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Abstract Staggered grid techniques are attractive ideas for flow problems due to their more
enhanced conservation properties. Recently, a staggered discontinuous Galerkin method is
developed for the Stokes system. Thismethod has several distinctive advantages, namely high
order optimal convergence as well as local and global conservation properties. In addition, a
local postprocessing technique is developed, and the postprocessed velocity is superconver-
gent and pointwisely divergence-free. Thus, the staggered discontinuous Galerkin method
provides a convincing alternative to existing schemes. For problems with corner singularities
and flows in porous media, adaptive mesh refinement is crucial in order to reduce the com-
putational cost. In this paper, we will derive a computable error indicator for the staggered
discontinuous Galerkin method and prove that this indicator is both efficient and reliable.
Moreover, we will present some numerical results with corner singularities and flows in
porous media to show that the proposed error indicator gives a good performance.

Keywords Stokes problem · Staggered discontinuous Galerkin method · Error indicator ·
A-posteriori error estimate · Adaptive refinement

1 Introduction

Let � be a polyhedral domain in R
2 or R3. We consider the Stokes problem

⎧
⎨

⎩

−�u + ∇ p = f , in �,

∇ · u = 0, in �,

u = g, on ∂�,

(1)

where u is the velocity field, p is the pressure with
∫

�
p dx = 0, f is the given source term,

and g is the given boundary term with
∫

∂�
g · n = 0. Here n is the unit outward normal
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vector on the boundary. Throughout the paper, vector fields are denoted by bold faces. The
solution of the Stokes system is useful in many applications, and there are many challenges
in dealing with the numerical approximations. For example, when the domain of interest has
some corners, the solution of the Stokes system will be singular near those corner points.
Besides, for Stokes flows in porous media, the flow features are very complicated and require
very finemesh in order to capture these features. In these scenarios, one possible strategy is to
apply adaptive mesh refinement technique and refine the mesh at suitable locations in order
to reduce the computational cost. For adaptive mesh refinement techniques, the construction
of an efficient and reliable error indicator is the key ingredient. The aim of the paper is to
derive an error indicator for the recently developed staggered discontinuous Galerkin (SDG)
method [30] for the Stokes system and analyze the reliability and efficiency of this error
indicator.

Discontinuous Galerkin (DG) methods have been proven to be a class of very successful
numerical schemes for the approximation of the Stokes system, due to their high order of
approximation, ease of implementation and local conservation. For example, the local DG
method [5,18], the hp DGmethod [36], the mixed DGmethod [32,33] and the HDGmethod
[17,19,20] are popular schemes in applications. Recently, the SDG method [30] is proposed
and analyzed for the Stokes system. The use of staggered meshes for the Stokes flow is
popular in the finite volume and the finite difference communities [1,2] due to their more
enhanced conservation property, which is crucial for Stokes flow. For DG methods, the work
in [30] gives the first DGmethod defined on staggered meshes. The SDGmethod has several
distinctive advantages, namely high order optimal convergence as well as local and global
conservation properties. Moreover, shown in [8,20], a local postprocessing can be applied to
the SDG solution to obtain a superconvergent and pointwisely divergence free velocity. The
SDGmethod is also applied to the incompressible Navier-Stokes equations [4], see also [35]
for a related work, and a number of other problems, see [6,7,9,12–16,30].

Adaptive techniques for finite element and discontinuousGalerkinmethods arewell devel-
oped, and there are works that construct error estimators for the Stokes problem, such as [22]
and [37]. These estimates typically contain generic (unknown) constants and as such do
not provide actual computable error bounds. To overcome this issue, [21] derives constant-
free (for the upper bound) a posteriori error estimates for the Crouzeix-Raviart finite element
approximation of Stokes flow. In [25], the authors develop a unified framework for a posteriori
error estimation for the Stokes problem discretized by various numerical methods, including
the conforming divergence-free, DG, conforming (stabilized), nonconforming, mixed, and
finite volume methods. This kind of estimates is based on a velocity reconstruction and a
locally conservative flux (stress) reconstruction. Moreover, classical residual-based a poste-
riori error estimates are derived within one unifying framework for lowest-order conforming,
nonconforming, and mixed finite element schemes in [3]. In [11], the idea is generalized to
more general situations to obtain new a posteriori error estimates for other methods such as
mortar and DGmethods. Further extensions of this kind of estimators for a wide range of DG
methods are derived in [10]. Furthermore, [23] deals with the hp error analysis of a hybrid
discontinuous Galerkin (HDG) method for incompressible flow.

As discussed before, adaptivemesh refinement for solving the Stokes problem is important
in applications and has been derived for many different finite element methods. For the SDG
method, an adaptive mesh refinement is derived for the time-harmonic Maxwell’s equations
in [16]. However, the adaptive SDG method has not yet been developed for solving the
Stokes problem and hence will be developed in this paper. We will first derive computable
error indicator for the estimation of a DG-norm error of the approximate solution. This
computable error indicator is composed of local residuals and the jumps of the velocity.
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We will then show the reliability of this indicator. In particular, we will show that, the DG-
norm error of the approximate solution is bounded above by this computable error indicator.
The idea of the proof follows from some ideas in [24,27], and is also based on some new
contributions specifically designed for the SDG method. Next, we will prove the efficiency
of the error indicator, and we will show that the DG-norm error of the approximate solution is
bounded below by this computable error indicator up to a data approximation term. We will
apply the standard bubble function technique [38] to prove this result. Based on this error
indicator, we will construct an adaptive mesh refinement strategy, which is not the same as
the classical one since our method is based on a staggered mesh, and some careful refinement
strategies are necessary to retain the staggered structure. We will present several numerical
results to show the performance of our method. We will first present an example, with a
known exact solution, to show the convergence of our adaptive scheme and compare our
scheme to uniform refinement. We see that our adaptive scheme, as predicted, is much better
than the uniform refinement, and has an optimal rate of convergence. We also see that, as the
mesh is refined, the error indicator becomes close to the true DG-norm error. We will next
consider two examples with corner singularities, and show that our adaptive method is able
to produce the correct refinement near the corners. Finally, we will present two examples for
Stokes flow in porous media. We consider perforated domains with circular perforations, and
flows across the domain. For this type of problems, the flow structure is complicated and one
cannot refine the mesh locally a-priori. Thus, adaptive mesh refinement is a perfect strategy
for this problem. Our results show that the adaptive SDG method is able to give a locally
refined mesh at the correct locations and capture the complicated behavior of the solution.

The paper is organized as follows. In Sect. 2, we will have a brief review on the SDG
method for the Stokes system. In Sect. 3, we will derive a residual-type a-posteriori error
estimator for the SDGmethod and prove its reliability and efficiency. An adaptive refinement
strategy based on this error estimator is also given in Sect. 3. In Sect. 4, we present some
numerical examples to show the accuracy and efficiency of the proposed error estimator and
the adaptive SDG method. Finally, concluding remarks are provided in Sect. 5.

2 The SDG Method

In this section, wewill present a brief review of the SDGmethod for the Stokes system, which
is developed in [30] with a-priori error estimates. We will consider the two-dimensional case
for the ease of presentation, and we write u = (u1, u2) and f = ( f1, f2). We also assume
g = 0 for simplicity, and the proposed method can be applied to the nonhomogeneous case.

