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Figure 1: (Left) Given a single view scan of a 3D environment obtained using a fast range scanner, we perform scene understanding by
recognizing repeated objects, while factoring out their modes of variability (middle). The repeating objects have been learned beforehand as
low complexity models, along with their joint deformations. We extract the objects despite a poor quality input scan with large missing parts
and many outliers. The extracted parameters can then be used to pose 3D models to create a plausible scene reconstruction (right).

Abstract

Large-scale acquisition of exterior urban environments is by now
a well-established technology, supporting many applications in
search, navigation, and commerce. The same is, however, not the
case for indoor environments, where access is often restricted and
the spaces are cluttered. Further, such environments typically con-
tain a high density of repeated objects (e.g., tables, chairs, monitors,
etc.) in regular or non-regular arrangements with significant pose
variations and articulations. In this paper, we exploit the special
structure of indoor environments to accelerate their 3D acquisition
and recognition with a low-end handheld scanner. Our approach
runs in two phases: (i) a learning phase wherein we acquire 3D
models of frequently occurring objects and capture their variability
modes from only a few scans, and (ii) a recognition phase wherein
from a single scan of a new area, we identify previously seen ob-
jects but in different poses and locations at an average recognition
time of 200ms/model. We evaluate the robustness and limits of
the proposed recognition system using a range of synthetic and real
world scans under challenging settings.
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1 Introduction

Significant advances have been made towards mapping the exteri-
ors of urban environments through large-scale acquisition efforts

of Google, Microsoft, Nokia, etc. Capturing 3D indoor environ-
ments, however, remains challenging. While sensor-instrumented
vehicles can drive down streets to capture exterior spaces, mim-
icking similar setups for interior acquisition requires customization
and manual intervention, and is cumbersome due to unreliable GPS
signals, odometry errors, etc. Additionally, unlike building exte-
riors whose facades are largely flat and have ample clearance for
scanning, indoor objects are usually geometrically complex, found
in cramped surroundings, and contain significant variations: doors
and windows are opened and closed, chairs get moved around, cu-
bicles get rearranged, etc.

The growing popularity of fast, easy-to-use, affordable range cam-
eras (e.g., the Microsoft Kinect) presents new acquisition possibil-
ities. High frame-rate and increased portability, however, come at
the cost of resolution and data quality: the scans are at best of mod-
est resolution, often noisy, invariably contain outliers, and suffer
from missing parts due to occlusion (see Figure 1). Thus, a tra-
ditional single-scan acquisition pipeline is ill-suited: typically, one
has to scan the scene multiple times from various viewpoints, semi-
automatically align the scans, and finally construct a 3D model,
which is often of unsatisfactory quality and provides little under-
standing of the indoor environment. The process is further compli-
cated when the model deforms between successive acquisitions.

In this paper we focus on interiors of public buildings (e.g. school-
s, hospitals, hotels, restaurants, airports, train stations) or office
buildings. We exploit three observations to make the problem of
indoor 3D acquisition tractable: (i) Most such building interiors
comprise of basic elements such as walls, doors, windows, furniture
(e.g., chairs, tables, lamps, computers, cabinets), which come from
a small number of prototypes and repeat many times. (ii) Such
building components usually consist of rigid parts of simple geom-
etry, i.e., they have surfaces that are well approximated by planar,
cylindrical, conical, spherical proxies. Further, although variabili-
ty and articulation are dominant (e.g., a chair is moved or rotated,
a lamp is folded), such variability is limited and low-dimensional
(e.g., translational motion, hinge joint, telescopic joint). (iii) Mutu-
al relationships among the basic objects satisfy strong priors (e.g.,
a chair stands on the floor, a monitor rests on the table).

We present a simple yet practical pipeline to acquire models of in-
door objects such as furniture, together with their variability modes,
and discover object repetitions and exploit them to speed up large-
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scale indoor acquisition towards high-level scene understanding.
Our algorithm works in two phases. First, in a learning phase we
start from a few scans of individual objects to construct primitive-
based 3D models while explicitly recovering respective joint at-
tributes and modes of variation. Second, in a fast recognition phase
(about 200ms/model) we start from a single-view scan to segment
and classify it into plausible objects, recognize them, and extract
the pose parameters for the low complexity models generated in the
learning phase. Intuitively, we use priors for primitive types and
their connections, thus greatly reducing the number of unknowns
to enable model fitting even from very sparse and low resolution
datasets, while hierarchically solving for part association. We also
demonstrate that simple inter- and intra-object relations simplify
segmentation and classification tasks necessary for high-level scene
understanding (see [Mitra et al. 2012] and references therein).

We test our method on a range of challenging synthetic and real-
world scenes. We present, for the first time, basic scene reconstruc-
tion for massive indoor scenes (e.g., office desk spaces, building
auditoriums) from unreliable sparse data by exploiting the low-
complexity variability of common scene objects. Interestingly, we
can now detect meaningful changes in an environment. For exam-
ple, we can discover a new object placed in a deskspace by rescan-
ning the scene, despite articulations and motions of the previously
extant objects (e.g., desk chairs, monitors, lamps). Thus, we factor
out nuisance modes of variability (e.g., motions of the chairs, etc.)
from variability modes that carry importance in an application (e.g.,
security, where the new scene objects should be flagged).

