algorithms for 2D/3D mesh generation
based on the presented clipped Voronoi diagram computation
techniques (Section 5).
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Fig. 1. Examples of clipped Voronoi diagram in a circle (a) and a cylinder (b). The
clipped Voronoi cells on the boundary are shaded.

1.1. Previous work

The properties of the Voronoi diagram have been extensively
studied in the past decades. Existing techniques compute the
Voronoi diagram for point sites in 2D and 3D Euclidean spaces
efficiently. There are several robust implementations that are
publicly available, such as CGAL [4] and Qhull [5]. A thorough
survey of the Voronoi diagram is out of the scope of this paper, the
reader is referred to [6–8] for details of theories and applications
of the Voronoi diagram. We shall restrict our discussion to the
approaches of computing the Voronoi diagram restricted to a
specific 2D/3D domain and their applications.
Voronoi diagramof surfaces/volumes. It is natural to use the geodesic
metric to define the so called Geodesic Voronoi Diagram (GVD)
on surfaces. Kunze et al. [9] presented a divide-and-conquer
algorithm of computing GVD for parametric surfaces. Peyré and
Cohen [10] used the fast marching algorithm to compute a discrete
approximated GVD on a mesh surface. However, the cost of
computing the exact GVD on surfaces is high, for instance, the fast
marchingmethod requires to solve the nonlinear Eikonal equation.

The restricted Voronoi diagram (RVD) [11] is defined as the
intersection of the 3D Voronoi diagram and the surface, which is
applied for computing constrained/restricted CVT on continuous
surfaces by Du et al. [12]. The concept of the constrained CVT
was extended to mesh surfaces in recent work [2,3] and applied
for isotropic surface remeshing. Yan et al. [3] proposed an exact
algorithm to construct the RVD on mesh surfaces which consist
of triangle soups. They processed each triangle independently
where a kd-tree was used to find the nearest sites of each triangle
in order to identify its incident Voronoi cells and compute the
intersection. In this paper, we further improve the efficiency of the
RVD computation by applying a neighbor propagation approach
instead of using kd-tree query, assuming the availability of the
mesh connectivity information (Section 4.1).

The clipped Voronoi diagram is defined as the intersection
of the 3D (resp. 2D) Voronoi diagram and the given 3D volume
(resp. a 2D region). Chan et al. [1] introduced an output-sensitive
algorithm for constructing the 3D clipped Voronoi diagram of
a convex polytope. Kyons et al. [13] presented an O(n log(n))
algorithm to compute the clipped Voronoi diagram in a 2D square
and applied it to network visualization. Yan et al. [14] utilized the
2D clipped Voronoi diagram to compute the CVT in periodic space.
Hudson et al. [15] computed the 3D clipped Voronoi diagram in
the bounding box of the sites and used it to improve the time and
space complexities of computing the full persistent homological
information. However, the handling of non-convex objectswas not
addressed in these approaches. Existing algorithms used a discrete
approximation in specific applications. Hoff III et al. [16] proposed
a method for computing the discrete generalized Voronoi diagram
using graphics hardware. The Voronoi diagram computation was
formulated as a clustering problem in the discrete voxel/pixel
space. Sud et al. [17] presented an n-body proximity query

algorithm based on computing the discrete 2nd order Voronoi
diagramon theGPU. GPU-based algorithmswere fast but produced
only a discrete approximation of the true Voronoi diagram. In this
paper, we shall present efficient algorithms to compute the exact
clipped Voronoi diagram for both 2D and 3D domains.
Mesh generation. Mesh generation has been extensively studied
in meshing community over past decades. The detailed reviews
of mesh generation techniques are available in [18,19]. In the
following, we will focus on the work based on Voronoi/Delaunay
concepts, which are most related to ours. We also briefly review
the main categories of tetrahedral mesh generation techniques.

