
106 CoMMuNiCatioNs of tHe aCM | jAnuARY 2013 | voL. 56 | no. 1

research highlights

Doi:10.1145/2398356.2398379

Illustrating How Mechanical
Assemblies Work
By Niloy J. Mitra, Yong-Liang Yang, Dong-Ming Yan, Wilmot Li, and Maneesh Agrawala

abstract
How-things-work visualizations use a variety of visual tech-
niques to depict the operation of complex mechanical
assemblies. We present an automated approach for gen-
erating such visualizations. Starting with a 3D CAD model
of an assembly, we first infer the motions of the individual
parts and the interactions across the parts based on their
geometry and a few user-specified constraints. We then use
this information to generate visualizations that incorporate
motion arrows, frame sequences, and animation to convey
the causal chain of motions and mechanical interactions
across parts. We demonstrate our system on a wide variety
of assemblies.

1. iNtRoDuCtioN
… all machines that use mechanical parts are built with the
same single aim: to ensure that exactly the right amount of force
produces just the right amount of movement precisely where it
is needed.

(David Macaulay, The New Way Things Work 18)

Mechanical assemblies are collections of interconnected
parts such as gears, cams, and levers that move in con-
junction to achieve a specific functional goal. As Macaulay
points out, attaining this goal usually requires the assem-
bly to transform a driving force into a specific move-
ment. For example, the gearbox in a car is a collection of
interlocking gears with different ratios that transforms
rotational force from the engine into the appropriate
revolution speed for the wheels. Understanding how the
parts interact to transform the driving force into motion
is often the key to understanding how such mechanical
assemblies work.

There are two types of information that are crucial for
understanding this transformation process: (i) the spatial
configuration of the individual parts within the assembly
and (ii) the causal chain of motions and mechanical interac-
tions between the parts. While most technical illustrations
effectively convey spatial relationships, only a much smaller
subset of these visualizations is designed to emphasize how
parts move and interact with one another. Analyzing this
subset of how-things-work illustrations and prior cognitive
psychology research on how people understand mechanical
motions suggests several visual techniques for conveying
the movement and interactions of parts within a mechani-
cal assembly: (i) motion arrows indicate how individual parts
move; (ii) frame sequences highlight key snapshots of com-
plex motions and the sequence of interactions along the
causal chain; and (iii) animations show the dynamic behav-
ior of an assembly.

Creating effective how-things-work illustrations and
 animations by hand is difficult because a designer must
understand how a complex assembly works and also have the
skill to apply the appropriate visual techniques for emphasiz-
ing the motions and interactions between parts. As a result,
well-designed illustrations and animations are relatively
uncommon, and the few examples that do exist (e.g., in popu-
lar educational books and learning aids for mechanical engi-
neers) are infrequently updated or revised. Furthermore, most
illustrations are static and thus do not allow the viewer to
inspect an assembly from multiple viewpoints (see Figure 1).

In this paper, we present an automated approach for
generating how-things-work visualizations of mechanical
assemblies from 3D CAD models, thus facilitating the cre-
ation of both static illustrations and animations from any
user- specified viewpoint (see Figure 2). Our work addresses
two main challenges:
(i) Motion and interaction analysis. Most 3D models do
not specify how their parts move or interact with one
another. Yet, this information is essential for creating
visualizations that convey how the assembly works. We
present a semi-automatic technique that determines the
motions of parts and their causal relationships based on
their geometry.
(ii) Automatic visualization. We present algorithms that use
the motion and interaction information from our analysis to
automatically generate a variety of how-things-work
 visualizations, including static illustrations with motion
arrows, frame sequences to highlight key snapshots, and the

The original version of this paper was published in ACM
Transactions on Graphics (SIGGRAPH), July 2010.

Gears with motion arrows

Cam frame sequence

ROD

CAM

CAM
ROD

(a) (b)

figure 1. Hand-designed illustrations. these examples show how
motion arrows (a) and sequences of frames (b) can help convey
the motion and interactions of parts within mechanical assemblies.

jAnuARY 2013 | voL. 56 | no. 1 | CoMMuNiCatioNs of tHe aCM 107

causal chain of mechanical interactions, as well as simple
animations of the assembly in motion.

2. DesiGNiNG HoW-tHiNGs-WoRk VisuaLiZatioNs
Illustrators and engineers have produced a variety of
books2, 3, 15, 18 and websites (e.g., howstuffworks.com) that
are designed to show how complex mechanical assemblies
work. These illustrations use a number of diagrammatic
conventions to highlight the motions and mechanical inter-
actions of parts in the assembly. Cognitive psychologists
have also studied how static and multimedia visualizations
help people mentally represent and understand the function
of mechanical assemblies.19 For example, Narayanan and
Hegarty24, 25 propose a cognitive model for comprehension
of mechanical assemblies from diagrammatic visualiza-
tions, which involves (i) constructing a spatial representa-
tion of the assembly and then (ii) producing the causal chain
of motions and interactions between the parts. To facilitate
these steps, they propose a set of high-level design guide-
lines to create how-things-work visualizations.