Contributions. In summary, we introduce a framework to

• acquire 3D models of common office furniture consisting of
rigid parts and their low-dimensional variability modes;

• detect and recognize occurrences of such models from single
low quality scans; and

• quickly populate large indoor environments with variability and
repetition enabling novel scene modeling possibilities.

2 Related Work

Scanning technology. Rusinkiewicz et al. [2002] demonstrated
the possibility of real-time lightweight 3D scanning. More gener-
ally, surface reconstruction from unorganized pointcloud data has
been extensively studied in computer graphics, computational ge-
ometry, and computer vision (see [Dey 2007]). Further, powered
by recent developments in real-time range scanning, everyday users
can now easily acquire 3D data at high frame-rates. Researchers
have proposed algorithms to accumulate multiple poor quality in-
dividual frames to obtain better quality pointclouds [Mitra et al.
2007; Henry et al. 2010; Izadi et al. 2011]. Our main goal, however,
is different since we focus on recognizing important elements and
semantically understanding large 3D indoor environments.

Geometric priors for objects. We utilize geometry in the level of
individual objects, which are possible abstractions used by humans
to understand the environment [Mehra et al. 2009]. Similar to Xu
et al. [2010], we understand an object as collection of primitive
parts and segment the object based on the prior. Such a prior can
successfully fill regions of missing parts [Pauly et al. 2005], infer
plausible part motions of mechanical assemblies [Mitra et al. 2010],
extract shape by deforming a template model to match silhouette
images [Xu et al. 2011], locate an object from photographs [Xiang
and Savarese 2012], or semantically edit images based of simple
scene proxies [Zheng et al. 2012].

We focus on locating 3D deformable objects in unsegmented, noisy,
single-view data in cluttered environment. Researchers have used

non-rigid alignment to better align (warped) multiple scans [Li et al.
2009]. Alternately, temporal information across multiple frames
can be used to additionally track joint information to recover a
deformation model [Chang and Zwicker 2011]. Instead, we learn
instance-specific geometric prior as a collection of simple primi-
tives along with deformation modes from a very small number of
scans. Note that the priors are extracted in the learning stage, rather
than being hard coded in the framework. We demonstrate that such
models are sufficiently representative to extract the essence of real-
world indoor scenes (see also concurrent efforts by Nan et al. [2012]
and Shao et al [2012].)

Scene understanding. In the context of image understanding, Lee
et al. [2010] construct a box-based reconstruction of indoor scenes
using volumetric considerations, while Gupta et al. [2010] apply
geometric constraints and physical considerations to obtain a block-
based 3D scene model. In the context of range scans, there are only
a few efforts: Triebel et al. [2010] present an unsupervised algorith-
m to detect repeating parts by clustering on pre-segmented input
data, while Koppula et al. [2011] use a graphical model to learn
features and contextual relations across objects. Earlier, Schnabel
et al. [2008] detect features in large point clouds using constrained
graphs that describe configurations of basic shapes (e.g., planes,
cylinders, etc.) and then perform a graph matching, which cannot
be directly used in large, cluttered environments captured at low
resolutions.

Various learning based approaches have recently been proposed to
analyze and segment 3D geometry especially towards consistent
segmentation and part-label association [Huang et al. 2011; Sidi
et al. 2011]. While similar MRF or CRF optimization can be ap-
plied in our settings, we found that a fully geometric algorithm can
produce comparable high quality recognition results without exten-
sive training. In our setting, learning amounts to recovering the
appropriate deformation model for the scanned model in terms of
arrangement of primitives and their connection types. While most
of machine-learning approaches are restricted to local features and
limited view-points, our geometric approach successfully handles
variability of objects and utilize extracted high-level information.
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Figure 2: Our algorithm consists of two main phases: (i) a rela-
tively slow learning phase to acquire object models as collection
of interconnect primitives and their joint properties and (ii) a fast
object recognition phase that takes an average of 200 ms/model.

3 Overview

Our framework works in two main phases: a learning phase and a
recognition phase (see Figure 2).

In the learning phase, we scan each object of interest a few times
(typically 5-10 scans across different poses). Our goal is to con-
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Figure 3: Unstructured input point cloud is processed into hierar-
chical data structure composed of super-points, parts, and objects.

sistently segment the scans into parts as well as identify the junc-
tion between part-pairs to recover the respective junction attributes.
Such a goal, however, is challenging given the input quality. We
address the problem using two scene characteristics: (i) many man-
made objects are well approximated by a collection of simple prim-
itives (e.g., planes, boxes, cylinders) and (ii) the types of junctions
between such primitives are limited (e.g., hinge, translational) and
of low-complexity. First, we recover a set of stable primitives for
each individual scan. Then, for each object, we collectively process
the scans to extract a primitive-based proxy representation along
with the necessary inter-part junction attributes to build a collection
of models {M1,M2, . . . }.

In the recognition phase, we start with a single scan S of the scene.
First, we extract the dominant planes in the scene – typically they
capture the ground, walls, desks, etc. We identify the ground plane
by using the (approximate) up-vector from the acquisition device
and noting that the points lie above the ground. Planes parallel to
the ground are tagged as tabletops if they are at heights as observed
in the training phase (typically 1′-3′), while exploiting that working
surfaces have similar heights across rooms. We remove the points
associated with the ground plane and the candidate tabletops, and
perform connected component analysis on the remaining points (on
a kn-neighbor graph) to extract pointsets {o1, o2, . . . }.