To begin, we introduce the auxiliary variables

w = ∇u1, z = ∇u2 (2)

so that the Stokes system (1) can be written as

⎧
⎪⎪⎨

⎪⎪⎩

−∇ · w + px = f1, in �,

−∇ · z + py = f2, in �,

∇ · u = 0, in �,

u = 0, on ∂�,

(3)

together with the constraint that
∫

�
p dx = 0. Throughout the paper, we define the spaces

L2(�) and H1(�) as usual Sobolev spaces and further define
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Fig. 1 An illustration of the triangulation

H1
0 (�) = {v : v ∈ H1(�); v|∂� = 0}, (4)

L2
0(�) = {v : v ∈ L2(�);

∫

�

v = 0}. (5)

We assume that the solution (u,w, z, p) to the problem (3) satisfies (u,w, z, p) ∈
[H1

0 (�)]2 × [L2(�)]2 × [L2(�)]2 × L2
0(�) and that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

�

w · ∇v1 +
∫

�

z · ∇v2 −
∫

�

p∇ · v = ( f , v)0,�,

∫

�

ψ1 · ∇u1 = (w,ψ1)0,�,

∫

�

ψ2 · ∇u2 = (w,ψ2)0,�,

∫

�

q∇ · u = 0,

(6)

for all (v,ψ1,ψ2, q) ∈ [H1
0 (�)]2 × [L2(�)]2 × [L2(�)]2 × L2

0(�). Here, (·, ·)0,� denotes
the standard L2(�) inner product.

To solve Eq. (3) numerically, we first need to construct a staggered mesh. Let Tq be an
initial shape regular triangulation of � without hanging nodes, as illustrated by solid lines in
Fig. 1. We denote the set of all edges in Tq as Fu and denote the subset of all interior edges
as F0

u . For the implementation for the SDG scheme, we need to further divide Tq to get a
staggered mesh. For each triangle, we denote ν as the center of the triangle, and obtain three
subtriangles by connecting ν to the three vertices of this triangle. The union of these three
subtriangles is called S(ν). We introduce the notation N to denote the set of all such nodes
ν. We then use Fp to denote the set of all new edges generated, as illustrated by dotted lines
in Fig. 1. Then we define T as the new triangulation after subdivision and define F to be the
set of all edges of T , and thus we have F = Fu ∪ Fp . We further denote F0 = F0

u ∪ Fp as
the set of all interior edges of T .

With the triangulation, we now define the finite element spaces. Let τ ∈ T and define
Pk(τ ) as the space of polynomials of degree up to k on τ . We then define the following
spaces with staggered continuity property:

Uh =
{
v : v|τ ∈ Pk(τ ), ∀τ ∈ T ; v is continuous over e ∈ F0

u ; v|∂� = 0
}

, (7)

Wh =
{
w : w|τ ∈ [Pk(τ )]2, ∀τ ∈ T ; w · n is continuous over e ∈ Fp

}
, (8)

Ph =
{

q : q|τ ∈ Pk(τ ), ∀τ ∈ T ; q is continuous over e ∈ Fp;
∫

�

q = 0

}

. (9)
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In the above definitions, we define a unit normal vector n on each edge e ∈ F by the
following way. If e ∈ ∂� is on the boundary, then we define n as the unit normal vector
pointing outside of �. For an interior edge e ∈ F0

u ∪ Fp , we define K+ and K− as the two
triangles sharing this edge. We use notations n+ and n− to denote the outward unit normal
vectors of e taken from K+ and K−, respectively. Then we fix n as one of n± for each interior
edge e. Next, we give notations to describe the jump of a function over an interior edge. We
use notations v+ and v− to denote the values of a function v on e taken from K+ and K−,
respectively. The notation [v] over an edge e for a scalar valued function v is defined as

[v]|e := (v+n+ + v−n−) · n. (10)

For a vector-valued function v, the notation [v · n] is defined as
[v · n]|e := v+ · n+ + v− · n−. (11)

With the above notations, the SDG scheme [30] for the Stokes system is given as follows:
find (uh,wh, zh, ph) ∈ [Uh]2 × Wh × Wh × Ph , such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Bh(wh, vh,1) + Bh(zh, vh,2) + b∗
h(ph, vh) = ( f , vh)0,�,

B∗
h (uh,1,ψ1) = (wh,ψ1)0,�,

B∗
h (uh,2,ψ2) = (zh,ψ2)0,�,

bh(uh, qh) = 0,

(12)

for all (vh,ψ1,ψ2, qh) ∈ [Uh]2 × Wh × Wh × Ph . Here, uh = (uh,1, uh,2) and vh =
(vh,1, vh,2). The bilinear forms Bh(wh, vh) and B∗

h (uh,ψ) are defined as

Bh(wh, vh) =
∫

�

wh · ∇vh −
∑

e∈Fp

∫

e
wh · n[vh], (13)

B∗
h (uh,ψ) = −

∫

�

uh∇ · ψ +
∑

e∈F0
u

∫

e
uh[ψ · n], (14)

while the bilinear forms b∗
h(ph, vh) and bh(uh, qh) are defined as

b∗
h(ph, vh) = −

∫

�

ph∇ · vh +
∑

e∈Fp

∫

e
ph[vh · n], (15)

bh(uh, qh) =
∫

�

uh · ∇qh −
∑

e∈F0
u

∫

e
uh · n[qh]. (16)

For functions (u,w, z, p) and (v, q) defined on �, we define the bilinear form Ah as

Ah(u,w, z, p; v, q) : = Bh(w, v1) + Bh(z, v2) + b∗
h(p, v) − bh(u, q). (17)

By using this notation, the exact solution of the continuous problem (6) satisfies the following
equation

Ah(u,w, z, p; v, q) = ( f , v)0,�, (18)

for all (v, q) ∈ [H1
0 (�)]2 × L2

0(�). Also, the numerical solution of the discrete problem (12)
satisfies

Ah(uh,wh, zh, ph; vh, qh) = ( f , vh)0,�, (19)

for all (vh, qh) ∈ [Uh]2 × Ph .
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3 An Adaptive SDG Method

In this section, we will derive a reliable and efficient error indicator for the SDG scheme.
The error indicator can give a computable estimate of the numerical error in each triangle
τ ∈ T . Thus, we can construct an adaptive refinement strategy by using this error indicator
to refine the mesh in locations where the estimated numerical error is large.

Let (u,w, z, p) ∈ [H1
0 (�)]2 × [L2(�)]2 × [L2(�)]2 × L2

0(�) be the exact solution of
(6) and we let (uh,wh, zh, ph) ∈ [Uh]2 × Wh × Wh × Ph be the numerical solution of the
SDG scheme (12). Then, we denote the numerical error as

(eu, ew, ez, ep) : = (u − uh,w − wh, z − zh, p − ph). (20)

For a vector-valued function v = (v1, v2), we write |v|21;� := ‖∇v1‖20;� + ‖∇v2‖20;�.
Here, the gradient operator ∇ means the discrete/broken gradient. Moreover, we define the
following norms

∥
∥(eu, ew, ez, ep)

∥
∥2
cts : = |eu |21;� + ‖ew‖20;� + ‖ez‖20;� + ∥

∥ep
∥
∥2
0;� , (21)

∥
∥(eu, ew, ez, ep)

∥
∥2
DG : = ∥

∥(eu, ew, ez, ep)
∥
∥2
cts +

∑

e∈Fp

h−1
e ‖[eu]‖20;e , (22)

where ‖[eu]‖20;e = ∥
∥[eu,1]

∥
∥2
0;e + ∥

∥[eu,2]
∥
∥2
0;e and he is the length of the edge e. In the above,

we adopt standard notations for norms.
In Sect. 3.1, we will prove the reliability of an error estimator with respect to the DG

norm
∥
∥(eu, ew, ez, ep)

∥
∥
DG. The efficiency of this error estimator will be proved in Sect. 3.2.

