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GLOBAL REGULARITY FOR THE 3D FINITE DEPTH
CAPILLARY WATER WAVES

BY XUECHENG WANG

ABSTRACT. — In this paper, we prove global regularity, scattering, and the non-existence of small
traveling waves for the 3D capillary waves system in the flat bottom setting for smooth localized small
initial data.

To construct global solutions, we highly exploit the symmetric structures inside the capillary waves
system and control both a low order weighted norm and a high order weighted norm of the profile of a
good substitution variable over time to show that, although the nonlinear solution itself doesn’t decay
sharply at rate 1/(1 + ¢) over time, the “1 + «” derivatives of the nonlinear solution indeed decays
sharply, where « is some fixed positive number.

REsUME. — Dans cet article, on démontre la régularité globale, la dispersion des solutions et
la non-existence des petites ondes progressives pour un systéme d’equations des ondes capillaires en
dimension 3 avec des petites données initiales réguliéres et localisées, dans le cas des fonds flats.

Pour construire des solutions globales, on exploite les structures symétriques du systéme d’ondes
capillaires et controdle a la fois les évolutions des deux normes avec poids du profil d’une bonne variable
substitutive, 'une d’ordre petit et ’autre d’ordre grand. En conséquence, on montre que les dérivées
d’ordre 1 + « de la solution non-linéaire décroissent rapidement au taux de 1/(1 + ¢), bien que la
solution elle-méme ne décroit pas aussi rapidement, ol @ est un nombre positif fixé.

1. Introduction

1.1. The set-up of problem and previous results

We study the evolution of a constant density irrotational inviscid fluid, e.g., water, inside
a time dependent domain Q(t) C R3, which has a fixed flat bottom ¥ and a moving
interface I'(z). Above the water region Q(¢) is vacuum. We neglect the gravity effect and
only consider the surface tension effect in this paper. The problem under consideration is
also known as the capillary waves system.

0012-9593/04/(C) 2020 Société Mathématique de France. Tous droits réservés doi:10.24033/asens.2436
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846 X. WANG

After normalizing the depth of Q(¢) to be “1,” we can represent 2(¢), I'(¢), and X in the
Eulerian coordinates as follows,
Q@) :={(x,y): x e R%, =1 <y < h(t,x)},
L(t):={(x,h(t,x):x eR?}, X :={(x,—1):x e R?},
where A(f, x) represents the height of interface, which will be a small perturbation of zero.
Let “u” and “p” denote the velocity and the pressure of the fluid respectively. Then the
evolution of fluid can be described by the free boundary Euler equation as follows,
(1.1) dju4+u-Vu=—-Vp, V-u=0, Vxu=0, in Q).
The free surface I'(r) moves with the normal component of the velocity according to the
kinematic boundary condition as follows,
d; +u -V is tangent to U, I'(¢).
The pressure p satisfies the Young-Laplace equation as follows,

p=ocH(), onTI(),

[T 1)

where “o” denotes the surface tension coefficient, which will be normalized to be one, and
H (h) represents the mean curvature of the interface, which is given as follows,

Vh )
I+ Vr2/"

Lastly, the following Neumann type boundary condition holds on the bottom X,

H(h):V-(

u-n=0, onX.

Because the bottom is assumed to be fixed, the fluid cannot go through the bottom. This
explains why the above boundary condition holds.

Since the velocity field is irrotational, we can represent it in terms of a velocity potential ¢.
Let ¥ be the restriction of the velocity potential on the boundary I'(¢), more precisely,
w(t,x) = ¢(t, x, h(t, x)). From the divergence free condition and the boundary conditions,
we can derive the Laplace equation with two boundary conditions as follows,

d¢

2 _ %9 _ -

(1.2) (05 +Ax)p =0, aﬁ|E =0, ¢|F(t) = .

Hence, we can reduce the study of the motion of fluid in (7) to the study of the evolution
of the height function “h(¢, x)” and the restricted velocity potential “yr (¢, x)” as follows,

dth = G(h)Y,

1.3
(4 0y = H(h) — 3|y +

(G(h)yy + Vh-Vy)?
2(1 + |Vh]?) ’
where G(h)y = /1 4|V h|? N(h)Y¥ and N (h)y is the Dirichlet-Neumann operator at the
interface I'(¢). See e.g., [42] for the derivation of the system (1.3).
The capillary waves system (1.3) has the conserved energy and the conserved momentum

as follows, see e.g., [7],
(1.4)

1
0. @) = [ [ SvO6mowo +-

|Va(@®)?

+ 1+ VA

dx] = SUh(0), v (0)),
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3D FINITE DEPTH CAPILLARY WAVES 847

(1.5) / h(t,x)dx = / h(0, x)dx.
R2 R2
From [34, Lemma 3.4], we know that

(1.6) (Flat bottom setting) :
A<[G(h)y] = [V[tanh |V|y — V- (AVY) — [V[tanh |V|(7|V| tanh [V]y),
(1.7) (Flat bottom setting) :  A<3[d,¢¥] = Ah — %|V1ﬂ|2 + %(|V| tanh |V |y)2,

where A <>[c/V] denotes the linear terms and the quadratic terms of the nonlinearity o/V.

From the above Taylor expansions, in the small solution regime, the conserved Hamilto-
nian in (1.4) tells us that the L2-norm of (VA, |V|+/tanh |V|y) doesn’t change much over
time. More precisely, the following approximation holds,

1
Z(IIVh(l)Iliz HIVIP< [ O + 1V Pea [y (O]7) < FUA(@), ¥ (1))
(1.8) = GUO), ¥(©0) < 4(IVRDIF> + IIVIP<i [y Ol7 + IIVI'? Pei [y ]I175)-

There is an extensive literature on the study of the water waves system. Without being
exhaustive, we only discuss some previous works here and refer readers to the references
therein.

Previous results on the local existence of the water waves system. — Due to the quasilinear
nature of the water waves systems, to obtain the local existence, it is very important to
get around the losing derivatives issue. Early works of Nalimov [32] and Yosihara [41]
considered the local well-posedness of the small perturbation of a flat interface such that
the Rayleigh-Taylor sign condition holds. It was first discovered by Wu [37, 38] that the
Rayleigh-Taylor sign condition holds without the smallness assumptions in the infinite
depth setting. She showed the local existence for arbitrary size of initial data in Sobolev
spaces. After the breakthrough of Wu’s work, there are many important works devote to
improve the understanding of local well-posedness of the full water waves system and the
free boundary Euler equations. Christodoulou-Lindblad [10] and Lindblad [31] considered
the gravity waves with vorticity. Beyer-Gunter [8] considered the effect of surface tension.
Lannes [30] considered the finite depth setting. See also Shatah-Zeng [33], and Coutand-
Shkoller [11]. It turns out that local well-posedness also holds even if the curvature of the
interface is unbounded and the bottom is very rough even without regularity assumption,
only a finite separation condition is required, see the works of Alazard-Burq-Zuily [1, 2] for
more detailed and precise description of this result.

Previous results on the long time behavior of the water waves system. — The long time behavior
of the water waves system is more difficult and challenging. To study the long time behavior,
the low frequency part of the solution plays an essential role. It is very interesting to see that
the water waves systems in different settings have very different behavior at the low frequency
part. Even for a small perturbation of static solution and flat interface, we only have few
results so far. Note that, it is possible to develop the so-called “splash-singularity” for a large
perturbation, see [9] and references therein for more details.

We first discuss previous results in the infinite depth setting. The first long-time result for
the water waves system is due to the work of Wu [39], where she proved the almost global

ANNALES SCIENTIFIQUES DE I’ECOLE NORMALE SUPERIEURE



848 X. WANG

existence of the 2D gravity waves for small initial data. Subsequently, Germain-Masmoudi-
Shatah [17] and Wu [40] proved the global existence for the 3D gravity waves system, which
is the first global regularity result for the water waves system. Global existence of the 3D
capillary waves was also obtained, see Germain-Masmoudi-Shatah [18]. For the 2D gravity
waves system, it is highly nontrivial to bypass the almost global existence. As first pointed
out by lonescu-Pusateri [27] and independently by Alazard-Delort [3, 4], we have to modify
the profile appropriately first to prove the global existence. The nonlinear solution possesses
the modified scattering property instead of the usual scattering. Later, a different inter-
esting proof of the almost global existence was obtained in the holomorphic coordinates
by Hunter-Ifrim-Tataru [22], then Ifrim-Tataru [23] improved this result and gave another
interesting proof of the global existence. The author [35] considered the infinite energy
solution of the gravity waves in 2D, which removed the momentum assumption assumed
in previous results. Global existence of the capillary waves system in 2D was also obtained.
See Tonescu-Pusateri [28, 29] and Ifrim-Tataru [23]. For the 3D gravity-capillary waves
with any possible positive gravity effect constant and positive surface tension coefficient,
Deng-lonescu-Pausader-Pusateri [14] proved global existence for small localized initial data
in the infinite depth setting.

Now, we move on to the finite depth setting. The behavior of the water waves system in
the finite depth setting is more delicate than the infinite depth setting due to three factors
listed as follows, the presence of small traveling waves, the more complicated structure at low
frequencies, and less favorable quadratic terms.

Roughly speaking, the existence of small (in L2 sense) traveling waves for the water waves
system in different settings can be summarized as follows. From previous results [40, 17, 14]
on the 3D water waves system in the infinite depth setting, we know that there is no small
traveling waves regardless the size of a/g. However, we do know the existence of small
traveling waves for the 3D gravity-capillary waves system in the flat bottom setting as long
as /g > 1/3, see [12]. From the recent work of the author [36], we know that there is no
small traveling wave for the 3D gravity waves system in the flat bottom setting, i.e., 6/g = 0.
So far, it is still not clear whether there exist small traveling waves for the 3D gravity-capillary
waves system in the flat bottom setting if 0 < o/g < 1/3.

On the long time behavior side. Only results on the gravity waves system were obtained.
The large time existence was obtained by Alvarez-Samaniego-Lannes [6] for the 3D finite
depth gravity waves system. Recently, the author [34, 36] showed that the 3D gravity waves
system admits global solutions for small smooth localized initial data in the flat bottom
setting. For the 2D gravity waves system in the flat bottom setting, Harrop-Griffiths-Ifrim-
Tataru [21] showed that the lifespan of the solution is at least of size 1/€? if the small initial
data is of size €.

1.2. Main difficulties for the capillary waves system in the flat bottom settings

Note that the linear operator of the Dirichlet-Neumann operator changes with respect to
the depth of water region. To help readers understand the main difficulties of the capillary
waves in the finite depth setting, we compare the capillary waves system in the infinite depth
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3D FINITE DEPTH CAPILLARY WAVES 849

setting and the flat bottom setting with the depth of water region normalized to be one.
Intuitively speaking, we have the following two types of dispersive equations,

(1.9) (Infinite depth setting) (0 + i|V|3/2)u = N (u),
(1.10) (Flat bottom setting) (9; + i|V|3/2\/tanh [VDu = No(u).

The main new difficulties of the 3D capillary waves in the flat bottom setting, which
are caused by the difference of linear operators in two settings at low frequencies, can be
summarized by the following two facts.

(1) The nonlinearity of (1.10) doesn’t have null structure at low frequencies, which does
appear in the infinite depth setting. Intuitively speaking, the presence of null structure
stabilizes the nonlinear effect. Hence, we expect a stronger nonlinear effect at low
frequencies, which makes the global regularity problem more delicate in the flat bottom
setting.

(i) A new type of time resonance set appears for the capillary waves system in the flat
bottom setting. The long time accumulated effect caused by the new time resonance set
has not been carefully studied before. Given the fact that there exists finite time blow
up solution for a similar equation but with a different nonlinearity, we expect that the
nonlinear effect caused by the new type of time resonance set is very delicate.

For the sake of readers, we provide more detailed discussion about the existence of null
structure at low frequencies in two different settings here. Note that

(1.11)

(Infinite depth setting) : A <2[0;4] = A<a[G(M)W] = |V|¥ — V- (V) — |V|(B|V|¥).
(1.12)

1 1
(Infinite depth setting) : A <2[d:¥] = Ah — 5|V¢|2 + §(|V|w)2.

From (1.11) and (1.12), it is easy to check that the symbols of quadratic terms vanish if the
output frequency of quadratic terms is zero. Moreover, if the frequency of the height function
“h(t) ” is zero, then the symbol of quadratic terms in “d,4(¢)” also vanishes. Unfortunately,
we lose all these favorable cancelations for the capillary waves system (1.3) in the flat bottom
setting. From (1.6) and (1.7), it is easy to check that the symbols of quadratic terms in the
corresponding scenarios don’t vanish in the flat bottom setting.

Due to the lack of null structures at low frequencies in the flat bottom setting, we expect
much stronger nonlinear effect for the finite depth capillary waves. One way to capture the
nonlinear effect is to study the growth of the profile of the solution, which is the pull back of]
the nonlinear solution along the linear flow, with respect to time.

For simplicity and also for intuitive purpose, we study a relevant toy model of the capillary
waves system (1.3). More precisely, we consider the long time behavior of the following toy
model,

(1.13) (Toymodel) : (3, —iA)v = Q1(v, 1)+ Q2 (v, v)+ Q3(i, 1), v:R,xR2 —C,

ANNALES SCIENTIFIQUES DE I’ECOLE NORMALE SUPERIEURE



850 X. WANG

where the symbols g; (§ — 7n,7n) of the quadratic terms Q;(-,-), i € {l1,2,3}, satisfy the
following estimate,
(1.14)

I &' gi (& — 0. MY (E) Wk, ( — MYk, ]l L1 < € minf22maxtkrkal b e 1,23},

where C is some absolute constant.

The toy model (1.13) is derived by only keeping the quadratic terms of (1.3), which are
expected to be the leading terms in the small data regime, and replacing the linear operator
|V|3/2/tanh |V] by the leading operator |V|? at low frequencies. The estimate of symbol in
(1.14) captures the facts that there are at least two derivatives inside (1.3) and the size of]
symbolis “1” in both 1 x 1 (sizes of two input frequencies) — 0 (size of the output frequency)
type interaction and the 1 x 0 — 1 type interaction.

It turns out that the toy model (1.13), which is a 2D quadratic Schrodinger equation,
is already a very delicate problem due to the presence of vv type nonlinearity. Even the
quadratic Schrodinger equation in 3D is not completely solved.

If without the vv type quadratic term, then the 1 x 1 — 0 type interaction is actually not
bad. Note that the phases are all of size 1 in the 1 x 1 — 0 type interaction if there is no
vv type quadratic term. The high oscillation of phase in time will also stabilize the growth
of the profile in a neighborhood of zero frequency even without the smallness arose from
the symbol. We refer readers to the works of Germain-Masmoudi-Shatah [15, 16] for more
detailed discussion.

To capture the nonlinear effect of vv type quadratic term in the toy model (1.13), we
study the growth of profile g(¢) := e **Av(t) over time, which gives us a sense of what the
dispersion of the nonlinear solution “v(¢)” will be. From the Duhamel’s formula, we have

(1.15)
g(l’g)zg(o’g”/ / (255701 (€ — 1, B, E — B 1)
0 R2

+ eizsn-(é—n)qz(s —n,n)g(s, & —n)g(s,n)

+ P UEPHEE D g (6 — . )E (s, — )& (s. m)dnds.
We start from the first iteration by replacing “g(s)” on the right side of (1.15) with the
initial data g(0), whose frequency is localized around “1”. As a result, intuitively speaking,
the following rough estimate holds in a small neighborhood of zero,

(1.16) ct <[g.§)| =Ct,  when [§] <c/t,

where ¢ and C are some absolute constants and the time “z” is very large.

Due to the nonlinear nature of the problem, the growth of profile at low frequencies will
trigger the growth of profile at other modes of frequencies. Therefore, it is reasonable to
expect that certain instability could possibly happen. Recently, Ikeda and Inui [24] showed
that there exists a class of small L? initial data such that the solution of the quadratic
Schrédinger equation with v type nonlinearity blows up within a polynomial time in both
2D and 3D.

Although this intuition, which comes from the first Picard iteration in (1.16), says that
the nonlinear solution behaves differently from a linear flow. It says few precise information
about the nonlinear solution itself. In this paper, our goal is not trying to classify all possible
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3D FINITE DEPTH CAPILLARY WAVES 851

outcomes for different types of nonlinearities inside the toy model (1.13). Because it is a very
delicate problem, we should not expect a universal answer. Instead, our goal is to exploit
some hidden structures inside the capillary water waves (1.3) and show that the 3D capillary
waves system (1.3) admits global solution for small localized initial data.

1.3. Main result

In this paper, we show that the solution of the capillary waves system (1.3) globally exists
and scatters to a linear solution in a weak normed space for small initial data. More precisely,
our main theorem is stated as follows,

THEOREM 1.1. — Let Ny = 2000,8 € (0,107°], and o = 1/10. Assume that the initial
data (hy, Yo) € HNoHU/2(R2) x HNo+HV2(R2) satisfies the following smallness condition,

Iho. Vol gno+ira + D I(Tho. To)ll o412
T'e{L,Q}
+ Y @' T, T Yo) 12 < €0,
'l r2e{L,Q}

where € is a sufficiently small constant, Q = x++Vy and L := x - Vy + 2. Then there exists
a unique global solution for the capillary water waves system (1.3) with initial data (hg, Vo).
Moreover, the solution scatters to a corresponding linear solution in a homogeneous Sobolev
space HFS and the following estimate holds,

(1.17)
sup (1407 [(Ah ) @) | gvo + A 0)[ Y 20 FOKFE) P [(h, ) (1)] || ] < Ceo,
t€l0,T] kez
where C is some absolute constant and A := |V|"/2(tanh |V[)~1/2.

REMARK 1.1. — From (1.17), we know that the solution decays over time. This fact
implies that there is no small traveling waves for the 3D capillary waves system (1.3) in the
flat bottom setting, i.e., 0/g = oo.

1.4. Main ideas of proof

The idea of proving global existence for the 3D finite depth capillary waves system (1.3)
is classic, which is iterating the local existence result by controlling both the energy and the
dispersion of the nonlinear solution over time.

The whole argument depends on the dispersion estimate of the nonlinear solution, which
is very delicate. The main difficulty and the delicacy come from the complicated and large
time resonance set associated with the quadratic terms. More precisely, the time resonance
sets of the quadratic terms are defined as follows,

g;},,v = {(Sv T}) : A(ISI) = /’LA(IS = 77|) = VA(IUI) = O}v JYRRIRS {+v _}'
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As a typical example, the following approximation holds at low frequencies for the case when
u=4+andv=—,

(1.18)
Ty NAE D LIl =271 ~ (& ) 2 8L Inl < 271 AED — AE—nl) + AdlnD)
~ 2£ -1 =~ 0}.

Note that the time resonance set is almost everywhere since it is possible that “£ - = 0” no
matter what the sizes of |£| and || are.

Recall (1.16). Since the growth mode happens at a small neighborhood of zero, it is
reasonable to expect that the spatial derivatives, which provide smallness at low frequencies,
compensate the L$° decay rate of the nonlinear solution. To capture this expectation, we aim
to prove the sharp decay rate for certain derivatives of the nonlinear solution instead of the
nonlinear solution itself.

Now, the first question is how many derivatives we associate with the nonlinear solution
to obtain the sharp decay rate. To answer this question, we need to keep a basic principle
in mind. Generally speaking, the more derivatives we associate with the solution the less
information we can tell about the solution itself. Recall (1.16). Intuitively speaking, because
of the accumulated effect of the 1 x 1 — 0 type interaction, it is unlikely that the “1—"
derivatives of the profile of the nonlinear solution doesn’t grow over time. Therefore, in
practice, we expect that 14« derivatives of solution decay sharply, where « is a small positive
number.

