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A B S T R A C T

HIV-1 is the most common and pathogenic strain of human immunodeficiency virus consisting of many subtypes.
To study the difference among HIV-1 subtypes in infection, diagnosis and drug design, it is important to identify
HIV-1 subtypes from clinical HIV-1 samples. In this work, we propose an effective numeric representation called
Subsequence Natural Vector (SNV) to encode HIV-1 sequences. Using the representation, we introduce an im-
proved linear discriminant analysis method to classify HIV-1 viruses correctly. SNV is based on distribution of
nucleotides in HIV-1 viral sequences. It not only computes the number of nucleotides, but also describes the
position and variance of nucleotides in viruses. To validate our alignment-free method, 6902 complete genomes
and 11,668 pol gene sequences of HIV-1 subtypes were collected from the up-to-date Los Alamos HIV database.
SNV outperforms the three popular methods, Kameris, Comet and REGA, with almost 100% Sensitivity and
Specificity, also with much less time. Our subtyping algorithm especially works better for circulating re-
combinant forms (CRFs) consisting of a few sequences. Our approach is also powerful to separate unique re-
combinant forms (URFs) from other subtypes with 100% Sensitivity and Specificity. Moreover, phylogenetic
trees based on SNV representation are constructed using full-length HIV-1 genomes and pol genes respectively,
where viruses from the same subtype are clustered together correctly.

1. Introduction

Human Immunodeficiency Viruses (HIV) infected about 36.9 mil-
lion people as of 2017. HIV-1 is more infective than HIV-2 and causes
the great majority of HIV infections worldwide. Without treatment,
average survival time after infection with HIV-1 varies from 9 to
11 years according to the HIV-1 subtype, host genetics, route of infec-
tion, and psychological state, ect. The differences among HIV-1 sub-
types also have important effect on disease progression, therapeutic
reaction and vaccine research and development. Based on previous
research, HIV-1 has been divided into a main group M and three small
groups: N, O and P (Nuno et al., 2014). The M group is further divided
into nine pure subtypes (A-D, FeH, J and K subtypes) and 97 circulating
recombinant forms (CRFs) and several unique recombinant forms
(URFs) (Los Alamos National Lab (LANL) database, accessed February
2019). Inter-subtype recombinant genomes are common, but many of
them are found only in the one dually-infected (or multiply-infected)
individual patient in which they arose. Such recombinant forms are
called URFs. If an inter-subtype recombinant virus is transmitted to
many people, it becomes one of the circulating strains in the HIV epi-
demic and thus should be classified as a CRF. Correct subtype

classification of clinical HIV-1 samples is a challenging and significant
problem in HIV research, due to the frequent recombination of HIV-1
and the importance of subtype difference for epidemiological studies.

In previous work, a quantity of computational techniques have been
proposed to categorize HIV-1 strains into subtypes. A popular kind is
the widely used alignment-based methods which identify HIV-1 sub-
types either by similarity search such as BLAST (Altschul et al., 1990),
USEARCH (Edgar, 2010) and KCLUST (Hauser et al., 2013) etc. or by
pairwise distance such as PASC (Bao et al., 2014) and DEmARC (Lauber
and Gorbalenya, 2012) etc. Another kind of HIV-1 subtype methods is
based on phylogenetic analysis such as REGA (Pineda-Pea et al., 2013;
De Oliveira T. et al., 2005), SCUEAL (Kosakovsky Pond et al., 2009),
and Pplacer (Matsen et al., 2010) etc. Using these methods based on
phylogenetic analysis, a query sequence's class can be predicted by its
neighbor's information in phylogenetic trees. However, these align-
ment-based and phylogeny-based approaches are difficult to deal with
large data because of time consumption. Thus the alignment-free
methods become more and more popular with the increasing amount of
data. Among these methods, Comet (Struck et al., 2014) adapted from
partial matching compression and Kameris (Solis-Reyes et al., 2018)
based on k-mer frequency achieves high accuracy.
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In this paper, we propose an alignment-free method called
Subsequence Natural Vector (SNV) to identify HIV-1 subtypes. Unlike k-
mer methods, SNV not only utilizes the frequency of subsequences of
nucleotides but also includes the position and variance information of
nucleotides in viral sequences. Two HIV-1 datasets consisting of com-
plete genomes and pol genes respectively retrieved from Los Alamos
HIV database are used to evaluate our method. Comparison in running
time is also made among SNV, Comet, Kameris and REGA on each
dataset, and SNV enjoys a higher time-efficiency than others.