Finally, we will give the adaptive refinement technique in Sect. 3.3.

3.1 Reliability of the Error Indicator

The aim of the section is to prove the following theorem. It says that the DG error defined in
(22) is bounded above by a computable error indicator η, which is defined in (23) and (24).
Throughout the paper, the notationα � β means that α ≤ Cβ for a constantC independent of
the mesh size h. For the analysis below, we define H1

P (�) as a subspace of L2
0(�) containing

functions that are continuous on Fp .

Theorem 3.1 Assuming the exact solution (u,w, z, p) ∈ [H1
0 (�)]2 × [L2(�)]2 ×

[L2(�)]2×L2
0(�) of (6) is smooth and denoting (uh,wh, zh, ph) ∈ [Uh]2×Wh ×Wh × Ph

be the numerical solution of the SDG scheme (12), we can estimate theDGnormof the numer-
ical error (eu, ew, ez, ep) defined in Eqs. (20–22) as

∥
∥(eu, ew, ez, ep)

∥
∥2
DG � η2 :=

∑

τ∈T
η2τ , (23)

where for each τ ∈ T ,

η2τ : = h2τ ‖R1‖20;τ + ‖R2‖20;τ + ‖R3‖20;τ + ‖R4‖20;τ
+

∑

e∈F0
u∩τ

he
(‖J1‖20;e + ‖J2‖20;e

)+
∑

e∈Fp∩τ

h−1
e ‖J3‖20;e , (24)
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with ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1 = f +
(∇ · wh

∇ · zh
)T

− ∇ ph,

R2 = wh − ∇uh,1,

R3 = zh − ∇uh,2,

R4 = ∇ · uh,
J1 = [n1 ph − wh · n],
J2 = [n2 ph − zh · n],
J3 = [uh].

(25)

Here, hτ denotes the diameter of the circumcircle of a triangle τ , he is the length of an edge
e and n = (n1, n2) is the fixed unit normal vector defined on each e.

The proof of Theorem 3.1 uses some ideas from Houston et al’s idea, see [24,27]. Firstly,
we recall that the exact solution satisfies (18). We will next show that the bilinear form Ah

satisfies the following condition.

Lemma 3.2 For any (u,w, z, p) ∈ [H1
0 (�)]2×[L2(�)]2×[L2(�)]2×H1

P (�), there exists
v0 ∈ [H1

0 (�)]2 and q0 ∈ H1
P (�) such that

Ah(u,w, z, p; v0, q0) ≥ 1

4
‖(u,w, z, p)‖2cts

−‖∇u1 − w‖20;� − ‖∇u2 − z‖20;� , (26)

with
∣
∣v0
∣
∣
1;� + ∥

∥q0
∥
∥
0;� � |u|1;� + ‖p‖0;� . (27)

Proof Since p ∈ L2
0(�), by [24], there exists s ∈ H1

0 (�)2 such that

− (p,∇ · s)0,� ≥ ‖p‖20;� , (28)

|s|1;� ≤ ‖p‖0;� . (29)

For the above choice of s, we take v0 = 2u + s and q0 = 2p. Then we have

Ah(u,w, z, p; v0, q0) = Bh(w, 2u1 + s1) + Bh(z, 2u2+s2) + b∗
h(p, 2u + s) − bh(u, 2p)

= 2(w,∇u1)0,� + (w,∇s1)0,� + 2(z,∇u2)0,� + (z,∇s2)0,�

− 2(p,∇ · u)0,� − (p,∇ · s)0,�
− 2(u,∇ p)0,� + 2

∑

e∈F0
u

∫

e
u · n[p]. (30)

Using integration by parts and the fact that p is continuous over Fp , it is clear that

(p,∇ · u)0,� + (u,∇ p)0,� =
∑

e∈F0
u

∫

e
u · n[p]. (31)

Hence, we have

Ah(u,w, z, p; v0, q0) = 2(w,∇u1)0,� + 2(z,∇u2)0,�

+ (w,∇s1)0,� + (z,∇s2)0,� − (p,∇ · s)0,�. (32)
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Next, we will bound the first four terms in (32) one by one. By the Cauchy-Schwartz inequal-
ity, we have

(w,∇u1)0,� = (w,w)0,� + (w,∇u1 − w)0,�

≥ ‖w‖20;� − 1

2

(‖w‖20;� + ‖∇u1 − w‖20;�
)

= 1

2
‖w‖20;� − 1

2
‖∇u1 − w‖20;� . (33)

By writing (w,∇u1)0,� = (∇u1,∇u1)0,� + (w − ∇u1,∇u1)0,�, we can bound the same
term (w,∇u1)0,� as follows

(w,∇u1)0,� ≥ 1

2
‖∇u1‖20;� − 1

2
‖∇u1 − w‖20;� . (34)

Thus we can bound 2(w,∇u1)0,� in using (33–34) with a suitable weighting, namely

2(w,∇u1)0,� = 3

2
(w,∇u1)0,� + 1

2
(w,∇u1)0,�

≥ 3

2

(
1

2
‖w‖20;� − 1

2
‖∇u1 − w‖20;�

)

+1

2

(
1

2
‖∇u1‖20;� − 1

2
‖∇u1 − w‖20;�

)

= 3

4
‖w‖20;� + 1

4
‖∇u1‖20;� − ‖∇u1 − w‖20;� . (35)

Similarly, we have

2(z,∇u2)0,� ≥ 3

4
‖z‖20;� + 1

4
‖∇u2‖20;� − ‖∇u2 − z‖20;� . (36)

Again, by the Cauchy-Schwartz inequality, we obtain easily that

(w,∇s1)0,� ≥ −1

2

(‖w‖20;� + ‖∇s1‖20;�
)
, (37)

(z,∇s2)0,� ≥ −1

2

(‖z‖20;� + ‖∇s2‖20;�
)
. (38)

By Eqs. (32) and (35–38), we have

Ah(u,w, z, p; v0, q0) ≥ 1

4
‖w‖20;� + 1

4
‖z‖20;� + 1

4
‖∇u1‖20;� + 1

4
‖∇u2‖20;�

−‖∇u1 − w‖20;� − ‖∇u2 − z‖20;�
−1

2
‖∇s1‖20;� − 1

2
‖∇s2‖20;�

−(p,∇ · s)0,�. (39)

Using (28–29), we arrive at the conclusion that

Ah(u,w, z, p; v0, q0) ≥ 1

4

(|u|21;� + ‖w‖20;� + ‖z‖20;� + ‖p‖20;�
)

−‖∇u1 − w‖20;� − ‖∇u2 − z‖20;� , (40)

123



774 J Sci Comput (2017) 70:766–792

which proves the first statement of our lemma. The proof of the second statement is straight
forward as

∣
∣v0
∣
∣
1;� + ∥

∥q0
∥
∥
0;� = |2u + s|1;� + ‖2p‖0;�

� |u|1;� + |s|1;� + ‖p‖0;�
� |u|1;� + ‖p‖0;� , (41)

where the last inequality comes from (29). ��
By introducing an auxiliary function uc ∈ [H1

0 (�)]2∩[Uh]2, the following upper estimate
of the error is an immediate consequence of Lemma 3.2.