Now, the real question is whether we can close the argument and show that our expecta-
tion indeed holds globally in time. Despite the argument that we will present is very compli-
cated and technical. There are two main ingredients that are very essential to the validity
to the argument: (i) there are requisite symmetric structures inside the finite depth capil-
lary wave system (1.3); (i) the bulk scenario, which is nontrivial to justify and will be clear
later, is the accumulated effect of the #=1/2 x t=1/2 — ¢~1/2 type interaction. Recall (1.14),
there are two derivatives in total at low frequencies. Hence, the accumulated effect of the
t~12 x =12 5 =1/2 type interaction is compensated by the symbol of quadratic terms.
As a result, the bulk scenario is not an issue.

We discuss some main ideas and strategies used in the bootstrap argument with more
details as follows.

1.4.1. Energy estimate: controlling the high frequency part of solution. — We first point out
that the difference of the high frequency part between the infinite depth setting and the flat
bottom setting is very little. Thanks to the works of Alazard-Métivier [5S] and Alazard-Burg-
Zuilly [1, 2], by using the method of paralinearization and symmetrization, we can find a pair
of good unknown variables, such that the equations satisfied by the good unknown variables
have symmetries inside, which help us to avoid losing derivatives in the energy estimate.
Recall that we expect that the decay rate of 1 4+« derivatives of solution is sharp. However,
within our expectation, the L$°-norm of the nonlinear solution itself in the worst scenario
is only (1 + #)7/2%5_ As a result, a rough L2 — L type energy estimate is not sufficient
to close the energy estimate. Hence, we need to pay special attention to the low frequency
part of the input putted in L °°-type space. To this end, an important step is to understand
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the structure of the low frequency part of the Dirichlet-Neumann operator, which has been
studied in details in [34].

We first state our desired energy estimate and then explain the main intuitions behind. We
expect that the following new type of energy estimate holds,

d
(1.19) IEE(I)I < CE@)(|(h(@0), y ) lwo.a+e + (@), ¥ O) |wor [[(A(E), Y (1)) we.o),
where C is some absolute constant and the W type function space is defined as follows,

(1.20) 1 e =Y %+ 2| P fllpes, b <.

keZ
Note that the desired new type of energy estimate (1.19) is sufficient to show that the energy
only grows sub-polynomially as long as the nonlinear solution decays sharply in W 1%, To
derive the new type energy estimate (1.19), besides the quadratic terms, we also need to pay
special attention to the low frequency part of the cubic terms.

Now, we provide an intuitive explanation about why the desired estimate (1.19) holds.
Note that the following three facts hold: (i) there are at least two derivatives in total inside
the quadratic terms; (ii) we don’t lose derivatives after utilizing symmetries during the energy
estimates; (iii) the total number of derivatives doesn’t decrease in this process. As a result,
intuitively speaking, there are only two possible scenarios, which are listed as follows: (i)
Including the High x High type interaction, there are at least two derivatives associated
with the input with relatively smaller frequency; (ii) Smooth error terms. In other words, the
high order Sobolev-norm of those terms can be controlled by their L2-norms. Therefore, we
can put the input with larger frequency in L* and put the other input in L2. In whichever
scenario, the input putted in L type space always associates with two spatial derivatives,
which explains the first estimate in (1.19). A very similar intuition also holds for cubic and
higher order terms, which leads to the second part of (1.19).

1.4.2. The dispersion estimate: sharp decay rate of the 1 + « derivatives of solution. — To
carry out the analysis of decay estimate, we first identify a good substitution variable, which
has the same decay rate as the original solution. Instead of proving the dispersion estimate
for the original variable, our goal is reduced to prove the sharp decay estimate for the good
substitution variable over time.

We divide the rest of this subsubsection into three parts. (i) In the first part, we explain
how to find such a good substitution variable. (ii) In the second part, we explain some main
ideas in the estimate of the lower order weighted norm. Our goal is to prove that, under the
assumption that the high order weighted norm only grows sub-polynomially over time, the
low order weighted norm of the profile doesn’t grow over time, which implies that the decay
rate of 1 + « derivatives of the nonlinear solution is sharp. (iii) In the third part, we explain
main ideas behind the estimate of high order weighted norm and show that it indeed grows
only sub-polynomially over time.

A good substitution variable. — The good substitution variable is obtained by using the
normal form transformation that removes some nonlinearities, which associate with phases
that are highly oscillating in time. As a result, the equation satisfied by the good substitution
variable has less terms, which simplify the whole argument.
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For simplicity, we consider the toy model (1.13) to illustrate the main idea behind. Define
the profile of u(¢) as f(t) := e’ u(t), as a result of direct computation, we have

~ ~ ! | DY —_ -
Feo=Foo+ Y [ [ 0,06 e - 0T Gmdnds,
el 0 UE

where f+:= f =: PL[f], /™ := f = P_[f]. qu,v(§ — 1, n) is the symbol of u*u” type
quadratic term, and the phases ®*V (&, ), i, v € {+, —}, are defined as follows,

O (€, 1) = €1 — plE =0l —vinl®, pv e+ -
Note that
Vp@tF(E ) = (= §) —n = Vy@T(E.8/2) =0.
Therefore, we can’t do integration by parts in “»” around a small neighborhood of (&, £/2)
(space resonance set) . Fortunately, (¢, £/2) doesn’t belong to the time resonance set. From
the explicit formula, it is easy to check the validity of the following estimate,

DT (g, £/2) = |E7 —2(1€1/2)* = [¢?/2.
Very similarly, we can verify that the following estimate holds when || < 27'0¢| and
p=—orlgl <27y, pv = +,
272 max{[£%, [n?} < [@ (&, )| < 2% max{[§]*, |n|*}.

Since the associated phases are relatively large, we refer those cases as the high-oscillation-
in-time cases.

To take the advantage of the high oscillation in time for these scenarios, we can use a
normal form transformation to remove the high oscillation in time cases as follows,

(1.21) vi=u+ Z AM,V(MM’ u), Qpn(E—n.1) = Z zquf(; m)ﬂ)
w,vef{+,—} kez 1

11— 1
X (Vrzko10(1 = &/DVE(®) + —— LY@V zt100) + — YO Vair1000),

where a;, ,(§ — 1, 1), n, v € {+,—}, are the symbol of quadratic terms A4, (-, ). Note that
there are at least two derivatives inside the symbol, which cover the loss of dividing the phase.
As a result, the normal form transformation is not singular.

Although the discussion so far is restricted to the toy model (1.13). For the capillary waves
system (1.3), we use similar ideas not only for quadratic terms, but also for cubic terms and
quartic terms, see (4.20). Please refer to Subsection 4.1 for more details.

The low order weighted norm. — We first define the low order weighted norm Z;-norm and
the high order weighted norm Z,-norm as follows,

(122) lglz, =Y > lglse,. Ngls,, = @UT* +21%0)27 gk (x) Prg(x) 2.
keZj>—k—

(123) lglzo:= > IT'T%ll2 + [Tl
'L, r2e{L,Q}

where <pj’F (x) isdefined in (2.1), which is first introduced in the work of Ionescu-Pausader [25].
An advantage of using this type of space is that it not only localizes the frequency but also
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localizes the spatial concentration. The atomic space of this type has been successfully used
in many dispersive PDEs, see [14, 13, 19, 25, 26, 36].

Define the profile of the good substitution variable v(z) as g(¢) := e!* v(z). From the
linear dispersion estimates (2.10) and (2.11) in Lemma 2.7, to prove the sharp decay rate,
it would be sufficient to prove that the Z;-norm of the profile g(¢) doesn’t grow over time.
Now, under the assumption that the Z,-norm only grows polynomially, we explain some
main ideas of how to prove that Z;-norm doesn’t grow over time.

Note that the High x High type interaction is not an issue because we put a very
high order weighted (i.e., 2(1®k) in the definition of Z,-norm, see (1.22). It remains to
consider the High x Low type interaction, e.g., [n| < 27!°|£|. As a typical example of
the bulk threshold case in the High x Low type interaction, we consider the case when
In| € [2719/¢,219/¢], €] € [271°,210]. To get around the difficulty caused by the lack of]
null structure and the growth of profile around the small neighborhood of zero frequency
(see(1.16)), we analyze more carefully about the source of the growth mode inside the
nonlinearity of the capillary waves system (1.3).

Recall (1.5). We know that X (¢,0) is conserved over time. Moreover, a simple Fourier
analysis shows that |/ (z,0)| < 21°|¢|eo, where € is the size of initial data. These two facts
motivate us to expect that the source of trouble should be the restricted velocity potential
IZ (t,n) instead of the height function ﬁ(t n), i.e., the size of ﬁ(t n) should be much smaller
than g(z, n) when |n| < 219/¢, where time “t” is very large. As a matter of fact, we do have a
better estimate for h(t n), see (5.15) in Lemma 5.3, which says that h(z n) grows at most at
rate “+28” with respect to time if || < 21°/¢. Recall again (1.6) and (1.7), we know that there
is at least one spatial derivative associated with the velocity potential “y(¢)”. Therefore, if]
the velocity potential “y(¢)” has the small frequency “n,” the associated spatial derivative
contributes the smallness of |n|. To sum up, either the symbol contributes the smallness of]
“In|” or the input with smaller frequency is the height function “A(¢)”. In whichever case, the
bulk threshold case |n| € [2719/¢£,219/¢], |€] € [271°,219] is not an issue.

For the non-threshold case, we do integration by parts in “n” once to take the advantage
of the gap between the threshold case and the non-threshold case. For the High x High type
interaction, the gap is created by the extra “2%¢” we put in the definition of Z;-norm. For the
High x Low type and Low x High type interactions, the gap is created by the observation
on the source of growth mode that we made in the above discussion. The gain of decay rate
from the gap between the threshold case and the non-threshold case is more than the loss
from the growth rate of the high order weighted norm. This fact leads to the conclusion that
the Z;-norm of the profile doesn’t grow in time.

The high order weighted norm. — Now, we explain some essential ideas that make it possible
to conclude that the high order weighted norm (Z,-norm) of the profile grows at most rate
“t3” with respect to time.

The losing derivatives issue. — Note that the high frequency part of the nonlinear solution is
controlled by the high order energy (H¥0-norm) of the nonlinear solution, which only grows
at most at rate 78 with respect to time. As a result, we only have to consider the case when the
sizes of all frequencies are less than 7°/1°°°, which is only a minor growth rate. Therefore, the
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losing derivatives issue can be reduced to the losing time decay rate issue. For the cubic and
higher order terms, we use the extra decay rate to cover the loss of losing derivatives. Since
the “1/¢” decay rate for the quadratic terms is critical to close the argument, we can’t afford
the loss of time decay rate.

To get around this issue, we notice that it would be sufficient to avoid losing derivatives
at the quadratic level if the losing derivatives issue is only relevant at the quadratic level.
After carefully studying the explicit quadratic terms of the capillary waves system (1.3), we
study the system of equations satisfied by (2, — T|v|tann|v|w/), Which is the truncation
up to quadratic level of the good unknown variable found in the paralinearization and
symmetrization process, instead of the system of equations satisfied by (%, ). As a result,
after utilizing the symmetric structure for the good substitution variable, the quadratic term
doesn’t lose derivatives.

The insufficient decay rates issue. — Now, we explain some main ideas used for two typical
scenarios that it is not obvious to obtain the critical “1/¢” decay rate over time.

Recall that we applied the vector field “L := x - V + 27 (equivalently, “—§ - V¢~
on the Fourier side) on the profile of the nonlinear solution in the definition of Z,-norm.
A drawback of using the “L” vector field is that we face a loss of “¢” when “L” hits the phases
of nonlinearities. To be more precise and as a typical example, we consider the High x Low
type interaction of the quadratic term. Note that (see (6.17) and (6.19) for more details), the
following decomposition holds if the vector field “L” hits the phase.

(1.24) §- V@V (E ) = 0OV (E.m) + O(nl*),  when [n] < 27'0].

For the first term on the right hand side of (1.24), which is comparable with the phase
function ®¥ (&, ), we can take the advantage of oscillation in time by doing integration
by parts in time once first and then take the advantage of the space oscillation in “n”. For
the second term of (1.24), the smallness of “|5|?” acts like null structures, which allow us to
obtain sharp L decay rate even after taking the advantage of the space oscillation in “n”.

Another typical scenario with insufficient time decay rate is the case when all the vector
fields hit the input with the largest frequency. Since the L$°-norm of the nonlinear solution
itself only decays at rate (1 + 7)~'/2+% a rough L2 — L type estimate is not sufficient to
close the argument. To get around this issue, we use the hidden symmetric structure inside the
capillary waves system. As a result, a similar decomposition as in (1.24) holds for the symbol
of quadratic terms after utilizing the symmetric structure inside the capillary waves system.
Therefore, the aforementioned strategy is also applicable for the case we are considering. For
the cubic terms, similar to the desired energy estimate (1.19), the symmetric structure inside

the capillary waves system (1.3) also plays an essential role.

1.5. The outline of this paper

In Section 2, we introduce notations and some basic lemmas that will be used constantly.
In Section 3, we prove a new type of energy estimate by using the method of paralinearization
and symmetrization and paying special attention to the low frequency part. In Section 4,
we identify a good substitution variable to carry out the estimate of weighted norms. In
Section 5, we prove that the low order weighted norm doesn’t grow over time under the
assumptions that the high order weight norm only grows appropriately and a good control
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of the quintic and higher order remainder term is available. In Section 6, we prove that the
high order weighted norm only grows appropriately under the assumption that we have a
good control on the quintic and higher order remainder term. In Section 7, we first prove
some fixed time weighted norm estimates, which were took for granted in Section 5 and 6,
and then estimate the quintic and higher order reminder terms by using a fixed point type
argument.

Acknowledgment. — Part of this work was done when I visited Tsinghua University during
the Summer of 2016. The author would like to thank Pin Yu for the invitation and the
warm hospitality during the stay. Also I would like to thank the anonymous referee for many
helpful suggestions which improve the presentation of this paper.

2. Preliminaries

For p € N, then we use A, (/) to denote the p-th order terms of the nonlinearity /.
Also, we use notation A ,[ /] to denote the p-th and higher orders terms, i.e., Asp[N] :=
> 4> p NglcV]. Forexample, As[c/V] denotes the quadratic term of ¢/ and A>»[c/V] denotes
the quadratic and higher order terms of ¢/V. If there is no special annotation, Taylor expan-
sions are in terms of the height function “A(¢)” and the restricted velocity potential “v(7)”.

We fix an even smooth function ¥ : R — [0, 1] supported in [-3/2,3/2] and equals to 1
in [—5/4,5/4]. For any k € Z, we define

Yi(x) := P (x/2%) — g (x/257h), Y (x) 1= (x/2) =YY,

1<k

Vo (x) =1 = Y1 (x),

and use Py, P<; and Psj to denote the projection operators by the Fourier multipliers v,
V< and Y respectively. We use fi(x) to abbreviate Py f(x). We use both f(§) and
I (f)(§) to denote the Fourier transform of f, which is defined as follows,

F)E) = [ ¢ f(x)dx.

We use o _l(g) to denote the inverse Fourier transform of g(§). For an integer k € Z, we
use k4 to denote max{k, 0} and use k_ to denote min{k, 0}.

Recall the Z;-normed space and the Z,-normed space we defined in (1.22) and (1.23).
The spatial localization function gojl-‘ (x) used there is defined as follows,

Y(—ook](x) ifk + j = 0andk <0,
(2.1) PF(X) = { Y(o0x) ifj=0andk >0,
Yi(x) ifk+j>1andj > 1.

Forany k € Z, j > —k_, we define

Jieoji= Pz ge+23l0f () P f1.
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For two localized function f(x), g(x) € L?, we use the convention that the symbol (-, -)
of a bilinear form Q(-,-) is defined in the following sense throughout this paper,

22) SISO = 5 [ 7€~ Ema(e ~ n.mn

Very similarly, the symbol ¢(-, -, -) of a trilinear form C(f, g, k) is defined in the following
sense,

S eN® = 1o [ [ F6 =g -0)i(o)e& ~n.n = aio)dndo

Define a class of symbol and its associated norms as follows,
§ :={m :R*orR® — C,mis continuous and || ' (m)||;1 < oo},
I goo := [ F " (m)lI1,
lm @€ Ml seo,, o, 7= ImE MV E) e, (€ = MV, M) 5.
(0. sse,, o, = ImE 10V EV, € — )Y, (0 — )y (0] v

LemMma 2.1. — Fori € {1,2,3}, f € Wi+1’°°(R2i), there exists an absolute constant
C € Ry such that the following estimate holds,

(2.3)
i i+1 i
L, £ @ [T, @i+ ag =33 C g f e,
=t Ly oy MO

LEMMA 2.2. — Assume thatm, m’ € S, f. g, h € L®®R?) N LY(R?), p.q.r,5 € [1,00],
then there exists an absolute constant C € R, such that the following estimates hold,

24) o lsoe < C llmllsos | o<,
2.5) |71 [ meen 7€ —nzman], = Clmllg= 1ol
f1/p=1/q+1/r,

(2.6)

|71, [ Gnor 6 =miertn-arandal] , < Cllg 1 luolgler il
where 1/p =1/q + 1/r+ 1/s.

DEFINITION 2.3. = Given p € Ny,p > 0Oand m € R, we use F;”(RZ) to denote the
space of locally bounded functions a(x, £) on R? x (R?/{0}), which are C > with respect to £
for £ # 0. Moreover, for any o € N2, there exists a constant Cy(a), which only depends

[P L]

on “a” and the symbol a(x, £) itself, such that the following estimate holds for the symbol
a(x,§),

VIEl = 1/2.]0¢a (. §)llwooe < Cala)(1 + [E)™ 1,
where W#:* is the usual Sobolev space. For a symbol a € I'”?, we define its norm as follows,

M7 (@) := sup sup [[(1+[ENI7"0ga(, &) wo.co.
loej<2+4p [€]=1/2
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DEFINITION 2.4. — (i) We use f;"(Rz) to denote the subspace of I'}*(R?), which
consists of symbols that are homogeneous of degree m in §.

(i) Ifa = Z a9 where a™=7) ¢ f‘;":jj (R?), then we call ¢ and a1 as the
0<j<p
principal symbol and the subprincipal symbol of a respectively.

(iii) An operator T is said to be of order m, m € R, if for all © € R, it’s bounded from
H*(R?) to H*™(R?). We use S™ to denote the set of all operators of order m.

Fora, f € L? and a pseudo differential operator d(x, £), we define the operator T, f and
T; f as follows,

@.7) Tf = &7 /R aE — )b —nm) F ). Ts f
= 5 fR F @) (E — 1.0 — 1) F (.

where the cut-off function is defined as follows,

1 when |§ —n| < 271%7],

25 PE=nm = {o when [§ — 5| = 21°]).

LEMMA 2.5. — Letm € Randp > Oandleta € T} (R?), if we denote (T,)* as the adjoint
operator of T, and denote a as the complex conjugate of a, then we know that, (Ty)* — Ty* is
of order m — p, where

Moreover, the operator norm of (T)* — Ty is bounded by M o (a).
Proof. — See [1, Theorem 3.10]. O

LEMMA 2.6. — Let m € R and p > 0, if given symbols a € F;”(Rd) and b € F/’,”/(Rd), we
define

1
ah =} g adzb,

lee]<p
then for all © € R, there exists a constant K such that
(2.9) 1Ta Ty = Tt l g s pri—m-mr+o < KM (@M (D).

We have the following lemma on the L$° decay estimate of the linear solution associated
with the capillary wave system (1.3).

LEMMA 2.7. — For f € LY(R?) and any 0 € [0, 1], there exists an absolute constant C and
a constant Cg which only depends on 6 such that the following L°-type estimates hold,

(2.10) e Py fllpee < C(1+ 1t 22| fllr,  ifk > 0.

a-0)k

@.11) le! A Py fllpeo < Co(1 4 [t~ 2 253 || £l ifk <0,
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Proof. — After checking the expansion of the phase, see (6.13), we can apply the main
result in [20, Theorem 1:(a)&(b)] directly to derive above results. O

3. The energy estimate

The goal of this section is to prove that the energy of solution grows at most at rate (1+7)°
over time. We first state our bootstrap assumption as follows,
5/6

G sup (107 HARO Y Ollgro + 1+ DIHODIOllys e < 1= &
telo,

where A := |V|"/2(tanh |V|)~!/2 and the function space W®1t2 was defined in (1.20).
The main result of this section is summarized as the following proposition.

