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A B S T R A C T

Analyzing phylogenetic relationships using mathematical methods has always been of importance in bioinfor-
matics. Quantitative research may interpret the raw biological data in a precise way. Multiple Sequence
Alignment (MSA) is used frequently to analyze biological evolutions, but is very time-consuming. When the scale
of data is large, alignment methods cannot finish calculation in reasonable time. Therefore, we present a new
method using moments of cumulative Fourier power spectrum in clustering the DNA sequences. Each sequence is
translated into a vector in Euclidean space. Distances between the vectors can reflect the relationships between
sequences. The mapping between the spectra and moment vector is one-to-one, which means that no information
is lost in the power spectra during the calculation. We cluster and classify several datasets including Influenza A,
primates, and human rhinovirus (HRV) datasets to build up the phylogenetic trees. Results show that the new
proposed cumulative Fourier power spectrum is much faster and more accurately than MSA and another
alignment-free method known as k-mer. The research provides us new insights in the study of phylogeny,
evolution, and efficient DNA comparison algorithms for large genomes. The computer programs of the cumu-
lative Fourier power spectrum are available at GitHub (https://github.com/YaulabTsinghua/cumulative-
Fourier-power-spectrum).

1. Introduction

In molecular biology, mathematical methods are often used to in-
terpret biological sequence information. Mathematics can transform
biological sequences into numerical representations to analyze them
quantitatively. Genetic recombination and, in particular, genetic shuf-
fling are at odds with sequence comparison by alignment, which as-
sumes conservation of contiguity between homologous segments (Vinga
and Almeida, 2003). Apart from the common Multiple Sequence
Alignment method (MSA), which is usually accurate but can take much
time to compute large genomic data, many alignment-free methods
have been proposed in recent years such as the Feature Vector model
(Delibas and Seker, 2017), Chaos Game Representation (Almeida et al.,
2001; Jeffrey, 1990), and the Maximum entropy method (Chan et al.,
2010). Another new method via nucleotide-based Fourier power spec-
trum (PS) was proposed by Yau (Zhao et al., 2011). In this method,
discrete Fourier transformation (DFT) and the moment vectors are used.

Given a DNA sequence, indicator functions are involved to decide a
corresponding mathematical representation. The indicator functions
consist of four separate sequences which show the distribution of the
four nucleotides respectively. Then by DFT, some frequency properties
of these sequences can be observed. By moment vectors, sequences are
transformed to points in the space. Less storage space is needed com-
pared to the MSA method, which is a significant benefit when large
genomic data is analyzed.

Despite achieving some accurate classification by the previous PS
method, in the process of transforming the power spectrum to moment
vectors, the mapping between the moment vectors and power spectra is
not one-to-one, namely, one cannot recover full power spectra given the
information of moment vectors. To improve the PS method, we now
propose cumulative Fourier power spectrum (CPS). This new method
still holds the advantage that large genomic datasets can be handled.
Moreover, because the CPS is increasing, full power spectra can be
recovered directly from the moment vectors of CPS. Therefore, more
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information is preserved. When applied to genomic data, we find that
CPS gives better results than other methods (MSA, k-mer and Power
Spectrum method) for Influenza A, primates, and human rhinovirus
(HRV) datasets.

This new proposed CPS method converts each DNA/RNA sequence
into a point in the 16-dimensional space, and the comparison among
sequences can be performed by calculating the distances among the
points in Euclidean space. The transformation keeps the important in-
formation hidden in the original sequence, therefore reflects the real
relationships among the sequences. Therefore, the CPS method provides
us new insights in the study of phylogeny and evolution and efficient
DNA comparison algorithms for large genomes.

2. Method

2.1. Indicator functions

Suppose we have some genomic sequences and use mathematical
methods to assign them corresponding points in the Euclidean space.
The first step is to represent the distribution of the four nucleotides. We
define four indicator functions for adenine (A), cytosine (C), guanine
(G) and thymine (T), respectively:

= −u n α appears at the n th location of the sequence( ) 1( )α

where α=A, C, G, T; n= 0, 1, 2, …, N− 1, and N is the length of the
sequence.