Researchers in computer graphics have concen-
trated on refining and implementing design guidelines
that assist the first step of the comprehension process.
Algorithms for creating exploded views,13, 16, 20 cutaways,4, 17, 27 and
ghosted views6, 29 of complex objects apply illustrative con-
ventions to emphasize the spatial locations of the parts
with respect to one another. In contrast, the problem of
generating visualizations that facilitate the second step of
the comprehension process remains largely unexplored
within the graphics community. While some researchers
have proposed methods for computing motion cues from
animations26 and videos,8 these efforts do not consider
how to depict the causal chain of motions and interac-
tions between parts in mechanical assemblies.

2.1. Helping viewers construct the causal chain
In an influential treatise examining how people pre-
dict the behavior of mechanical assemblies from static

visualizations, Hegarty9 found that people reason in a step-
by-step manner, starting from an initial driver part and trac-
ing forward through each subsequent part along a causal
chain of interactions. At each step, people infer how the rel-
evant parts move with respect to one another and then deter-
mine the subsequent action(s) in the causal chain. Although
all parts may be moving at once in real-world operation of
the assembly, people mentally animate the motions of parts
one at a time in causal order.

While animation might seem like a natural approach
for visualizing mechanical motions, in a meta-analysis of
previous studies comparing animations to informationally
equivalent sequences of static visualizations, Tversky et al.28
found no benefit for animation. Our work does not seek to
engage in this debate between static versus animated illus-
trations. Instead we aim to support both types of visualiza-
tions with our tools. We consider both static and animated
visualizations in our analysis of design guidelines.

Effective how-things-work illustrations use a number
of visual techniques to help viewers mentally animate an
assembly:
(i) use arrows to indicate motions of parts. Many illustra-
tions include arrows that indicate how each part in the
assembly moves. In addition to conveying the motion of
individual parts, such arrows can also help viewers under-
stand the specific functional relationships between parts.10, 12
Placing the arrows near contact points between parts that
interact along the causal chain can help viewers better
understand the causal relationships.
(ii) highlight causal chain step-by-step. In both static and
animated illustrations, highlighting each step in the causal
chain of actions helps viewers mentally animate the assembly
by explicitly indicating the sequence of interactions between
parts. Static illustrations often depict the causal chain using a
sequence of keyframes that correspond to the sequence of
steps in the chain. Each keyframe highlights the transfer of
movement between a set of touching parts, typically by ren-
dering those parts in a different style from the rest of the

motion analysis annotated illustration

(1) (2) (3)

(4) (5) (6)

causal chain
driver

analyzed
assembly
parts

interaction
graph

figure 2. We analyze a given geometric model of a mechanical assembly to infer how the individual parts move and interact with each
other and encode this information as a time-varying interaction graph. once the user indicates a driver part, we use the interaction graph
to compute the motion of the assembly and generate an annotated illustration to depict how the assembly works. We also produce a
corresponding causal chain sequence to help the viewer mentally animate the motion.

108 CoMMuNiCatioNs of tHe aCM | jAnuARY 2013 | voL. 56 | no. 1

research highlights

assembly. In the context of animated visualizations, research-
ers have shown that adding signaling cues that sequentially
highlight the steps of the causal chain improves comprehen-
sion compared to animations without such cues.11, 14

(iii) highlight important keyframes of motions. The
motions of most parts in mechanical assemblies are peri-
odic. However, in some of these motions, the angular or lin-
ear velocity of a part may change during a single period. For
example, the pistons in the assembly shown in Figure 8
move the cylinder up and down during a single period of
motion. To depict such complex motions, static illustra-
tions sometimes include keyframes that show the configu-
ration of parts at the critical instances in time when the
angular or linear velocity of a part changes. Inserting one
additional keyframe between each pair of critical instances
can help clarify how the parts move from one critical
instance to the next.

3. systeM oVeRVieW
We present an automated system for generating how-
things-work visualizations that incorporate the visual
techniques described in the previous section. The input to
our system is a polygonal model of a mechanical assem-
bly that has been partitioned into individual parts. Our
system deletes hanging edges and vertices as necessary
to make each part 2- manifold. We assume that touching
parts are modeled correctly, with no self-intersections
beyond a small tolerance. As a first step, we perform an
automated motion and interaction analysis of the model
geometry to determine the relevant motion parameters
of each part, as well as the causal chain of interactions
between parts. This step requires the user to specify the
driver part for the assembly and the direction in which the
driver moves. Using the results of the analysis, our system
allows users to generate a variety of static and animated
visualizations of the input assembly from any viewpoint.
The next two sections present our analysis and visualiza-
tion algorithms in detail.

4. MotioN + iNteRaCtioN aNaLysis
We analyze the input polyhedral model of an assembly
to extract the degrees of freedom for each part, and also
to understand how the parts move and interact with one
another within the assembly. We encode the extracted infor-
mation as an interaction graph G := (V, E) where, each node
ni ∈ V represents part Pi and each edge eij ∈ E represents a
mechanical interaction between two touching parts (Pi, Pj)
(see Figure 2).