PROPOSITION 3.1. — Under the bootstrap assumption (3.1), there exists an absolute
constant C such that the following energy estimate holds for any t € [0, T],

ICARG@), ¥ () 135,

t
(32 = C[6§+/0 ICARGs). ¥ (DI no (1 ) st + 1B W) lwooll (b ) o1 )ds].

We separate this section into three parts: (i) Firstly, we introduce main results and briefly
explain main ideas of the paralinearization process for the capillary waves system (1.3). (ii)
Secondly, with the highlighted structures of losing derivative inside the system (1.3), we
symmetrize the system (1.3) such that it doesn’t lose derivatives during the energy estimate.
(1i1) Lastly, we use the symmetrized system to prove the desired new energy estimate (3.2).

3.1. Paralinearization of the full system

Most of this section has been studied in details in [34]. Here we only briefly introduce
related main results and main ideas behind those results. Please refer to [34] for more detailed
discussions.

To perform the paralinearization process, we need some basic estimates of the Dirichlet-
Neumann operator, which are obtained from analyzing the velocity potential inside the water
region “Q(7)”.

Recall that the velocity potential ¢ (¢, x) satisfies the following Laplace equation with two
boundary conditions as follows,

(3.3) AP =0. Pl = VD, ig|y =0,

To simplify analysis, we map the water region “Q2(¢)” into the strap & := R x [-1,0] by
doing change of coordinates as follows,

_ Yy —h@x)
(x,y) — (x,2), z:= TS htx)
We define ¢(t,z) := ¢(t,z + h(t, x)). From (3.3 ), we have
(3.4) Po:=[Ay+adl+b-Vo, +30:]o=0. ¢ _ =v. 0.0 __ =0.
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where
3.5) LU+ 1)2|Vh|? I 1+ (z+ D?Vh]
‘ (1 +h)4 (1+h?2 (1 + h)2 ’
- 4+ DVA 2@+ DVE . —(z4+ DAk | _(z +1)|VA]?
(3.6 e A (S SENTEACI
14 |Vh]
(3.7 Gy =[-Vh-Vé+dy¢]| _, = %azmzzo —Vy -Vh.

Hence, to study the Dirichlet-Neumann operator, it is sufficient to study the only nontrivial
part of G(h)y, whichis d2¢|__ .

From (3.4), we can derive the following fixed point type formulation for V, .¢, which
provides a good way to analyze and estimate the Dirichlet-Neumann operator in the small
data regime. More precisely, we have

o e—EHDIVI 4 (G+DIV o eEHDIVI _ p=G+1IV] o
x,z(p - [ e_lv‘ + e|v| ] W» e_lv‘ + e|v| | hﬁ

0

+[0.81(2)] + / 1[K1 (z.5) — Ka(2.5) = K3(2,5)](82(5) + V- g3(s))ds

) _
(3.8) + [1 K3(z,9)|Vlsign(z — 5)g1(s) — |V|[K1(z, 5) + K2(z, 5)]g1(s) ds,
where

—z|V v
V eWM—efV nwi . Ve
2|V| eIVl 4 elVI 2|V| ’

(3.9  Ki(zs) = [

v —z|V
_ 1M e le(z+s)|vw]
2 e_|v‘ +e|V| ’
—z|V \% v —z|V
V eV efY —(s+1)|V] _lezl |+ le—(s+1)\V|]
2|V eIVl 4 elVI T2 eIV elVl '

(3.10)  Ka(z,s) = [

v 1
(G.11)  Ks(z,s) = [—e-*H”V' : -e—lz—sl‘V‘sign(s—z)],

2V 2
20+ 2 (2 + 12|V R (z+ 1)Vh-Vg

(1) g = - R T
z + 1)V h|?9 Vh-V z4+ 1V ho

G13) (o= EX DV VhVe ) G DVAGg

(1+ h)? 1+ h 1+ K

In the small data regime, the fixed point type formulation (3.8) is sufficient to derive the
L2-type and L®°-type estimates for Vy_,¢ as summarized in the following lemma.

LEMMA 3.2, — Assume that (h, ) € HNo+t1/2(R2)x HNo+1/2(R2) and given any k,y € R
s.t., k < No—1landy < No—3. Under the bootstrap assumption (3.1), there exists an absolute
constant C such that the following estimates hold for the derivative of velocity potential “V ¢’
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inside the mapped water region,

(3.14)
IVez@llreeme < CLIVY e + | 2l IV 157 ]
(3.15)
IVxplpeewm < CIVU I, 1020005 < CLIY wrata + | Ul et IVl ],
(3.16)
IA2[Vx 2@l oy < CIVY Il 171 55
(3.17)

1A2[Viz@lllLgege < CI RN G NVIV I ge + 1VY el All grs ]
1A>2Vaz@lllLger2 < C[(Ih W) lwe.r+a + N ) lwo.t | ) lwso) (B, ) 2],

where the L°-type function space W7 is defined as follows,

W7 = A{f 1 f i = [ P<olf1®) g + > 2K Pe(x)|Lee < oo}
keZ,k>1

Proof. — Thanks to the small data regime, above estimates can be obtained from the
fixed point type formulation in (3.8) by using a fixed point type argument. With minor
modifications, the proof of above estimates are almost same as the proof of Lemma 3.3
in [34]. O

During the paralinearization process, we usually omit good error terms, which do not lose
derivatives. For simplicity, we define the equivalence relation “~” as follows,
A~ B, ifandonlyif A— B isa good error term in the sense of (3.18),

(3.18) | |good error term|| g«
< ClI Wllwsave + 1 W llwsoll(h ) lwer [l gx + 11l ga—1721 ).

where C is an absolute constant and 0 < k < Nj.

As a result of paralinearization in Alazard-Burq-Zuily [1], modulo the good error terms,
we can identify the principal part of the Dirichlet-Neumann operator as in the following
lemma.

LEMMA 3.3. — Under the smallness condition (4.49), the following equivalence relation in
the sense of (3.18) holds,
(3.19) Gy ~Thwo—Ty-Vh, o:=v—Tph,
Gy +Vh-Vy
1+ |Vh|? ’
=20 42@ 20 = A+ [VAP)ER - (Vh-£)2,
14 |Vh|? AW 4 iVh-& )L(l)—HVh-E))
221 1+ |Vh|? 1+ |Vh|? ’

where “w” is the so-called good unknown variable and AV and A are the principal symbol
and sub-principal of the Dirichlet-Neumann operator respectively.

abbr

B'= B(hy =

V2 y(hyy = Vy — BV h,

210 —

Vh) +iVed® . v(

4¢ SERIE — TOME 53 — 2020 — N° 4



3D FINITE DEPTH CAPILLARY WAVES 863

Proof. — The detailed proof of above lemma can be found in Alazard-Burq-Zuily [1,
Proposition 3.14]. Only minor modifications are required. O

As a result of paralinearization in [1], modulo the good error terms, we can identify the
bulk terms of the nonlinearity of “d,v” in the capillary wave system (1.3) as in the following
lemma.

LEMMA 3.4. — Under the bootstrap assumption (3.1), the following equivalence relation in
the sense of (3.18) holds,

Hy~ b 1=1® 210, 1@ (s (e - )
LR ()

—i
1O = - (Ve V)@,

1 1L (Vh-Vy + G(h)y)?
3.20 ~|Vy > == ~ Ty -Vo — TgG(h)y.
(3.20) 1A AR e v Vo — TG(hY
Proof. — See[l, Lemma 3.25 & Lemma 3.26]. O

3.2. Symmetrization of the full system

In this subsection, we use the results obtained in the paralinearization process to find
out the good substitution variables such that the system of equations satisfied by the good
substitution variables has requisite symmetries inside.

Recall (1.3) and results in Lemma 3.3 and Lemma 3.4, we have

8th ~ T,xw—TV -Vh

(3.21)
Y = -Tih+ TgG(h)Yy — Ty - Vo.

The symmetrization process, which is only relevant at the high frequency part, is same as
what Alazard-Burq-Zuily did in [1]. We first state the main results and then briefly explain
main ideas behind.

Intuitively speaking, the symmetrization process can be summarized as seeking two good
substitution variables (U, Uz) = (Tph, T;w) with good unknown symbols p(x,£) and
q(x, ) to be determined such that the system of equations satisfied by (U, U,) has requisite
symmetries such that it doesn’t lose derivatives during energy estimate. As a result of the
symmetrization process in Alazard-Burg-Zuily [1], the good substitution variables and their
associated symbols are given as follows,

U, = [\(h + Tp\&\—l/z—lh)» U,=w+ Tq_la),

(3.22) w =y —Tgh, A = |V|"2(tanh |V|)~V/2,

where

(3.23) p=pl/D 4 VD (L VRP)2,

(3.24)

p(1/2) = (1+|Vh|2)—5/4\/m, pC12 = ﬁ[ql(l)_y(l/Z)p(l/z)_Hvéy(3/2).vxp(1/2)]’
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[1@ ReA®
(3.25) y = VI@OAL 4 WGT _ %(VS . Vx)‘/l(z)l(l) _ |§|3/2’

Note that, in the sense of losing derivatives, U; and U, are equivalent to T,/ and T,w. Here,
we pulled out and emphasized the leading linear terms.

From (3.21) and (3.22), we can derive the system of equations satisfied by U; and U, as
follows,
0: Uy = AU, + TyUz — Ty -VU; + Ry,

(3.26)
0;Uy = —AU; — TyUl — Ty - VU, + Ry,

where 31 and R, are good error terms in the sense of (3.18), i.e., the following estimate holds
for the error terms for some absolute constant C,
(3.27)

1Rl v + 1Rl v < C (10 W) et + [ W) lwo.t | ) lwo.o) | (AR | -
Very importantly, the symbol “y(x, £)” satisfies the following equivalence relation,
(3.28) T, ~ (Ty)*,
where the equivalence relation “~” is defined in the following sense,

Tay ~ Tay #f | Tay f=Tay fllax = Ce(I(h ) ot ve + 1 ) lwot |G ) lwoo) LS L

where k € Ry and Cj is some constant that only depends on “k”. From the above equiv-
alence relation, we can verify that the system (3.26) indeed has requisite symmetries for
avoiding losing derivatives.

Now, we explain why the good unknown symbols p(x, &) and ¢(x, §) are given as (3.23)
and (3.24). Recall that A € I' and/ € I'Z. To obtain the system (3.26) from the system (3.21),
naturally, we are seeking p € F51 / . geTl2and ) € F53 /2 such that the equivalence relation
(3.28) and the following two equivalence relations hold at the same time,

(329) TpTl ~ Ty+|§|3/2T N Tqu ~ y+|§|3/2Tp.

From Lemma 2.5, we have
— 1
(3.30) (Ty)" ~ Tows 2% =y @D 4y /D 4~V V72,

Hence, (3.28) can be reformulated as follows,

(3.31) Ty ~ T,,<3/2>+y(1/2>+llfv$.vx,,<3/2>-

By using Lemma 2.6, we can derive six equations about the principal symbols and sub-
principal symbols of p(x,§), g(x,£), and y(x, &) from the three equivalence relations in
(3.29) and (3.31). After solving those equations, one can see that the principal symbols and
sub-principal symbols of p(x, ), q(x, £),and y(x, §) are given as in (3.23), (3.24), and (3.25).
For more detailed computations, please refer to [1, Subsection 4.2].

From the bootstrap assumption (3.1) and estimates in Lemma 3.2, the following estimate
holds,

(3.32) Uy = Ahllgno + Uz = ¥l e < CUl s | s D IAR ) | o < Cef,
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where C is an absolute constant. From the above estimate (3.32), we know that the difference
of energy between (Uy, Us) and (Ah, ¥) is a higher order smallness. Therefore, to control the
energy of (Ah, ) over time, it would be sufficient to control the energy of (U;, Us) over time.

3.3. Energy estimate

We define the energy as follows,

(3.33) Eny(0) := U025 + 1020125 + 1UN 01125 + 11U, )12,
where

2Ngy/3
(3.34) UMy = TaU (1), UMy = TpU,(0), B o= (v + [g172)7 N7,

where y (/2 (x, £) is the principal symbol of y(x, £), which is defined in (3.25). Note that,
from the above definition, the following equality holds,

0¢ B (v + [£17/7) = 0 (y O/ + E>2) 8.
Hence, very importantly, the operator as follows is an operator of order zero,

TTy g2 = Tyaig2Tp-

REMARK 3.1. — To estimate the high order Sobolev norm, we use the variable TgU;
instead of using |V|NoU; because the commutator [Ti¢)no - Ty] is of order 1/2, which causes
the loss of derivatives. The idea of using the good variables TgU; and Tg U, comes from the
work of Alazard-Burq-Zuily [1].

Recall the definition (3.34) and the system (3.26). As a result of direct computation, we
can derive the system of equations satisfied by UIN % and UZN 0 as follows,
9, UM = AUuN 4 T, UM — 1y . VUM 4 R0,

(3.35)
9, Uy = —AUN —T,U)° — Ty - VU + mD0,

where the good remainder terms iRJIV  and iRJIV ¢ satisfy the following estimate,
(3.36)
1987 012 + 1985° 2 < € (1R ) lwo+e + NG ) .t G 9 w0 ) INCAR ) v

where C is some absolute constant. Recall (3.33). From the bootstrap assumption (3.1), it is
easy to see that the following estimate holds,

A(IAR@ vy + 1V O ny) < et (IUIO 138 + 1020)1530) < Eng (2)
(3.37) < G101 O vg + 1020117, )
< C(IAR@ 13, n0 + 1V O 380)-

where ¢; and C;, i € {1,2}, are some absolute constants.
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Recall the systems of equations in (3.26) and (3.27). From the estimates (3.35) and (3.36)
and the L2 — L™ type bilinear estimate, we have

d
|2 o (0)] = Qa0 0. Uz ) gy 34 (0. R 1) R0 1) R0 1) 2
+ / Ui(=Ty - VUL) + Uz (= Ty - VUs)

R2
+ UM (= Ty - VU) + UV (= Ty - YUY dx]

(3:38) 4 / U\(TyUs) — Un(T3Uy) + UM (T02) — vy v
]R2

]

= G (10 ) lworso + 1)l |G )l oI (UL, Un)
| [ 0= @0 + U1 = @ U

< G (I ) lwsa+e + ) llwerll G ¥) [ws.o) | (U, U2)lIz wy

where C;,i € {1,2, 3}, are some absolute constants. Note that, in the above estimate, we used
the following facts, which are direct results from (3.30),

1
(339) Mily) = 612 (G0 — = Va(Vh- ). MY(Azaly) — Asaly*] = Cllyer.

1§ 1§

where C is some absolute constant. The first equality in the above equality (3.39) is derived
from the explicit formula of y in (3.25). Note that A[y] only depends on the second deriva-
tive of &, which explains why we can gain (1 + «) derivatives at the low frequency part for
the input putted in L°°-type space.

Combining the estimates (3.38) and (3.37), it is easy to see that the desired estimate (3.2)
in Proposition 3.1 holds. Hence finishing the proof of Proposition 3.1.

4. The set-up of the weighted norm estimates

By using the linear dispersion estimates in Lemma 2.7, we reduce the study of the disper-
sion estimate of the nonlinear solution to the study of the weighted norms of the profile of|
the nonlinear solution.

In this section, we mainly introduce the set-up of the weighted norms (the Z;-norm
and the Z,-norm) estimates, which includes two main steps as follows: (i) We identify a
good substitution variable, which allows us to study and control properly the evolution of]
the weighted norms of the good substitution variable over time. (ii) We reduce our goal of|
proving the sharp dispersion estimate to two desired estimates inside a fixed dyadic time
interval.

4.1. A good substitution variable

To avoid losing derivatives at the quadratic level, we use the following variable instead of]
the velocity potential “yr” itself,

Vo= Y — Ti9jtanh jvjy i
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[T L]

which is the linear and quadratic terms of the good unknown variable “®” defined in (3.22).
Hence, instead of working on the system of equations satisfied by (&, ¥), we work on the
system of equations satisfied by (%, V).

From (1.6) and (1.7), as a result of direct computations, we obtain the following equalities,

(4.1) A<[3:h) = |V[tanh [V [y + V] tanh |V|(Tg| ann vi5:7)
— V- (hVYy) —|V|tanh |V|(h|V|tanh |V|i)

~ 1 _- 1 ~
(42) A<ald] = Ah = 3|V + 2|V tanh [ V]2

- T|V\tanh|V\1}|V| tanh |V|¢ — TV tanh |v|ARN.
We remark that the Taylor expansions in (4.1), (4.2) and also in the rest of paper are all in
terms of (h, V).
Next, we reduce the system of equations satisfied by # and ¥ into a quasilinear equation
satisfied by u = Ah + i, where A = |V|!/2(tanh |V|)_1/2. Very naturally, we have
Uu—+u

), ¥ =cqu-tcu, cyi=—pi/2.

(4.3) h=A"Y(
There, from (1.3), (4.1), and (4.2), we can derive the equation satisfied by u as follows,
@ +iMu= D Qua@ u')+ Y Cocuu” u )

wve{+,—} (N NISERS)
4.4) + Z Dy o i, WP M2 ut u?) + R,

W1,m2,v1,v2€{+,~}

where <R denotes the quintic and higher order terms. From (4.1), (4.2), and (4.3), we can
obtain the detailed formulas of quadratic terms as follows,

Oy u”) = =R (Rl du”)
- %i\m tanh |V|(A™"u"|V| tanh |V|u’ — Ty tann | vjur A~ )

(4.5) + %[ — Vut - Vu® 4 |V|tanh |V [u”|V] tanh |V [u”

— 119} tanh |V}u | V] tanh | V]u” — Tjv|tanh [vjr | V] tanh | V]u# ]

i
- Zﬂvuanh\vmuvu“, W,V € {+, —}.

We gave the detailed formulas of quadratic terms Q,, »(-.-), n,v € {+,—}, because the
precise detailed formulas help us to verify a symmetric structure that we will reveal later.
Define the profile of the solution u(z) as f(¢) := e!* u(t). From (4.4), we have

o fee= Y /R O ED G (& — ) FR(LE — ) PP ()

(n,v)e{+,—}

+ 2 / / O END e (6~ 00— 0.0) [E(1.E— ) J¥(t.n—0) [U(t.0)dndo
R2 JR2

Tkt €{+,—}

n Z Az Az eitcpulJvtzvul,UZ(E,",U,K)dMI,Mz,vl,vz(%—_n’ n—0,0—K, K)qu (l, g_n)

o1 si2,V1 V2 €4+,—}
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(4.6) x fr2(t,n—0) fOL(t, 0 — k) Fo2(t, k)dndodi + 2 R(1, &),
where the phases ®#:V (&, ), ®%(§, n, o), and OH1-H2:Y1:Y2 (& 1 g, k) are defined as follows,

4.7) V(1) = A(ED — LAUE — 1) —vA(nD),  A(ED = [§*>/tanhg],
(4.8)  ®%(E.n.0) = A(ED) — TA(E —nD) — kA(In — o) —A(lo]),

4.9)

QHLHE2ILY2 (€ 1, 0.6) = A(E]) — 1A — 1)) — p2A(In — o) —viA(le — k[) — v2 A(|k]).

From (4.5), we write explicitly the symbol g, (§ — 1, 1) of O, (u*, u”) in the sense of (2.2)
as follows,

(4.10)
Cvi(|g|2)
JE—n) = (= (g — h h
Qup(E —n.m) <21(]S—n|2)(§ n — |€|In| tanh(|£]) tanh(|7]))
+ A2 (& —m) - n -+ 1 = nllnl x tanh(l§ — n]) tanh(()) ). & )
GAER) o _
+ (S5 (€=~ 16— el anh() tanh(é — 1))
e L(EP) . i ,
e -t 1 TencE = mhen+ glal Ganh 9?00~ )
where

€]

AE) = &' (anh (VIED) T2, A@) =1+ F + 0GP, if Jg| <277,

@11 6(n.€ —n) :=1-000.§ —n) = O —n.1)-
Note that, in (4.10), we switched the roles of € — n and n when |§ — 5| < 2719|5|. As a result,
the following estimate holds inside the support of the symbol g, (§ — 1, 1), u,v € {+,—},

(4.12) ky < ky +10, wheren € supp(Vx,(x)),§ —n € supp(¥g, (§ —n)).

