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abstract
How-things-work visualizations use a variety of visual tech-
niques to depict the operation of complex mechanical 
assemblies. We present an automated approach for gen-
erating such visualizations. Starting with a 3D CAD model 
of an assembly, we first infer the motions of the individual 
parts and the interactions across the parts based on their 
geometry and a few user-specified constraints. We then use 
this information to generate visualizations that incorporate 
motion arrows, frame sequences, and animation to convey 
the causal chain of motions and mechanical interactions 
across parts. We demonstrate our system on a wide variety 
of assemblies.

1. iNtRoDuCtioN
… all machines that use mechanical parts are built with the 
same single aim: to ensure that exactly the right amount of force 
produces just the right amount of movement precisely where it 
is needed.

(David Macaulay, The New Way Things Work 18)

Mechanical assemblies are collections of interconnected 
parts such as gears, cams, and levers that move in con-
junction to achieve a specific functional goal. As Macaulay 
points out, attaining this goal usually requires the assem-
bly to transform a driving force into a specific move-
ment. For example, the gearbox in a car is a collection of 
interlocking gears with different ratios that transforms 
rotational force from the engine into the appropriate 
revolution speed for the wheels. Understanding how the 
parts interact to transform the driving force into motion 
is often the key to understanding how such mechanical 
assemblies work.

There are two types of information that are crucial for 
understanding this transformation process: (i) the spatial 
configuration of the individual parts within the assembly 
and (ii) the causal chain of motions and mechanical interac-
tions between the parts. While most technical illustrations 
effectively convey spatial relationships, only a much smaller 
subset of these visualizations is designed to emphasize how 
parts move and interact with one another. Analyzing this 
subset of how-things-work illustrations and prior cognitive 
psychology research on how people understand mechanical 
motions suggests several visual techniques for conveying 
the movement and interactions of parts within a mechani-
cal assembly: (i) motion arrows indicate how individual parts 
move; (ii) frame sequences highlight key snapshots of com-
plex motions and the sequence of interactions along the 
causal chain; and (iii) animations show the dynamic behav-
ior of an assembly.

Creating effective how-things-work illustrations and 
 animations by hand is difficult because a designer must 
understand how a complex assembly works and also have the 
skill to apply the appropriate visual techniques for emphasiz-
ing the motions and interactions between parts. As a result, 
well-designed illustrations and animations are relatively 
uncommon, and the few examples that do exist (e.g., in popu-
lar educational books and learning aids for mechanical engi-
neers) are infrequently updated or revised. Furthermore, most 
illustrations are static and thus do not allow the viewer to 
inspect an assembly from multiple viewpoints (see Figure 1).

In this paper, we present an automated approach for 
generating how-things-work visualizations of mechanical 
assemblies from 3D CAD models, thus facilitating the cre-
ation of both static illustrations and animations from any 
user- specified viewpoint (see Figure 2). Our work addresses 
two main challenges:
(i) Motion and interaction analysis. Most 3D models do 
not specify how their parts move or interact with one 
another. Yet, this information is essential for creating 
visualizations that convey how the assembly works. We 
present a semi-automatic technique that determines the 
motions of parts and their causal relationships based on 
their geometry.
(ii) Automatic visualization. We present algorithms that use 
the motion and interaction information from our analysis to 
automatically generate a variety of how-things-work 
 visualizations, including static illustrations with motion 
arrows, frame sequences to highlight key snapshots, and the 

The original version of this paper was published in ACM 
Transactions on Graphics (SIGGRAPH), July 2010.
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figure 1. Hand-designed illustrations. these examples show how 
motion arrows (a) and sequences of frames (b) can help convey  
the motion and interactions of parts within mechanical assemblies. 
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causal chain of mechanical interactions, as well as simple 
animations of the assembly in motion.