In order to construct this interaction graph, we rely on
two high-level insights: first, the motion of many mechani-
cal parts is related to their geometric properties, includ-
ing self-similarity and symmetry; and second, the different
types of mechanical interactions between parts are often
characterized by the specific spatial relationships and
geometric attributes of the relevant parts. Based on these
insights, we propose a two-stage process to construct the
interaction graph:

In the part analysis stage, we analyze each individual part
to determine its type (e.g., spur gear, bevel gear, and axle)

and relevant parameters (e.g., rotation axis, side profile, and
radius) using existing shape analysis algorithms. We store the
extracted information in the corresponding nodes of graph G.

In the interaction analysis stage, we analyze each pair of
touching parts and classify the type of mechanical interac-
tion based on their spatial relationships and part parame-
ters. We store the information in the corresponding edges
of graph G. Our system handles a variety of part types and
interactions as shown in Figure 3.

4.1. Part analysis
Our part analysis automatically classifies parts into the fol-
lowing common types: rotational gears (e.g., spur and bevel),
helical gears, translational gears (i.e., racks in spur–rack
mechanisms), axles, and fixed support structures (i.e., the
stationary parts in an assembly that support and constrain
the motions of other parts). The classifier is based on the geo-
metric features of the parts. We rely on the user to manually
classify parts that lack distinctive geometric characteristics
such as cams, rods, cranks, pistons, levers, and belts. Figure 3
shows many of the moving parts handled by our system, and
Figures 7a and 10b–c include some fixed support structures.

We also compute part parameters that inform the subse-
quent interaction analysis stage that determines how motion
is transmitted across parts. For all gears and axles, we esti-
mate the axis of rotational, helical, or translational motion.
We compute teeth count and width for rotational and trans-
lational gears, and the pitch for helical gears. For rotational
and helical gears, we also compute whether the part has a
conical (e.g., bevel) or cylindrical (e.g., spur) side profile and
its radii (e.g., inner, outer), as these properties influence the
gear can interact with other gears. Since support structures
often have housings or cutouts that constrain the rotational
motion of other parts, we compute potential axes of rotation
for these structures. Finally, we also compute potential rota-
tion axes for user-classified cams, cranks, and levers.

To distinguish the different types of parts and estimate
their parameters, we use the following shape analysis
algorithms.
symmetry detection. We assume that all gears and axles
exhibit rotational, helical or translational symmetry and
move based on their symmetry axes. We use a variant of
the algorithm proposed by Mitra et al.22 to detect such

spur–rack
variable speed

spur–spur helical–helical

spur–axlecam–rod piston–crank belt–spur lever–axle

helical–spurbevel–bevel

figure 3. typical part types and interactions encountered in
mechanical assemblies and handled by our system. While we
automatically detect most of these configurations, we require the user
to manually classify cams, rod, cranks, pistons, levers, and belts.

jAnuARY 2013 | voL. 56 | no. 1 | CoMMuNiCatioNs of tHe aCM 109

symmetries and infer part types and parameters based on
the symmetry properties. If a part is rotationally symmetric,
we mark it as either a rotational gear or axle, use the symme-
try axis as the rotation axis, and use the order of symmetry
to estimate teeth count and width. If a part is helically sym-
metric, we mark it as a helical gear, use the symmetry axis
as the screw axis, and record the helix pitch. Finally, if a part
has discrete translational symmetry, we mark it as a trans-
lational gear (i.e., rack), use its symmetry direction as the
translation axis, and use the symmetry period to estimate
the teeth count and width. Note that the symmetry detection
method also handles partial symmetries that are present in
parts like variable-speed gears (see Figure 3). If a part exhib-
its no symmetries and has not been classified by the user as
a cam, rod, crank, piston, lever or belt, we assume it to be a
fixed support structure.
Cylinders versus cones. Next, we analyze the side profiles of
rotational and helical gears to determine whether they are
cylindrical or conical, respectively. Specifically, we partition
such gears into cap and side regions as follows. Let ai denote
the rotation/screw axis of part Pi.

We mark its j-th face as a cap face if its normal nj is parallel
to the part’s rotational/screw axis, such that |nj · ai| ≈ 1,
otherwise we mark it as a side face. We then build con-
nected components of faces with the same labels, and
discard components with only few faces as members (see
Figure 4). Subsequently, we fit least squares cylinders and
cones to the side regions and classify parts with low residual
error as cylindrical or conical, respectively.
sharp edge loops. Finally, we use sharp edge loops, which
are 1D curves defined by sharp creases on a part, to deter-
mine additional part parameters for rotationally or heli-
cally symmetric parts, as well as cams, cranks, levers, and
fixed support structures. We start by marking all mesh
edges whose adjacent faces are close to orthogonal (i.e.,
dihedral angle in 90° ± 30° in our implementation) as
sharp (see also Gal et al.7 and Mehra et al.21). We then par-
tition the mesh into segments separated by sharp edges,
discard very small segments (less than 10 triangles in
our tests), and label the boundary loops of the remaining
segments as sharp edge loops. Next, we identify all the
sharp edge loops that are (roughly) circular by fitting (in
a least squares sense) circles to all the loops and select-
ing the ones with low residual errors. For rotationally and

helically symmetric parts, we use the minimum and maxi-
mum radii of the circular loops as estimates for the inner
and outer radii of the parts (e.g., Figure 4-left shows the
outer radius of a cylindrical gear).

