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Figure 1: Adaptive maximal Poisson-disk sampling and remeshing of the Bunny model. (a) The density map, where cooler colors correspond
to a smaller radius while warmer colors correspond to a larger radius; (b) non-maximal sampling results in gaps (red regions); (c) triangles
of the remeshing that are effected by gaps (red triangles); (d) optimized maximal sampling; and (e) remeshing of (d).

Abstract

In this paper, we study the generation of maximal Poisson-disk set-
s with varying radii on surfaces. Based on the concepts of power
diagram and regular triangulation, we present a geometric analysis
of gaps in such disk sets on surfaces, which is the key ingredient
of the adaptive maximal Poisson-disk sampling framework. More-
over, we adapt the presented sampling framework for remeshing
applications. Several novel and efficient operators are developed
for improving the sampling/meshing quality over the state-of-the-
art.
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1 Introduction

Sampling is one of the most fundamental research topics in com-
puter graphics, which has many applications such as rendering,
anti-aliasing, texture synthesis and geometry processing. Research
shows that Maximal Poisson-disk Sampling (MPS) exhibits not on-
ly excellent blue-noise characteristics in the spectral domain, but
also high meshing quality from a geometric point of view [Chew
1989; Ebeida et al. 2011a].

In this paper we make two major contributions: 1) On the theoret-
ical side, we extend the existing work in 2D MPS with two new
components: adaptive sampling and sampling on surfaces. 2) On
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the application side, we present a high-quality surface remeshing
approach based on the Adaptive Maximal Poisson-disk Sampling
(AMPS). The key problem of our approach is how to efficiently de-
tect and extract uncovered regions, called gaps from a non-maximal
sampling on surfaces. Our approach is based on the concepts of the
power diagram [Aurenhammer 1987] and the regular triangulation.

1.1 Related work

We briefly review techniques for random points generation and sur-
face remeshing.

Poisson-disk sampling: Most recent algorithms for efficient max-
imal Poisson-disk sampling maintain a data structure of gap prim-
itives. Dunbar and Humphreys [2006] use the scalloped sectors to
track the uncovered regions. Ebeida et al. [2011b] propose a hybrid
approach that first uses grid and later convex polygons bounding the
intersections of a grid and multiple circles as gap primitives. The
most related work to ours is [Jones 2006], which uses a Voronoi di-
agram to extract gaps. In contrast, we use a power diagram and the
dual regular triangulation for our analysis, which results in a more
general solution.

Surface sampling/remeshing: Cline et al. [2009] propose dart
throwing algorithms on surfaces based on a hierarchical triangu-
lation. Bowers et al. [2010] extend the parallel sampling to mesh
surfaces and introduce a spectrum analysis for uniform surface
sampling algorithms as well. Corsini et al. [2012] present an al-
gorithm for surface blue noise sampling based on a space subdi-
vision combined with a pre-generation of the samples. Fu and
Zhou [2008] generalize the scalloped sector based sampling [Dun-
bar and Humphreys 2006] to 3D mesh surfaces, and present an
isotropic remeshing algorithm by extracting a mesh from the sam-
ples. Lloyd iterations are used to further smooth the resulting mesh.
Yan et al. [Yan et al. 2009] propose an exact algorithm for com-
puting the Restricted Voronoi Diagram (RVD) on surfaces, based
on which they developed a surface remeshing framework based on
Centroidal Voronoi Tessellation (CVT). Chen et al. [2012] combine
the CVT [Yan et al. 2009] and the capacity area constraint for blue
noise sampling on surfaces. None of the above mentioned surface
sampling methods discuss the maximal sampling properly.
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Figure 2: Illustration of the restricted power diagram on a surface
(left); middle: a restricted power cell; right: a mesh triangle is split
into polygons shared by the incident cells.

2 Problem Formulation

Given a compact domain Ω and a smooth density function ρ defined
on the domain, each point p ∈ Ω is equipped with a radius r(p)
adapting to the density function, e.g., local feature size of a surface.
We would like to sample the domain based on the density function
ρ, so that the sampling disk set D = {(pi, ri)}ni=1 satisfies the
following properties: (1) Minimal distance property: none of the
disk centers pi can be covered by other disks, i.e., for ∀i, j (i �=
j), ‖pi − pj‖ ≥ max(ri, rj). (2) Maximal property: the domain
Ω is fully covered by the disks and (3) Unbiased sampling property:
the probability of sampling a point in a subregion Ω′ is proportional
to

∫
Ω′ ρ(x) dx/

∫
Ω
ρ(x) dx.

