
ORIGINAL ARTICLE

Fitting polynomial surfaces to triangular meshes with Voronoi
squared distance minimization

Vincent Nivoliers • Dong-Ming Yan •

Bruno Lévy
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Abstract This paper introduces Voronoi squared distance

minimization (VSDM), an algorithm that fits a surface to

an input mesh. VSDM minimizes an objective function that

corresponds to a Voronoi-based approximation of the

overall squared distance function between the surface and

the input mesh (SDM). This objective function is a gen-

eralization of the one minimized by centroidal Voronoi

tessellation, and can be minimized by a quasi-Newton

solver. VSDM naturally adapts the orientation of the mesh

elements to best approximate the input, without estimating

any differential quantities. Therefore, it can be applied to

triangle soups or surfaces with degenerate triangles, topo-

logical noise and sharp features. Applications of fitting

quad meshes and polynomial surfaces to input triangular

meshes are demonstrated.

Keywords Squared distance minimization � Centroidal

Voronoi tessellation � Subdivision surface fitting

1 Introduction

In this paper, our goal is to transform an input mesh T into

an alternative representation S (see Fig. 1). In our setting,

the result S may be a mesh made of quadrangular elements

or a subdivision surface. We suppose that an initial position

ofS is given (referred to as a template). The template may be

initialized from the bounding box of the input mesh T , as in

Fig. 1, but more complicated input geometries may require

more general templates, as shown further. The problem

reduces then to deforming the template S to fit the input

mesh T , by finding a new position for the vertices of S (or

for its control points in the case of a subdivision surface).

As in several approaches, we formalize the fitting

problem as minimizing an objective function that measures

the distance between the two surfaces S and T . Our con-

tribution is a new approximation of the overall squared

distance between surfaces, based on the concept of cent-

roidal Voronoi tessellations (CVT), as well as a solution

mechanism to minimize it.

In contrast to previous approaches, our approximation

offers theoretical guarantees on the error it introduces with

respect to the exact squared distance function. Minimizing

our objective function results in a good approximation of

the input in terms of Hausdorff distance. Our method does

not need to estimate any differential quantity such as cur-

vatures on T . This makes our method well suited when the

target surface T is ill formed, with degenerate triangles and

wrong or absent connectivity, as in range scan data.

We neither address here the problem of automatically

generating the initial template mesh S, nor dynamically

modifying it to adapt to the target mesh T . Although our

method will not fail even in case of topology mismatch and

can often be initialized with the bounding box of T , a bad

template may result in pinchouts and overlaps when T

V. Nivoliers � D.-M. Yan � B. Lévy

Project ALICE/Institut National de Recherche en Informatique

et en Automatique (INRIA) Nancy Grand-Est,

LORIA, Nancy, France

e-mail: yandongming@gmail.com

B. Lévy
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contains large protrusions. Another limitation of our

approach is that we do not prove the C2 continuity of our

objective function. Yet our minimization procedure empir-

ically behaves well when using a quasi-Newton solver.

2 Background and previous work

2.1 Methods based on parameterization

Fitting splines was the motivation of early works in mesh

parameterization for objects homeomorphic to a disc [10].

For fitting splines to objects of arbitrary genus, it is pos-

sible to use a parameterization defined over a base complex

[9, 26], polycube maps [27, 28] or global parameterization

methods [15, 24]. More details about these approaches is

given in the survey about quad meshing in computer

graphics [3]. The relations between the curvature of the

surface and the metric defined by the parameterization is

studied in [13] and used to compute an anisotropic mesh

that minimizes the approximation error. Since they require

the estimates of differential quantities (gradients, curva-

ture, shape operator. . .), the methods above cannot be

applied to meshes with degeneracies (skinny triangles,

multiple components, holes, sharp creases). Our method

that directly minimizes the squared distance does not suffer

from this limitation.

2.2 Methods based on point-to-point distances

To remesh surfaces, ‘‘shrink-wrap’’ methods [7, 12]

iteratively project the template onto the input mesh while

minimizing a regularization criterion. A similar idea can

be applied to subdivision surfaces [20, 21] using an exact

algorithm to find closest points on the subdivision surface

and the exact evaluation of the subdivision surface. The

‘‘dual domain relaxation’’ method [32] uses some vari-

ants of Laplace surface editing to fit a template to the

input mesh. Since they are based on point-to-point dis-

tances, the methods above can mostly do small correc-

tions on the geometry, and have difficulties converging

when the initialization is far away from the target sur-

face. In contrast, VSDM can successfully fit a control

mesh to a surface.

