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Abstract. We derive macroscopic dynamics for self-propelled particles in a fluid. The starting point is a coupled Vicsek–Stokes
system. The Vicsek model describes self-propelled agents interacting through alignment. It provides a phenomenological
description of hydrodynamic interactions between agents at high density. Stokes equations describe a low Reynolds number
fluid. These two dynamics are coupled by the interaction between the agents and the fluid. The fluid contributes to rotating
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we obtain a coupled Self-Organised Hydrodynamics–Stokes system. We perform a linear stability analysis for this system
which shows that both pullers and pushers have unstable modes. We conclude by providing extensions of the Vicsek–Stokes
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1. Introduction

Self-organised motion is ubiquitous in nature. It corresponds to the formation of large-scale coherent
structures that emerge from the many-interactions between individuals without leader. Well-known ex-
amples are bird flocks, fish schools or insect swarms. However, self-organisation also takes place at the
microscopic level, for example in bacterial suspensions and sperm dynamics (see e.g. Refs. [7,40] and
the reviews [19,29,32]). In these cases, the environment, typically a viscous fluid, plays a key role in the
dynamics.

In this paper we investigate self-organised motion of self-propelled particles (which we will refer to as
‘swimmers’) in a viscous fluid. The main difficulty in studying these systems comes from the complex me-
chanical interplay between the swimmers and the fluid. Particularly, highly non-linear interactions occur
between neighbouring swimmers through the perturbations that their motions create in the surrounding
fluid. While these interactions may be treated through far-field expansions in dilute suspensions [23], they
require a much more complex treatment when the density of swimmers is high. Here we assume that, as
a result of these swimmer–swimmer interactions, the swimmers align their direction of motion. In view
of this, we adopt the Vicsek model for self-propelled particles undergoing local alignment to account for
these swimmer–swimmer interactions in a phenomenological way. We then couple this model with the
Stokes equation for the surrounding viscous fluid by taking into account the interactions between the
swimmers and the fluid. The main goal is the derivation of macroscopic equations for this coupled system
in terms of the time-evolution of the velocity of the fluid, on the one hand, and the swimmers’ density
and mean direction of motion, on the other hand.

The coupling terms considered here coincide with the ones in the kinetic Doi–Saintillan–Shelley model,
which models active and passive rod-like dilute suspensions, [6,34,35]. This kinetic equation extends the
Doi model [17,18] for liquid crystals (corresponding to passive rod-like or ellipsoidal particle suspensions)
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to active agents. In Ref. [6], the authors prove the existence of global weak entropic solutions for this
equation and Ref. [20] offers a closure approximation to obtain approximate macroscopic equations.
However, the Doi–Saintillan–Shelley model does not include direct swimmer–swimmer interactions as it
assumes a regime with a rather low density of swimmers. The Vicsek–Stokes coupling presented here is
designed to handle larger densities of active particles. An extension of the Doi–Saintillan–Shelley model
for high concentration of agents can be found in Ref. [20]; the swimmer–swimmer steric interactions are
modelled through nematic interactions (see below and Fig. 2 for an explanation on these notions). Here
we consider polar interactions as encompassed in the Vicsek model rather than nematic ones. Indeed,
polar interactions seem more appropriate to some types of suspensions such as sperm [7]. Additionally,
alignment interactions are not sufficient to prevent clustering in some high density situations. To prevent
them, it is necessary to add short-range repulsion, as we do in Sect. 6.1 following the works in Ref. [10].

The Vicsek model [37] is a particle system where the position and velocity orientation of each individual
particle is followed over time. It describes self-propelled particles moving at a constant speed and trying
to align their direction of motion with their neighbours, up to some noise. There exists a variety of
mathematical models for collective dynamics, see Ref. [31, Sec. V] and references therein as well as the
review [37]. The Vicsek model is an agent based model and, consequently, a microscopic description. By
contrast, Stokes equations form a continuum model for the evolution of the fluid velocity and pressure
fields, which are macroscopic quantities. Therefore, the coupled Vicsek–Stokes model presented here is a
hybrid microscopic/macroscopic system. This is legitimate in view of the difference in size between water
molecules and the swimmers (10−10 m for the former, and of the order of 10−5 m for the latter).

The main goal of this paper is to provide a coarse-grained description of the hybrid Vicsek–Stokes
dynamics in the form of a fully macroscopic description in both the fluid and the swimmers. The coarse-
graining for the Vicsek model alone leads to the ‘Self-Organised Hydrodynamics’ (SOH) equations derived
in Refs. [14,27]. The SOH model is a system of continuum equations for the density and mean velocity
orientation of the swimmers. Here, for the first time, we provide the coarse-graining of the hybrid Vicsek–
Stokes model, leading to the coupled SOH–Stokes model. The resulting model is a fully coupled model for
the agents’ continuum density and mean velocity orientation on the one hand and the fluid velocity and
pressure fields on the other hand. The coarse-graining methodology is based on the Generalised Collision
Invariant concept introduced in Ref. [14]. This technique has already been successfully applied to a wide
range of models inspired by the Vicsek model, see Refs. [11–13,16].

The rigorous derivation of macroscopic dynamics establishes a clear link between the microscopic and
macroscopic scales and, in particular, between the parameters of the two systems. Moreover, microscopic
simulations tend to be very costly for a large number of individuals. Macroscopic simulations are much
more cost-effective. In kinetic theory, the coarse-graining from particle dynamics to macroscopic dynamics
is carried out with an intermediate step called the kinetic equation (or mean-field equation). The kinetic
equation gives the distribution of a ‘typical particle’ (if such exists) when the number of particles becomes
large. Here we will derive the kinetic equation from the microscopic Vicsek–Stokes model in Sect. 3.1.
From the kinetic equation, we will derive then the macroscopic coupled SOH–Stokes system (Sect. 4).
For some general reviews on the mathematical theory of coarse-graining, the reader is referred to Refs.
[5,9,36].

The complexity of the dynamics of self-organised motion in a fluid renders the rigorous macroscopic
derivation extremely hard in general. Some attempts can be found in Refs. [1] and [31, Sec. V]. For
the case of suspensions of passive particles, the Doi–Onsager model has been coarse-grained into the
Ericksen–Leslie system, see Refs. [22,38,39]. In the case of the Cuker–Smale model (a different model
for collective dynamics), it has been coupled to a Navier–Stokes equation and coarse-grained in Ref. [4].
Related works couple chemotaxis with fluid equations, see for example Ref. [30]. A coarse-graining has
been carried out for the chemotaxis-Navier–Stokes equations in Ref. [41], see also Ref. [2] for a related
result.

Another advantage of coarse-grained equations is that their stability analysis is far more manageable
than that of microscopic models. To illustrate this effectiveness, we perform the linear stability analysis
of the SOH–Stokes model. Obvious stationary solutions of the SOH–Stokes model consist of uniform
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Fig. 1. Shape of a puller. A puller swims by pulling the fluid with arms. The black arrows represent the forces exerted on
the fluid by the puller

(space-independent) swimmer density and mean orientation fields as well as uniform fluid velocity and
pressure. We linearise the SOH–Stokes system around these stationary solutions, meaning that we consider
small perturbation of a uniform state. Note that the SOH model describes aligned states as the swimmer
distribution is given by a von Mises distribution. So this analysis gives access to the stability of suspensions
in their aligned state only. The investigation of the stability of the isotropic state is deferred to future
work.

Here, we consider the two main types of swimmers present in nature: pullers and pushers. Pullers
swim by using ‘arms’ to pull on the fluid (such as e.g., the green alga Chlamydomonas), see Fig. 1.
Pushers typically have a tail with which they push the fluid behind them (such as e.g., spermatozoa),
see Fig. 3. The stability analysis reveals that both pusher and puller types of swimmers have unstable
modes. This is consistent with previous studies [34] which showed that both pushers and pullers are
unstable to perturbations of an aligned state. Note that in [34] nematic interactions were considered,
while we deal with polar interactions. Polar alignment corresponds to bringing the two swimming velocities
parallel with the same orientation while nematic alignment brings them parallel but with either same or
opposite orientation according to what angular change is the smallest. Steric interaction corresponds to
the interaction of particles occupying finite volumes through volume exclusion. See an illustration of these
various interactions in Fig. 2. Additionally, the aligned state in [34] is a Dirac delta in the orientation while
ours is a von Mises distribution; we show that instability happens for all values of the angular dispersion
around the alignment direction. We also notice that pullers are stable if they are slender rod particles.
For both pushers and pullers, the instability only prevails for small |k| modes (or large wavelength). The
largest growth rate takes place in the limit when the mode k → 0, which means that patterns induced
by the instability will have roughly the same size as the system.

Alignment interaction is not sufficient to prevent the appearance of large-concentration clusters in
general [8]. So, in cases where such clusters are not observed, it is likely that short-range repulsion effects
take place in addition to alignment. Following Ref. [10], we will investigate how both the micro and
macroscopic models can be extended through the introduction of a short-range repulsion force. Besides,
when the particle mass and size are larger, for example for fish, it is not legitimate to neglect the particle
inertia and the fluid Reynolds number any longer. Therefore, we will show how to extend the micro and
macroscopic models to include such finite size effects.

The document is structured as follows. In the next section we present the individual based model
for the Vicsek–Stokes coupling and discuss the main result corresponding to its hydrodynamic limit. In
Sect. 3 we present the mean-field limit, the scaling considered, and the Generalised Collision Invariant
concept. In Sect. 4 we prove the main result. Sect. 5 shows the stability analysis. In Sect. 6 we extend the
model to account for short-range repulsion and finite inertia and Reynolds number. Finally, we conclude
in Sect. 7 discussing some perspectives on this problem.
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Fig. 2. Three types of interactions: a polar alignment: swimming velocities are brought parallel with the same orientation;
b nematic alignment: swimming velocities are brought parallel with either same or opposite orientation according to what

angular change is the smallest; c steric interactions, particles with finite volume interact through volume exclusion

2. The Model and Discussion of the Main Results

2.1. The Vicsek–Stokes Coupled Dynamics

The dynamics of the viscous fluid follow Stokes equations. We couple these two models by incorporating
the interaction mechanisms between the agents and the fluid. The dynamics of N agents are given by
the evolution of (Xi(t), ωi(t))i∈{1,...,N} as a function of time t ≥ 0, where Xi(t) ∈ R3 is the position
of the i-th agent and ωi(t) ∈ S2 (the 2-dimensional sphere) is a unitary vector giving its direction of
motion. We denote by v = v(x, t) ∈ R3 the fluid velocity at position x ∈ R3 at time t and p(x, t) ∈ R its
pressure. Here we assume that the fluid density remains constant. In Sect. 6.2 (see Remark 6.2) we derive
the following Vicsek–Stokes coupled dynamics, where all the quantities are dimensionless and where the
stochastic differential equation (2.1b) must be understood in the Stratonovich sense, where the unknowns
are (Xi(t), ωi(t))i∈{1,...,N}, v(x, t), p(x, t):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXi = uidt = v(Xi, t)dt + aωidt, (2.1a)

dωi = Pω⊥
i

◦
[
νωidt +

√
2D dBi

t +
(
λS(v) + A(v)

)
ωidt

]
, (2.1b)

ω̄i =
Ji

|Ji| with Ji =
N∑

k=1

K

( |Xi − Xk|
R

)

ωk, (2.1c)

−Δxv + ∇xp = − b

N

N∑

i=1

(

ωi ⊗ ωi − 1
3
Id
)

∇xδXi(t), (2.1d)

∇x · v = 0. (2.1e)

In this system a, ν,D, λ,R and b are constants. The symbol ‘⊗’ denotes the tensorial product and ‘Id’
the 3×3 identity matrix. The symbol Pω⊥

i
= Id − ωi ⊗ ωi gives the orthonormal projection operator

onto the sphere S2 at ωi; the ‘◦’ symbol following it indicates that the Stochastic Differential Equation
(2.1b) has to be understood in the Stratonovich sense. The terms (Bi

t)t≥0, i = 1, . . . , N are independent
Brownian motions in R3. The terms S,A are matrices that will be defined later. The operators Δx, ∇x,
∇x· indicate the Laplacian, the gradient and the divergence in R3, respectively. The symbol δX is the
delta distribution in R3 at X ∈ R3. Finally, K = K(r) ≥ 0, r ≥ 0, is a given sensing function.

We explain first the meaning of the equations without the coupling terms. Equations (2.1a)–(2.1c)
without the terms involving the velocity of the fluid v correspond to the Vicsek model: each agent i moves
at a constant speed a > 0 in the direction ωi while trying to adopt the average direction of motion of
its neighbours. This averaged direction is given by ω̄i in Eq. (2.1c). The positive kernel K weights the
influence of the neighbouring agents and the constant R > 0 gives the typical interaction range between
agents. The intensity of alignment is given by ν > 0. While trying to align, agents make errors. This is
modelled via a noise term

√
2DdBi

t, where D > 0 is the standard deviation of this random motion per
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unit of time. The presence of projection operator Pω⊥
i

ensures that |ωi(t)| = 1 for all times (since the
stochastic differential equations (2.1a)-(2.1b) are interpreted in the Stratonovich sense, see Ref. [25]).