2. Materials and methods

2.1. Natural Vector (NV)

Let Φ={A,C,G,T} be the set of 4 types of nucleotides, and a se-
quence (S= s1, s2, ⋯, sN, si ∈ Φ, i=1, 2⋯, N), where N is the length of
the DNA sequence. For each α∈ Φ, we define a function ωα(⋅) :Φ→
{0,1}, i.e.,

= = =w s s
s i N( ) 1,

0, 1, 2, ,i
i

i (1)

1. Let nα=∑i=1
nωα(si) describe the number of nucleotide α in S.

2. Let = =µ i
n s i

n1
( )i be the mean position of nucleotide α.

3. Let = =D i
n i µ s

n n1
( ) ( )i2

be the normalized 2-nd central moment of
position of nucleotide α.

Then natural vector of the DNA sequence S is defined as (Deng et al.,
2011):

n n n n µ µ µ µ D D D D( , , , , , , , , , , , )A C G T A C G T A C G T

2.2. Subsequence Natural Vector (SNV)

To capture the local distribution of nucleotides in DNA sequences,
we propose a new feature vector based on the previous natural vector
method. Given a DNA sequence S= s1, s2, ⋯, sN, we divide the se-
quence into L non-overlapping segments. To normalize all subsequences
with equal length, we apply the method proposed in (Zhao et al., 2011).
We define q as the quotient and r as the remainder when dividing N by
L, i.e.,

= = <q N
L

r N L q r L, . (0 )
(2)

The first r segments (SubStr1, SubStr2, ⋯, SubStrr) all consist of q+1
nucleotides and the remaining L− r segments (SubStrr+1, SubStrr+2, ⋯,
SubStrL) all consist of q nucleotides. L is a preset integer (L≪N) which
can be adjusted from datasets. Then we compute the natural vector of
each subsequence to obtain L natural vectors. Subsequently those L
natural vectors are concatenated into our proposed vector with 12 ∗ L
dimension.

We call the vector Subsequence Natural Vector (SNV). Specifically,
the SNV of the DNA sequence S is defined as:

…
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In this paper, we choose the L in the following way:

=L M log M[ /(12 ( ))]. (3)

where M is the number of viruses in the dataset and [] means rounding
down to integer.

Table 1
Classification Sensitivity (Sens), Specificity (Spec) and AUC are reported for the set of 1718 whole HIV-1 genomes from the LANL database by using SNV (L=65),
Kameris (Kam.) and Comet (Com.). “U″: Unique recombinant form (URF).

Subtype Sens Sens Sens Spec Spec Spec AUC AUC AUC

SNV Kam. Com. SNV Kam. Com. SNV Kam. Com.

(%) (%) (%) (%) (%) (%) (%) (%) (%)

CRFs CRF01_AE 100 100 98.31 100 100 95.79 100 100 99.15
CRF02_AG 100 100 89.66 100 99.88 96.26 100 99.94 94.83
CRF06_cpx 100 0 75 100 100 96.20 100 50 87.50
CRF07_BC 100 100 70 100 100 96.31 100 100 85
CRF08_BC 100 100 50 100 99.94 96.31 100 99.97 75
CRF11_cpx 100 100 25 100 99.88 96.32 100 99.94 62.50
CRF13_cpx 100 0 100 100 100 96.14 100 50 100
CRF14_BG 100 0 66.67 100 100 96.20 100 50 83.33
CRF22_01A1 100 0 0 100 100 96.32 100 50 50
CRF35_AD 100 0 83.33 100 100 96.19 100 50 91.67
CRF42_BF 100 0 50 100 100 96.26 100 50 75
CRF63_02A 100 0 0 100 100 96.26 100 50 50
CRF64_BC 100 0 0 100 100 96.20 100 50 50
CRF71_BF1 100 0 100 100 100 96.14 100 50 100
CRF85_BC 100 0 100 100 100 96.14 100 50 100

Pure (M) A 100 100 95.74 100 99.36 96.17 100 99.68 97.87
B 100 100 97.75 100 99.14 94.50 100 99.57 98.87
C 100 100 97.65 100 99.77 95.76 100 99.89 98.82
D 100 100 82.35 100 99.94 96.29 100 99.97 91.18
F1 100 100 78.57 100 99.94 96.30 100 99.97 89.29
G 100 100 100 100 99.57 96.10 100 99.79 100
H 100 0 100 100 100 96.14 100 50 100
N 100 0 100 100 100 96.14 100 50 100
O 100 100 100 100 100 96.11 100 100 100

URF “U″ 100 0 100 100 100 96.14 100 50 98.13
Average Total 100 48 74.40 100 99.90 96.11 100 73.95 87.13

1 Pure includes A-D, F-H, J and K subtypes; CRFs:circulating recombinant forms; URF: unique recombinant form.
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Example:
Given a dataset with 400 (M=400) sequences. One of the DNA

sequence is S= "ACGGACTCGTACGGATCGATACGAATCC", the length
of S is 28, i.e., N=28. According to 3, we choose L=5, then: q=5,
r=3,