For fixed support structures, a group of circular loops
with a consistent orientation often indicates a potential
axis of rotation for a part that docks with the fixed struc-
ture. Such clusters of loops also indicate potential rotation
axes for cams, cranks, and levers. We cluster circular loops
in two stages (see Figure 5): For each loop we compute the
normal of the plane that contains the fitted circle, which we
call the circle axis, and cluster loops with similar circle axes.
Then, we partition each cluster based on the projection of
the circle centers along a representative circle axis for that
cluster. The resulting clusters represent groups of circular
loops with roughly parallel circle axes that are close to one
another. We record the representative circle axis for each
cluster as a potential rotation axis.

4.2. interaction analysis
To build the edges of the interaction graph and estimate
their parameters, we: (i) compute the topology of the inter-
action graph based on the contact relationships between
part pairs; (ii) classify the type of mechanical interaction at
each contact (i.e., how motion is transferred from one part
to another); and (iii) compute the motion of the assembly.
(i) Contact detection. We use the contact relationships be-
tween parts to determine the topology of the interaction
graph. Following the approach of Agrawala et al.1, we consid-
er each pair of parts (Pi, Pj) in the assembly and compute the
closest distance between them. If this distance is less than a
threshold a, we consider the parts to be in contact, and we
add an edge eij between the nodes ni and nj in the interac-
tion graph. We set a to 0.1% of the diagonal of the assembly
bounding box in our experiments.

As an assembly moves, its contact relationships evolve,
that is, edges eij in the interaction graph may appear or dis-
appear over time (see Figure 10c). We detect such contact
changes using a space–time analysis. Suppose at time t, two
parts Pi and Pj are in contact and we have identified their
interaction type (see below). On the basis of this informa-
tion, we estimate their relative motion parameters, compute
their positions at subsequent times t + D, t + 2D, etc., and

fitted circle

cap segment

side segmentradius

fitted cylinder

fitted cone

figure 4. for rotationally and helically symmetric parts, we use their
symmetry axes to partition the parts into cap- and side-regions. We fit
cylinders or cones to the side regions to determine their profile types
and extract sharp edge loops to estimate part attributes like radii.

q

y

x

y

figure 5. We detect circular sharp edge feature loops on a part (left)
and cluster the loops based on the orientations of their circle axes
(middle) and the projections of the circle centers onto these axes
(middle-inset). such clusters represent groups of nearby loops with
parallel axes, shown here in different colors (right).

110 CoMMuNiCatioNs of tHe aCM | jAnuARY 2013 | voL. 56 | no. 1

research highlights

compute the contact relationships at each time. We use a
fixed sampling rate of D = 0.1 s with the default speed for the
driver part set to an angular velocity of 0.1 radian/s or trans-
lational velocity of 0.1 unit/s, as applicable. Our method
detects cases where two parts transition from touching to
not touching over time. It also detects cases where two parts
remain in contact but their contact region changes, which
often corresponds to a change in the parameters of the
mechanical interaction (e.g., the variable speed gear shown
in Figure 3). For each set of detected contact relationships,
we compute a new interaction graph. Note that we implic-
itly assume that part contacts change discretely over the
motion cycle, which means that we cannot handle continu-
ously evolving interactions, as in the case of elliptic gears.
See original paper23 for additional details.
(ii) interaction classification. We classify the type of interac-
tion for each pair of parts Pi and Pj that are in contact, using
their relative spatial arrangement and the individual part
 attributes. Specifically, we classify interactions based on the
positions and orientations of the part axes ai and aj along
with the values of the relevant part parameters. For parts
with multiple potential axes, we consider all pairs of axes.

Parallel axes: When the axes are nearly parallel, that
is, |ai · aj| ≈ 1, we detect one of the following interactions:
 cylinder-on-cylinder (e.g., spur gears) or cylinder-in-cylin-
der (e.g., planetary gears). For cylinder-on-cylinder, ri + rj
(roughly) equals the distance between the part axes. For
cylinder-in-cylinder, |ri − rj| (roughly) equals the distance
between the part axes. Note for cylinder-on-cylinder, the
parts can rotate about their individual axes, while simul-
taneously one cylinder can rotate about the other one, for
example, (subpart of) planetary configuration (see Figure 9).

Coaxial: When the axes are parallel and lie on a single
line, we classify the interaction as coaxial (e.g., spur–axle
and cam–axle).

Orthogonal axes: When the axes are nearly orthogonal,
that is, ai · aj ≈ 0, we detect one of the following interactions:
spur–rack, bevel–bevel, helical–helical, helical–spur. If one
part is a rotational gear and the other is a translational gear
with matching teeth widths, we detect a spur–rack interac-
tion. If both parts are conical with cone angles summing up
to 90°, we mark a bevel–bevel interaction. If both parts are
cylindrical and helical, we mark a helical–helical interac-
tion. If the parts are cylindrical but only one is helical, we
mark a helical–spur interaction.