Equations (2.1d) and (2.1e) are the Stokes equation for the velocity of the fluid v with a time-dependent
force term at the right-hand side of Eq. (2.1d) whose meaning will be explained in the following section.
The hydrostatic pressure of the fluid p = p(x, t) is the Lagrange multiplier of the incompressibility
constraint (2.1e).

The coupling terms.

1. Effect of the fluid on the agents.
(i) Effect on the agents’ velocity In the limit of zero particle inertia there is an instantaneous

relaxation of the passive part of the particles’ velocity (i.e., the particle velocity minus the
self-propulsion velocity) to the velocity of the fluid (see Appendix 6.2). As a consequence, the
term ui in Eq. (2.1a), giving the total velocity of agent i, is the sum of the fluid velocity v and
the agent’s self-propelled velocity aωi.

(ii) Effect on the agents’ orientation This is expressed by the term (λS(v) + A(v)) ωi in Eq. (2.1b),
where the matrices A and S are the antisymmetric and symmetric parts of the linear flow ∇xv
(which is a matrix with components (∇xv)ij = ∂xi

vj , i, j = 1, 2, 3), respectively:

A(v) =
1
2
(∇xv − (∇xv)T

)
,

S(v) =
1
2
(∇xv + (∇xv)T

)
,

where the exponent ‘T ’ indicates the transpose of the matrix. This term encompasses Jeffery’s
equation, which describes the effect of a viscous fluid on the orientation of a spheroidal passive
particle. In a spatially homogeneous flow where ∇xv is constant, these equations give the
motion of the principal axis of spheroidal particles, as follows:

dωi

dt
= Pω⊥

i
(λS(v) + A(v)) ωi = ∇ω

[

λ
1
2
ω · Sω

]

+
1
2
(∇x × v) × ω, (2.2)

where ∇ω is the gradient on the sphere S2; ∇x× denotes the curl; and the symbols ‘·’, ‘×’
denote the inner product and the cross product in R3, respectively. The matrix S describes
straining forces in the fluid which forces a passive particle to orient in a preferred direction
called ‘local extensional axis’, given by the eigenvector of maximal eigenvalue of S. The matrix
A describes shear effects in the fluid that have the effect of rotating the suspended particle
around an axis parallel to the vorticity ∇x ×v. The parameter λ ∈ [−1, 1] is a shape parameter:
for a spheroidal particle with aspect ratio χ, we have λ = (χ2 − 1)/(χ2 + 1). The limit λ → 1
corresponds to a slender rod-like particle, the limit λ → −1 corresponds to a thin disk and
the case λ = 0 corresponds to a sphere. For an explanation of Jeffery’s equation see e.g Refs.
[6,26].

2. Effect of the agents on the fluid. We consider two forces produced by agents that act on the fluid:
(i) Drag force exerted on the fluid by the motion of the agents The motion of the agents creates

a drag force on the fluid. However, in the limit of zero particle inertia this force vanishes, as
detailed in Sect. 6.2. So we do not take it into account here. There is a symmetric effect of the
fluid on the particles which in this limit produces instantaneous relaxation of the passive part
of the velocity (the particle velocity minus the self-propulsion velocity) to the fluid velocity
hence justifying Eq. (2.1a), see above.

(ii) The self-propulsion force The source term that appears on the right-hand side of the equation
for v (2.1d) describes the influence of the self-propulsion force of the agents on the fluid. The
term ∇xδXi(t) denotes the gradient of the Dirac delta δXi(t) and it is defined in weak form for
any vector test function �ϕ by:

〈∇xδXi(t), �ϕ〉 = −〈δXi(t),∇x · �ϕ〉 = −∇x · �ϕ(Xi(t)),
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Fig. 3. Shape of a pusher. The tail exerts a force �F on the fluid in the direction of the motion ωi while the head exerts a

force −�F . Since these two forces are not applied on the some point, they do not cancel

where 〈T, ϕ〉 denotes the duality bracket between a distribution T and a test function ϕ.
Suppose that an agent swims by pushing with its tail with a force �F in the opposite direction
of motion. Then the head also exerts a force −�F on the fluid. This type of swimmer is called a
‘pusher’. If the centre of the swimmer is in location Xi and it has a length 
, then the pushing
force is applied at location Xi − �

2ωi while the force of the head is at Xi + �
2ωi, see Fig. 3. Since

�F and − �F are applied at different points they do not cancel, this is referred as a ‘force dipole’
and in this case

�F = |�F |ωi

[
δXi+

�
2 ωi

− δXi− �
2 ωi

]
.

From a Taylor expansion for small 
, this leads to the right-hand side term in Eq. (2.1d), with
b > 0 (after dividing by the fluid viscosity). We do not give here the details of this derivation but
refer the reader to Refs. [6,34,35] and references therein. Another common way of swimming
is by using the arms. Then the swimmer is called ‘puller’ and in this case b < 0 in Eq. (2.1d).
For a drawing of a puller see Ref. [6, Fig. 3].

3. Other interactions and effects. The model presented here is a simplification of the actual dynamics.
Therefore, it could be enriched by taking into consideration other mechanical effects, like noise in the
spatial variable (see the Doi–Saintillan–Shelley model [6]) and extra forces acting on the fluid due
to the inextensibility of the particles (resistance to stretching and compression) when the particle
sizes are not supposed infinitesimally small, see Ref. [20]. We will consider refined versions of this
model in Sect. 6.1 where we add volume exclusion between agents, or in Sect. 6.2 where we include
both fluid and particle inertia.

Remark 2.1. Jeffery’s equations have been derived by Jeffery under the assumption of spheroidal particles
(i.e. ellipsoids with a circular cross-section). In [28], these equations are generalized to a body of arbitrary
shape. In this reference, it is also shown that Jeffery’s equations are the leading order of an asymptotic
expansion of the Navier–Stokes equation in powers of the body size and the next order of this expansion is
derived. However, these terms do not have an analytical formula and their use in the forthcoming theory
would represent a significant challenge which is left aside here.

As a by-product, Sect. 6.2 provides a derivation of the Vicsek–Stokes system (2.1a)–(2.1e) from a
Vicsek–Navier–Stokes coupling.

2.2. Macroscopic Coupled Dynamics: The SOH–Stokes Model

In Sect. 4 (Theorem 4.1), from the Vicsek–Stokes dynamics (2.1a)–(2.1e), we derive the following macro-
scopic system , that we refer to as the ‘Self-Organised Hydrodynamics–Stokes model’ (SOH–Stokes).
It gives the time-evolution of the spatial density of agents ρ = ρ(x, t), the mean direction of motion
Ω = Ω(x, t), the velocity of the fluid v = v(x, t) and the pressure p = p(x, t):
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tρ + ∇x · (ρU) = 0, (2.3a)

ρ∂tΩ + ρ(V · ∇x)Ω +
a

κ
PΩ⊥∇xρ = γPΩ⊥Δx(ρΩ) + ρPΩ⊥

(
λ̃S(v) + A(v)

)
Ω, (2.3b)

−Δxv + ∇xp = −b∇x · (ρQ(Ω)) , (2.3c)
∇x · v = 0, (2.3d)

where

U = ac1Ω + v, V = ac2Ω + v, Q(Ω) = c4

(

Ω ⊗ Ω − 1
3
Id
)

,

γ = k0ν

(

c2 +
2
κ

)

, λ̃ = λλ0, λ0 =
6
κ

c2 + c3 − 1, (2.4)

and where the constants c1, . . . , c4 and k0 are given by Eqs. (4.5)–(4.8), (3.7), and where κ = ν/D.
The first two Eqs. (2.3a)–(2.3b) provide the time-evolution of the density of the agents ρ = ρ(x, t)

and their mean direction of motion Ω = Ω(x, t), respectively. Without the terms involving the velocity
of the fluid v, Eqs. (2.3a)–(2.3b) correspond to the Self-Organised Hydrodynamics (SOH) macroscopic
equations for the Vicsek model, obtained in Refs. [11,15,27] (the diffusive term is derived in Ref. [11]). The
SOH system resembles a fluid dynamics equation, particularly, a compressible Navier–Stokes equation,
with the differences that c1 �= c2 and the ‘velocity’ Ω is constrained to be of norm one with the presence
of the projection operator PΩ⊥ in the pressure ∇xρ and the diffusion Δx(ρΩ). This projection operator
precisely ensures that |Ω| = 1 at all times (provided that |Ω|t=0 = 1), but, as a consequence, the equation
is not conservative, meaning that the terms involving spatial derivatives cannot be written as the spatial
divergence of a flux function. Eqs. (2.3c)–(2.3d) without the right-hand side in (2.3c) correspond to the
Stokes equation.

The coupling terms. The terms involving the velocity of the fluid v in Eqs. (2.3a)–(2.3b) express the
effect of the fluid on the particles. As expected, the continuity equation (2.3a) for the density ρ has a
velocity U which is the sum of the local average self-propulsion velocity (cc1Ω) and the velocity of the
fluid v. Also the convective velocity in Eq. (2.3b) for Ω is a weighted sum of Ω and the velocity of the
fluid. The last term in Eq. (2.3b) reflects how Jeffery’s equation on individual swimmers (2.2) translate
to the population level. The terms resulting from Jeffery’s equation describe the propensity of Ω to align
in the direction of the so-called local extensional axis, given by the eigenvector of maximal eigenvalue
of S, as well as to rotate about the vorticity axis, parallel to ∇x × v. Notice, though, that the shape
parameter λ̃ �= λ. Numerically, (see Fig. 4a) we observe that λ0 ∈ [0, 1]. This implies that λ̃ ∈ [−1, 1]; λ̃

has the same sign as λ; and |λ̃| ≤ |λ|. Therefore, Jeffery’s equation for the agents’ individual orientations
is coarse-grained into another Jeffery’s equation for the local mean orientation, but the ‘mean particle
shape’ associated with λ̃ is different from the individuals’ shapes associated with λ. Particularly, when
κ → 0 (large noise regime), we get λ̃ = 0, which corresponds to the shape of a sphere, and when κ → ∞
(low noise regime), we get λ̃ = λ, and we recover the original shape parameter.

Finally, the right-hand side in Eq. (2.3c) gives the influence of the agents on the fluid. It involves the
divergence of the deviatoric stress tensor Q(Ω), i.e., the contribution of the swimmers to the extra-stress,
which provides its non-Newtonian character to the fluid. This term results from the coarse-graining of
the right hand side of Eq. (2.1d). Numerically we observe (Fig. 4b) that c4 > 0, which shows that the
coarse-graining of a population of pushers preserves the ‘pusher’ behaviour, as it should.

The reader is referred to Sect. 6 for some extensions of this model.

3. The Mean-Field Limit Equation

As explained in the introduction, the derivation of the macroscopic equations is carried out with an inter-
mediate step: the kinetic or mean-field equations. The mean-field limit of System (2.1a)–(2.1e) provides
the time-evolution of the distribution function f = f(x, ω, t) in space and orientation of a typical agent.
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Fig. 4. a Plot of the values of λ0 in Eq. (2.4) as a function of κ (done in dimension 2, where the generalised collision

invariant has an explicit form [21], corresponding to λ0 = 4
κ

c2 + c3 − 1). b Plot of the values of c4 in Eq. (4.8)

From the equation on f , we will derive the macroscopic equations in Sect. 4. For the case of the Vicsek
model alone, a rigorous proof of the mean-field limit has been obtained in Ref. [3] when there is no
normalisation of ω̄i in Eq. (2.1c), i.e., when ω̄i = Ji. Following the proof in [3] formally we have the:

Proposition 3.1 ((Formal) Mean-field limit). Consider the empirical distribution associated to the dynam-
ics of the agents in Eqs. (2.1a)–(2.1e), i.e.:

fN (x, ω, t) =
1
N

N∑

i=1

δxi(t)(x) ⊗ δωi(t)(ω),

where δxi(t)(x) and δωi(t)(ω) denote the Dirac delta at xi(t) and ωi(t) on R3 and S2, respectively. Assume
that fN converges weakly to f = f(x, ω, t) as the number of agents N → ∞. Then, the limit f satisfies
the following system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tf + ∇x · (u(f,v)f) + ∇ω ·
([

Pω⊥ {νωf + (λS(v) + A(v)) ω} ]f
)

= DΔωf,

u(f,v)(x, ω, t) = v(x, t) + aω,

−Δxv + ∇xp = −b∇x · Qf ,

∇x · v = 0,

(3.1)

where ∇ω· and Δω stand for the divergence and the laplacian in S2, respectively; and where

ρf (x, t) =
∫

S
f(x, ω, t)dω, (3.2)

ωf (x, t) =
Jf (x, t)
|Jf (x, t)| , (3.3)

Jf (x, t) =
∫

S2×R3
K

( |x − y|
R

)

ωf(y, ω, t) dydω, (3.4)