We test if each pointset oi can be satisfactorily explained by any of
the object models M j. This step, however, is difficult since the data
is unreliable and the objects can have large geometric variations due
to changes in position and pose. We perform hierarchical match-
ing utilizing the learned geometry, while trying to match individual
parts first and exploit simple scene priors like (i) placement rela-
tions (e.g., monitors are placed on desks, chairs rest on the ground)
and (ii) allowable repetition modes (e.g., monitors usually repeat
horizontally, chairs are repeated on the ground). We assume such
priors are available as domain knowledge (e.g., Fisher et al. [2011]).

Models. We represent the objects of interest as models that approxi-
mate the object shapes while encoding deformation and relationship
information (see also [Ovsjanikov et al. 2011]). Each model can be
thought as a graph structure, whose nodes denote the primitives and
edges encode their connectivity and relationship to the environmen-
t. We currently restrict primitive types to box, cylinder, and radial
structure. A box is used to represent a large flat structure; a cylin-
der is used to represent a long and narrow structure; and a radial
structure is used to capture parts with discrete rotational symmetry
(e.g., base of a chair). As an additional regularization, we group
parallel cylinders of similar lengths (e.g., legs of a desk or arms of
a chair), which in turn provides valuable cues for possible mirror
symmetries.

The connectivity between a pair of primitives is represented as their
relative transformation and possible deformations. In our current
implementation, we restrict deformations to be 1-DOF translation,
1-DOF rotation, and attachment. We test for translational joints for
the cylinders and rotational joints for cylinders or boxes (e.g., hinge
joint). An attachment represents the existence of a whole primitive
node and is especially useful when the segmentation of the primi-
tive is ambiguous depending on the configuration. For example, the

geometry of doors of cabinets, or drawers are not easily segmented
when closed, and handled as attachment when opened.

Additionally, we detect contact information for the model, i.e.,
whether the object rests on the ground or on a desk. Note that
we assume that the vertical direction is known for the scene. The
direction of the model together with the direction of the ground
define a canonical object transformation.

Hierarchical structure. For both learning and recognition phases,
the raw input is unstructured point clouds. We organize the input
hierarchically by considering neighboring points and assign contex-
tual information for each hierarchy level. The scene hierarchy has
three levels of segmentation as follows (see Figure 3):

• super-points X = {x1, x2, ...};
• parts P = {p1, p2, ...} (association Xp = {x : P(x) = p}); and
• objects O = {o1, o2, ...} (association Po = {p : O(p) = o}).

Instead of working directly on points, we use super-points x ∈ X as
the atomic entities (analogous to super-pixels in images). We create
super-points by uniformly sampling points from the raw measure-
ments and associating local neighborhoods to the samples based
on the normal consistency. Such super-points, being points with a
small neighborhood, are less noisy, while at the same time they are
sufficiently small to capture the input distribution of points.

Next, we approximate neighboring super-points as primitive parts
p ∈ P. Such parts are expected to relate to individual primitives
of models. Each part p comprises of a set of superpoints Xp. We
initially find such parts by merging neighboring super-points until
the region can no longer be approximated by a plane (in a least
squares sense) with average error less than a threshold θdist . Note
that the initial association of super-points to parts can change later.

Objects form the final hierarchy level during the recognition phase
for scenes containing multiple objects. Segmented objects are
mapped to individual instances of models, while the association
between objects and parts (O(p) ∈ {1, 2, · · · ,No} and Po) are dis-
covered during the recognition process. Note that during the learn-
ing phase we deal with only one object at a time and hence such a
segmentation is trivial.

We create such a hierarchy in the pre-processing stage using the
following parameters in all our tests: number of nearest neighbor
kn used for normal estimation, sampling rate fs for super-points,
and distance threshold θdist reflecting the approximate noise level
(see Table 1 for the actual values).

param. values usage
kn 50 number of nearest neighbor
fs 1/100 sampling rate

θdist 0.1m distance threshold for segmentation
Ñp 10-20 Equation 1

θheight 0.5 Equation 5
θnormal 20◦ Equation 6

θsize 2θdist Equation 7
λ 0.8 coverage ratio to declare a match

Table 1: Parameters used in our algorithm.

4 Learning Phase

The input to the learning phase is a set of point clouds {I1, . . . , In}
obtained from the same object in different configurations. Our goal
is to build a model M comprising of primitives that are linked by
joints. Essentially, we have to simultaneously segment the scan-
s into unknown number of parts, establish correspondence across
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Figure 4: The learning phase starts by initializing the skeleton
model, which is defined from coherent matches of stable parts. After
initialization, new primitives are added by finding groups of parts
at similar relative locations and the primitives jointed fitted.

different measurements, and extract relative deformations. We sim-
plify the problem by assuming that each part can be represented
by primitives and each joint can be encoded with a simple degree
of freedom (see also [Chang and Zwicker 2011]). The assumption
is sufficient to approximate many man-made objects, while at the
same time leads to a light-weight model. Note that, unlike Schn-
abel et al. [2008] who use patches of partial primitives, we use full
primitives to represent parts in the learning phase.

The learning phase starts by detecting large and stable parts to es-
tablish a global reference frame across different measurements Ii

(Section 4.1). The initial correspondences serve as a skeleton of the
model, while other parts are incrementally added to the model until
all of the points are covered within threshold θdist (Section 4.2).
While primitive fitting is unstable over isolated noisy scans, we
jointly refine the primitives to construct a coherent model M (see
Figure 4).