For example, if the sequence is TTAAAACTGGAT, then it is re-
presented by four separate indicator sequences as follows:

uA: 001111000010
uC: 000000100000
uG: 000000001100
uT: 110000010001

2.2. Cumulative Fourier power spectrum

Next, we apply the DFT to the four indicator sequences:
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To use the cumulative Fourier power spectrum, we delete PS(0)
since it is a constant term. Also, it is much larger than the other terms.
Now we have

Fig. 1. (a) Fourier power spectrum and (b) cumulative Fourier power spectrum of nucleotide A of Homo sapiens cytochrome oxidase subunit I (COI) gene. The
GenBank access number is EU834863.
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2.3. Moment vectors

Different sequences have different lengths, so the numbers of their
CPS terms are not the same and thus the Euclidean distance between
two DNA sequences of unequal lengths cannot be defined. Therefore,
we do not use the power spectrum directly. Instead, we use moment
vectors of the power spectra of DNA sequences so that the sequences
can be assigned by special points in the same dimensional space:
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Here, ajα is the scale factor to decide the definition of the moment
vectors, where j is the moment ordinal. Previous studies (Zhao et al.,
2011; Hoang et al., 2015) suggest that the new scale factor should be
related to the characteristics of the sequences and make the moment
vectors converge to zero as j increases.

According to Parseval's theorem (Oppenheim and Schafer, 1989),
we have
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where Nα is the number of the nucleotide α in the sequence.
Therefore, we have
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Besides, the following equation can be easily obtained:
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So we may choose the scale factor as a power of
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Fig. 2. Phylogenetic tree of 38 Influenza A viruses by the cumulative Fourier power spectrum and UPGMA method. The viruses with same HA and NA proteins are in
the same color.
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Fig. 3. Phylogenetic tree of 38 Influenza A viruses by the k-mer and UPGMA method. (a) k=6 (b) k=7.
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it is not difficult to find that

∑ ⎜ ⎟
⎛
⎝ −

⎞
⎠=

− CPS k
NN N N

( )
( )k

N
α

α α

j

1

1

converges to zero.
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, then M1
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verge to zero too quickly. Therefore, a lot of information is lost.
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and the moment vectors converge to zero slowly. This equation suggests
that a large number of moments are needed to preserve information.
But a large number of moments may take much storage space and
computational time.

If −
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Since CPSα is cumulative, M1
α becomes large if α1α=1.

Therefore, the scale factor is chosen as
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for our CPS method.
So we have
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In (Zhao et al., 2011), both moment vectors and central moment
vectors were used in the PS method. For the CPS method, we also
consider both.

The mean value of the CPS is defined as
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For central moment vectors, we consider the absolute value because
otherwise, the first central moment vector would be zero. Using the
same scale factor, the central moment vectors are defined as follows,

∑=
−

−−
=

−

CM
N N N N

CPS k Mean1
( ( ))

| ( ) |j
α

α α
j j

k

N

α α
j

1
1

1

When calculating the moments of the cumulative Fourier power
spectra of genomic sequences, we found that the moment vectors and
central moment vectors from the third are very small compared to the
first and second moments. Due to this observation, we only consider the
initial two moment vectors and the first two central moment vectors,
giving every sequence its 16-dimensional point

Fig. 4. Phylogenetic tree of 38 Influenza A viruses by the MSA and UPGMA method.
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in the Euclidean space. We name this method as the cumulative Fourier
power spectrum to distinguish it from the traditional Power Spectrum.
The major improvement from the traditional Power Spectrum method is
that, mathematically, CPS and moment vectors can be computed from
each other, while the power spectrum cannot achieve this. Thus we
keep more important information in the original sequence during the
transformation from the original sequence to numerical sequences. For
more details, please see Appendix. B.

Algorithm 1 below shows the whole procedure.

Algorithm 1. Calculate the moment and central moment vectors.