2. DesiGNiNG HoW-tHiNGs-WoRk VisuaLiZatioNs
Illustrators and engineers have produced a variety of 
books2, 3, 15, 18 and websites (e.g., howstuffworks.com) that 
are designed to show how complex mechanical assemblies 
work. These illustrations use a number of diagrammatic 
conventions to highlight the motions and mechanical inter-
actions of parts in the assembly. Cognitive psychologists 
have also studied how static and multimedia visualizations 
help people mentally represent and understand the function 
of mechanical assemblies.19 For example, Narayanan and 
Hegarty24, 25 propose a cognitive model for comprehension 
of mechanical assemblies from diagrammatic visualiza-
tions, which involves (i) constructing a spatial representa-
tion of the assembly and then (ii) producing the causal chain 
of motions and interactions between the parts. To facilitate 
these steps, they propose a set of high-level design guide-
lines to create how-things-work visualizations.

Researchers in computer graphics have concen-
trated on refining and implementing design guidelines 
that assist the first step of the comprehension process. 
Algorithms for creating exploded views,13, 16, 20 cutaways,4, 17, 27 and 
ghosted views6, 29 of complex objects apply illustrative con-
ventions to emphasize the spatial locations of the parts 
with respect to one another. In contrast, the problem of 
generating  visualizations that facilitate the second step of 
the comprehension process remains largely unexplored 
within the graphics community. While some researchers 
have proposed methods for computing motion cues from 
animations26 and videos,8 these efforts do not consider 
how to depict the causal chain of motions and interac-
tions between parts in mechanical assemblies.

2.1. Helping viewers construct the causal chain
In an influential treatise examining how people pre-
dict the behavior of mechanical assemblies from static 

visualizations, Hegarty9 found that people reason in a step-
by-step manner, starting from an initial driver part and trac-
ing forward through each subsequent part along a causal 
chain of interactions. At each step, people infer how the rel-
evant parts move with respect to one another and then deter-
mine the subsequent action(s) in the causal chain. Although 
all parts may be moving at once in real-world operation of 
the assembly, people mentally animate the motions of parts 
one at a time in causal order.

While animation might seem like a natural approach 
for visualizing mechanical motions, in a meta-analysis of 
previous studies comparing animations to informationally 
equivalent sequences of static visualizations, Tversky et al.28 
found no benefit for animation. Our work does not seek to 
engage in this debate between static versus animated illus-
trations. Instead we aim to support both types of visualiza-
tions with our tools. We consider both static and animated 
visualizations in our analysis of design guidelines.

Effective how-things-work illustrations use a number 
of visual techniques to help viewers mentally animate an 
assembly:
(i) use arrows to indicate motions of parts. Many illustra-
tions include arrows that indicate how each part in the 
assembly moves. In addition to conveying the motion of 
individual parts, such arrows can also help viewers under-
stand the specific functional relationships between parts.10, 12 
Placing the arrows near contact points between parts that 
interact along the causal chain can help viewers better 
understand the causal relationships.
(ii) highlight causal chain step-by-step. In both static and 
animated illustrations, highlighting each step in the causal 
chain of actions helps viewers mentally animate the assembly 
by explicitly indicating the sequence of interactions between 
parts. Static illustrations often depict the causal chain using a 
sequence of keyframes that correspond to the sequence of 
steps in the chain. Each keyframe highlights the transfer of 
movement between a set of touching parts, typically by ren-
dering those parts in a different style from the rest of the 
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figure 2. We analyze a given geometric model of a mechanical assembly to infer how the individual parts move and interact with each 
other and encode this information as a time-varying interaction graph. once the user indicates a driver part, we use the interaction graph 
to compute the motion of the assembly and generate an annotated illustration to depict how the assembly works. We also produce a 
corresponding causal chain sequence to help the viewer mentally animate the motion.
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assembly. In the context of animated visualizations, research-
ers have shown that adding signaling cues that sequentially 
highlight the steps of the causal chain improves comprehen-
sion compared to animations without such cues.11, 14

(iii) highlight important keyframes of motions. The 
motions of most parts in mechanical assemblies are peri-
odic. However, in some of these motions, the angular or lin-
ear velocity of a part may change during a single period. For 
example, the pistons in the assembly shown in Figure 8 
move the cylinder up and down during a single period of 
motion. To depict such complex motions, static illustra-
tions sometimes include keyframes that show the configu-
ration of parts at the critical instances in time when the 
angular or linear velocity of a part changes. Inserting one 
additional keyframe between each pair of critical instances 
can help clarify how the parts move from one critical 
instance to the next.