The concept of Voronoi diagram has been successfully used for
meshing and analyzing point data. Amenta et al. presented a new
surface reconstruction algorithm based on Voronoi filtering [20].
This algorithm has provable guarantees when the sample points
of a smooth surface satisfy the lfs (local feature size) property.
Alliez et al. proposed a surface reconstruction algorithm fromnoisy
input data based on the Voronoi-PCA estimation [21]. Leymarie
and Kimia introduced the medial scaffold of point cloud data [22],
which is a hierarchical representation of the medial axis of 3D
objects. Although these works deal with point data, they can be
extended further for volumetric meshing.

The medial axis, which is a subset of Voronoi diagram, has
been applied in applications such as 2D quadrilateral meshing [23]
and 3D hexahedral meshing [24]. Given a closed 2D polygon
or 3D triangulated surface as the input domain, a set of dense
points is first sampled on the domain boundary and the medial
axis/surface is computed directly from the Voronoi diagram of
samples. The final mesh is generated by first meshing the medial
axis(2D)/surface(3D) and extruding to the domain boundary [25].
The medial axis based method is suitable for models which have
well definedmedial axis, such as CAD/CAMmodels, but the medial
axis computation is sensitive to noise or small features of the
domain boundary.

In this paper, we focus on the tetrahedral meshing as an appli-
cation of the clipped Voronoi diagram computation (see Section 5).
The shape quality and boundary preservation are two main issues
of tetrahedral meshing algorithms, since the quality of simplices is
crucial to finite element applications. We refer the reader to [26]
for the theoretic study of the relationship between element quali-
ties and interpolation error/condition number. In the following, we
briefly discuss the main categories of tetrahedral meshing.

• The octree-based approaches (e.g. [27,28]) first subdivide the
bounding box of input model repeatedly until a pre-specified
resolution is reached, then connect those cells to form the
tetrahedra. In general, this kind of approaches cannot prevent
bad elements near to the boundary in general.

• Advancing front methods start from the domain boundary
and stuff the interior of the domain progressively, guided by
specified heuristic to control the shape/size. Advancing front
methods are fast but a high-quality triangulated boundary is
required.

• Delaunay/Voronoi based approaches generatemeshes satisfying
Delaunay properties, which maximize the minimal angle of
shape elements. Given an input domain, Delaunay/Voronoi
based methods repeatedly insert Steiner points into the mesh,
until all the elements meet the Delaunay property. This
approach aims generating meshes which conform to the input
domain boundary, but often leads to unsatisfied results if the
given domain boundary is poorly triangulated. An alternative
way is to approximate the boundary instead of conforming,
which results the better shape/size quality.

• Variational approach is one of the most effective ways of
generating isotropic tetrahedral meshes. Recent work includes
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both CVT-based and ODT-based techniques. The CVT-based
approach aims at optimizing the dual Voronoi structure of
Delaunay triangulation, while ODT tends to optimize the shape
of primal elements [29]. The CVT-based mesh generation has
been extensively studied in the literature [12], while ODT was
recently introduced to graphics community [30,31]. One of
the main difficulties of both CVT and ODT-based tetrahedral
meshing is the boundary conforming issue. Alliez et al. used
dense quadrature samples to approximate restricted Voronoi
cells on mesh surface [30]. Dardenne et al. [32] used a discrete
version of the CVT to generate tetrahedral meshes from the
discrete volume data. The voxels are clustered into n cells via
the Lloyd iteration, with each cell corresponding to a site. The
tetrahedral mesh is obtained from the connectivity relations of
cells. However, such an approach is limited to the resolution of
voxels.

2. Problem formulation

We first provide mathematical definitions and notations,
then introduce the main idea of the clipped Voronoi diagram
computation.

2.1. Definitions

Definition 2.1. The Voronoi diagram of a given set of distinct sites
X = {xi}ni=1 in Rd is defined by a collection of Voronoi cells {Ωi}

n
i=1,

where

Ωi = {x ∈ Rd
| ∥x − xi∥ ≤ ∥x − xj∥, ∀j ≠ i}.

Each Voronoi cell Ωi is the intersection of a set of half-spaces,
delimited by the bisectors of the Delaunay edges incident to the
site xi.