Qf (x, t) =
∫

S2

(

ω ⊗ ω − 1
3
Id
)

f(x, ω, t) dω. (3.5)
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3.1. Scaling and Expansion

We scale the alignment intensity and the variance of the noise by setting ν = ν̃/ε, D = D̃/ε, where ν̃,
D̃ are given fixed quantities. Considering the classical Vicsek model (without the coupling terms), this
rescaling corresponds to

dωi = Pω⊥
i

(
ν

ε
ω̄idt +

√

2
D

ε
dBi

t

)

= Pω⊥
i

(
νω̄id(t/ε) +

√
2DdBi

t/ε

)
,

i.e., it corresponds to a time-rescaling t′ = t/ε which, as ε → 0, gives the long-time dynamics for ωi. In
order words, with this rescaling we express the fact that the self-propulsion velocity of the agents ω is
a fast-varying variable while the velocity of the fluid v is a slow-varying variable. Notice, however, the
invariance of the quotient

κ :=
ν

D
=

ν̃

D̃
,

that we denote by κ. We also scale the radius of influence R in Eq. (3.4) by setting R =
√

εR̃, which is the
rescaling considered in Ref. [11]. This rescaling expresses that the interactions between agents become
localized in space as ε → 0. After rescaling the kinetic equation (3.1) in this way, we obtain (after skipping
the tildes):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε
[
∂tf

ε + ∇x · (u(fε,vε)f
ε)
]
+ ∇ω ·

([
Pω⊥{νωfε + ε (λS(vε) + A(vε)) ω}]fε

)
= DΔωfε,

u(fε,vε)(x, ω, t) = vε(x, t) + aω,

ω̄ε
f = Jε

f

|Jε
f | , Jε

f =
∫

S2×R3 ωK
(

|x−y|√
εR

)
f dωdy,

−Δxvε + ∇xpε = −b∇x · Gfε ,

∇x · vε = 0

(3.6)

We simplify this system by considering the following expansion:

Lemma 3.2. It holds that

ω̄ε
f = Ωf + ε

k0

|jf |PΩ⊥
f
Δxjf + O(ε2),

where

k0 =
R2

6

∫

R3
K(|x|)|x|2 dx

(∫

R3
K(|x|) dx

)−1

, (3.7)

and

jf (x, t) =
∫

S2
ωf(x, ω, t) dω (local current density), (3.8)

Ωf (x, t) =
jf (x, t)
|jf (x, t)| (local average orientation). (3.9)

Proof. The result is a direct consequence of the Taylor expansion for

Jε
f (x, t) =

∫

S2×R3
ω K

( |x − y|√
εR

)

f(y, ω, t) dωdy,

after performing the change of variables z = (x − y)/(
√

εR), which gives:

Jε
f = (

√
εR)3

∫

R3
K(|x|) dx

(
jf + εk0Δxjf + O(ε)

)
,

|Jε
f |−1 =

[

(
√

εR)3
∫

R3
K(|x|) dx

]−1

|jf |−1
(
1 − εk0(jf · Δxjf )|jf |−2

)
+ O(ε2).

�
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Thanks to the previous Lemma 3.2, we can rewrite the rescaled system (3.6) as follows:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ε
[
∂tf

ε + ∇x · (u(fε,vε)f
ε) + ∇ω · (F(fε,vε)f

ε)
]

= Q(fε) + O(ε2), (3.10)

u(fε,vε) = vε(x, t) + aω, (3.11)

−Δxvε + ∇xpε = −b∇x · Gfε , (3.12)

∇x · vε = 0, (3.13)
with

Q(f) = −∇ω · [νPω⊥(Ωf )f ] + DΔωf, (3.14)

F(f,v) = Pω⊥

[

ν
k0

|jf |PΩ⊥
f
Δxjf + (λS(v) + A(v)) ω

]

,

where jf ,Ωf are given in Eqs. (3.8)–(3.9) .

3.2. Equilibria and Generalised Collision Invariants

In Ref. [15] the authors studied the operator Q given in Eq. (3.14). They proved that it can be recast
into a Fokker-Planck form:

Q(f) = D∇ω ·
[

MΩf
(ω)∇ω

(
f

MΩf
(ω)

)]

,

where the density on the sphere

MΩ(ω) =
1
Z

exp (κ(Ω · ω)) ,

∫

S2
MΩ(ω) dω = 1,

is the so-called von Mises distribution (Z is a normalizing constant). The equilibria of Q as a function of
ω are given by the set of functions

Ker Q = {ρMΩ(ω), ρ ≥ 0, Ω ∈ S2}. (3.15)

Moreover, in Ref. [15] it is proven that
∫

S2
ωMΩ(ω) dω = c1Ω, (3.16)

for

c1 :=
∫

S2
(ω · Ω)MΩ(ω) dω =

∫ π

0
cos θ exp(κ cos θ) sin θ dθ
∫ π

0
exp(κ cos θ) sin θ dθ

∈ [0, 1],

showing the consistency relationship

ΩMΩ =
c1Ω
|c1Ω| = Ω.

Details can be found in Eq. (4.1).
Collision invariants are fundamental in the derivation of macroscopic equations. They are defined as

the scalar functions ψ such that ∫

S2
Q(f)(ω)ψ(ω) dω = 0. (3.17)

In the present case, ψ = constant clearly satisfies this relation. This is a consequence of the conservation
of mass during the interactions between agents. It can be shown that there are no other conserved
quantities. This implies, particularly, that the dimension of the space of collision invariants is smaller
than the dimension of the kernel Q in (3.15), which is 3-dimensional. Classical methods require the
dimension of the two spaces to be the same in order to derive a full system of macroscopic equations.
The collision invariant corresponding to the constants will allow us to derive the equation for the spatial
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density ρ =
∫

fdω (as we will see in the next section), but it will not be enough to determine the equation
for the mean orientation Ω. To sort out this problem, the authors in Ref. [15] introduce the concept of
Generalised Collision Invariant (GCI) defined as follows:

Definition 3.3. A function ψ : S → R is called ‘Generalised Collision Invariant’ associated to Ω0 ∈ S2 if
and only if ∫

S2
Q(f,Ω0)ψ dω = 0, for all f such that PΩ⊥

0

(∫

S2
ωf dω

)

= 0, (3.18)

where

Q(f,Ω0) = ∇ω ·
[

MΩ0(ω)∇ω

(
f

MΩ0(ω)

)]

.

Notice that with this definition

Q(f,Ωf ) = Q(f).

It has been proven that the GCI has the following properties:

Proposition 3.4 (Generalised Collision Invariant, from Ref. [15]). (i) Given Ω0 ∈ S2, the vector GCI
defined by:

�ψΩ0(ω) = (Ω0 × ω)h(ω · Ω0),

satisfies [3.18 (componentwise)], where the function h : R → R satisfies h(μ) = (1 − μ2)−1/2g ≥ 0 for g
the unique solution in the weighted H1 space V given by

V =
{

g | (1 − μ2)−1/2g ∈ L2(−1, 1), (1 − μ2)1/2∂μg ∈ L2(−1, 1)
}

,

of the differential equation

−(1 − μ2)∂μ

(
eκμ(1 − μ2)∂μg

)
+ eκμg = −(1 − μ2)3/2eκμ.

(ii) The set of GCIs associated to Ω0 consists of all functions ψ such that there exist B ∈ R3, B · Ω0 = 0
and C ∈ R such that ψ(ω) = B · �ψΩ0 + C.
(iii) For a given function f : S2 → R, we consider the associated Ωf given by

Ωf =
jf

|jf | ,

and consider
�ψΩf

(ω) = (Ωf × ω)h(Ωf · ω). (3.19)

Then �ψΩf
satisfies ∫

S2
Q(f) �ψΩf

dω = 0. (3.20)

4. Macroscopic Limit: The SOH–Stokes System

In this section we investigate the hydrodynamic limit as ε → 0 for the system (3.10)–(3.13). We will use
the following change of variables: for Ω ∈ S2 fixed, we decompose any given vector ω ∈ S2 uniquely as

ω = PΩ(ω) + PΩ⊥(ω) = cos θ Ω + sin θ w, for w ∈ S := (S2 ∩ Ω⊥) ∼= S1 and θ ∈ [0, π]. (4.1)

We take the convention
∫

S2 dω =
∫

S dw = 1. One can check that (see Ref. [21, Ap. A2]) for any measurable
function a(ω) = ā(θ, w): ∫

S2
a(ω) dω =

1
2

∫ π

0

∫

S
ā(θ, w) sin θ dwdθ, (4.2)

and ∫

S
w dw = 0, and

∫

S
w ⊗ w dw =

1
2
(Id − Ω ⊗ Ω) =

1
2
PΩ⊥ . (4.3)
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We will also use the notations:

h̃(θ) := h(cos θ) = h(ω · Ω), M̃(θ) := MΩ(cos θ) = MΩ(ω · Ω), (4.4)

where h is the function appearing in Eq. (3.19).

Theorem 4.1 ((Formal) macroscopic limit). Consider the rescaled system (3.10)–(3.13). When ε → 0, it
holds (formally) that

(fε, vε, pε) → (f = ρMΩ, v, p),

where ρ = ρ(x, t) ≥ 0 and Ω = Ω(x, t) ∈ S2 are the limits of the local density ρε =
∫

S2 fε dω and the local
mean orientation Ωfε in Eq. (3.9), respectively. Moreover, if the convergence is strong enough and Ω, ρ,
v and p are smooth enough, they satisfy the coupled system (2.3a)–(2.3d) with explicit constants

c1 = 〈cos θ 〉sin θM̃(θ), (4.5)

c2 = 〈cos θ〉sin3 θM̃(θ)h̃(θ), (4.6)

c3 = 2〈cos2 θ〉sin3 θM̃(θ)h̃(θ), (4.7)

c4 = 1 − 3
2
〈
sin2(θ)

〉

sin θM̃(θ)
, (4.8)

where we used the following notation: for any functions g, 
 : [0, π] → R define

〈g〉� :=
∫ π

0

g(θ)

(θ)

∫ π

0

(θ′) dθ′ dθ.

The constants a, b, κ = D/ν correspond to the ones in the individual based model (2.1a)–(2.1e) and the
value of k0 is given in Eq. (3.7).

Proof. Suppose that fε converges to f as ε → 0. Then, from Eq. (3.10), f belongs to the kernel of Q,
i.e., Q(f) = 0. Therefore, f = ρMΩ by Eq. (3.15), with ρ = ρ(x, t) ≥ 0 and Ω = Ω(x, t) ∈ S2. We start
by computing the equations for these two macroscopic quantities.

We obtain the continuity equation (2.3a) for ρ by integrating the kinetic equation (3.10) with respect
to ω; dividing by ε; taking the limit ε → 0; and using the consistency relationship in Eq. (3.16). Notice
that the integral of the right hand side of the kinetic equation (3.10) vanishes since ψ = 1 is a collision
invariant in Eq. (3.17) , i.e.,

∫

S2
Q(fε) dω = 0.

We compute next Eq. (2.3b) for the mean direction of the agents Ω. We multiply the kinetic equa-
tion (3.10) by 1

εψfε , where ψfε = h(ω · Ωfε)(Ωfε × ω) is the Generalised Collision Invariant given by
Proposition 3.4, and integrate with respect to ω:

∫

S2

[
∂tf

ε + ∇x · (u(fε,vε)f
ε) + ∇ω · (F(fε,vε)f

ε
) ]

h(ω · Ωfε) (Ωfε × ω) dω = O(ε).

Notice that the term involving Q vanishes thanks to Eq. (3.20). Taking the limit ε → 0 on the previous
expression, we obtain:

Ω × X = 0, X :=
∫

S2

[
∂t(ρMΩ) + ∇x · (u(ρMΩ,v)ρMΩ) + ∇ω · (F(ρMΩ,v)ρMΩ)

]
h(ω · Ω)ω dω,

or, equivalently,

PΩ⊥X = 0.
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To compute this last expression we decompose X into X = X1 + X2 + X3 + X4 for

X1 =
∫

S2
[∂t(ρMΩ) + aω · ∇x(ρMΩ)] h(ω · Ω)ω dω,

X2 =
∫

S2
∇ω ·

(

νPω⊥
k0

|jρMΩ |PΩ⊥(ΔxjρMΩ) ρMΩ

)

h(ω · Ω)ω dω,

X3 =
∫

S2
v · ∇x(ρMΩ)h(ω · Ω)ω dω,

X4 =
∫

S2
∇ω · (Pω⊥ [(λS(v) + A(v))ω] ρMΩ) h(ω · Ω)ω dω.

Notice that in X3 we used the incompressibility condition ∇x · v = 0 to express ∇x · ( vρMΩ) =
v · ∇x(ρMΩ).