Subsequence Length

SubStr1= ”ACGGAC” 6
SubStr2= ” TCGTAC” 6
SubStr3= ”GGATCG” 6
SubStr4= ”ATACG” 5
SubStr5= ”AATCC” 5

In order to create reliable datasets, we download full set of HIV-1
complete genomes and pol genes from the well-known Los Alamos HIV
database last updated on February 222,019, accessible at (https://
www.hiv.lanl.gov/components/sequence/HIV/search/search.html).
The pol region is a necessary region for the process of HIV-1 replication
which includes protease (PR), reverse transcriptase (RT) and integrase
(IN). Genetic variations among subtypes are about 7–20% for gag gene,
20–30% for env gene, and 10% for pol gene (Gao et al., 1998). For the
dataset of whole genomes, the query parameters virus: HIV-1, genomic
region: complete genome, excluding problematic are applied to test the
performance of the proposed method. For the dataset of pol genes, we
test the following query parameters virus: HIV-1, genomic region: Pol
CDS, excluding problematic. In these datasets, some CRFs classes have
few samples, which has an unfair effect on model training. Thus small

classes with samples less than 9 are removed. Then the final complete
genome dataset includes a total of 6902 HIV-1 full length genomes with
an average length of 8955 bp. It contains 25 subtypes, CRFs and URFs.
The pol gene dataset includes 11,668 sequences with an average length
of 3010 bp. This collection consists of 31 subtypes and CRFs and URFs.
The details of subtypes complete genomes and pol genes are available
in Tables 1 and 2 respectively.

To validate the performance of our method, for each dataset 75%
samples are randomly selected to form a training dataset and the rest
25% samples form test dataset. The training dataset is utilized to build
models and the test dataset to evaluate model performance. Note that
test datasets do not involve in training process. For subtype classifica-
tion based on complete genomes, the training dataset comprises 5184
genomes and the test dataset comprises 1718 genomes. For subtype
classification based on pol genes, the training dataset comprises 8740
pol gene sequences and the test dataset comprises 2928.

All computations in this paper are done on a Dell PowerEdge R730
equipped with Intel Xeon E5–2667 v3 Processor under Linux Home
Premium with 384 GB RAM.

2.3. Linear discriminant analysis

Linear discriminant analysis (LDA) is a method used in statistics,
pattern recognition and machine learning to find a linear combination
of features that characterizes or separates two or more classes of objects
or events. The resulting combination may be used as a linear classifier,
or, more commonly, for dimensionality reduction before later classifi-
cation. We review the Linear discriminant analysis method as follows

Table 2
Classification Sensitivity (Sens), Specificity (Spec) and AUC are reported for the set of 2928 pol genes from the LANL database by using SNV (L=103), Kameris
(Kam.) and Comet (Com.).

Subtype Sens Sens Sens Spec Spec Spec AUC AUC AUC

SNV Kam. Com. SNV Kam. Com. SNV Kam. Com.

(%) (%) (%) (%) (%) (%) (%) (%) (%)

CRFs CRF01_AE 99.83 100 97.97 100 99.87 98.44 99.92 99.94 98.98
CRF02_AG 100 100 97.67 100 99.90 98.36 100 99.95 98.84
CRF04_cpx 100 0 33.33 100 100 98.42 100 50 66.67
CRF06_cpx 100 0 100 100 100 98.34 100 50 100
CRF07_BC 100 100 90.91 100 100 98.40 100 100 95.45
CRF08_BC 100 100 80 100 100 98.48 100 100 90
CRF11_cpx 100 100 100 100 100 98.34 100 100 100
CRF13_cpx 100 0 50 100 100 98.38 100 50 75
CRF14_BG 100 0 0 100 100 98.48 100 50 50
CRF22_01A1 100 0 0 100 100 98.52 100 50 50
CRF24_BG 100 0 100 100 100 98.35 100 50 100
CRF35_AD 100 0 100 100 100 98.34 100 50 100
CRF42_BF 100 0 100 100 100 98.35 100 50 100
CRF59_01B 100 0 100 100 100 98.35 100 50 100
CRF63_02A 100 0 100 100 100 98.35 100 50 100
CRF64_BC 100 0 33.33 100 100 98.42 100 50 66.67
CRF71_BF1 100 0 100 100 100 98.35 100 50 100
CRF83_cpx 100 0 100 100 100 98.35 100 50 100
CRF85_BC 100 0 0 100 100 98.45 100 50 50
CRF90_BF1 100 0 100 100 100 98.35 100 50 100