Input: a DNA sequence consisting of A,C,G,T

1. Calculate the indicator functions uA, uC, uG, uT
2. Apply DFT on the uA, uC, uG, uT and get UA, UC, UG, UT

3. Calculate the power spectrum of UA, UC, UG, UT as PSA, PSC, PSG, PST
4. Add up the power spectra up and get CPSA, CPSC, CPSG, CPST
5. Calculate the Moment vectors of four nucleotides and the central

moment vectors

Output: the moment vectors and central moment vectors of four
nucleotides

Fig. 5. Natural graph of 38 Influenza A viruses. Five classes can be distinguished by different colors as labeled on the right. (a) CPS (b) k-mer (k= 6).
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2.4. An example of Homo sapiens cytochrome oxidase subunit I (COI) gene

Here we take Homo sapiens cytochrome oxidase subunit I (COI) gene
as an example to show the Fourier power spectrum and cumulative
power spectrum. The original sequence of this gene can be found in
Appendix A. Fig. 1 shows the result of nucleotide A. In Fig. 1(a), it
reaches the highest peak at a frequency around 205, which indicates the
periodic signature of the sequence. Fig. 1(b) shows that the cumulative
Fourier power spectrum is increasing as frequency increases, and as-
cension is a crucial advantage compared to the traditional power
spectrum method.

2.5. Clustering method

We calculate the Euclidean distances between every two points.
Based on the distance matrix, we use the unweighted pair-group
method with arithmetic means (UPGMA) method to draw phylogenetic
trees in Mega 7 (Sneath and Sokal, 1973; Kumar et al., 2016).

3. Results

We apply our cumulative Fourier power spectrum method on sev-
eral datasets, and compare the results with MSA (Larkin et al., 2007;
Edgar and Batzoglou, 2006), k-mer (Yu et al., 2010) and power spec-
trum proposed in (Hoang et al., 2015). The results below show that our
method outperforms other popular methods with higher accuracy on
species clustering.

3.1. Influenza A virus

Influenza A viruses are single-stranded RNA viruses, which have
been a major health threat to both human society and animals.
Influenza A viruses' nomenclature is based on the surface glycoproteins:
hemagglutinin(HA) and neuraminidase(NA). HA has 15 subtypes and
NA has 9 subtypes, which forms 135 different combinations. Here we
test a dataset of 38 sequences from segment 6 of Influenza A virus
genomes, which are from some of the most lethal subtypes like H1N1,
H2N2, H5N1, H7N9, and H7N3. The results are shown in Fig. 2 and
agree with previous work in (Hoang et al., 2015).

We also tested the k-mer method and MSA on this dataset and the
different results are shown in Figs. 3 and 4, respectively. The optimal
choice of k is 6 or 7, according to the principle in (Sims et al., 2008). In
Fig. 3(a) and Fig. 3(b), the H5N1 and H1N1 viruses are mixed up in the
phylogenetic tree. There are five H1N1 viruses A/pintail/Miyagi/1472/
2008(H1N1), A/duck/Hokkaido/w73/2007(H1N1), A/duck/Guangxi/
030D/2009(H1N1), A/mallard/France/691/2002(H1N1), A/mallard/
Korea/KNU YP09/2009(H1N1) that are in the branch of H5N1 viruses.
There is also an A/turkey/VA/505477-18/2007 (H5N1) in the branch of
H1N1. Meanwhile, all viruses are mixed up in the phylogenetic tree
constructed by the MSA method as shown in Fig. 4.

To get a direct image of the relationships between Influenza A
viruses, we make the Natural Graph of them. Natural Graph was first
introduced in (Yu et al., 2013). Distance matrices are usually used for
phylogenetic analysis of DNA and proteins. Many algorithms may
produce either rooted or unrooted phylogenetic trees based on the
distance matrices. For example, the neighbor-joining algorithm pro-
duced unrooted trees, while the UPGMA algorithm produces rooted
trees. Given a distance matrix, the resulting trees are not unique for any
existing tree construction methods. Thus, the phylogenetic results are
inconsistent due to the above two basic problems. However, the Natural
Graph representation is unique and the direction in the graph can show
the closest elements of each element based on their biological distance.
Thus we apply the Natural Graph representation on the proposed CPS
method and k-mer method. In Fig. 5, the blue lines represent the 1-level
connected components and the red ones represent 2-level. Virus classes
are marked in different colors and it is obvious that in Fig. 5(a), after

Fig. 6. Phylogenetic tree of 12 primates by the cumulative Fourier power
spectrum and UPGMA method. All species from same group are clustered to-
gether.