An efficient framework for this purpose involves two stages: First,
an initial sampling stage which performs classic dart throwing on
the domain. Second, a following gap filling stage which extracts
and samples the tiny gaps. The gaps are decomposed and approxi-
mated by a set of convex polygons, called gap primitives. The sec-
ond stage is repeated until there is no gap left. The bottleneck of the
AMPS is the gap computation in the second stage, i.e., how to effi-
ciently detect and extract gaps. Assuming that the current sampling
set D is non-maximal, which means that if we draw a disk at each
center pi with radius ri, the domain Ω will not be fully covered.
We are interested in the properties of the uncovered region (gaps),
which is defined as Ω−D, as shown in Fig. 1(b). In the following,
we first give the definition of the power diagram and its dual, regu-
lar triangulation, then we analyze the geometric properties of gaps
on surfaces in the next section.

Power diagram and regular triangulation: The disk set D is
represented by a set of weighted points Pw = {(pi, wi)}ni=1,
where wi = r2i . The power of two weighted points is defined as
Π(pi, wi,pj , wj) = ‖pi − pj‖2 − wi − wj . Then the power di-
agram PD of Pw is a set of non-overlapping power cells {Ωi}ni=1

such that

Ωi = {x ∈ Ω | Π(pi, wi,x, 0) ≤ Π(pj , wj ,x, 0),∀j �= i},

A vertex of the power diagram is called a power vertex and an edge
is called a power edge.

3 Gap Computation on Surfaces

Suppose that the input domain Ω = {fj}mj=1 is a triangle mesh
surface and Pw is a set of weighted samples lying on the surface,
we define the Restricted Power Diagram (RPD) as the intersec-
tion of the 3D power diagram and the surface, i.e., RPD(Pw) =
PD(Pw)

⋂
Ω = {Ωi

⋂
Ω}ni=1. In this case, the intersection of a

3D power cell Ωi and the mesh surface is called a restricted power
cell, i.e., Ωi

⋂
Ω = {

⋃
{Ωi

⋂
fj}, ∀ fj ∈ Ω}. Fig. 2 shows an

example of the RPD of a torus. There are three types of vertices
in the RPD of a mesh surface, Type A: the original vertices of

Figure 3: Gap computation on surfaces by triangle-sphere clip-
ping. Gaps are shown in red.

the mesh; Type B: the intersection of a mesh edge and a bi-sector
power plane, and Type C: the intersection of a power edge and a
mesh triangle (see Fig. 2(right)). The Type C vertex is also called
a restricted power center. Note that each restricted power center
corresponds to a triangle of the so called regular triangulation (the
dual triangle of the power edge which intersects the surface). The
collection of these triangles is called the Restricted Regular Trian-
gulation (RRT ) on the surface. The triangles of RRT are not
actually lying on the surface, which is a linear interpolation of the
input mesh. We use the algorithm presented in [Yan et al. 2009] for
the RPD computation.

Once we have computed the RPD of the surface for a set of initial
samples, it becomes straightforward to test whether there exists any
gap or not. We extend Jones [2006]’s approach to 3D surfaces: The
surface is fully covered if and only if each restricted power cell
Ωi

⋂
Ω of a sample pi is fully covered by the disk centered at pi

with radius ri. The proof is trivial and we omit it here.

The gap primitives are computed by clipping the restricted power
cell by the sphere centered at each weighted point. Each restricted
power cell can be split into a set of triangles. Then the clipping
problem is reduced to a triangle-sphere intersection problem. The
clipped regions, i.e., gap primitives, are approximated by a set of
triangles and associated with their incident gaps, as shown in Fig. 3.

4 Surface Sampling and Remeshing

In this section, we first describe a framework for adaptive maximal
Poisson-disk sampling on surfaces. Then we present a high quality
surface remeshing algorithm, as well as a randomized mesh opti-
mization algorithm built on top of the sampling framework, which
greatly improves the sampling/meshing quality.