Pure (M) A 100 100 100 99.96 99.61 98.28 99.98 99.80 99.91
B 100 100 99.77 100 99.37 97.17 100 99.69 99.89
C 100 100 98.93 100 99.60 98.18 100 99.80 99.47
D 100 100 100 100 100 98.34 100 100 100
F1 100 100 100 100 99.90 98.34 100 99.95 100
F2 100 0 66.67 100 100 98.38 100 50 83.33
G 100 100 95.45 100 99.79 98.37 100 99.90 97.73
H 100 0 100 100 100 98.35 100 50 100
N 100 0 100 100 100 98.35 100 50 100
O 100 100 100 100 100 98.34 100 100 100

URF ”U″ 100 100 100 100 99.38 98.35 100 99.69 99.55
Total Average 99.99 41.94 82.07 99.99 99.92 98.33 99.99 70.93 91.02

1 Pure includes A-D, FeH, J and K subtypes; CRFs:circulating recombinant forms; URF: unique recombinant form.
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(Balakrishnama and Ganapathiraju, 1998). Suppose that we have a set
of K classes in a dataset and for each sample we know its class label. Let
Ck be indices of the nk samples in class k, where nk denotes the number
of samples belonging to class k, n= n1+⋯+ nK. The centroid for class
k is defined as =x x n/k i C i kk

, and the centroid for all classes is de-
fined as =x x n/i

n
i . Let W denote the within-class covariance matrix,

that is the covariance matrix of the variables centred on the class
centroid:

= =W
x x x x

n K
( )( )k

K
j C j k j k

T
1 k

(4)

Let B denote the between-class covariance matrix:

= =B
n x x x x

K
( )( )

1
k
K

k k k
T

1
(5)

Fisher linear discriminant analysis (LDA) projects high dimension
data x into low dimension space to find linear combinations ωTx such
that between-class variance is maximized relative to the within-class
variance, that is, maximizing the ratio:

=P B
W

T

T
1 1

1 1 (6)

This is a generalized eigenvalue problem, with ω1 being the eigen-
vector corresponding to the largest eigenvalue of W−1B. Similarly the
next direction ω2 can be found by maximizing ω2TBω2/ω2TWω2 such
that ω2 is orthogonal in W to ω1. These ωk are called discriminant co-
ordinates or canonical coordinates. Therefore at most K-1 such direc-
tions will be given by K−1 positive eigenvalues.

We might project each sample x onto all directions by ωkTx, k=1,
2, …, K−1. Thus each sample is projected onto the subspace spanned
by above directions ω1, …, ωK−1. There exists a fundamental dimension
reduction in LDA, namely, that we only need to only consider samples
in a subspace of dimension at most K−1, which is far less than di-
mension of the sample which is SNV here. For a new sample, its dis-
tance to each class centroid is computed in this low dimensional space.
We classify the sample to the class with smallest distance.

2.4. Classification

Given a training set of n sequences including K classes, we should
first represent each sequence with a 12 ∗ L dimensional SNV. We train
an LDA model with the training set. We obtain the K−1 directions
which span the K−1 dimensional projection space and the projected
vector for each SNV. Note that all SNVs become K−1 dimension on the
projection space. We also get K centroid denoted as μ1, μ2, ⋯, μK and
each centroid is a K−1 dimensional vector.

Given a HIV-1 sequence S in test dataset represented by SNV, for
prediction, we first project it into the projection space and denote the
projected vector as PS. Then we calculate the distance between PS and
all class centroid μi, i=1, 2, ⋯, K as follows:

= =d P µ i K, 1, 2, ,i S i 2 (7)

where ‖ ⋅ ‖ is Euclidean distance. We denote the class μ01 with smallest
distance d01 from PS to the class centroid. According to the traditional
LDA method, this virus will be classified into class μ01. However, the
classification may be incorrect when the virus belongs to a new class
that does not appear in training dataset.

To overcome the misclassification may also due to the high se-
quence similarity between classes of traditional LDA, we propose an
improved LDA using a ratio to remove unreliable prediction. Suppose
the distance from PS to centroid of class μ02 is the second smallest
distance among di, i=1, 2, ⋯, K and the distance is denoted d02. Then
we compute the ratio of d01 and d02: Ratio= d01/d02. If Ratio < 0.9, we
predict virus S belongs to class μ01. Otherwise, we determine virus S as”
Unassigned”.

Finally, the widely used Sensitivity, Specificity and AUC are chosen
to evaluate classification performance. The definition of these measures
are as follows:

= +Sensitivity TP TP FN/( ) (8)

and

= +Specificity TN FP TN/( ) (9)

where TP, TN, FP, and FN are the number of true positive, true nega-
tive, false positive and false negative predictions respectively. ROC
curve is created by plotting the Sensitivity against 1-Specificity at
various threshold settings. AUC is the area under the ROC curve.

Table 3
Classification Sensitivity (Sens), Specificity (Spec) and AUC are reported for the
set of 2928 pol genes from the LANL database by using REGA method.