2.3 Squared distance minimization (SDM)

SDM was proposed by Pottmann et al. [23] for curve and

surface fitting. The SDM approach generalizes the Iterated

Closest Point (ICP) methods initially introduced for sur-

face registration. A survey and performance study of ICP

methods was published in [25].

In the continuous setting, the SDM framework fits a

surface S to another surface T by minimizing an approx-

imation of the objective function EðSÞ:
EðSÞ ¼ FS!T ðSÞ þ kRðSÞ ð1Þ

where:

FS!T ðSÞ ¼
Z

S

k x�PT ðxÞ k2 dx

In this equation, PT ðxÞ denotes the projection of x onto T ,

i.e., the point of T nearest to x. The term RðSÞ is a regu-

larization term aiming at preserving the smoothness of S
by minimizing its Laplacian. The regularization factor k
lets the user choose a tradeoff between the smoothness of S
and the fitting criterion.

Due to the difficulty of the exact computation of F,

various approximations are usually introduced. First, the

integral over S is replaced by a sum over a sampling

X = [xi]i=1
n . Then the nearest neighbor of a sample xi

is replaced by the nearest sample yj in a sampling

Y = [yj]j=1
m of T . Using these two samplings, FS!T can be

computed in several ways, depending on how the distance

between xi and yj is computed:

Point distance (PD) uses kxi � yjk2
(order 0

approximation).

Tangent distance (TD) uses the squared distance to the

nearest point on the tangent plane of T at yj (order 1

approximation).

Second order squared distance (SD) uses the curvature

information of T at yj to derive a second order

approximation of the squared distance around yj.

Fig. 1 Given an input mesh T (top 2,065 vertices and 4,114 facets)

and a control mesh (898 vertices and 896 quads) in an initial position

(center), VSDM minimizes the squared distance between T and the

polynomial surface S defined by the control mesh. The Hausdorff

distance between the result (bottom) and the input mesh (top) is

0.554% of the bounding box diagonal. Other views of the same data

are shown further in the paper
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These three approximations are shown in Fig. 2. Wang

et al. [29] showed that SDM can be characterized in the SD

setting as a quasi-Newton method and they applied it to

B-spline curve fitting. Cheng et al. [4, 5] proposed a sub-

division surface fitting algorithm based on SDM.

3 Voronoi squared distance minimization

The existing approximations of SDM require an accurate

estimation of the curvature tensor on T to be efficiently

minimized, which may be unavailable if T is a triangle

soup or a CAD mesh with many skinny triangles. VSDM

introduces a new approximation of F, which also exhibits

nice convergence rates while being free of curvature

computations. This is done by removing one of the

approximations made, by efficiently computing the integral

over S in Eq. 1. As in the other approaches though, the

nearest neighbor of a point x is still approximated using a

sampling Y of T . These computations are based on the

concept of CVT, and will be explained in Sect. 3.4.

In addition, we note that FS!T vanishes whenever S
matches a subset of T (instead of the totality of T ).

Therefore, to avoid degenerate minimizers that partially

match T , we propose to minimize a symmetrized version

of SDM given by FS!T þ FT !S . The benefit of the sym-

metrized formulation is demonstrated later (Sect. 3.3).

Finally, this new formulation also allows us to provide

an approximation bound of the error made by our

approximation as a function of the sampling quality of

Y (used for ~FS!T ) and X (used for ~FT !S). This bound is

given in Sect. 3.2.

3.1 Definition

We consider two point sets X and Y that sample the surface

S being deformed and the input surface T , respectively.

From now on, we will use the vertices of S as the sampling

X. In other words, the vertices X of S are the unknowns of

the optimization problem. When the mesh for T is regular

enough, and has a resolution at least equivalent to that of S,

its face centers are used as samples. This allows us to have

a well-defined normal at these sample points when needed.

Otherwise, the sampling Y of the input surface T is

automatically computed by starting from a random sam-

pling [25] and optimizing its regularity using restricted

CVT [30].