The final model also contains necessary attributes for robust match-
ing. For example, the distribution of height from the ground plane
provides a prior for tables; or objects can have preferred repetition
direction, e.g., monitors or auditorium chairs are typically repeat-
ed sidewise; or objects have preferred orientations. These learned
attributes and relationships act as reliable regularizers in the recog-
nition phase, when data is typically sparse, incomplete, and noisy.

4.1 Initializing the skeleton of the model

The initial structure is derived from large, stable parts across dif-
ferent measurements, whose consistent correspondences define the
reference frame to align the measurements. In the pre-processing
stage, we divide individual scans Ii into super-points X i and part-
s Pi as described in Section 3. We then mark the stable parts of
candidate boxes or candidate cylinders.

A candidate face of box is marked by finding parts with sufficient
number of super-points:

|Xp| > |P |/Ñp, (1)

where Ñp is a user-defined parameter of approximate number of
primitives in model. We used a threshold of 10-20 in our tests.
Parallel planes with comparable heights are grouped together based
on their orientation to constitute opposite faces of a box primitive.

We classify a part as a candidate cylinder if the ratio of top two
principle components is greater then 2. Subsequently, we group
parallel cylinders with similar heights (e.g., legs of chairs).

After candidate boxes and cylinders are marked, we match the
marked (sometimes grouped) parts for pairs of measurements Pi.

We only use the consistent matches to define a reference frame be-
tween measurements and jointly fit primitives to the matched parts
(see Section 4.2).

Matching. After extracting the stable parts Pi for each measure-
ment, our goal is to match the parts across different measurements
to build a connectivity structure. We pick a seed measurement
j ∈ {1, 2, ..., n} at random and compare every other measurement
against the seed measurement.

We use spectral correspondence [Leordeanu and Hebert 2005] to
match parts in seed {p, q} ∈ Pk and other {p′, q′} ∈ Pi. We build
an affinity matrix A, where each entry represents the matching score
between part pairs. Recall that candidate parts p have associat-
ed types (box or cylinder), say t(p). Intuitively, we assign higher
matching score for the parts with the same type t(p) at similar rela-
tive positions. If a candidate assignment a = (p, p′) assigns p ∈ P j

to p′ ∈ Pi, the corresponding entries are defined as:

A(a, a) =
{

0 if t(p) 6= t(p′)
exp(−(hp − hp′)

2/2θ
2
dist) otherwise, (2)

where we use the height from the ground hp as a feature. The
affinity value for a pair-wise assignment between a = (p, p′) and
b = (q, q′) (p, q ∈ P j and p′, q′ ∈ Pi) is defined as:

A(a, b) =


0 if t(p) 6= t(p′)

or t(q) 6= t(q′)
exp(− (d(p,q)−d(p′,q′))2

2θ
2
dist

) otherwise,
(3)

with d(p, q) represents the distance between two parts p, q ∈ P. We
extract the most dominant eigenvector of A to establish a correspon-
dence among the candidate parts.

After comparing the seed measurement P j against all the other
measurements Pi, we only retain those matches that are consis-
tent across different measurements. The relative positions of the
matched part define the reference frame of the object as well as the
relative transformation between measurements.

Joint primitive fitting. We jointly fit primitives to the grouped
parts, while adding necessary deformation. First, the primitive type
is fixed by testing for the three types of primitives (box, cylin-
der, and rotational structure) and picking the one with the smallest
fitting error. Once the primitive type is fixed, the corresponding
primitives from other measurements are averaged and added to the
model as a jointly fitted primitive.

We use the coordinate frame to position the fitted primitives. More
specifically, the three orthogonal directions of a box are defined
by the frame of reference defined by the ground direction and the
relative positions of the matched parts. If the normal of the largest
observed face does not align with the default frame of reference, the
box is rotated around an axis to align the large plane. The cylinder is
aligned using its axis, while the rotational primitive is tested when
the part is at the bottom.

Note that unlike a cylinder or a rotational structure, a box can intro-
duce new faces that are invisible because of the placement rules of
objects. For example, bottom of a chair seat or back of a monitor are
often missing in the input scans. Hence, we retain the information
about which of the six faces are visible to simplify the subsequent
recognition phase.

We now encode the inter-primitive connectivity as an edge of the
graph structure. The joints between primitives are added by com-
paring the relationship between the parent and child primitives. The
first matched primitive acts as a root to the model graph. Subse-
quent primitives are children of the closest primitive among those
already existing in the model. We add a translational joint if the size
of the primitive node varies over different measurements by more



than θdist ; or, add a rotational joint when the relative angle between
the parent and child node differs by more than 20◦.

4.2 Incrementally Completing a coherent model

Having built an initial model structure, we incrementally add prim-
itives by processing super-points that could not be explained by the
primitives. The remaining super-points are processed to create parts
and the parts are matched based on the their relative positions. S-
tarting from the bottom most matches, we jointly fit primitive to the
matched parts as described above. We iterate the process until all
super-points in measurements are explained by the model.

unmatched parts  

open drawers 

If there exist some parts that
only exist in a subset of
measurements, then we add
an attachment of the prim-
itive. For example, in the
inset, after each side of the
rectangular shape of draw-
ers have been matched, the
open drawers are added as
an attachment to the base shape.