Corollary 3.3 Under the assumption of Theorem 3.1, for any uc = (uc1, u
c
2) ∈ [H1

0 (�)]2 ∩
[Uh]2, there exists (v0, q0) ∈ [H1

0 (�)]2 × H1
P (�) such that

∥
∥(eu, ew, ez, ep)

∥
∥2
cts � Ah(u − uc, ew, ez, ep; v0, q0) + ∣

∣uh − uc
∣
∣2
1;�

+‖R2‖20;� + ‖R3‖20;� , (42)

and
∣
∣v0
∣
∣
1;� + ∥

∥q0
∥
∥
0;� � |u − uc|1;� + ∥

∥ep
∥
∥
0;�.

Proof It is obvious that (u − uc, ew, ez, ep) satisfies the assumption of Lemma 3.2. Hence,
by the triangle inequality and Lemma 3.2, there exists (v0, q0) ∈ [H1

0 (�)]2 × H1
P (�) such

that
∥
∥(eu, ew, ez, ep)

∥
∥2
cts ≤ ∥

∥(u − uc, ew, ez, ep)
∥
∥2
cts + ∣

∣uh − uc
∣
∣2
1;�

� Ah(u − uc, ew, ez, ep; v0, q0)

+ ∥
∥∇(u1 − uc1) − ew

∥
∥2
0;� + ∥

∥∇(u2 − uc2) − ez
∥
∥2
0;�

+ ∣
∣uh − uc

∣
∣2
1;� , (43)

and
∣
∣v0
∣
∣
1;� + ∥

∥q0
∥
∥
0;� � |u − uc|1;� + ∥

∥ep
∥
∥
0;�. From (6), we have ‖∇u1 − w‖0;� = 0

and ‖∇u2 − z‖0;� = 0. Therefore, we have
∥
∥∇(u1 − uc1) − ew

∥
∥
0;� = ∥

∥∇u1 − w + wh − ∇uc1
∥
∥
0;�

≤ ∥
∥wh − ∇uh,1

∥
∥
0;� + ∣

∣uh,1 − uc1
∣
∣
1;� , (44)

and similarly,
∥
∥∇(u2 − uc2) − ez

∥
∥
0;� ≤ ∥

∥zh − ∇uh,2
∥
∥
0;� + ∣

∣uh,2 − uc2
∣
∣
1;� . (45)

Combining (43–45) and replacing wh − ∇uh,1 and zh − ∇uh,2 by R2 and R3 respectively,
our result follows. ��

We remark that, in (42), the termsAh(u−uc, ew, ez, ep; v0, q0) and |uh − uc|1;� do not
have an upper estimate yet, and we will next derive upper bounds for these terms. Before
that, we recall the following lemma from Houston et al [28] on polynomial approximations.

Lemma 3.4 Let v ∈ [H1
0 (�)]2, there exists vh ∈ [Uh]2 satisfying the following conditions:

‖v − vh‖20;τ � h2τ ‖∇v‖20;τ , (46)

‖∇(v − vh)‖20;τ � ‖∇v‖20;τ , (47)

for all τ ∈ T , where ‖∇v‖20;τ means ‖∇v1‖20;τ + ‖∇v2‖20;τ for v = (v1, v2).
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With the approximation properties fromLemma 3.4, we are ready to find an upper estimate
for Ah(u − uc, ew, ez, ep; v0, q0).

Lemma 3.5 Let v0 = (v01, v
0
2) ∈ [H1

0 (�)]2 and q0 ∈ H1
P (�) be chosen as in Corollary 3.3,

then we have

Ah(u − uc, ew, ez, ep; v0, q0)

�
(
η + ∣

∣uh − uc
∣
∣
1;�
) (∣
∣uh − uc

∣
∣
1;� + ‖(eu, ew, ez, ep)‖DG

)
. (48)

Proof By the fact that (v0, q0) ∈ [H1
0 (�)]2 × H1

P (�), we have

Ah(u − uc, ew, ez, ep; v0, q0) = Ah(u,w, z, p; v0, q0) − Ah(uc,wh, zh, ph; v0, q0)

= ( f , v0)0;� − Ah(uc,wh, zh, ph; v0, q0), (49)

where the second equality comes from (18). Let v0h = (v0h,1, v
0
h,2) ∈ [Uh]2 be the approxi-

mation of v0 chosen as in Lemma 3.4 and q0h ∈ Ph be arbitrary. Then for the second term in
(49), we have

Ah(uc,wh, zh, ph; v0, q0) = Ah(uc,wh, zh, ph; v0h, q
0
h )

+Ah(uc,wh, zh, ph; v0 − v0h, q
0 − q0h )

= Ah(uh,wh, zh, ph; v0h, q
0
h )

+Ah(uc − uh, 0, 0, 0; v0h, q
0
h )

+Ah(uc,wh, zh, ph; v0 − v0h, q
0 − q0h )

= ( f , v0h)0;� − bh(uc − uh, q0h )

+Ah(uc,wh, zh, ph; v0 − v0h, q
0 − q0h ), (50)

where the last equality comes from (19) and the definition of Ah . Hence

Ah(u − uc, ew, ez, ep; v0, q0) = ( f , v0 − v0h)0;� + bh(uc − uh, q0h )

−Ah(uc,wh, zh, ph; v0 − v0h, q
0 − q0h ), (51)

by using (49–50). To manipulate the last term in (51), we use the definition

Ah(uc,wh, zh, ph; v0 − v0h, q
0 − q0h ) = Bh(wh, v

0
1 − v0h,1) + Bh(zh, v02 − v0h,2)

+ b∗
h(ph, v

0 − v0h) − bh(uc, q0 − q0h ), (52)

so that each of the first three terms in (52) can be further manipulated using integration by
parts, where

Bh(wh, v
0
1 − v0h,1) = −(∇ · wh, v

0
1 − v0h,1)0;� +

∑

e∈F0
u

∫

e
(v01 − v0h,1)[wh · n], (53)

Bh(zh, v02 − v0h,2) = −(∇ · zh, v02 − v0h,2)0;� +
∑

e∈F0
u

∫

e
(v02 − v0h,2)[zh · n], (54)

b∗
h(ph, v

0 − v0h) = (∇ ph, v
0 − v0h)0;� −

∑

e∈F0
u

∫

e
(v0 − v0h) · n[ph]. (55)
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Combining (51–55), we arrive at the conclusion that

Ah(u − uc, ew, ez, ep; v0, q0) = (R1, v
0 − v0h)0;�

+ bh(uc − uh, q0h ) + bh(uc, q0 − q0h )

+
∑

e∈F0
u

∫

e
(v01 − v0h,1)[n1 ph − wh · n]

+
∑

e∈F0
u

∫

e
(v02 − v0h,2)[n2 ph − zh · n]. (56)

For the second line of (56), by the last equation in (12) and the fact that q0 is continuous over
Fp , we have

bh(uc − uh, q0h ) + bh(uc, q0 − q0h ) = bh(uc, q0h ) + bh(uc, q0 − q0h )

= bh(uc, q0)

= (uc,∇q0)0;� −
∑

e∈F0
u

∫

e
uc · n[q0]

= −(∇ · uc, q0)0;� +
∑

e∈Fp

∫

e
uc · n[q0]

= −(∇ · uh, q0)0;� + (∇ · (uh − uc), q0)0;�
= −(R4, q

0)0;� + (∇ · (uh − uc), q0)0;�. (57)

Then from the Cauchy-Schwarz inequality, the trace inequality and (56–57),

Ah(u0 − uc, ew, ez, ep; v0, q0)