Belt interactions: Since belts do not have a single con-
sistent axis of motion, we treat interactions with belts as a
special case. If a cylindrical part touches a belt, we detect a
cylinder-on-belt interaction.

These classification rules are carefully designed based
on standard mechanical assemblies and successfully cat-
egorize most part interactions automatically. In our results,
only the cam–rod and piston–crank interactions in the ham-
mer (Figure 7a), piston engine (Figure 8), and the drum
(Figure 10d) needed manual classification.
(iii) Motion computation. Mechanical assemblies are
brought to life by an external force applied to a driver and
propagated to other parts according to interaction types
and part attributes. In our system, once the user indicates

the driver, motion is transferred to the other connected
parts through a breadth-first graph traversal of the interac-
tion graph G, starting with the driver-node as the root. We
employ simple forward-kinematics to compute the rela-
tive speed at any node based on the interaction type with
its parent5. For example, for a cylinder-on-cylinder interac-
tion, if motion from a gear with radius ri and angular ve-
locity wi is transmitted to another with radius rj , then the
imparted angular velocity wj = wiri/rj . Our approach handles
graphs with loops (e.g., planetary gears). Since we assume
that our input models are consistent assemblies, even
when multiple paths exist between a root node and anoth-
er node, the final motion of the node does not depend on
the graph traversal path. When we have an additional con-
straint at a node, for example, a part is fixed or restricted
to translate only along an axis, we impose the constraint
in the forward-kinematics computation. Note that since we
assume that the input assembly is a valid one and does not
self-penetrate during its motion cycle, we do not perform
any collision detection in our system.

5. VisuaLiZatioN
Using the computed interaction graph, our system automat-
ically generates how-things-work visualizations based on
the design guidelines discussed in Section 2. Here, we pres-
ent algorithms for computing arrows, highlighting both the
causal chain and important keyframes of motion, and gen-
erating exploded views.

5.1. Computing motion arrows
For static illustrations, our system automatically computes
arrows from the user-specified viewpoint. We support three
types of arrows (see Figure 6): cap arrows, side arrows, and
translational arrows and generate them as follows: (i) deter-
mine how many arrows of each type to add; (ii) compute ini-
tial arrow placements; and (iii) refine arrow placements to
improve their visibility.

For each non-coaxial part interaction encoded in the
interaction graph, we create two arrows, one associated with
each node connected by the graph edge. We refer to such
arrows as contact-based arrows, as they highlight contact

max. cap segment

max. side segment
before arrow
optimization

contact-based
arrows

non-contact
arrows

side arrow

x

y

z

r

q

x
y

z

r

q
cap arrow

x

z

y
translational
arrow

d

figure 6. translational, cap, and side arrows (left). arrows are first
added based on the interaction graph edges, and then to any moving
parts without an arrow assignment. the initial arrow placement can
suffer from occlusion (right-inset), which is fixed using a refinement
step (center).

jAnuARY 2013 | voL. 56 | no. 1 | CoMMuNiCatioNs of tHe aCM 111

spur–rack: add a cap arrow to spur and translational arrow
to rack;

bevel–bevel: add side arrows on both (conical) parts;
helical–helical: add a cap arrow on both parts;
helical–spur: add a cap arrow on the cylinder and a side

arrow on the helical part; and
cylinder-on-belt: add a cap arrow on the cylinder and a

translational arrow on the belt;

Note that these rules do not add arrows for certain types of
part interactions (e.g., coaxial). For these interactions, we
add a non-contact arrow to any part that does not already
have an associated contact arrow. Furthermore, if a cylindri-
cal part is long, a single arrow may not be sufficient to effec-
tively convey the movement of the part. In this case we add
an additional non-contact side arrow to the part. Note that a
part may be assigned multiple arrows.

After choosing the number of arrows to add and associ-
ating a part with each one, we next compute their initial
positions using the cap and side segments for each part (see
Section 4). We use the z-buffer to identify the cap and side
face segments with the largest visible areas after accounting
for occlusion from other parts as well as self-occlusion. These
segments serve as candidate locations for arrow placement:
we place side arrows at the middle of the side segment with
maximal score (computed as a combination of visibility and
length of the side segment) and cap arrows right above the
cap segment with maximal visibility. For contact-based side
and cap arrows, we move the arrow within the chosen seg-
ment as close as possible to the corresponding contact point.
Non-contact translational arrows are placed midway along
the translational axis with arrow heads facing the viewer. The
local coordinate frame of the arrows are determined based
on the directional attributes of the corresponding parts,
while the arrow widths are set to a default value. The remain-
ing parameters of the arrows (d, r, q as in Figure 6) are derived
in proportion to the part parameters like its axis, radius, and
side/cap segment area. We position non-contact side arrows
such that the viewer sees the arrow head face-on. Please refer
to the original paper23 for additional details.