Definition 2.2. The clipped Voronoi diagram for the sites X with
respect to a connected compact domain Ω is the intersection of
the Voronoi diagram and the domain, denoted as {Ωi|Ω}

n
i=1, where

Ωi|Ω = {x ∈ Ω | ∥x − xi∥ ≤ ∥x − xj∥, ∀j ≠ i}.

Each clipped Voronoi cell is the intersection of the Voronoi cell Ωi
and the domain Ω , i.e., Ωi|Ω = Ωi


Ω . We call Ωi|Ω the clipped

Voronoi cellwith respect to Ω (see Fig. 1 for examples).

Definition 2.3. Centroidal Voronoi tessellation of a set of distinct
sitesXwith respect to a compact domainΩ is theminimizer of the
CVT energy function [33]:

F(X) =

n
i=1


Ωi|Ω

ρ(x)∥x − xi∥2 dσ . (1)

In the abovedefinition,ρ(x) > 0 is a user-defineddensity function.
The partial derivative of the energy function with respect to each
site is given by [34]:
∂F
∂xi

= 2mi(xi − x∗

i ), (2)

here mi =


Ωi|Ω
ρ(x) dσ , and x∗

i =


Ωi |Ω

ρ(x)x dσ
Ωi |Ω

ρ(x) dσ is the centroid

of the clipped Voronoi cell Ωi|Ω . We use the L-BFGS method [2]
for computing the CVT. The clipped Voronoi diagram is used to as-
sist the function evaluation (Eq. (1)) and the gradient computation
(Eq. (2)).

2.2. Algorithm overview

There are two types of clippedVoronoi cells of a clippedVoronoi
diagram: inner Voronoi cells and boundary Voronoi cells, whose
corresponding sites are called inner sites and boundary sites,

respectively. The inner Voronoi cells are entirely contained in the
interior of the domainΩ , which can be deduced from theDelaunay
triangulation directly. The boundary Voronoi cells are those cells
that intersect with the domain boundary ∂Ω , as shown in Fig. 1.
In the following, we will focus on how to compute the boundary
Voronoi cells.

To compute a clipped Voronoi diagram with respect to a given
domain, we first need to classify the sites into inner and boundary
sites, and then compute the clipped Voronoi cells for boundary
sites. As discussed above, the boundary cells have intersections
with the domain boundary ∂Ω (i.e., polygons in 2D and mesh
surfaces in 3D), which can be found by intersecting the boundary
with the Voronoi diagram. We present efficient algorithms for
computing the intersection of a Voronoi diagram and 2D polygons
or 3D mesh surfaces, respectively. Once the boundary sites are
identified, we are able to compute the clipped Voronoi cells
efficiently by clipping the domain Ω against boundary Voronoi
cells.

In the following sections, we shall present efficient algorithms
for computing clipped Voronoi diagram in 2D (Section 3) and
3D (Section 4) spaces, respectively. Furthermore, we show how
to utilize the presented clipped Voronoi diagram computation
techniques for practical mesh generation (Section 5).

3. 2D clipped Voronoi diagram computation

Suppose that the input domainΩ is a compact 2D region,whose
boundary is represented by a 2D counter-clockwise outer polygon,
and several clockwise inner polygons without self-intersections.
Assume that the boundary is represented by a set of ordered edge
segments {ei}. Themain steps of ourmethod are illustrated in Fig. 2.
For a given set of sites inside the given domain, we first compute
the Voronoi diagram of the sites. Then we identify the boundary
sites and finally compute the clipped Voronoi cells of boundary
sites.

3.1. Voronoi diagram construction

We first construct a Delaunay triangulation from input sites
X = {xi}ni=1. The corresponding Voronoi diagram {Ωi}

n
i=1 is

constructed as the dual of the Delaunay triangulation, as defined
in Section 2. Each Voronoi cell is stored as a set of bisecting planes,
which is used for clipping operations in the following steps.

3.2. Detection of boundary cells

In this step, we shall identify the boundary Voronoi cells by
computing the intersection of boundary edges and the Voronoi
diagram {Ωi}. We repeatedly find the incident cell–edge pairs with
the assistance of an FIFO queue. An incident Voronoi cell of a
boundary edge ei is the cell that intersects with ei, i.e., a boundary
Voronoi cell.