Subtype Sens Spec AUC

REGA REGA REGA
CRFs CRF01_AE 98.98% 99.91% 99.45%

CRF02_AG 95.35% 100% 97.67%
CRF04_cpx 100% 100% 100%
CRF06_cpx 100% 100% 100%
CRF07_BC 100% 100% 100%
CRF08_BC 75% 100% 87.50%
CRF11_cpx 100% 100% 100%
CRF13_cpx 100% 100% 100%
CRF14_BG 75% 100% 87.50%
CRF22_01A1 0% 100% 50%
CRF24_BG 100% 100% 100%
CRF35_AD 100% 100% 100%
CRF42_BF 100% 100% 100%
CRF59_01B 0% 100% 50%
CRF63_02A 0% 100% 50%
CRF64_BC 0% 100% 50%
CRF71_BF1 0% 100% 50%
CRF83_cpx 0% 100% 50%
CRF85_BC 0% 100% 50%
CRF90_BF1 0% 100% 50%

Pure (M) A 100% 99.61% 99.80%
B 98.56% 100% 99.28%
C 99.70% 99.51% 99.60%
D 100% 100% 100%
F1 100% 100% 100%
F2 100% 100% 100%
G 100% 99.97% 99.98%
H 100% 100% 100%
N 100% 100% 100%
O 100% 99.97% 99.98%

URF ”U″ 100% 98.86% 99.43%
Total Average 72.34% 99.93% 86.14%

1 Pure includes A-D, FeH, J and K subtypes; CRFs:circulating recombinant
forms; URF: unique recombinant form.

Table 4
Running time on the datasets of 1718 complete genomes and 2928 pol genes by
SNV, Kameris and Comet.

Complete genomes

Training-time
(second)

Testing-time
(second)

Total-time
(second)

SNV(L=65) 5.83 0.037 5.867
Kameris 162.66 2.5 165.16
Comet – 153.92 153.92
Pol genes

Training-time
(second)

Testing-time
(second)

Total-time
(second)

SNV (L= 103) 19.754 0.103 19.857
Kameris 194.04 3.89 197.93
Comet – 98.6 98.6
REGA – About 3 days About 3 days
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3. Results

In our work, the classification of HIV-1 viruses is performed on
complete genomes and the pol gene datasets respectively. Although
different URF has different recombinant form, we view URFs as a group.
Based on our method we can capture their common features and de-
termine whether they are URF or not. To make comparison, the
Kameris, Comet and REGA methods are also applied to the HIV-1
subtype classification.

3.1. Results based on complete genome

For HIV-1 complete genome datasets consisting of both training and
test datasets (M=6902), L is chosen to be 65 according to Eq. (3).
Traditional LDA is then trained on the whole complete genome training
set of 5184 viruses. Our improved LDA is used to classify the 1718
complete genomes in the test set. The performance is displayed in
Table 1. We also provide the numbers of training, unassigned viruses
for each subtype in Table S2 in supporting files. As shown in Table 1, for
each subtype, Sensitivity, Specificity and AUC of our SNV based method
are all 100%. Especially for HIV-1 strains in subtype URF, we can
predict whether they are URFs or not correctly. Its average Sensitivity
and AUC are only 48% and 73.95% respectively, due to the fact that

Kmaeris can't deal with subtypes including small samples. For Comet
method, the average Sensitivity, Specificity and AUC are 74.40%,
96.11% and 87.13% respectively. Since the Sensitivity of Comet is
100%, the predicted viruses in URF class truly belong to URF. However,
the method misclassifies some strains into URF which results in the
Specifcity not 100%. Although CRF64_BC, CRF85_BC and H have only
nine sequences, our approach can achieve 100% Sensitivity, Specificity
and AUC. The length and the number of virus is too large for REGA, we
can't apply REGA to the complete dataset. This proves that our ap-
proach is able to predict HIV-1 classes not only on class with large
samples but also on class with few samples. In summary, our SNV
method works much better than Kameris and Comet in Sensitivity,
Specificity and AUC.

To compare with REGA subtyping tool for complete genomes, we
randomly select 90 complete HIV genomes from the test data consisting
of 1718 complete genomes and make sure each subtype in the test data
occurs in the 90 genomes. It takes about 3 h to classify the 90 viruses
using online REGA subtyping software. The result shows that 67 viruses
are not applicable as the software produces errors during analysis
paupfragment. For the rest 23 viruses, 4 viruses are incorrectly pre-
dicted. However, our method is able to classify all the 1718 viruses
correctly as shown in Table 1. Accession numbers of the 90 sequences
are shown in supplementary files.

Fig. 1. Unrooted neighbor-joining tree depicting the genetic relationship among the 102 complete genomes including 8 subtypes and CRFs by SNV method. Each
group is highlighted with a different color.

