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a b s t r a c t

In this paper, we will develop a new staggered hybridization technique for discontinuous
Galerkin methods to discretize linear elastodynamic equations. The idea of hybridization
is used extensively in many discontinuous Galerkin methods, but the idea of staggered
hybridization is new. Our new approach offers several advantages, namely energy conser-
vation, high-order optimal convergence, preservation of symmetry for the stress tensor,
block diagonal mass matrices as well as low dispersion error. The key idea is to use two
staggered hybrid variables to enforce the continuity of the velocity and the continuity of
the normal component of the stress tensor on a staggeredmesh.We prove the stability and
the convergence of the proposed scheme in both the semi-discrete and the fully-discrete
settings. Numerical results confirm the optimal rate of convergence and show that the
method has a superconvergent property for dispersion. Furthermore, an application of this
method to Rayleigh wave propagation is presented.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Accurate elastic wave simulations are of critical importance in a variety of geophysical applications. One popular class
of methods is the staggered grid finite difference methods proposed by [1–3], which are very efficient for regular domains
with flat interfaces or surfaces. However, it is not easy to apply these methods to domains with complex geometries or
nonflat interfaces, which arise in more realistic applications. Recently, the discontinuous Galerkin (DG) method has become
increasingly popular, due to its great flexibility for higher-order spatial approximations and its ability of computing on
irregular domains. For instances, [4] demonstrated the hp-adaptivity for 3-D elasticwavewith convolutionperfectlymatched
layer, [5] developed hp-adaptivity schemes for elastic scattering, [6] designed a numerical scheme with efficient parallel
implementation for 3-D wave propagation problem in coupled elastic–acoustic media, and [7] proposed a solution strategy
for this problem using hp-adaptivity.

For a linear elastic material, wave propagation in the domain Ω ⊂ Rd is governed by

ρ
∂2w
∂t2

− div Cε(w) = f in Ω, (1)

where d = 2 or 3, ρ > 0 is the mass density, w(t, x) : [0, ∞) × Ω → Rd is the displacement, C is the stiffness tensor of the
medium, ε(w) =

1
2 (∇w + ∇wT ) is the strain tensor and f is the external force. There are two commonly used formulations

for the discretization. The displacement–stress formulation solves this problem in terms of the displacement and/or stress.
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Examples of DG method of this type, include the Internal Penalty Discontinuous Galerkin (IPDG) methods in [8–10]. In
addition, [11] proposed a DG method of this type where the energy is conserved with a suitable choice of numerical fluxes.

On the other hand, the velocity–stress formulation or the velocity–strain formulation solves this problem in terms of the
velocity and the stress or strain, resulting in a first-order system. The displacement can be recovered by integrating the
velocity in time. A variety of semi-discrete DG methods have been proposed to solve this system, e.g. [4,6,12,13]. These
methods use discontinuous elements to discretize the space with time-stepping to solve the system. To achieve higher
accuracy in time, [14] introduced the ADER-DG method for two-dimensional isotropic elastic wave propagation, where the
upwind flux and the ADER scheme in time are used to get the same order of accuracy in space and in time.

Recently, a new class of staggered DG (SDG)methods based on staggeredmeshes has been successfully developed for the
first-order formulation of wave equations. In [15,16], the SDG method was proposed for the time-dependent acoustic wave
equation. Note that the idea for the acoustic-wave equation cannot be directly applied to the elastic-wave equation due to the
symmetry of the stress tensor. In [17], a new SDGmethod using the Lagrangemultiplier technique for the enforcement of the
symmetry of the stress tensor was constructed. However, due to the staggered continuity requirements on basis functions,
this SDG method only gives a weak symmetry condition for the stress tensor.

In this paper, we introduce a new idea for elastic wave simulations. In particular, we will develop a new staggered
hybridization technique. We remark that the idea of hybridization is used extensively in many discontinuous Galerkin
methods, such as [13,18–22], but the idea of staggered hybridization is new. In our new method, the construction of a
staggered mesh follows the ideas from [15,16,23], where SDG methods were proposed for the time-dependent acoustic
wave equation and the static linear elastic equation. The new method is based on piecewise polynomial approximations.
Compared to [17], the continuity requirements on basis functions are removed, and the symmetry of the stress tensor is
strongly enforced in the approximation space. To couple the basis functions across element boundaries, two staggered hybrid
variables are used. These two hybrid variables are defined on edges of the staggered mesh, and are used to enforce the
continuity of the velocity and the continuity of the normal component of the stress tensor in a staggered way. The resulting
scheme offers several advantages, namely energy conservation, high-order optimal convergence as well as low dispersion
error. Moreover, the new scheme preserves the strong symmetry for the stress tensor. With respect to the time-stepping,
the new scheme requires only solutions of local saddle point problems defined on unions of few elements, and is thus very
efficient. This ‘‘local’’ feature is the result of our staggered hybridization. In addition, our method is locking-free. In other
words, the convergence is independent of the first Lamé’s parameter λ. For nearly incompressible materials, λ is very large
and many standard methods fail to address these materials as the numerical error grows as λ increases. We remark that
[17,24] show that the SDG scheme produces numerical solutions with dispersion errors that are two order higher than
non-staggered DG schemes. We will show numerically that the new scheme proposed in this paper also has a high order
dispersion error. We will also show an application involving the simulations of the Rayleigh waves.

The rest of this paper is organized as follows. The paper starts with the problem setting in Section 2. It is followed by
the detail of the proposed method in Section 3. Next, analyses for the convergence, the conservation, and the stability of
the semi-discrete solutions are given in Section 4. Analyses for fully discrete solutions are given in Section 5. Numerical
examples are given in Section 6 to demonstrate the performance of the proposedmethod. Finally, in Section 7, we give some
conclusions.

2. Problem setting

Denote the velocity u := wt , the d × d stress tensor σ := Cε(w) and the compliance tensor A := C−1. We rewrite (1) as
the following first order system,

ρ
∂u
∂t

− div σ = f, (2)

A
∂σ

∂t
− ε(u) = 0, (3)

in a bounded domain Ω ⊂ Rd (d = 2, 3) with a Lipschitz boundary. We consider the time t that lies in the interval [0, T ].
To fix the notation, we write u := (u1, . . . , ud)T , σ := (σij) and f := (f1, . . . , fd)T . We let σ i be the ith row of σ and define

the divergence as divσ := (divσ1, . . . , divσd)T . Moreover, ε(u) =
1
2 (∇u + ∇uT ) is a symmetric matrix, where ∇u :=

(
∂jui

)
is the row-wise gradient of u.

In the rest of this paper, we assume the elastic medium is homogeneous and isotropic. In other words, the compliance
tensor A is given by

Aτ :=
1
2µ

(
τ −

λ

2µ + dλ
tr(τ) I

)
, (4)

where λ and µ are positive constants called the first and the second Lamé’s parameters, respectively, tr(τ) is the trace of τ

and I is the identity tensor.
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Fig. 1. An illustration of the staggered mesh in R2 .