The term PΩ⊥X1 has been computed in Ref. [15]:

PΩ⊥X1 = ρ(C0κ ∂tΩ + aκC2(Ω · ∇x)Ω) + aC0PΩ⊥∇xρ,

for

C0 =
1
4

∫ π

0

sin3 θ h̃(θ) M̃(θ) dθ, C2 =
1
4

∫ π

0

cos θ sin3 θ h̃(θ) M̃(θ) dθ,

with the notations in Eq. (4.4). The term PΩ⊥X2 has been studied in Ref. [11]. One observes that in the
limit jρMΩ = c1ρΩ using Eq. (3.16) and, therefore,

ν∇ω ·
(

Pω⊥
k0

|jρMΩ |PΩ⊥(ΔxjρMΩ) ρMΩ

)

= νk0∇ω · (Pω⊥PΩ⊥(Δx(ρΩ))MΩ)
= νk0∇ω · (Pω⊥PΩ⊥Δx(ρΩ)) MΩ + νk0κPω⊥PΩ⊥Δx(ρΩ) · Pω⊥ΩMΩ

= −2νk0(ω · PΩ⊥(Δx(ρΩ))MΩ − νk0κ(ω · PΩ⊥(Δx(ρΩ))(ω · Ω)MΩ,

where we used that ∇ω · (Pω⊥A) = −2A ·ω, ∇ω(ω ·A) = Pω⊥A and Pω⊥A ·Pω⊥B = A ·B − (ω ·A)(ω ·B)
for any vectors A,B ∈ R3 (see Ref. [21]). With this expression we have that

PΩ⊥X2 = − 2νk0PΩ⊥

(∫

S2
(ω ⊗ ω)MΩ h dω

)

PΩ⊥Δx(ρΩ)

− νk0κ

∫

S2
(ω · PΩ⊥(Δx(ρΩ))(ω · Ω)MΩ hPΩ⊥(ω) dω

= − 2νk0C0 PΩ⊥Δx(ρΩ)

− νk0κ

2

∫

S

∫ π

0

[
(cos θ Ω + sin θ w) · PΩ⊥Δx(ρΩ)

]
cos θ M̃(θ) h̃(θ) sin θ w sin θ dθdw

= − 2νk0C0 PΩ⊥Δx(ρΩ)

− νk0κ

2

(∫ π

0

sin3 θ cos θM̃(θ) h̃(θ) dθ

)(∫

S
w ⊗ w dw

)

PΩ⊥Δx(ρΩ)

= − νk0 (C2κ + 2C0) PΩ⊥Δx(ρΩ),

where in the second equality we used the change of variable (4.1), as well as,

PΩ⊥

∫

S2
(ω ⊗ ω)hMΩ dω =

1
4

∫ π

0

sin3 θ h̃(θ) M̃(θ) dθPΩ⊥ =: C0PΩ⊥ , (4.9)

(this formula is a consequence of Eqs. (4.2)–(4.3)); in the third equality, the odd integrands in w vanish;
and in the last equality we used Eq. (4.3).
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Now, the terms X3 and X4 correspond to the coupling terms. Firstly, for X3 we have that

PΩ⊥X3 =PΩ⊥

∫

S2
[(v · ∇x)ρ + κρω · ((v · ∇x)Ω)] hMΩ ω dω

=κρPΩ⊥

(∫

S2
(ω ⊗ ω)hMΩ dω

)

(v · ∇x)Ω

=κ ρC0 (v · ∇x)Ω,

where in the second equality the term (v · ∇x)ρ vanishes since

PΩ⊥

∫

S2
hMΩ ω dω =

1
2

∫ π

0

h̃(θ) M̃(θ) sin θ dθ

∫

S
w dw = 0,

and in the last equality we used that PΩ⊥(v · ∇x)Ω = (v · ∇x)Ω, as well as, Eq. (4.9).
Finally, to compute X4 we denote by B := λS(v) + A(v). Then we have that

∇ω · (Pω⊥(Bω) ρMΩ) = ∇ω · (Pω⊥Bω) ρMΩ + (Pω⊥Bω) · ∇ω(ρMΩ)

= B : (Id − 3ω ⊗ ω) ρMΩ + κρMΩ

[
(ω · BT Ω) − (ω · Bω)(ω · Ω)

]
,

where we used that ∇ωMΩ = κPω⊥ΩMΩ and that ∇ω · (Pω⊥Bω) = B : (Id − 3ω ⊗ ω) for any matrix
B independent of ω. The notation B : C indicates the contractions of the two matrices B = (B)ij ,
C = (C)ij , i.e., B : C =

∑
i,j=1,2,3 BijCij = trace(BT C) (see Ref. [21, Ap. A.2]). In this way we can

decompose X4 into X4 = X41 + X42 + X43 with

X41 = ρ

∫

S2

(
B : (Id − 3ω ⊗ ω)

)
MΩ hω dω,

X42 = κρ

∫

S2
(ω · BT Ω)MΩ hω dω,

X43 = −κρ

∫

S2
(ω · Bω)(ω · Ω)MΩ hω dω.

To compute the term X41, notice that, if C is an antisymmetric matrix, then C : (Id − 3ω ⊗ ω) = 0
(since the second matrix is symmetric), therefore

B : (Id − 3ω ⊗ ω) = λS(v) : (Id − 3ω ⊗ ω).

In the following computation, in the second equality we use the change of variables (4.1); in the third
equality the odd terms in w vanish from the integral; in the fourth equality we use that S : (w ⊗ Ω +
Ω ⊗ w) = 2w · SΩ (since S is symmetric); and the last equality is consequence of Eq. (4.3):

PΩ⊥X41 = ρ

∫

S2

(
B : (Id − 3ω ⊗ ω)

)
MΩ hPΩ⊥(ω) dω

=
λ

2
ρ

∫

S

∫ π

0

[
S(v) :

(
Id − 3(cos θ Ω + sin θ w) ⊗ (cos θ Ω + sin θ w)

)]

M̃(θ) h̃(θ) sin θw sin θ dθdw

= −3λ

2
ρ

(∫ π

0

sin3 θ cos θM̃(θ) h̃(θ) dθ

)(∫

S

[
S(v) : (w ⊗ Ω + Ω ⊗ w)

]
w dw

)

= − 12λC2ρ

(∫

S
w ⊗ w dw

)

S(v)Ω

= − 6λC2 ρPΩ⊥S(v)Ω.

For the term X42 it is immediate to obtain

PΩ⊥X42 = C0κρPΩ⊥BT Ω = C0κρPΩ⊥(λS(v) + A(v))Ω,
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proceeding analogously as in previous computations (remember Eq. (4.9)). The term X43 is computed
similarly as for X41:

PΩ⊥X43 = −κρPΩ⊥

∫

S2
(ω · Bω) (ω · Ω)MΩ hω dω

= −κρ

∫

S2
(ω · Bω) (ω · Ω)MΩ hPΩ⊥(ω) dω

= −κ

2
ρ

∫

S

∫ π

0

[
(cos θ Ω + sin θ w) · B(cos θ Ω + sin θ w)

]
cos θ M̃(θ) h̃(θ) sin θ w sin θ dθdw

= −κC3 ρ

∫

S
(w · (B + BT )Ω)w dw

= −κC3 ρ

∫

S
(w ⊗ w) dw (B + BT )Ω

= −κλ C3 ρPΩ⊥S(v)Ω,

where in the last equality we substituted (B + BT )/2 = λS; and where

C3 :=
1
2

∫ π

0

sin3 θ cos2 θM̃(θ)h̃(θ) dθ.

Grouping terms we conclude:

PΩ⊥X4 = ρ [κC0PΩ⊥A(v)Ω + λ (κC0 − 6C2 − κC3)] PΩ⊥S(v)Ω

Finally, putting all the terms together, we obtain

0 = PΩ⊥X = PΩ⊥(X1 + X2 + X3 + X4)
= ρ(C0κ ∂tΩ + aκC2(Ω · ∇x)Ω) + aC0PΩ⊥∇xρ

− νk0 (C2κ + 2C0) PΩ⊥Δx(ρΩ)
+κ ρC0 (v · ∇x)Ω
+ ρ [κC0PΩ⊥A(v)Ω + λ (κC0 − 6C2 − κC3)] PΩ⊥S(v)Ω.

Dividing the previous expression by κC0 we obtain Eq. (2.3b) for Ω with

c2 =
C2

C0
, c3 =

C3

C0
.

To conclude the theorem, we are left with computing the limit for Stokes equation (3.12). For this,
we just need to compute the limit of the right hand side term, which in the limit ε → 0 corresponds to

− b∇x ·
(∫

S2

(

ω ⊗ ω − 1
3
Id
)

ρMΩ(ω) dω

)

.

We compute next the value of the integral:

ρ

∫

S2

(

ω ⊗ ω − 1
3
Id
)

MΩ dω

=
ρ

2

∫

S

∫ π

0

[

(cos θ Ω + sin θ w) ⊗ (cos θ Ω + sin θ w) − 1
3
Id
]

M̃(θ) sin θ dθdw

=
ρ

2

(∫ π

0

cos2 θM̃(θ) sin θ dθ

)

Ω ⊗ Ω + ρ

(∫ π

0

sin3 θM̃(θ) dθ

)(∫

S
w ⊗ w dw

)

− 1
3
ρId

=
ρ

2

(∫ π

0

cos2 θM̃(θ) sin θ dθ

)

Ω ⊗ Ω + ρ

(∫ π

0

sin3 θM̃(θ) dθ

)
1
2
(Id − Ω ⊗ Ω) − 1

3
ρId

= ρ

[

c4

(

Ω ⊗ Ω − 1
3
Id
)

+ c5Id
]

,
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where in the third equality we have disregarded the odd terms in w; and where

c4 =
1
2

∫ π

0

sin θM̃(θ)
(

cos2 θ − 1
2

sin2 θ

)

dθ, c5 =
1
4

∫ π

0

sin3 θM̃(θ) dθ +
1
6
(c4 − 1).

A computation shows that c5 = 0. This implies that

− b∇x ·
(∫

S2

(

ω ⊗ ω − 1
3
Id
)

ρMΩ(ω) dω

)

= −b c4∇x ·
[

ρ

(

Ω ⊗ Ω − 1
3
Id
)]

.

�

5. Linearised Stability Analysis of the SOH–Stokes System

In this section, we investigate the linearised stability of the SOH–Stokes system (2.3). We linearize the
SOH–Stokes system about constant (space-independent) functions ρ, Ω, v, p and study the stability of the
resulting linear system. The main result of this section is that the SOH–Stokes model exhibits unstable
modes for both pushers (b > 0) and pullers (b < 0). Since the SOH model describes aligned states (as the
particle distribution function is non-isotropic, given by a von Mises distribution with non-zero parameter
κ), this corresponds to analyzing the stability of the suspension near an aligned state. A previous analysis
performed in [34] in the case of nematic interactions, Fig. 2 (see also [24]) has shown that both pushers
and pullers are unstable to perturbations of an aligned state. We show that this instability still prevails
for both pushers and pullers interacting though polar alignment. However, we show that pullers can be
stable if they are slender rods (λ = 1). We will also see that the unstable modes for pushers and pullers
are not the same. In the case of pullers, these are transverse modes (the perturbation to Ω is normal to the
wave-vector) propagating along the unperturbed orientation vector Ω. For pushers, these are longitudinal
modes propagating transversely to the unperturbed orientation vector Ω. The former have vanishing
density perturbation while the latter have non-trivial density perturbation. For both pushers and pullers,
the instability only develops at small values of |k| (i.e. for large wavelengths) and has maximal growth
rate at k = 0. Therefore, we can expect that the typical spatial extension of the instability patterns will
be set up by the system size.

Here we assume that a = 1 to simplify the analysis. Let

ρ = ρ0, Ω = Ω0, v = v0, p = p0,

be a uniform steady state for the SOH–Stokes system with |Ω0| = 1. We expand it with a small pertur-
bation parameter τ :

ρ = ρ0 + τρ1(x, t), Ω = Ω0 + τΩ1(x, t), v = v0 + τv1(x, t), p = p0 + τp1(x, t).

Dropping the higher order terms O(τ2) and using (ρ,Ω, v, p) to represent the first order perturbation
(rather than (ρ1,Ω1, v1, p1)) we obtain the linearised system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ω0 · Ω = 0, (5.1a)
∂tρ + ρ0∇x · (c1Ω + v) +

(
(c1Ω0 + v0) · ∇x

)
ρ = 0, (5.1b)

ρ0∂tΩ + ρ0

(
(c2Ω0 + v0) · ∇x

)
Ω +

1
κ

PΩ⊥
0
∇xρ

= γρ0PΩ⊥
0
ΔxΩ + ρ0PΩ⊥

0

(
λ̃S(v) + A(v)

)
Ω0, (5.1c)

−Δxv + ∇xp̃ = −b̃ρ0

(
(Ω0 · ∇x)Ω + (∇x · Ω)Ω0

)− b̃ (Ω0 ⊗ Ω0) ∇xρ, (5.1d)
∇x · v = 0, (5.1e)

where b̃ = bc4 and

p̃ = p − b̃

3
ρ.
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The first equation is consequence of |Ω0| = 1. To deduce the first term in the right hand side of Eq. (5.1c)
we used that PΩ⊥

0
Ω0Δxρ = 0. Finally, to obtain the last term in Eq. (5.1d) we used that

Q = c4

(

Ω0 ⊗ Ω0 − 1
3
Id
)

+ τc4(Ω0 ⊗ Ω + Ω ⊗ Ω0) + O(τ2).

