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ABSTRACT
Ever since the technique of Kalman-Bucy filter was popularised, finding new classes of finite dimen-
sional recursive filters has drawn much concern. The idea of using estimation algebra to construct finite-
dimensional nonlinear filters was first proposed by Brockett and Mitter independently in the late 1970s,
which has been proven an invaluable tool in tackling nonlinear filtering (NLF) problems. Once the estima-
tion algebra is finite dimensional, one can construct the finite dimensional filters (FDFs) for NLF problems
byWei–Norman approach. In this paper, we give the construction of finite dimensional estimation algebra
(FDEA)with state spacedimension4and linear rankequal to1, and furtherobtain anewclassofNLF systems
with FDFs. Importantly, we show that there is a class of polynomial FDF system in state space dimension 4
with linear rank one, but the coefficients in Wong’s �-matrix are polynomials of degree two, or higher. In
particular, these are the first examples of polynomial filtering systems not of Yau type (i.e. the drift term is
not gradient plus affine functions) but with FDFs. Furthermore, we write down several easily satisfied suf-
ficient conditions for the construction of more special classes of FDFs. Additionally, we derive the FDFs for
the proposed NLF systems by using the Wei–Norman approach.
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1. Introduction

The NLF problem involves how to estimate the states of a
stochastic dynamical system from noisy observations, partially
or fully associated with the states. This problem is of central sig-
nificance in science and engineering, and has been widely used
in many fields including navigation, radar tracking, sonar rang-
ing, satellite and airplane orbit determination, and forecasting in
weather, econometrics andmathematical finance. Generally, the
filtering problem we consider is based on the following signal
observation model{

dxt = f (xt) dt + G(xt) dvt ,
dyt = h(xt) dt + dwt ,

(1)

where xt ∈ R
n is referred to as the state vector of the system

at time t, yt ∈ R
m is the observation at the instant t. Assume

that {vt , t ≥ 0}, {wt , t ≥ 0} are Brownian motion processes
taking values in R

p, R
m, with the covariance matrices Q(t)

and S(t) respectively. We further assume that f : R
n → R

n,
h : R

n → R
m, G : R

n → R
n×p are C

∞ smooth functions, and
n= p,G is an orthogonal matrix.Moreover, y0 = 0, and {vt , t ≥
0}, {wt , t ≥ 0}, the initial state x0 are mutually independent.

In 1960, Kalman firstly devised a linear filtering that has
great impact on modern industry, which is so-called Kalman
filter (KF) (Kalman, 1960). One year later, the continuous ver-
sion of KF was investigated by Kalman and Bucy (1961). Since
then, the Kalman and Kalman-Bucy filter have been widely
used in science and engineering. However, the Kalman and
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Kalman-Bucy filter have limited application due to the linear-
ity assumptions of the drift term f (xt) and the observation
term h(xt) with respect to the states xt , and with the Gaus-
sian assumption of the initial state x0. The main objective of
NLF, in general, is to determine the conditional expectations,
or perhaps even to compute the conditional density ρ(xt |Yt)
of states xt based on the time history of observations (or fil-
tration) Yt := σ {ys : 0 ≤ s ≤ t}. On the account that ρ(xt |Yt)
embodies all the statistical information of xt , such as its con-
ditional expectation, conditional covariance and all its high
order moments, it is clear that ρ(xt |Yt) is the complete solu-
tion of the filtering problem. Whereas, the NLF problems is
an essentially more difficult problem since the existing opti-
mal filter is generally infinite-dimensional, i.e. the conditional
density ρ(xt |Yt) depends on all its moments. The success
of KF for the linear Gaussian estimation problem encouraged
many researchers to generalise Kalman’s results to nonlinear
dynamical systems, and the existing approximate filters for
NLF problems include the extended Kalman filter (EKF), the
unscented Kalman filter (UKF), the ensemble Kalman filter
(EnKF), particle filter and the splitting up method; see Crisan
and Lyons (1999), Gillijns et al. (2006), Kan (2008) and Wan
andVan derMerwe (2000). All of thesemethods have their own
deficiencies. UKF and EnKF shall need to assume that the prob-
ability density of the states is Gaussian. Since re-sampling step in
PF is applied at every iteration, which leads to a rapid shortfall
of diversity in particles, PF could be heavy computational load
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and is sensitive to outliers. Moreover, PF are more applicable
at low-dimensional and moderate high-dimensional systems,
while PF has obstacles to high dimensional cases shown by Bud-
hiraja, Chen, and Lee (2007). However, the splitting up method
requires G and h in the system (1) to be bounded, which even
excludes the linear case.

It is shown in Kushner (1967) that ρ(xt |Yt) satisfies an Itô
stochastic differential equation (SDE), which is called Kush-
ner’s equation. After suitable change of probability measure, the
unnormalised conditional density σ(xt |Yt) satisfies a linear Itô
SDE, which is the so-called Duncan-Mortensen-Zakai (DMZ)
equation (Duncan, 1967;Mortensen, 1966; Zakai, 1969). Appar-
ently, solving DMZ equation for general dynamic systems is
the more preferable one. And the solution to the Kushner’s
equation ρ(xt |Yt) and that to the DMZ equation σ(xt |Yt)
is one-to-one correspondence. During the last few decades,
various approaches are available to directly or numerically
solve the DMZ equation for general NLF problems. The idea
of estimation algebra method to directly and globally solve
DMZ equation originated from the Wei–Norman approach
(Wei & Norman, 1964), which took advantage of the Lie alge-
braicmethod to solve time-varying linear differential equations.
This idea is due to Brockett (1981), Brockett and Clark (1980),
and Mitter (1979) independently. More details about the
Wei–Norman approach and its connection with the NLF prob-
lems can be seen inDong, Tam,Wong, and Yau (1991) and Tam,
Wong, andYau (1990) and the survey articleMarcus (1984). The
most important advantage of the estimation algebra approach
for NLF problems is that as long as the estimation algebra is
finite-dimensional, not only can the finite dimensional recursive
filters be constructed, but also the filter so constructed is uni-
versal in the sense ofMaurel andMichel (1984).When applying
the Wei–Norman approach to the NLF problems, however, we
need to explicitly know the basis of the Lie algebra generated by
the operators of the DMZ equation in order to reduce the DMZ
equation to a finite system of ordinary differential equations
(ODEs), Kolmogorov equation, and several first-order linear
partial differential equations (PDEs). In Wong (1987), the non-
linear filtering system (1) with states valued inR

3 is considered,
where the components of f (x) are defined by f1(x) = x1 + x2 +
x3 + γ (x1, x2, x3), f2(x) = x1 + x3, f3(x) = x2 − x3 respectively
and the observation valued in R

1 with h(x) = x2 − x3, where
γ is a C

∞ function with a bounded, non-zero first derivative
and v = (v1, v2, v3) and w are independent, standard Brownian
processes. As is shown in Section 2.1, the FDEA of this filter-
ing system is a four-dimensional Lie algebra with basis given
by {L0,D2 − D3, x2 − x3, 1}. Therefore, it is very meaningful to
clarify the classification of FDEAs in order to construct FDFs
for NLF problems.