We also maintain the contact point to the ground (or the bottom-
most primitive), the height distribution of each part as histogram,
visible face information, and the canonical frame of reference de-
fined during the matching process. We use this information during
the recognition phase along with the extracted models.

5 Recognition Phase

Having learned a set of models (along with their deformation
modes) M := {M1, . . . ,Mk} for a particular environment, we can
quickly collect and understand the environment in the recognition
phase. This phase is much faster than the learning phase since there
are only a small number of simple primitives and certain deforma-
tion modes to search from. As an input, the scene S containing the
learned models is collected using the framework from Engelhard et
al. [2011] in a few seconds. In a pre-processing stage, we mark the
most dominant plane as the ground plane g. Then, the second most
dominant plane that is parallel to the ground plane is marked as the
desk plane d. We process the remaining points to form a hierarchi-
cal structure with super-points, parts, and objects (see Section 3).

The recognition phase starts from part-based assignment, which
quickly compares parts in the measurement and primitive nodes in
each model. The algorithm infers deformation and transformation
of the model from the matched parts, while filtering the valid match
by comparing actual measurement against the underlying geome-
try. If sufficient portion of measurements can be explained by the
model, we accept the match as valid, and the segmentation of both
object-level and part-level is refined to match the model.

5.1 Initial assignment for parts

We first make coarse assignments between segmented parts and
model nodes to quickly reduce the search space (see Figure 5, top).
If a part and a primitive node form a potential match, we also induce
the relative transformation between them. The output of the algo-
rithm is a list of triplets composed of part, node from the model,
and transformation groups {(p,m,T )}.

We use geometric features to decide whether individual parts can be
matched with model nodes. Note that we do not use color informa-
tion in our setting. As features for individual parts Ap, we consider
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Figure 5: Overview of the recognition phase. The algorithm first
finds matched parts before proceeding to recover the entire model
and corresponding segmentation.

the following: (i) height distribution from ground plane as a his-
togram vector hp; (ii) three principal components of of the region
x1

p, x2
p, x3

p(x3
p = np); and (iii) sizes along the directions l1

p > l2
p > l3

p.

Similarly, we infer the counterpart of features for individual visible
faces of model parts Am. Thus, even if one face of a part is visi-
ble from the measurement, we are still able to detect the matched
part of the model. The height histogram hm is calculated from the
relative area per height interval and the dimensions and principal
components are inferred from the shape of the faces.

We compare all the parts against all the faces of primitive nodes in
model:

E(Ap,Am) = (4)

ψ
height(hp,hm) · ψnormal(np,nm; g) · ψsize({l1

p, l2
p}, {l1

m, l2
m}).

Individual potential function ψ returns either 1 (matched) or 0 (not
matched) depending on if the feature satisfies the criteria within
an allowable threshold. Parts are possibly matched only if all the
features criteria are satisfied. The height potential calculates the
histogram intersection

ψ
height(hp,hm) =

∑
i

min(hp(i), hm(i)) > θheight . (5)

The normal potential calculates the relative angle with the ground
plane normal (ng) as

ψ
normal(np,nm; g) = |acos(np · ng)− acos(nm · ng)| < θnormal .

(6)
The size potential compares the size of the part

ψ
size({l1

p, l2
p}, {l1

m, l2
m}) = |l1

p − l1
m| < θsize and |l2

p − l2
m| < θsize.

(7)

We generously set the threshold to allow false positives and retain
multiple (or none) matched parts per object (see Table 1). Effec-
tively, we first guess potential object-model associations and later
prune out wrong associations in the refinement step using the full
geometry (see Section 5.2). If Equation 4 returns 1, then we can
have a good estimate of the relative transformation T between the
model and the part by using the position, normal, and the ground
plane direction to create a triplet (p,m,T ).
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Figure 6: The initial object-level segmentation can be imperfect
especially between distant parts. For example, top and base of a
chair initially appeared to be separate objects, but eventually un-
derstood as the same object after the segments are refined based on
the geometry of the matched model.

5.2 Refined assignment with geometry

Starting from the list of {(p,m,T )}, we verify the assignments
with full model by comparing a segmented object o = O(p) against
models Mi. The goal is to produce accurate part assignments for
observable parts, transformation, and the deformation parameters.
Intuitively, we find a local minimum from the suggested starting
point (p,m,T ) with the help of the models extracted in the learning
phase. We optimize by alternately refining the model pose, and
updating the segmentation (see Figure 5, bottom).

Given the assignment between p and m, we first refine the regis-
tration and deformation parameters and place the model M to best
explain the measurements. If the placed model covers most of the
points that belong to the object (ratio λ = 0.8 in our tests) within the
distance threshold θdist , then we confirm that the model is matched
to the object. Note that, compared to the generous threshold in
part-matching in Section 5.1, we now set a conservative threshold
to prune false-positives.

In the case of a match, we fix the geometry and refine the segmen-
tation, i.e., the part and object boundaries are modified to match the
underlying geometry. We iterate until convergence.

a) Refining deformation and registration. We find the deforma-
tion parameters using the relative location and orientation of parts
and the contact plane (e.g., desk top, the ground plane). Given any
pair of parts, or a part and the ground plane, we formulate their
mutual distance and orientation as functions of deformation param-
eters existing between the path of the two parts. For example, if we
start from matched part-primitive pair p1 and m3 in Figure 5, then
the height and the normal of the part can be expressed as function
of the deformation parameters l1 and α3 of the model. We solve a
set of linear equations given for the observed parts and the contact
location to solve for the deformation parameters. Then, we use
Iterative Closest Point (ICP) [Besl and McKay 1992] to refine the
registration between the scan and the deformed model.