L. He, et al. Infection, Genetics and Evolution 77 (2020) 104080

5



3.2. Results based on pol genes

For HIV-1 pol gene data consisting of both training and test datasets,
the value of L=103 is chosen according to Eq. (3). Traditional LDA
method is trained on the whole pol gene training set of 8740 viruses.
Our improved LDA method is applied to predict the class label for 2928
viruses in pol gene test set. The results are reported in Table 2. We also
provide the numbers of training, unassigned viruses for each subtype in
Table S3 in supporting files. As shown in Table 2, Sensitivity of our SNV
based method reaches 100% except CRF01_AE class. The sensitivity of
CRF01_AE class is 99.83%. Thus the average Sensitivity of our method
is 99.99%. Except pure A subtype with 99.96% Specificity, the Speci-
ficity of all other subtypes is 100%. Thus the average Specificity of our
method is as high as 99.99%. The average AUC of our method obtains
more than 99.99%. For Kameris, the average of Sensitivity and AUC are
just 41.94% and 70.93% respectively. For Comet, the average of Sen-
sitivity and AUC are just 82.07% and 91.02% respectively. For URF
class, the tree methods all can make correct prediction for true URF. But
Kameris and Comet may incorrectly classify viruses from other subtypes
into URF. Only our method can identify URF correctly. Note that some
classes especially CRFs only contain a few viruses. For these subtypes,
our approach achieves almost 100% Sensitivity while Kameris always

obtains zero Sensitivity and Comet obtains low Sensitivity even zero.
We also use REGA method based on alignment of HIV-1 viruses. The
results for this method is shown in Table 3. This method gets low
Sensitivity and AUC on CRFs such as CRF22_01A1, CRF59_01B and
CRF63_02A. Our SNV method outperforms Kameris, Comet and REGA
in both Specificity and Sensitivity for small subtypes.

3.3. Results of running time

MATLAB R2016a is utilized for calculation of all SNV and R 3.5.0
for model training and testing. The parameter k for Kameris is chosen as
k=6. Since the online server of Comet has been trained and the time
for its training is unknown, we only compute its running time for HIV-1
subtype classification. The time consumption for SNV, Kameris,Comet
and REGA is shown in Table 4. For HIV-1 identification based on
complete genomes, the total running time of SNV is only about 5.8 s
which is much less than Kameris (165 s) and Comet (> 153 seconds).
Based on pol genes, the total running time of SNV is only about 19.8 s,
while the time of Kameris and Comet are about 197 s and at least 98 s
respectively. Since REGA is based on multiple sequence alignment, the
time of REGA is about 3 days which is too long to accept.

Fig. 2. Unrooted neighbor-joining tree depicting the genetic relationship among the 130 pol genes including 14 subtypes and CRFs by SNV method. Each group is
highlighted with a different color.
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Fig. 3. The neighbor-joining tree depicting the genetic relationship among the 102 complete genomes including 8 subtypes and CRFs by NV method. Each group is
highlighted with a different color.
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3.4. Results of phylogenetic trees

To further validate the advantage of our SNV representation for
HIV-1 viruses, we construct phylogenetic trees of HIV-1 based on
complete genomes and pol genes respectively. We choose some pure
subtypes and CRFs recombined by these pure subtypes. These strains
are close in evolution and hard to separate from each other. Thus we
randomly select 102 complete genomes consisting of some subtypes
such as B, C and their recombinants such as CRF64_BC and CRF07_BC.
Based on the SNV representation of complete genomes, an unrooted
neighbor-joining tree is constructed by Mega 7 (Kumar et al., 2016).
Each group is highlighted with a different color in the phylogenetic
tree. As shown in Fig. 1, the 102 complete genomes are divided into 8
subtypes and CRFs: A, B, C, D, F1, CRF07_BC, CRF08_BC, and CRF64_BC.
Although CRF07_BC, CRF08_BC and CRF64_BC are recombinant from B

and C subtype, our method can effectively cluster each group together.
HIV-1 strains from the same pure subtype are also clustered together.

We randomly select 130 pol genes including subtypes such as B, F1
and their recombinants such as CRF71_BF1 and CRF90_BF1. Then we
compute the SNV representation of each sequence. An unrooted
neighbor-joining tree of these genes is constructed by Mega 7. As shown
in Fig. 2, these pol genes consist of 14 subtypes and CRFs. HIV-1 strains
from the same subtype are clustered together. Moreover, CRF02_AG,
CRF63_02A, CRF22_01A1 and A groups are cluster together correctly.
CRF71_BF1, CRF90_BF1, B and F1 form a lineage. CRF07_BC and
CRF64_BC become a clade. From the two phylogenetic trees, we can see
that SNV representation is useful to build HIV-1 evolutionary re-
lationship.