For the classification of FDEAs with maximal rank, in a
series of research works (Chen & Yau, 1996; Chiou & Yau, 1995;
Tam et al., 1990; Yau, 1994, 2003; Yau & Hu, 2005; Yau, Wu,
& Wong, 1999), Yau and his co-workers have completely clas-
sified all FDEAs of maximal rank with arbitrary state space
dimension, which included both Kalman-Bucy and Benés fil-
tering systems as special cases (Yau &Hu, 2005). One of the key
steps that Yau and his coworkers were able to classify all FDEAs
with maximal rank, is that they were able to show that Wong’s
�-matrix is a matrix with polynomial degree 1. When the rank

of FDEA is not maximal, the problem is still open. Wu and Yau
have classified FDEAs of non-maximal rank with state dimen-
sion 2 (Wu & Yau, 2006). Recently, Shi et al. give new classes of
FDFs for state dimension 3 and linear rank 1 (Shi, Chen, Dong,
& Yau, 2017), in which the Wong’s �-matrix is unnecessary to
be a constant matrix. In Shi and Yau (2017), the authors con-
sider FDEAs with state dimension 3 and linear rank 2, where
the main theorem says that if E is the FDEA of system (1) with
state dimension 3 and linear rank 2, then the Wong’s �-matrix
has linear structure; i.e. all the entries in the Wong’s �-matrix
are degree 1 polynomials at most.

In this paper, we find a novel class of FDF systems for NLF
problems by estimation algebra method, and especially obtain
a new class of polynomial filtering systems with FDFs. Firstly,
we give the construction of FDEA with basis of {L0,D1, x1, 1} in
state space dimension 4 and linear rank equal to 1. For the con-
struction of more special classes of NLF systems with FDFs in
state space dimension 4 and linear rank equal to one, we write
down several easily satisfied sufficient conditions in Section 3.
More importantly, we shall show that there exists a polyno-
mial filtering system in state space dimension 4 with linear rank
one, but the coefficients in Wong’s �-matrix are polynomials of
degree two, or higher. In particular, these are the first examples
of polynomial filtering systemsnot of Yau type (i.e. the drift term
is not gradient plus affine functions) but with FDFs. Moreover,
we derive the explicit solution for the robust-DMZ equation by
using the Wei–Norman approach, which solution is the FDFs
for the proposed NLF systems. This derivation is presented in
the main theorem of Section 4.

The paper is organised as follows: In Section 2 some basic
concepts about estimation algebra and NLF problem are pre-
sented. In Section 3 new classes of FDF systems and structure
results of estimation algebra in state space dimension four with
non-maximal rank are exposited. In Section 4 the FDFs for
the robust-DMZ equation of the proposed NLF systems are
derived by the Wei–Norman approach. And we finally arrive at
conclusion in the last section.

2. Basic concepts and preliminary results

2.1 Ducan–Mortensen–Zakai’s equation for NLF problem

In the filtering problem, the infinitesimal generator L∗ of the
state {xt , t ≥ 0} defined in the system (1) is considered,

L∗(o) := 1
2

n∑
i,j=1

(GQG�(t, xt))ij
∂2(o)
∂xi∂xj

+
n∑

i=1
fi(xt)

∂(o)
∂xi

,

where fi and xi are the ith component of the vector-value func-
tion f and the vector state xt , respectively. The filtering problem
is then able to be interpreted as how to find a recursive or
finite-dimensional method to compute the conditional density
of states xt with the filtration Yt , i.e. ρ(xt |Yt).

Under certain mild conditions, the unnormalised condi-
tional density σ(xt |Yt) of states xt given observationsYt for the
system (1), defined as σ(t, x) := σ(xt |Yt) for simple notation,
satisfies the DMZ equation (Duncan, 1967; Mortensen, 1966;
Zakai, 1969){

dσ(t, x) = L(σ (t, x)) dt + σ(t, x)h�(x)S−1(t) dyt ,
σ(0, x) = σ0(x),

(2)
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where σ0(x) ∈ C
∞(Rn) is the probability density of the initial

state x0, and L is the adjoint operator of L∗, i.e.

L(o) := 1
2

n∑
i,j=1

∂2

∂xi∂xj

[
(GQG�)ijo

]
−

n∑
i=1

∂(fio)
∂xi

. (3)

The normalised conditional density ρ(xt|Yt) is then given by

ρ(xt |Yt) = σ(t, x)∫
σ(t, x)

.

Remark 2.1: The covariance matrices Q(t) and S(t) of Brown-
ian motion processes {vt , t ≥ 0}, {wt , t ≥ 0} respectively in the
nonlinear model (1), without loss of generality, are assumed to
be identity matrices in the sequel.

In the subsequent sections the aim is to solve the DMZ
equation (2) for the NLF problems. The DMZ equation (2) can
be equivalently expressed as the following form{

dσ(t, x) = L0σ(t, x) dt +∑m
i=1 Liσ(t, x) dyi(t),

σ(0, x) = σ0(x),
(4)

where L0 is the second-order differential operator defined as

L0 := 1
2

n∑
i=1

∂2

∂x2i
−

n∑
i=1

fi
∂

∂xi
−

n∑
i=1

∂fi
∂xi

− 1
2

m∑
i=1

h2i , (5)

and Li is the zero-order differential operator of multiplication
by hi, for i = 1, . . . ,m.