Fig. 7. Phylogenetic tree of 12 primates by the k-mer and UPGMA method. All
species from the same group are clustered together.

Fig. 8. Phylogenetic tree of 12 primates by the MSA and UPGMA method. All
species from the same group are clustered together.

Fig. 9. Phylogenetic tree of 12 primates by the original PS and UPGMA method.

R. Dong et al. Gene 673 (2018) 239–250

245



the construction of two levels, the Influenza A viruses with the same H
and N are clustered together. The construction of 2-level Natural Graph
requires each group in 1-level to find its nearest neighbor group, which
results in the arrow from No.38 and No.9, and from No.33 to No.28.
However, the distances between the different virus classes are all larger
than the distances within each class, such as the distance between
No.14 and No.18, No.14 and No.23.

However, in Fig. 5(b), H5N1 and H1N1 are not distinguished by the
k-mer method. The H1N1 is divided into two parts, and No.24 from
H5N1 class is clustered in the wrong class after 2-level construction of
Natural Graph.

3.2. Primates

The dataset, which is also used in (Yin et al., 2014) consists of four
species of old-world monkeys (Macaca fascicular, Macaca fuscata, Ma-
caca sylvanus, Macaca mulatta), one species of new-world monkeys
(Saimiri scirueus), two species of prosimians (Lemur catta, Tarsisus syr-
ichta), and five hominoid species (Human, Chimpanzee, Gorilla, Or-
angutan, and Hylobates). We use the NADH dehydrogenase subunit 4
genes of 12 species of four different groups of primates.

The results by the CPS, k-mer (k=6), and MSA method are shown
in Fig. 6, Fig. 7, and Fig. 8, respectively. All three methods can dis-
tinguish the four classes, while the CPS only requires about one-sixth of
the time that k-mer takes, less than one-tenth of the time that MSA
takes. The statistics of time required by each method are shown in
Section 3.5.

The traditional PS method gives a less satisfying result as shown in
Fig.9, where the prosimians are clustered together with the new-world
monkey (Saimiri scirueus). Since the corresponding numerical vectors
should reflect the most important information hidden in the original

sequence, the wrong positions of phylogenetic tree indicate that the
corresponding vectors cannot capture useful information. Therefore,
the previous PS method must have lost some useful information during
the transformation from the original sequence to numerical vectors.
This shows that the new proposed CPS method has collected more in-
formation than the PS method.

3.3. HRV (human rhinovirus)

HRVs (human rhinoviruses) are the major cause of common cold.
Like influenza A viruses, HRVs are also classified based on their ser-
otypes. There are 99 types of HRVs found now.

The complete HRV genomes consist of three different groups, i.e.
HRV-A, HRV-B and HRV-C, 113 genomes in total. We also consider
three HEV-Cs (Hepatitis E virus-C) which serve as the outgroup se-
quences. Thus the ideal phylogenetic tree should first classify the out-
group and HRV group, then divide the HRV-A, HRV-B and HRV-C. The
results by the CPS method is shown in Fig. 10, where each class is
marked with different colors. Meanwhile, the k-mer and MSA methods
do not perform well on this dataset, as shown in Fig. 11 and Fig. 12. In
Fig. 11, we take k=7 and k= 8 and it fails to distinguish the HRVs and
HEV group. MSA captures no useful information in the original se-
quence, since all the species are shuffled in the phylogenetic tree in
Fig. 12.