We assign a Boolean tag to each boundary edge ei which
indicates whether ei has been processed or not. This flag is
initialized as false. Once the edge is visited, the flag is switched
to true. Starting from an unvisited boundary edge ei, we first
find its nearest incident Voronoi cell Ωj, then use the barycenter
(or midpoint) of ei to query the nearest site xj. Any linear search
function can be used here for the nearest point query.

The FIFO queue is initialized by the initial incident cell–edge
pair (Ωj, ei). We repeatedly pop out the cell–edge pair from the
queue and compute the intersection of the current Voronoi cell
Ωc and the boundary edge ec . The intersected segment is denoted
as sc . The current boundary edge is marked as visited and the
current Voronoi cell is marked as boundarycell. We detect new
cell–edge pairs by examining the current intersected segment sc .
There are two cases of sc ’s endpoints:
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Fig. 2. Illustration of main steps for computing clipped Voronoi diagram in 2D. (a) Delaunay triangulation, (b) 2D Voronoi diagram, (c) detect boundary sites, (d) compute
clipped Voronoi diagram.

(a) if the endpoints of sc contain a boundary vertex of the current
edge ec (green dots in Fig. 2(c)), the adjacent boundary edge
who shares the same vertex with ec is pushed into the queue
together with the current Voronoi cell Ωc ;

(b) if the endpoints of sc contain an intersection point, i.e., the
intersection point between a Voronoi edge ofΩc and ec (yellow
dots in Fig. 2(c)), the neighboring Voronoi cell who shares the
intersecting Voronoi edge with Ωc is pushed into the queue
together with ec .

The boundary detection process terminates when all the edges
have been visited.

3.3. Computation of clipped Voronoi cells

Once the boundary sites are identified, we compute the clipped
Voronoi cells by clipping the domain against their corresponding
bounding line segments. A straightforward extension of [3] should
first triangulate the boundary polygons and then do computation
on the resulting planarmesh, whichwill be the same as the surface
RVD computation described in Section 4.1. Given that the average
number of bisectors of 2D Voronoi cells is six [33], it is efficient
enough to clip the 2D domain by Voronoi cells directly. Here we
simply use the Sutherland–Hodgman clipping algorithm [35] to
compute the intersection. More examples of 2D clipped Voronoi
diagram are given in Section 6.

4. 3D clipped Voronoi diagram computation

In this section, we describe an efficient algorithm for computing
the clipped Voronoi diagram of 3D objects. Suppose that the input
volume Ω is given by a tetrahedral mesh M = {V, T }, where
V = {vk}nv

k=1 is the set of mesh vertices and T = {ti}mi=1 the
set of tetrahedral elements. Each tetrahedron (tet for short in the
following) ti stores the information of its four incident vertices and
four adjacent tets. The four vertices are assigned indices 0, 1, 2, 3
and so are the four adjacent tets. The index of an adjacent tet is
the same as the index of the vertex which is opposite to the tet.
The boundary of M is a triangle mesh, denoted as S = {fj}

nf
j=1,

which is assumed to be a 2-manifold. Each boundary triangle facet
fj stores the indices of three neighboring facets and the index of its
containing tet. Note that although other types of convex primitives
can also be used for domain decomposition, we use tetrahedral
mesh here for simplicity.

The 3D clipped Voronoi diagram computation is similar to the
2D counterpart. After constructing the 3D Voronoi diagram {Ωi} of
the sitesX (see Section 3.1), there are twomain steps, as illustrated
in Fig. 3:
1. detect boundary sites by intersecting Voronoi diagramwith the

boundary surface S, i.e., compute the surface RVD (Section 4.1);
2. compute the clipped Voronoi cells for all the boundary sites

(Section 4.2).

Fig. 3. Illustration of clipped Voronoi diagram computation of 500 sites in a torus.
(a) Surface RVD of 227 boundary sites, (b) Clipped Voronoi diagram.