For each arrived observation, taking an invertible exponen-
tial transformation (Davis & Marcus, 1981)

u(t, x) = exp
[
−h�(x)S−1(t)yt

]
σ(t, x), (6)

u(t, x) satisfies the following ‘pathwise-robust’ DMZ equation
(7) which involves yt only in the coefficients of the PDE.⎧⎪⎨

⎪⎩
d
dt u(t, x) = L0u(t, x) +∑m

i=1 yi(t)[L0, Li]u(t, x)
+ 1

2
∑m

i=1
∑m

j=1 yi(t)yj(t)[[L0, Li], Lj]u(t, x),
u(0, x) = σ0(x),

(7)

where [·, ·] is the Lie bracket. Furthermore, the estimation alge-
bra E of a filtering problem (1), specifically associated with
the robust-DMZ equation (7), is defined to be the Lie algebra
generated by {L0, L1, . . . , Lm}.

2.2 Preliminaries

Definition 2.1: If X and Y are differential operators, the Lie
bracket of X and Y, [X,Y], is defined by [X,Y]φ = X(Yφ) −
Y(Xφ) for any C

∞ function φ.

Definition 2.2: Avector spaceF with the Lie bracket operation
F × F → F denoted by (x, y) 	→ [x, y] is called a Lie algebra if
the following axioms are satisfied

(1) The Lie bracket operation is bilinear;

(2) [x, x] = 0 for all x ∈ F ;
(3) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (x, y, z ∈ F).

Definition 2.3 (Wong, 1987): The Wong’s �-matrix is the
matrix � = (ωij), where

ωij = ∂fj
∂xi

− ∂fi
∂xj

, ∀ 1 ≤ i, j ≤ n.

Obviously,� is skew symmetric and ∂ωjk
∂xi + ∂ωki

∂xj + ∂ωij
∂xk

= 0, for
every 1 ≤ i, j, k ≤ n. If we define

Di := ∂

∂xi
− fi, η :=

n∑
i=1

∂fi
∂xi

+
n∑
i=1

f 2i +
m∑
i=1

h2i , (8)

then we have a more compact form of L0,

L0 = 1
2

( n∑
i=1

D2
i − η

)
. (9)

Definition 2.4: Let U be the vector space of differential opera-
tors in the form

A =
∑

(i1,i2,...,in)∈IA
ai1,i2,...,inD

i1
1 D

i2
2 · · ·Din

n ,

where nonzero functions ai1,i2,...,in ∈ C
∞(Rn), IA := {(i1, i2,

. . . , in)} is the finite index set of A and il are nonnegative inte-
gers. The order of A is denoted by ord(A) := maxi∈IA |i|, where
i := (i1, i2, . . . , in), |i| :=

∑n
l=1 il.

Remark 2.2: Let Uk be the subspace of U consisting of the
elements with order less than or equal to k, where k ≤ 0. In
particular, U0 := C

∞(Rn).

Lemma 2.5 (Wu & Yau, 2006, Lemma 3.1): Let g, h ∈
C

∞(Rn) and let i1, . . . , in, j1, . . . , jn be nonnegative integers with∑n
l=1 il = r,

∑n
l=1 jl = s, and r + s ≥ 2. Let δij be the kronecker

symbol, then

[gDi1
1 · · ·Din

n , hD
j1
1 · · ·Djn

n ]

=
n∑
l=1

(
ilg

∂h
∂xl

− jlh
∂g
∂xl

)
Di1+j1−δ1l
1 · · ·Din+jn−δnl

n

mod Ur+s−2. (10)

Remark 2.3: Here, (·) mod Ul represents a member of the
affine class of operators obtained by adding members of Ul to
the argument. Generally,mod is used to denote the equivalence
class, i.e. if Ul is a subspace of U,

A = B mod Ul ⇔ A − B ∈ Ul.

Remark 2.4: We give an example to illustrate how to obtain the
estimation algebra with finite dimension, once the NLF system
is given.
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In Wong (1987), the following filtering system defined in R
3

is considered,⎧⎪⎪⎪⎨
⎪⎪⎪⎩
dx1(t) = (x1 + x2 + x3 + γ (x1, x2, x3)) dt + dv1(t),
dx2(t) = (x1 + x3) dt + dv2(t),
dx3(t) = (x1 + x2) dt + dv3(t),
dy(t) = (x2 − x3) dt + dw(t),

(11)
where γ is a C

∞ function with a bounded, non-zero first
derivative and v = (v1, v2, v3) and w are independent, standard
Brownian processes.

Then its correspondingWong’s�-matrix and drift terms are

� =
⎛
⎝0 −1 −1
1 0 0
1 0 0

⎞
⎠ γ ′(x1 + x2 + x3),

f1(x) = x1 + x2 + x3 + γ (x1, x2, x3),

f2(x) = x1 + x3,

f3(x) = x1 + x2,

h(x) = x2 − x3,

Di = ∂

∂xi
− fi(x), 1 ≤ i ≤ 3,

L0 = 1
2

( 3∑
i=1

D2
i − η

)
,

(12)

where

η =
3∑

i=1

∂fi
∂xi

+
3∑

i=1
f 2i + h(x)2

= 1 + γ ′(x1 + x2 + x3)

+ [x1 + x2 + x3 + γ (x1 + x2 + x3)]2

+ (x1 + x3)2 + (x1 + x2)2 + (x2 − x3)2. (13)

According to the Definition 2.1 of Lie bracket, (9) and
Lemma 2.5, it is easy to compute that

[L0, h(x)] = [L0, x2] − [L0, x3] = D2 − D3,

and

[L0,D2 − D3] = [L0,D2] − [L0,D3]

=
3∑

i=1

(
ω2iDi + 1

2
∂ω2i

∂xi

)
+ 1

2
∂η

∂x2

−
3∑

i=1

(
ω3iDi + 1

2
∂ω3i

∂xi

)
− 1

2
∂η

∂x3

= ω21D1 + 1
2

∂ω21

∂x1
+ 1

2
∂η

∂x2
− ω31D1 − 1

2
∂ω31

∂x1

− 1
2

∂η

∂x3

= 1
2

∂η

∂x2
− 1

2
∂η

∂x3
= 3(x2 − x3). (14)

Therefore, the estimation algebra E of this filtering system (11)
is a four-dimensional Lie algebra with basis given by {L0,D2 −
D3, x2 − x3, 1}.