3. systeM oVeRVieW
We present an automated system for generating how-
things-work visualizations that incorporate the visual 
techniques described in the previous section. The input to 
our system is a polygonal model of a mechanical assem-
bly that has been partitioned into individual parts. Our 
system deletes hanging edges and vertices as necessary 
to make each part 2- manifold. We assume that touching 
parts are modeled correctly, with no self-intersections 
beyond a small tolerance. As a first step, we perform an 
automated motion and interaction analysis of the model 
geometry to determine the relevant motion parameters 
of each part, as well as the causal chain of interactions 
between parts. This step requires the user to specify the 
driver part for the assembly and the direction in which the 
driver moves. Using the results of the analysis, our system 
allows users to generate a variety of static and animated 
visualizations of the input assembly from any viewpoint. 
The next two sections present our analysis and visualiza-
tion algorithms in detail.

4. MotioN + iNteRaCtioN aNaLysis
We analyze the input polyhedral model of an assembly 
to extract the degrees of freedom for each part, and also 
to understand how the parts move and interact with one 
another within the assembly. We encode the extracted infor-
mation as an interaction graph G := (V, E) where, each node 
ni ∈ V represents part Pi and each edge eij ∈ E represents a 
mechanical interaction between two touching parts (Pi, Pj) 
(see Figure 2).

In order to construct this interaction graph, we rely on 
two high-level insights: first, the motion of many mechani-
cal parts is related to their geometric properties, includ-
ing self-similarity and symmetry; and second, the different 
types of mechanical interactions between parts are often 
characterized by the specific spatial relationships and 
geometric attributes of the relevant parts. Based on these 
insights, we propose a two-stage process to construct the 
interaction graph:

In the part analysis stage, we analyze each individual part 
to determine its type (e.g., spur gear, bevel gear, and axle) 

and relevant parameters (e.g., rotation axis, side profile, and 
radius) using existing shape analysis algorithms. We store the 
extracted information in the corresponding nodes of graph G.

In the interaction analysis stage, we analyze each pair of 
touching parts and classify the type of mechanical interac-
tion based on their spatial relationships and part parame-
ters. We store the information in the corresponding edges 
of graph G. Our system handles a variety of part types and 
interactions as shown in Figure 3.

4.1. Part analysis
Our part analysis automatically classifies parts into the fol-
lowing common types: rotational gears (e.g., spur and bevel), 
helical gears, translational gears (i.e., racks in spur–rack 
mechanisms), axles, and fixed support structures (i.e., the 
stationary parts in an assembly that support and constrain 
the motions of other parts). The classifier is based on the geo-
metric features of the parts. We rely on the user to manually 
classify parts that lack distinctive geometric characteristics 
such as cams, rods, cranks, pistons, levers, and belts. Figure 3 
shows many of the moving parts handled by our system, and 
Figures 7a and 10b–c include some fixed support structures.

We also compute part parameters that inform the subse-
quent interaction analysis stage that determines how motion 
is transmitted across parts. For all gears and axles, we esti-
mate the axis of rotational, helical, or translational motion. 
We compute teeth count and width for rotational and trans-
lational gears, and the pitch for helical gears. For rotational 
and helical gears, we also compute whether the part has a 
conical (e.g., bevel) or cylindrical (e.g., spur) side profile and 
its radii (e.g., inner, outer), as these properties influence the 
gear can interact with other gears. Since support structures 
often have housings or cutouts that constrain the rotational 
motion of other parts, we compute potential axes of rotation 
for these structures. Finally, we also compute potential rota-
tion axes for user-classified cams, cranks, and levers.