VSDM minimizes an approximation of the following

objective function:

FðXÞ ¼ FT !SðXÞ þ FS!T ðXÞ þ kRðXÞ: ð2Þ

Let us consider the first term FT !S:Using a sampling X of

S, we make the following approximation ky�PSðyÞk
’ mini ky� xik. Replacing the integrand of FT !S gives:

FT !S ¼
Z

T

ky�PSðyÞk2
dy

’
Z

T

min
i
ky� xik2

dy

¼
X

i

Z

Xi\T

ky� xik2
dy

where Xi denotes the 3D Voronoi cell of xi in the Voronoi

diagram of X. We shall now give the definition of the

approximation ~F of F minimized by VSDM:

~FðXÞ ¼ ~FT !SðXÞ þ ~FS!T ðXÞ þ k XtL2X|fflfflffl{zfflfflffl}
RðXÞ

ð3Þ

where:

~FT !S ¼
X
xi2X

Z

T \Xi

k y� xi k2 dy

~FS!T ¼
X
yj2Y

Z

S\Xj

k x� yj k2 dx

The matrix L is the uniform graph Laplacian of S. The

influence of the regularization factor k is illustrated in

Fig. 3. Xi denotes the Voronoi cell of xi in the Voronoi

Fig. 3 Influence of the regularization factor k on subdivision surface

fitting

(a) (b) (c)

Fig. 2 Illustration of different approximations of SDM. The dashed

lines represent iso-lines of the distance function to the sample
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diagram of X, and Xj the Voronoi cell of yj in the Voronoi

diagram of Y (see Fig. 4).

3.2 Convergence to the continuous objective function

The VSDM approximation replaces the nearest point on S
with the nearest sample of X (in the term FT !S) and the

nearest point on T with the nearest sample of Y (in the

term FS!T ). The accuracy of the approximation depends

on the density of the point sets X and Y used to sample S
and T , respectively. The density of a sampling is formal-

ized by the notion of e-sampling [2]. A point set X is an

e-sampling of a surface S if for any point x of S there is a

point xi in X such that kxi � xk\elfsðxÞ where

lfs(x) denotes local feature size (distance to medial axis

of S). ~FT !S satisfies the following property (proved in

Appendix 1).

Property 1 Given X, an e-sampling of S, we have:

lim
e!0

~FT !SðXÞ ¼ FT !SðXÞ

The same property is satisfied by the symmetric term
~FS!T if Y is an e-sampling of T . Therefore, if X and Y are

dense enough, ~F is a good approximation of F [in the order

of oðe2Þ, see Appendix 1]. Note that this property is only

satisfied for a smooth surface. However, a good behavior

is also observed for surfaces with sharp creases (see, e.g.,

Fig. 7).

3.3 Need for the symmetrized objective function

The term ~FT !S of ~F corresponds to the objective function

minimized by Restricted CVT. Therefore, omitting the term
~FS!T results in the objective function ~FT !S þ kRðXÞ, that

can be minimized by a straightforward modification of the

CVT quasi-Newton algorithm used in [19, 30], i.e., by

adding the term k Xt L2 X to the objective function and 2 k
L2 X to the gradient. However, as noted before, the function

FT !S reaches a minimum whenever S is a superset of T .

Therefore, a minimizer of FT !S may have spurious parts, as

shown in Fig. 5. These spurious parts correspond to the set

S �PSðT Þ, that does not yield any term in FT !S . In terms

of the discretization ~FS!T , they correspond to Voronoi cells

that have an empty intersection with T .

3.4 Solution mechanism

To minimize the function ~F ¼ ~FT !S þ ~FS!T þ kRðXÞ in

Eq. 3, VSDM uses the L-BFGS algorithm [17, 22].

L-BFGS is a Newton-type algorithm that uses successive

evaluation of the function and its gradient to compute an

approximation of the inverse of the Hessian. Although only

the gradient is required in the computation, the objective

function needs to be C2 to ensure the proper convergence

of the L-BFGS algorithms. We discuss here about the

continuity of the three terms of ~F:

R(X) is a quadratic form ðC1Þ;
~FT !S corresponds to the quantization noise power,

which is the objective function minimized by a CVT. It

is of class C2, except in some rarely encountered

degenerate configurations (see [19] for a proof);
~FS!T is obtained by permuting the roles of the constant

and variables in ~FT !S . We will study its continuity in

future work. Experimentally, it is regular enough for

obtaining a stable behavior of L-BFGS.

In practice, implementing L-BFGS requires evaluating

~FðXðkÞÞ and r~FðXðkÞÞ for a series of iterates X(k) (see

Algorithm 1):

Fig. 5 Top the minimizer of ~FT !S has spurious parts that cannot be

eliminated since their Voronoi cells do not intersect the input mesh T .