The main result of this section is the following:

Theorem 5.1 (Linear stability analysis). There exists a non-trivial plane wave solution for the linearised
system (5.1) of the form

(ρ,Ω, v, p̃) = (ρ̄, Ω̄, v̄, p̄)ei(k·x−αt), (5.2)

(where (ρ̄, Ω̄, v̄, p̄) = (ρ̄, Ω̄, v̄, p̄)(α, k) are complex-valued functions, with k ∈ R3, α ∈ C), if and only if,
either k = k0Ω0 for some k0 ∈ R, k0 �= 0 or PΩ⊥

0
k �= 0, as detailed next. Denote k0, k̄, k⊥, U0, V0 by

k0 := k · Ω0, k̄ := k · Ω̄, k⊥ := PΩ⊥
0
k,

U0 := c1Ω0 + v0, V0 := c2Ω0 + v0.

Case A: k = k0Ω0 for k0 ∈ R, k0 �= 0.
In this case α can only have two possible values:
(a) either α = (c1 + v0 · Ω0)k0, and then Ω̄ = 0, ρ̄ is arbitrary, p̄ = −b̃ρ̄, v̄ = 0;
(b) or

α = (c1 + v0 · Ω0)k0 + i

(
λ̃ − 1

2
b̃ρ0 − γk2

0

)

,

and therefore it is stable (Im(α) ≤ 0) if

|k|2 ≥ 1
2γ

ρ0b̃(λ̃ − 1).

In this case ρ̄ = 0, Ω̄ is an arbitrary unit vector orthogonal to Ω0, p̄ = 0,

v̄ = −ib̃
ρ0

k0
Ω̄.

If b̃ < 0 (puller case), the modes are unstable in the range

|k|2 ∈
[

0,
ρ0b̃(λ̃ − 1)

2γ

]

. (5.3)

The supremum of Im(α) in this range is

ρ0b̃(λ̃ − 1)
2

, (5.4)

and corresponds to the limit of Im(α) when k → 0.
Case B: k⊥ = PΩ⊥

0
k �= 0.

In this case Ω̄ is of the form

Ω̄ = η
k⊥

|k⊥| , (5.5)

with η = ±1 and (α, k) are linked by the following dispersion relation,

Dη(α, k) = 0,
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where

Dη(α, k) = k̄

{
b̃ρ0

2|k|2
[(

−4λ̃
k2
0

|k|2 + λ̃ + 1
)

(−α + U0 · k)

− c1k0

(

−2λ̃
k2
0

|k|2 + λ̃ + 1
)]

+
i

κ
c1

}

(|k|2 − k2
0)

1/2

− η(−α + U0 · k)

[

i(−α + V0 · k) − (λ̃ − 1)b̃ρ0

2
k2
0

|k|2 + γ|k|2
]

. (5.6)

In the particular case where k0 = 0, the dispersion relation simplifies to

D̃(α, k) = ρ0
b̃

2
(λ̃ + 1)(−α + v0 · k) +

i

κ
c1|k|2 − (−α + v0 · k)[i(−α + v0 · k) + γ|k|2] = 0. (5.7)

The corresponding modes are stable (Im(α) ≤ 0) if

|k|2 ≥ 1
2γ

ρ0b̃(λ̃ + 1), (5.8)

and the perturbation is given by

p̄ = 0, ρ̄ = ηc1
ρ0|k|

α − v0 · k
, v̄ = −iηb̃

ρ0

|k|Ω0. (5.9)

If b̃ > 0 (pusher case), the modes are unstable in the range

|k|2 ∈
[

0,
ρ0b̃(λ̃ + 1)

2γ

]

.

The supremum of Im(α) in this range is

ρ0b̃(λ̃ + 1)
2

,

and corresponds to the limit k → 0.

Remark 5.1. Notice that Case (B) when k0 = 0 corresponds to v̄ ⊥ Ω̄, while Case (A) (b) corresponds
to v̄ ‖ Ω̄. This is the signature that these two cases correspond to different modes.

Remark 5.2 (Interpretation of the linear stability analysis, Theroem 5.1).

Case (A)(a): This case corresponds to the simple propagation of a density perturbation along Ω0 at speed
α

k0
= c1 + v0Ω0,

with no perturbation of the orientation since Ω̄ = 0.

Case (A)(b): Notice that λ̃ − 1 ∈ [−2, 0], since λ̃ ∈ [−1, 1]. Therefore, if b̃ > 0 (pushers), the mode is
stable and if b̃ < 0 (pullers) the mode is unstable for small values of |k|. In this last case, the coupling
with Stokes equation destabilizes the model given that in the SOH model alone all modes are stable,
see Ref. [15]. Notice that the diffusion term helps to stabilize the modes by damping them, but since it
involves a second order derivative, the damping is proportional to |k|2 and is very small for small values
of |k| but dominates for large values of |k|. Therefore, for large values of |k|, the diffusion damping is
enough to compensate the instability due to the coupling with the Stokes equation, which is independent
of |k|. This is why the model is stable for large values of |k|. However, for small values of |k|, the diffusion
damping is not strong enough and the instability of the Stokes coupling is predominant. Consequently,
small |k|-modes (large wavelength) are unstable. Moreover, the supremum of Im(α) corresponds to the
limit k → 0, which means that the typical spatial extension of the fastest growing unstable mode will be
of the size of the system.
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Fig. 5. a Flow field generated by a pusher. b Flow field generated by a puller. These flow fields generate perturbations to
the background velocity field and in some cases, can provide the necessary positive feedback mechanism to trigger an

instability. Instability mechanisms are different for pushers and pullers

Case (B): We analyse the particular case k0 = 0. We observe analogous phenomena as in Case (A)(b)
but reversing the roles of pullers and pushers since λ̃ + 1 ≥ 0: if b̃ < 0 (pullers), the constant solution is
always stable but in the pusher case (b̃ > 0), the coupling with Stokes equation destabilizes the mode.
The supremum value of Im(α) also corresponds to the limit k → 0.

Remark 5.3. Figures 5, 6 and 7 provide a schematical explanation of the instability mechanisms. Figure 5
depicts the perturbation velocity field generated by pushers and pullers. Figures 6 and 7 provide a
description of the instability mechanisms for pullers and pushers respectively.

Remark 5.4. The instability shown here is a classical case of long wave-length instability where the
unstable modes are found only for a bounded range of k. The mode with largest growth rate (most
negative imaginary value of α) will grow and shortly dominate but then the solution will leave the domain
of validity of the linear approximation. Nonlinear terms will take control. A likely scenario is that the
energy from the unstable long wave-length modes will be cascaded to the stable short wave-length ones
by the nonlinearity and will be ultimately dissipated, leading to the stabilization of the system. However,
in the absence of a rigorous analysis of the full nonlinear model, this scenario remains a conjecture.
Note however that this situation is classical in fluid mechanics and gives rise to patterns such as the von
Karman vortex streets. The situation is likely to be similar here and should give rise to the appearance of
patterns that could be explored numerically. In order to take advantage of the stabilization by the short
wave-length modes, numerical simulations should use a fine enough mesh so that the shortest wave-length
resolved by the mesh (of the order of the mesh size) lies in the stability region. This indeed may lead
to severe numerical constraints when the diffusion coefficient γ is small. For larger mesh sizes, numerical
diffusion may provide a stabilization mechanism, but at the expense of a loss of accuracy. Finally, note
that the stability analysis of the macroscopic equations is analytically solvable. It would not be the case
for the particle model for which stability can only be explored numerically. This is an advantage of the
macroscopic model over the particle model.
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Fig. 6. Puller unstable mode: a geometric configuration. The puller unstable mode is a transverse mode (Ω̄ ⊥ k)
propagating parallel to the unperturbed mean orientation Ω0. b Schematics of the instability mechanism. There is no

density perturbation involved. The instability is due to a reinforcement of the mis-alignment between the swimmer mean
orientation Ω = Ω0 + τ Ω̄, (τ � 1) and the unperturbed orientation Ω0. This reinforcement results from the torque applied

to a given swimmer by the velocity perturbation generated by the neighbouring swimmers ahead and behind it. This
torque is materialised in the picture by the double arrows

Fig. 7. Pusher unstable mode: a geometric configuration. The pusher unstable mode is a longitudinal mode. The
perturbation Ω̄ is parallel to the propagation direction (Ω̄ ‖ k) and both are perpendicular to the unperturbed mean

orientation Ω0. b Schematics of the instability mechanism. Due to the configuration of the perturbation velocity field that
they generate, swimmers are attracted by regions of higher swimmer density, thereby amplifying density perturbations

Proof of Theorem 5.1. Substituting the plane-wave solution (5.2) in the linearised system (5.1) we obtain
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ω0 · Ω̄ = 0, (5.10a)
−αρ̄ + ρ0c1k̄ + ρ̄U0 · k = 0, (5.10b)

−iαρ0Ω̄ + iρ0

(
V0 · k

)
Ω̄ +

i

κ
ρ̄k⊥

= −γ|k|2ρ0Ω̄ +
i

2
ρ0

[
(v̄ · Ω0)(λ̃ + 1)k⊥ + k0(λ̃ − 1)PΩ⊥

0
v̄
]
, (5.10c)

|k|2v̄ + ikp̄ = −ib̃ρ0

(
k0Ω̄ + k̄Ω0

)− ib̃ ρ̄k0Ω0, (5.10d)
k · v̄ = 0, (5.10e)

where in (5.10b) we used that k · v̄ = 0 thanks to (5.10e); in (5.10c) we used that PΩ⊥
0
Ω̄ = Ω̄ thanks to

(5.10a), as well as, that ∇xv = ik ⊗ v̄ and therefore

S(v) = i
k ⊗ v̄ + v̄ ⊗ k

2
, A(v) = i

k ⊗ v̄ − v̄ ⊗ k

2
,
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and so

S(v)Ω0 = i
(v̄ · Ω0)k + k0v̄

2
, A(v)Ω0 = i

(v̄ · Ω0)k − k0v̄

2
.

Now, we look for the existence of a non-trivial solution of system (5.10). From the last two equations
we deduce that

p̄ = −b̃
k0

|k|2 (2ρ0k̄ + ρ̄k0). (5.11)

We note that we can divide by |k|2 since k �= 0. Otherwise, if k = 0, then in the case α �= 0 (which
is the case of a non-trivial perturbation we are interested in), this implies that ρ̄ = 0, Ω̄ = 0, i.e., the
perturbation is null. Next, we obtain an expression for v̄ by decomposing it into v̄ = PΩ⊥

0
v̄ + PΩ0 v̄, since

this will be useful in the sequel. Doing the inner product of Eq. (5.10d) with Ω0 and using Eq. (5.10a),
we obtain:

v̄ · Ω0 =
−i

|k|2
(
k0p̄ + b̃ρ0k̄ + b̃ρ̄k0

)
.

Projecting now Eq. (5.10d) on the orthogonal to Ω0 we obtain

PΩ⊥
0
v̄ = − i

|k|2
(
p̄k⊥ + b̃ρ0k0Ω̄

)
.

We insert these expressions in (5.10c) to obtain:
[

iρ0 (−α + V0 · k) + γ|k|2ρ0 +
(λ̃ − 1)b̃

2
ρ2
0k

2
0

|k|2
]

Ω̄

=
[
1
2

ρ0

|k|2
(
2λ̃k0p̄ + b̃(λ̃ + 1)(ρ0k̄ + ρ̄k0)

)
− i

κ
ρ̄

]

k⊥. (5.12)

Next, to study the solutions of this equation, we consider separately the cases k⊥ = 0 and k⊥ �= 0:

Case (A) Suppose k⊥ = 0, i.e. k = k0Ω0 with k0 �= 0. We can distinguish two cases:
(a) Suppose Ω̄ = 0, then Eq. (5.10a) and the fact that ρ̄ �= 0 (otherwise the perturbation is null) give

α = (c1 + v0 · Ω0)k0. In this case one can check that ρ̄ is arbitrary, p̄ = −b̃ρ̄ and ṽ = 0.
(b) Suppose Ω̄ �= 0. Then, from Eq. (5.12), it must hold (remember that |k|2 = k2

0))

α = (c2 + v0 · Ω0)k0 + i
(λ̃ − 1)b̃

2
ρ0 − iγk2

0.

The condition for stability is Im(ω) ≤ 0, i.e.,

|k|2 = |k0|2 ≥ 1
2γ

ρ0b̃(λ̃ − 1).

In this case one can check that ρ̄ = 0, Ω̄ is arbitrary with Ω̄,Ω0 �= 0, p̄ = 0 and

v̄ = −ib̃
ρ0

k0
Ω̄.

Moreover, for b̃ < 0, it is straightforward to see that the range for which |k| is unstable is given by
(5.3) and the supremum of Im(α) is attained at (5.4) in the limit k → 0.