5.2. Highlighting the causal chain
To emphasize the causal chain of actions, our system gen-
erates a sequence of frames that highlights the propagation
of motions and interactions from the driver throughout

(a)
Hammer

(b)
Drill

(c)
Chain driver

figure 7. Motion arrow results. to convey how parts move, we
automatically compute motion arrows from the user-specified
viewpoint. Here, we manually specified the lever in the hammer
model (a) and the belt in the chain driver model (c); our system
automatically identifies the types of all the other parts.

time

(1)

(2)

(3)

(4)

d

di
sp

la
ce

m
en

t

(1) (2) (3) (4)

(2)

figure 8. keyframes for depicting periodic motion of a piston engine. for each of the pistons, we generate two keyframes based on its
extremal positions (i.e., the top and bottom of its motion). We typically also add middle frames between these extrema-based keyframes, but
due to the symmetry of the piston motion, the middle frames of each piston already exist as extrema-based keyframes of other pistons.

relations. We use the following rules to add contact arrows
based on the type of part interaction:

cylinder-on-cylinder: add cap arrows on both parts;
cylinder-in-cylinder: add a cap arrow for the inner cylinder

and a side arrow for the outer cylinder;

112 CoMMuNiCatioNs of tHe aCM | jAnuARY 2013 | voL. 56 | no. 1

research highlights

the rest of the assembly. Starting from the root of the inter-
action graph, we perform a breadth first traversal. At each
traversal step, we compute a set of nodes S that includes
the frontier of newly visited nodes, as well as any previ-
ously visited nodes that are in contact with this frontier.
We then generate a frame that highlights S by rendering
all other parts in a desaturated manner. To emphasize the
motion of highlighted parts, each frame includes any non-
contact arrow whose parent part is highlighted, as well as
any contact-based arrow whose two associated parts are
both highlighted. If a highlighted part only has contact
arrows and none of them are included based on this rule,
we add the part’s longest contact arrow to the frame to
ensure that every highlighted part has at least one arrow.
In addition, arrows associated with previously visited parts
are rendered in a desaturated manner. For animated visu-
alizations, we allow the user to interactively step through
the causal chain while the animation plays; at each step, we
highlight parts and arrows as described above.

5.3. Highlighting keyframes of motion
As explained in Section 2, some assemblies contain parts
that move in complex ways (e.g., the direction of motion
changes periodically). Thus, static illustrations often include
keyframes that help clarify such motions. We automatically

compute keyframes of motion by examining each transla-
tional part in the model: if the part changes direction, we add
keyframes at the critical times when the part is at its extre-
mal positions. However, since the instantaneous direction of
motion for a part is undefined exactly at these critical times,
we canonically freeze time d after the critical time instances
to determine which direction the part is moving in (see Figure
8). Additionally, for each part, we also add middle frames
between extrema-based keyframes to help the viewer easily
establish correspondence between moving parts. However, if
such frames already exist as the extrema-based keyframes of
other parts, we do not add the additional frames (see Figure 8).

We also generate a single frame sequence that high-
lights both the causal chain and important keyframes of
motion. As we traverse the interaction graph to construct
the causal chain frame sequence, we check whether any
newly highlighted part exhibits complex motion. If so, we
insert keyframes to convey the motion of the part and then
continue traversing the graph (see Figure 10c).

5.4. exploded views
In some cases, occlusions between parts in the assembly
make it difficult to see motion arrows and internal parts.
To reduce occlusions, our system generates exploded views
that separate portions of the assembly (see Figure 9). Typical
exploded views separate all touching parts from one another
to ensure that each part is visually isolated. However, using
this approach in how-things-work illustrations can make it
difficult for viewers to see which parts interact and how they
move in relation to one another.

To address this problem, we only separate parts that are
connected via a coaxial interaction; since such parts rotate
rigidly around the same axis, we believe it is easier for view-
ers to understand their relative motion even when they are
separated from one another. To implement this approach,
our system first analyzes the interaction graph and then
cuts coaxial edges. The connected components of the result-
ing graph correspond to sub-assemblies that can be sepa-
rated from one another. We use the technique of Li et al.16
to compute explosion directions and distances for these
sub-assemblies.

6. ResuLts
We used our system to generate both static and animated
how-things-work visualizations for ten different input
models, each of which contains from 7 to 27 parts, col-
lected from various sources. Figures 2, 7–10 show static
illustrations of all ten models. Other than specifying the
driver part and its direction of motion, no additional user
assistance was required to compute the interaction graph
for seven of the models. For the drum, hammer, and chain
driver models, we manually specified lever, cam, rod and
belt parts, respectively. We also specified the crank and
piston parts in the piston model. In all of our results, we
colored the driver blue, fixed support structures dark gray,
and all other parts light gray. We render translation arrows
in green, and side and cap arrows in red. In all the exam-
ples, analysis takes 1–2 s, while visualization runs at inter-
active rates.