Bottom the symmetrized ~F ¼ ~FT !S þ ~FS!T detects and eliminates

them

(a) (b)

Fig. 4 Illustration of the terms of the VSDM objective function. The

shaded regions represent for each sample xi (resp. yj) the portion

T \ Xi (resp. S \ Xj) of the other surface whose squared distance

with respect to the sample is integrated
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In order to make our work reproducible, we further

detail the main steps:

(2) the sampling Y of T , used by ~FS!T , is computed by

the CVT algorithm in [30], with the same number of

vertices as in X;

(3) the Restricted Voronoi Diagrams VorðYÞjS , and

VorðXðkÞÞjT are computed as in [30];

(4) FT !S is the CVT objective function. Its gradient is

given by Eq. 4:

rjxi

~FT !S ¼ 2miðxi � giÞ ð4Þ

where mi and gi denote the volume and the centroid of

the restricted Voronoi cell Xi \ T [8];

(5) The expression of r R(X) is simply given by:

rRðXÞ ¼ rXtL2X ¼ 2L2X ð5Þ

(6) the term ~FS!T is obtained by exchanging the roles of

S and T in ~FT !S and using the point set Y instead of

X. The computation of this term and its gradient are

explained in the next paragraph;

(8) p(k) denotes the step vector computed by L-BFGS.

The function ~FS!T depends on the Voronoi diagram of

Y restricted to S (see Fig. 6). Each restricted Voronoi cell

Xj \ S (polygons) is decomposed into a set of triangles.

One of them T = (c1, c2, c3) is highlighted. Each triangle

T of the decomposition of Xj \ S contributes the following

terms to ~FS!T and r~FS!T :

~FS!T

¼
X

T2Xj\S

~FT
S!T

¼
X

T2Xj\S

jT j
6

X
1� k� l� 3

ðck � yjÞ � ðcl � yjÞ
d~FT
S!T

dX

¼
X3

k¼1

d~FT
S!T

dck

dck

dX
ð6Þ

where dA/dB = (qai / qbj)i,j denotes the Jacobian matrix

of A.

The set of possible configurations for a vertex ck is

similar to the combinatorial structure of the Lp-CVT

function [14], with the exception that the roles of the

variables and constants are exchanged. Each configuration

yields a Jacobian matrix that propagates the derivatives of
~FT
S!T from the ck’s to the xi’s. There are three possible

configurations (see overview in Fig. 6):

!� c is a vertex xi of S:

then d c/d xi = I3 9 3 and the derivatives are directly

propagated;

!4 c has configuration (a):

c corresponds to the intersection between a bisector

(thick black edge) and an edge [x1, x2] of S. The

Jacobian matrices d c/d x1 and d c/d x2 are given in

Appendix 2, Eq. 13;

! h c has configuration (b):

c corresponds to the intersection between three bisectors

(thick black edges) and a facet (x1, x2, x3) of S. The

Jacobian matrices d c/d x1, d c/d x2 and d c/d x3 are

given in Appendix 2, Eq. 14.

By injecting these vertex derivatives in Eq. 6, we obtain

the gradient of ~FS!T .

In Eq. 6 we assumed that the set fT 2 Xj \ Sg remains

constant for an elementary displacement of the variables

X. In fact, when a vertex xi of S enters or leaves the

Voronoi cell of a sample yj, the combinatorics of the

restricted cells change, and so do the sets fT 2 Xj \ Sgj.

We conjecture that r~FS!T remains continuous in these

situations, except in some rarely encountered degenerate

configurations, such as when a face of S is contained in a

Voronoi face of the diagram of Y. The stability we

experimented using the L-BFGS solver with this gradient

tends to strengthen this conjecture. The complete gradient

of our objective function is computed using Eqs. 4, 5 and 6

and provided to the L-BFGS solver for optimization.

Fig. 6 Computing the gradient of the symmetric term r~FS!T �:

configurations of the vertices of VorðYÞjS
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3.5 Fitting polynomial surfaces

We now consider the problem of fitting a polynomial

surface defined by its control mesh C. At each iteration, we

compute a polygonal approximation S of the polynomial

surface. The vertices X of S are given as linear combina-

tions of the control points P as X = MP, where

X ¼ ½x1y1z1. . .xnynzn�t denotes the coordinates of the ver-

tices of S and P those of the control points. One may use

the exact evaluation of the polynomial surface, or simply

use the approximation obtained by subdividing the control

mesh several times with De Casteljau’s rule.

Polynomial surface fitting is done by minimizing the

function GðPÞ ¼ ~FðMPÞ. This can implemented with a

change of variable in the VSDM algorithm (see Algorithm 2).

3.6 Feature-sensitive fitting

Using the algorithm above for fitting polynomial surfaces

may result in over-smoothing sharp creases (Fig. 7, center).

However, this can be improved by injecting normal

anisotropy [14] into the objective function ~F (Fig. 7, right).