Case (B) Suppose that k⊥ �= 0. The coefficient on the right-hand side of Eq. (5.12) is written (thanks to
(5.11)) as

X :=
ρ0

2|k|2
[

2λ̃k0

(

− b̃k0

|k|2 (2ρ0k̄ + ρ̄k0)

)

+ (λ̃ + 1)(b̃ρ0k̄ + b̃ρ̄k0)

]

− i

κ
ρ̄.

First we check that X �= 0. Suppose that ρ̄ = 0. From Eq. (5.10a), this implies that k̄ = 0. So X = 0 and
we conclude that Ω̄ = 0. So the perturbation is null. Therefore it cannot be that ρ̄ = 0, which implies
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Im(X) �= 0, so that X �= 0. Therefore, Ω̄ �= 0 and from (5.12), it should be given by Eq. (5.5). Then, from
(5.12) again and the fact that k⊥ = (|k|2 − k2

0)
1/2, the dispersion relation is given by:

{

b̃
ρ0

2|k|2
[

ρ0k̄

(

−4λ̃
k2
0

|k|2 + λ̃ + 1
)

+ ρ̄k0

(

−2λ̃k2
0

|k|2 + λ̃ + 1

)]

− i

κ
ρ̄

}

(|k|2 − k2
0)

1/2

= η

[

iρ0(−α + V0 · k) − (λ̃ − 1)
b̃ρ2

0

2
k2
0

|k|2 + γ|k|2ρ0

]

, (5.13)

and from Eq. (5.10b) we have the relation

(−α + U0 · k)ρ̄ + ρ0c1k̄ = 0. (5.14)

We check that −α + U0 · k �= 0 by contradiction. Suppose that −α + U0 · k = 0, then, from the previous
equation, we deduce that k̄ = Ω̄ · k = Ω̄ · (k⊥ + k0Ω0) = 0. From Eq. (5.5), we get that Ω̄ ‖ k⊥, which
implies that |k⊥| = 0. This contradicts our assumption that k⊥ �= 0 and therefore, we conclude that,
effectively, −α + U0 · k �= 0. So, multiplying Eq. (5.13) by −α + U0 · k �= 0 and using Eq. (5.14), we get
the dispersion relation in Eq. (5.6).

Now, to simplify the analysis we will restrict ourselves to the case where k⊥ = k, i.e. k0 = k · Ω0 = 0.
This implies, in particular, that U0 · k = V0 · k = v0 · k, as well as,

k̄ = k · Ω̄ = k⊥ · Ω̄ = η|k⊥| = η|k|.
With these considerations one can simplify the dispersion relation (5.6) into

D̃(α, k) = 0,

where D̃(α, k) is given in Eq. (5.7).
Using the variable X = α − v0 · k we can recast D̃(α, k) = 0 into:

X2 + iX

(

γ|k|2 − ρ0b̃(λ̃ + 1)
2

)

− c1|k|2
κ

= 0,

after multiplying by i. Now, changing variables X = iY , we have that Y solves

P (Y ) := Y 2 + Y

(

γ|k|2 − ρ0b̃(λ̃ + 1)
2

)

+
c1|k|2

κ
= 0.

Stability in this case means Im(X) < 0, i.e. Re(Y ) < 0. The polynomial P has real coefficients. There
are two possibilities:
• If P has positive discriminant, its two roots are real. In this case, to have stability we require them

both to be negative, i.e. their product π has to be positive and their sum σ negative. The product
is given by

π =
c1|k|2

κ
≥ 0,

and their sum is

σ = −γ|k|2 +
ρ0b̃(λ̃ + 1)

2
. (5.15)

So in this case the stability criteria corresponds to σ ≤ 0, which leads to Eq. (5.8).
• If the polynomial P has negative discriminant, the two roots are complex conjugate. Their real part

is half their sum σ. So again the stability criterion reduces to asking that σ is negative, and we are
left with the same stability criterion (5.8) as before.

We suppose now that b̃ > 0, and we want to determine the supremum on the instability range

|k| ∈
⎡

⎣0,

(
ρb̃(λ̃ + 1)

2γ

)1/2
⎤

⎦ ,
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and the corresponding value of |k|. This supremum corresponds to kmax = argmax Re(Y ) = argmax Im(α).
We have seen that in the case where the roots are real, they have the same sign. Therefore, any root is
less than the sum σ(|k|) given by (5.15).

The maximum value of σ(|k|) is at k = 0, i.e.,

σ(0) =
ρ0b̃(λ̃ + 1)

2
.

One can easily check that σ(0) is a root of P for |k| = 0 (the other root being 0) and therefore one of the
roots is maximal at |k| = 0. �

6. Extensions of the Model

In the next two sections we consider two ways of extending the Vicsek–Stokes model: (i) adding short-
range repulsion to account for volume exclusion interactions and, (ii) considering the Vicsek–Navier–
Stokes coupling to account for regimes with high Reynolds number and finite particle inertia. Further to
this, one could consider also a combination of these two extensions. Stability analysis is not performed
here for these two extensions. Indeed, while the methodology is a straightforward extension of that used
for the Vicsek–Stokes model, the analytical resolution of the dispersion relation is far from obvious and
requires further developments. It would be risky to make conjectures based on the results for the Vicsek–
Stokes model as there are examples where a model and its singular limits do not enjoy the same stability
properties.

6.1. Adding Short-Range Repulsion

The Vicsek–Stokes coupling (2.1a)–(2.1e) presented here can be extended towards different directions.
Particularly, in regions where agents become highly packed, a repulsion force can be enforced between
neighbouring particles to better account for volume exclusion (or steric interactions, see Fig. 2). This can
be easily done following Ref. [10] where repulsion is introduced in the Vicsek model and coarse-grained
into the Self-Organised Hydrodynamic model with Repulsion (SOHR). Particularly the individual based
model corresponds to:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXi = uidt = v(Xi, t)dt + aωidt − μ(∇xΦ)(Xi, t), (6.1)

dωi = Pω⊥
i

◦
[
νωidt − ξ(∇xΦ)(Xi, t)dt +

√
2D dBi

t +
(
λS(v) + A(v)

)
ωidt

]
, (6.2)

ω̄i =
Ji

|Ji| with Ji =
N∑

k=1

K

( |Xi − Xk|
R

)

ωk, (6.3)

−Δxv + ∇xp = − b

N

N∑

i=1

(

ωi ⊗ ωi − 1
3
Id
)

∇xδXi(t), (6.4)

∇x · v = 0, (6.5)

with the same notations as for the system (2.1a)–(2.1e), where μ, ξ > 0 and the repulsive potential Φ is
defined as

Φ(x, t) =
1
N

N∑

k=1

φ

( |x − Xk(t)|
r

)

,

where φ = φ(|x|) is a binary repulsion potential that only depends on the distance, and where r > 0 is
the typical repulsion range. We assume that x �→ φ(|x|) is smooth, as well as,

φ ≥ 0,

∫

R3
φ(|x|) dx < ∞,
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which implies, in particular, that φ(|x|) → 0 as |x| → ∞.
The only differences between System (6.1)–(6.5) with the original Vicsek–Stokes system (2.1a)–(2.1e)

are the addition of two new terms: the last term to the evolution of Xi(t) in Eq. (6.1), which expresses
the repulsion force, and the second term in the evolution of ωi(t) in Eq. (6.2), which is a relaxation term
of ωi towards the force ∇xΦ(Xi(t), t). This terms models the fact that particles tend to actively align
their directions of motion with the force.

The presence of these new terms modifies the coarse-grained equations. To begin with, the mean-field
equations correspond to (following Sect. 3 and Ref. [10]):

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂tf + ∇x · (u(f,v)f)

+∇ω ·
([

Pω⊥ {νωf − ξ∇xΦf (x, t) + (λS(v) + A(v)) ω} ]f
)

= DΔωf,

u(f,v)(x, ω, t) = v(x, t) + aω − μ∇xΦf (x, t),

−Δxv + ∇xp = −b∇x · Qf ,

∇x · v = 0,

(6.6)

following the notations of Proposition 3.1 and where

Φf (x, t) =
∫

R3
φ

( |x − y|
r

)

ρf (y, t) dy.

The difference with respect to the mean-field system in (3.1) is the extra term ξ∇xΦf (x, t) in the equation
for f and the term −μ∇xΦf in the equation for the velocity u(f,v).

To perform the macroscopic limit, we rescale the mean-field equations (6.6) analogously as in Sect. 3
adding the rescaling of r = εr̃ for r̃ > 0. Remember that the alignment interaction range R is rescaled
as R =

√
εR̃, therefore the alignment interaction range is larger than the repulsive range. Skipping the

tildes, we obtain the rescaled system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε
[
∂tf

ε + ∇x · (u(fε,vε)f
ε)
]

+∇ω ·
([

Pω⊥{νωfε − εξ∇xΦfε(x, t) + ε (λS(vε) + A(vε)) ω}]fε
)

= DΔωfε,

u(fε,vε)(x, ω, t) = vε(x, t) + aω − μ∇xΦfε(x, t),

ω̄ε
f = Jε

f

|Jε
f | , Jε

f =
∫

S2×R3 ωK
(

|x−y|√
εR

)
f dωdy,

Φε
f =

∫

R3 φ
(

|x−y|
εr

)
ρf (y, t) dy,

−Δxvε + ∇xpε = −b∇x · Gfε ,

∇x · vε = 0.

(6.7)

From here we obtain the macroscopic equations as ε → 0:

Theorem 6.1 (Macroscopic equations with volume exclusion). Consider the rescaled system (6.7). When
ε → 0, it holds (formally) that

(fε, vε, pε) → (f = ρMΩ, v, p),

where ρ = ρ(x, t) ≥ 0 and Ω = Ω(x, t) ∈ S2 are the limits of the local density ρε and the local mean
orientation Ωfε in Eqs. (3.2), (3.9), respectively. Moreover, if the convergence is strong enough and Ω, ρ,
v and p are smooth enough, they satisfy the coupled system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tρ + ∇x · (ρU) = 0, (6.8)

ρ∂tΩ + ρ(V · ∇x)Ω + PΩ⊥∇xp(ρ) = γPΩ⊥Δx(ρΩ) + ρPΩ⊥

(
λ̃S(v) + A(v)

)
Ω, (6.9)

−Δxv + ∇xp = −b∇x · (ρQ(Ω)) , (6.10)
∇x · v = 0, (6.11)
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where

U = ac1Ω + v − μΦ0∇xρ, V = ac2Ω + v − μΦ0∇xρ,

p(ρ) =
a

κ
ρ + ξμΦ0

(
2
κ

+ c2

)
ρ2

2
, Q = c4

(

Ω ⊗ Ω − 1
3
Id
)

,

Φ0 =
∫

R3
φ(x) dx,

and where the constants c1, . . . , c4, k0, γ and λ are given by Eqs. (4.5)–(4.8), (3.7), (2.4) and where
κ = ν/D.

The proof of this theorem is direct from the Proof of Theorem 4.1 and the results in Ref. [10].

Remark 6.1 (Discussion of the result.). The repulsive force intensity is given by the parameter μΦ0.
Observe that when μΦ0 = 0 we recover the SOH–Stokes system (2.3a)–(2.3d). Notice that the presence
of the repulsion modifies the velocity U of ρ in (6.8) and the convective velocity V of Ω in (6.9) by adding
a term −μΦ0∇xρ. This term in (6.8) gives rise to a diffusion-type term for ρ of the form −μΦ0∇x ·
(ρ∇xρ), which resembles a porous-medium equation and that prevents the formation of high particle
concentrations. In the case of the convective velocity of Ω, this term indicates the tendency of particles
to change their orientation towards regions of lower concentration. The other important difference is the
presence of a non-linear term in the pressure ∇xp(ρ) for Ω in (6.9) which increases the pressure effects,
due to the repulsion forces, when the concentrations become high.

6.2. Vicsek–Navier–Stokes Coupling

6.2.1. The Individual Based Model. In a finite Reynolds number regime, fluid dynamics is described by
the Navier–Stokes equations rather than by the Stokes equation. In this section, we propose a Vicsek–
Navier–Stokes coupling also assuming finite particle inertia and derive the coarse-grained equations. We
will also see how the Vicsek–Stokes coupling in Eqs. (2.1a)-(2.1e) is obtained from this Vicsek–Navier–
Stokes coupling by assuming a low Reynolds number regime and negligible particle inertia. We consider
the following coupled system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXi

dt
= ui(t), (6.12a)

mi
dui

dt
= η(v(Xi, t) + aωi(t) − ui), (6.12b)

dωi = Pω⊥
i

◦ [νω̄idt +
(
λS(v) + A(v)

)
ωidt

]
+

√
2DdBi

t, (6.12c)

mi
dui

dt
= Fi(t), (6.12d)

ω̄i =
Ji

|Ji| with Ji =
N∑

k=1

K(|Xi − Xk|)ωk, (6.12e)

ρ0(∂tv + (v · ∇x)v) + ∇xp = σΔxv −
N∑

i=1

FiδXi(t)

−ρ0β
1
N

N∑

i=1

(

ωi ⊗ ωi − 1
3
Id
)

∇xδXi(t), (6.12f)

∇x · v = 0. (6.12g)

Most of the terms have previously been explained for Eqs. (2.1a)–(2.1e) in Sect. 2. The term ρ0 is the
density of the fluid and σ > 0 its viscosity; η is a friction coefficient; mi is the mass of agent i; and Fi is
the force generating its acceleration. Notice that in the present case the individuals’ velocity ui relaxes
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towards v(Xi, t) + aωi(t), while in the Vicsek–Stokes coupling we considered directly the relaxed system.
The influence of the force of particle i on the fluid is given by the term FiδXi(t) in Eq. (6.12f) (this is an
application of Newton’s third law of action and reaction).