(a)

(b)

Planetary gearbox
w/ fixed outer rings

Planetary gearbox
w/ free outer rings

figure 9. exploded view results. our system automatically
generates exploded views that separate the assembly at coaxial part
interactions to reduce occlusions. these two illustrations show two
different configurations for the planetary gearbox: one with fixed
outer rings (a), and one with free outer rings (b). the driver part is in
blue, while fixed parts are in dark gray.

jAnuARY 2013 | voL. 56 | no. 1 | CoMMuNiCatioNs of tHe aCM 113

figure 10. illustration results. We used our system to generate these how-things-work illustrations from 3D input models. for each model,
we specified the driver part and its direction of motion. in addition, we manually specified the levers in the drum (c). from this input, our
system automatically computes the motions and interactions of all assembly parts and generates motion arrows and frame sequences. We
created the zoomed-in insets by hand.

(a)

Gears

(b)

F15

(c)

F05

(1) (2) (3) (4) (5) (6)

(1) (2) (3) (4) (5) (6)

(d)

Leonardo’s
drum

(1) (2) (3) (4) (5) (6)

(1) (2) (3) (4)

(5) (6) (7)

Our results demonstrate how the visual techniques
described in Section 2 help convey the causal chain of
motions and interactions that characterize the operation
of mechanical assemblies. For example, not only do the
arrows in Figure 10a indicate the direction of rotation for
each gear, but their placement near contact points also
emphasizes the interactions between parts. The frame
sequence in Figure 10b shows how the assembly trans-
forms the rotation of the driving handle through a vari-
ety of gear configurations, while the sequence in Figure
10c conveys both the causal chain of interactions (frames
1–3) and the back-and-forth motion of the horizontal rack
(frames 3–6) as it engages alternately with the two circular
gears. Finally, our animated results (which can be found
at: http://vecg.cs.ucl.ac.uk/Projects/SmartGeometry/how_
things_work/) show how sequential highlighting of parts
along the causal chain can help convey how motions and

interactions propagate from the driver throughout the
assembly while the animation plays.

7. CoNCLusioNs aND futuRe WoRk
In this work, we presented an automated approach for
 generating how-things-work visualizations from 3D CAD
models. Our results demonstrate that combining shape
analysis techniques with visualization algorithms can
 produce effective depictions for a variety of mechanical
assemblies. Thus, we believe our work has useful applica-
tions for the creation of both static and animated visualiza-
tions in technical documentation and educational materials.

We see several directions for extending our approach:
(i) Handling more complex models: Analyzing and visualiz-
ing significantly more complex models (with hundreds or
even thousands of parts) introduces additional challenges,
including the possibility of excess visual clutter and large

114 CoMMuNiCatioNs of tHe aCM | jAnuARY 2013 | voL. 56 | no. 1

research highlights

numbers of occluded parts. (ii) Handling fluids: While the
parts in most mechanical assemblies interact directly with
one another via contact relationships, some assemblies use
fluid interactions to transform a driving force into move-
ment (e.g., pumps and hydraulic machines). One approach
for supporting such assemblies would be to incorporate a
fluid simulation into our analysis technique. (iii) Visualizing
forces: In addition to visualizing motion, some how-things-
work illustrations also depict the direction and magnitude
of physical forces, such as friction, torque and pressure,
that act on various parts within the assembly. Automatically
depicting such forces is an open research challenge.

© 2013 aCM 0001-0782/13/01

 13. Karpenko, O., li, W., Mitra, n.,
agrawala, M. Exploded view diagrams
of mathematical surfaces. IEEE Vis.
16, 6 (2010), 1311–1318.

 14. Kriz, s., Hegarty, M. top-down and
bottom-up influences on learning
from animations. Int. J. Hum. Comput.
Stud. 65, 11 (2007), 911–930.

 15. langone, j. national Geographic’s How
things Work: Everyday technology
Explained, national Geographic, 1999.

 16. li, W., agrawala, M., Curless, b.,
salesin, d. automated generation of
interactive 3d exploded view diagrams.
ACM TOG (SIGGRAPH), 27, 3 (2008).

 17. li, W., Ritter, l., agrawala, M., Curless,
b., salesin, d. Interactive cutaway
illustrations of complex 3d models.
ACM TOG (SIGGRAPH), 26, 3:#31
(2007), 1–11.

 18. Macaulay, d. The New Way Things
Work, Houghton Mifflin books for
Children, 1998.

 19. Mayer, R. Multimedia learning,
Cambridge university Press, 2001.

 20. McGuffin, M.j., tancau, l.,
balakrishnan, R. using deformations
for browsing volumetric data. In
IEEE Visualization (2003).

 21. Mehra, R., Zhou, Q., long, j., sheffer,
a., Gooch, a., Mitra, n.j. abstraction
of man-made shapes. In Proceedings
of ACM TOG (SIGGRAPH Asia)

(2009), 1–10.
 22. Mitra, n.j., Guibas, l., Pauly, M.

Partial and approximate symmetry
detection for 3d geometry. ACM TOG
(SIGGRAPH) 25, 3 (2006), 560–568.

 23. Mitra, n.j., yang, y.l., yan, d.M., li,
W., agrawala, M. Illustrating how
mechanical assemblies work. ACM TOG
(SIGGRAPH), 29 (2010), 58:1–58:12.

 24. narayanan, n., Hegarty, M. On
designing comprehensible interactive
hypermedia manuals. Int. J. Hum.
Comput. Stud. 48, 2 (1998), 267–301.