From the estimate (2.3) in Lemma 2.1 and the detailed formula of the symbol g, ,, (§—7. 17)
in (4.10), the following rough estimate holds for some absolute constant C,

(4.13) g1 & = 0. MVRE Yk, E = MY, (D g0 < C22¥1 pv e {+. -}
Moreover, from the explicit formula in (4.10), we can identify the leading part “c(§)”

of ¢+, (& — n, n) for the case when |n| < 2710/¢| as follows,
Co ~
(4.14) ¢(§) == S A(EP)IE (1~ tanh((§])?).

After subtracting c(¢) from the symbol g , (-, -), from the estimate (2.3) in Lemma 2.1, the
following improved estimate holds for some absolute constant C,

4.15)  gewE =) — c®)) Vi, (E — DV, (D] goo < C2F2TR1 1 if ey < Ky — 10.

Since it is also very essential to identify the symmetric structure inside the cubic terms,
which will play an important role in the Z,-norm estimate of the cubic terms, we summarize
some properties of the symbols of cubic terms of the Dirichlet-Neumann operator as in the
following lemma.
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LEmMA 4.1. — After writing the cubic term A3[B(h)Y] in terms of u and u via the
equality (4.3), we do dyadic decompositions for all inputs and rearrange inputs such that the
following unique decomposition holds

As[BYl = Y Clupe® u” uf),
w,v,7€{+,—}
where the first input u* of cubic term C’,, , (u*, u",u%) has the largest scale of dyadic
localization among three inputs. Then there exists an absolute constant C such that the following
estimates hold for the symbol ¢, v, (€, 1, 0) of the cubic term C,,, . (u*, u”,u"%),

w,v,T
(4.16) e v,z (€., Vi, (6 — MYk, (1 — 0)Yg5 (0) || goo < C 2%tk +
(4.17)
1 e & 1.0) = L)) i, (€ = 10ty (1 — 0y (0) oo = Comxthaskal 3k,

ifka, k3 < k1 — 10, where the detailed formula of d(§) is given in (4.19). Moreover, there exists
an absolute constant C such that the following rough estimate holds for the symbol of quartic
terms A4[B(h)Y],

(4.18) ||d/L1,v1,/L2,V2 &.n,0, K)l/fkl (e n)l/sz(n - O)Wk3 (0 — K)‘/fk4(")||c§‘°°
< C22max{k1 ..... kq}+3maxiky,..., k4}+.

Proof. — Note that the detailed formulas of symbols of cubic terms and quartic terms can
be derived from iterating the fixed point type formulation of Vy ;¢ in (3.8). To prove (4.16)
and (4.18), it is sufficient to prove that the corresponding estimates hold for A3[g;(z)] and
A4lgi(2)],i € {1,2,3}. From (3.12) and (3.13), we have

Az[g1(2)] = 2hA1[0:0] + (z + DV h - A1[Vg],
Az[g2(2)] = =V h-A[Ve], Az[g3(2)] = (z + )VhA[0;¢].
Recall that

A1[Vi,z0] = |:[

e=GHDIV 4 (G+DIVI DIV _ =+ 1)V
eV L elV] ] : eIV 1 oIV VIV |-

From the above formula and the formulation (3.8), we know that there are two derivatives
inside A»[Vy z¢(z)] at low frequencies. We can keep doing the iteration process to check the
minimal number and the maximal number of derivatives inside A3 [V, ;¢]. For example, from
(3.12) and (3.13), we obtain the cubic terms of g;(z),i € {1, 2, 3}, as follows,

As3(g1(2)] = 2hA3[0:0] + (—3h% — (z + D?|VAh*)A1[02¢] — (z + DAVA - Vg,

As[g2(2)] = (2 + DIVAPA1[3:¢] + hVE - A1[Ve] = Vi - A3 [V),

A3lg3(2)] = (z + DVhA2[0:¢] — (z + 1)hVhA1[0:¢].
Recall that there are at least two derivatives inside A, [Vy - ¢]. Hence, we know that there are
at least two derivatives and at most four derivatives in total inside A3[Vy - ¢]. Following the
same strategy, we know that there are at least two derivatives and at most five derivatives
inside A4[Vy z¢]. There two facts imply that our desired estimates (4.16) and (4.18) hold.

Next, we prove our desired estimate (4.17). We first identify the bulk term, in which all
derivatives act on the input that has the largest scale of dyadic localization of frequencies.
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With this principle in mind, recall (3.12) and (3.13), we know that the bulk term only appears
in g1(z), which is T(pp 4 p2y/(14+1)20z¢. Recall the fixed point formulation (3.8). We know that
the bulk term of A,[0,¢(z)], in which all derivatives act on the input with the largest scale of|
dyadic localization of frequencies, is given as follows,
% —(+1D)|V
(b 4 IV

0
_e sV el 2 T
/—1 (e ¢ = + elV

1) | _ p—(+DIV] EHDIV] _ p=G+1]V|
e Vi—e IV2(Th)ds + 25 ¢

e?IVl L g—zIVI

IVI(Thv).

e|V| —+ e_|v| e_|v| —+ e|v‘

In the same spirit, we can derive the bulk term of A3[d,¢(z) |,— 0], in which all derivatives act
on the input with the largest scale of dyadic localization of frequencies, is given as follows,

Cunyy =L [ [ 7€k - o) @00, 06( -0 edndo],

where
) = 2 0 r0 (e—(2+1)|$| _ e(Z+1)IE\) eHDIEN _ p—G+1)IE]|
)= 1) &l 1 olél elél 4 o8l
] —z|&y (o (s—DIE] —(s+ D&
(4.19) % ((ez + e~ 2l (el + e ) _ p-laslié] —e(z+s)‘s‘)|§|3dsdz
e—IEl 1 oIl
0 —(s+DIEl _ p(s+DIE]
(e e )20
- ds + tanh .
f_ 1 ST ) 18] (€D IE]

After removing the bulk term, by definition, there is at least one derivative acts on the input,
which doesn’t have the largest scale of dyadic localization of frequencies, for the rest of terms.
This fact implies that our desired estimate (4.17) holds. O

With the previous preparation, which improves our understanding of the equation satis-
fied by u in (4.4), we are now ready to find a good substitution variable. We seek a good substi-
tution variable as follows,

v(t) = u() + Z Ay PO @)+ D Brie (0.0 (1) u' (1))

wvel+,—} Tk e{+,—}

(4.20)
+ Z Epy g op o, @), ul2(0), u” (1), u™ (1)),
wisp2,v1v26{+,—}
where quadratic terms A, (-, -), cubic terms Br (-, -, -), and quartic terms Ey, ;i5.v,,0, (055 %)

are to be determined. From the equation satisfied by u(¢) in (4.4) and definition of v(¢) in
(4.20), as a result of direct computation, we have

4.21)
@ +idv=_Y Qu@ @) 0"+ D  Coc0™®),v*@),v'(1))

wvef{+,—} T €{+,—}

+ > Dty iz, o (011 (1), 092 (1), 071 (1), 072(1)) + R (1),

ot si2,v 1,2 €4+, —}
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where R (¢) is the quintic and higher order terms. The quadratic terms and cubic terms are

given as follows,

(4.22) Qun(@*,0") = 0y, 0") + i A(Ay, (0", 07)) = ipA,  (Av* 0") —ivA, (0", AvY),
Cric (V7,0 0Y) := a,,(,t(v’, V0 + P A(Bry, (07,0, 0Y) — it By (AVT, 05, 0Y)

(4.23) — ik By (VF, AV ,0") —itBr i, (V7 V%, AvY),

where the cubic term C‘}M (v®, v*, v') is the unique cubic term associated with the following

equality, such that the scales of dyadic localized frequencies of inputs v®, v, and v* are
ordered in a descending manner after we rearrange the inputs,

Z 6r,/c,t(vrv v, UL) = Z Cr,/c,t(vr7 v, UL)

Tk, te{+,—} T,k E{+,—}
+ Y A (Pul Qo @1 0] 0Y)
(4.24) V101,01 €{4+,—}
+ Apw @, Py[Q gy W 0]
- Q~M=V(PM(AM1,V1 (vm’“vl))’ UV)
= O (v, Py Ay, (01, 0))).
More precisely, the following estimate holds inside the support of symbol ¢; . (§—1, n—0, 0)

of the trilinear operator é';,,c,t(-, "),
(4.25)
k3 < ky < ki, where o € supp(Yx;(x)), n — o € supp(Y, (x)),§ — n € supp(Y, (x)).
Similarly, for any w1, ua, vy, v2 € {+,—}, the quartic term Dul,uz,w,vz (V™1 (1), v*2(2),
v¥1(t), v"2(t)) in (4.21) is given as follows,
(4.26)
lim,uz,vl,vz (WH1 (), 072 (1) 0" (1), V72 (1)) = ﬁm,uz,mwz (W1 (2), 072 (1), "1 (1), v™2 (1))
+ iA(Eul,uz,vl,vz (UM (), vH2 (). v"! (1), v (®)))
— I E g g,y ,00 (AVPL(E), 092 (2), 071 (1), 02 (1))
— i E vy, OFL (), AVH2(2), 071 (1), v"2 (1))
— iVIE L a0, OFT(E), vH2(2), AV (2), 072(2))
— V2 E ) oy vy (VFL(E), 0P2(2), 071 (), AVY2(2)),
where ﬁm,uz,vl,,,z(vm,vm,v"l,v"2) is the unique decomposition associated with the
quartic terms such that the scales of dyadic localization of frequencies of all inputs are
ordered in a descending manner. More precisely, the following estimate holds inside
the support of symbol d, v, (E — 1.7 — 0.0 — k,«) of the multilinear operator

DMI SH2,V1,V2 (" ) ')>
ka <kz <k <ki, where « € supp(Vk, (x)),0 — k € supp(Y, (x)),
(4.27) n—o0 € supp(Vx, (x)), & —n € supp(Yg, (x)),

The detail formula of 5/“,“2,,,1,1,2(-,-,-,-) can be obtained explicitly from A, ,(: ),
Bri, o), Ouw(sss)y Crpu(e,0), and the quartic terms Dy, iy vq,0,Covnene) 1 (4.4).
Since its detailed formula is not necessary in later argument, for simplicity, we omit it here.
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Now, we are ready to determine the normal formal transformation defined in (4.20).

Firstly, we consider the quadratic terms. Recall (4.7). Note that, if |5| < 2719¢|,
w = —orif |§] < 270y, uv = +, the size of phase “®*(£,7)” is comparable to
“max{A(|n]), A(|&])},” which is relatively big. Moreover, if (£, n) lies inside a small neigh-
borhood of (&, £/2)(the space resonance set), the size of phase is also relatively big. More
precisely, the following estimate holds,

cA(lE]) < [V (€ m)| < CA(ED, if In—§£/2] =27,

where ¢ and C are some absolute constants.

To take the advantage of the fact that the phase is highly oscillating with respect to time in
the aforementioned scenarios, we use the normal form transformation 4, , (-, -) by choosing
the symbol a,,, (-, -) defined as follows,

(4.28)

sl =11 = 3 LI ()<t 1000 <8/ Do~ DVir-o(6)
ko€Z ’7)

+ L (WY sk+106 — 1) + Ly (W) V< —10(E) ¥ <kr+9 (5 — 1)),

where 15 () denotes the characteristic function of set S and the phase ®*-V (&, n) satisfies the
following estimate inside the support of a;,,(§ — 1. 1),

(4.29) ¢ max{[¢], [n|}*(1 + max{[¢|, |n|)~"/2 < |V (€, )]
< C max{[¢l, [n}*(1 + max{[£[, |n|}) ">,

where ¢ and C are some absolute constants.

Next, we proceed to consider the cubic terms. Recall (4.8). Note that, for t,«,¢ € {+,—},
the phase ®%%'(&, n, 0) is relatively big in the scenarios listed as follows,

o If t = —and |n].|o| <2719¢|.
o fp—£/2] <27 lg| and o < 210¢]

o If |n —2£/3] < 271%¢| and |0 — &/3] < 2719)¢|, ie, (§ — n.n — 0,0) is close
to (§/3,&/3,&/3), which is the space resonance in 7 and o set.

o If |§ —n + v&| < 27'0%|, n — o + «kE| < 27|, and |o + £| < 27'0)¢], e,
(¢ — n,n — 0,0) is very close to (—t&, —«k&, —1&), which is the space resonance in 7
and o set, where (1.k,1) € § = {(+,—, —). (- +.—). (— — +)}. See the proof of
Lemma 5.7 for more details.

To take the advantage of the high oscillation of phase with respect to time in aforemen-
tioned scenarios, we use the normal form transformation Bz « (-, -, ) by choosing the symbol
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bri.(-, -, -) defined as follows,

(4.30)
iz‘\r,x,t(f -n,1—0,0)
R4 (E, 1, 0)
< YY) (15 (1.6, D) Y<k—10((1 + 1)E — DY <km10(0 + 1)

kezZ

+ V<k—10(1 — 2§ /3)Y<f—10(0 — &/3)
+ Y<k—100 —§/2) ¥ <k—10(0)

+ 1 (D) V<k—10(1 — 0)Y'<k—10(0)).

br,lc,t(g —n.n—a, 0) =

where ¢r,(-,-,+) is the associated symbol of cubic term a,w(-, -,+) which is defined in
(4.24) and the phase “®% (&, n, 0)” satisfies the following estimate inside the support of the
SymbOI F‘L’,K,L('a ) ')a

(4.31) [@%(E. n.0)|
€ max{|£], [n—ol, lo}*(1 + max{[¢|, [n — 0|, |o]})""/?[c.C],

where where ¢ and C are some absolute constants.

Lastly, we consider the quartic terms. Note that the phase ®#1:#2:Y1:¥2(& n, o, k), which
is defined in (4.9), is relatively big if ], |0, || < 2710/§|, uy = —orif [n —&/2|,|0], |«| <
2710/¢|. Hence, we use the normal form transformation E,, i, v, v, (- +) by choosing its
symbol e, 5.0, v, (-, . -) defined as follows,

o€~ 1120.0 Z60) g, )

ell«l,llz,vl,vZ(g —10,1—0,0 —K,K) = LTV (E, 7. 0, K)
9 , b

keZ
(4.32)
X (1/f5k—10(U—E/z)WSk—lo(U—K)Wsk—lo(K)+1{—}(Ml)l/fsk—lo(ﬁ)l/’sk—lo(g—K)l/fsk—lo('f)),
where jm,uz,w,vz(" -,-,+) 1s the associated symbol of quartic term 5u1,u2,v1,v2 (-,-,+,-) and

the phase ®#1:H2:Y1:¥2(E p g, k) satisfies the following estimate inside the support of the
symbol dyi, 1ipv1,05Cos s 0),
(4.33)
|pH1I2VEv2 (8 o, k)| € max{|E], [n—o], |o—«], |k [}2(1+max{[€], [n—o], |o—k]. [k[})"/?[c. C].
where ¢ and C are some absolute constants.

From the estimates (4.29), (4.31), and (4.33, the estimate (2.3) in Lemma 2.1, and the
estimate (4.13), the following estimate holds for some absolute constant C,

@€ =0 MY E) Vi, (§ = MYi, (M g0
+ bz (& = 1. MV (E)Vk, (§ — MV, (1 — 0) Yk (0) || oo

(434) + ”eu],uz,vl,vz (‘i: —n,N—0,0 —K, K)Wk(&)‘ﬂkl (S - T])
X sz(n - 0)1/fk3(0 - K)Wk4(’<)|| e
< C2kr+,
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With the above determined normal form transformation, now we are ready to study the
time evolution of the profile g(¢) := e!*2v(¢) associated with v(¢). Recall (4.21). As a result
of direct computations, we obtain the following equality,

(4.35)
0 gt EWE) = Y > B o, (0.8)
wvel{+,—} k,kr€Z,kr<k1+10
+ Z Z Tkt/lccllkz k3(t’g:)
T,k 0e{+,—} k3<kr <k
+ > Do KRN (1,8) + MO R (1, E) Y 6),
w1,02,v1,v2€{+,—} ka<k3z<ka<k;
where

@36 B, 1008 i= [ G, 6~ gl 16— L v,
(4.37)
Tk oy (026) = /fR RN ] (6 n—0.0)8F, (1. — )&, (10— 0)
% . (L oWk ©)dndo,

1,2,V ,V2 _ it ®H1-H2-V1-V2 (€,1,0.6) 5
Kkkl,k2,k%k4( ’E)_/‘2/‘2e K e#lﬁﬂz,vl,vz(g_n7n_0’G_K’K)
R JR

(4.38) Xg/k‘?(t,é—n)gkz(t n—o)gi Lo — K)gkz(t KV (E)dndodi,

where

GuwE =11 = D (€ = 1 DVks () (Vk—0 (6 — 2DV kr 44 (E — My —5(E)

ko€Z

(4.39) P s+ Ty O aiate ).

(4.40)
deg (E—n,n—0,0)= ér,x,t(s —n,n—0,0)+ibre (6§ —nn—o0, o) D (€, n, 0),

(4.41)  uy a0, (E =10 — 0,0 — K, k)

= duy oy (§ =1, — 0,0 =K, k)
i€ uomvy (=1, n—0,0 =k, )P (E 0, k).
Recall the fact that we rearranged inputs such that the scales of dyadic localization of inputs

are ordered in a descending manner, see (4.12), (4.25) and (4.27). It explains why we have
ko <ki+10,ks <k, <kjandks <kz <k, <k;in (435)

Note that, from (4.39), the following equalities hold if || < 2719|¢|,

(4.42) G-pE—nm) =0, G+vE—nn =qg+v(E—nn).
Moreover, if |§] < 2719|n|, we have
(443) q/l«,u(s =1, 77) = Ov JVARS {+v _}'
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Recall (4.40) and (4.41). From the rough estimates of the symbols of the cubic terms in
(4.16) and the quartic terms in (4.18), the following rough estimates hold for some absolute
constant C,

(4.44) ldeia = n.n—0.0)l sz, < €2 1HH+,
(4.45)
e an v (6 = 1.1 = 0,0 = K, )ik, (6 = MYk, (1 = )ik (0 = 1)y () oo < € 22K1H4K1 |

In later high order weighted norm estimate, we will also need to use the hidden symmetry
inside the symbol dz ., (§ — 1.1 — 0,0) when |a|, |§| < 271°|¢|. To this end, we identify the
leading symbol inside cfr,,c,[(é —n,n — o,0) first. From (4.30) and (4.40), we know that we
only have to consider the case when © = + and the leading part of c?,,,c,l(é —1n,n—0,0)18
same as the leading part of ¢, «,,(§ — 1, n—o0,0). Recall (4.24) and (4.28).If k5, k3 < k; — 10,
then the following estimate holds,

(4.406)

(e e § = 1.1 = 0.0) = e(E) Yk, (§ = MWk, (1 = 0) iy (@) [ oo < CRmIRITITAL 4,
where C is some absolute constant and e(§) is given as follows,

ic(§)?

A(ED

where “d(£)” is defined in (4.19). We remark that the first part of e(§) comes from the cubic
term Cr ., (u®, u*, u') in (4.24), see (4.17) in Lemma 4.1 and the second part of e(§) comes
from the composition of quadratic terms and the normal form transformation in (4.24).

(4.47) e(§) == FA(EP)d(E) -

4.2. Further reduction of the dispersion estimate

In this subsection, we first show that the dispersion rate of the nonlinear solution v(¢)
and u(t) are comparable in W17 space and then reduce the control of the dispersion rate
of v(¢) into the control of weighted norms for the profile g(¢) of v(¢) in a fixed dyadic time
interval.