This changes the terms ~FT !S and ~FS!T as follows:

~Fs
T !S ¼

X
xi2X

X
T�T \Xi

Z

T

k AsðNTÞðy� xiÞ k2 dy

~Fs
S!T ¼

X
yj2Y

X
T�S\Xj

Z

T

k AsðNjÞðx� yjÞ k2 dx

where:

AsðNÞ ¼ ðs� 1Þ
Nx½N�t
Ny½N�t
Nz½N�t

0
@

1
Aþ I3�3

where the parameter s 2 ð0;þ1Þ specifies the importance

of normal anisotropy. The normals are sampled from the

input surface T in both terms, NT is the normal of the

triangle T, and Nj the normal to T at yj. Normal anisotropy

is used in all the examples shown below.

3.7 Implementation

To compute the 3D Delaunay triangulation, we used CGAL

[1]. For the restricted Voronoi Diagram computation (Sect.

3.4) and the normal anisotropy (previous subsection), we

used the implementation provided with [14]. The numerical

solver uses the L-BFGS implementation from [18].

4 Results

We shall now show some results obtained with VSDM. In

the results herein, the regularization term is set to

k = 0.2 9 10-3, the normal anisotropy is set to s = 50

and subdivision surfaces are approximated by subdividing

the control mesh twice. Figures 8, 9, and 10 show the

results obtained with an initial toroidal grid. Note on

Fig. 12 how the spacing of the iso-parameter line adapts to

the features. Scanned meshes from AimAtShape can also

be efficiently processed (see Fig. 13). The method is

independent on the connectivity of the data, and can pro-

cess input meshes with many connected components,

degenerate triangles and overlaps, such as registered raw

meshes directly obtained from a 3D scanner (Figs. 14, 15).

For each model, the result was obtained in less than 3

min on a 2-GHz machine, except for Figs. 14 and 15 for

which the timings were, respectively, 7 and 15 min.

4.1 Failure cases

Our algorithm may fail in several cases. As we do not

modify the combinatorial structure of the fitted surface S,

when S and T have different genus the result will not be

satisfactory, though our method will not crash. We will

Fig. 7 Influence of the feature-sensitive fitting on meshes with sharp

creases (from left to right original mesh, result without and with

normal anisotropy)

Fig. 8 Fitting a polynomial surface to an object with toroidal

topology. Left input mesh (16.8k vertices, 33.6k facets), center initial

control mesh (512 vertices and 512 quads) and surface, right result.

The Hausdorff distance between the resulting surface and the input

mesh is 1.221 % (relative to the diagonal length of the bounding box,

measured by Metro [6])
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discuss automatic methods for the generation of an initial

template below. Besides, our algorithm may be sensitive to

defects in the input data, such as:

Bad template Our method does not change the combi-

natorial structure of the provided initial template. When

S and T vary too much in shape, pinches or excessive

distortion may appear in the result, as in Fig. 16.

Bad initial position We do not claim reaching a global

minimum for ~F. Our algorithm converges to a local

minimum, which depends on the relative positions of S
and T . Automatically adjusting the orientation of S and

Fig. 13 Fitting a Catmull–Clark subdivision surface to the statue of

Max Planck (52.8k vertices and 105.6k facets). Initialization from

bounding box (6,257 vertices and 6,255 quads). The Hausdorff

distance is 0.386 % of the bounding box diagonal

Fig. 11 Other examples with geometrical shapes. Initialization from

bounding box (386 vertices and 384 quads). Left input mesh of sharp

sphere (10.4k vertices, 20.9k facets) and result. Right input mesh of

octa-flower (7.9k vertices and 15.8k facets) and result. Hausdorff

distances are 1.072 and 0.706 % bbox. diag., respectively

Fig. 10 Another example, still using the same initial toroidal control

mesh. Left input mesh (5.2k vertices and 10.4k facets), center result,

right result (control mesh with 512 vertices and 512 quads). The

Hausdorff distance is 0.699 % bbox. diag

Fig. 9 Another example, using the same initial toroidal control mesh

as in Fig. 8. Left input mesh (10k vertices, 20k facets), center result,

right result (control mesh with 512 vertices and 512 quads).

Hausdorff distance is 0.473% bbox. diag

Fig. 14 Fitting a Catmull–Clark subdivision surface to registered

scanned meshes (top left 327.6k vertices and 630k facets). Note the

irregularity of the input data and overlaps (thick black lines). The

fitted control mesh, initialized from the bounding box, has 7.1k

vertices and 7.2k facets. The Hausdorff distance is 1.43 % of the

bounding box diagonal. This mesh was generated in 7 min

Fig. 12 Different views of the example shown in Fig. 1. The

Hausdorff distance between the input and result is 0.554 % of the

bounding box diagonal
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T is a difficult problem, and a misaligned initial

template may also lead to pinches or distortion (Fig. 16).