We assume the initial and boundary conditions for u and σ as

u(0, x) = u0(x), x ∈ Ω, (5)

σ(0, x) = σ0(x), x ∈ Ω, (6)

u(t, x) = ub(t, x), t ∈ (0, T ], x ∈ ∂ΩD, (7)

σ(t, x)n = σb(t, x), t ∈ (0, T ], x ∈ ∂ΩN , (8)

where ∂ΩD is the Dirichlet boundary and ∂ΩN = ∂Ω \ ∂ΩD is the Neumann boundary. Here n is the outward unit normal
vector on the boundary. The target is to compute approximations for u and σ.

3. Numerical scheme

In this section, we show the detailed formulations of our scheme. The semi-discrete formulation is shown in Section 3.1
and the fully-discrete formulation is shown in Section 3.2.

3.1. The semi-discrete system

To derive the numerical scheme, we construct a staggered mesh. We follow the construction in [16]. To begin with, we
triangulate the domain Ω ⊂ Rd into a family of shape-regular d-simplices T1 without hanging nodes.

Then we form the staggered mesh by further division of the triangles. We illustrate the division in Fig. 1 for the two-
dimensional case.

Let Fu be the set of all faces in T1, as illustrated by solid lines in Fig. 1. We further denote F0
u ⊂ Fu as the set of all

interior faces. Now for each simplex in T1, we pick an interior point ν and subdivide the simplex into d+ 1 sub-simplices by
connecting ν to the vertices of the simplex. The union of these d+ 1 sub-simplices is called S(ν). We introduceN to denote
the set of all such interior points ν. Let T be the set of all these sub-simplices. As illustrated by dotted lines in Fig. 1, we use
Fp to denote the set of all new faces formed in the subdivision process. Then we define F to be the set of all edges of T , and
thus we have F = Fu ∪ Fp. For each κ ∈ Fu we define R(κ) to be the union of simplices in T having the face κ . The regions
S(ν) and R(κ) form the staggered mesh.

Thenwe define some operators on the staggeredmesh. For each element τ ∈ T , we define nτ as the outward unit normal
vector on ∂τ . We will simply use n instead of nτ if there is no confusion. For each face e ∈ F , we define ne in the following
way. If e ∈ ∂Ω , thenwe definene as the unit normal vector pointing outside ofΩ . For an interior edge ewith e = ∂τ+

⋂
∂τ−,

we fix ne as one of nτ+ and nτ− . We use notations v+ and v− to denote the values of a vector v on e taken from τ+ and τ−,
respectively. Then the jump of v over the face e is defined as

[v]|e := (nτ− · ne)v−
+ (nτ+ · ne)v+.

Similarly, we use notations α+ and α− to denote the values of a tensor α on e taken from τ+ and τ−, respectively. The jump
of the normal flux of α is defined as

[αn]|e = α+nτ+ + α−nτ− .

Next, we describe the finite element spaces. Let us denote FD
u = F0

u
⋃

∂ΩD and FN
p = Fp

⋃
∂ΩN . Hence, F = FD

u
⋃

FN
p .

Moreover, we denote Pk(τ ) and Pk(e) as spaces of polynomials of degree at most k defined on the simplex τ and face e,
respectively. Next, we introduce the finite element space of piecewise polynomialsUh, the space of d×d symmetricmatrices
Wh, and the spaces for the hybrid variables Ûh and Ŵh as follows:

Uh := {v : v|τ ∈ Pk(τ ), ∀τ ∈ T },

Wh := {α : α|τ ∈ [Pk(τ )]d×d, α = αT , ∀τ ∈ T },

Ûh := {̂v : v̂|e ∈ Pk(e), ∀e ∈ FN
p },

Ŵh := {̂α : α̂|e ∈ Pk(e), ∀e ∈ FD
u }.
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We approximate solutions u and σ with uh ∈ Ud
h and σh ∈ Wh, respectively. Moreover, we approximate u|FN

p
and σne|FD

u

with ûh ∈ Ûd
h and σ̂h ∈ Ŵ d

h , respectively. By the definition of Wh, we know that the stress tensor σh is always strongly
symmetric.

Note that in traditional SDG methods, we usually impose staggered continuities of uh and σhne in the definition of finite
element spaces. However, it is not easy to construct basis functions in those spaces, especially when σh need to be strongly
symmetric. In our new SDG method, functions in Uh and Wh can be discontinuous over element faces. Hence, it is very easy
to construct basis functions. Instead of the definition of finite element spaces, we impose the continuity of uh on FD

u and the
continuity of σhne on FN

p by the following conditions∫
e
[uh] · α̂hds = 0, ∀̂αh ∈ Ŵ d

h , ∀e ∈ FD
u , (9)∫

e
[σhn] · v̂hds = 0, ∀̂vh ∈ Ûd

h , ∀e ∈ FN
p . (10)

Note that on the boundary e ∈ ∂ΩD, we take ub as the value of uh taken from the outside of Ω . Also, we use σb as the value
of σhne on e ∈ ∂ΩN taken from the outside of Ω . Hence, by the above continuity conditions, uh|∂ΩD

and σhne|∂ΩN
are just L2

projections of the given boundary conditions.
To derive the SDG method, we multiply Eq. (2) with a smooth function v and multiply Eq. (3) with a test function α, and

then integrate these two equations on each τ ∈ T . Integration by parts yields,∫
τ

ρ
∂u
∂t

· vdx +

∫
τ

σ : ∇vdx −

∫
∂τ

σn · vds =

∫
τ

f · vdx, (11)∫
τ

A
∂σ

∂t
: αdx +

∫
τ

u · divαdx −

∫
∂τ

u · (αn)ds = 0, (12)

for the solutions u and σ.
Then we replace u and σ by the approximate solutions and use the test functions in the corresponding finite element

spaces. We have, for any τ ∈ T , vh ∈ Ud
h and αh ∈ Wh,∫

τ

ρ
∂uh

∂t
· vhdx +

∫
τ

σh : ∇vhdx −

∫
∂τ
⋂

FN
p

(σhn) · vhds −

∫
∂τ
⋂

FD
u

(n · ne )̂σh · vhds =

∫
τ

f · vhdx, (13)∫
τ

A
∂σh

∂t
: αhdx +

∫
τ

uh · divαhdx −

∫
∂τ
⋂

FD
u

uh · (αhn)ds −

∫
∂τ
⋂

FN
p

ûh · (αhn)ds = 0. (14)

Note that although uh and σh are just piecewise polynomials, the boundary terms in above formulations are actually well
defined because of the continuity conditions (9) and (10).

Summing Eqs. (13) and (14) over all triangles τ ∈ T , we arrive at our SDG formulation: Find the unique solutions
uh = uh(t) ∈ Ud

h , σh = σh(t) ∈ Wh, ûh = ûh(t) ∈ Ûd
h , and σ̂h = σ̂h(t) ∈ Ŵ d

h such that for all test functions vh ∈ Ud
h ,

αh ∈ Wh, v̂h ∈ Ûd
h and α̂h ∈ Ŵ d

h ,∫
Ω

ρ
∂uh

∂t
· vhdx + B(σh, vh) − D∗ (̂σh, vh) =

∫
Ω

f · vhdx, (15)∫
Ω

A
∂σh

∂t
: αhdx − B∗(uh, αh) + D(̂uh, αh) = 0, (16)

D∗ (̂αh,uh) = 0, (17)

D(̂vh, σh) = 0, (18)

where

B(α, v) :=

∫
Ω

α : ∇vdx −

∑
e∈FN

p

∫
e
[αn · v]ds,

B∗(v, α) := −

∫
Ω

v · divαdx +

∑
e∈FD

u

∫
e
[αn · v]ds,

D∗ (̂α, v) :=

∑
e∈FD

u

∫
e
α̂ · [v]ds,

D(̂v, α) := −

∑
e∈FN

p

∫
e
v̂ · [αn]ds.