3. Novel classes of NLF systems with FDFs

3.1 The derivation of a new class of FDF system

Definition3.1 (Wu&Yau, 2006,Definition3.4): LetL(E) ⊂ E
be the vector space consisting of all the homogeneous degree
one polynomials in E. Then the linear rank of estimation algebra
E is defined by r := dim L(E).

In this section, we consider the finite dimensional NLF systems
which is constructed from the non-maximal rank estimation
algebra, denoted by E, with state space dimension of four and
linear rank equal to 1.

Lemma 3.2: Assume E with state space dimension n= 4 and r =
1, without loss of generality, we may assume that there exists con-
stant c1, such that x1 + c1 ∈ E, and for any constants cj, xj + cj /∈
E, 2 ≤ j ≤ 4, then we have

[L0, x1 + c1] = D1 ∈ E,

[D1, x1 + c1] = 1 ∈ E,

[L0,D1] = ω12D2 + ω13D3 + ω14D4 mod U0 ∈ E.

(15)

Proof: According to the Definition 2.1 of Lie brackets, the
compact form of the two-order differential operator L0 and
Lemma 2.5, it can be computed that

[L0, x1 + c1] =
[
1
2

( 4∑
i=1

D2
i − η

)
, x1 + c1

]

= 1
2
[D2

1, x1 + c1]

= D1 ∈ E, (16)

since L0 ∈ E. Furthermore,

[D1, x1 + c1] = 1 ∈ E, (17)

Y1 := [L0,D1]

=
[
1
2

( 4∑
i=1

D2
i − η

)
,D1

]

= ω12D2 + ω13D3 + ω14D4 + 1
2

∂ω12

∂x2

+ 1
2

∂ω13

∂x3
+ 1

2
∂ω14

∂x4
+ 1

2
∂η

∂x1
∈ E

= ω12D2 + ω13D3 + ω14D4 mod U0 ∈ E.
(18)

where U0 = C
∞(Rn). �

Remark 3.1: On the assumptions of Lemma 3.2, it is noted that
P1(x1) ⊆ E, where P1(x1) is degree one polynomial of x1.
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Lemma3.3: Under the assumptions of Lemma 3.2, if in addition,
we impose the following conditions:

(i) ω12 = ω13 = ω14 = 0,
(ii) η = P2(x1) + φ(x2, x3, x4),

where P2(x1) denotes the polynomial at most degree two with
respect to x1, then the estimation algebra E is finite dimensional
with basis given by {L0,D1, x1, 1}.

Proof: This conclusion can be arrived at easily. From Lemma
3.2, we can know that L0,D1, x1, 1 ∈ E. Since ω12 = ω13 =
ω14 = 0 and η = P2(x1) + φ(x2, x3, x4), then Y1 = 0, and fur-
ther 0 mod U0 ∈ Emeans that E contains affine function of x1
at most. Therefore, the estimation algebra E is formed by the
basis of {L0,D1, x1, 1}. �

Next we construct a class of NLF system which satisfies the
conditions all above. By condition (ii),

η =
4∑

i=1

(
f 2i + ∂fi

∂xi

)
+

m∑
i=1

h2i , (19)

is degree 2 at most with respect to x1, then we may assume that
fi’s are polynomials at most degree 1 of x1, i.e. we assume that
for 1 ≤ i ≤ 4,

fi = ai(x2, x3, x4)x1 + φi(x2, x3, x4), (20)

where ai(x2, x3, x4) and φi(x2, x3, x4) are C
∞ functions of

x2, x3, x4. By condition (i), we have

ω12 = ∂f2
∂x1

− ∂f1
∂x2

= a2 −
(

∂a1
∂x2

x1 + ∂φ1

∂x2

)
= 0,

ω13 = ∂f3
∂x1

− ∂f1
∂x3

= a3 −
(

∂a1
∂x3

x1 + ∂φ1

∂x3

)
= 0,

ω14 = ∂f4
∂x1

− ∂f1
∂x4

= a4 −
(

∂a1
∂x4

x1 + ∂φ1

∂x4

)
= 0,

(21)

hence we have

⎧⎪⎪⎨
⎪⎪⎩

∂a1
∂x2

= 0,
∂a1
∂x3

= 0,
∂a1
∂x4

= 0,

∂φ1

∂x2
= a2,

∂φ1

∂x3
= a3,

∂φ1

∂x4
= a4.

(22)

From (22), we know that a1 must be a constant. Now

η =
4∑

i=1

(
f 2i + ∂fi

∂xi

)
+

m∑
i=1

h2i

= (a1x1 + φ1)
2 +

(
∂φ1

∂x2
x1 + φ2

)2
+
(

∂φ1

∂x3
x1 + φ3

)2

+
(

∂φ1

∂x4
x1 + φ4

)2
+ a1 + ∂a2

∂x2
x1 + ∂φ2

∂x2

+ ∂a3
∂x3

x1 + ∂φ3

∂x3
+ ∂a4

∂x4
x1 + ∂φ4

∂x4
+

m∑
i=1

h2i

=
( 4∑

i=1
a2i

)
x21 +

(
2

4∑
i=1

aiφi + ∂2φ1

∂x22
+ ∂2φ1

∂x23
+ ∂2φ1

∂x24

)
x1

+
4∑

i=1
φ2
i + a1 + ∂φ2

∂x2
+ ∂φ3

∂x3
+ ∂φ4

∂x4
+

m∑
i=1

h2i . (23)

Since the estimation algebra has linear rank 1, we assume that
hi, 1 ≤ i ≤ m are degree one polynomials of x1. Now condition
(ii) implies:

(a) (
∂φ1
∂x2 )2 + (

∂φ1
∂x3 )2 + (

∂φ1
∂x4 )2 is a constant;

(b) hi, 1 ≤ i ≤ m are degree one polynomials of x1;
(c) the following expression:

2a1φ1 + 2φ2
∂φ1

∂x2
+ 2φ3

∂φ1

∂x3
+ 2φ4

∂φ1

∂x4
+ ∂2φ1

∂x22

+ ∂2φ1

∂x23
+ ∂2φ1

∂x24
(24)

is a constant.