Fig. 4. Illustration of the propagation process. The green points are the vertices of
input boundary mesh and the white points are the sites. The yellow points in (b)
are the vertices of RVD. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

4.1. Detection of boundary sites

For the given set of sites X = {xi}ni=1 and the boundary surface
S = {fj}

nf
j=1, the restricted Voronoi diagram (RVD) is defined as the

intersection of the 3D Voronoi diagram and the surface S, denoted
as R = {Ri}

n
i=1, where Ri = Ωi


S [11]. Each Ri is called a

restricted Voronoi cell (RVC). The sites corresponding to non-empty
RVCs are regarded as boundary sites.

We use the algorithm presented in [3] for computing the
surface RVD. The performance of RVD computation is improved
by using a neighbor propagation approach for finding the incident
cell–triangles pairs, instead of using a kd-tree structure to query
the nearest site for each triangle, as shown by our tests.

Now we are going to explain the propagation step (refer to
Fig. 4). We assign a Boolean flag (initialized as false) for each
boundary triangle at the initialization step. The flag is used to
indicate whether a triangle is processed or not. Starting from an
unprocessed triangle and one of its incident cells, which is the
cell corresponding to the nearest site of the triangle by using the
barycenter of the triangle as the query point. Here we assume that
a triangle f0 on S is the unprocessed triangle and the Voronoi cell
Ω0 is the corresponding cell of the nearest site of f0, as shown
in Fig. 4(a). We use an FIFO queue Q to store all the incident
cell–triangle pairs to be processed. To start, the initial pair {f0, Ω0}

is pushed into the queue. The algorithm repeatedly pops out the
pair in the front of Q and computes their intersection. During the
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Fig. 5. 2D CVT-based meshing. (a) The clipped Voronoi diagram of initial sites; (b) the result of CVT with ρ = 1; (c) the result of constrained optimization. Notice that
boundary seeds are constrained on the border; (d) the final uniform 2D meshing.

Fig. 6. Illustration of the CVT-based tetrahedral meshing algorithm. The wireframe is the boundary of the input mesh. (a) The clipped Voronoi diagram of the initial sites
(the boundary Voronoi cells are shaded); (b) the result of the unconstrained CVT with ρ = 1; (c) the result of the constrained optimization. Notice that boundary seeds are
constrained on the surface S; (d) the final isotropic tetrahedral meshing result.

intersection process, the current triangle is marked as processed,
new valid pairs are identified and pushed back into Q. The process
terminates when Q is empty and all the triangles are processed.

The key issue now is how to identify all the valid cell–triangle
pairs during the intersection. Assume that {f0, Ω0} is popped
out from Q, as shown in Fig. 4. In this case, we clip f0 against
the bounding planes of Ω0, which has five bisecting planes,
i.e.,[x0, x1], [x0, x2], . . . , [x0, x5]. The resulting polygon is repre-
sented by q0, q1, . . . , q5, as shown in Fig. 4(b). Since the line seg-
ment q0q1 is the intersection of f0 and [x0, x1], we know that the
opposite cell Ω1 is also an incident cell of f0, thus the pair {f0, Ω1}

is an incident pair. Since the common edge of [f0, f1] has intersec-
tion with Ω0, the adjacent facet f1 also has intersection with cell
Ω0, thus the pair {f1, Ω0} is also an incident pair. So is the pair
{f2, Ω0}. The other incident pairs are found in the samemanner. To
keep the same pair from being processed multiple times, we store
the incident facet indices for each cell. Before pushing a new pair
into the queue, we add the facet index to the incident facet index
set of the cell. The pair is pushed into the queue only if the facet
is not contained in the incident facet set of the cell; otherwise the
pair is discarded. At each time after intersection computation, the
resulting polygon is associated with the surface RVC of the current
site. The surface RVD computation terminates when the queue is
empty. Those sites that have non-empty surface RVC are marked
as the boundary sites, denoted as Xb = {xi|Ri ≠ ∅}.

4.2. Construction of clipped Voronoi cells

Once the boundary sites Xb are found, we compute the clipped
Voronoi cells for these sites. The computation of boundary Voronoi
cells is similar to the surface RVD computation presented in
Section 4.1, with the difference that we restrict the computation
on boundary cells only. For each boundary cell, we have recorded
the indices of its incident boundary triangles. We know that the
neighboring tet of each boundary triangle is also incident to the
cell. We also store the indices of the incident tet for each boundary

cell. The incident tet set is initialized as the neighboring tet of the
incident boundary triangle.