Here, [αn · v]|e := (α−nτ− ) · v−
+ (α+nτ+ ) · v+.
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3.2. The fully discrete system

In this section, we consider the fully discrete system, in which both time and space are discretized. Let ∆t be the time
step. To simplify the notation, we denote xℓ to be x(ℓ∆t, ·), i.e. the variable x at the ℓ-th time step. We define the discrete
time derivative operator by

δtxℓ
:=

1
∆t

(xℓ+ 1
2 − xℓ− 1

2 ),

where x can be uh, σh, ûh and σ̂h.
Wewill apply the standard leap-frog scheme.We compute uh and σ̂h at times n∆t , and compute σh, ûh at times (n+

1
2 )∆t .

Using the discrete time derivative operator and following the scheme (15)–(18), we have∫
Ω

ρδtu
n+ 1

2
h · vhdx + B(σ

n+ 1
2

h , vh) −
1
2
D∗
(̂
σn
h + σ̂n+1

h , vh
)

=

∫
Ω

fn+
1
2 · vhdx, (19)∫

Ω

Aδtσ
n+1
h : αhdx − B∗(un+1

h , αh) +
1
2
D
(
û
n+ 1

2
h + û

n+ 3
2

h , αh

)
= 0, (20)

D∗ (̂αh,un+1
h ) = 0, (21)

D(̂vh, σ
n+ 3

2
h ) = 0. (22)

We initialize the system by taking u0
h and σ

1
2
h as L2 projection of u(0, ·) and σ( 12∆t, ·), respectively. For σ( 12∆t, ·), one can

obtain its value by using a Taylor expansion at the initial time. Moreover, we take û
1
2
h = σ̂0

h = 0.
Next, we write down the linear system explicitly. We denote the dimensions of Ud

h , Wh, Ûd
h , and Ŵ d

h by mU , mW , mÛ , and
mŴ respectively and let the basis functions of these spaces as {vi}

mU
i=1, {αi}

mW
i=1 , {̂vi}

mÛ
i=1 and {̂αi}

mŴ
i=1 respectively. Then we can

write

uh :=

mU∑
i=1

uivi, σh :=

mW∑
i=1

σiαi,

ûh :=

mÛ∑
i=1

ûîvi σ̂h :=

mŴ∑
i=1

σ̂îαi.

Moreover, we denote u⃗h := (u1, . . . , umU )
T , σ⃗h := (σ1, . . . , σmW )T , ⃗̂uh := (̂u1, . . . , ûmÛ

)T , ⃗̂σh := (σ̂1, . . . , σ̂mŴ
)T , and

f⃗ := (
∫

Ω
f · v1 dx, . . . ,

∫
Ω
f · vmU dx)T . Next, we define two mass matrices:

(Mu) :=

∫
Ω

ρvj · vi dx, (Mσ ) :=

∫
Ω

Aαj : αi dx.

We also define matrices that involve two spaces:

(Bh)ij := B(αj, vi),
(
B∗

h

)
ij := B∗(vj, αi),(

D∗

h

)
ij := D∗ (̂αj, vi), (Dh)ij := D(̂vj, αi).

By integration by parts, we know that B∗(vj, αi) = B(αi, vj), and hence B∗

h = BT
h . Using the above notations, wewrite the fully

discrete system (19)–(22) as
1

∆t
Muu⃗n+1

h −
1
2
D∗

h
⃗̂σ
n+1
h =

1
∆t

Muu⃗n
h +

1
2
D∗

h
⃗̂σ
n
h − Bhσ⃗

n+ 1
2

h + f⃗ n+
1
2 , (23)

1
∆t

Mσ σ⃗
n+ 3

2
h +

1
2
Dh ⃗̂u

n+ 3
2

h =
1

∆t
Mσ σ⃗

n+ 1
2

h −
1
2
Dh ⃗̂u

n+ 1
2

h + BT
h u⃗

n+1
h , (24)

(D∗

h)
T u⃗n+1

h = 0, (25)

(Dh)T σ⃗
n+ 3

2
h = 0. (26)

It isworth to note that the finite element spaces are defined locally andhencematricesMu andMσ are both block diagonal.

Thus, we can compute u⃗n+1
h and ⃗̂σ

n+1
h locally on each R(e), e ∈ Fu by solving (23) and (25). Also, we can compute σ⃗

n+ 3
2

h and

û
n+ 3

2
h locally on each S(ν), ν ∈ N by solving (24) and (26). Hence, the scheme can be solved very efficiently.

4. Analysis for semi-discrete solutions

In this section, we will prove the stability, the wave energy conservation, and the optimal convergence of our scheme.
For simplicity, we assume ∂ΩD = ∂Ω and ub = 0. However, our proof can be extended to the general case.
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Although uh and σh are both piecewise polynomials, since we compose staggered continuity conditions on numerical
solutions, by denoting

Uc := {v : v|τ ∈ Pk(τ ), ∀τ ∈ T , v is continuous on e ∈ F0
u , v|∂Ω = 0},

Wc := {α : α|τ ∈ [Pk(τ )]d, ∀τ ∈ T , α · ne is continuous on e ∈ Fp},

Wc,s := Wh ∩ W d
c ,

we know that uh ∈ Ud
c and σh ∈ Wc,s ⊂ W d

c . Note that for any v ∈ Uc and α ∈ Wc , if we denote

b(α, v) :=

∫
Ω

α · ∇vdx −

∑
e∈Fp

∫
e
(α · ne)[v]ds,

b∗(v, α) := −

∫
Ω

vdivαdx +

∑
e∈F0

u

∫
e
v[α · n]ds,

then for any v = (v1, . . . , vd)T ∈ Ud
c and α = (α1, . . . ,αd)T ∈ W d

c , we have

B(α, v) =

d∑
k=1

b(αk, vk),

B∗(v, α) =

d∑
k=1

b∗(vk, αk).

Some good properties of b(α, v) and b∗(v, α) are proved in [16]. It is straight forward to extend these properties to B and
B∗. Before we show these results, we first introduce several norms. In the space Ud

c , we define

∥v∥2
X :=

∫
Ω

|v|2 dx +

∑
e∈F0

u

he

∫
κ

|v|2 ds,

∥v∥2
Z :=

∫
Ω

|∇v|2 dx +

∑
e∈Fp

h−1
e

∫
κ

|[v]|2 ds.

Also, in the spaceW d
c we define these norms:

∥α∥
2
X ′ =

∫
Ω

|α|
2 dx +

∑
e∈Fp

he

∫
e
|αn|

2 ds,

∥α∥
2
Z ′ =

∫
Ω

|∇ · α|
2 dx +

∑
e∈F0

u

h−1
e

∫
e
|[αn]|

2 ds.

In the following lemma, we show an inf–sup condition for B∗(v, α). The proof is a generalization of the proof in [16].