To summarise, if the following conditions are satisfied,

(C.1) fi = aix1 + φi, 1 ≤ i ≤ 4;
(C.2) ∂φ1

∂x2 = a2, ∂φ1
∂x3 = a3, ∂φ1

∂x4 = a4;
(C.3) a1 is a constant, and

∑4
i=1 a

2
i is a positive constant;

(C.4) 2a1φ1 + 2
∑4

i=2 φi
∂φ1
∂xi +∑4

i=2
∂2φ1
∂x2i

is a constant;
(C.5) hi, 1 ≤ i ≤ m are degree one polynomials of x1;

then the conditions (i) and (ii) are satisfied, and the corre-
sponding estimation algebra E is finite dimensional with basis
{L0,D1, x1, 1}. Moreover, the system (1) satisfying these condi-
tions shall possess FDFs, which will be concretely illustrated by
Section 4.

3.2 Special classes of polynomial NLF systemswith FDFs

Special classes of polynomial systems with FDF are constructed
which satisfy these conditions above. Without loss of gen-
erality, we may assume that the observation term is valued
in R

1, namely h(x) = cx1, c is a constant and G(x) is an
identity matrix. These assumptions are satisfied by all special
classes of polynomial NLF systems constructed in the following
sequel.

Example 3.4: Let all the ai’s be constants, for example, we take
a1 = 1, a2 = 1, a3 = 1, a4 = 1, then condition (C.3) is satis-
fied and from (C.2) we can assume that φ1 is a degree at most
1 polynomial of x2, x3, x4. Thus we can take φ1 = x2 + x3 + x4.
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Now the condition (C.4) which says

2a1φ1 + 2
4∑

i=2
φi

∂φ1

∂xi
+

4∑
i=2

∂2φ1

∂x2i
= 2

4∑
i=1

φi +
4∑

j=2

∂2φ1

∂x2j

is a constant can be easily satisfied. If we takeφ2 = −x2 − 6x3 +
3x4 − x33 + x34 + x2x3, φ3 = −x3 − 3x4 − x32 − x34 − x2x3 +
x3x4,φ4 = 6x3 − x4 + x32 + x33 − x3x4, then the condition (C.4)
is satisfied. Condition (C.5) is easily satisfied by letting the
observation term hj(x) = bjx1 + cj, 1 ≤ j ≤ m, where bj, cj’s are
constants. Now the Wong’s �-matrix is given by

� =

⎛
⎜⎜⎝
0 0
0 0
0 3x22 − 3x23 + x2 + x3 − 6
0 −3x22 + 3x24 + 3

0 0
−3x22 + 3x23 − x2 − x3 + 6 3x22 − 3x24 − 3

0 3x23 + 3x24 − x3 − x4 + 9
−3x23 − 3x24 + x3 + x4 − 9 0

⎞
⎟⎟⎠

(25)

and η = 4x21 + γ (x2, x3, x4), where γ (x2, x3, x4) is theC
∞ func-

tion of x2, x3, x4, then the estimation algebra corresponding
to this class of NLF system is finite dimensional with basis
given by {L0,D1, x1, 1}. It is apparent that the entries of Wong’s
�-matrix (25) are polynomials of degree two at most.

Then we can get the signal observation system (1) shown as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1(t) = (x1 + x2 + x3 + x4) dt + dv1(t),
dx2(t) = (x1 − x2 − 6x3 + 3x4 + x2x3 − x33

+x34) dt + dv2(t),
dx3(t) = (x1 − x3 − 3x4 − x2x3 + x3x4

−x32 − x34) dt + dv3(t),
dx4(t) = (x1 + 6x3 − x4 − x3x4 + x32 + x33) dt + dv4(t),
dy(t) = cx1 dt + dw(t),

(26)
where v(t) = (v1(t), . . . , v4(t))� and w(t) are mutally indepen-
dent, standard Brownian motions.

Let us give another example to explain that the Wong’s �-
matrix can be higher degree polynomials, not just as Exam-
ple 3.4 showed that theWong’s�-matrix is polynomial of degree
two.

Example 3.5: If

(1) let all the ai’s be constants, for instance, we take a1 =
1, a2 = 1, a3 = 1, a4 = 1, then condition (C.3) is satisfied;

(2) for condition (C.2), we may assume that φ1 is a degree at
most 1 polynomial of x2, x3, x4. Thus we take φ1 = x2 +
x3 + x4;

(3) set φ2 = −x2 − x73 + x74 + x82x
5
3, φ3 = −x3 − x82 − x74 +

x63x
3
4 − x82x

5
3, φ4 = −x4 + x82 + x73 − x63x

3
4, then the condi-

tion (C.4) is easily satisfied;
(4) condition (C.5) is easily satisfied by letting the observa-

tion term hj(x) = bjx1 + cj, 1 ≤ j ≤ m, where bj, cj’s are
constants;

Now the Wong’s �-matrix is given by

� =

⎛
⎜⎜⎝
0 0
0 0
0 5x82x

4
3 + 8x72x

5
3 + 8x72 − 7x63

0 −8x72 + 7x64
0

−5x82x
4
3 − 8x72x

5
3 − 8x72 + 7x63
0

6x53x
3
4 + 3x63x

2
4 − 7x63 − 7x64
0

8x72 − 7x64
−6x53x

3
4 − 3x63x

2
4 + 7x63 + 7x64
0

⎞
⎟⎟⎠ (27)

and η = 4x21 + γ (x2, x3, x4), where γ (x2, x3, x4) is theC
∞ func-

tion of x2, x3, x4, then the estimation algebra corresponding to
this class of NLF system is finite dimensional with basis given
by {L0,D1, x1, 1}. It can be noted that the Wong’s �-matrix (27)
is polynomial of degree higher than two.

Therefore, the signal observation system (1) is obtained as
follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx1(t) = (x1 + x2 + x3 + x4) dt + dv1(t),
dx2(t) = (x1 − x2 − x73 + x74 + x82x

5
3) dt + dv2(t),

dx3(t) = (x1 − x3 − x82 − x74 + x63x
3
4 − x82x

5
3) dt + dv3(t),

dx4(t) = (x1 − x4 + x82 + x73 − x63x
3
4) dt + dv4(t),

dy(t) = cx1 dt + dw(t),
(28)

where v(t) = (v1(t), . . . , v4(t))� and w(t) are independent,
standard Brownian motions.