Thin sheets Even when using normal anisotropy, the

orientation of the surfaces is not considered in the

objective function. Therefore, several layers of T may

be sampled by a single sheet of S (Fig. 17).

4.2 Initial control mesh generation

Our algorithm can also be initialized using existing auto-

matic or assisted method to build the control mesh. We

Fig. 15 Fitting a Catmull–Clark subdivision surface to registered

scanned meshes (top left 747.6k vertices and 1.43m facets). The input

data has many degenerate triangles, overlaps and spurious spikes (top

right). The manually designed template control mesh (bottom left) has

5.8k vertices and 5.8k facets. The Hausdorff distance is 7.66 % of the

bounding box diagonal. This high approximation error is mainly due

to the presence of holes in the target model, due to parts of the object

which were not directly visible from the scanner used to acquire the

data. This mesh was generated in 15 min

Fig. 16 Fitting a hand model with different initializations. With a

well-designed and aligned template (left) the fitting is correct. Using

the bounding box as a template (center) leads to pinches and

distortions in the result. When the template is extremely misaligned

with the target (right), one of the fingers gets flattened leading to an

excessive density next to the thumb

Fig. 17 Fitting of the bounding box of a model with thin features (a

cut is shown on the left). The result is shown on the right

Fig. 18 Surface fitting with a control mesh generated using the

method in [31]. The Hausdorff distance is 0.44% of the bounding box

diagonal. Left input mesh (20k vertices, 40k facets), center initial

control mesh (3k vertices), right fitted control mesh with one

subdivision step (11k vertices)
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Fig. 19 Evolution of the Hausdorff distance (left expressed as a

percentage of the bounding box diagonal) and the optimization time

(right) with the number of vertices of the template on the octa-flower

model (Fig. 11)

Fig. 20 A correct fitting from the bounding box on a model with thin

features by taking into account the normal orientation
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used the skeleton-based quadrangulation approach [31] to

generate the coarse control mesh presented in Fig. 18.

Another approach is the automatic generation of polycube

maps [11, 16].

4.3 Performance

Figure 19 shows the evolution of the Hausdorff distance

and the computation time as the resolution of the initial

template increases. Experimentally, the computation time

seems to be linear or at worst in O(nlogn) with respect to

the number n of vertices of the template. Most of the

computation time is spent in the computation of the

restricted Voronoi diagrams. The Hausdorff distance

decreases very rapidly, though not strictly.

4.4 Discussion and future work

An appropriate initial control mesh must be provided to our

method. The automatic generation of this mesh is in general a

challenging problem for which a few solutions have already

been proposed [11, 16, 31]. We also believe that an automatic

mesh modification routine triggered during the optimization

process to improve the mesh quality would be a promising

approach. We will explore these ideas in future work.

We are currently investigating an additional term in our

objective function considering the alignment and respec-

tive orientation of the normals, to address the problem of

thin features (Fig. 17). We obtained good preliminary

results (Fig. 20).
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Appendix 1: Convergence to squared distance: error

bound

This Appendix proves that if X is an e-sampling of S then:

lim
e!0

~FT !SðXÞ ¼ FT !SðXÞ ð7Þ

Lemma 1 Let y be a point of T and xi its nearest point in

X (see Fig. 21). Let d ¼k y�PSðyÞ k and ~d ¼k y� xi k.
Then for e\2 the following bound is sharp:

~d2 � d2� e2lfsðPSðyÞÞðlfsðPSðyÞÞ þ dÞ

Proof Let BVor be the ball centered at y passing through

xi. This ball contains no point of X.

Let Blfs be the ball tangent to S at PSðyÞ on the opposite

side of y and of radius lfsðPSðyÞÞ and clfs its center. By

definition of lfs, this ball has no point of S in its interior

and therefore contains no point of X.

Finally, let Be be the ball centered at PSðyÞ of radius

elfsðPSðyÞÞ. Since X is an e-sampling this ball has to

contain a point of X.

Since PSðyÞ is the nearest point of y on S; y;PSðyÞ and

clfs are aligned and the problem is completely symmetric

around the line joining them. Figure 21 shows a cut con-

taining this axis.

The bound follows from the fact that Be 6� BVor [ Blfs.