Ideally, part p in the scene measurement should be explained by
the assigned part geometry within the distance threshold θdist . The
model is matched to the measurement if the proportion of points
within θdist is more than λ . (Note that not all faces of the part need
to be explained by the region measurement as only a subset of the
model is measured by the sensor.) Otherwise, the triplet (p,m,T ) is
an invalid assignment and the algorithm returns false. After initial
matching (Section 5.1), multiple parts of an object can match to
different primitives of many models. If there are multiple success-
ful matches for an object, we retain the assignment with the most
number of points.

b) Refine segmentation. After a model is picked and positioned
in the configuration, we keep the location of the model fixed while
we refine the segmentation based on the underlying model. Recall
that the initial segment of parts P merge super-points with similar
normals and objects O group neighboring parts using the distance
threshold. Although the initial segmentations provide a sufficient
approximation to roughly locate the models, they do not necessarily
coincide with the actual part and object boundaries without compar-
ing against the geometry.

First, we update the association between super-points and the parts
by finding the closest primitive node of the model for each super-
point. The super-points that belong to the same model node are
grouped to the same part (see Figure 6). In contrast, super-points
that are farther than distance threshold θdist from any of the primi-
tives are separated to form a new segment with null assignment.

After the part assignment, we search for the missing primitives by
merging neighboring objects (see Figure 6). In the initial segmen-
tation, objects which are close to each other in the scene can lead to
multiple objects grouped into a single segment. Further, particular
view points of an object can cause parts within the model to appear
farther apart, leading to spurious multiple segments. Hence, the
super-points are assigned to an object, only after the existence of
the object is verified with the underlying geometry.

6 Results

In this section, we present performance results of our system on
various synthetic and real-world scenes.

Synthetic scenes. We tested our framework on synthetic scans
of 3D scenes obtained from the Google 3D Warehouse (see Fig-
ure 7). We implemented a virtual scanner to generate the synthetic
data: once the user specifies a viewpoint, we read the depth buffer
to recover 3D range data of the virtual scene from the specified
viewpoint. We control the scan quality using three parameters:
(i) scanning density d to control the fraction points that are retained,
(ii) noise level g to control the zero mean Gaussian noise added to
each point along the current viewing direction, and (iii) the angle
noise a to perturb the position in the local tangent plane using ze-
ro mean Gaussian noise. Unless stated, we used default values of
d = 0.4, g = 0.01, and a = 5◦.

In Figure 7, we present typical recognition results using our frame-
work. We learned different models of chairs and placed them with
varying deformations (see Table 2). We exaggerated some of the
deformation modes, including with very high chairs and severely

synthetic 1 

synthetic 2 

synthetic 3 

Figure 7: Recognition results on synthetic scans of virtual scenes:
(left to right) synthetic scenes, virtual scans, and detected scene
objects with variations. Unmatched points are shown in gray.



tilted monitors, but could still reliably detect them all (see Table 3).
Beyond recognition, we reliably recovered both positions and pose
parameters within 5% error margin of the object size. Incomplete
data can, however, result in ambiguities: for example, in synthet-
ic #2 we correctly detect a chair, but in a flipped position, since
the scan contained data only from the chair’s back. While specific
volume-based reasoning can be used to give preference to chairs in
upright position, we avoided such case-specific rules in the current
implementation.

similar different  

Figure 8: Chair models used in synthetic scenes.

In practice, acquired data sets suffer from varying sampling reso-
lution, noise, and occlusion. While it is difficult to exactly mimic
real world scenarios, we ran synthetic tests to access the stability of
our algorithm. We placed two classes of chairs (see Figure 8) on
a ground plane, 70-80 chairs of each type, and created scans from
5 different view points with varying density and noise parameters.
For both classes, we used our recognition framework to measure
precision and recall while varying parameter λ . Note that precision
represents how many of the detected objects are correctly classified
out of total number of detections, while recall represents how many
objects were correctly detected out of the total number of placed
objects. In other words, precision of 1 indicates no false positives,
while recall of 1 indicates there is no false negatives.

Figure 9 shows the corresponding precision-recall curves. The first
two plots show precision-recall curves using a similar pair of mod-
els, where the chairs have similar dimensions, which is expected to
result in high false-positive rates (see Figure 8, left). Not surpris-
ingly, recognition improves with a lower noise margin and/or higher
sampling density. Performance, however, saturates with Gaussian
noise lower than 0.3 and density higher than 0.6 since both our
model- and part-based components are approximations of the true
data resulting in inherent discrepancy between measurement and
the model, even in absence of noise. Note that as long as the parts
and dimensions are captured, we still detect objects even under high
noise and sparse sampling.
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Figure 9: Precision-recall curve with varying parameter λ .