4.1 Adaptive sampling on surfaces

As input we use a mesh Ω = {fi}mi=1, a minimal sampling ra-
dius rmin, a maximal sampling radius rmax (default value 16 rmin,
used to clamp the big radius), as well as a density function ρ(x) de-
fined on the mesh surface. A voxel grid is built for accelerating the
sampling process. We first voxelize the mesh surface with voxels
whose sizes are equal to rmin√

3
. Each voxel records the indices of

samples that fully cover it. A voxel is valid if it is not fully covered
by any disk (sphere in 3D). We follow the two steps sampling strat-
egy presented in [Ebeida et al. 2011b]: 1) dart throwing with a grid
and 2) gap filling.

In the first step, we perform classic dart throwing on surfaces. Each
triangle f is associated with a weight wf = ρ(cf )|f |, where cf is
the barycenter and |f | is the area of the triangle. The cumulative
probability density function (cpdf) of the weights is stored in a flat
array. Each time a dart is generated by first selecting a triangle
from the cpdf, then randomly generating a point p in the triangle, as
well as a radius r = min(rmax,max(rmin, 1/

√
ρ(p))) associated



with the point. The new dart is tested against the grid. The dart is
accepted if it is not contained by previous samples and does not
contain any other existing samples. The index of the new sample is
recorded by the voxels that are fully contained by this sample. The
first step is terminated when k consecutive rejections are observed
(k = 300 in our implementation).

Then we switch to the second step. i.e., iterative gap updating and
gap filling. At each iteration, all gap primitives are triangulated
and each triangle is associated with a weight as before. We create
a cpdf for all the triangles of gap primitives. Note that in the gap
filling step, the newly generated disk in the gap may cover existing
samples. In this case, we set the radius of the new disk as the dis-
tance to the nearest sample, so that it will not contain any previous
samples.

4.2 Surface remeshing and optimization

We extract the mesh from surface samples using the algorithm pre-
sented in [Yan et al. 2009].

Property of uniform sampling: The uniform blue noise remesh-
ing has many nice properties. Given a constant sampling radius r,
the meshes generated from blue noise sampling exhibit the follow-
ing bounds: the angle bound [30o, 120o], the edge length bound
[r, 2 r] and the area bound [

√
3

4
r2, 3

√
3

4
r2] as its 2D counter-

part [Chew 1989]. All these properties are desired in many applica-
tions, especially the angle bound, which is crucial for FEM appli-
cations. However, in the case of the adaptive sampling, the above
theoretical bounds do not hold any more. To improve the meshing
quality, we introduce a novel and simple randomized optimization
algorithm, i.e., angle bound optimization and valence optimization.

Valence and angle optimization: The optimization iteratively
removes the sample points with unsatisfactory properties and their
neighborhoods and then re-fills the gaps. In angle bound optimiza-
tion, the vertices with one triangle angle less than a minimal angle
threshold or larger than a maximal threshold are removed. In va-
lence optimization, the vertices whose degrees are less than 5 or
larger than 7 are removed. These two optimization criteria can ei-
ther be performed separately, or jointly. The valence/angle opti-
mization terminates when the required criteria are met or the max-
imal iteration number (25 in our implementation) is reached. In a
joint valence and angle optimization, a global optimization is per-
formed interleaving between valence and angle optimization. Typ-
ically it takes 5-10 global iterations to meet both quality require-
ments. During the optimization, the RRT and RPD are locally
updated.

5 Experimental Results

We use CGAL for the 3D regular triangulation. The experimental
results are conducted on an Intel X5680 Dual Core 3.33GHz CPU
with 4GB memory and a 64-bit Windows 7 operating system.

Uniform sampling/remeshing: We show several experimental
results of surface remeshing and optimization. Fig. 4 shows the
results of uniform sampling on a 2D square and a 3D sphere. In
this example, we generate three meshes for each model using: non-
maximal sampling (dart throwing without gap filling), maximal
sampling, and optimized sampling. The statistics of the meshes
are shown in Table 1. We can see that the theoretical bounds do not
hold for a non-maximal sampling (first experiment), while these
bounds are guaranteed by maximal sampling (second experimen-
t). For optimized (uniform) sampling, the desired angle bound is

Figure 4: Uniform sampling and remeshing (rmin = 0.05 for vi-
sualization). Left column: dart throwing; middle: maximal sam-
pling; right: optimized sampling (angle and valence). Vertex col-
ors: V5: blue, V6: green, V7: orange. Darker points corre-
spond to higher(> 7) or lower(< 5) valences. The triangles with
θmin < 30o or θmax > 120o are shown in dark gray, triangles
with θmin ∈ [30o, 35o] or θmax ∈ [105o, 120o] are shown in red.

set to [35o, 105o]. This third experiment shows that the geomet-
ric properties are greatly improved. The spectral analysis of the
optimized sampling is given in Fig. 5, which shows that our opti-
mization framework preserves the blue noise properties well.