Lemma 1. There is a uniform constant K > 0 independent of h such that

inf
α∈Wd

c

sup
v∈Ud

c

B∗(v, α)
∥α∥Z ′∥v∥X

≥ K .

Proof. It is sufficient to show that there are uniform constants K > 0 and K̃ > 0 such that for any fixed α ∈ W d
c there is a

nonzero v ∈ Ud
c such that

B∗(v, α) ≥ K∥α∥
2
Z ′ and ∥v∥X ≤ K̃∥α∥Z ′ .

Following the proof in [16], we know that for any fixed αk ∈ Wc, k = 1, . . . , d, there is a nonzero v1,k ∈ Uc with
v1,k|F0

u
= 0 such that

b∗(v1,k, αk) ≥ K1

∫
Ω

(∇ · αk)2 dx and
∫

Ω

(v1,k)2 dx ≤

∫
Ω

(∇ · αk)2 dx.
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Also, there is a nonzero v2,k ∈ Uc such that

b∗(v2,k, αk) =

∑
e∈F0

u

h−1
e

∫
e
[αk · n]

2 ds and

∫
Ω

(v2,k)2 dx +

∑
e∈F0

u

he

∫
e
|v2,k|

2 ds ≤ K2

∑
e∈F0

u

h−1
e

∫
e
[αk · n]

2 ds.

Define v1 := (v1,1, . . . , v1,d)T and v2 := (v2,1, . . . , v2,d)T . Summing previous equations over k, we have

B∗(v1, α) ≥ K1

∫
Ω

|∇ · α|
2 dx and

∫
Ω

|v1|2 dx ≤

∫
Ω

|∇ · α|
2 dx,

B∗(v2, α) =

∑
e∈F0

u

h−1
e

∫
e
|[αn]|

2 ds and

∫
Ω

|v2|2 dx +

∑
e∈F0

u

he

∫
e
|v2|2 ds ≤ K2

∑
e∈F0

u

h−1
e

∫
e
|[αn]|

2 ds.

Take v = v1 + v2. Since B∗ is linear, we have

B∗(v, α) = B∗(v1, α) + B∗(v2, α) ≥ K∥α∥
2
Z ′ .

Also, we have

∥v∥X ≤ ∥v1∥X + ∥v2∥X ≤ K̃∥α∥Z ′ . □

The inf–sup condition for B∗(v, α) implies the existence of an operator I : H1(Ω)d → Ud
c such that

B∗(Iv − v, α) = 0, ∀α ∈ W d
c , (27)

Moreover, following proofs in [16], we have the stability and interpolation error estimate of the operator I as follows:

Lemma 2 (Stability and Interpolation Error for I). For any u ∈ H1(Ω)d, we have

∥Iu∥X + ∥Iu∥Z ≤ K∥u∥H1(Ω)d .

If u ∈ Hk+1(Ω)d, then

∥u − Iu∥ ≤ Khk+1
|u|Hk+1(Ω)d and ∥u − Iu∥Z ≤ Khk

|u|Hk+1(Ω)d .

Next, we will construct a special operator J : H(div; Ω)d → W d
c , which preserves the symmetry. Define

Γh :=

{
η : η

⏐⏐⏐
τ

∈ [Pk(τ )]d×d, η = −ηT , ∀τ ∈ T
}

.

Moreover, for any (α, v, η) ∈ W d
c × Ud

c × Γh, we denote

b̃(α; v, η) := B(α, v) −

∫
Ω

α : η dx,

and

∥(v, η)∥2
Z̃

:=

∫
Ω

|η − ∇v|2dx +

∑
e∈Fp

h−1
e

∫
|[v]|2ds.

We will use the following lemma in [23]:

Lemma 3. There is a uniform constant K > 0 independent of h such that

inf
(v, η) ∈ Ud

c × Γh

sup
α∈Wd

c

b̃(α; v, η)
∥α∥X ′ ∥(v, η)∥Z̃

≥ K .

The inf–sup condition in Lemma 3 implies that for a given α ∈ H(div; Ω)d, there is a unique solution (α∗, v∗, η∗) ∈

W d
c × Ud

c × Γh such that for any (β, v, η) ∈ W d
c × Ud

c × Γh,∫
Ω

α∗
: β dx + b̃(β; v∗, η∗) =

∫
Ω

α : βdx,

b̃(α∗
; v, η) = b̃(α; v, η).

(28)
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We define an operator J : H(div; Ω)d → W d
c mapping α ∈ H(div; Ω)d to the solution α∗ of the above system and hence

have

b̃(Jα − α; v, η) = 0, ∀(v, η) ∈ Ud
c × Γh. (29)

Lemma 4 (Stability and interpolation error for J ). For any α ∈ H(div; Ω)d,

∥Jα∥X ′ ≤ K∥α∥H(div;Ω)d , (30)

and for any α ∈ Hk+1(Ω)d×d,

∥α − Jα∥ ≤ Khk+1
|α|Hk+1(Ω)d×d . (31)

Proof. Since Jα is the solution of the problem (28), we have

∥Jα∥X ′ ≤ K∥α∥X ′ ≤ K∥α∥H(div;Ω)d . (32)

On the other hand, from Eq. (28), for any α̃ ∈ W d
c and (β, v, η) ∈ W d

c × Ud
c × Γh,∫

Ω

(Jα − α̃) : β dx + b̃(β; v∗, η∗) =

∫
Ω

(α − α̃) : βdx,

b̃(Jα − α̃; v, η) = b̃(α − α̃; v, η).
(33)

By uniqueness of the solution of problem (28),Jα − α̃

X ′ =

J (α − α̃)

X ′ ≤ K

α − α̃

X ′ . (34)

Hence, we have

∥Jα − α∥X ′ ≤
Jα − α̃


X ′ +

α − α̃

X ′ ≤ K

α − α̃

X ′ . (35)

Taking α̃ as the (element-wise) standard conforming interpolant of α yields the required bound. □

By the definition of the operator J and b̃, we can prove two important properties of J as in the following lemma.

Lemma 5. For any α ∈ H(div; Ω)d, we have

B(Jα − α, v) = 0, ∀v ∈ Ud
c .

Moreover, if αT
= α, then Jα = (Jα)T .

Proof. By taking η = 0 in Eq. (29), we immediately get

B(Jα − α; v) = b̃(Jα − α; v, 0) = 0, ∀v ∈ Ud
c .

On the other hand, if we take v = 0 in Eq. (29), we obtain∫
Ω

(Jα − α) : η dx = −b̃(Jα − α, 0, η) = 0. ∀η ∈ Γh.

Since α is symmetric and η is skew symmetric, we have∫
Ω

Jα : η dx =

∫
Ω

α : η dx = 0, ∀η ∈ Γh.

Hence, we conclude that Jα is symmetric too. □

Now we are ready to show the main result of our paper that our scheme is L2 stable and can obtain the optimal
convergence rate such that the constant in the convergence estimate is independent of the Lamé’s first parameter λ. Also,
the wave energy is conserved.