LEMMA 4.2. — Under the bootstrap assumption (3.1), the following estimate holds,

(4.48) sup 1+ t)||v(t) — u(l‘)||W6,1+a + ||v(t) — M(f)”HNOflO < €p.
t€l0,T]

Proof. — From the L°° — L type bilinear estimate in (2.5), the estimate of symbols in
(4.34) and the L>® — L2 type Sobolev embedding, the following estimate holds for some
absolute constant C,

@) =u@llwsara < Clu@ e sollu@®l3R, < CA+1)7% < (1+1)7/%¢.

From the L? — L type bilinear estimate, the following estimate holds for some absolute
constant C,

() = u()ll gao-10 < Clu@)| oo lu@) a0 < Ce} < €. O
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Therefore, to control the dispersion rate of the nonlinear solution u(z), now it would
be sufficient to control the weighted norms of the profile g(¢) of the nonlinear solution
v(z). Recall the definitions of Z;-norm and Z,-norm in (1.22) and (1.23), we expect that
the Z;-norm of the profile g(¢) doesn’t grow and the Z,-norm of the profile only grows
appropriately, which leads us to the following bootstrap assumption for some 7’ € (0, 77,

(4.49)  sup ](1 +0)lle g0 lwerte + IOz, + A+ lg@)zs < &1 = €°,

tel0,T’

where § := 4008.

To close the bootstrap argument, it would be sufficient to prove that there exists some
absolute constant “C” such that the following estimates hold for any t;,#, € [27~!,2™] C
[07 T/]a me Z+a

(4.50) lg(t2) — gz, < €277,
(4.51) g%, — g%, < C2%™Me.

The proof of the desired estimate (4.50) is postponed to the Section 5 and the proof of the
desired estimate (4.51) is postponed to the Section 6.

5. The low order weighted norm estimate

In this section, we mainly prove (4.50) under the bootstrap assumption (4.49). Recall
(4.35). Note that, from the estimate (7.13) in Lemma 7.4, the low order weighted norm of|
the quintic and higher order remainder term <R (z, £) is controlled. In the first subsection,
we estimate the low order weight norm (Z;-norm) of the quadratic terms B, , (&,7) in
details. In the last subsection, we estimate the Z;-norm of the cubic terms 7 ,';L ks (1)
and quartic terms K;'}"2°" "7 (¢, §) at the same time because the methods we will use for

. ’. l, 2, 3, 4 . .
cubic terms and quartic terms are very similar.

5.1. The Z;-norm estimate of quadratic terms

Recall (4.35). Based on the possible size of k1 and k,, we separate into two cases, which
are the High-High type interaction and the High-Low type interaction.

The main result for the High-High type interaction is summarized in the following lemma.

LEMMA 5.1. — Under the bootstrap assumption (4.49), the following estimate holds for any
w,v € {+,—}, and any t1,t, € [2’"_1,2'”],

DYDY ) ! [ / 23,@{;;],,{20,8411}

keZ j>—k_ ki,k2€Z,lk1—k>2|<10

< C270me,

Bk.j

where C_is some absolute constant.
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Proof. — Recall (1.22) and (4.36). Note that, from the L? — L! type Sobolev embedding
and L2 — L? type estimate, the following rough estimate holds for any u, v € {+,—},

123 .
oA [ By 1, (t,)di)|, ; < sup C2CHDImEIEHIE 410 (1)l gk, (1) 2
n

16[2”7_1 ’2m]
< C2(2+(x)k+m+j +(2—2a)k1—(No—12)k; + €o,

where C is some absolute constant. From the above estimate, we can first rule out the case
whenk < —(14+8)(m+j)/2R+a)ork; < —(14+8)(m+j)/(4—a)ork, = (m+j)/(No—30).

As a result, it is sufficient to consider the case when k and k; are restricted in the following
range,

(5.2)

—(1+8)(m+))/Q2+a) <k <ki < (m+j)/(No—30), ki =—-(1+8)(m+j)/(4—-a).

Recall again (4.36). After doing spatial localizations for two inputs, the following decompo-
sition holds,

(53)  F '[BEY O = > FHBEIL (. 9))(),

J1=2—k1,—,jo=—k>o —

54)  FBLIIL . 9)) = / eHEHIRETEN G, (€ —n gy, [ (& —n)
Y R2xR2 ’

x gy, (Y ®)dnde.

From the linear decay estimates in Lemma 2.7, the bootstrap assumptions (3.1) and
(4.49), and the estimate (4.48) in Lemma 4.2, we obtain the following estimates for any
te2m 2" c [0, T,

lgk,; Ollz> < ek (V)gr(D)llg> < € min{2 /(1 Fek=8ky H=2j=2k+imye,
e~ A gy (1)l oo < € min{2 =~ (F@k=6ky p=mtdm—icre
gk ()2 < €2~ Mo~ 10k Hdm e,

where C is some absolute constant.

Based on the possible size of j, we separate into two cases as follow.

Case 1. — If j > (1 + §)max{m + ky,—k_} + 28m. We first consider the case when
min{j;, jo} > j — 8j — dm, the following estimate holds,

%)
—1 R
DDA AT A VR T Y
min{j1.j2}zj—8j—8m i

< sup Z C2C+k

122" mming iy o> 8 —6m

j k k
x M2 g Ol 218k o (D22

< C2(2+a)k+m+§m+108m—(2—25)j+(2—2a)k1—6k1,+60
< C2_28m_28j€0,

where C is some absolute constant,
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Now we proceed to consider the case min{ji, jo} < j — §j — §m. Note that, when 7 is
not very close to £/2 (space resonance set), e.g., |n — /2| > 2719|¢|, the following estimates
hold,

(5.5)
[Vy @ (€. m)| = 2| (1€ = nI*)(E —n) —vA'(In*)n| = 27" °11(16 — nl + Inl + 1)_1/2,
(5.6) [V @7 (€. 0)| + Ve (€. m)| < 2" max{|&|. [nl}(|&] + 0] + 1)~/2,

where A(|x|) := A(4/|x]). Therefore, from (5.6), we know that the following estimate holds
if |x| € [2/72,2/%2],

(57 [Ve(x - &+ 10 (€ m)| = [x + 1 Ve @V (€| € 277427,

If j, = min{;, j»}, then we can do change of variables first to switch the role of £ —n and 7.
As a result, the following estimate holds if |x| € [2/72,2/%2],

[Ve(x - & + 1@V (E.& — )| = |x + 1 Ved* V(.6 — )| € 2774274,

To sum up, in whichever case, by doing integration by parts in £ once, we gain 2=/ by paying
the price of at most max{2™in{/1./2} 2=k} Hence, the net gain of doing integration by parts
in “£” once is at least 2783/ After doing this process many times, we can see rapidly decay.

Case2. — If j < (1 4+ 8)max{m + ky,—k_} + 28m. As j is bounded from above now, from
(5.2), we have the following upper bound and lower bound for k and k1,
(5.8)

—m/(1+a/3) <k <ky <2Bm, j<max{m+ky,—k_}+3ém, B:=1/(No—>50),

Hence, it would be sufficient to consider fixed k and k; inside the range (5.8), as there are

at most m3 cases to consider, which is only a logarithmic loss.

After doing integration by parts in n many times, we can rule out the case when
max{ji, jo} < m + k_ — 3fm. It remains to consider the case when max{j,, jo} >
m + k_ —3Bm. From L? — L type bilinear estimate in Lemma 2.2, the following estimate
holds after putting the input with the maximum spatial concentration in L2 and the other
input in L°°,

5]
) 15t B kO

max{/1,j2}>m—+k_—38m
< C2(1+o¢)k+m+j+2k1 410k —m—(14a)k;

% min{z—m—k,—(wa)kl +6/3m’ 9—2ki —2(m+k_—3B8m)+3m }6%
(59) < C min{z(xk+l2k++(l—2(x)k] +10ﬂm’ 2—(1—a)k+12k+—0{k1—m+10ﬁm}60
< C27108m€0’

where C is some absolute constant. To sum up, from the above estimate and the previous
discussion, it is easy to see that the desired estimate (5.1) holds. O

The main result of the High-Low type interaction is summarized in the following lemma.
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LeEmMMA 5.2. — Under the bootstrap assumption (4.49), the following estimate holds for any
w e {4+, =}, and any t1,t, € 271,27,

(G100 Y Y > . [/ B 1, E)dt] |5, ;< C27 e,

kGZjZ—k7 k],kzéZ,szk]—lO U€{+ -}

where C is some absolute constant.

Proof. — Recall (4.42). Note that u = 4 for the case we are considering. Recall (4.14)
and (4.15). Motivated from the improved estimate (4.15), we split the symbol “G , (&, 1)”
into two parts as follows,

GroE—nm) =gl ,E—nn)+q3 ,E=nn),

(5.11) ay,E—nm)=c®. i, E—nn=qr,E—nn—c@.

Hence, motivated from the above decomposition of the symbol G, (§ — 1, 1), we do decom-
position as follows,

> / Bl :8)dt =)0 L iy

ve{+,—} i=1,2

—+.v — T .
I = / A; O EN i (6, g (1 E— gL (L MV ©)dndr, | = 1,2.
ve{+,—}

Recall (5.11). Note that q}r’v (§ — n,n) doesn’t depend on the sign “v”. Hence, we have

Bk, =2 / /R MDA e g (1. & — mRe() (1) Vi (DY (§)dndlr.

From (4.20) and the estimate (5.15) in Lemma 5.3, the following estimate holds after using
the volume of the support of “n,”

I8 o lse, < sup c12<3+“>k+m+-f+l°k+||gk1(r)||Lzz2"2||Re<v><r,swsz(s)nLgo
tE[ZW'*l,Zm]
< GO kmASm 2= No30K (R (1, €)Yk, () llge + Il G0 + el 10 + el f10)

(5.12)
<G, (2(3+o¢)k+2m+108m+j+3k2—(N()—30)k+60 4 9BH+a)k+3m+108m+ j+4ko—(No—30)k 1 60)7

where C1, C,, and C3 are some absolute constants.
Now we proceed to estimate . Recall (5.11) and (4.15). From the L? — L™ type
bilinear estimate (2.5) in Lemma 2.2 and L*® — L? type Sobolev embedding, we have
IZ s llBi; = sup  Co@F@cmiratbt O o ()] L2 lle M gy (1)l Loe
te[am—1 2m]
(513) < C2(3+a)k—(N0—10)k++m+j+2k2+23m6

)

where C is some absolute constant. To sum up, from (5.12) and (5.13), we can rule out the
case when kp < —(1 4+ 58) max{(m + j)/2,(B3m + j)/4} or k > 4(m + j)/(No — 40). Now,
we only need to consider the case when k, is restricted in the following range,

(5.14) — (1 +58) max{(m + j)/2,Bm + j)/4} <k, <k < (3m + j)/(Nog—40).
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Similar to the idea used in the proof of Lemma 5.1, we also separate into two cases based on

[T3ERE

the size of “;” as follows.

Case 1. — If j > (1 + §)max{m + k,—k_} + 106m. We first consider the case when
min{j;, jo} < j —§j — ém. Same as we considered in the High x High type interaction,
we can also do integration by parts in “£” many times to see rapidly decay. Now, we proceed
to consider the case when min{ji, j»} > j —§j — 8m. From L2 — L® type bilinear estimate
and L>® — L? type Sobolev embedding, we have

1 1+a)k+10k L +m+j+2k| +k
118, i, llBe ; < sup > C 20k 10k +mb 42k +ha
te[2m—1 2m]

min{/y,j2}>j—8j—6m
”gk],j] (l‘)”L2 ||gk2,j2 (l) ||L2
< C2(l+t¥)k+k2+(1+50ﬁ)m—(l—50ﬁ)j2—j/2—k2/26% < C2_‘8m60,

where C is some absolute constant.

Case2. — If j < (1+8) max{m +k,—k_}+106m. For this case, whether j; is less than j,
makes a difference. Hence, we separate into two cases based on whether j; is smaller than j,
as follows.

If j1 < j,. — For this case, we don’t need to do change of coordinates to switch the role
between £ — 1 and 7. Note that [Ve®T¥(£,7)| < C|n| holds for some absolute constant.
Since this upper bound is better than the one used in the rough estimate, which leads to expect
that the upper bound of “j” can be improved. More precisely, we can rule out the case when
j = max{m + k,,—k_} 4+ 1008m and j; < j — dm by doing integration by parts in £ many
times. If j > max{m +k,, —k_}+1008m and j —6m < j; < ja, then the following estimate
holds after using the L2 — L™ type bilinear estimate and L>® — L? type Sobolev embedding,

5]
A / B o e 8dls,,

j—8m<j1<j2

1 k+10k | +2k k
< sup Y Uk IOk mt 2K gy (0122271 8k sy Dl 2
t€[2m_1,2’"] i—Sm<ii<j
J m=ji=Jj2

< C2(1+a)k+k2+(1+50ﬂ)m—(1—50ﬂ)j2—25Bj—25ﬂk26%
< C27Pme,
where C is some absolute constant.

It remains to consider the case when j < max{m + k,,—k_} + 1008m. If moreover
k— 4+ ko < —m + Bm, it is easy to see our desired estimate holds from (5.12) and (5.13).
Hence, we only have to consider the case when k_ + k, > —m + Bm. For this case, we have
j <m + ky + 1008m. Recall (5.14), we know that k, > —4m/5 — 308m.

Same as in the decomposition (5.3), we also do spatial localizations for two inputs.

After doing integration by parts in “n” many times, we can rule out the case when
J2 <m + ki —108m. Therefore, it remains to consider the case when j, > m + k; _ — 105m.
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After putting gx,.;, in L? and putting g, ;, in L™, we have

5]
3 Eall B k-0,

Jjazmax{m-+ky,——108m.ji}

< Z C2(1+a)k+10k+
Jjo>max{m+k| _—108m,j}
2k ' —itA
x 22K1tmtiqup e T g, i (O lLoe | 8ky. i D L2

te[am pm+1]
< C2—m—k2+150ﬁm6% < Cz_ﬁmG(),

where C is some absolute constant.

If —k> < j» < j1. — We first consider the case when ky + k» < —4m/5. From the L? — L™
type bilinear estimate and L — L? type Sobolev embedding, the following estimate holds
for some absolute constant C,

15
NGB s D40
1

J2=J1
14+a)k+10k 4 +m+j+2k k
< sup 20+ IR gy (ON1222%2 |8k D 2
te2m=h.2m < jy
2m+(G+a)k +kan—2k1—2j1+508m 2
< Z C2 1+k29—2k1=2]1 €
—k2<j1
< C2(2+0{)k+3k2+2m+50/3m6%
< C2_Bm€0.

Lastly, it remains to consider the case when k; + k, > —4m/5. For this case, we do
integration by parts in 7 many times to rule out the case when j; < m + k1 — 106m. For
the case when j; > m + ki _ — 108m, the following estimate holds from the L? — L type
bilinear estimate,

2

5]
—1 +,v
of |:/; Bkl,jl,kz,jz(t’g)dt]
Jj1zmax{jz,m+k; ——108m} 4

< > CoUF@kH 10k om T2k sup  lgky gy (Dl z2lle ™A ghy o () [0
te[szl ,2m]

Bkul
j1>max{jo,m+k; ——108m}
—m—(1 ko>+50 2 -
< c27m(Hkat ﬂmel < C27Pme,,

where C is some absolute constant. Hence finishing the proof of the desired estimate (5.10).
O

LEMMA 5.3. — Under the bootstrap assumption (3.1), the following estimate holds for
t 2", 2" c[0,T], m e Nandk € Z,k <0,

(5.15) 1A E) YR ®)llnge < €227 (22KF2m 4 2K,

where C_is some absolute constant.
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Proof. — Recall (4.6). It is easy to see the following estimate holds for any ¢ € [271,2™]
and k <0,

~ t
(5.16) If @) Yi(E)lLge < €0 + Cl/O 1f©)I310ds < C22™ T2 meq,

where C; and C, are some absolute constants. Recall the equation satisfied by the height
function “A(¢)” in (1.3) and the Taylor expansion of the Dirichlet-Neumann operator in
(1.6), we have

3,h(1,€) = |E| tanh(|ENV (1, ) + FIAUGIMVINE) + FIA3[GYI(E).

Hence, from L2 — L? type bilinear estimate (2.5) in Lemma 2.2 and the estimate (5.16), the
following estimate holds for any & < 0,

1A &)Y ®)llzge < o+ Ca /0 2G5, £) Y (§) | gods + /0 2 1($) 1019 () g104ls)

(5.17)
t A t
< e+Co [0 2K £ (5. )Yr (§) Lo ds+ /0 2K f($)1F10ds) < C3220m (22K 2okt m) e,

where Cy, C,, and C5 are some absolute constants. Hence finishing the proof of the desired
estimate (5.15). O

5.2. The Z; estimates of cubic terms and quartic terms.
The main goal of this subsection is to prove the following proposition,

PROPOSITION 5.4. — Under the bootstrap assumption (4.49), the following estimate holds
for some absolute constant C and any t € [2™~1,2™],

oL 2 T s €+ D N K R @ B, ]

keZj=—k— kz<kx<k; ka<ks<kr<k;

(5.18) <o mhme,
where Tkr’]f;‘kz ks (1.6) and K;;};:’“i;%‘%”iél (¢, &) are defined in (4.37) and (4.38) respectively.
Proof. — Same as the strategy used in the estimate of quadratic terms, we can do integra-

tion by parts in “£” many times to rule out the case when j > (14-§) max{m-+k, —k_}+2(§m.
Hence, in the rest of this section, we restrict ourself to the case when

j < (148 max{m + ki, —k_} + 25m.

4¢ SERIE - TOME 53 — 2020 — N° 4



3D FINITE DEPTH CAPILLARY WAVES 883

From the L2 — L — L™ type trilinear estimate in Lemma 2.2, the following estimate holds
for some absolute constant C,

_1 K
| F T @ OB,

< C2(1+a)k+j+2k1+2k1,++10k+ ”e—itAgk] ||Loo ||gk2 (t)”LZ ”e—iZAgk3 “Loo

(5.19)
<C min{2(1+(¥)k+2k1+k3+205m 2(1+0¢)k+3k1—(N0—30)k1,++k3+m+ﬂm}€o

—1 L2V,
I K e ke, @ Olllsy

< C2(1+a)k+10k++j+2k1+2k1_+ ”e—i i

A —itA
Pk oo le™ P gk, llL2llgis (.2

(5.20)
> ”e—itAgk4 )|l < C2(l+a)k+k4+20f3m min{22k1_m/2, 23k1—(No—30)k1,++m/2}60.

From the rough estimate (5.19), we can rule out the case when k3 < —m — 308m, or
k1 > 2Bmork < —m/(1 4+ «/2) for the cubic terms. From the rough estimate (5.20), we
can rule out the case when k4 < —m/2 —308m or ky > 2fm ork < —m/(2 + «) for the
quartic terms.

Therefore, for the cubic terms, it would be sufficient to obtain the following desired
estimate

(5.21) sup | F T DI g, < C2 e,

te[2m—1,2m]
where integers k, k1, ko, k3 are fixed inside the following range
(5.22) (Cubic terms) —m—308m <kz <k, <ki <2Bm, —-m/(1+a/2) <k <2Bm.
For the quartic terms, it would be sufficient to obtain the following estimate,

429 sup | KL (010l = €27 e,
lE[mel ,2m]
where integers k, k1, k», k3, k4 are fixed inside the following range,
(5.24)
(Quartic terms) —m/2=308m < k4 <ks <k, <k <2Bm, —-m/Q2+a) =<k <2Bm.

From the results in Lemma 5.5, Lemma 5.6, and Lemma 5.7, we know that the desired
estimates (5.21) and (5.23) ) indeed hold. Hence finishing the desired estimate (5.18. O

LEMMA 5.5. — Under the bootstrap assumption (4.49) and the assumption that k, < k1 — 10,
the desired estimate (5.21) for the cubic terms holds for fixed k, k1, k,, and k3 inside the range
listed in (5.22) and the desired estimate (5.23) holds for fixed k, k1, k2, k3 and k4 inside the range
listed in (5.24).