Let p be a point of BVor \ Blfs. This point exists since e\2

and Be is not included in BVor. Using this point the previous

condition can be reformulated as p 2 Be.

Using triangular identities in ðPSðyÞ; clfs; pÞ, we have:

kPSðyÞ � pk2 ¼ 2lfsðPSðyÞÞ2ð1� cos aÞ ð8Þ

with a being the ðp; clfs;PSðyÞÞ angle. Using the same

identities in (x, clfs, p) we obtain:

~d2 ¼ ðd þ lfsðPSðyÞÞÞ2 þ lfsðPSðyÞÞ2

� 2ðd þ lfsðPSðyÞÞÞlfsðPSðyÞÞ cos a

~d2 � d2 ¼ 2ðd þ lfsðPSðyÞÞÞlfsðPSðyÞÞð1� cos aÞ

Using Eq. 8, ð1� cos aÞ can be replaced:

~d2 � d2 ¼ ðd þ lfsðPSðyÞÞÞ
k PSðyÞ � p k2

lfsðPSðyÞÞ
ð9Þ

Finally, since p is inside Be, we have:

kPSðyÞ � pk� elfsðPSðyÞÞ ð10Þ

This finally provides the result:

~d2 � d2� e2lfsðPSðyÞÞðlfsðPSðyÞÞ þ dÞ ð11Þ

This bound is sharp since it is reached whenever S is

exactly Blfs and xi is located at p.

Fig. 21 Configuration of the nearest point of PSðyÞ
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This lemma leads to a global bound:

Proposition 1 If S is different from a plane and bounded,

then:

~FT !SðXÞ � FT !SðXÞ� e2jT jrSðrS þ dHðT ;SÞÞ

where rS ¼ supflfsðxÞ; x 2 Sg:

Proof Since S is not a plane and bounded, r exists. In

addition, the definition of the Hausdorff distance gives us

d� dHðT ;SÞ.
e ¼ ~FT !SðXÞ � FT !SðXÞ

¼
Z

T

min
i
k y� xi k2 dy�

Z

T

k y�PSðyÞ k2 dy

¼
Z

T

min
i
k y� xi k2 � k y�PSðyÞ k2 dy

�
Z

T

e2rSðrS þ dHðT ;SÞÞdy

� e2jT jrSðrS þ dHðT ;SÞÞ

ð12Þ

Appendix 2: Gradients of the symmetric term r~FS!T

This appendix gives the gradients of the symmetric term
~FS!T (Sect. 3.3). They are used by our Quasi-Newton

solution mechanism (see Sect. 3.4). This term is computed

using the Voronoi diagram of the samples {yj}j=1
m of T ,

restricted to the surface S. In this setting, the variables are

the vertices {xi}i=1
n of the triangles of S. Recall that the

restricted Voronoi diagram computes for each seed yj a

triangulated portion of S corresponding to the intersection

of S with the Voronoi cell of yj. One of these triangles T is

highlighted in Fig. 22. Each triangle contributes a term in

the objective function and in the gradient (see Eq. 6 in

Sect. 3.4). Since the vertices of the triangles are not the

actual variables, one needs to use the Jacobians of these

vertices and combine them with the chain rule in order to

get the gradient of ~FS!T with respect to the variables

{xi}i=1
n . To compute the Jacobians, three different config-

urations (a), (b), and (c) need to be distinguished (see

Fig. 22). Configuration (c) (surface vertex) is trivial. The

gradients are computed as follows for the two other con-

figurations (a) and (b). For the interested reader, the rest of

this appendix details the derivations.

c corresponds to the intersection between the bisector of

[y1,y2] and an edge [x1, x2] of S.

dc
dx1
¼ ewt

1 þ ð1� uÞI3�3

dc
dx2
¼ ewt

2 þ uI3�3

where:

e ¼ ðx2 � x1Þ
n ¼ ðy2 � y1Þ
k ¼ n � e

h ¼ 1

2
n � ðy1 þ y2Þ

u ¼ 1

k
ðh� n � x1Þ

w1 ¼
1

k2
ðh� n � x2Þn

w2 ¼ �
1

k2
ðh� n � x1Þn

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð13Þ

c corresponds to the intersection between the three bisec-

tors of [y1, y2], [y2, y3], [y3, y1] and a facet (x1, x2, x3)

of S.
Fig. 22 Computing the gradient of the symmetric term r~FS!T :

configurations of the vertices of VorðYÞjS
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dc
dx1
¼ ewt