To begin with, we define some norms. We define ∥·∥ρ and ∥·∥A by

∥v∥2
ρ :=

∫
Ω

ρv · vdx and ∥α∥
2
A :=

∫
Ω

Aα : αdx

and the energy norm ∥·∥E by

∥v, α∥
2
E := ∥v∥2

ρ + ∥α∥
2
A.
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Theorem 6. Let u ∈ W 1,1(0, T ;Hk+1(Ω)d), σ ∈ W 1,1(0, T ;Hk+1(Ω)d×d) be the solution of (2) and (3), and uh ∈ Ud
c , σh ∈ Wc,s

be the solutions of (15)–(18), then we have the following stability estimate

∥uh, σh∥E ≤ K
{
∥uh(0, ·), σh(0, ·)∥E +

∫ T

0
|f| ds

}
(36)

and the following conversation of energy relation:

1
2

∂

∂t

{∫
Ω ′′

ρ|uh|
2 dx +

∫
Ω ′

Aσh : σh dx
}

=

∫
∂Ω ′

uh · σhn dx +

∫
Ω ′

f · uh dx, (37)

where Ω ′ is a subdomain formed by union of S(ν), ν ∈ N1 ⊂ N and Ω ′′ is defined by the union of all R(κ), κ ∈ Fu that have
nonempty intersection with Ω ′. Also, the following convergence estimate holds:

∥u − uh, σ − σh∥E ≤ ∥(Iu − uh)(0, ·), (Jσ − σh)(0, ·)∥E

+ Khk+1 (
∥u∥W1,1(0,T ;Hk+1(Ω)d) + ∥σ∥W1,1(0,T ;Hk+1(Ω)d×d)

)
, (38)

where the constant K is independent of the Lamé’s first parameter λ.

Proof. Note that from continuity conditions (9) and (10), we know that uh ∈ Ud
c and σh ∈ Wc,s. Also, it is easy to show that

for any v ∈ Ud
c , α ∈ W d

c , v̂ ∈ Ûd
h , and α̂ ∈ Ŵ d

h , we have

D∗ (̂α, v) = 0,
D(̂v, α) = 0.

Therefore, if we choose test functions vh and αh in spaces Ud
c and Wc,s, respectively, then the solutions of the SDG scheme

(15)–(18) satisfy the followings:∫
Ω

ρ
∂uh

dt
· vh dx + B(σh, vh) =

∫
Ω

f · vh dx, (39)∫
Ω

A
∂σh

dt
: αh dx − B∗(uh, αh) = 0. (40)

By integration by parts, we also know that

B(α, v) = B∗(v, α), ∀v ∈ Ud
c , ∀α ∈ W d

c . (41)

We take vh = uh and αh = σh. Adding (39) and (40) and by using the Cauchy–Schwarz inequality, we obtain

1
2

d
dt

{
∥uh∥

2
ρ + ∥σh∥

2
A
}

=

∫
Ω

f · uh dx ≤ ρ−
1
2 ∥f∥ ∥uh∥ρ .

Integrate in time from 0 to t , we have

∥uh, σh∥
2
E ≤ ∥uh(0, ·), σh(0, ·)∥2

E + 2ρ−
1
2 max

0≤t≤T
∥uh∥ρ

∫ t

0
∥f∥ ds

≤ ∥uh(0, ·), σh(0, ·)∥2
E +

1
2

max
0≤t≤T

∥uh∥
2
ρ + 2ρ−1

{∫ T

0
∥f∥ ds

}2

. (42)

Hence the stability estimate (36) follows. The conservation of energy (37) following from adding (39) and (40), and putting
vh = uhχΩ ′′ , αh = σhχΩ ′ .

To show the convergence estimate (38), we take v = vh and α = αh in (11) and (12), and then subtract them by Eqs. (39)
and (40), respectively, and get∫

Ω

ρ
∂

∂t
(u − uh) · vh dx + B(σ − σh, vh) = 0, ∀vh ∈ Ud

c , (43)∫
Ω

A
∂

∂t
(σ − σh) : αh dx − B∗(u − uh, αh) = 0, ∀αh ∈ Wc,s. (44)

Using the properties of I and J from (27) and Lemma 5, we have∫
Ω

ρ
∂

∂t
(u − uh) · vh dx + B(Jσ − σh, vh) = 0, ∀vh ∈ Ud

c , (45)∫
Ω

A
∂

∂t
(σ − σh) : αh dx − B∗(Iu − uh, αh) = 0, ∀αh ∈ Wc,s. (46)
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Since the exact solution σ is symmetric, Lemma5 implies thatJσ is also symmetric.We take vh = Iu−uh andαh = Jσ−σh.
Summing the above two equations and by using (41), we have∫

Ω

ρ
∂

∂t
(Iu − uh) · (Iu − uh) dx +

∫
Ω

A
∂

∂t
(Jσ − σh) : (Jσ − σh) dx

=

∫
Ω

ρ
∂

∂t
(Iu − u) · (Iu − uh) dx +

∫
Ω

A
∂

∂t
(Jσ − σ) : (Jσ − σh) dx. (47)

Equivalently,
1
2
et =

∫
Ω

ρ
∂

∂t
(Iu − u) · (Iu − uh) dx +

∫
Ω

A
∂

∂t
(Jσ − σ) : (Jσ − σh) dx, (48)

where e(t) := ∥Iu − uh(·, t),Jσ − σh(·, t)∥2
E . Hence, we have

1
2
et ≤

 ∂

∂t
(Iu − u)


ρ

∥Iu − uh∥ρ +

 ∂

∂t
(Jσ − σ)


A
∥Jσ − σh∥A.

Using the interpolation error estimates in Lemma 2 and Lemma 4 and the fact that the operators I and J commute with the
time derivative, we have

et ≤ Khk+1 {
|ut |Hk+1(Ω)d∥Iu − uh∥ρ + |σt |Hk+1(Ω)d×d∥Jσ − σh∥A

}
. (49)

Then we integrate this equation with respect to time from 0 to t . Note that

Khk+1
∫ t

0
|ut |Hk+1(Ω)d∥Iu − uh∥ρ ds

≤ Kh2k+2
(∫ t

0
|ut |Hk+1(Ω)d ds

)2

+
1
2

max
0≤s≤t

∥Iu(·, s) − uh(·, s)∥2
ρ, (50)

and a similar relation holds for σ. Therefore we have

e(t) ≤ e(0) + Kh2k+2

{(∫ t

0
|ut |Hk+1(Ω)d ds

)2

+

(∫ t

0
|σt |Hk+1(Ω)d×d ds

)2
}

. (51)

Hence for any 0 ≤ t ≤ T , we have

∥Iu − uh,Jσ − σh∥E ≤ ∥(Iu − uh)(0, ·), (Jσ − σh)(0, ·)∥E

+ Khk+1
∫ t

0
|ut |Hk+1(Ω)d + |σt |Hk+1(Ω)d×d ds. (52)

Using the interpolation error estimates in Lemma 2 and Lemma 4, and the Sobolev inequalitymax0≤t≤T |v(t)| ≤ K∥v∥W1,1(0,T )
the convergence estimate follows. The constant in (49) is independent of λ, since

∥·∥A ≤
1
2µ

∥·∥ . □

Remark 1. In the above theorem,N1 is a subset of the setN . Thus, the Ω ′ is a subdomain of Ω , and Ω ′′ is obtained from Ω ′.
In this case, (37) gives a local energy conservation identity. In addition, if we takeN1 = N , then Ω ′

= Ω ′′
= Ω . In this case,

(37) gives a global energy conservation identity.