A sanity check of our model consists of ensuring that the momentum and the angular momentum are
conserved by the dynamics, as expected in a closed system with no dissipation at the boundaries:

Proposition 6.2. Suppose that in the system (6.12) the domain has no boundaries and the solution vanishes
at large distances, then the total momentum and angular momentum are conserved.

The proof can be found in the Appendix.

6.2.2. Dimensional Analysis and Simplifications. Next we check the orders of magnitude of the coefficients
in Eqs. (6.12) by a dimensional analysis. We assume that each agent has the same mass m = mi. We
consider dimensionless variables x′ = x/x0, t′ = t/t0 such that x0/t0 = u0 is the typical speed of an
agent. With this, we define the dimensionless quantities

v′ = v/u0, a′ = a/u0, ν′ = νt0, D′ = Dt0,

η′ = η
t0
m

, F ′
i = Fi

(

m
u0

t0

)−1

, p′ = p

(
σu0

x0

)−1

.

Now, we assume that the range of interaction of K is given by R, so we can write

K(x) = K̃
( x

R

)
.

We introduce the dimensionless variable R′ = R/x0 so that K ′ = K̃(|x′ − y′|/R′).
Changing variables and expressing the system (6.12) in the prime variables we obtain, after skipping

the primes, the following system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXi

dt
= ui, (6.13a)

dui

dt
= η(v(Xi, t) + aωi − ui), (6.13b)

dωi = Pω⊥
i

◦ [νωidt +
(
λS(v) + A(v)

)
ωidt

]
+

√
2DdBi

t, (6.13c)

ω̄i =
Ji

|Ji| with Ji =
N∑

k=1

K

( |Xi − Xk|
R

)

ωk, (6.13d)

dui

dt
= Fi, (6.13e)

Re(∂tv + (v · ∇x)v) + ∇xp = Δxv − c

N∑

i=1

FiδXi(t)

−b
1
N

N∑

i=1

(

ωi ⊗ ωi − 1
3
Id
)

∇xδXi(t), (6.13f)

∇x · v = 0, (6.13g)

where all the variables and parameters are now dimensionless and

Re = ρ0
u0x0

σ
(Reynolds number),

c =
mu0

x2
0σ

,

b =
ρ0β

x2
0σ

.
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Notice that the constant λ remains unchanged with respect to the original equation; it is already a
dimensionless quantity. The parameter c is a measure of the particle inertia, whereas Re is a measure of
the fluid inertia.

Remark 6.2 (Reduction to Vicsek–Stokes coupling). The Vicsek–Stokes coupling (2.1a)–(2.1e) is obtained
from the previous system in the regime where Re � 1 as well as c � 1, η � 1. This corresponds to
physical systems where the size (and mass) of the agents is very small (microscopic sizes). Therefore, as
a simplification we can consider directly Re = 0, c = 0, 1/η = 0 thus removing the inertial terms in
the Navier–Stokes equation and the force term −c

∑N
i=1 Fiδxi(t); as well as relaxing the velocity of the

particles to ui = v(Xi, t) + aωi. Typically the coefficient b will not be small and should not be simplified.

6.2.3. The Mean-Field Limit. From now on, we will consider the large friction limit regime defined as
follows:

Definition 6.3 (Large friction limit regime). The large friction limit regime corresponds to the friction
coefficient η → ∞ in the system (6.13) (but leaving c and Re to be O(1)). Then Eq. (6.13b) is replaced
by

ui = v(Xi, t) + aωi,

and the rest of equations in (6.13a)–(6.13g) remain unchanged.

This section is devoted to proving the following:

Proposition 6.4 (Mean-field limit at finite Reynolds number and finite particle inertia). Given N particles,
consider the following scaling of the constant c in Eq. (6.13f):

c =
c̄

N
, c̄ = O(1) as N → ∞. (6.14)

Consider also the empirical distribution associated to the dynamics of the agents in (6.13) in the regime
of large friction coefficient (Definition 6.3) with the previous scaling for c, i.e.:

fN (x, ω, t) =
1
N

N∑

i=1

δxi(t)(x) ⊗ δωi(t)(ω),

where δxi(t)(x) and δωi(t)(ω) denote the Dirac delta at xi(t) and ωi(t) on R3 and S2, respectively. Assume
that fN converges weakly to f = f(x, ω, t) as the number of agents N → ∞. Then, the limit f satisfies
the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tf + ∇x · (u(f,v)f) + ∇ω ·
([

Pω⊥ {νωf + (λS(v) + A(v)) ω} ]f
)

= DΔωf, (6.15a)

u(f,v)(x, ω, t) = v(x, t) + aω, (6.15b)

∂t

[
(Re + c̄ρf )v + ac̄jf

]
+ ∇x · [(Re + c̄ρf )v ⊗ v + ac̄(v ⊗ jf + jf ⊗ v)

]

+∇x · [(a2c̄ + b)Qf

]
= −∇x

(

p +
a2c̄

3
ρ

)

+ Δxv, (6.15c)

∇x · v = 0, (6.15d)
where the density ρf , the flux jf and the Q-tensor Qf are given by

ρf :=
∫

S2
f dω, jf :=

∫

S2
ωf dω, Qf :=

∫

S2

(

ω ⊗ ω − 1
3
Id
)

f dω, (6.16)

and ω̄f is given in Eq. (3.3).

Remark 6.3. We must assume that c = O(1/N) as the number of particles N → ∞. This is because in
a mean-field limit interacting terms scale like 1/N so that their sum acting on a given particle remains
finite.

Proposition 6.4 is consequence of the following two lemmas:
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Lemma 6.5. Consider the large friction limit regime in Definition 6.3. The density ρf and the flux jf

given in Eq. (6.16) satisfy the following equations:

∂tρf + ∇x · (ρfv + ajf ) = 0, (6.17)

∂tjf + ∇x · (v ⊗ jf + aQf ) +
a

3
∇xρf

=
∫

S2
Pω⊥ [νω̄f + (λS(v) + A(v))ω]f dω − 2Djf . (6.18)

Lemma 6.6. Consider the large friction limit regime in Definition 6.3. Consider also the scaling for the
constant c given in Eq. (6.14). Then, the mean-field limit of the force term in Eq. (6.13f) is

− c

N∑

i=1

FiδXi(t) → −c̄
[
ρf (x, t) [∂tv + (v · ∇x)v] + a(jf · ∇x)v

+ a

∫

S2
Pω⊥

[
νω̄f + (λS(v) + A(v))ω

]
f dω − 2aD jf

]
, (6.19)

as N → ∞, where ρf , jf and ω̄f are given in Eqs. (6.16), (3.3). Consequently, the limit as N → ∞ of
Eq. (6.13f) is given by

∂t

[
(Re + c̄ρf )v + ac̄jf

]
+ ∇x · [(Re + c̄ρf )v ⊗ v + ac̄(v ⊗ jf + jf ⊗ v) + (a2c̄ + b)Qf

]

= −∇x

(

p +
a2c̄

3
ρf

)

+ Δxv. (6.20)

The proof of these two Lemmas is given at the end of this section. We prove first Proposition 6.4:

Proof of Proposition 6.4. The mean-field limit equation for the density f is computed analogously as
in Proposition 3.1. We just need to compute the mean-field limit equation for the fluid velocity v in
Eq. (6.13f) and this is done in Lem. 6.6. �

Proof of Lemma 6.5. As in Proposition 3.1, we have that the density f satisfies Eq. (6.15a). To obtain
Eq. (6.17) for ρf we integrate this equation with respect to ω.

To obtain Eq. (6.18) for the flux jf we multiply the kinetic equation (6.15a) by ω and integrate over
ω:

∂tjf + ∇x · (v ⊗ jf + aQf ) +
a

3
∇xρf

+
∫

S2
ω∇ω ·

[
Pω⊥ [νω̄f + (λS(v) + A(v))ω]

]
f dω = D

∫

S2
ωΔωf dω, (6.21)

where we used that (v · ∇x)jf = ∇x · (v ⊗ jf ) − (∇x · v)jf and ∇x · v = 0. Next, we recast the last two
terms of this equation. Firstly, it holds that

D

∫

S2
ωΔωf dω = −2D

∫

S2
ωf dω = −2Djf , (6.22)

using integration by parts and the fact that the laplacian in the sphere satisfies Δω(ω · u) = −2(ω · u) for
any vector u ∈ R3 (this is the spherical harmonic of degree 1 in S2, see [21]). Secondly, it holds that

∫

S2
ω∇ω ·

[
Pω⊥ [νω̄f + (λS(v) + A(v))ω]

]
f dω = −

∫

S2
Pω⊥ [νω̄f + (λS(v) + A(v))ω]f dω.

A proof of the last equality can be found in Proposition A.1. Substituting this last expression and
Eq. (6.22) into Eq. (6.21) we conclude Eq. (6.18) for jf . �

Proof of Lemma 6.6. We consider the following decomposition:

−c

N∑

i=1

FiδXi(t)dt = − c̄

N

N∑

i=1

duiδXi(t) = TN
1 + TN

2 ,
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where

TN
1 = − c̄

N

N∑

i=1

dv(Xi(t), t) δXi(t),

TN
2 = − c̄

N

N∑

i=1

a dωi(t)δXi(t).

For the limit of TN
1 as N → ∞, we have, using (6.13f) and ignoring the Dirac deltas (in Newtonian

mechanics, self-forces are ignored to keep the expressions finite) that

TN
1 = − c̄

N
dt

N∑

i=1

[∂tv + (v · ∇x)v + a(ωi(t) · ∇x)v] (Xi(t), t) δXi(t)

= − c̄

N
dt

N∑

i=1

∫

S2
[∂tv + (v · ∇x)v + a(ω · ∇x)v] (x, t) δXi(t)δωi(t) dω

= − c̄ dt

∫

S2
[∂tv + (v · ∇x)v] (x, t)

(
1
N

N∑

i=1

δXi(t)δωi(t)

)

dω

− ac̄ dt

∫

S2
(ω · ∇x)v

(
1
N

N∑

i=1

δXi(t)δωi(t)

)

dω

= − c̄ dt [∂tv + (v · ∇x)v] (x, t)
∫

S2
fN (x, ω, t) dω

− ac̄ dt

[(∫

S2
ωfN dω

)

· ∇x

]

v

→ − c̄ dt [ρf (x, t) [∂tv + (v · ∇x)v] + a(jf · ∇x)v] , as N → ∞.

To compute the limit of TN
2 we first recast the stochastic differential equation (6.13c) for ωi, which is

expressed in Stratonovich sense, in its equivalent Itô’s form (see [33, Th. (30.14) p. 185], also [3]):

dωi = Pω⊥
i

(νωidt +
(
λS(v) + A(v)

)
ωidt) +

√
2DdBi

t − 2Dωi dt.

With this, we consider the decomposition of TN
2 into

TN
2 = − c̄

N
dt

N∑

i=1

aPω⊥
i

(νω̄i + (λS(v) + A(v))ωi) δXi(t)

− c̄

N

N∑

i=1

aPω⊥
i

(√
2DdBi

t

)
δXi(t)

+
ac̄

N
2DωiδXi(t) dt

=: TN
21 + TN

22 + TN
23 .

To compute the limit of TN
21 we define

gN (x, ω, v) = c̄Pω⊥
(
νω̄N + (λS(v) + A(v))ω

)
dt,

where

ω̄N (x) =
J

|J | , with J(x) =
N∑

k=1

K

( |x − Xk|
R

)

ωk.
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With these notations we rewrite:

TN
21 = − 1

N

N∑

i=1

agN (x, ωi(t), v(t))δXi(t)

= − 1
N

N∑

i=1

∫

S2
agN (x, ω, v(t))δXi(t)δωi(t) dω

= −
∫

S2
agN (x, ω, v(t))fN (x, ω, t)dω

→ −
∫

S2
ag(x, ω, v(t))f(x, ω, t)dω, as N → ∞,

where

g(x, ω, v) = c̄Pω⊥ (νω̄f + (λS(v) + A(v))ω) dt,

and where ω̄f is given in Eq. (3.3). This leads to

TN
21 → −ac̄

∫

S2
Pω⊥ (νω̄f + (λS(v) + A(v))ω) f dω dt.