Model #v θmin θmax |e|′max |t|′
min

|t|′max v567
Square1 26.8k 21.6 130.3 1.458 0.947 2.043 94.2
Square2 34.5k 30.1 118.6 0.999 1.001 0.998 96.4
Square3 35.1k 35.0 104.9 0.999 1.001 0.997 100
Sphere1 23.5k 22.1 129.3 1.618 0.993 2.182 94.5
Sphere2 29.7k 30.2 119.0 0.998 1.002 0.991 96.6
Sphere3 30.4k 35.0 105.0 0.998 1.002 0.996 100

Table 1: Statistics of uniform sampling/remeshing. The minimal
sampling radius rmin = 4.5 × 10−3. |e|′min = |e|min

rmin
is the

ratio of minimal edge length over the theoretical minimal edge
length bound, same for |e|′max = |e|max

2 rmin
, |t|′min = |t|min√

3
4

r2
min

, and

|t|′max = |t|max

3
√

3
4

r2
min

. |e|′min = 1 for all the tests, which is omitted

in the table. v567 is the percentage of vertices with valence 5, 6, or
7. For each model, we show the remeshing quality of 1) classic dart
throwing, 2) maximal sampling and 3) optimized sampling.

We compare the uniform surface sampling with the most recent ap-
proach [Corsini et al. 2012]. As shown in Fig. 7(a), we are able
to detect the gaps from their output and show that this competing
result is not maximal.

Adaptive sampling/remeshing: We applied our adaptive remesh-
ing/optimization to various models. We use local feature size
(lfs) [Amenta et al. 1998] as the density function, i.e., ρ(x) =
1/lfs(x)2. We compare our remeshing algorithm with the state-
of-the-art remeshing approaches [Valette et al. 2008] (CVD), [Yan
et al. 2009] (CVT) and [Chen et al. 2012] (CAP), in terms of the
min quality (Qmin), min/max angle (θmin/θmax), Hausdorff (Hdis-
t) and RMS distances (% of the diagonal length of the bounding
box), the ratio of angles smaller than 30o and the ratio of the valence
5,6,7 vertices (see Table 2). In adaptive remeshing, the desired an-
gle bound is set to [32o, 115o]. Similar to the uniform remeshing
case, we can observe that our approach exhibits better Qmin and
θmin, as well as high approximation quality to the input surface.

Efficiency: Fig. 6(a) shows the timing curve of our algorithm with
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Figure 5: Spectral analysis of the optimized sampling (10k sam-
ples) in the plane with angle bounds of [35o, 105o] and only vertices
of valence 5, 6, 7.

Figure 6: Left: Timing curves of our sampling algorithm on
the Bunny model (Fig. 1). Right: convergence curve of the va-
lence/angle optimization of Fig. 1. Each peak of the curve cor-
responds to a switch between valence/angle optimization.

Figure 7: Comparison with [Corsini et al. 2012]. Left: uni-
form sampling result of [Corsini et al. 2012] with 3909 samples
(r ≈ 0.012), gaps are detected by our technique (red regions);
right: maximal sampling (4560 samples) by filling the gaps using
our approach, and the new sampled points are shown in red.

an increasing number of sample points, and Fig. 6(b) shows the
convergence of the valence/angle optimization on the Bunny mod-
el shown in Fig. 1. For this example, our algorithm takes 12.4s
for initial sampling, 6.4s for gap filling and 4.9s for optimization
(23.7s in total), while CVT takes 182s and CAP takes 391s for the
same number of samples, respectively.

6 Conclusion and Future Work

We have presented an efficient framework for adaptive maximal
Poisson-disk sampling on surfaces, as well as a remeshing algo-
rithm and a mesh optimization framework. In the future, we would
like to generalize the current approach to more general sampling
such as anisotropic sampling.
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