Remark 2. An SDG method with proofs of the well-posedness and error estimate was proposed for the static linear elastic
equation in [23], in which the symmetry of the stress tensor is imposed weakly via Lagrange multipliers. Our staggered
hybrid method can also be applied to the static elastic equation. The proofs for the time-dependent case in this paper can be
modified easily in order to prove the well-posedness and optimal error estimate for the static case as in [23].

5. Analysis for fully discrete solutions

In this section, we will analyze the fully discrete scheme (19)–(22). We will show a sufficient condition on the time step
∆t for the stability of the discrete scheme. Also, we will discuss the convergence of this scheme. In the following theorem,
we present a stability condition. For this purpose, we can assume that f = 0 to simplify the analysis.

Theorem 7. For simplicity, we take f = 0. Define

KC :=
1
2

sup
vh ∈ Ud

h , αh ∈ Wh

B(αh, vh)
∥vh∥ρ ∥αh∥ A

.

If the time step ∆t satisfies ∆t < K−1
C , then the fully discrete scheme (19)–(22) is stable.
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Proof. Substitute vh = un+1
h + un

h, αh = σ
n+ 3

2
h + σ

n+ 1
2

h into Eqs. (19) and (20) respectively,∫
Ω

ρδtu
n+ 1

2
h ·

(
un+1
h + un

h

)
dx + B

(
σ
n+ 1

2
h ,un+1

h + un
h

)
=

∫
Ω

fn+
1
2 ·
(
un+1
h + un

h

)
, (53)∫

Ω

Aδtσ
n+1
h :

(
σ
n+ 3

2
h + σ

n+ 1
2

h

)
− B∗

(
un+1
h , σ

n+ 3
2

h + σ
n+ 1

2
h

)
= 0, (54)

where we have used

D∗
(̂
σn+1
h + σ̂n

h,u
n+1
h + un

h

)
= D

(
û
n+ 3

2
h + û

n+ 1
2

h , σ
n+ 3

2
h + σ

n+ 1
2

h

)
= 0 (55)

from (21) and (22). Fix an integer N > 0. Summing equation (53) and (54) from 0 to N − 1, we haveuN
h , σ

N+
1
2

h

2
E

=

u0
h, σ

1
2
h

2
E
+ ∆t B∗

(
uN
h , σ

N+
1
2

h

)
− ∆t B

(
σ

1
2
h ,u0

h

)
, (56)

since we have

B(σ
n+ 1

2
h ,un+1

h ) = B∗(un+1
h , σ

n+ 1
2

h ) (57)

from (41). Using the Cauchy–Schwarz inequality, we have⏐⏐⏐⏐B(σ
1
2
h ,u0

h

)⏐⏐⏐⏐ ≤ 2KC
u0

h


ρ

σ 1
2
h


A

≤ KC

u0
h, σ

1
2
h

2
E
. (58)

Similarly,⏐⏐⏐⏐B∗

(
uN
h , σ

N+
1
2

h

)⏐⏐⏐⏐ ≤ KC

uN
h , σ

N+
1
2

h

2
E
. (59)

From (56)–(59), we haveuN
h , σ

N+
1
2

h

2
E

≤
1 + ∆t KC

1 − ∆t KC

u0
h, σ

1
2
h

2
E
, (60)

provided that ∆t < K−1
C . □

We note that the number KC satisfies

KC ≤ K̃C :=
1
2

M−
1
2

u BhM
−

1
2

σ


2
.

Hence we can determine a sufficiently small time step before the simulation.
Next, we will discuss the convergence of the fully discrete scheme (19)–(22). We would like to bound the errors given by

En
u := un

h − un and E
n+ 1

2
σ := σ

n+ 1
2

h − σn+ 1
2 .

We rewrite these errors by

En
u = (un

h − Iun) + (Iun
− un) =: enu + (Iun

− un),

E
n+ 1

2
σ = (σ

n+ 1
2

h − Jσn+ 1
2 ) + (Jσn+ 1

2 − σn+ 1
2 ) := e

n+ 1
2

σ + (Jσn+ 1
2 − σn+ 1

2 ).

The following theorem shows the convergence of the fully discrete scheme. Note that in Lemmas 2 and 4, we have already
provided an error estimates of order O(hk+1) for the interpolation operators I and J . Therefore, it suffices to bound enu and

e
n+ 1

2
σ with order O(∆t2 + hk+1).

Theorem 8. Let u ∈ W 1,1
(
0, T ;Hk+1(Ω)d

)
∩W 2,∞

(
0, T ; L2(Ω)d

)
and σ ∈ W 1,1

(
0, T ;Hk+1(Ω)d×d

)
∩W 2,∞

(
0, T ; L2(Ω)d×d

)
be the solutions of (2) and (3), and un

h ∈ Ud
c , σ

n+ 1
2

h ∈ W d
c be the solution of the fully discrete scheme (19)–(22), then the following

error estimates hold:En
u, E

n+ 1
2

σ


E

≤

E0
u, E

1
2
σ


E
+ K (∆t2 + hk+1)

(
∥u∥W1,1(0,T ;Hk+1(Ω)d) + |u|W2,∞(0,T ;L2(Ω)d)

+ ∥σ∥W1,1(0,T ;Hk+1(Ω)d×d) + |σ|W2,∞(0,T ;L2(Ω)d×d)

)
, (61)

for any n∆t ≤ T .
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Proof. Taking t and the test functions v and α accordingly in (11) and (12), and summing over all the simplex τ , for any
vh ∈ Ud

h and αh ∈ Wh, we have∫
Ω

ρ
∂un+ 1

2

∂t
· vh + B(σn+ 1

2 , vh) =

∫
Ω

fn+
1
2 · vh, (62)∫

Ω

A
∂σn+1

∂t
: αh − B∗(un+1, αh) = 0. (63)

According to (19) and (20),∫
Ω

ρδtu
n+ 1

2
h · vhdx + B(σ

n+ 1
2

h , vh) −
1
2
D∗
(̂
σn+1
h + σ̂n

h, vh
)

=

∫
Ω

fn+
1
2 · vhdx, (64)∫

Ω

Aδtσ
n+1
h : αhdx − B∗(un+1

h , αh) +
1
2
D
(
û
n+ 3

2
h + û

n+ 1
2

h , αh

)
= 0. (65)

Apply the definition of eu to (64),∫
Ω

ρδte
n+ 1

2
u vh + B(e

n+ 1
2

σ , vh) −
1
2
D∗
(̂
σn+1
h + σ̂n

h, vh
)

=

∫
Ω

fn+
1
2 · vh −

∫
Ω

ρδtIun+ 1
2 vh − B(Jσn+ 1

2 , vh). (66)

Similarly, we can rewrite (65) as∫
Ω

Aδten+1
σ : αh − B∗(en+1

u , αh) +
1
2
D
(
û
n+ 3

2
h + û

n+ 1
2

h , αh

)
= −

∫
Ω

AδtJσn+1
: αh + B∗(Iun+1, αh). (67)

By the definition of I and J ,

B(σn+ 1
2 − Jσn+ 1

2 , vh) = B∗(un+1
− Iun+1, αh) = 0. (68)