We use an FIFO queue to facilitate this process. The queue is
initialized by a set of incident cell–tet pairs (Ωi, tj), which can be
obtained from the boundary cell and its initial incident tet set.

The pair (Ωi, tj) in front of Q is popped out repeatedly.
We compute the intersection of Ωi and tj again by the Suther-
land–Hodgman clipping algorithm [35] and identify new incident
pairs at the same time. We clip the tet tj by bounding planes of cell
Ωi one by one. If the current bounding plane has intersection with
tj, we check the opposite Voronoi cell Ωo that shares the current
bisecting plane with Ωi; if Ωo is a boundary cell and tj is not in the
incident set of Ωo, a new pair (Ωo, tj) is found. We also check the
neighboring tetswho share the facets clipped by the current bisect-
ing plane. Those tets that are not in the incident set ofΩi are added
to its set, and new pairs are pushed into the queue. After clipping,
the resulting polyhedron is associatedwith the clippedVoronoi cell
Ωi|M of site xi. This process terminates when Q is empty.

5. Applications for mesh generation

We present two applications of the presented clipped Voronoi
diagram computation techniques, including 2D triangularmeshing
and 3D tetrahedral meshing.

5.1. 2D mesh generation

Triangle mesh generation is a well-known application of CVT
optimization. In this section, we present such an application based
onour 2D clippedVoronoi diagramcomputation. The input domain
Ω is a 2D polygon, which can be single connected or with multiple
components. We first sample a set of initial points inside the input
domain (Fig. 5(a)) and then compute a CVT (Eq. (1)) from this initial
sampling (Fig. 5(b)). Oncewehave a set ofwell distributed samples,
we snap the seeds corresponding to boundary Voronoi cells to the
boundary and run optimization again, with the boundary seeds
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Fig. 7. Results of clipped Voronoi diagram computation.

constrained on the border (Fig. 5(c)). Finally, we keep the primal
triangles whose circumscribing centers are inside the domain as
the meshing result (Fig. 5(d)). Our 2D meshing framework also
allows the user to insert vertices of input polygon and tag these
vertices as fixed. By doing this, the geometric properties of the
input domain can be better preserved. More results are given in
Section 6.

5.2. Tetrahedral mesh generation

There are three main steps of the CVT-based meshing frame-
work: initialization, iterative optimization, and mesh extraction,
which are illustrated by the example in Fig. 6.
Initialization. In this step, we build a uniform grid to store the sizing
field for adaptive meshing. Following the approach in [30], we first
compute the local feature size (lfs) for all boundary vertices and
then use a fast matching method to construct a sizing field on the
grid. This grid is also used for efficient initial sampling (Fig. 6(a)).
The reader is referred to [30] for details.
Optimization. There are two phases of the global optimization:
the unconstrained CVT optimization and the constrained CVT
optimization. In the first phase, we optimize the positions of the
sites inside the input volumewithout any constraints, which yields
a well-spaced distribution of the sites within the domain, with no
sites lying on the boundary surface (Fig. 6(b)).

During the second phase of optimization, all the boundary sites
will be constrained on the boundary. The partial derivative of the
energy functionwith respect to each boundary site is computed as:

∂F
∂xi


S

=
∂F
∂xi

−


∂F
∂xi

· N(xi)

N(xi), (3)

whereN(xi) is the unit normal vector of the boundary surface at the
boundary site xi [2]. The partial derivative with respect to an inner
site is still computed by Eq. (2). Both boundary and inner sites will
be optimized simultaneously, applying again the L-BFGS method
to minimize the CVT energy function (Fig. 6(c)).

Sharp features are preserved in a similar way as how the
boundary sites are treated. For example, we project sites on sharp
edges on the boundary and allow them to vary only along these
edges during the second stage of optimization. For details, please
refer to [3]where these steps are described in the context of surface
remeshing.
Final mesh extraction. Once the optimization is finished, we extract
the tetrahedral cells from the primal Delaunay triangulation

Fig. 8. Comparison of the propagation-based surface RVD computation with the
kd-tree-based approach.