Our algorithm has higher robustness when the pair of models are
sufficiently different (see Figure 9, right). We tested with two pairs
of chairs (see Figure 8): the first pair had chairs of similar dimen-
sions as before (in solid lines), while the second pair had a chair
and a sofa with large geometric differences (in dotted lines). When
tested with the different pairs, we achieve precision higher than 0.98
for recall larger than 0.9. Thus, as long as the geometric space of the
objects is sparsely populated, our algorithm has a high accuracy in

scene model points no. of no. of no. of
per scan scans prim. joints

synthetic1
chair 28445 7 10 4
stool 19944 7 3 2
monitor 60933 7 3 2

synthetic2 chaira 720364 7 9 5
chairb 852072 1 6 0

synthetic3 chair 253548 4 10 2

office

chair 41724 7 8 4
monitor 20011 5 3 2
trash bin 28348 2 4 0
whitebrd. 356231 1 3 0

auditorium chair 31534 5 4 2
seminar rm. chair 141301 1 4 0

Table 2: Models obtained from the learning phase (see Figure 10).

quickly acquiring the geometry of environment without assistance
from data-driven or machine-learning techniques.

Real-world scenes. The real test of our system is on scanned
data since it is difficult to synthetically recreate all the artifacts en-
countered during scanning. We tested our framework on a range of
real-world examples each consisting of multiple objects arranged
over large spaces (e.g., office area, conference rooms). For both the
learning and the recognition phases, we acquired the scenes using a
Microsoft Kinect scanner with an open source scanning library [En-
gelhard et al. 2011]. The scenes were challenging, especially due
to the amount of variability in the individual model poses (see our
project page for the input scans and recovered models). Table 2
summarizes all the models learned for these scenes ranging from
3-10 primitives with 0-5 joints extracted from only a few scans (see
Figure 10). While we evaluate our framework on the raw Kinect
output rather than on processed data (e.g., [Izadi et al. 2011]), the
performance limits should be similar when calibrated to the data
quality and physical size of the objects.

Figure 10: Various models learned/used in our test (see Table 2).

Our recognition phase is lightweight and fast taking on an average
200ms to compare a point cluster to a model on a 2.4Hz CPU with
6GB RAM. For example, in Figure 1 we detect all the 5 chairs and
4 of the 5 monitors, along with their poses. Note that objects that
were not among the learned models remain undetected, including
a sofa in the middle and other miscellaneous clutter. We overlay
the unresolved points on the recognized parts for comparison. Our
algorithm had access to only the geometry, but not any color or
texture attributes. The complexity of our problem setting can be
appreciated by looking at the input scan, which is hard even to parse
visually. We observed Kinect data to exhibit highly non-linear noise
effects that was not simulated in our synthetic scans; also data go
missing when an object is narrow or specular (e.g., monitor), with
flying pixels along depth discontinuities, and severe quantization
noise for distant objects.

We summarize the results in Figure 11 for (cluttered) office setups,
auditoriums, and seminar rooms. Although we tested with different
scenes, we present only representative examples as the performance
were comparable. We detect the chairs, monitors, whiteboards,
and trash bins across different rooms, and the rows of auditorium
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Figure 11: Recognition results on various office and auditorium scenes. Since the input single view scans are too poor to understand the
scene complexity, we include scene images just for visualization (these were unavailable to the algorithm). Note that for the auditorium
examples, we even detect the tables on the chairs — this is possible since we have extracted this variation mode in the learning phase.



scene number of input points objects objects
ave. min. max. present detected*

syn. 1 3227 1168 9967 5c 3s 5m 5c 3s 5m
syn. 2 2422 1393 3427 4ca 4cb 4ca 4cb
syn. 3 1593 948 2704 14 chairs 14 chairs
teaser 6187 2575 12083 5c 5m 0t 5c 4m 0t
office 1 3452 1129 7825 5c 2m 1t 2w 5c 2m 1t 2w
office 2 3437 1355 10278 8c 5m 0t 2w 6c 3m 0t 2w
aud. 1 19033 11377 29260 26 chairs 26 chairs
aud. 2 9381 2832 13317 21 chairs 19 chairs
sem. 1 4326 840 11829 13 chairs 11 chairs
sem. 2 6257 2056 12467 18 chairs 16 chairs

*c: chair, m: monitor, t: trash bin, w: whiteboard, s: stool

Table 3: Statistics for the recognition phase. For each scene, we
also indicate the corresponding scene in Figure 7 and Figure 11,
when applicable.

chairs in different configurations. We missed some of the monitors
because the material property of the screens were probably not fa-
vorable to Kinect capture. The missed monitors in Figure 1 and
office #2 have big rectangular holes within the screen in the scans.
In office #2, we also miss a couple of the chairs that are mostly
occluded and beyond what our framework can handle.

Even under such demanding data quality, we can recognize the
models and recover poses from data sets an order of magnitude
sparser than those required in the learning phase. Surprisingly, we
could also detect the small tables in the two auditorium scenes (1
in auditorium #1, and 3 in auditorium #2) and also identify pose
changes in the auditorium seats. Figure 12 shows a close-up office
scene to better illustrate the deformation modes that we captured.
All of the recognized object models have one or more deformation
modes and one can visually compare the quality of data to the re-
covered pose and deformation.

The segmentation of real-world scenes are challenging with natu-
rally cluttered set-ups. The challenge is well demonstrated in the
seminar rooms because of closely spaced chairs or chairs leaning
against the wall. In contrast to the auditorium scenes, where the
rows of chairs are detected together making the segmentation triv-
ial, in the seminar room setting chairs often occlude each other.
The quality of data also deteriorates because of thin metal legs with
specular highlights. Still we correctly recognized most of the chairs
along with correct configurations by first detecting the larger parts.
Although only 4-6 chairs were detected in the initial iteration, we
eventually detected most of chairs in the seminar rooms by refining
the segmentation based on the learned geometry (in 3-4 iterations).