Subtract (62) from (66) and using (68),∫
Ω

ρδte
n+ 1

2
u · vh + B(e

n+ 1
2

σ , vh) −
1
2
D∗
(̂
σn+1
h + σ̂n

h, vh
)

=

∫
Ω

ρ

(
∂un+ 1

2

∂t
− δtIun+ 1

2

)
vh. (69)

Subtract (63) from (67) and using (68),∫
Ω

Aδten+1
σ : αh − B∗(en+1

u , αh) +
1
2
D
(
û
n+ 3

2
h + û

n+ 1
2

h , αh

)
=

∫
Ω

A
(

∂σn+1

∂t
− δtJσn+1

)
: αh. (70)

We note that from (21) and (22),

D∗
(̂
σn+1
h + σ̂n

h, e
n+1
u + enu

)
= D

(
û
n+ 3

2
h + û

n+ 1
2

h , e
n+ 3

2
σ + e

n+ 1
2

σ

)
= 0. (71)

Also, by (41),

B(e
n+ 1

2
σ , en+1

u ) = B∗(en+1
u , e

n+ 1
2

σ ). (72)

Sum (69) and (70), substitute vh = en+1
u + enu, αh = e

n+ 3
2

σ + e
n+ 1

2
σ , and use (71) and (72), we have∫

Ω

ρδte
n+ 1

2
u (en+1

u + enu) +

∫
Ω

Aδten+1
σ : (e

n+ 3
2

σ + e
n+ 1

2
σ ) + B(e

n+ 1
2

σ , enu) − B∗(en+1
u , e

n+ 3
2

σ )

=

∫
Ω

ρ

(
∂un+ 1

2

∂t
− δtIun+ 1

2

)
· (en+1

u + enu) +

∫
Ω

A
(

∂σn+1

∂t
− δtJσn+1

)
: (e

n+ 3
2

σ + e
n+ 1

2
σ ). (73)
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Simplify left hand side and apply Cauchy–Schwarz inequality to the right hand side, we have

1
∆t

(en+1
u , e

n+ 3
2

σ

2
E
−

enu, en+ 1
2

σ

2
E

)
+ B(e

n+ 1
2

σ , enu) − B∗(en+1
u , e

n+ 3
2

σ )

≤

∂un+ 1
2

∂t
− δtIun+ 1

2


ρ

en+1
u + enu


ρ

+

∂σn+1

∂t
− δtJσn+1


A

en+ 3
2

σ + e
n+ 1

2
σ


A
. (74)

We note that⏐⏐⏐⏐B(en+ 1
2

σ , enu)
⏐⏐⏐⏐ ≤

1
2
KC

enu, en+ 1
2

σ

2
E
, (75)⏐⏐⏐⏐B∗(en+1

u , e
n+ 3

2
σ )

⏐⏐⏐⏐ ≤
1
2
KCp

en+1
u , e

n+ 3
2

σ

2
E
. (76)

From (74)–(76) and Cauchy–Schwarz inequality,en+1
u , e

n+ 3
2

σ

2
E
−

enu, en+ 1
2

σ

2
E

≤ K∆t
(en+1

u , e
n+ 3

2
σ


E
+

enu, en+ 1
2

σ


E

)
×

(∂un+ 1
2

∂t
− δtIun+ 1

2


ρ

+

∂σn+1

∂t
− δtJσn+1


A

)
. (77)

Divide both sides by
en+1

u , e
n+ 3

2
σ


E
+

enu, en+ 1
2

σ


E
, and summing from n = 0 to N − 1,eNu , e

N+
1
2

σ


E

≤

e0u, e 1
2
σ


E

+ K∆t
N−1∑
n=0

(∂un+ 1
2

∂t
− δtIun+ 1

2


ρ

+

∂σn+1

∂t
− δtJσn+1


A

)
. (78)

Note that using the interpolation properties in Lemmas 2 and 4,∂un+ 1
2

∂t
− δtIun+ 1

2


ρ

≤

∂un+ 1
2

∂t
− δtun+ 1

2


ρ

+

δtun+ 1
2 − δtIun+ 1

2


ρ

≤ K

(
∆t2

⏐⏐⏐un+ 1
2

⏐⏐⏐
W2,∞(0,T ;L2(Ω)d)

+ hk+1
⏐⏐⏐⏐ ∂

∂t
un+ 1

2

⏐⏐⏐⏐
Hk+1(Ω)d

)
. (79)

Similarly,∂σn+1

∂t
− δtJσn+1


A

≤ K

(
∆t2

⏐⏐⏐σn+ 1
2

⏐⏐⏐
W2,∞(0,T ;L2(Ω)d×d)

+ hk+1
⏐⏐⏐⏐ ∂

∂t
σn+1

⏐⏐⏐⏐
Hk+1(Ω)d×d

)
. (80)

The result follows from (78)–(80) as N∆t ≤ T . □

6. Numerical results

In this section, we present some numerical results to validate our new method. We show numerically that the scheme
has the optimal rate of convergence and has a superconvergent property for dispersion error. We also present an application
of the method to Rayleigh wave propagation.

We consider the two-dimensional case, i.e. d = 2. We will consider only rectangular domain that can be divided into
squares. We subdivide each of the squares into two triangles. We use these triangles as our initial mesh. Therefore the
staggered mesh can be viewed as a repetition of a square cell, which is shown in Fig. 2. We define the mesh size h as the side
length of the square cell. To beginwith, we compute the stability constant K̃C for thismesh.We note that the P-wave velocity
vp is larger than the S-wave velocity vs and the constant K̃C is proportional to v−1

p . By computing the constant numerically,
we find that

K̃C ≈

{
0.0962 v−1

p h, for k = 1,
0.0543 v−1

p h, for k = 2.
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Fig. 2. A cell in the structured mesh with mesh size h.

Table 1
Convergence history

1/h ∥(uh)1 − u1∥ρ Order ∥(uh)2 − u2∥ρ Order ∥σh − σ∥A Order

k = 1, ∆t = 1/320,000

2 2.1408e+00 – 2.4847e+00 – 3.2472e+00 –
4 2.4265e−01 3.14 3.4899e−01 2.83 5.4482e−01 2.58
8 4.9326e−02 2.30 7.7508e−02 2.17 1.2632e−01 2.11
16 1.1568e−02 2.09 1.8914e−02 2.03 3.1163e−02 2.02
32 2.8410e−03 2.03 4.6984e−03 2.01 7.7821e−03 2.00
64 7.0947e−04 2.00 1.1735e−03 2.00 1.9443e−03 2.00

k = 2, ∆t = 1/640,000

1 2.4234e+00 – 2.8755e+00 – 3.6994e+00 –
2 4.4169e−01 2.46 3.8183e−01 2.91 5.7887e−01 2.68
4 1.2946e−02 5.09 1.9008e−02 4.33 3.2533e−02 4.15
8 1.4950e−03 3.11 2.2950e−03 3.05 3.9442e−03 3.04
16 1.8182e−04 3.04 2.8348e−04 3.02 4.9213e−04 3.00
32 2.3040e−05 2.98 3.7648e−05 2.91 6.2917e−05 2.97

Table 2
Comparison of dispersion between our SDG scheme and a fourth order FD scheme. The density ρ, the velocities vp and vs are 1500, 520 and 52 respectively.
The wave numbers kx and kz are taken as

√
2/3 and

√
1/3 respectively.