Generally, we can construct an arbitrary degree polynomial
NLF system, which satisfies all conditions above, while the
Wong’s�-matrix can be any degree polynomials. For ∀ k ≥ 1, a
NLF system can be established as follows.

Example 3.6: We give the following NLF systemwhich satisfies
all conditions above, and itsWong’s�-matrix can be any degree
polynomials for any given positive integer k ≥ 1.

The signal observation system (1) shall be specifically
expressed as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1(t) = (x1 + x2 + x3 + x4) dt + dv1(t),
dx2(t) = (x1 − x2 − xk3 + xk4 + xk+1

2 xk+3
3 ) dt + dv2(t),

dx3(t) = (x1 − x3 − xk+2
2 − xk4 + xk+5

3 xk4
−xk+1

2 xk+3
3 ) dt + dv3(t),

dx4(t) = (x1 − x4 + xk+2
2 + xk3 − xk+5

3 xk4) dt + dv4(t),
dy(t) = cx1 dt + dw(t),

(29)
where v(t) = (v1(t), . . . , v4(t))� and w(t) are independent,
standard Brownian motions.
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It is easily to verify that the Wong’s �-matrix is as follows:

� =

⎛
⎜⎜⎝
0 0 0 0
0 0 ω23 ω24
0 −ω23 0 ω34
0 −ω24 −ω34 0

⎞
⎟⎟⎠ , (30)

where ω23 = −(k + 3)xk+1
2 xk+2

3 − (k + 1)xk2x
k+3
3 − (k + 2)

xk+1
2 + kxk−1

3 , ω24 = (k + 2)xk+1
2 − kxk−1

4 , ω34 = −kxk+5
3

xk−1
4 − (k + 5)xk+4

3 xk4 + kxk−1
3 + kxk−1

4 .

Remark 3.2: For the Example 3.6 above, it is easily illustrated
that it satisfies all the conditions (C.1)–(C.5). Without loss of
generality, let all the ai’s be constants, for instance, we take a1 =
1, a2 = 1, a3 = 1, a4 = 1, then condition (C.3) is satisfied and
from (C.2) we can assume that φ1 is a degree at most 1 polyno-
mial of x2, x3, x4. Thus we can still take φ1 = x2 + x3 + x4. Now
the condition (C.4) which says

2a1φ1 + 2
4∑

i=2
φi

∂φ1

∂xi
+

4∑
i=2

∂2φ1

∂x2i
= 2

4∑
i=1

φi +
4∑

j=2

∂2φ1

∂x2j

is a constant can be easily satisfied. For example, if we take φ2 =
−x2 − xk3 + xk4+ xk+1

2 xk+3
3 ,φ3 = −x3 − xk+2

2 − xk4 + xk+5
3 xk4 −

xk+1
2 xk+3

3 , φ4 = −x4 + xk+2
2 + xk3 − xk+5

3 xk4, then the condition
(C.4) is satisfied. Condition (C.5) is easily satisfied by letting the
observation term hj(x) = bjx1 + cj, 1 ≤ j ≤ m, where bj, cj’s are
constants.

And further let η = 4x21 + γ (x2, x3, x4), where γ (x2, x3, x4)
is theC

∞ function of x2, x3, x4, then the estimation algebra cor-
responding to this class of NLF system is finite dimensional with
basis given by {L0,D1, x1, 1}. It can be noted that the Wong’s
�-matrix (30) can be polynomial of degree higher than k.

In this section,we obtain a new class ofNLF systemwith FDF,
especially a set of polynomial filtering system, whenwe consider
the FDEA on state space dimension of four with non-maximal
linear rank of one, whose basis is formed by {L0,D1, x1, 1}.
Moreover, as presented in the polynomial systems above, it is
notable that the coefficients in Wong’s �-matrix are shown not
to be constant, even not necessary to be a polynomial of degree
one.

In some sense, the coefficients in Wong’s �-matrix which
are polynomials of two, or higher can be seen as higher non-
linearity of the filtering systems. The previous results for non-
maximal rank cases are shown that the coefficients in Wong’s
�-matrix are polynomials of degree at most one. However, we
find a class of polynomial NLF system with FDF, but the coef-
ficients in Wong’s �-matrix are polynomials of two, or higher.
Therefore, we find a class of highly nonlinear FDF system in this
paper.

4. The construction of finite dimensional filters by
Wei–Norman approach

4.1 Wei–Norman approach

Before we proceed, we briefly introduce the Wei–Norman
approach (Wei & Norman, 1964) which was first introduced to

solve the linear PDEs by Lie algebra. Suppose that the linear
operator A(t) can be expressed in the form

A(t) =
m∑
i=1

ai(t)Xi, m is finite, (31)

where the ai(t) are scalar functions of time, and X1,X2, . . . ,Xm
are time-independent operators. We shall denote the G as the
Lie algebra generated by X1,X2, . . . ,Xm under the operations
of the Lie bracket, and further assume G is of the finite dimen-
sion l, thus without loss of generality, we may assume that
X1,X2, . . . ,Xl form the basis of G, then there exists a neigh-
bourhood of t= 0 in which the solution of the differential
equation

dZ
dt

= A(t)Z, U(0) = I (32)

can be expressed in the form

Z(t) = exp(s1(t)X1) exp(s2(t)X2) · · · exp(sl(t)Xl), (33)

where the si(t) are scalar functions of time t, and I is identity
matrix.Moreover, the si(t)’s satisfy a set of differential equations
which depend only on the Lie algebra G (i.e. the basis of G), and
the ai(t)’s.

4.2 The construction of FDF for the new class of NLF
system

In this section, we use the structure results of Section 3 to
derive FDFs explicitly for the robust-DMZ equation by the
Wei–Norman approach, if FDEA is considered with the state
space dimension n= 4 and with non-maximal linear rank r= 1.
The main theorem is presented as follows.