To distinguish the different types of parts and estimate 
their parameters, we use the following shape analysis 
algorithms.
symmetry detection. We assume that all gears and axles 
exhibit rotational, helical or translational symmetry and 
move based on their symmetry axes. We use a variant of 
the algorithm proposed by Mitra et al.22 to detect such 

spur–rack
variable speed

spur–spur helical–helical

spur–axlecam–rod piston–crank belt–spur lever–axle

helical–spurbevel–bevel

figure 3. typical part types and interactions encountered in 
mechanical assemblies and handled by our system. While we 
automatically detect most of these configurations, we require the user 
to manually classify cams, rod, cranks, pistons, levers, and belts.
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symmetries and infer part types and parameters based on 
the symmetry properties. If a part is rotationally symmetric, 
we mark it as either a rotational gear or axle, use the symme-
try axis as the rotation axis, and use the order of symmetry 
to estimate teeth count and width. If a part is helically sym-
metric, we mark it as a helical gear, use the symmetry axis 
as the screw axis, and record the helix pitch. Finally, if a part 
has discrete translational symmetry, we mark it as a trans-
lational gear (i.e., rack), use its symmetry direction as the 
translation axis, and use the symmetry period to estimate 
the teeth count and width. Note that the symmetry detection 
method also handles partial symmetries that are present in 
parts like variable-speed gears (see Figure 3). If a part exhib-
its no symmetries and has not been classified by the user as 
a cam, rod, crank, piston, lever or belt, we assume it to be a 
fixed support structure.
Cylinders versus cones. Next, we analyze the side profiles of 
rotational and helical gears to determine whether they are 
cylindrical or conical, respectively. Specifically, we partition 
such gears into cap and side regions as follows. Let ai denote 
the rotation/screw axis of part Pi.

We mark its j-th face as a cap face if its normal nj is  parallel 
to the part’s rotational/screw axis, such that |nj · ai| ≈ 1, 
otherwise we mark it as a side face. We then build con-
nected components of faces with the same labels, and 
discard components with only few faces as members (see 
Figure 4). Subsequently, we fit least squares cylinders and 
cones to the side regions and classify parts with low residual 
error as cylindrical or conical, respectively.
sharp edge loops. Finally, we use sharp edge loops, which 
are 1D curves defined by sharp creases on a part, to deter-
mine additional part parameters for rotationally or heli-
cally symmetric parts, as well as cams, cranks, levers, and 
fixed support structures. We start by marking all mesh 
edges whose adjacent faces are close to orthogonal (i.e., 
dihedral angle in 90° ± 30° in our implementation) as 
sharp (see also Gal et al.7 and Mehra et al.21). We then par-
tition the mesh into segments separated by sharp edges, 
discard very small  segments (less than 10 triangles in 
our tests), and label the boundary loops of the remaining 
segments as sharp edge loops. Next, we identify all the 
sharp edge loops that are (roughly) circular by fitting (in 
a least squares sense) circles to all the loops and select-
ing the ones with low residual errors. For rotationally and 

helically symmetric parts, we use the minimum and maxi-
mum radii of the circular loops as estimates for the inner 
and outer radii of the parts (e.g., Figure 4-left shows the 
outer radius of a cylindrical gear).

For fixed support structures, a group of circular loops 
with a consistent orientation often indicates a potential 
axis of rotation for a part that docks with the fixed struc-
ture. Such clusters of loops also indicate potential rotation 
axes for cams, cranks, and levers. We cluster circular loops 
in two stages (see Figure 5): For each loop we compute the 
normal of the plane that contains the fitted circle, which we 
call the circle axis, and cluster loops with similar circle axes. 
Then, we partition each cluster based on the projection of 
the circle centers along a representative circle axis for that 
cluster. The resulting clusters represent groups of circular 
loops with roughly parallel circle axes that are close to one 
another. We record the representative circle axis for each 
cluster as a potential rotation axis.

4.2. interaction analysis
To build the edges of the interaction graph and estimate 
their parameters, we: (i) compute the topology of the inter-
action graph based on the contact relationships between 
part pairs; (ii) classify the type of mechanical interaction at 
each contact (i.e., how motion is transferred from one part 
to another); and (iii) compute the motion of the assembly.
(i) Contact detection. We use the contact relationships be-
tween parts to determine the topology of the interaction 
graph. Following the approach of Agrawala et al.1, we consid-
er each pair of parts (Pi, Pj) in the assembly and compute the 
closest distance between them. If this distance is less than a 
threshold a, we consider the parts to be in contact, and we 
add an edge eij between the nodes ni and nj in the interac-
tion graph. We set a to 0.1% of the diagonal of the assembly 
bounding box in our experiments.