3.4. Identification of exon/introns

Our CPS method can also be applied on the identification of exon/
introns. We select the CCR9 gene from chromosome 3 of Homo sapiens,
which encodes the C-C chemokine receptor type 9 protein. This protein
is a member of the beta chemokine receptor family and chemokines and

Fig. 10. Phylogenetic tree of 113 HRV and 3 HEV
dataset by the cumulative Fourier power spectrum
and UPGMA method. HRV-A viruses are colored in
red, HRV-B in purple, HRV-C in green and the out-
group HEV viruses are in grey. (For interpretation of
the references to color in this figure legend, the
reader is referred to the web version of this article.)
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their receptors are key regulators of thymocyte migration and ma-
turation in normal and inflammatory conditions. CCR9 gene consists of
three exons and two introns. Both the proposed CPS method and k-mer

method are applied on those five segments. The classification results are
shown in Fig. 13. Considering that UPGMA assumes all the species in-
volve at the same speed, which is not the case in this part, we use
Neighbor-Joining tree (Saitou and Nei, 1987) to construct the phylo-
genetic trees. Clearly in Fig. 13(a), the three exons are clustered to-
gether and the two introns are together. However, exons and introns
cannot be distinguished by the k-mer method.

3.5. Time statistics and complexity analysis

We record the time that the CPS, k-mer and MSA methods require

Fig. 11. Phylogenetic tree of 113 HRV and 3 HEV dataset by the k-mer and UPGMA method. The outgroup viruses cannot be separated from the other viruses in this
figure. (a) k= 7 (b) k= 8.

Fig. 12. Phylogenetic tree of 113 HRV and 3 HEV dataset by the MSA and UPGMA method. All viruses are mixed together and MSA cannot distinguish any class.

Fig. 13. Phylogenetic tree of exons and introns in gene CCR9 by the (a) CPS and
(b) k-mer (k= 5) and Neighbor-Joining method. The CPS can distinguish exons
and introns while the k-mer method clusters all segments together. (a) CPS (b)
k-mer.

Table 1
Benchmark performance comparison of the three methods.

Dataset Average
length (bp)

Number of
species

CPS
(seconds)

k-mer
(seconds)

MSA
(seconds)

Influenza A 1406.8 38 3.76 62.77
(k= 6)
221.59
(k= 7)

195.32

Primates 895.5 12 0.93 6.28 (k= 5)
15.32
(k= 6)

11.28

HRV 7153.7 116 163.05 1778.26
(k= 7)
7777.52
(k= 8)

36,598
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on the three datasets we tested above and the result is shown in Table 1.
We perform all the calculations on the same machine and clear the
memory each time to avoid redundancy and influence on the next-step
calculation. The computation environment is Intel(R) Core(TM) i7-
5500U CPU @2.40 GHz Windows10 PC with 8.00 GB RAM.

From the table, we can draw the conclusion that the alignment-free
methods are much more time-efficient than the alignment method.
However, the time that k-mer requires depends on the value of k and
becomes unacceptable when k becomes too large. The k-mer method
produces a vector of length 4k for each sequence, and the cost on the
storage and memory on the computer is very heavy when k≥ 5,
especially when the whole genomes are input for analysis. Meanwhile,
the proposed CPS assign a vector in 16-dim space to each sequence,
which saves much time and storage for the next-step computation. The
CPS method is based on the Fourier transform and we apply the Fast
Fourier Transform(FFT) algorithm in our calculation. The FFT algo-
rithm is mature and widely used for many applications in engineering,
science, and mathematics. If we denote n as the product of number of
species and the average length, the complexity of our proposed cumu-
lated Fourier power spectrum method is O(nlogn) using the Fast Fourier
Transform, while the time for alignment will increase exponentially as
n increases. n can be considered as the scale of original data since each
nucleotide must be input and read by any algorithm. The MSA method
is actually an NP-hard computational optimization problem which is
implausible for a huge amount of sequences (Wang and Jiang, 1994).