Theorem 4.1 (Main Theorem): Suppose that the state space
of the NLF system (1) is of state dimension four and the
FDEA is denoted as E with non-maximal linear rank 1. With-
out loss of generality, the basis of E is given by {L0,D1, x1, 1}.
Furthermore, we assume that the NLF system (1) satisfies the
conditions (C.1)–(C.5), G is an identity matrix, η = a2x21 +
a1x1 + a0(x2, x3, x4), and hi = ci1x1 + ci0, 1 ≤ i ≤ m, where
ci1, ci0, a2, a1 are constants and a0(x2, x3, x4) is a C

∞ function of
x2, x3, x4. Then its robust-DMZ equation (7) has a solution of the
form

u(t, x) = er0(t) er1(t)x1 er2(t)D1 etL0σ0,

where ri’s satisfy the following ODEs for all t ≥ 0,

ṙ1(t) = a2r2(t),

ṙ2(t) = r1(t) +
m∑
i=1

ci1yi(t),

ṙ0(t) = r1(t)2

2
+ a2

2
r2(t)2 + 1

2
a1r2(t)

+
m∑
i=1

ci1yi(t)r1(t) + 1
2

m∑
i,j=1

ci1cj1yi(t)yj(t). (34)
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Table 1. Lie bracket multiplication of E.

L0 D1 x1 1

L0 0 a2x1 + a1
2 D1 0

D1 −a2x1 − a1
2 0 1 0

x1 −D1 −1 0 0
1 0 0 0 0

Proof: As described in Section 3, the estimation algebra E of (4)
satisfies conditions (C.1)–(C.5) with basis of {L0,D1, x1, 1}.
First, we give the basis calculation of estimation algebra E in
Table 1.

By differentiating u(t, x) with respect to t, we have

∂u
∂t

(t, x) = er0(t) er1(t)x1 er2(t)D1L0 etL0σ0

+ ṙ2(t) · er0(t) er1(t)x1D1 er2(t)D1 etL0σ0
+ (ṙ0(t) + ṙ1(t)x1) u(t, x)

= I + II + (r0(t) + ṙ1(t)x1) u(t, x), (35)

where we denote

I := er0(t) er1(t)x1 er2(t)D1L0 etL0σ0,

II := ṙ2(t) · er0(t) er1(t)x1D1 er2(t)D1 etL0σ0.
(36)

Recall the classical Baker–Campbell–Hausdorff type relation,
i.e.

er(t)EiEk es(t)Ej =
(
Ek + r(t)[Ei,Ek] + r(t)2

2!
[Ei, [Ei,Ek]] + · · ·

)

er(t)Ei es(t)Ej , (37)

where Ei,Ek,Ej are elements of a Lie algebra. The following
calculations basically come from (37), thus we have

er0(t)L0 er1(t)x1 er2(t)D1 etL0σ0 = L0u(t, x),

er0(t)r1(t)D1 er1(t)x1 er2(t)D1 etL0σ0 = r1(t)D1u(t, x),
(38)

and

er0(t) er1(t)x1L0 er2(t)D1 etL0σ0

= er0(t)
(
L0 + r1(t)[x1, L0] + r1(t)2

2
[x1, [x1, L0]]

)

· er1(t)x1 er2(t)D1 etL0σ0

= er0(t)
(
L0 − r1(t)D1 + r1(t)2

2

)
er1(t)x1 er2(t)D1 etL0σ0.

(39)

Consequently,

I = er0(t) er1(t)x1 (L0 + r2(t)[D1, L0]

+ r2(t)2

2
[D1, [D1, L0]] + · · ·

)
er2(t)D1 etL0σ0

= er0(t) er1(t)x1
(
L0 − r2(t)

(
a2x1 + 1

2
a1
)

− r2(t)2

2
a2
)
er2(t)D1 etL0σ0

= er0(t) er1(t)x1L0 er2(t)D1 etL0σ0 −
(
r2(t)

(
a2x1 + 1

2
a1
)

+ r2(t)2

2
a2
)
u(t, x). (40)

Putting (38) and (39) into (40), we have

I = L0u(t, x) − r1(t)D1u(t, x)

+
(
r1(t)2

2
− r2(t)2

2
a2 − r2(t)

(
a2x1 + 1

2
a1
))

u(t, x).

(41)

Similarly, we have

II := ṙ2(t) er0(t) er1(t)x1D1 er2(t)D1 etL0σ0

= ṙ2(t) er0(t)(D1 − r1(t)) er1(t)x1 er2(t)D1 etL0σ0
= ṙ2(t)D1u(t, x) − ṙ2(t)r1(t)u(t, x). (42)

Putting (41) and (42) into (35), we have

∂u
∂t

(t, x) = L0u(t, x) + (ṙ2(t) − r1(t))D1u(t, x)

+
(
r1(t)2

2
− r2(t)

(
a2x1 + 1

2
a1
)

− r2(t)2

2
a2

+ ṙ0(t) + ṙ1(t)x1 − ṙ2(t)r1(t)
)
u(t, x). (43)

Notice that Li is the zero degree differential operator of multi-
plication by hi, then (7) becomes

∂u
∂t

(t, x) = L0u(t, x) +
( m∑

i=1
ci1yi(t)

)
D1u(t, x)

+
⎛
⎝1
2

m∑
i,j=1

ci1cj1yi(t)yj(t)

⎞
⎠ u(t, x). (44)

Comparing (43) and (44), we have

ṙ2(t) − r1(t) =
m∑
i=1

ci1yi(t), (45)

and

(ṙ1(t) − a2r2(t)) x1 + ṙ0(t) − a1
2
r2(t) − a2

2
r2(t)2

+ r1(t)2

2
− ṙ2(t)r1(t) = 1

2

m∑
i,j=1

ci1cj1yi(t)yj(t). (46)
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From (45) and (46) we have

ṙ1(t) = a2r2(t),

ṙ2(t) = r1(t) +
m∑
i=1

ci1yi(t),

ṙ0(t) = 1
2
r1(t)2 +

m∑
i=1

ci1yi(t)r1(t) + a2
2
r2(t)2

+ 1
2
a1r2(t) + 1

2

m∑
i,j=1

ci1cj1yi(t)yj(t). (47)

It is clear that (47) have solutions for all t ≥ 0. Note that
r1(t), r2(t) is uniquely determined by the first two equations
of (47), then by the last equation of (47), we know that r0(t) is
unique up to a constant. �

The algorithm in Table 2 illustrates how to combine the
FDEA method with Wei–Norman approach to solve the NLF
problems proposed in this paper.