 25. narayanan, n., Hegarty, M.
Multimedia design for communication
of dynamic information. Int. J. Hum.
Comput. Stud. 57, 4 (2002), 279–315.

2 6. nienhaus, M., döllner, j. depicting
dynamics using principles of visual art
and narrations. IEEE Comput. Graph.
Appl. 25, 3 (2005), 40–51.

 27. seligmann, d., Feiner, s.
automated generation of intent-
based 3d illustrations. In Proceedings
of ACM SIGGRAPH (1991), aCM, 132.

 28. tversky, b., Morrison, j.b.,
betrancourt, M. animation: Can it
facilitate? Int. J. Hum. Comput. Stud.
5 (2002), 247–262.

 29. Viola, I., Kanitsar, a., Gröller, M.E.
Importance-driven volume rendering.
In IEEE Visualization (2004), 139–145.

niloy J. Mitra university College london.

Yong-Liang Yang, Dong-Ming Yan
King abdullah university of science
and technology (Kaust).

Wilmot Li adobe.

Maneesh Agrawala university
of California, berkeley.

text excerpt and illustrations from The Way Things Work by david Macaulay. Compilation
copyright (c) 1988, 1998 dorling Kindersley, ltd., london. text copyright (c) 1988, 1998
david Macaulay, neil ardley. Illustrations copyright (c) 1988, 1998 david Macaulay. used
by permission of Houghton Mifflin Harcourt Publishing Company. all rights reserved.

References
 1. agrawala, M., Phan, d., Heiser, j.,

Haymaker, j., Klingner, j., Hanrahan,
P., tversky, b. designing effective
step-by-step assembly instructions.
In Proceedings of ACM SIGGRAPH
(2003), 828–837.

 2. amerongen, C.V. the Way things
Work: an Illustrated Encyclopedia
of technology, simon and schuster,
1967.

 3. brain, M. How stuff Works, Hungry
Minds, new york, 2001.

 4. burns, M., Finkelstein, a. adaptive
cutaways for comprehensible
rendering of polygonal scenes. In ACM
TOG (SIGGRAPH Asia) (2008), 1–7.

 5. davidson, j.K., Hunt, K.H. Robots
and screw theory: applications of
Kinematics and statics to Robotics,
Oxford university Press, 2004.

 6. Feiner, s., seligmann, d. Cutaways
and ghosting: satisfying visibility
constraints in dynamic 3d
illustrations. Vis. Comput. 8, 5 (1992),
292–302.

 7. Gal, R., sorkine, O., Mitra, n.j., Cohen-Or,
d. iWIREs: an analyze-and-edit approach
to shape manipulation. ACM TOG
(SIGGRAPH) 28, 3:#33 (2009), 1–10.

 8. Goldman, d.b., Curless, b., salesin, d.,
seitz, s.M. schematic storyboarding for
video visualization and editing. ACM TOG
(SIGGRAPH) 25, 3 (2006), 862–871.

 9. Hegarty, M. Mental animation:
Inferring motion from static displays
of mechanical systems. J. Exp.
Psychol. Learn. Mem. Cognit. 18, 5
(1992), 1084–1102.

 10. Hegarty, M. Capacity limits in
diagrammatic reasoning. In Theory
and Application of Diagrams (2000),
335–348.

 11. Hegarty, M., Kriz, s., Cate, C. the
roles of mental animations and
external animations in understanding
mechanical systems. Cognit. Instruct.
21, 4 (2003), 325–360.

 12. Heiser, j., tversky, b. arrows in
comprehending and producing
mechanical diagrams. Cognit. Sci. 30
(2006), 581–592.

ACM Transactions
on Interactive

Intelligent Systems

ACM Transactions on Interactive
Intelligent Systems (TIIS). This
quarterly journal publishes papers
on research encompassing the
design, realization, or evaluation of
interactive systems incorporating
some form of machine intelligence.

World-Renowned Journals from ACM
 ACM publishes over 50 magazines and journals that cover an array of established as well as emerging areas of the computing field.

IT professionals worldwide depend on ACM's publications to keep them abreast of the latest technological developments and industry
news in a timely, comprehensive manner of the highest quality and integrity. For a complete listing of ACM's leading magazines & journals,

including our renowned Transaction Series, please visit the ACM publications homepage: www.acm.org/pubs.

 PLEASE CONTACT ACM MEMBER
SERVICES TO PLACE AN ORDER
Phone: 1.800.342.6626 (U.S. and Canada)
 +1.212.626.0500 (Global)
Fax: +1.212.944.1318
 (Hours: 8:30am–4:30pm, Eastern Time)
Email: acmhelp@acm.org
Mail: ACM Member Services
 General Post Offi ce
 PO Box 30777
 New York, NY 10087-0777 USA

ACM Transactions on Computation
Theory (ToCT). This quarterly peer-
reviewed journal has an emphasis
on computational complexity, foun-
dations of cryptography and other
computation-based topics in theo-
retical computer science.

ACM Transactions
on Computation

Theory

www.acm.org/pubs

PUBS_halfpage_Ad.indd 1 6/7/12 11:38 AM