Comparisons. In the learning phase, we require multiple scans of
an object to build a proxy model along with its deformation modes.
Unfortunately, the existing public data sets do not provide such

drawer deformations  

monitor laptop  missed monitor  
chair  

Figure 12: A close-up office scene. All of the recognized objects
have one or more deformation modes. The algorithm inferred the
angles of the laptop screen and the chair back, heights of the chair
seat, the arm rests and the monitor. We can also capture the defor-
mation modes of open drawers.

monitor table top chair back chair base wall floor table leg 

input scene 1  input scene 2  

[Koppula et al.]  ours ours [Koppula et al.]  

shifted 
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Figure 13: We compared our algorithm and Koppula et al. [2011]
using multiple frames of scans from the same viewpoint. Our recog-
nition results are more stable across different frames.

multiple scans. Instead, we compared our recognition routine to
the algorithm proposed by Koppula et al. [2011] using author pro-
vided code to recognize objects from a real-time stream of Kinect
data after the user manually marks the ground plane. We fixed the
device location and qualitatively compared the recognition results
of the two algorithms (see Figure 13). We observe that Koppula
et al. reliably detect floors, table tops and front-facing chairs, but
often fail to detect chairs facing backwards, or distant ones. They
also miss all the monitors, which usually are very noisy. In con-
trast, our algorithm being pose- and variation-aware is more stable
across multiple frames, even with access to less information (we
do not use color). Note that while we detect some monitors, their
poses are typically biased toward parts where measurements exist.
In summary, for partial and noisy point-clouds, the probabilistic
formulation coupled with geometric reasoning results in robust se-
mantic labeling of the objects.

Limitations. While in our tests the recognition results were
mostly satisfactory (see Table 3), we observed two main failure
modes. First, we fail to detect objects when large amounts of data
go missing. In real-world scenarios, object scans can easily ex-
hibit large holes because of occlusions, specular materials, or thin
structures. Further, scans can be sparse and distorted for distant
objects. Second, we cannot overcome the limitations of our initial
segmentation. For example, if objects are closer than θdist , we group
them as a single object; on the other hand, a single object can be
hallucinated as multiple objects if its measurements are separated
by more than θdist from a particular viewpoint. While in certain
cases the algorithm can recover segmentations with the help of oth-
er visible parts, this becomes difficult as we allow objects to deform
and hence have variable extent.

Generally, we reliably recognized scans with 1000-3000 points per
scan since in the learning phase we extracted the important degrees
of variation, thus providing a compact, yet powerful, model (and
deformation) abstraction. In a real office settings, the simplicity
and speed of our framework can allow a human operator to imme-
diately notice missed or misclassified objects and quickly re-scan
those areas under more favorable conditions. We believe that such
a progressive scanning possibility to become more common place
in future acquisition setups.

Applications. Our system is also useful to obtain a high-level
understanding of recognized objects, e.g., relative position, orien-
tation, frequency of learned objects. Specifically, as we progres-



sively scan multiple rooms populated with the same objects, we
gather valuable co-occurrence statistics (see Table 4). For example,
from the collected data, the system extracts that the orientation of
auditorium chairs are consistent (i.e., face a single direction), or
observe a pattern among the relative orientation between a chair
and its neighboring monitor. Not surprisingly, we found chairs to
be more frequent in seminar rooms rather than in offices. In the
future, we plan to incorporate such information to handle cluttered
datasets while scanning similar environments but with differently
shaped objects.

scene relationship distance (m) angle (◦)
mean std mean std

office chair-chair 1.207 0.555 78.7 74.4
chair-monitor 0.943 0.164 152 39.4

aud. chair-chair 0.548 0 0 0
sem. chair-chair 0.859 0.292 34.1 47.4

Table 4: Statistics between objects learned for each scene category.

As an exciting possibility, we can efficiently detect change. By
change, we mean introduction of a new object, previously not seen
in the learning phase while factoring out variations due to dif-
ferent spatial arrangements or changes in individual model poses.
For example, in the auditorium #2, a previously unobserved chair
is successfully detected (highlighted in yellow). Such a mode is
particularly useful for surveillance and automated investigation of
indoor environments, or for disaster planning in environments that
are unsafe for humans to venture.

7 Conclusion

We have presented a simple system for recognizing man-made ob-
jects in cluttered 3D indoor environments, while factoring out low-
dimensional deformations and pose variations, at a scale previously
not demonstrated. Our pipeline can be easily extended to more
complex environments primarily requiring reliable acquisition of
additional object models and their variability modes.

Several future challenges and opportunities remain: (i) With in-
creasing number of object prototypes, we will need more sophis-
ticated search data structures in the recognition phase. We hope to
benefit from recent advances in shape search. (ii) In this work, we
have focused on a severely restricted form of sensor input, namely
poor and sparse geometry alone. We intentionally left out color
and texture, which can be quite beneficial, especially if appearance
variations can be accounted for. (iii) A natural extension will be to
take the recognized models along with their pose and joint attributes
to create data-driven high quality interior CAD models for visual-
ization, or more schematic representations that may be sufficient for
navigation, or simply for scene understanding (see Figure 1, right
and recent efforts in scene modeling [Nan et al. 2012; Shao et al.
2012]).
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