To compare our SNV with previous NV method, we build the
neighbor-joining tree for the 102 complete genomes. As shown in Fig. 3,

Fig. 4. Phylogenetic tree depicting the genetic relationship among the 130 pol genes including 14 subtypes and CRFs by NV method. Each group is highlighted with a
different color.
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the subtypes A, D and CRF_07BC are incorrectly clustered together. The
subtypes B and C are incorrectly mixed together. The CRF_08BC and
CRF_64BC should not be placed together. Using NV method, we also
construct the neighbor-joining tree for the 130 pol genes. As shown in
Fig. 4, the result is poor because all 14 subtypes and CRFs are in-
correctly placed. Therefore, our SNV performs much better than NV.

3.5. Results of partial genomic sequences

To test the performance of our classifier for partial genomic se-
quences, we download 24,576 p51RT fragments of pol genes from the
LANL database. The p51RT gene is the major fragment of a pol gene and
has about 1320 nucleotides. We repeat the training and test process for
this dataset. L is chosen as 10 by experience. Our method is also com-
pared with Comet method. The results are reported in Table 5. As
shown in Table 5, our method achieves 98.95% sensitivity, 99.99%
specificity and 99.47% AUC on average. Comet method achieves
66.25% sensitivity, 99.92% specificity and 83.09% AUC on average.
Thus our method performs much better than Comet specifically in
sensitivity. Except pure D and G subtype, our method achieves same or
better AUC than Comet. For pure D and G subtypes, although the sen-
sitivity of our method is lower than that of Comet, the specificity of our
method is better than that of Comet. For 23 of 35 kinds of subtypes, our
method achieves better than Comet with respect to AUC.

4. Discussion and conclusions

In this paper, we propose an efficient Subsequence Natural Vector
(SNV) to encode HIV-1 viruses and improve traditional linear dis-
criminant analysis (LDA) to subtype viruses. For each virus, we first use
SNV representation to encode HIV-1 sequences into numerical vectors.
By traditional LDA classification method, each SNV is projected into a
low dimensional space whose dimension is the number of classes. Thus
HIV-1 viruses are identified in the reduced space by their distance to
class centroid. HIV-1 viruses are split into training data and test data.
The training data is used to estimate the parameters such as dis-
criminant coordinates in the LDA method. These discriminant co-
ordinates vectors form the projection space on which each SNV is re-
presented by a much lower dimensional vector. For each HIV-1 virus in
test set, the distance to all class centroid in the projection space is
computed. Unlike the traditional LDA, we introduce a ratio of the
smallest distance to the second smallest distance to predict the class
label of viruses reliably. For a virus, we predict it should belong to the
class where the distance is smallest if the ratio is less than 0.9.
Otherwise, we do not make prediction for this virus. Our improved LDA
is able to identify URFs and to reduce the prediction error when classes
have high similarity.

SNV representation is based on distribution of each nucleotide in
viral sequences. According to those results for HIV-1 subtype classifi-
cation based on complete genomes and pol genes, our improved LDA

Table 5
Classification Sensitivity (Sens), Specificity (Spec) and AUC are reported for p51RT from the LANL database by using SNV and Comet (Com.). U: Unique recombinant
form (URF). Ave. means average on the related column. Pure includes A-D, FeH, J and K subtypes; CRFs: circulating recombinant forms.

Subtype Test Sens Sens Spec SNV Spec SNV AUC

Number SNV Com. SNV Com. SNV Com.

CRFs CRF01_AE 812 99.88% 99.38% 100.00% 100.00% 99.94% 99.69%
CRF02_AG 106 100.00% 82.08% 100.00% 100.00% 100.00% 91.04%
CRF04_cpx 3 100.00% 33.33% 100.00% 100.00% 100.00% 66.67%
CRF06_cpx 17 100.00% 76.47% 99.98% 100.00% 99.99% 88.24%
CRF07_BC 185 98.92% 85.41% 99.97% 100.00% 99.44% 92.70%
CRF08_BC 109 100.00% 88.07% 99.95% 99.97% 99.97% 94.02%
CRF11_cpx 7 100.00% 57.14% 99.98% 100.00% 99.99% 78.57%
CRF12_BF 3 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
CRF13_cpx 3 100.00% 0.00% 100.00% 100.00% 100.00% 50.00%
CRF14_BG 4 100.00% 0.00% 99.92% 100.00% 99.96% 50.00%
CRF22_01A1 5 100.00% 0.00% 100.00% 100.00% 100.00% 50.00%
CRF24_BG 3 100.00% 66.67% 100.00% 100.00% 100.00% 83.33%
CRF35_AD 6 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
CRF42_BF 5 100.00% 0.00% 100.00% 100.00% 100.00% 50.00%
CRF55_01B 3 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
CRF59_01B 3 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
CRF63_02A 4 100.00% 0.00% 100.00% 100.00% 100.00% 50.00%
CRF64_BC 3 100.00% 0.00% 99.97% 100.00% 99.98% 50.00%
CRF65_cpx 4 100.00% 75.00% 100.00% 100.00% 100.00% 87.50%
CRF83_cpx 3 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
CRF85_BC 3 100.00% 0.00% 100.00% 100.00% 100.00% 50.00%
CRF90_BF1 3 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Pure (M) A1 152 100.00% 100.00% 99.98% 98.99% 99.99% 99.49%
A2 20 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
A3 4 100.00% 0.00% 100.00% 100.00% 100.00% 50.00%
A6 29 100.00% 0.00% 100.00% 100.00% 100.00% 50.00%
B 2744 99.96% 99.74% 99.91% 99.76% 99.94% 99.75%
C 1609 99.69% 99.63% 100.00% 99.20% 99.84% 99.41%
D 146 97.95% 98.63% 100.00% 99.95% 98.97% 99.29%
F1 19 100.00% 100.00% 100.00% 99.97% 100.00% 99.98%
F2 4 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
G 38 86.84% 97.37% 100.00% 99.88% 93.42% 98.63%
N 4 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
O 16 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