As an assembly moves, its contact relationships evolve, 
that is, edges eij in the interaction graph may appear or dis-
appear over time (see Figure 10c). We detect such contact 
changes using a space–time analysis. Suppose at time t, two 
parts Pi and Pj are in contact and we have identified their 
interaction type (see below). On the basis of  this informa-
tion, we estimate their relative motion parameters, compute 
their positions at subsequent times t + D, t + 2D, etc., and 

fitted circle

cap segment

side segmentradius

fitted cylinder

fitted cone

figure 4. for rotationally and helically symmetric parts, we use their 
symmetry axes to partition the parts into cap- and side-regions. We fit 
cylinders or cones to the side regions to determine their profile types 
and extract sharp edge loops to estimate part attributes like radii.

q

y

x

y

figure 5. We detect circular sharp edge feature loops on a part (left) 
and cluster the loops based on the orientations of their circle axes 
(middle) and the projections of the circle centers onto these axes 
(middle-inset). such clusters represent groups of nearby loops with 
parallel axes, shown here in different colors (right).
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compute the contact relationships at each time. We use a 
fixed sampling rate of D = 0.1 s with the default speed for the 
driver part set to an angular velocity of 0.1 radian/s or trans-
lational velocity of 0.1 unit/s, as applicable. Our method 
detects cases where two parts transition from touching to 
not touching over time. It also detects cases where two parts 
remain in contact but their contact region changes, which 
often corresponds to a change in the parameters of the 
mechanical interaction (e.g., the variable speed gear shown 
in Figure 3). For each set of detected contact relationships, 
we compute a new interaction graph. Note that we implic-
itly assume that part contacts change discretely over the 
motion cycle, which means that we cannot handle continu-
ously evolving interactions, as in the case of elliptic gears. 
See original paper23 for additional details.
(ii) interaction classification. We classify the type of interac-
tion for each pair of parts Pi and Pj that are in contact, using 
their relative spatial arrangement and the individual part 
 attributes. Specifically, we classify interactions based on the 
positions and orientations of the part axes ai and aj along 
with the values of the relevant part parameters. For parts 
with multiple potential axes, we consider all pairs of axes.

Parallel axes: When the axes are nearly parallel, that 
is, |ai · aj| ≈ 1, we detect one of the following interactions: 
 cylinder-on-cylinder (e.g., spur gears) or cylinder-in-cylin-
der (e.g., planetary gears). For cylinder-on-cylinder, ri + rj 
(roughly) equals the distance between the part axes. For 
cylinder-in-cylinder, |ri − rj| (roughly) equals the distance 
between the part axes. Note for cylinder-on-cylinder, the 
parts can rotate about their individual axes, while simul-
taneously one cylinder can rotate about the other one, for 
example, (subpart of) planetary configuration (see Figure 9).

Coaxial: When the axes are parallel and lie on a single 
line, we classify the interaction as coaxial (e.g., spur–axle 
and cam–axle).

Orthogonal axes: When the axes are nearly orthogonal, 
that is, ai · aj ≈ 0, we detect one of the following interactions: 
spur–rack, bevel–bevel, helical–helical, helical–spur. If one 
part is a rotational gear and the other is a translational gear 
with matching teeth widths, we detect a spur–rack interac-
tion. If both parts are conical with cone angles summing up 
to 90°, we mark a bevel–bevel interaction. If both parts are 
cylindrical and helical, we mark a helical–helical interac-
tion. If the parts are cylindrical but only one is helical, we 
mark a helical–spur interaction.

Belt interactions: Since belts do not have a single con-
sistent axis of motion, we treat interactions with belts as a 
special case. If a cylindrical part touches a belt, we detect a 
cylinder-on-belt interaction.