Proof. — Recall the normal form transformation we did in Subsection 4.1. Note that the
case when “z = —”is removed by the normal form transformation when k, < k;—10. Hence,
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we can restrict ourself to the case “r = +”. Recall (4.8). Note that the following estimates
hold for the case we are considering,

V@4, . )] = [V @ #2142 & . )] = \A’(Iél)é—| _ A - nl)é L
(5.25) < 2max{2¥1 Z(£,& — 1), |E| — |E — |} < 4|y < 2213
(526) 217h14/2710 < 9, 004 €,.0)] = [A'(1 — nl) o + kA" ([n — o) |
|€ —nl [n—o|

< 2k1—k1_+/2+10.

After doing spatial localizations for the inputs gx, (-) and gg, (-), we have the decomposition
as follows,

(5.27)
Tkr;‘(llb k3 (1,8) = Z ]:IKJLI k2, j2 (.6),
J1z2—ki,—,jaz—k> —
T @8 = [ [ OO e = oo k)
X gkz,jz(l? n-— ff)gk3 (t,0)dodn,
Kk ennies 1-6) = > KRR,

J12—ki —,ja=—ko —
//Lls/‘vZaVlsVZ it ®H1-H2:V1:Y2 (& n,0,k) 5 _ _ _
kl JJ15k2.)2 t.8) = /RZ /RZ /};2 el‘«l,ﬂ«z,vl,vz(s n,nN—0,0—K,K)

X g jl(t E—mes jz(t,n—ﬁ)g,i;(t,a K)gkz(t K)dkdodn.

Based on the possible size of j, we separate into two cases as follows.

If j > max{m + ky,—ky—} + Bm. — Recall (5.25). By doing integration by parts in “£”
many times, we can rule out the case j; < j —8m.If j; > j —8m, then from L% — L®° — L*®
type multilinear estimate in Lemma 2.2, the following estimates hold,

‘EKt
Z (’? kl »J1 szz(’S)]”Bknf
J1zj—8m
1 k+j+2k1+2k 10k Ak —itA
Y calttedktiakitzh s H 10k k2 g (1) 2 le T gy (1) oo 1y (2
Jj1=j—6m
< C2—m/2+30;3m2k2—j€0 < C2—3m/2+40ﬁm€0

-1 H1s42,V1,V2
Z F [Kkla.ilsk25.i2 (I’S)]”B,w-
J1=j—6m
L+a)k+j+2k; +2k 10k Ak ia
Z C 2 +a)k+j+2k1+2k1 4 +10k4 5 2||ga, ()12l it gies ()| zoo
Jj1=j—6m
—itA

X ||€ gk4(t)||L°°||gk1,j1 (l‘)”L2

< C 2—2m+40ﬂm€0
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If j <max{m+ky,—ky_}+pm. — Fromthe L?— L% — L% —L* type multilinear estimate,
the following estimate holds for some absolute constant C,

—1 SMU2,V1,
” (’7 [Klﬁ}cﬁ]i;}@v}‘t(t» S)]”Bk}

< C2(1+0t)k+10k++j+2k]+2k1!+||e—itA i i

—itA —itA
S lzeolle™ 2 iy oo le ™ A grs oo ll8ky ll 22

< C2—3m/2+40ﬂm60.

Hence finishing the proof of the desired estimate (5.23) for the quartic terms.
Now we proceed to estimate the cubic terms “Tkj;':”’kz’h (t,€)”. If moreover
k1 4+ ko < —m/2 —12B8m, then the following estimate holds from the L? — L® — L*®

type trilinear estimate (2.6) in Lemma 2.2 and L* — L? type Sobolev embedding,
” (’?_1 [Tk_t_]élf’,lkz,ks (t’ g)] ”Bk,j
< CoUFHIOHTRRH2 + oT R g (0)]20022 gk, (D] 2118 (022

< C22k1+2k2+20ﬂm60 + 2k1+2k2+20ﬂm€0 < Cz_m_ﬂméo,

where C is some absolute constant. If k1 +k, > —m /2 —12m. Recall (5.26). By doing inte-

€, 9

gration by parts in “n” many times, we can rule out the case when max{j;, j»} <m + k- — fm.

For the case when max{j;, j.} > m + k- — Bm, the following estimate holds from
L? — L™ — L type trilinear estimate (2.6) in Lemma 2.2,
_1 K,
Z Ile# [T/:fjtl,kz,jz(t’ S)]”Bksf
max{j1,j2}=m+k; ——Bm
k+10k 42k +j —i —i
< S otk IOk k(o) 2 lle T A gy ()10 e A gy (1) o
J1zmax{m+ki,——Bm,j>}
+ Y ClrEROe e g s Ol e M gk gy Ollzoe e gay (1) 2o
Jozmax{m+ki,——Bm,j1}
(5.28)

< C2—5m/2+50ﬁm—k2€0 < C2_m_ﬁm60,

where C is some absolute constant. Hence finishing the proof of desired estimates (5.21) and
(5.23) for the case when k, < k7 — 10. O

LEMMA 5.6. — Under the bootstrap assumption (4.49) and the assumption that k1 — 10 <
ky <ky+ landky < ks — 10 < ky + 1, the desired estimate (5.21) for the cubic terms holds
for fixed k, ki, ko, and k3 inside the range listed in (5.22) and the desired estimate (5.23) holds
for fixed k., ky, ko, ks and k4 inside the range listed in (5.24).

Proof. — From L? — L® — L™ — L type mutilinear estimate, we have
| T KT (1. 9))llp,, < C2OFORFIRHI 2Kk ot g (1) | o ™R gy, (1) o
(5.29) x e gy (1) 200 gy ()12

< C2—3m/2+40ﬂm60.

Hence finishing the proof of the quartic terms. Now, it remains to estimate the cubic
terms “T,:”,’(‘;"kZ’ 4 (1.6)7. After putting gy, in L? and the other two inputs in L*°, from the
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L? — L* — L type trilinear estimate (2.6) in Lemma 2.2 when k < —28m, the following
estimate holds for some absolute constant C,

—1 WKy 1 k+j+2k+2k —itA —itA
| T D) = CRUFRHI TR0t o=t (1) Lol g, (1) 2 s ()2

<C max{z"‘k‘zm“ﬁm’ 2(1+¢¥)k—m+ﬂm}€fli < Cz—m—ﬂmeo'

Hence, it remains to consider the case when k > —28m. Recall the normal form transfor-
mation we did in Subsection 4.1. Note that the case when 7 is close to £/2 is removed, sce
(4.30). Hence, the following estimate always holds for the case we are considering,

(5.30) |V, @5 (€, n, 0)| > 2K F1.+/2710,

[739¢1)

From the above estimate, after doing integration by parts in “n” many times, we can rule out
the case when max{;, jo} < m + k_ —3Bm. Hence, we only have to consider the case when
max{ji, j2} > m+k_—3Bm . From the L? — L™ — L® type estimate (2.6) in Lemma 2.2,
the following estimate holds,

-1 K
Z Il [Tkrl’fjtl k2,2 (.6)] ”Bk,j
max{j,j2}=m+k_—3Bm
- Yo CAlRRIOR R g 0222 gk (02 e iy () s

max{ji,j2}=m+k_—38m
< C2—3m/2+50ﬁm60,

where C is some absolute constant. Hence finishing the proof. O

LEMMA 5.7. — Under the bootstrap assumption (4.49) and the assumption that k; — 10 <
ky <ki+ landk, < k3 — 10 < ky + 1, the desired estimate (5.21) for the cubic terms holds
for fixed k, k1, ko, and k3 inside the range listed in (5.22) and the desired estimate (5.23) holds
for fixed k,ky, ko, ks and k4 inside the range listed in (5.24).

Proof. — Note that, because the size of “k3” plays little role in (5.29), the estimate
(5.29) still holds for the quartic terms. Hence, we only have to estimate the cubic term
“T et (t,£)”. Define

k.kq.ko k3
(531) C’SJ] = {(+»_’ _)v(_’ +, +)}’ 52 = (+7_v +)’(_’ +’_)}a
(532) 53 = {(+’ +7_)7(_7_v +)}’ 05))4 = {(+s +v +)s(_9_’ _)}

Recall (4.8). Note that the space resonance in both “n” and “o” set is given as follows,
Rrwen = 1E 1, 0) 1 Vg @ (€, n,0) = Vo 7€, 1, 0) = 0}

={(.n0):&=(0+ )1 +k)—1K)o,n = (1 + K)o}, T,k € {+,—}
More specifically, we have
Riewe =1EM0) i § =0 =20}, E—nn-0.0), =(£EE. 60 S,
Rews ={E0.0) E =0 =00  E—nn-00), =E-EE. @K0€S
Rews ={EN0) E =00 =0}, E—nn-0.0), =E&-E. C&)eSs
Rewe = (E0.0) E =300 =20}, (E-nn—0.0), =ELEE). e)eSs
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When (t,x,1) € &1 U &2 U &3. — Note that, after changing of variables, those three cases

are symmetric. Hence, it would be sufficient to estimate the case when (z, k, t) € &' in details.
We first do change of variables and then localize around the space resonance set with a well

chosen threshold. As a result, we can decompose the cubic term Tkr,’c‘l‘ ko k3 (t,&) as follows,

(5.33)
Thion @O = 3 ChB@e. chban = 3 GLEEY.

I, h>1; 1z—ki —,ja>—ka —

(5.34)
Jtll/lzlz(t §) = /Rz Az MO, w8, 2§+n+05+0)gk1 j-—§=—n=0)

X 8k iy g L E+ n)gk3 (t.§ + )¢, (M, (0)dodn,
where the phase 5”""(5, n, o) is defined as follows,

(5.35) (€. n.0) := A(EN—TA(E+n+0o))—kA(E+nD—A(E+0]). (T.k.1) € ST
the thresholds /_ := —2m/5 — 108m and I; := k_ — 10 and the cutoff function @;.7(-) with
the threshold [ is defined as follows,

y_p(Ix)) ifl =1

(5:36) G = e i > T

Ift =+, ie, (t,k,t) = (+,—,—). — Recall the normal form transformation that we did in
Subsection 4.1 , see (4.20) and (4.30). For the case we are considering, i.e., (z,k,t) € S, we
already canceled out the case when max{/y,l} = I +. Hence it would be sufficient to consider
the case when max{/;, >} > [_. By the symmetry between inputs, without loss of generality,
we assume that [, = max{/;,[»} > Iy := k_ — 10. For this case, we take the advantage of|
the fact that VnET’K"(é ,1,0) is relatively big, i.e., we are away from the space resonance in

(739 1)

n” set. More precisely, we have

E+n+o / §+n
T AU+ D

§+n+o0l 1§ +n
Hence, we can do integration by parts in “n” many times to rule out the case when
max{ji, j»} < m + k_ — Bm. From the L? — L>® — L™ type trilinear estimate (2.6) in

Lemma 2.2 and the L™ — L? type Sobolev embedding, the following estimate holds,
Z Il F™ [CJJIr 2 by, 1), < Z C2(1Fek+10k ¢ +j+2k1

max{ji,j2}=m+k——pm max{ji,j2}=m+k——pm
—7 A k —
< e gy (DLl gka, jo (DN 122%2 I8k, ,jy ()| L2 < C273m/2H40Bmey

where C is some absolute constant.

(537) |94 (E.n.0)] = [N + 1+ o) L)z g

Ift = —, ie, (t,x,t) = (—,+,+). — By the symmetry between /; and /,, without loss of|
generality, we assume that [, = max{/;, /,}. Recall (5.35). We have

[Ve@ ™t (£.n.0)|

)A(ISI) E+n+o §+1 §+o0

A - AN .
E 0t ol (I$+nl)|§+n| (|S+0l)|g+0|

] + A(1§ + 1)
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From the above equality, we know that the following estimate holds,

(538) Ve~ .m0y, 1, Dy, g, (0) = 27410,

Hence, we can first rule out the case when j > m + [, + 28m by doing integration by
parts in “£” many times. From now on, it would be sufficient to consider the case when
j<m+Ily+28m.

We first consider the case when I, = [ = —2m/5 — 108m. After using the volume of
supports in “n” and “o,” the following estimate holds,

IFHC ™ 1)1y, < C2UFORAIREATT2K198 0 ()12 11 81y (D11 1815 (D]

< C251+m+30ﬂm6? < C2—m—ﬂm60,

where C is some absolute constant. Now, we proceed to consider the case when [, > I_ =
—2m/5 — 10B8m. Note that the following estimate holds for the case we are considering,

(5.39) |V, @ (E, n,0)] > 2l27F+/2710,

Therefore, we can do integration by parts in 7 many times to rule out the case when
max{ji, j»} < m + I, — 4Bm. From the L? — L*® — L™ type trilinear estimate (2.6) in
Lemma 2.2, the following estimate holds for some absolute constant C when max{j;, j>} >
m—+ I, —48m,

(5.40)

> I C 2 )1 15,.,

max{j1,j2}=m+lr—4Bm

< C2(l+ct)k+10k++j+2k1 ||e—itAgk3 (l)”LOO

—itA
x [ > I8ks,jo Ol L2 lle™ A giey 1 ()| oo
J2>max{m+Il,—4Bm,ji}

+ > le ™2 gy (1) | oo

J1zmax{m+Ir—4Bm,j>}
% ”gk],j] (t)||L2] < C2—2m—12—m/2+40ﬁm60 < C2_”’_ﬁmeo.

When (t,k,t) € &4. — Very similarly, we localize around the space resonance set
“(£/3,€/3,£/3)” by doing change of variables for “Tkrl"f,’;z’k3 (z, £)” as follows,

T (6) = /R 2 /R TR (€.28/3 4+ 0+ 0.8/3 + 0)gF (1.8/3— 1 —0)
x g (t.€/3 + n)gL (t.£/3 + 0)dodn,
where the phase 6”""(5 ,1,0) is defined as follows,

744 (E.n.0) = A~ TAE/3 =1 =0 —kA(E/3+ M) —A(E/3+0]).  (T.k0) € Sa.

Recall the normal form transformation that we did in Subsection 4.1. The symbol around
a neighborhood of (£/3,&/3,£/3) has been canceled, see (4.30) and (4.40). Hence, the
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following decomposition holds,

T, . T,
T g ) = D TES, 1. 6),

i=1,2
T, _ Kot
Tkl’kz’kﬁl(t’g) - Z TklajlastjZ;l(t’g)’
J1=—k1,—,jo=—k> —
T,K,L _ 7050
Tklskzak3§2(t’ §) = Z Tk1,1'1,k3,j3;2(t’ §)

J12—ky —,j3=—k3 —

T8 = [ [ a6 2613 00803+ 008300

(5.41) x g& L (t.E/3 + gk (t.£/3 + 0)Ysk—20 (20 + 0)dod,
T a8 = [ [ 0 (62613 4 1+ 0:6(3 + W00 + 1)
(5.42) X Y<k0(20 +0)gE,  (t.E/3—n—0)gk (t.£/3+ 1)

X g;c3’j3 (t,€/3 + 0)dodn.

The estimates of “7,”'% - (1,§)” and “T)>% | (¢, £)” are very similar. For simplicity, we
only estimate Tkrl'cktzk2 ., (¢,§) in details here. Note that “27 + ¢ is bounded from below

by 2¥~10 for the case we are considering, which implies that the size of Vi 5’”‘"(5 ,1,0) 18
bounded from blow by 2¥=%+/2-20 Therefore, after doing integration by parts many times
in “n,” we can rule out the case when max{ji, jo} < m + k— — 2f8m. For the case when
max{ji, j»} > m + k_ — 2fm, a similar estimate as in (5.40) holds for some absolute
constant C as follows,

> I TES iy OB, < RHS. of (5.40) < C27"7Peg,

max{ji,j2}=m+k_—28m

Hence finishing the proof. O

6. The high order weighted norm estimate

In this section, our main goal is to prove (4.51) under the smallness assumption (4.49).
The plan of this section is listed as follows. (i) In Subsection 6.1, we first classify different
scenarios when estimating the left hand side of (4.51) and then show a key decomposition,
e.g., (6.17), holds when the vector field I:g hits the phases ®*-V (&, n). (ii) In Subsection 6.2
and Subsection 6.3, we finish the Z,-estimate of the quadratic terms for the High-High type
interaction and the High-Low type interaction respectively; (iii) In Subsection 6.4, we finish
the Z,-estimate of the cubic terms; (iv) In Subsection 6.5, we finish the Z,-estimate of the
quartic terms. Therefore, combining the aforementioned estimates with the estimate (7.13)
of quintic and higher order reminder terms “ R,” in Lemma 7.4 in Section 7, we finish the
high order weighted norm estimate.
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6.1. The set-up of the Z,-norm estimate

Define
(6.1) Q¢ 1= —E1-Ve, dg =0, fq:i=—&Y, Lg:=—£-Ve, dp:=-2, & :=-¢
(6.2)
xp = k1, ko) o [ki—ka| <10,k <ki+10},  x7 := {(k1,k2) : ko < k1=10, |k1—k| < 10}.
Recall that L := x -V 4+ 2 and Q := x* - V and the Z, norm is defined in (1.23). We have

Qe2(1.6) = Qg(1,6),  Leg(1,6) = Lg(t, %),

(6.3) lg@lzs e (> ITITZ8G. 8l + ITEEE. B)ls2)e. .
I‘Sl,l“ge{ﬁé,ig}
where ¢ and C are some absolute constants.

Since the estimate of the second part of the right hand side of (6.3) is similar and also
much easier than the first part, for simplicity, we only estimate the first part in details here.
Therefore, to prove the desired estimate (4.51), it would be sufficient to prove the following
desired estimate for any T'}, I‘g € {Lg, Q2g}(correspondingly, ', I'? € {L,Q}) and any
1,12 € [zm—l’ 2m],

(6.4) )Re / / TIT28(1.§)TiT20,2(¢. g)dgdz])<c228meo,

where C is some absolute constant.

Recall (4.35). We first classify the quadratic terms. Recall (4.36). From the direct compu-
tations, we have the following identity for the quadratic terms,

/ / / TIT25 (. §TLDE B | (. E)dEdt
[ / / TITZgk (. )" & ”)[F T2(Gyuw (& — 0. Mgp, (0.6 — ) gl (1. 0)
1 Z{ | E(TE (E )T (G (6 — mom)gl (0.6 — )&l (1)
n={1,2
(65 — LM (€ mIEOY (€ ) € — 1.8k, (1.6 — Mgy, () |dndédr.

To make the formulation (6.5) symmetric, we separate I'; g(t &—n),i € {1,2}, into two parts
as follows,

Iig(t.é —n) =T 8.6 —n) —Thg(t. £ — 1)
After applying the above decomposition to the equality (6.5), we do integration by parts in

“n” in (6.5) to move the derivative in front of I'Z »&(t, & —n) around, see (6.1). As a result, the
followmg equality holds,

(6.6) Re/ /FFEgk(t ETITZBLY kz(t,é)dédt]: 3" Re[Pl 4]

i=1,2,3,4
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where
12} —_— . N
Piiiy = D / / / L1T2g, (1, £)e™ " EMig (T + ThHo™" (E.)
(ni=t1,23 70 R R
(6.7) X [Guw (& = n.m (g, (€. T gy (0. & —n) + g (t.§ =mT"gp (1,n))

+ (Tf + T+ dra)duw (6 = n)gf, (1.6 = mgf (1) Jdndd,

Peisni=— [ L, [ T e 0w+ rho e + 1)

(68) X O (E MG (E — 1. mgf, (1.6 — gk, (. dndEd,

Pirsai= | L, L T ) (G = (M2, 0,6 = g
+gf (1.6~ TTT2gY (1.m))

+ (T + Ty +dp)(TF + T + dr2)due (€ =n,mgy, (6. € = n)E,ﬁ\z(I, n)
(6.9) + (T} + Ty + dr))dpuw (§ = n,1)

x (T"gf (1.§ = g, (t.0) + gp, (1.§ = Mgy, (1.m) ) dndEdr,

.. y %) —_—
4 o 4,j1,J2 4,102 ._ 172
Priig, = Z P P = Z /t /11%2 /11%2 Cr2ge (2, 8)
1

J1=—k1,—,j2=—ko — {I,n}={1,2}
(6.10)  xe"*EMG, L —nmTlgy (0. E—mT7gy . (1, mdndEdt.