(Fig. 6(d)). As discussed in [30], the CVT energy cannot eliminate
the slivers from the resulting tetrahedralmesh.Weperform a post-
processing to perturb slivers using the approach of [36]. The results
are given in Section 6.

6. Experimental results

Our algorithm is implemented in C++ on both Windows and
Linuxplatform.Weuse theCGAL library [4] for 2D and3DDelaunay
triangulation and TetGen [37] for background mesh generation
when the input 3D domain is given as a closed triangle mesh.
All the experimental results are tested on a laptop with 2.4 GHz
processor and 2 GB memory.
Efficiency. We first demonstrate the performance of the proposed
clipped VD computation algorithm. The 2D version is very
efficient. All the examples shown in this paper take only several
milliseconds. To detect the boundary sites, we have implemented
a propagation based approach for surface RVD computation. This
new implementation of RVD performs better than the previous kd-
tree based approach [3] since there is no kd-tree query required,
as shown in Fig. 8. The performance of the 3D clipped Voronoi
diagram computation is demonstrated in Fig. 9. We progressively
sample the input domain with number of sites from 10 to 6 ×

105. Note that the time of surface RVD computation is much
less than the Delaunay triangulation, since only a small portion



D.-M. Yan et al. / Computer-Aided Design ( ) – 7

#seed vs time of clipped VD
#seed vs time of RVD 
#seed vs time of DT

#Seed

Ti
m

e(
s)

Fig. 9. The timing curve of the clipped Voronoi diagram computation against the
number of sites on Bone model.

Fig. 10. Clipped Voronoi diagram of a sphere. The sites are the vertices of the
sphere. (a) The surface RVD, (b) the clipped Voronoi diagram.

Fig. 11. Clipped Voronoi diagram of a cube. Red points represent the sites. (a) The
input domain, (b) the surface RVD, (c) the clipped Voronoi diagram.

Fig. 12. CVT-based 2D mesh generation of a ring.

Fig. 13. CVT-based 2Dmesh generation. The boundary vertices of the input domain
are used as constraints.

Fig. 14. Tetrahedral mesh generation results. The histograms show the angle
distribution of the results.

of all the sites are boundary sites. The time cost of the clipped
VD computation algorithm is proportional to the total number of
incident cell–tet pairs (Section 4.2). Therefore, an input mesh with
a small number of tetrahedral elements would help to improve the
efficiency. In our experiments, all the input tetrahedral meshes are
generated by the robust meshing software TetGen [37] with the
conforming boundary.More results of the clippedVoronoi diagram
computation of various 3D objects are given in Fig. 7 and the timing
statistics is given in Table 1.
Robustness. We use exact predicates to predicate the side of a
vertex against a Voronoi plane during the clipping process. We use
Meyer and Pion’s FGP predicate generator [38] provided by CGAL
in our implementation, as also done in [3]. We did not encounter
any numerical issue for all the examples shown in the paper. Our
clippedVoronoi diagram is robust even for extreme configurations.
We showan example of computing the clippedVoronoi diagramon
a sphere in Fig. 10. The sites are set to the vertices of the boundary
mesh and there is no inner site. Furthermore, we give another
example of computing clipped Voronoi diagram in a cubic domain.
The boundary mesh of the cube is shown in Fig. 11(a). We sample
the eight corners of the cube as sites, in this case, the bounding
planes of Voronoi diagram are passing through the edges of the
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(a) Q1 . (b) Q2 .

(c) Q3 . (d) Q4 .

Fig. 15. Comparison of the meshing qualities of the sphere with the Delaunay refinement approach implemented in CGAL [4].

Table 1
Statistics of clipped Voronoi diagram computation on various models. |T | is the
number of the input tetrahedra. |S| is the number of the boundary triangles. |X| is
the number of the sites. |Xb| is the number of the boundary sites. Time (in seconds)
is the total time for clipped Voronoi diagram computation, including both Delaunay
triangulation and surface RVD computation.