�
(
∑

τ∈T
h2τ ‖R1‖20;τ

)1/2
∣
∣v0
∣
∣
1;� +

(
∑

τ∈T
‖R4‖20;τ

)1/2
∥
∥q0

∥
∥
0;�

+
⎧
⎨

⎩

∑

e∈F0
u

he
(‖J1‖20;e + ‖J2‖20;e

)

⎫
⎬

⎭

1/2
∣
∣v0
∣
∣
1;� + ∣

∣uh − uc
∣
∣
1;�

∥
∥q0

∥
∥
0;�

�
(
η + ∣

∣uh − uc
∣
∣
1;�
) (∣
∣v0
∣
∣
1;� + ∥

∥q0
∥
∥
0;�
)

. (58)

Since (v0, q0) is chosen as in Corollary 3.3, which satisfies |v0|1;� + ∥
∥q0

∥
∥
0;� � |u −

uc|1;� + ‖ep‖0;�, we have
Ah(u − uc, ew, ez, ep; v0, q0)

�
(
η + ∣

∣uh − uc
∣
∣
1;�
) (

|u − uh |1;� + ∣
∣uh − uc

∣
∣
1;� + ‖ep‖0;�

)

�
(
η + ∣

∣uh − uc
∣
∣
1;�
) (∣
∣uh − uc

∣
∣
1;� + ‖(eu, ew, ez, ep)‖DG

)
. (59)

��
Now, we will derive an upper bound for |uh − uc|1;� using the following lemma on

polynomial approximations.
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Lemma 3.6 For any uh ∈ [Uh]2, there exists uc ∈ [H1
0 (�)]2∩[Uh]2, such that the following

inequality holds:
∣
∣uh − uc

∣
∣2
1;� �

∑

e∈Fp

h−1
e ‖[uh]‖20;e . (60)

Proof From Theorem 2.2 of [29], we know that there exists uc ∈ [H1
0 (�)]2 ∩ [Uh]2 such

that
∣
∣uh − uc

∣
∣2
1;� �

∑

e∈F0

h−1
e ‖[uh]‖20;e +

∑

e∈∂�

h−1
e ‖uh‖20;e . (61)

By the definition of Uh , we know that [uh]|F0
u

= 0 and uh |∂� = 0. Using the fact that

F0 = F0
u
⋃

Fp , we can obtain the conclusion. ��
Using all the results above, we are now ready to prove Theorem 3.1.

Lemma 3.7 Theorem 3.1 holds.

Proof From the definition of
∥
∥(eu, ew, ez, ep)

∥
∥
DG and by combining Corollary 3.3 and

Lemma 3.5, we can easily see that
∥
∥(eu, ew, ez, ep)

∥
∥2
DG � Ah(u − uc, ew, ez, ep; v0, q0) + ∣

∣uh − uc
∣
∣2
1;� + η2

�
(
η + ∣

∣uh − uc
∣
∣
1;�
) (∣
∣uh − uc

∣
∣
1;� + ∥

∥(eu, ew, ez, ep)
∥
∥
DG

)

+ ∣
∣uh − uc

∣
∣2
1;� + η2. (62)

From Lemma 3.6, we know that |uh − uc|1;� � η, hence
∥
∥(eu, ew, ez, ep)

∥
∥2
DG � η

(
η + ∥

∥(eu, ew, ez, ep)
∥
∥
DG

)+ η2. (63)

If
∥
∥(eu, ew, ez, ep)

∥
∥
DG ≤ η, then Theorem 3.1 is trivially satisfied. Otherwise, (63) implies
∥
∥(eu, ew, ez, ep)

∥
∥2
DG � η

∥
∥(eu, ew, ez, ep)

∥
∥
DG , (64)

where Theorem 3.1 clearly holds by dividing both sides of (64) by
∥
∥(eu, ew, ez, ep)

∥
∥
DG. ��

3.2 Efficiency of the Error Indicator

In this section, we will prove the efficiency of the error indicator (24–25) derived in the last
section. For our analysis, we denote the space of all piecewise polynomials of an arbitrary
order on T by P(T ). Then we have the following theorem, which is the main result of this
section.

Theorem 3.8 Using the notations in the previous section, we have

η2 �
∥
∥(eu, ew, ez, ep)

∥
∥2
DG +

∑

τ∈T
h2τ
∥
∥ f − f h

∥
∥2
0;τ , ∀ f h ∈ P(T ). (65)

Theorem 3.8 is proved by using the standard bubble function technique proposed by
Verfurth [38]. Let τ ∈ T be a triangle and e ∈ F be an edge with e = τ1 ∩ τ2. We denote
by βτ and βe the standard polynomial bubble functions on τ and e, respectively, which are
uniquely defined by the following properties:

supp βτ ⊂ τ, βτ ∈ P3(τ ), βτ � 0, max
x∈τ

βτ (x) = 1, (66)
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and

supp βe ⊂ τ1 ∪ τ2, βe|τi ∈ P2(τi ), i = 1, 2, βe � 0, max
x∈τ1∪τ2

βe(x) = 1. (67)

Noting that the error indicator η2 is defined as the sum of the element-wise error indicator
η2τ , we now denote the element-wise norm of the numerical error as

∥
∥(eu, ew, ez, ep)

∥
∥2
DG,τ

:= |eu |21;τ +‖ew‖20;τ +‖ez‖20;τ +∥∥ep
∥
∥2
0;τ +

∑

e∈Fp
⋂

τ

h−1
e ‖[eu]‖20;e ,

(68)

To implement the proof of Theorem 3.8, we consider all terms involved in η2τ one by one.
It turns out that each term can be bounded by the right-hand side of Equation (65). We will
deal with the residual terms in Lemmas 3.9 and 3.10 and the jump terms in Lemma 3.11.

Lemma 3.9 Let f h ∈ [P(T )]2 and τ ∈ T . Then we have

h2τ ‖R1‖20;τ �
∥
∥(eu, ew, ez, ep)

∥
∥2
DG;τ + h2τ

∥
∥ f − f h

∥
∥2
0;τ . (69)

Proof Define v := f h +
(∇ · wh

∇ · zh
)T

− ∇ ph which is a polynomial on τ , then R1 =
f − f h + v. Hence, we have

h2τ ‖R1‖20;τ ≤ h2τ
(
‖v‖20;τ + ∥

∥ f − f h
∥
∥2
0;τ
)

. (70)

By defining vb = βτv, we can bound ‖v‖0;τ by

‖v‖20;τ �
∥
∥β1/2

τ v
∥
∥2
0;τ

=
∫

τ

{
f h +

(∇ · wh

∇ · zh
)T

− ∇ ph
}

· vb

= ( f h, vb)0;τ −
∫

τ

wh · ∇vb,1 −
∫

τ

zh · ∇vb,2 +
∫

τ

ph∇ · vb, (71)

where the first inequality follows from the bubble function technique and the second equality
comes from integration by parts. Since vb ∈ H1

0 (τ )2, by the variational form (6) we have
∫

τ

w · ∇vb,1 +
∫

τ

z · ∇vb,2 −
∫

τ

p∇ · vb = ( f , vb)0;τ . (72)

By Eqs. (71) and (72), we can get

‖v‖20;τ � ( f h − f , vb)0;τ −
∫

τ

(wh − w) · ∇vb,1

−
∫

τ

(zh − z) · ∇vb,2 +
∫

τ

(ph − p)∇ · vb. (73)