When a new unknown species is added into the dataset, we only
need to calculate the distance between the new species and the previous
ones to get the relationship between them. In other words, the new-
added species doesn't affect the relationships of previous species.
However, the MSA method requires the reconstruction of alignment
result, because the alignment depends on the identification of homo-
logous positions (Edgar and Batzoglou, 2006).

4. Conclusion and discussion

In the Method section, we prove that CPS is better than PS theore-
tically. In the process of using mathematical methods to analyze bio-
logical data, we always want to preserve more information in raw data.
CPS makes it possible to recover the power spectra of the DNA se-
quences while PS cannot, and that illustrates its better performance on
real datasets.

The performance on datasets of various species and scales proves
that the new proposed CPS method can be applied on large genomes
and produce accurate results with high time-efficiency. It provides a
new quantitative way of analyzing evolutionary relationships among
species in molecular biological study.

MSA algorithm can be seen as a generalization of pairwise sequence
alignment, in which, instead of aligning two sequences, k sequences are
aligned simultaneously. However, the alignment itself requires a given
scoring matrix, which represents the penalty functions for gap and
mismatch. The assigning of scores influences the result of alignment
directly. However, there is no clear biological explanation on the
scoring matrix yet. Inappropriate scoring matrix will cause errors in
alignment, which means that an ancestral position has not been iden-
tified correctly, and consequently inferences of the number of sub-
stitutions will be incorrect. Alignment is the first step in many evolu-
tionary studies, and the errors can amplify in later computational
stages. We consider this as the main cause for the bad performance on
large datasets such as the Influenza A and HRV datasets. For smaller
datasets like primates, alignment is very easily obtained without much
confusion. When sequences get longer and the species become more,
the performance of alignment methods will get worse. Besides, the MSA
method is an NP-hard algorithm, which deeply weakens its strength in
the genomics analysis.

The main reason that the CPS method performs better than the k-
mer method is that, k-mer only captures the frequency of each word in

the k-dictionary, while it ignores the positions of the k-string word. In
biology, the nucleotides are arranged on the genome orderly, thus the
position information is essential when analyzing sequence similarity.
Two different sequences may show no difference when calculating the
frequency of each k-mer. Here we take the VIPR1-AS1 gene as an ex-
ample. This gene has only 1711 bp and we generate two artificial mu-
tations in the sequence. We add one small segment of ‘AAAAACCCCC
GGGGGTTTTT’ at the position 5 (near the start of the gene) in the
original sequence and denote this as mutation-1. The same segment is
added to the original sequence at position 1663 (near the end of the
gene) and denoted as mutation-2. Since the segment is added at dif-
ferent positions, the numerical vector should be able to detect the dif-
ference between the two mutations. However, the corresponding k-mer
(k=5) cannot capture this difference, since the two mutational se-
quences produce the same k-mer vector. This is one of the main in-
formation that k-mer fails to collect, since it only captures the frequency
of each k-mer, without recording the positions of each mutation.
However, their corresponding CPS vectors are different and the dis-
tance between them is not zero. The sequences of the original VIPR1-
AS1 gene and two mutations can be found in Appendix A.

Although our CPS method performs well on several datasets, there
are still some small issues. For example, in Fig. 2, we suspect the A/
turkey/Minne-sota/1988(H7N9) as the main cause of the outbreak of
H7N9 in 2013, since it locates on the cluster of H7N9, and H7N3. We
may further deduce that it could be a variant from the H7N3 viruses on
the surface neuraminidase(NA), and further produces the H7N9 var-
iants since 2009. This conjecture needs more biological evidence to
prove it correct. In the primates' dataset, four classes are all differ-
entiated in Fig. 6, while Homo sapiens is considered to have the closest
relationship with Chimpanzee, where the result given by MSA agrees
with common sense in Fig. 8 (Gibbons, 2012).

Another issue is that during Fourier Transformation, the informa-
tion is kept in both the power spectrum and the angle information. The
proposed CPS method only captures information in the power spec-
trums while there must be some other useful information left in the
angles. We expect higher accuracy when taking the angle information
into consideration, which is also the focus of our future work.
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