These classification rules are carefully designed based 
on standard mechanical assemblies and successfully cat-
egorize most part interactions automatically. In our results, 
only the cam–rod and piston–crank interactions in the ham-
mer (Figure 7a), piston engine (Figure 8), and the drum 
(Figure 10d) needed manual classification.
(iii) Motion computation. Mechanical assemblies are 
brought to life by an external force applied to a driver and 
propagated to other parts according to interaction types 
and part attributes. In our system, once the user indicates 

the driver, motion is transferred to the other connected 
parts through a breadth-first graph traversal of the interac-
tion graph G, starting with the driver-node as the root. We 
employ simple forward-kinematics to compute the rela-
tive speed at any node based on the interaction type with 
its  parent5. For example, for a cylinder-on-cylinder interac-
tion, if motion from a gear with radius ri and angular ve-
locity wi is transmitted to another with radius rj , then the 
imparted angular velocity wj = wiri/rj . Our approach handles 
graphs with loops (e.g., planetary gears). Since we assume 
that our input models are consistent assemblies, even 
when multiple paths exist between a root node and anoth-
er node, the final motion of the node does not depend on 
the graph traversal path. When we have an additional con-
straint at a node, for example, a part is fixed or restricted 
to translate only along an axis, we impose the constraint 
in the forward-kinematics computation. Note that since we 
assume that the input assembly is a valid one and does not 
self-penetrate during its motion cycle, we do not perform 
any collision detection in our system.

5. VisuaLiZatioN
Using the computed interaction graph, our system automat-
ically generates how-things-work visualizations based on 
the design guidelines discussed in Section 2. Here, we pres-
ent algorithms for computing arrows, highlighting both the 
causal chain and important keyframes of motion, and gen-
erating exploded views.

5.1. Computing motion arrows
For static illustrations, our system automatically computes 
arrows from the user-specified viewpoint. We support three 
types of arrows (see Figure 6): cap arrows, side arrows, and 
translational arrows and generate them as follows: (i) deter-
mine how many arrows of each type to add; (ii) compute ini-
tial arrow placements; and (iii) refine arrow placements to 
improve their visibility.

For each non-coaxial part interaction encoded in the 
interaction graph, we create two arrows, one associated with 
each node connected by the graph edge. We refer to such 
arrows as contact-based arrows, as they highlight contact 
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figure 6. translational, cap, and side arrows (left). arrows are first 
added based on the interaction graph edges, and then to any moving 
parts without an arrow assignment. the initial arrow placement can 
suffer from occlusion (right-inset), which is fixed using a refinement 
step (center).
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spur–rack: add a cap arrow to spur and translational arrow 
to rack;

bevel–bevel: add side arrows on both (conical) parts;
helical–helical: add a cap arrow on both parts;
helical–spur: add a cap arrow on the cylinder and a side 

arrow on the helical part; and
cylinder-on-belt: add a cap arrow on the cylinder and a 

translational arrow on the belt;

Note that these rules do not add arrows for certain types of 
part interactions (e.g., coaxial). For these interactions, we 
add a non-contact arrow to any part that does not already 
have an associated contact arrow. Furthermore, if a cylindri-
cal part is long, a single arrow may not be sufficient to effec-
tively convey the movement of the part. In this case we add 
an additional non-contact side arrow to the part. Note that a 
part may be assigned multiple arrows.

After choosing the number of arrows to add and associ-
ating a part with each one, we next compute their initial 
positions using the cap and side segments for each part (see 
Section 4). We use the z-buffer to identify the cap and side 
face segments with the largest visible areas after accounting 
for occlusion from other parts as well as self-occlusion. These 
segments serve as candidate locations for arrow placement: 
we place side arrows at the middle of the side segment with 
maximal score (computed as a combination of visibility and 
length of the side segment) and cap arrows right above the 
cap segment with maximal visibility. For contact-based side 
and cap arrows, we move the arrow within the chosen seg-
ment as close as possible to the corresponding contact point. 
Non-contact translational arrows are placed midway along 
the translational axis with arrow heads facing the viewer. The 
local coordinate frame of the arrows are determined based 
on the directional attributes of the corresponding parts, 
while the arrow widths are set to a default value. The remain-
ing parameters of the arrows (d, r, q as in Figure 6) are derived 
in proportion to the part parameters like its axis, radius, and 
side/cap segment area. We position non-contact side arrows 
such that the viewer sees the arrow head face-on. Please refer 
to the original paper23 for additional details.