Now we reveal a subtle structure inside the symbol “(I'¢ 4 T';) ®*-¥ (£, ),” which appears
in P,i K kz,i e {1,2}, see (6.7) and (6.8). Note that, the following equalities hold when
Inl <27'°¢and pu = +,

(Lg + Ly)o*v (g, 1) = =28 - (W ([E12)E — X' (g — 0l (E =) =20+ (= V(& —n>)(n— )
(6.11) — A (Inln) = —4(A (1% + A" (EP)EP)E - 1 + O(Inf?),
(Qe + Q)@Y (E ) = 26 - (V(IEP)E — 1A(IE — nl*)(E — )

(6.12) =20 (= pr(E—n>)(n—&) —vX(In*)n) = —2uX(E—n*)(EF-n+nt-§) =0,

where A(|x]) := A(4/]x]). The following approximation holds when || is very close to zero,

1 1 _
(6.13)  A(E]) = |§* = g|§|4 + O0(E°),  A(ED = 18] - 8|5|2 + O0(|EP), gl <27"°
Moreover, the following equalities hold when |£| < 271%|»| and pv = —,

(Le + Ly) @V (Em) = =21 (E1PIEI? + 122 (1€ — n|PE - (€ — 1) + 21X (1€ — 1P~ (n— )
(6.14) + 20X (In]*) 0> = =4 (X' (Inl*) + 2"(n1*)nl*)é - n + O(IE]?).
(6.15) Qs + QNP (5, ) = =2u) (€ =) (EL - n+ 0t £) =0.

ANNALES SCIENTIFIQUES DE I’ECOLE NORMALE SUPERIEURE



892 X. WANG

Now, we show that similar decompositions also hold for the phase ®*¥ (£, 1) in two
different scenarios so that we can link the symbol (I'y + TI';)®*¥(§,n) with the phase
®*v (£, ). Note that the following expansion holds when || < 271°|¢| and u = +,

(6.16) @*V(&,n) = A(E*) = A(IE* = 28 - n + [n*) = vA(nl*) = 22" (E*)E - n + O(Inf).
Hence, from (6.16) and (6.11), the following identity holds when || < 271°|¢| and u = +,
(6.17)

A ~ s 2 2 A 2
(B + Ly 04 (6m) = 66— @™ &) + O, (6) i= — B IE 2 2B

A(I§17)
Moreover, the following approximation holds for the phase ®*V (&, n) when |§| < 2710|p|
and pv = —,

(6.18) @V (&, n) = A(IE*) —p(A(E* =28 -+ nl*) = A(1n?)) = 2ud'(In)& -1+ O(IE[).
Therefore, from (6.18) and (6.14), the following identity holds when |£] < 271°|5| and
my = —,

(6.19) (Le + Ly) @7 (€, 1) = &6 — mO™ (. m) + O(IE).

6.2. Z,-norm estimate of the quadratic terms: if |k, — k2| < 10

Recall the decomposition (6.6). We know that the Z,-norm estimate of the quadratic
terms in the High-High type interaction follows from the estimate (6.20) in Lemma 6.1 and
the estimate (6.22) in Lemma 6.2.

LEMMA 6.1. — Under the bootstrap assumption (4.49), the following estimate holds for
some absolute constant C,

3 4 28m
(6.20) > Pig | T > P, ky| = €27 €0
|k1—k2|<10,k<kq+20 |k —ko|<10,k<k+20

Proof. — Recall (6.6). From the L? — L™ type bilinear estimate (2.5) in Lemma 2.2, we
have

3
> Piki ks

lk1—k2|<10,k<k+20

< sup > Cam P 20T T2 (1) 2 (e gy (1) | oo
n2€27 12" ey o <10

(6.21) + e g, Ollee) (D 1T Tk, Ollz2 + 1T 8k ll22 + 18k (1 2)
I,me{1,2}
< c2me,
where C is some absolute constant. The estimate of P} ky &, 18 similar but slightly different.
The spatial concentrations of inputs play a role. Note that, from the definition of Z;-norms,

i €{1,2}in(1.22) and (1.23) and the linear decay estimate (2.11) in Lemma 2.7, the following
estimate holds for some absolute constant C,

I gr il < C27R2THmey oA gy Ml poo < C2T™HRY2T 0K () Prg (1) 2.
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After first doing spatial localizations for the inputs gi, (¢) and g, (¢) and then put the input
with smaller spatial concentration in L* and the other input in L2, the following estimate
holds for some constants C; and C,,

Z P/?,kl k2

lk1—k>|<10,k<ki+20

< sup Yo D G2 P T ()]
1€l N2 1 iy <10 (Lmy={1,2)

l —itA —itA vl
< (DI gk l2le ™ AT gry jyllzoe + Y e AT gy, oo IT" 8k o 12.2)

J1=)2 J2=J1
. k rs s
<Y G222 (x) Py g (D)2 ) 22PN e)
J2 J1=)2
. k s )
+ Y Gl (x) Py g ()12 (Y 225 2ey)
J1 J2=J1

< C2%med.

From the above estimate and the estimate (6.21), we know that the desired estimate (6.20)
holds. =

LEMMA 6.2. — Under the bootstrap assumption (4.49), the following estimate holds for
some absolute constant C,

1 2 28m
(6.22) > Prgey o | > Py ky| = €27 €0.
lk1—k>|<10,k<k|+20 |k1—k2|<10,k<k{+20

Proof. — Note that, from the L2 — L™ type bilinear estimate (2.5) in Lemma 2.2, the
following estimate holds for some absolute constant C,

1 2
| Prekey sl 1 Priey o |

= sup CEIMHEEI 42 S T (g (0le + 251 I VeRk, (16 .2)
te[am—1 2m] i,j=1,2

(6.23) < T T2geligzlle™ A gi; (1)l oo

(624) < C2§m+8m(2m+k+k1!,—15kli+ + 22m+2k+2k1'7_14k1’+)€§.

From the above rough estimate (6.23), we can rule out the case when k + k1 < —m+ §m /3
or k1 > m/5. From now on, we restrict ourself to the case when k + k; — > —m + m/3 and
ki < m/5

Recall (6.7) and (6.15). We know that the integral inside Pk1 ki ko actually vanishes when

I'" = Q. Hence, we only need to consider the case when I‘é = L¢. Based on the possible
size of k, we separate into two cases as follows.
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Case 1: if k < k1 — 10. — Recall the normal form transformation that we did in Subsec-
tion 4.1. For the case we are considering, we have v = —. Recall (6.19). To take the advan-
tage of this decomposition, we decompose Pkl, ki ko and P]i ki ko into two parts respectively
as follows,

1 1,1 1,2 2 pl D2
625) 1Pl = D0 Tl T Tkl PRkl < 1 Pha il 12k, s
re{L,Q}

where

. 2] . N o ~ —
Tekr ko 3=/ [Rz [Rzl‘lfzgk(hé)e”q’” i1, & =0 M@ E—nm(Tgy, (t,E—n)
t

1

(6.26)
gy, (t.m+gg, (t.E=mTgy, (t.m)+Te+Ty+dr)gu, E=n. gy, (t.E-n)g}, (t.n)]|dndEdt,

(6.27)
~ 2 — . i . — —
Plé,kl,kz = _/ /1; /Rz LLgk(t,?;‘)e”cW (s,n)ﬂzl\tmv(g, U)g;l;] (t,&E— n)gzz(t, n)dndé&dt,
t

1

where
(6.28) o
GhyE=n.n) = EE-OYE ). G, (E—n.n) = (Le+Ly) @ (E n)—c(E—n) Y (E.1).

(6.29)
ah ) = DL, EOTE . PhyE ) = GuwE—nom)(Le + Ly) @Y (E,)EE —1).

(6.30)
GhvE ) = GuuE =n.m(Le + L)@V (€. ((Lg + Ly) "7 (5. 1) — E(E — @Y (E.0).

From the estimate (2.3) Lemma 2.1, the following estimates hold for some absolute
constant C,

162, —nmllgee < C2* P, (E g < C2KFH1,
k.kq ko % o

< C3k+3k1

(6.31) AZ
12,0 Dl s3e, , =C
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[739% 1)

After doing integration by parts in “n” once for F;:il ko and doing integration by parts in

(739 E)

n” twice for }3;(2 Ky o the following estimates hold for some absolute constants Cy and C,,

Z |Fkk1 k2|+|Pkk1k2|
k<ky+20,lk;1—k2]<10

<  sup > [Cl IT T2 g (1) | 227 HE 1 L
te2m=12M] b g 100 ki —ko|<10

< (D 2RNVign (.92 + 25 1Vign @ O)lz2)( D e Mg llzeo)
i=0,1,2 i=1,2

+ Z C12k+3k1+k1'+
J1=Jj2
j k
X T T2 (1) 112222 (192 (x) Piey 8 (1) 12271 @) P, (1) .2
+ ) CFRR TN g ()] 2
J2=J1
(6.32) X 221 [[gf2 (x) Py g (01227 0] (1) Py @) 2] = €227 €3,
To sum up, from the estimate (6.25), the estimate (6.32), the estimate (6.33) in Lemma 6.3

and the estimate (6.45) in Lemma 6.4, we finish the estimate of Plé ky oo L€ {1, 2}, for the
case we are considering.

Case 2: If k > k1 — 10 and |k1 — k2| < 10. — For the case we are considering, the sizes of|
all frequencies are comparable, which implies that the estimate (6.32) also holds for P k Ky ko
and Pk ki ko without decomposing the symbols of quadratic terms as in the estimate (6.25).

Hence finishing the proof of the desired estimate (6.22). O

LEMMA 6.3. — Under the bootstrap assumption (4.49) and the assumption that k + kq —
—m + ém/3, k < k1 — 10 and k; < m/5, the following estimate holds for some absolute
constant C,

(6.33) IThd < C2%/simeg,

Proof. — Recall the associated symbol c}}w(é —n,n) of F,i’,il ks in (6.28). To take the
advantage of smallness of symbol near the time resonance set, we do integration by parts
in time once. As a result, we have

1 1 _ T5J1.J2,1,1
(6.34) kk1k2 Zrkklkz Dk, = > Dk
i=12 Jr=z=ky—jo==ko
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~ 5] —_— . v ~ -
st == [ T e (e — g€ -0

x (g1, MTgy, ; (€& =) +gp ; €. =mTg . (t.n)
+ (Tg + Ty +dr)duvE gy, ;5 =gy, (. m]dndEdt

+ X0 [ T 0 € [ = 0

i=1,2
T s P T
x (ngl,,-l (i, & =gy, , G0 + g . §—=mTgy . (tin)
(6.35) + (T + Ty + dr)dun (€ —n.m)gy, ;.6 =gy, j, (t.n)Jdndé,
w2, = / [ [ e e =l s -0t (T,

(6.36) x (l“gk1 (1.6 — Mgy, (t.1) + g (1.6 — )Ty, (1.1))
+ (T + Ty + dr)un (€ — 0,3 (T T2ge (1. £ (1,6 — mgp, (t.m) |dndgd.

For Fk ko WE do integration by parts in “n” once. As a result, from the L? — L
type b111near estimate (2.5) in Lemma 2.2, the following estimate holds for some absolute

constants C ,

k 12
Tl < sup  C2ML+ DT 2g 10
te[am—1 2m]

x |27k (N 2RV, () + 27 ViR, (1. ©)l2)

i=0,1,2
B k311 [ =it g1y, 5
< (3 e A gr ()zee) + D 27K A FV g i Yoo gk o2
i=1.2 J12)2
+ Y aTkEskiba itk [ngkl,jl]HL“’”gkz’-/i”Lz]

J2=71

< C2—m—k—k1 +28m+8m6§ < C295m/563.

Now, we proceed to estimate Fk k1 in (6.36). Since “d;” can hit every input inside

F,i i Lk which creates many terms. We put terms that have similar structures together and

split F]::lzz,kz into five parts as follows,

~1,2 ~i
©3)  Tiwe= 2 Tikk:
i=1,2,3,4,5

Be= [ [ [ e e -l -

x (ng1 (t.& - rl)g,ﬁ2 (., + g, gl (k- 77)1‘g£2 (t.n))
+ (T + Ty + dr)dun(E = n.mgp (.5 —ng) (t.m)]
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(6.38) x (0 TT2ge.6) = Y Y BSY, .9)dndédr,
Vet (k] kY exz

where B, (1.€) is defined in (7.8),
HKsKa

~ 2 ; — —
T2 — _ eit<1>+,v ETIT20,, tE— v: 1K) (E — K,
b= L[ L 85 1.6 — )8 (1. 0 (6 — .

Viel+, =) (k] ky)ex2

st P EDE(E — )G, (E —n.m)(Tgl (1.6 —m)gy (t.n) + gk (1.6 =m)Tgl_(t.m))
(6.39) + (T + Ty + dr)dun(€ —n.n)gl, (6.6 — gy, (t.n)]drdndgdt,
. %) —_— . W . . — o
R N I R e N R (PR S R
1

+d.g) (t.6—mTgl () +TAss[d,g) 1(t.6—mgp, (t. )+ gp, (t. 6 =T AZ3[0:g7 12, m))

(6.40) + (Te + Ty + dr)uv (& —1.md (g5, (1. E =gy, (t.m)]dndédt,
(6.41)
=~ k' khi—3 k', kbi—4 L k", kL,jhi—4 .
1_‘llc,kukz = Z Iﬂk,lkl,zkz ’ Fk,lkl,iz T Z Fk’lkl’lk; ’ 1€ {4’5}’
K k,eZ ==k _isz—k) _
KL Jf K531 © Trog B (), -
I = Y - CIT2gi (¢, 8)e t¢(5 = MGu(E—n.m)
Te{+,—} f1 R JRZLR

X(PM [eitq}r,t(s_n’g)fl‘r,t(g —n—0, G)gché,jz/ (, O)Fé—ng;i J] t.&—n— 0)]gzz . n)

(6.42) +gi, (1.6 =P *" MG (n~0.0)Tygf, . (t.1=0)g}, ,(1.0)])dodndédt,

YA W T 5] ———————
ki,J1:k5,0352 T2 it DMV e ~
= [ TP e i~ e
I t1 JR2 JR2 JR2
X (Pl Oy @5 E ~ 1, 0)Geu € — 11— 0.0)8}, 1/ (1.0)gR, (16— n—0)]gy, (1)
(6.43)
+8ie, (1 E =) Po[e T PO 07 (0.0) G (n—0.0)gf, 1 (1.1—0)8, /(1. 0)])dodnddt.

(139 1)

Recall (6.38). For T‘\,i Ko kp? WE do integration by parts in “n” once. From (7.7) in
Lemma 7.2 and the L? — L type bilinear estimate (2.5) in Lemma 2.2, the following
estimate holds for some constant C,

|f1§ N k2| < sup C o k+5ki 4tk (25m+8m n 235m+k)

te[am—1 2m]
x [( 2K Vig (. E)ll2) le 2 gy (1) [l oo
&
i=0,1,2
+( 2K IVigs (. E)ll2) e gy Nl oo
4
i=0,1,2
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+ Y ammrktR o8 (g (1) 2102 (6) gk (022
Jj12J2

+ Y Rtk ok () g (021108 (0 gk, (2]
J2=J1

< C2—m+2§m+8m—k—k1€§ + 2—m+4ﬁm€§ < C29Sm/5€§_

Recall (6.39). For Fk ks p WE do integration by parts in “n” once. Recall that |k} —k| < 10.

[739¢1)

The loss of 2% from integration by parts in “7” is compensated by the smallness of 22k
from the symbol G+ v (§ — k, k). As a result, from the L? — L™ type bilinear estimate (2.5)
in Lemma 2.2, the following estimate holds for some absolute constant C,

i k+k —itA
MRkial = sup 37 CmHERTI gy o e gy (1)
te[am— 1 zm]k, <k—10

x (Y 2MNVigk, (. O)ll2 + 27 I ViRk, (1. §) I 2)
i=0,1,2

) (D 2K eT A F T Vegk, Nllzee + e A g, llLos)
i=1,2
< C2_m/2+ﬂme§.

Now, we proceed to estimate fi’ ks r® Recall (6.40). From estimate (7.1) in Lemma 7.1,
estimate (5.18) in Proposition 5.4, (7.13) in Lemma 7.4, and the L? — L™ type bilinear
estimate (2.5) in Lemma 2.2, the following estimate holds for some absolute constant C,

I’F\]:z kl k2| S Sup C22m+(2—(¥)k1
o tefem=12m] 71,
[(19:8, 0. 6) = D > B k@ OlllleT A gk, (0o

wvel+,—} (k) ,k/z)exkl

08k Oz Yo e A F T By (O]l

(W k5)exk,
+ 1A3[0e gk, 2, lle ™A gy, (OllLoo JIT T2 g (1) 2 < C235m/2&3.