For the term TN
22 we have that

TN
22 = − c̄

N

N∑

i=1

aPω⊥
i

(√
2DdBi

t

)
δXi(t)

= −ac̄
√

2D

∫

S2

1
N

N∑

i=1

(
Pω⊥

i
dBi

t δXi(t)δωi(t)

)
dω.

For any test function ϕ = ϕ(x, ω) we have that

〈Pω⊥
i

dBi
t δXi(t)δωi(t), ϕ〉 = ϕ(Xi(t), ωi(t))Pω⊥

i
dBi

t,

where 〈·, ·〉 denotes the duality brackets. Now it holds that

1
N

N∑

i=1

ϕ(Xi(t), ωi(t))Pω⊥
i

dBi
t =

1
N

N∑

i=1

ϕ(Xi(t), ωi(t))
(
dBi

t − (ωi(t) · dBi
t)ωi(t)

)
. (6.23)

The term dBt = Bt+dt −Bt denotes Brownian motion increments, by the properties of Brownian motion,
we have that dBt is normally distributed with mean 0 and variance dt, i.e., dBt ∼ N (0, dt). For fixed t,
the following term is a gaussian random variable

1
N

N∑

i=1

ϕ(Xi(t), ωi(t))dBi
t,

since it is the sum of independent gaussian random variables (notice that for fixed t, ωi(t) takes a
particular fixed value and it is not random). Particularly, its expectation E is zero:

E

(
1
N

N∑

i=1

ϕ(Xi(t), ωi(t))dBi
t

)

=
1
N

E
(
dB1

t

) N∑

i=1

ϕ(Xi(t), ωi(t)) = 0,
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(since E(dB1
t ) = 0) and, moreover, since the Brownian motions are independent (and hence E(dBi

tdBj
t ) =

0 if i �= j), it holds that the variance is zero too in the limit N → ∞:

Var

(
1
N

N∑

i=1

ϕ(Xi(t), ωi(t))dBi
t

)

= E

⎡

⎣

(
1
N

N∑

i=1

ϕ(Xi(t), ωi(t))dBi
t

)2
⎤

⎦

−E2

(
1
N

N∑

i=1

ϕ(Xi(t), ωi(t))dBi
t

)

=
1

N2
E(dB1

t )2
N∑

i=1

[ϕ(Xi(t), ωi(t))]2

=
dt

N2

N∑

i=1

[ϕ(Xi(t), ωi(t))]2 → 0 as N → ∞,

where we used that E(dB1
t )2 = dt and the fact that

1
N

N∑

i=1

[ϕ(Xi(t), ωi(t))]2 = 〈fN , ϕ2〉 → 〈f, ϕ2〉 < ∞, as N → ∞.

One can show analogously that the term (ωi ·dBi
t)ωi in Eq. (6.23) satisfies the same properties since each

component of Bi
t is also a Brownian motion (in 1-dimension). From this we conclude, that

TN
22(x, ω, t) → 0, as N → ∞.

Finally, one can see following analogous computations to the previous ones that

TN
23 → 2ac̄D

∫

S2
ωf dω dt = 2ac̄Djf dt.

Putting all the terms together we conclude the proof of statement (6.19).
We prove next Eq. (6.20). Using Eq. (6.19), the mean-field limit for the fluid velocity v (6.13f) corre-

sponds to:

Re(∂tv + (v · ∇x)v) = −∇xp + Δxv

−c̄ρf [∂tv + (v · ∇x)v] − ac̄(jf · ∇x)v

−ac̄

∫

S2
Pω⊥

[
νω̄f +

(
λS(v) + A(v)

)
ω
]
f dω + 2ac̄D jf

−b∇x · Qf .

Now, using that ∇x · v = 0, as well as ∇x · (v ⊗ v) = (v · ∇x)v and the equation for the density ρf in
Eq. (6.17), the previous expression is recast into

∂t

[
(Re + c̄ρf )v

]
+ ∇x · [(Re + c̄ρf )v ⊗ v

]

= −∇xp + Δxv

− ac̄(∇x · jf )v − ac̄(jf · ∇x)v

− ac̄

∫

S2
Pω⊥

[
νω̄f +

(
λS(v) + A(v)

)
ω
]
f dω + 2ac̄D jf

− b∇x · Qf .

Finally, from this expression we obtain Eq. (6.20) using Eq. (6.18) for the flux jf and the fact that
(∇x · jf )v + (jf · ∇x)v = ∇x · (jf ⊗ v). �
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Remark 6.4. Notice that Eq. (6.15c) for the velocity of the fluid v is in conservative form. From it,
assuming that the domain has no boundaries and the solution vanishes at large distances, we conclude
that

∂t

∫

R3
(Re v + c̄ρfv + ac̄jf ) dx = 0,

and therefore, the total momentum of the system is conserved, as expected, given the conservation of the
total momentum in the individual based model.

6.2.4. Macroscopic Equations. To obtain the macroscopic equations, we scale the mean-field limit system
from Proposition 6.4 analogously as done in Sect. 3:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε
[
∂tf

ε + ∇x · (u(fε,vε)f
ε)
]
+ ∇ω ·

([
Pω⊥ {νωfε + ε (λS(vε) + A(vε)) ω} ]fε

)
= DΔωfε,

u(fε,vε)(x, ω, t) = vε(x, t) + aω,

ω̄ε
f = Jε

f

|Jε
f | , Jε

f =
∫

S2×R3 ωK
(

|x−y|√
εR

)
f dωdy,

∂t

[
(Re + c̄ρfε)vε + c̄ajfε

]
+ ∇x · [(Re + c̄ρfε)vε ⊗ vε + ac̄(vε ⊗ jfε + jfε ⊗ vε)

]

+∇x · [(a2c̄ + b)Qfε

]
= −∇x

(
pε + a2c̄

3 ρfε

)
+ Δxvε,

∇x · vε = 0.

(6.24)

Finally, we conclude the

Theorem 6.7 (Macroscopic equations at high Reynolds number). Consider the scaled system (6.24). When
ε → 0, it holds (formally) that

(fε, vε, pε) → (f = ρMΩ, v, p),

where ρ = ρ(x, t) ≥ 0 and Ω = Ω(x, t) ∈ S2 are the limits of the local density ρε and the local mean
orientation Ωfε in Eqs. (3.2), (3.9), respectively. Moreover, if the convergence is strong enough and Ω, ρ,
v and p are smooth enough, they satisfy the following coupled system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ + ∇x · (ρU) = 0, (6.25a)

ρ∂tΩ + ρ(V · ∇x)Ω +
a

κ
PΩ⊥∇xρ = γPΩ⊥Δx(ρΩ) + ρPΩ⊥

(
λ̃S(v) + A(v)

)
Ω, (6.25b)

∂t

[
(Re + c̄ρ)v + c1ac̄ρΩ

]
+ ∇x · [(Re + c̄ρ)v ⊗ v + c1ac̄ρ(v ⊗ Ω + Ω ⊗ v)

]

+∇x · [(a2c̄ + b)Q] = −∇xp̃ + Δxv, (6.25c)
∇x · v = 0, (6.25d)

where

U = ac1Ω + v, V = ac2Ω + v, Q = c4

(

Ω ⊗ Ω − 1
3
Id
)

, p̃ = p +
a2c̄

3
ρ,

and where the constants c1, . . . , c4, k0, λ̃ and γ are given by Eqs. (4.5)–(4.8), (3.7), (2.4), respectively;
and κ = ν/D.

The proof of this result is direct from the one of Theorem 4.1 since most of the terms are computed
there. For the extra terms that depend on jfε one just needs to remember that jfε → c1ρΩ as ε → 0.

Remark 6.5 (Discussion of the results in Theorem 6.7). Notice firstly that when c̄ = 0 and Re = 0,
we recover the SOH–Stokes system (2.3) as expected, since in that case the individual based model
corresponds to the Vicsek–Stokes coupling (2.1), see Rem 6.2. The interpretations of the equations for
ρ and Ω are the same as for the SOH–Stokes, since the equations are the same. The difference with
respect to the SOH–Stokes system is Eq. (6.25c). This equation gives the evolution over time of the total
momentum of the fluid and the particles corresponding to:

(Re + c̄ρ)v + c1ac̄ρΩ.



JMFM Coupled Self-Organized Hydrodynamics and Stokes Models Page 33 of 36 6

The second term in (6.25c) corresponds to the momentum flux and it is divided in two contributions.
Firstly,

(Re + ρ)v ⊗ v

corresponds to the momentum flux generated by the fluid and by the passive transport of the particles
by the fluid. Secondly, the term corresponding to

c1ac̄ρ(v ⊗ Ω + Ω ⊗ v)

gives the momentum flux through the exchange between fluid velocity v and particles velocity c1aΩ.
Notice that the momentum flux is given by a symmetric matrix. The term (a2c̄ + b)Q gives an extra-
stress tensor coming from the active nature of the particles and splits into a contribution coming from
the dipolar force exerted by the particles (corresponding to the contribution given by the constant b), on
the one hand, and from their net force (corresponding to the contribution given by the product a2c̄), on
the other hand.

7. Conclusions

In this paper we have presented the macroscopic derivation of a coupled Vicsek–Stokes system. This
coupling describes collective motion in a fluid in a low Reynolds number regime. The fluid is described by
Stokes system and the collective motion by the Vicsek model, which represents phenomenologically the
interactions between neighbouring agents mediated by the fluid. The coupling is obtained by taking into
account the interactions between the agents and the fluid. This involves, particularly, Jeffery’s equation
that expresses the influence of a viscous fluid on spheroidal particles, on the one hand, and the force
exerted by the agents on the fluid due to the dipolar force created by their self-propulsion motion, on the
other hand.

The coarse-grained model corresponds to a Self-Organised Hydrodynamics and Stokes coupling. In-
terestingly, we have shown that Jeffery’s equation is coarse-grained into Jeffery’s equation but with a
different value for the shape parameter. The linear stability analysis shows that both pullers and pushers
have unstable modes, but the instability of pullers disappears in the case of rod-like particles.

At the end, we have extended the Vicsek–Stokes coupling into two directions: firstly, we take into
account volume exclusion to avoid concentration effects in the dynamics; secondly, we consider a finite
Reynolds number and finite particle inertia regime to model systems where the particles’ mass and size
is large such as fish.

Finally, these results open many exciting paths to be explored, for example, one could consider the
coupling of the Vicsek model with other types of fluid dynamics (given e.g. by Darcy’s law, Brinkmann
law, non-Newtonian fluids). Also, it would be interesting to perform numerical simulations of the dynamics
to confirm the stability analysis and to apply these models to the investigation of real-life systems like
sperm and bacterial suspensions.

Acknowledgements. PD acknowledges support by the Engineering and Physical Sciences Research Coun-
cil (EPSRC) under Grants No. EP/M006883/1 and EP/P013651/1, by the Royal Society and the Wolfson
Foundation through a Royal Society Wolfson Research Merit Award No. WM130048 and by the National
Science Foundation (NSF) under Grant No. RNMS11-07444 (KI-Net). PD is on leave from CNRS, In-
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A Some Proofs and Properties

Proof of Proposition 6.2. The total momentum is given by
∫

ρ0v(x, t)dx +
∑N

i=1 miui. It is a direct com-
putation to check that its derivative is zero. The total angular momentum for the system is given by:

∫

x × (ρ0 v(x, t)) dx +
N∑

i=1

(Xi × Fi). (A.1)

We have that

d

dt

(∫

ρ0x × v dx

)

=
∫

ρ0x × ∂tv dx

= −
∫

ρ0x × ∇x · (v ⊗ v) dx −
∫

x × ∇xp dx +
∫

σx × Δv dx

−
N∑

i=1

∫

x × FiδXi
dx −

N∑

i=1

∫

x ×
(

ωi ⊗ ωi − 1
3
Id
)

∇xδXi
dx

=: I1 + I2 + I3 + I4 + I5.

One can check directly with the help of the Lévy-Civita symbol to compute the vector products (and
integration by parts in some cases) that

I1 = I2 = I3 = I5 = 0,

I4 = −
N∑

i=1

Xi × Fi.

Notice, that I5 = 0 thanks to (ωi ⊗ ωi − Id/3) being a symmetric matrix. Therefore, the only term that
does not vanish is I4 and it is compensated by the angular momentum of the agents. �

Proposition A.1. For any vector u ∈ R3, it holds
∫

S2
ω∇ω · (Pω⊥u) dω = −

∫

S2
Pω⊥u dω.

http://creativecommons.org/licenses/by/4.0/
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Proof. This can be proven as follows: for any vector q ∈ R3

q ·
∫

S2
ω∇ω · (Pω⊥u) dω =

∫

S2
(q · ω)∇ω · (Pω⊥u) dω

= −
∫

S2
∇ω(q · ω) · (Pω⊥u) dω

= −
∫

S2
Pω⊥q · (Pω⊥u) dω

= −q ·
∫

S2
(Pω⊥u) dω

given that ∇ω(ω · q) = Pω⊥q and Pω⊥q · Pω⊥u = q · Pω⊥u for any pair of vectors q, u ∈ R3. From this we
conclude the result. �
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