For the first term in (73), we have

( f h − f , vb)0;τ ≤ ∥
∥ f − f h

∥
∥
0;τ · ‖vb‖0;τ

�
∥
∥ f − f h

∥
∥
0;τ · ‖v‖0;τ . (74)
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For the second term in (73), we consider

−
∫

τ

(wh − w) · ∇vb,1 ≤ ‖w − wh‖0;τ · ∥∥∇vb,1
∥
∥
0;τ

� h−1
τ ‖w − wh‖0;τ · ‖v1‖0;τ

≤ h−1
τ ‖w − wh‖0;τ · ‖v‖0;τ , (75)

where the middle inequality holds because vb,1 = βτ v1. Similarly, we also have

−
∫

τ

(zh − z) · ∇vb,2 ≤ h−1
τ ‖z − zh‖0;τ · ‖v‖0;τ . (76)

For the last term in (73), we have

∫

τ

(ph − p)∇ · vb ≤ ‖p − ph‖0;τ · ‖∇ · vb‖0;τ
� h−1

τ ‖p − ph‖0;τ · ‖v‖0;τ . (77)

The remaining part of the proof is straight forward. By (73–77), we have

‖v‖20;τ �
(∥
∥ f − f h

∥
∥
0;τ + h−1

τ ‖w − wh‖0;τ + h−1
τ ‖z − zh‖0;τ

+ h−1
τ ‖p − ph‖0;τ

) ‖v‖0;τ . (78)

Multiplying both sides of (78) by hτ ‖v‖−1
0;τ , we have

hτ ‖v‖0;τ � hτ

∥
∥ f − f h

∥
∥
0;τ + ∥

∥(eu, ew, ez, ep)
∥
∥
DG;τ . (79)

Hence,

h2τ ‖R1‖20;τ ≤ h2τ
(
‖v‖20;τ + ∥

∥ f − f h
∥
∥2
0;τ
)

�
∥
∥(eu, ew, ez, ep)

∥
∥2
DG;τ + h2τ

∥
∥ f − f h

∥
∥2
0;τ . (80)

��

Lemma 3.10 Let τ ∈ T , then we have

‖R2‖20;τ �
∥
∥(eu, ew, ez, ep)

∥
∥2
DG;τ , (81)

‖R3‖20;τ �
∥
∥(eu, ew, ez, ep)

∥
∥2
DG;τ , (82)

‖R4‖20;τ �
∥
∥(eu, ew, ez, ep)

∥
∥2
DG;τ . (83)

Proof Define v := R2 = wh − ∇uh,1, which is a polynomial on τ . Let vb = βτv. Since
vb ∈ H1

0 (τ )2, by the variational form (6) we have

∫

τ

vb · ∇u1 = (w, vb). (84)
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Using the similar trick as in the proof of the previous lemma,

‖v‖20;τ �
∥
∥β1/2

τ v
∥
∥2
0;τ

=
∫

τ

vb · (wh − ∇uh,1)

= (wh − w, vb) +
∫

τ

vb · ∇(u1 − uh,1)

� ‖w − wh‖0;τ · ‖v‖0;τ + |u − uh |1;� · ‖v‖0;τ
�
∥
∥(eu, ew, ez, ep)

∥
∥
DG;τ ‖v‖0;τ , (85)

which proves (81). Similarly, we can prove (82).
Let us now deal with the last inequality. Define v := R4 = ∇ · uh which is a polynomial

on τ . Let vb = βτ v. Since vb ∈ H1
0 (τ ), by the variational form (6) we have

∫

τ

vb∇ · u = 0. (86)

Again, by our standard trick, we have

‖v‖20;τ �
∥
∥β1/2

τ v
∥
∥2
0;τ

=
∫

τ

vb∇ · uh

=
∫

τ

vb∇ · (uh − u)

� |u − uh |1;� · ‖v‖0;τ . (87)

Our lemma follows as eu = u − uh . ��
Now, we proceed to the jump terms.

Lemma 3.11 Assume that the exact solution of (6) satisfies (u,w, z, p) ∈ [H1
0 (�)]2 ×

[L2(�)]2 × [L2(�)]2 × H1
P (�) and let e ∈ F0

u with e = τ1 ∩ τ2, then we have

he ‖J1‖20;e + he ‖J2‖20;e �
∑

i=1,2

∥
∥(eu, ew, ez, ep)

∥
∥2
DG;τi +

∑

i=1,2

h2τi
∥
∥ f − f h

∥
∥2
0;τi . (88)

Proof Since J1 = [n1 ph − wh · n] = [n1(ph − p) − (wh − w) · n] is a polynomial on e, we
define Qb,1 ∈ H1

0 (τ1∪τ2) be the extension of βe J1 on τ1∪τ2 such that Qb,1|e = βe J1. Here,
we assume [n1 p − w · n] = 0 on e ∈ F0

u . By using the standard bubble function technique,
we have

‖J1‖20;e �
∥
∥
∥β

1/2
e J1

∥
∥
∥
2

0;e

=
∫

e
[ph − p]Qb,1n1 −

∫

e
[(wh − w) · n]Qb,1

=
∑

i=1,2

∫

τi

(ph − p)(Qb,1)x +
∑

i=1,2

∫

τi

(ph − p)x Qb,1

−
∑

i=1,2

∫

τi

(wh − w) · (∇Qb,1) −
∑

i=1,2

∫

τi

∇ · (wh − w)Qb,1. (89)
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For the first term of (89), we have
∫

τi

(ph − p)(Qb,1)x � ‖p − ph‖0;τi · ∥∥(Qb,1)x
∥
∥
0;τi

� ‖p − ph‖0;τi · ∥∥∇Qb,1
∥
∥
0;τi

� h−1/2
e ‖p − ph‖0;τi · ‖J1‖0;e , (90)

where the last inequality follows from bubble function technique. The bound for the third
part of (89) is straight forward as

−
∫

τi

(wh − w) · (∇Qb,1) � ‖w − wh‖0;τi · ∥∥∇Qb,1
∥
∥
0;τi

� h−1/2
e ‖w − wh‖0;τi · ‖J1‖0;e . (91)

By (89–91), it is easy to see that

‖J1‖20;e � h−1/2
e ‖J1‖0;e

∑

i=1,2

(‖p − ph‖0;τi + ‖w − wh‖0;τi
)

+
∑

i=1,2

∫

τi

(ph − p)x Qb,1 −
∑

i=1,2

∫

τi

∇ · (wh − w)Qb,1 (92)

Similarly, by defining Qb,2 as the extension of βe J2, we have

‖J2‖20;e � h−1/2
e ‖J2‖0;e

∑

i=1,2

(‖p − ph‖0;τi + ‖z − zh‖0;τi
)

+
∑

i=1,2

∫

τi

(ph − p)y Qb,2 −
∑

i=1,2

∫

τi

∇ · (zh − z)Qb,2. (93)

Define J = (J1, J2) and Qb = (Qb,1, Qb,2). By Summing (92) and (93), we have

‖J‖20;e = ‖J1‖20;e + ‖J2‖20;e
� h−1/2

e ‖J‖0;e
∑

i=1,2

∥
∥(eu, ew, ez, ep)

∥
∥
DG;τi

−
∑

i=1,2

∫

τi

R1 · Qb

+
∑

i=1,2

∫

τi

{
( f − ∇ p) · Qb + ∇ · wQb,1 + ∇ · zQb,2

}
. (94)

For the second term of (94), we have

−
∫

τi

R1 · Qb � ‖R1‖0;τi
∥
∥Qb

∥
∥
0;τi

� ‖R1‖0;τi h1/2e ‖J‖0;e . (95)

The third term of (94) is zero by using the variational form. Now we have

h1/2e ‖J‖0;e �
∑

i=1,2

∥
∥(eu, ew, ez, ep)

∥
∥
DG;τi +

∑

i=1,2

hτ ‖R1‖0;τi , (96)
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and our lemma thus follows by using Lemma 3.9:

he ‖J1‖20;e + he ‖J2‖20;e = he ‖J‖20;e
�
∑

i=1,2

∥
∥(eu, ew, ez, ep)

∥
∥2
DG;τi +

∑

i=1,2

h2τ ‖R1‖20;τi

�
∑

i=1,2

∥
∥(eu, ew, ez, ep)

∥
∥2
DG;τi +

∑

i=1,2

h2τi
∥
∥ f − f h

∥
∥2
0;τi . (97)

��
Lemma 3.12 Theorem 3.8 holds.