4.3 The construction of FDFs for a novel class of
polynomial filtering system

As we know, it is of much hardness to solve the DMZ
equation (2) or even robust-DMZ equation (7) explicitly. How-
ever, we find a novel class of FDF system by establishing
FDEA, shown in section 3, and its corresponding robust-DMZ
equation has an explicit solution by means of Wei–Norman
approach, which is presented in the main theorem of this paper
completely and further illustrated by the algorithm shown in
Table 2. Now we show how to compute the explicit solution of
robust-DMZ equation with respect to the system constructed in

Table 2. Finite dimensional filtering algorithm for a class of nonlinear system.

Algorithm

1: For NLF system (1)which satisfies the conditions (C.1)–(C.5),
one can write out its corresponding DMZ equation (4)
(or (2));

2: By taking transformation (6), we get the robust-DMZ
equation (7) of the related NLF system (26);

3: By the construction of FEDA in Section 3, one can obtain
the basis {L0,D1, x1, 1} of robust-DMZ equation of NLF
system;

4: By the Wei–Norman approach shown as the main theorem
in Section 4, the solution of robust-DMZ equation (7) is

u(t, x) = er0(t) er1(t)x1 er2(t)D1 etL0σ0(x),
where ri ’s satisfy the following ODEs for all t ≥ 0,

ṙ1(t) = a2r2(t),
ṙ2(t) = r1(t) +∑m

i=1 ci1yi(t),

ṙ0(t) = r1(t)2

2
+ a2

2
r2(t)2 + 1

2
a1r2(t)

+∑m
i=1 ci1yi(t)r1(t) + 1

2

∑m
i,j=1 ci1cj1yi(t)yj(t);

5: Then by taking inverse transformation
σ(t, x) = exp[h�(x)yt]u(t, x),

the solution of DMZ equation (4) is
σ(t, x) = exp[h�(x)yt] er0(t) er1(t)x1 er2(t)D1 etL0σ0(x);

6: Finally, the normalised conditional density function of
state ρ(xt|Yt) is given by

ρ(xt|Yt) = σ(t, x)∫
σ(t, x)

.

Example 3.4. ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx1(t) = f1(x) dt + dv1(t),
dx2(t) = f2(x) dt + dv2(t),
dx3(t) = f3(x) dt + dv3(t),
dx4(t) = f4(x) dt + dv4(t),
dy(t) = h(x) dt + dw(t),

(48)

where v(t) = (v1(t), . . . , v4(t))T and w(t) are mutually inde-
pendent, standard Brownian motions, x = (x1, x2, x3, x4).
f1(x) = x1 + x2 + x3 + x4, f2(x) = x1 − x2 − 6x3 + 3x4 +
x2x3 − x33 + x34, f3(x) = x1 − x3 − 3x4 − x2x3 + x3x4 − x32 −
x34, and f4(x) = x1 + 6x3 − x4 − x3x4 + x32 + x33. In addition,
h = cx1, where c is constant. It is worth noted that this exam-
ple satisfies all conditions of Theorem 4.1, then we can write out
its corresponding DMZ equation according to (4) as,{

dσ(t, x) = L0σ(t, x) dt + hσ(t, x) dy(t),
σ(0, x) = σ0(x),

(49)

where L0 in this system is defined by

L0 = 1
2

4∑
i=1

∂2

∂x2i
−

4∑
i=1

fi
∂

∂xi
−

4∑
i=1

∂fi
∂xi

− 1
2
h2. (50)

After taking the transformation of u(t, x) = exp(−h(x)y(t))σ
(t, x) according to (6), one can obtain the corresponding robust-
DMZ equation according to (7) as follows,⎧⎪⎨

⎪⎩
d
dt u(t, x) = L0u(t, x) + y(t)[L0, h]u(t, x)

+ 1
2 (y(t))

2[[L0, h], h]u(t, x),
u(0, x) = σ0(x),

(51)

Where L0 is defined in (50). From the compact form of L0
(see (9)), and the assumption of η in Example 3.4, we can write
out

L0 = 1
2

( 4∑
i=1

D2
i − η

)
.

Thus after simple computations, the robust-DMZ equation of
system (48) can be more clearly written as⎧⎪⎪⎨
⎪⎪⎩

d
dt u(t, x) = 1

2

(∑4
i=1 D

2
i − η

)
u(t, x) + cy(t)D1u(t, x)

+ 1
2 (cy(t))

2u(t, x),
u(0, x) = σ0(x),

(52)
withη = 4x21 + γ (x2, x3, x4), andh = cx1, inwhichγ (x2, x3, x4)
is the C

∞ function of x2, x3, x4, and c is a constant.
According to the Theorem 4.1, we can get the solution of (52)

as

u(t, x) = er0(t) er1(t)x1 er2(t)D1 etL0σ0,

where ri’s satisfy the following ODEs for all t ≥ 0,

ṙ1(t) = 4r2(t),

ṙ2(t) = r1(t) + cy(t),

ṙ0(t) = r1(t)2

2
+ 2r2(t)2 + cy(t)r1(t) + 1

2
c2(y(t))2.

(53)
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It can be seen that the robust-DMZ equation of system (26) is
solved by a finite number of ODEs and SDEs. Therefore, the
FDFs for the robust-DMZ equation of Example 3.4 in Section 4
can be successfully constructed by Theorem 4.1.

5. Conclusion

The idea of using estimation algebra to construct FDF for NLF
problem has been proven to be invaluable in the study of NLF
problems. Once we obtain the FDEAs, we can construct FDFs
by Wei–Norman approach for a class of NLF problems. By
interpreting the DMZ equation or its robust form as a partial
differential equation with time varying parameters, one derives
an approach to filtering based onLie algebra aswell as the theory
of linear differential operators. In this paper, we find anovel class
of FDF system for NLF problems by estimation algebramethod.
When we consider FDEAs with state dimension 4 and linear
rank equal to 1, we establish several conditions for FDEAwhich
can be used to construct special classes of filtering systems of
finite dimension, especially constructing a class of polynomial
NLF systems, where the Wong’s �-matrix is shown not neces-
sary to be a polynomial atmost degree one, and further, it can be
polynomial of degree two, or higher. Furthermore, by using the
Wei–Norman approach, we derive the explicit solution for the
robust-DMZ equation of the proposed finite dimensional NLF
systems.
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