URF U 5 80.00% 60.00% 100.00% 99.52% 90.00% 79.76%
Ave. Total 98.95% 66.25% 99.99% 99.92% 99.47% 83.09%

1 Pure includes A-D, F-H, J and K subtypes; CRFs:circulating recombinant forms; URF: unique recombinant form.
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approach based on SNV representation can achieve almost 100%
Sensitivity and Specificity on both datasets. Moreover, our method
performs better than Kameris, Comet and REGA especially for these
subtype with few samples. Compared with Comet, our approach obtains
higher Sensitivity and Specificity for both complete genome and pol
gene datasets, with a very robust characteristic. Compared with REGA,
our method not only runs far more fast but also shows better perfor-
mance for all subtypes. For both datasets, we can get close to 100%

Sensitivity for classes with a few sequences while Kameris can't work.
From the perspective of dimension reduction, our method projects each
sequence onto a 12 ∗ L dimensional space while Kameris projects each
sequence into a 46= 4096 dimensional space.

In this paper, L was chosen by experience. For Eq. (3), according to
some numerical simulation, when the size of dataset M changes in a
certain range, L keeps unchanged. For example, for 6902 complete
genomes used in our paper, L is always 65 if 6894≤M≤7013. Thus L

Fig. 5. Two dimensional projection for 236
CRF01_AE and 29 CRF02_AG complete genomes. The
blue and orange convex polygon are formed by
CRF01_AE and CRF02_AG viruses respectively. The
two subtypes are clearly separate from each other.
(For interpretation of the references to color in this
figure legend, the reader is referred to the web ver-
sion of this article.)

Fig. 6. Three dimensional projection for 236 CRF01_AE and 95 A complete genomes. The cyan and yellow convex polygon are formed by CRF01_AE and A viruses
respectively. The two subtypes are clearly separate from each other. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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is unchanged when some new unknown viruses are predicted by our
trained classifier. If a lot of new viruses are imported, we indeed need to
train our model again.

As comparison, we also choose L= [d/12*log(d)],where d is the
average length of sequences. The 6902 whole genomes are used to test
this new rule. Since the average length of this dataset is 8956, the value
of L is 82. Using this L, we repeat the model training and test process.
The classification results are listed in Table S1. From Table S1 we can
see, 5 viruses from subtype B and C, CRFs11_cpx, CRF42_BF and
CRF71_BF1 are incorrectly classified while no virus is incorrectly clas-
sified using our original L.

LDA method is able to represent HIV-1 viruses in low dimensional
space using our SNV representation. Moreover, LDA can even separate
some different subtypes in 2 or 3 dimensional space which is clear for
visualization. To illustrate the point clearly, we choose all CRF01_AE
and CRF02_AG from the complete test dataset removing the unassigned
viruses. Therefore, there are 236 CRF01_AE viruses and 29 CRF02_AG
viruses are chosen. These viruses are then represented by SNV vectors.
Using LDA method, we project the SNV vectors into 2 dimensional
plane constructed by the first two canonical coordinate vector. As show
in Fig. 5, the CRF01_AE viruses and CRF02_AG viruses form two dif-
ferent classes respectively. The boundary of each class forms a convex
polygon in plane. Note that the two classes are clearly separate for each
other. In addition, we collect all 236 subtype CRF01_AE viruses and 95
pure A viruses from test dataset and project them into three dimensions.
As shown in Fig. 6, CRF01_AE and A viruses form two classes and the
boundary of each class forms a convex polyhedron. The two classes
CRF01_AE and A are separate from each other. From the two figures we
can see, LDA method using our new SNV representation may separate
some subtypes in 2 or 3 space which is clear for visualization.
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