Proof This is trivial by Lemma 3.9–3.11 and the fact that the last term in η is also a term in∥
∥(eu, ew, ez, ep)

∥
∥
DG. ��

3.3 The Adaptive Refinement Strategy

Since η is a reliable and efficient error estimator as proved in Sects. 3.1 and 3.2, it is a natural
choice to use η for a residual-type adaptive refinement scheme. Contrary to standard discon-
tinuous Galerkin methods, our adaptive refinement scheme is constructed based on the initial
mesh Tq instead of the final mesh T . In particular, we will compute error indicators for the
elements in the initial mesh, locate elements with large errors and then refine those elements.
After this process, we obtain a new initial mesh, and we will then use the construction of the
mesh and function spaces as described in Sect. 2 to form the new SDG system. Specifically,
we define the following indicator on the elements of the initial mesh

ξ2ρ : =
∑

τ∈T , τ∩ρ �=∅
η2τ , (98)

for each ρ ∈ Tq and

ξ2 : =
∑

ρ∈Tq

ξ2ρ . (99)

Now we present the adaptive refinement strategy. The idea is that we find out those
elements in Tq with higher error using our error indicator and only refine these elements

to get a new refinement mesh. With the j-th level initial triangulation denoted as T j
q , the

adaptive refinement scheme is described by the following loop:

1. Subdivide each triangle in T j
q to get the staggered mesh. Use the SDG scheme (12) to

solve for (u j
h,w

j
h, z

j
h, p

j
h).

2. Compute ξ2ρ for each triangle ρ ∈ T j
q and thus can compute ξ2.

3. If ξ2 is less than a threshold value δ0 or the total number of triangles in T j
q is larger than

a threshold N0, we stop the refinement procedure. Otherwise, we use the following two
steps to construct an refinement mesh T j+1

q .

4. We enumerate the triangles in T j
q such that ξρ1 ≥ ξρ2 ≥ ξρ3 ≥ · · · . Choose 0 < θ < 1

and find the least possible value of m such that

θξ2 ≤
m∑

i=1

ξ2ρi . (100)
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5. Get a new mesh T j+1
q by refining the m triangles in T j

q chosen by Step 4 and any other

possible triangles which keep the conformity of T j+1
q .

3.4 Remarks on the Use of Postprocessing

Recalling that in the DG norm
∥
∥(eu, ew, ez, ep)

∥
∥
DG, we compute the H1 semi-norm of the

error of the velocity u while compute the L2 norms of the other quantities, including the
pressure p. This norm is natural for the Stokes problem (1). However, it was shown in the
a priori error analysis of SDG method for the Stokes problem that the numerical solution
provides optimal convergence for all the variables. This makes |eu |1;� to be the leading
term in the above DG norm, converging with order k, while the L2 norms of the velocity
gradient and pressure converging with order k+1. Hence, the DG norm defined above seems
sub-optimal.

It would be beneficial to investigate on a posteriori error analysis for an optimal energy
norm; see, e.g., the relevant work by Larson and Målqvist [31] on optimal a posteriori
energy norm control of mixed FEM for diffusion. In the SDG setting, we will use the local
postprocessing technique applied to the SDG solution developed in [8,20]. By doing so, we
can obtain a superconvergent velocity ũh converging to u with order k + 2. If we consider
the following error

ẽu : = u − ũh, (101)

then the error norm
∣
∣ẽu
∣
∣
1;� converges one order higher than |eu |1;�. If we denote

∥
∥(ẽu, ew, ez, ep)

∥
∥2
new : = ∥

∥(ẽu, ew, ez, ep)
∥
∥2
cts +

∑

e∈F
h−1
e

∥
∥[ẽu]

∥
∥2
0;e , (102)

then the new norm of the postprocessed solution is optimal. By replacing uh with ũh , we can
easily prove that

∥
∥(ẽu, ew, ez, ep)

∥
∥2
new � η̃2 :=

∑

τ∈T
η̃2τ , (103)

where for each τ ∈ T ,

η̃2τ : = h2τ ‖R1‖20;τ +
∥
∥
∥R̃2

∥
∥
∥
2

0;τ +
∥
∥
∥R̃3

∥
∥
∥
2

0;τ +
∥
∥
∥R̃4

∥
∥
∥
2

0;τ

+
∑

e∈F0
u∩τ

he
(‖J1‖20;e + ‖J2‖20;e

)+
∑

e∈F∩τ

h−1
e

∥
∥
∥ J̃3

∥
∥
∥
2

0;e , (104)

with ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1 = f +
(∇ · wh

∇ · zh
)T

− ∇ ph,

R̃2 = wh − ∇ũh,1,

R̃3 = zh − ∇ũh,2,

R̃4 = ∇ · ũh,
J1 = [n1 ph − wh · n],
J2 = [n2 ph − zh · n],
J̃3 = [ũh].

(105)
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Fig. 2 Adaptive mesh with 2206
triangles

The proof is almost the same as in Sects. 3.1 and 3.2 and hence we omit the details. Note
that R̃2, R̃3, R̃4 and J̃3 converge with one order higher than R2, R3, R4 and J3 in the original
error estimator for

∥
∥(eu, ew, ez, ep)

∥
∥2
DG, respectively.

4 Numerical Examples

In this section,we provide several numerical examples to show the accuracy and the efficiency
of the proposed error indicator and the corresponding adaptive refinement technique. For sim-
plicity, we use piecewise linear elements for all examples. The parameter θ in Eq. (100) is
chosen to be 0.8. For the first three examples, we use structured triangular meshes. Unstruc-
tured meshes are used for the last two examples to handel more complicated geometry.

Example 1 To show the order of convergence of our adaptive refinement scheme, we first
give an example with analytical solution. Consider the L-shaped domain � = (−1, 1)2 \
([0, 1) × (−1, 0]), which has a point of singularity at the reentrant corner. The exact solution
is given by

u1 = rλ

(
(1 + λ) sin(ϕ)ψ(ϕ) + cos(ϕ)ψ ′(ϕ)

−(1 + λ) cos(ϕ)ψ(ϕ) + sin(ϕ)ψ ′(ϕ)

)

, (106)

p1 = −rλ−1((1 + λ)ψ ′(ϕ) + ψ ′′′(ϕ))/(1 − λ), (107)

where (r, ϕ) is the polar coordinate,

ψ(ϕ) = sin((1 + λ)ϕ) cos(λω)/(1 + λ) − cos((1 + λ)ϕ)

− sin((1 − λ)ϕ) cos(λω)/(1 − λ) + cos((1 − λ)ϕ), (108)

λ ≈ 0.54448373678246 and ω = 3π/2. Here we have (u1, p1) ∈ [H1+λ(�1)
]2 × Hλ(�2),

see [26].