5.2. Highlighting the causal chain
To emphasize the causal chain of actions, our system gen-
erates a sequence of frames that highlights the propagation 
of motions and interactions from the driver throughout 

(a)
Hammer

(b)
Drill

(c)
Chain driver

figure 7. Motion arrow results. to convey how parts move, we 
automatically compute motion arrows from the user-specified 
viewpoint. Here, we manually specified the lever in the hammer 
model (a) and the belt in the chain driver model (c); our system 
automatically identifies the types of all the other parts.
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figure 8. keyframes for depicting periodic motion of a piston engine. for each of the pistons, we generate two keyframes based on its 
extremal positions (i.e., the top and bottom of its motion). We typically also add middle frames between these extrema-based keyframes, but 
due to the symmetry of the piston motion, the middle frames of each piston already exist as extrema-based keyframes of other pistons.

relations. We use the following rules to add contact arrows 
based on the type of part interaction:

cylinder-on-cylinder: add cap arrows on both parts;
cylinder-in-cylinder: add a cap arrow for the inner cylinder 

and a side arrow for the outer cylinder;
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the rest of the assembly. Starting from the root of the inter-
action graph, we perform a breadth first traversal. At each 
traversal step, we compute a set of nodes S that includes 
the frontier of newly visited nodes, as well as any previ-
ously visited nodes that are in contact with this frontier. 
We then generate a frame that highlights S by rendering 
all other parts in a desaturated manner. To emphasize the 
motion of highlighted parts, each frame includes any non-
contact arrow whose parent part is highlighted, as well as 
any contact-based arrow whose two associated parts are 
both highlighted. If a highlighted part only has contact 
arrows and none of them are included based on this rule, 
we add the part’s longest contact arrow to the frame to 
ensure that every highlighted part has at least one arrow. 
In addition, arrows associated with previously visited parts 
are rendered in a desaturated manner. For animated visu-
alizations, we allow the user to interactively step through 
the causal chain while the animation plays; at each step, we 
highlight parts and arrows as described above.

5.3. Highlighting keyframes of motion
As explained in Section 2, some assemblies contain parts 
that move in complex ways (e.g., the direction of motion 
changes periodically). Thus, static illustrations often include 
keyframes that help clarify such motions. We automatically 

compute keyframes of motion by examining each transla-
tional part in the model: if the part changes direction, we add 
keyframes at the critical times when the part is at its extre-
mal positions. However, since the instantaneous direction of 
motion for a part is undefined exactly at these critical times, 
we canonically freeze time d after the critical time instances 
to determine which direction the part is moving in (see Figure 
8). Additionally, for each part, we also add middle frames 
between extrema-based keyframes to help the viewer easily 
establish correspondence between moving parts. However, if 
such frames already exist as the extrema-based keyframes of 
other parts, we do not add the additional frames (see Figure 8).

We also generate a single frame sequence that high-
lights both the causal chain and important keyframes of 
motion. As we traverse the interaction graph to construct 
the causal chain frame sequence, we check whether any 
newly highlighted part exhibits complex motion. If so, we 
insert  keyframes to convey the motion of the part and then 
continue traversing the graph (see Figure 10c).

5.4. exploded views
In some cases, occlusions between parts in the assembly 
make it difficult to see motion arrows and internal parts. 
To reduce occlusions, our system generates exploded views 
that separate portions of the assembly (see Figure 9). Typical 
exploded views separate all touching parts from one another 
to ensure that each part is visually isolated. However, using 
this approach in how-things-work illustrations can make it 
difficult for viewers to see which parts interact and how they 
move in relation to one another.

To address this problem, we only separate parts that are 
connected via a coaxial interaction; since such parts rotate 
rigidly around the same axis, we believe it is easier for view-
ers to understand their relative motion even when they are 
separated from one another. To implement this approach, 
our system first analyzes the interaction graph and then 
cuts coaxial edges. The connected components of the result-
ing graph correspond to sub-assemblies that can be sepa-
rated from one another. We use the technique of Li et al.16 
to compute explosion directions and distances for these 
sub-assemblies.