The SDG scheme (k = 1) Fourth order FD scheme

1/h Error of ω1 Order Error of ω2 Order Error of ω1 Order Error of ω2 Order

1 1.2721e−02 – 2.9937e−04 – 3.0075e−03 – 3.0075e−03 –
2 6.4056e−04 4.31 1.8890e−05 3.99 1.9348e−04 3.96 1.9348e−04 3.96
4 2.3849e−05 4.75 1.1836e−06 4.00 1.2178e−05 3.99 1.2178e−05 3.99
8 2.4370e−06 3.29 7.4016e−08 4.00 7.6249e−07 4.00 7.6249e−07 4.00
16 1.4212e−07 4.10 4.6892e−09 3.98 4.7677e−08 4.00 4.7677e−08 4.00
32 8.7742e−09 4.02 1.2171e−10 5.27 2.9800e−09 4.00 2.9739e−09 3.66

The SDG scheme (k = 2) Fourth order FD scheme

0.5 2.7897e−03 – 3.7089e−05 – 4.2526e−02 – 4.2526e−02 –
1 2.8064e−05 6.64 6.3004e−07 5.88 3.0075e−03 3.82 3.0075e−03 3.82
2 3.1291e−07 6.49 1.0163e−08 5.95 1.9348e−04 3.96 1.9348e−04 3.96
4 5.5620e−09 5.81 1.6672e−10 5.93 1.2178e−05 3.99 1.2178e−05 3.99
8 8.4232e−11 6.05 1.8254e−12 6.51 7.6249e−07 4.00 7.6249e−07 4.00

Example 1 (Convergence Test). We will test the convergence rate of our hybridized SDG method. We take Ω = [−15, 15]2
and T = 0.02. In addition, the densityρ, the P-wave velocity vp and the S-wave velocity vs are 1500, 520 and 300 respectively,
where λ + 2µ = ρv2

p and µ = ρv2
s . The initial conditions are u(0, x) = exp(−2|x|2) and σ(0, x) = 0 and the source term

f = 0. For the comparison purpose, we compute a reference solution by using a fourth order locking-free finite difference
scheme with a very fine mesh. For the SDG solution, we consider piecewise linear and quadratic approximations, that is,
k = 1 and k = 2, and we will choose a fixed time step size ∆t . In Table 1, we present the convergence history with
weighted L2 norms ∥u∥2

ρ =
∫

Ω
ρu2 dx and ∥σ∥

2
A =

∫
Ω
Aσ : σ dx. We see that optimal convergence rate is obtained.

We remark that the Poisson ratio for this problem is 0.251. We tested a case with Poisson ratio 0.495 and obtained similar
results.

Example 2 (Dispersion Error). We follow the eigenvalue method used in [25] for acoustic and electromagnetic wave
equations. Let d = 2. We consider a structured mesh generated by repetition of a square cell, which is shown in Fig. 2.
Then we consider the scheme given by (15)–(18) with f = 0. Assume the solutions are plane waves given by e−i(k·x−ωt)

where k = (kx, kz) is the wave number andω is the frequency. Taking time derivatives in (15) and use (16)–(18) to eliminate
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Fig. 3. The velocity u2 at time t = 0.25 s. The upper figure is the solution of our SDGmethod. The lower three figures are the SDG solution, the fourth-order
FD reference solution and the difference (6.5%) of them around the Rayleigh wave. All these figures are displayed with the same color axis.

Fig. 4. The velocity u2 at various points in the example of Lamb’s problem. The horizontal and vertical axes stand for the time and the magnitude. The red
curve and the blue curve are the solution of u2 of the finite difference scheme and the SDG method respectively, while the green curve is the difference
between these two solutions. Here x is the distance while z is the depth. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

other variables, we obtain a linear system of the form

A1Utt = A2Ũ, (81)

where U is the vector representing the nodal values of u in the cell and Ũ is the vector representing the nodal values of u
that U is depending on. We substitute uj = αj(x)e−i(k·x−ωht), j = 1, 2, in this equation, we obtained a generalized eigenvalue
problem:

ω2
hÃη − Ã2η.
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Fig. 5. The stress σ11 at various points in the example of Lamb’s problem. The horizontal and vertical axes stand for the time and themagnitude respectively.
The red curve and the blue curve are the solution of σ11 of the finite difference scheme and the SDG method respectively, while the green curve is the
difference between these two solutions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

It is well-known that the angular frequencies for P-wave and S-wave, namely, ω1 and ω2 are given by

ω2
1 =

1
ρ
(λ + 2µ)(k2x + k2z ) and ω2

2 =
1
ρ

µ(k2x + k2z ), (82)

where kx and kz are the wave numbers in x and z direction respectively. We define the dispersion error for ω1 and ω2 as

min
ωh

⏐⏐⏐⏐⏐ω2
j

ω2
h

− 1

⏐⏐⏐⏐⏐ .
Table 2 shows the dispersion error for materials with high Poisson’s ratio, 0.495. We can see that the proposed SDG

scheme obtains a fourth order convergence when k = 1 and obtains a six order convergence when k = 2, which are two
orders higher than dispersion errors for fully discrete non-staggered methods [26]. In [27], Ainsworth proved that the semi-
discrete dispersion error of non-staggered DG methods matches these results reported for our method for upwind fluxes.
However, our staggered hybridizedmethod improves these rates by one order compared to semi-discrete non-staggered DG
with central fluxes.

Example 3 (Lamb’s Problem). We will test our method by the Lamb’s problem [28], which is a classical test case for the
implementation of free surface boundary condition. The problem setting is as follows. The density, the velocity for the P-
wave and S-wave are 1500, 520, 300 respectively and the corresponding Poisson’s ratio is 0.251. The computation domain
is [0, 280] × [0, 140] and the free surface is set at depth z = 0. A vertical point force is applied to the free surface at
(x, z) = (140, 0). The force is given by a Ricker wavelet defined by the first derivative of

w(t) = 2π f (t − t0)e−π2f 2(t−t0)2 ,

where the frequency f = 50 and t0 = 0.024.

The solution of the Lamb’s problem can be computed analytically [29]. For convenience, we compare our result to the
solution given by a fourth-order finite difference scheme on a finer mesh. The SDG solution is computed with mesh size
h = 0.25 while the FD solution is computed with mesh size h = 0.1. In Fig. 3, the upper figure is the SDG solution of u2 at
t = 0.25 in [140, 280]× [0, 100]. The lower three figures are the SDG solution in [190, 210]× [0, 20], the FD solution in the
same region, and their difference, respectively. There is only 6.5% difference in the small region. In Fig. 4, we show the SDG
and FD solutions for the velocity u2 and their differences at various locations from t = 0 to 0.25. In Fig. 5, we do the same
for the stress σ11. These results show our SDG method produces accurate solutions for the Lamb’s problem.
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7. Conclusion

In this paper, we have developed and analyzed a new staggered hybridization technique for the DG approximation for
the elastic wave equations (2) and (3). The method is optimally convergent, numerically stable, locally and globally energy
conserving and locking-free. Besides, the numerical stress tensor is strongly symmetric. Numerical results have also shown
that this method has the super-convergence property for the dispersion error.
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