The adaptive mesh is shown in Fig. 2. We can see that the refinements are more concen-
trated around the point of singularity as expected. Fig. 3a shows a comparison of the log-log
plots of the true error

∥
∥(eu, ew, ez, ep)

∥
∥
DG and the error indicator ξ . We can see that the error
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Fig. 3 Error plots for Example 1 a comparison of the true error and the error indicator, b comparison of
refinement schemes

indicator is very close to the true error and they almost coincide when we keep refining the
mesh, which confirms the reliability and efficiency of the error indicator. We also compare
our adaptive refinement method with the regular uniform refinement method in Fig. 3b. It is
evident that the error of the adaptive refinement scheme is less than the error of the uniform
refinement scheme when using the same number of elements. More importantly, we can see
that log

∥
∥(eu, ew, ez, ep)

∥
∥
DG declines at a rate of 0.5 against log(number of elements) for

the adaptive scheme, which corresponds to order 1 convergence in 2D domains. This shows
that our scheme out-performs the uniform refinement scheme and attains an optimal rate of
convergence for piecewise linear elements.

Example 2 Consider the square domain � = (0, 1)2 with a discontinuous boundary condi-
tion given by

u|∂� =
{

(1, 0), when y = 1,

(0, 0), elsewhere.
(109)

This problem is called the lid driven cavity problem as it describes the flow in a rectangular
container which is driven by the uniform motion of one lid [34]. Due to the discontinuity of
the boundary conditions, there are two singularities at the top corners of the domain.

We compare the results with different refinement methods in Figs. 4 and 5. To show the
advantage of the adaptive refinement method, we use less number of triangles compared with
the uniform refinement mesh, and thus can reduce the size of computation. We can observe
that the refinement in the adaptive method is muchmore reasonable. There are more elements
concentrated around the areas of singular points and less elements in the rest region. The
minimum length of the edges in T is 4.2426E − 6 for the adaptive method, while it’s 0.0156
for the uniform refinement method. As a result, the recovery of u around the singular point
is much finer with the adaptive mesh, as shown in Fig. 5. On the other hand, the recovery
of u on the rest region with the adaptive mesh is still similar to the one with uniform mesh,
showing that the costly dense mesh used in this area in the uniform refinement method is
unnecessary. One can imagine that it will be very costly to reach the same level of resolution
near the singular points by using the uniform refinement mesh.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4 Comparison of refinement schemes. a uniform mesh with 8192 triangles, b adaptive mesh with 6090
triangles, c computed u1 with uniformmesh, d computed u1 with adaptive mesh, e computed u2 with uniform
mesh, f computed u2 with adaptive mesh

Example 3 Let us consider a slightmodification onExample 2,which has amore complicated
domain. Consider the square S = (0, 1)2 divided into 72 identical triangles as shown in
Fig. 6a. Our computational domain � is defined by cutting triangles 15, 19–22, 31–34 and
51–57 from S. Hence, � together with the initial mesh is given by Fig. 6b.

123



J Sci Comput (2017) 70:766–792 787

Fig. 5 Zoom-in figures at singular point a computed u1 with uniform mesh, b computed u1 with adaptive
mesh

1
2

3
4

6
5

13

...

...

14

71
72

(a) (b)

Fig. 6 Initial mesh a index of triangles in S, b computational domain �

Furthermore, the boundary condition is given by

u|∂� =
{

(1, 0), when y = 5/6 and 1/6 ≤ x ≤ 1/2,

(0, 0), elsewhere.
(110)

As in Example 2, the number of triangles used in the adaptive refinement mesh is less than
that in the uniform refinement mesh. We compare different refinement methods in Figs. 7
and 8. We can see that the error indicator can capture the corners of the lid and the vertexes
of the inside boundary accurately. Here, the minimum length of the edge is 2E − 6 for the
adaptive refinement mesh and is 0.0104 for the uniform refinement mesh. The behavior of
the numerical solutions is quite similar to Example 2. Although the total number of elements
is less, the recovery is much finer around the singular points with the adaptive method while
the quality of the recovery remains unaffected on the rest of the domain.

Example 4 Let us consider the lid driven cavity problem in a rectangular perforated domain
� = (0, 10)2 with 19 circular perforations. The boundary condition is given by

u|∂� =
{

(1, 0), when y = 10,

(0, 0), elsewhere.
(111)
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(a) (b)

(c) (d)

(e) (f)

Fig. 7 Comparison of refinement schemes a uniformmesh with 14336 triangles, b adaptive mesh with 13350
triangles, c computed u1 with uniformmesh, d computed u1 with adaptive mesh, e computed u2 with uniform
mesh, f computed u2 with adaptive mesh

For this problem, contrary to the above examples, there is no clear indication to where to
refine the mesh. In particular, we do not know the structure of the solution based on the
locations and sizes of the perforations.

We show the initial mesh and the adaptive refinement mesh of level 32 in Fig. 9. It’s
clear that the refinements are concentrated around the top corners of the domain where the
solution has a singularity and some other regions where the solution has more fine structures.
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Fig. 8 Zoom-in figures at singular point a computed u2 with uniform mesh, b computed u2 with adaptive
mesh

(a) (b)

Fig. 9 Adaptive mesh for Example 4 a initial mesh, b mesh level 32

The plots of the velocity are shown in Fig. 10 from which we can observe the flow motion
between holes.

Example 5 Finally, we consider a rectangular perforated domain � = (0, 10)2 with 12
circular perforations. We consider a different boundary condition given by

u|∂� =
{

(1, 0), when x = 0 or x = 10,

(0, 0), elsewhere.
(112)

This problem describes the flow passing though a tunnel with obstructions.

We show the initial mesh and the adaptive refinement mesh of level 6 in Fig. 11. It’s clear
that the refinements are concentrated in areas where the solution has more fine scale features.
The plots of velocity are shown in Fig. 12 from which we can see that the fluid passes though
the tunnel from left to right by avoiding the obstructions.
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Fig. 10 Computed velocity with mesh level 32 a computed u1, b computed u2

(a) (b)

Fig. 11 Adaptive mesh for Example 5 a initial mesh, b mesh level 6

Fig. 12 Computed velocity with mesh level 6 a computed u1, b computed u2
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5 Concluding Remarks

In this paper, we derive a residual-type a-posteriori error estimator for the numerical solutions
of the Stokes system solved with the SDG method. The reliability and efficiency of this
error indicator is proved. By using this error indicator, an adaptive refinement technique is
proposed to solve fluid flow problems with singularities and flows in perforated domains,
which are computational expensive for the regular uniform refinement method. Numerical
examples show that the error indicator is close to the exact numerical error and thus can
capture the singular points accurately. Compared with the uniform refinement method, the
adaptive refinement method can improve the resolution near the singular points by making
the mesh more dense in this area. On the other hand, the accuracy of the rest region remains
unchanged even with courser mesh. The total number of elements is still less than that in the
uniform refinement mesh and hence the total computational cost can be reduced.

Note that our staggered mesh T is generated from an initial shape regular triangulation
Tq by dividing each triangle in Tq into three sub-triangles. Thus, almost all the sub-triangles
in T would be obtuse. Hence, a possible future work is to construct the initial mesh from a
macro quadrilateral mesh, or more generally, a macro polygonal mesh, to make the triangles
more regular. Also, we should consider the use of hanging nodes in our future works.
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