6. ResuLts
We used our system to generate both static and animated 
how-things-work visualizations for ten different input 
models, each of which contains from 7 to 27 parts, col-
lected from various sources. Figures 2, 7–10 show static 
illustrations of all ten models. Other than specifying the 
driver part and its direction of motion, no additional user 
assistance was required to compute the interaction graph 
for seven of the models. For the drum, hammer, and chain 
driver models, we manually specified lever, cam, rod and 
belt parts, respectively. We also specified the crank and 
piston parts in the piston model. In all of our results, we 
colored the driver blue, fixed support structures dark gray, 
and all other parts light gray. We render translation arrows 
in green, and side and cap arrows in red. In all the exam-
ples, analysis takes 1–2 s, while visualization runs at inter-
active rates.

(a)

(b)

Planetary gearbox
w/ fixed outer rings

Planetary gearbox
w/ free outer rings

figure 9. exploded view results. our system automatically 
generates exploded views that separate the assembly at coaxial part 
interactions to reduce occlusions. these two illustrations show two 
different configurations for the planetary gearbox: one with fixed 
outer rings (a), and one with free outer rings (b). the driver part is in 
blue, while fixed parts are in dark gray.
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figure 10. illustration results. We used our system to generate these how-things-work illustrations from 3D input models. for each model, 
we specified the driver part and its direction of motion. in addition, we manually specified the levers in the drum (c). from this input, our 
system automatically computes the motions and interactions of all assembly parts and generates motion arrows and frame sequences. We 
created the zoomed-in insets by hand.

(a)

Gears 

(b)

F15

(c)

F05

(1) (2) (3) (4) (5) (6)

(1) (2) (3) (4) (5) (6)

(d)

Leonardo’s
drum

(1) (2) (3) (4) (5) (6)

(1) (2) (3) (4)

(5) (6) (7)

Our results demonstrate how the visual techniques 
described in Section 2 help convey the causal chain of 
motions and interactions that characterize the operation 
of mechanical assemblies. For example, not only do the 
arrows in Figure 10a indicate the direction of rotation for 
each gear, but their placement near contact points also 
emphasizes the interactions between parts. The frame 
sequence in Figure 10b shows how the assembly trans-
forms the rotation of the driving handle through a vari-
ety of gear configurations, while the sequence in Figure 
10c conveys both the causal chain of interactions (frames 
1–3) and the back-and-forth motion of the horizontal rack 
(frames 3–6) as it engages alternately with the two circular 
gears. Finally, our animated results (which can be found 
at: http://vecg.cs.ucl.ac.uk/Projects/SmartGeometry/how_
things_work/) show how sequential highlighting of parts 
along the causal chain can help convey how motions and 

interactions propagate from the driver throughout the 
assembly while the animation plays.

7. CoNCLusioNs aND futuRe WoRk
In this work, we presented an automated approach for 
 generating how-things-work visualizations from 3D CAD 
models. Our results demonstrate that combining shape 
analysis techniques with visualization algorithms can 
 produce  effective depictions for a variety of mechanical 
assemblies. Thus, we believe our work has useful applica-
tions for the creation of both static and animated visualiza-
tions in technical documentation and educational materials.

We see several directions for extending our approach: 
(i) Handling more complex models: Analyzing and visualiz-
ing significantly more complex models (with hundreds or 
even thousands of parts) introduces additional challenges, 
including the possibility of excess visual clutter and large 
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numbers of occluded parts. (ii) Handling fluids: While the 
parts in most mechanical assemblies interact directly with 
one another via contact relationships, some assemblies use 
fluid interactions to transform a driving force into move-
ment (e.g., pumps and hydraulic machines). One approach 
for supporting such assemblies would be to incorporate a 
fluid simulation into our analysis technique. (iii) Visualizing 
forces: In addition to visualizing motion, some how-things-
work illustrations also depict the direction and magnitude 
of physical forces, such as friction, torque and pressure, 
that act on various parts within the assembly. Automatically 
depicting such forces is an open research challenge. 
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