Model |T | |S| |X| (k) |Xb| Time

Twoprism 68 30 1 572 0.2
Bunny 10 k 3 k 2 734 1.8
Elk 34.8 k 10.4 k 2 1173 3.1
Block 77.2 k 23.4 1 659 4.7
Homer 16.2 k 4594 10 2797 6.3
Rockerarm 212 k 60.3 k 3 1722 12.1
Bust 68.5 k 20 k 30 5 k 16.2

boundary mesh. The surface RVD and the volume clipped Voronoi
diagram are shown in Fig. 11(b) and (c), respectively.
2D meshing. We show some 2D mesh generation results based
on our fast clipped Voronoi diagram computation. Fig. 12 demon-
strates that our algorithm works well for multiple connected do-
mains. Fig. 13 shows that we insert original vertices of input
polygon for the better preservation of geometric properties.
Tetrahedral meshing. The complete process of the proposed
tetrahedral meshing framework is illustrated in Fig. 6. Fig. 14(a)
and (b) show two adaptive tetrahedralmeshing examples, using lfs
as the density function [30]. Fig. 14(c) and (d) give two examples
with sharp features preserved. Our framework can generate high
quality meshes efficiently and robustly. The running time for
obtaining final results ranges from seconds to minutes, depending
on the size of the input tetrahedral mesh and the desired number
of sites.
Comparison. We compare our meshing results with the Delaunay
refinement approachprovidedbyCGAL [4], aswell as a recentwork
that used a discrete version of clipped Voronoi diagram for tetra-
hedralmesh generation [32]. Four shape qualitymeasurements are
used as in [32], i.e.,
• Q1 = θmin, theminimal dihedral angle θmin of each tetrahedron;
• Q2 = θmax, the maximal dihedral angle θmax of each tetrahe-

dron;
• Q3 =

3 rin
rcirc

, the radius-ratio of each tetrahedral, where rin and
rcirc are the inscribed/circumscribed radius, respectively;

• Q4 =
12

3√
9 V2
l2i,j

, meshing quality of [39], where V is the volume of

the tetrahedron, and li,j the length of the edge which connects
vertices vi and vj.

Table 2
Comparison of meshing qualities. HDist is the Hausdorff distance between the
boundary of generated mesh and the input discretized isosurface.

Method Q1 Q4 min(Q1) min(Q4) HDist (%)

[4] 48.11° 0.847 12.05° 0.339 0.054
[32] 56.32° 0.911 16.31° 0.376 0.170
Ours 56.37° 0.932 24.23° 0.560 0.049

Q3 and Q4 are between 0 and 1, where 0 denotes a silver and 1
denotes a regular tetrahedron.

We choose the sphere generated from an isosurface as input
domain. TheHausdorff distance (measuredbyMetro [40]) between
the boundary of generatedmesh and the input surface (normalized
by dividing by the diagonal of bounding box) is 0.049%, which is
3 times smaller than 0.17% reported by [32]. The quality of the
tetrahedral mesh is shown in Fig. 15 and the comparison of each
measurement is given in Table 2. Our approach produces better
meshing quality, as well as smaller surface approximation error,
attributed to the exact clipped Voronoi diagram computation.

We also compare our resultwith an octree-based approach [27].
As shown in Fig. 16, the CVT based approach exhibits much
better element quality than a standard approach. Our approach
outperforms previous work in boundary approximation error as
shown in Fig. 17, attributed to the exact clipped Voronoi diagram
computation and simultaneous surface remeshing [3].

7. Conclusion

We have presented efficient algorithms for computing the
clipped Voronoi diagram for closed 2D and 3D objects, which
has been a difficult problem without an efficient solution. As
an application, we present a new CVT-based mesh generation
algorithm which combines the clipped VD computation and fast
CVT optimization.

In the future, we plan to look for more interdisciplinary appli-
cations of the clipped Voronoi diagram, such as biology and archi-
tecture. Applying our meshing technique to physical simulation
applications, and extending the clipped Voronoi diagram to a
higher dimension are also interesting directions.
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