1
dc
dx2
¼ ewt

2
dc
dx3
¼ ewt

3

where:

e ¼ ðy1 � y2Þ � ðy1 � y3Þ
n ¼ ðx1 � x2Þ � ðx1 � x3Þ
k ¼ n � e

w1 ¼ ððx2 � x3Þ � ðx1 � cÞ þ nÞ=k

w2 ¼ ððx3 � x1Þ � ðx1 � cÞÞ=k

w3 ¼ ððx1 � x2Þ � ðx1 � cÞÞ=k

8>>>>>>>>><
>>>>>>>>>:

ð14Þ

What follows is an explanation of the derivations. For

configurations (a) and (b), the point can always be

expressed as the intersection between a plane P and a

line L:

– The plane P defined from a point p and a normal n

– The line L defined from a point v and a direction e

The intersection c is defined as:

c ¼ vþ ue with u ¼ ðp� vÞ:n
e:n

ð15Þ

To ease further notations, we define k = e.n. In addition,

the Jacobian of c with respect to xi will be denoted dc
dxi

.

Derivation for configuration (a)

The plane P is a Voronoi cell facet. This plane is the

bisector of two Voronoi seeds y1 and y2. Its parameters are

therefore:

• n = y2 - y1

• p ¼ y1þy2

2

This plane is constant with respect to the variables. The

edge separates two vertices of X namely x1 and x2. Its

parameters are:

• e = x2 - x1

• v = x1

Considering a small displacement dX of X, the variables

become xi ? dxi. The new location of the intersection

point becomes c ? dc. We have:

dc ¼ dx1 þ udeþ due ¼ udx2 þ ð1� uÞdx1 þ due

k2du ¼ �dx1:nk � ðp� vÞ:nðdx2 � dx1Þ:n
¼ dx1:nðp� x2Þ:n� dx2:nðp� x1Þ:n

The Jacobians of u are as follows:

du

dx1

¼ 1

k2
ðp� x2Þ:n

� �
nt;

du

dx2

¼ � 1

k2
ðp� x1Þ:n

� �
nt

Finally, the Jacobians of c are:

dc

dx1

¼ e
du

dx1

þ ð1� uÞI3�3;
dc

dx2

¼ e
du

dx2

þ uI3�3 ð16Þ

Derivation for configuration (b)

The plane P is a facet of S defined by its three vertices x1,

x2 and x3. Its parameters are:

• n = (x1 - x2) 9 (x1 - x3)

• p = x1.

The edge is the intersection of two bisectors defined by

three constant seeds y1, y2 and y3. Its parameters are:

• e = (y1 - y2) 9 (y1 - y3)

• v = c

Note that in this case c can be used to define a point on the

line since the line is constant. Therefore:

dc ¼ due

dn ¼ dx1 � ðx2 � x3Þ þ dx2 � ðx3 � x1Þ þ dx3 � ðx1 � x2Þ

k2du ¼ kðdp:nþ ðp� vÞ:dnÞ � ðv� pÞ:n
zfflfflfflfflffl}|fflfflfflfflffl{ðv;pÞ2P2)0

dk

kdu ¼ ðp� vÞ:dnþ dx1:n

¼ ðx1 � vÞ:
X3

i¼1

dxi � ðxðiþ1Þ½3� � xðiþ2Þ½3�Þ þ dx1:n

¼
X3

i¼1

dxi:ððxðiþ1Þ½3� � xðiþ2Þ½3�Þ � ðx1 � vÞÞ þ dx1:n

The Jacobians of u are:

du

dx1

¼ 1

k
ðx2 � x3Þ � ðx1 � vÞ þ n½ �t

du

dx2

¼ 1

k
ðx3 � x1Þ � ðx1 � vÞ½ �t

du

dx3

¼ 1

k
ðx1 � x2Þ � ðx1 � vÞ½ �t

And finally the Jacobians of c are

dc

dxi

¼ e
du

dxi
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19. Liu Y, Wang W, Lévy B, Sun F, Yan DM, Lu L, Yang C (2009)

On centroidal Voronoi tessellation—energy smoothness and fast

computation. ACM Trans Graphics 28(4):Article No. 101

20. Ma W, Ma X, Tso SK, Pan Z (2004) A direct approach for

subdivision surface fitting. Compt Aided Des 36(6)

21. Marinov M, Kobbelt L (2005) Optimization methods for scat-

tered data approximation with subdivision surfaces. Graph

Models 67(5):452–473

22. Nocedal J, Wright S (2006) Numerical optimization. Springer,

Berlin

23. Pottmann H, Leopoldseder S (2003) A concept for parametric

surface fitting which avoids the parametrization problem. Comp

Aided Geom Des 20(6)
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