Lastly, we estimate f,‘; Ky s and f,f ko Recall (6.41). Based on the size of difference
between k| and k7 and the size of ki _ + k», we split into three cases as follows,

If |ki — k3| < 10. — For this case, we know that V,®%(-,-) is bounded from blow

[{Pt)

by 2k1——ki Hence, to take advantage of this fact, we do integration by parts in “o” once
k32
twice for Fklk’ 2 Asa result, from the

cc 2

for F,]jlkiczkl and do integration by parts in
L2 — L™ type bilinear estimate (2.5) in Lemma 2.2, the followmg estimate holds for some
absolute constant C,

k' .k
Z Z |Fkk12kz < sup Z Comtki+ki+2k]

—1
Ik} —kb|<10.Jky ~k2| <10 i=1.2 1RmTL2M 1 k5 |<10, ki —ka <10

( > 2K Vige .92 + 2% Vigi (1. 6)ll.2)
i=0,1,2
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x () 2 e™ A F T Vel + lle M gu lloe)
i=1,2

< () fle™ A gr, o) IT T2 gr (1)l 2 < C27P™ed.
i=1,2

Ifk, <ki—10 andk’l,_ + k5 < —19m/20. — Note that |k} —k;| < 10. For this case, we use
the same strategy that we used in the estimates (5.12) and (5.13). From the estimate (5.15) in
Lemma 5.3, we know that the following estimate holds for some absolute constant C,

)3 PRIV

k,<k1—10,k}+ky —<—9m/10i=1,2

3k 1o
< sup > C (22118 (1. 8)llge
1€l N2M g ey 10,k k. <—9m/10

+ 291028 |Re[u] (1 )Yy (©)llge) (D e Mg o)

i=1,2
x (2P D | 2 4 23 P2RIRR RS g (1)) 2) T T2k () 2
< Z C23Sm+2m+2k1+3k’2(1 + 22m+2k1._+2k;)€§
k,<ki—10,k5+ki,_<—9m/10
< Cc27hmel,

Ifk, <kj —10and k1 — + k), > —19m/20. — We first do integration by parts in “o” many
times to rule out the case when max{;{, j;} < m+ki_—Bm.lf max{j, j;} = m+k_—pm,
from the L? — L — L type trilinear estimate (2.6) in Lemma 2.2, the following estimate
holds for some absolute constant C,

Z Z |Fk,1 2J1 kY5550 |
k.ky,k>
i=1,2max{;{,j3}zm+ki ——Bpm

< sup C[ Z (2m+j{+5k1 + 22m+5k1+kf_,)

—1 om
te[2m—1 2m] J{ =max{j,,m+ky _—Bm}

—itA
xllgkg, st Oll2lgrs g Ol ( Y lle™ g lloe)
i=1,2
545k k14K,
n 3 x (2 2SR gy )2l gk (Ol
Jpzmax{j{,m+ki,——Bm}
—I 1
X (D2 e g, o) [IT T2k (1) 2 = C27m ko *108me
i=1,2

(6.44) < C27Pme2.
Hence finishing the proof. O

LEMMA 6.4. — Under the bootstrap assumption (4.49) and the assumption that k + ky — >
—m + ém/3, k < ky — 10, and ky < m/5, the following estimate holds for some absolute
constant C,

(6.45) P g < €252,
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Proof. — Recall (6.27) and its associated symbol in (6.29). To take the advantage of the
small symbol near the time resonance set, for Pk1 Ky deos WE do integration by parts in time
once. As a result, we have

. N
Ploie = 2. Phkior
i=1,2,3,4,5
Pekeriey = Z(_l)i/ / LLgi(t;.§)e™ 1" " Emis2 5l (£, 1)
i=1,2 R> JR?
x gy, (timgy, (ti, & —ndndé
2 — . auw N — —
646 [ [ [ TEou. ™ EPiaipl € gl 6~ gk (. dndedr
1

~

5]
—— =iy
sz’k"kz - /;1 /Rz /Rz (0 LLgk(1.8) — Z Z Bk’k,l’k,z (t.8))

Ve{+,—} (k] ,kb)exz

(6.47) x " PTED 2B (E el (€ — gy (1, mdndEd,
(6.48)

53 ._ D317

Pikie = > Pt

J1=2—k1 —,jo=—k> —

(6.49)

.. %) /
p3.J1:J2 _ . Pt dHV(En) ;2 —itd TV (E,k)
Rii= X [ e

Vel =} (k) kY exz

X LLgyr (t.§ — K)g;; (t,K)Gv (§ — K, K)ﬁllx,,v(sv n)
x g & =gy . (t,ndrdndkdt,

& —_—
D jt DMV PN
Pl 1=~ f f / M CEDi2 Bl E T T2k (1,6)
1 R2 JR2

(6.50) X (A=3ldegy 1 & —may, (6, 1) + g (1.6 = mAs3[d: gy, 12, m))dndédt,
(6.51)
s %
Plrike= D Pk
k1.k5€Z
Kk K Kk, j{ kb 05
Pk, = > Plkiks s
J =k sk _
(6.52)
k101 kS 05 2 ATos (DR (E,m) 2~
L TIT2g(t,£)e ir?pL (&)
Wy el =} 131 R2 JR2
4 [Pﬂ[eitdm v (S—n,o)qw,v/(g -n—o, O)g":id'{ (t,6—n— a)g,‘;;,jé(t, 0)]
(6.53) X Y, (€ = m)gy, (t.m) + g; (t.E=n)Py

4¢ SERIE — TOME 53 — 2020 — N° 4



3D FINITE DEPTH CAPILLARY WAVES 901

—
p—

x [t Mg, (- o, (7)g},‘€‘/l 0= o)gl‘;;,jé (t.0)Yk,(n)|dodndédt.

9

Recall (6.46) and (6.47). For ﬁkl ki &, @nd ﬁ,f ky &, » We do integration by parts in “n” twice.
As a result, from the L2 — L type bilinear estimate (2.5) in Lemma 2.2 and estimate (7.7)
in Lemma 7.2, the following estimate holds for some absolute constant C,

Z |P/<l’«,k1,k2|

i=1,2
< sup C2k1+6k1'++8m(21§m—k+238~m)
te[zm—l’zm]
<[ 2MVEG D) (Y e Ak (0)1)
i=0,1,2,j=1,2 i=1,2
+ ) 22 Vg, o e gk (D)2
J1=J2
+ 0 PR Ve, g e Igkn,is (0122
J2=J1

< C2—m—k—k1+28m+8m63 + C2—m+4ﬂm€g < C298m/5€§.

Now, we proceed to estimate ﬁ,f, k1.kp- Recall (6.49). Note that (k1,k3) € 7, ie,
|k} — k| < 10. Hence the symbol G4 ./ (§ — «,k) contributes the smallness of “p2k» By
doing integration by parts in “»” many times, we can rule out the case when max{ji, j»} <
m+k_ —ky + — Bm. If max{ji, jo} > m+k-—ky 4 — Bm, from the L? — L* type bilinear
estimate (2.5) in Lemma 2.2, the following estimate holds for some absolute constant C,

—3
I
Z |Pk,k1,j1,k2,j2|
k,<ki—10
max{ji,j2}=m+k——ky 4 —Bm
S sup Z C23m+3k+3k1
repm=t 2m Ky <k —10
max{ji,j2}=m+k——ky +—Bm
x( 2 ™A ks 1o (Oloo gk, 7, (.2
J1zmax{jo,m+k——ky y—Bm}
* 2 Igka.12(0)12

Jozmax{j,m+k_—ky y—Bm}
—itA —itA
x le™ " gry jy W llLoe) ILLgx (0|2 e ™ gry () [l Loo

< C2—m/2+106m65‘

Now, we proceed to estimate f’\,f 1 k- Recall (6.50) and the estimate of symbol “pl (&,
SK1,K2 M,V
in (6.31). For this case, we do integration by parts in “n” once. As a result, from estimate
(5.18) in Proposition (5.4), estimate (7.13) in Lemma (7.4), and L? — L type bilinear
estimate (2.5) in Lemma 2.2, the following estimate holds for some absolute constant C,

| < sup  C2MFCTORHRLIPIT? gy (1) 2

54
| Pk s
tefam=—1 ym]
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—itA —itA

X (I1A2300:8k, 1z, e ™ % giey () oo + 1A 23[0: g1,z lle ™ gy (D] o2)

< C2_ﬁm+28me§ < C2_5me§.

Lastly, we proceed to estimate ﬁ,f Ky s Recall (6.51) and (6.53). We first consider the case
when |k; — k}| < 10. By doing integration by parts in “o”” many times, we can rule out the
case when max{j{, j,} <m+ki——kj , —Bm.Ifmax{jj, j;} > m+ki,-—kj , —Pm,after
using the L2 — L>® — L type trilinear estimate (2.6) in Lemma 2.2, the following estimate

holds for some absolute constant C,

ﬁ\,k'l,jf,k'z,jﬁ

[P ks |
|k —k5|<10,k; <k|+10

max{jl/,j2/}2m+k1’,—k’lA+—ﬂm

< sup Z C23m+k+3k1 +2ki
te[zm—l’zm] i=12
|k} —k51<10,k1 <k|+10
x ( > lgi iy Ollzzlle ™ giy gy oo
jl’zmax{jz’,m+k1’,—k’lA+—ﬂm}
+ > I8k, i3 Oll2lle™ P gry jrllLee)

Jjgzmax{j{,m+ky_—k{ —Bm}

A g ()|l oo | LLgk (1) 2
< C27m+10ﬁm6(2)‘

X ||le

It remains to consider the case when k) < k{ — 10. We split it into four cases based on the
size of k| + k’ and whether k is greater than & as follows.

Ik} _ +kj < —19m/20 and k < kj +20. — By using the same strategy that we used in the
estimates (5.12) and (5.13), from estimate (5.15) in Lemma 5.3, the following estimate holds
for some absolute constant C,

KK
> 1P ey |
Ky <k! =10, 1k 1 —k' | <20

3m+k+4k
< sup > COM UL Lgr ()] 2llgi; ()2
1€ML 4 ks 10,1k K] |<20

X (|le™  gie, (1) oo + lle ™A gy (1)1 Lo0)
x (2417252 | Re[v] ¢, €)Yy (8l Lgo + 22118y (1, 8) | L2o)

< C23m+28m+4k§+3k1—15k1,+(1 + 2m+k1+k/2) < C2_ﬁmeg.

If k) _ + ky < —19m/20 and k > k; + 20. — For the case we are considering, we have
lo| <27°|€] < 271%p|. Hence, the following estimate holds,

(6.54) [V (@ (5, ) + v(D* (0, 0)))| + |V (@XY (E,m) + p(@*Y (& — 1, 0)))]
> 2—10|%- _O_|(1 + |n|)—1/2 > 2k—k1.+/2—20'
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To take advantage of this fact, we do integration by parts in “” once. As a result, from
estimate (5.15) in Lemma 5.3, the following estimate holds for some absolute constant C,

|f)\/:ll;]:2k2| < sup C22m+3kl+kl’+
e te[zm—l’zml
— — —1 o~
< (D e gr 0)llzee + 25 [leT A F T [ Vegr, (1. 6)]llee)
i=1,2

< (D lgry @ llz2 + 25 1VeBk, (1. )2 + 251 Vegiy (1. )1 1.2)

i=1,2
x (222 | Re[v] (1, )ik () 1o + 272118y (1, §)llge ) 1L Legie (1) 2
<C2Pme,

Ifky _+ky > —19m/20andk < k;+20. — By doing integration by parts in “o” many times,
we can rule out the case when max{j;, j;} <m+ky_—pm.Ifmax{j{, j,} = m+ki,——pm,
from the L2 — L>® — L type trilinear estimate (2.6) in Lemma 2.2, the following estimate
holds for some absolute constant C,

ﬁ\/k/l 2J1 k5,75
P kkihy |
max{j{,j3}=m+ky ——Bm

< sup C23m+k+3k1+2k1 ( Z ”e_itAgk,- (t)||LOO)

IE[2m71 ’2m]

i=1,2
— A
x ( > g jr Ollz2lle™ A grg g ()| oo
Ji=zmax{j;,m+ky ——Bm}
—itA
+ > lexs s N2 x e g jr () llLoo) ILLgx (1) 2

Jh=max{j{,m+ky _—Bm}

< Cz—m—ké—i—loﬂmeg < C2—ﬂm€§.

Ifky _+ky > —19m/20 andk > k5+20. — By doingintegration by parts in “o” many times,

we can rule out the case when max{jy, j;} < m+k;_— fm. Now, it remains to consider the

case when max{j|, j3} > m +ki_ — Bm. As k > k} + 20, it is easy to see that the estimate

(6.54) still holds. For this case, we do integration by parts in “»” once. As a result, from the

L2 — L™ — L type estimate, the following estimate holds for some absolute constant C,
> P

max{j{,j3}=m+ki _—Bm

< CPMEH( N M A T Vg, (1, 9)]llLee + e A gx, (1) |zoe)

i=1,2
v —itA
% ( ) 2 llgur Ol lle™ A gry iy (Ol
J1=max{j;,m+ky _—Bm}
— 27!
+ > 2 gk g (O l2 8k 3 1) | L Lk (]2

Jhzmax{j{.m+ki _—pm}

< C2—m/2+10ﬂm6§ + C2—m—k'2+10ﬂmeg < CZ_ﬂmeg.
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Hence finishing the proof. O

6.3. Z,-norm estimate of the quadratic terms: if k, < k; —

Note that, for the case we are considering, we have u = + (see (4.42)). To simplify the
problem, we first rule out the very high frequency case and very low frequency case.

We first consider the case when k1 + k, < —19m/20. By using the same strategy that we
used in the estimates of (5.12) and (5.13), from estimate (5.15) in Lemma 5.3, the following
estimate holds for some absolute constant C,

| f / iTZ2(, g)rérgB,jk”l kz(z,g)dgdq

= sup  CINTage@la( Y 2% 1 VeBk (1 8)llg2)2" T4 (1 4 2220 t2)
t€[2’n7 ,2m] i=0,1,2

x min {25129 [ Re[v] (1, §) Y, (§) lge + 272118k (1, §) lge . 2512 g1y (1) 2}

< C23gm min{2m+2k‘+k2(l + 22m+2k1 +2k2)’ 22m+k1 +3k2(1 + 23m+3k1 +3k2)}

< C27ﬁm6§.

Next, we consider the case when k is relatively big. More precisely, we consider the case
when ky > 5Bm and ki + ko > —19m/20. Recall (6.5). Note that I'egg, (1,6 — 1) =
—&r - V8K, (t, & — n). When I¢ hits g, (¢, — ), we do integration by parts in “n "to move
around the derivative V,, in front of gi, (¢, & — ). As a result, from the L? — L type bilinear
estimate, the following estimate holds for some absolute constant C,

| / / TITZg(. ©)ITEBE | (1 E)dEdt|

k1>5B8m, k2> m—ky

< > sup  C[ITiTage(®)l 218k, (1)) 122%

k1>58m ks> —m—k, te[am—1 2m]
x (2722 Ngk (llz2 + 2721 VeZk, (0122 + Vi Zko (0)]12)

(655) < Z C23m+ﬂm+4k1—k2—(N0—30)k1'+€0 < C2_’3m€0
k1>5Bm kr>—m—k,

Hence, for the rest of this subsection, we restrict ourself to the case when k; +k, > —19m /20
and k; < 5Bm. Recall the decomposition (6.6). We know that the desired estimate for
the remaining cases follows from the estimate (6.56) in Lemma 6.5, the estimate (6.71) in
Lemma 6.6, and the estimate (6.93) in Lemma 6.8. Hence finishing the Z,-norm estimate of|
the quadratic terms for the Highx Low type interaction.

LEMMA 6.5. — Under the bootstrap assumption (4.49), the following estimate holds for
some absolute constant C,

(6.56)

28 2
> IRe[PL 1, i)l + 1Pk iy | < C22°7€5.
kisko€Zk=ki}<10,ka <ky=10,k1+ko>—=19m/20,ky<58m
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Proof. — We first estimate P]fj Ky o Recall (6.10). By doing integration by parts in “n ”

many times, we can rule out the case when max{ji, jo} <m + ki — — Bm. If max{ji, jo} >
m + ky— — Bm, from the L? — L™ type bilinear estimate, the following estimate holds for
some absolute constant C,
DR
max{ji,j2}=m+k; ——Bm
< sup 2t > y—mrki+j1+ka+2)>
te[am—1 m]

J1zmax{jz,m+k; ——Bm}

< @5 () gk, (Ol 2 92 () 8, (1) 122

+ 3 R g2 () g1,y (1) 2]
J2zmax{ji,m+k; ——Bm}
(6.57) X [T 2gg (1) || 2 < C27m—h2t20Bm 2 < co=Bm 2

It remains to estimate Plg’ Ky o WE decompose it into three parts as follows,

(6.58)

Pk3,k1,k2 = Z Q;-C,klakz’
i=1,2,3

(6.59)

¥} . —

Okrer = / /R , fR T2, £)e" ™" 60 (6 — 0T 2g0, (.6 — n)g], (1. mdndEd,
131

(6.60)
t . g —

Ot ik = [ [, [ T k(0. 006 €0 ¢ i 16 — U2 0. i,
131

3 _ J15J2,3 ]1 J2:3 . 1120 itdTV(&,n)
ey oo = > Ok Pikir / / / [IT2ge(r, §)e

J1=—k1,—, o=~k —

x[ )0 (Tf+ Ty +dr)dsn(E—n.n)
{l,n}={1,2}

x (Trgy, (. E—mgy, ; (t.n) + g, (t.€=mTng) . (t.0)
(6.61)  +(T¢ + T} +dp) (T2 + T2 + dp2)ien (€ — m)gp (L€~ Mgl (t.m)]dndédr.

We first estimate Q ,lc ki ko Note that after switching the role of £ and & — 5 inside Q ,1 Ky o
we have

Re[Qii,kl,kz] = Re[éli,kl,kz]’

—~ 1 &2 —_— . — o

Ohsii= 3 [ [, [ T 06" €0 iy (6 = ) FTT (0.6 ~ gl 0. s,
t

where

(6.62) pyi (E=n.n) = G (€ = 0. MYREVi, E = 1) + oG =V (E = MV, ().
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906 X. WANG

From (4.10) and (4.39), we have

PieE—nm) =p E—n + pllRE =) = 00+ O(Inf).

Recall (6.16). From the above decomposition, we can decompose p , (€ —n, ) into two parts
as follows,

(6.63) pirGE—nm =Y BilE—nn. HplE-nmn= akkl(g:)@*"(s n,
i=1,2

where uniquely determined symbols ag x, (§) and p:kvl 2(5 — 1, n) satisfy the following esti-
mate for some absolute constant C,

(6.64) I3 E = nmllsg, < 2% lark ®lls, ., =C

Correspondingly, we decompose Q ,i Ky ko into two parts as follows,

31
Okkrdz = D Ok ko

i=1,2

Qli;q . / / / F1F2g(t ég')e”q) V(&)

X Bt (6 —n.MTIT2g(1.€ — g, (t.p)dndEdr, i € {12},

From the L2 — L* type bilinear estimate (2.5) in Lemma 2.2, the following estimate holds,

> 10k, 4|

|k—k1|<10,kx<k1—10

< sup > C22 T T2 g, (1) ll2lle ™ gay (1) Lo
te2m12M] ke 1<10,ko <k —10
(6.65) x IT'T2ge(D)]lz2 < C228m60,

where C is some absolute constant. For Q k; Ky deos WE do integration by parts in time. As a
result, we have

~N1;1
Ot = 2 Qkkrkn

i=1,2

Q]lcllcl’kz Z( l)l 1/ /Mg”l (S'I)Flrzg(t £—n)

i=1,2

kkl (S)

8k, (ti.mdnd§

+// / ITI‘\%g(t,E)ei’d’Jr’U@’”)m‘L‘(g)Iﬂ(t,S—n)algl‘;\(t,n)dndgdt,
1 JR2 JR2 2 2

. 1 5] st - o

1;2 — it TV (€,m) 172 172 —
Ok = 5 / 1 /R . /R L€ Qi (€9 (D02, PIT2 (1, € — ) gy, (1, mdndé.
From the L2 — L type bilinear estimate (2.5) in Lemma 2.2, the following estimate holds

for some absolute constant C,

0%k, k2| < sup CIT'T2ge() 21T T8, (Ol (e gy o + 2™ €78, g, (1) |10

2m 12m

(6.66) < C2~™/2HBm2

4¢ SERIE - TOME 53 — 2020 — N° 4



3D FINITE DEPTH CAPILLARY WAVES 907

Recall the estimate (7.7) in Lemma 7.2. It motivates us to do the decomposition as follows,
A1;2 _ ALz ~1;2,2
Qieres = Liciere T Licer o

where

5]
A2l _ ity € ) Ahk (S)/"\t
Qk,kl,kz : /;l AZ Aze ) gkz( )]

<[0T - Y. Y B O T~

(K ky)ex2 v'el+,—}

+ T2 ) (0T T2, (LE =) = Y Y B (1.8 = m)]dndid,
(ef Jep)exg, Vet

Al22 . (ot akk (é)
Qk,k1,k2 T Z /;1 A;z Azl €m =A% [Flrzg(t £— n)gkz(l n)

k) <k{—10,|k1—k||<10 v/ €{+,—}

X STV GOTTT gy (1,6 — )y, (1K) (6 = .K) + T2 (1, £)g, (1.1)
+.v/
HPTTENOG, (0 =k OT T2 (16 — 11— K)gy, (1 K>]dndxdsdr

From estimate (7.7) in Lemma 7.2 and the L? — L type bilinear estimate (2.5) in
Lemma 2.2, the following estimate holds for some absolute constant C,

10k = e ]c24°ﬂmeo||rlrzgk(r)||u||e—”Agk2(t)||Looscz""/”“”’"eé.
te[2m—1,2m

Now, we proceed to estimate Q k. k k . To utilize symmetry, we do change of variables for the
second part of integration as follows &,n,6) — (£ —k,n,—«). As a result, we have

Ali22 . _ nq>+ V(E ) —itdTV (& k)
Qkiky > /n Az /1;2

kS <k —10,lk1—k|<10 v/ €{+,~}
ag i, (§)
2

x [ TTT2g(1,€ ~ mgg, (. )
ag i, (§ — k)
2

MIT2gy (.6 — K)g;?z (1) G+, (§ — K, k)
CT2g (1.6 — )y, (6. MG+, (§ — 1. —x)

x TTT2gg (1.5 — ey, (& K)]dnd/cdgdt

- 3 ) /// i@ ()it 0T ()
R2 JR2

kS <k{=10,]k1—k||<10 v/ €{+,—}

+

(6.67) X F1F2g(t £ — n)gkz(t n)FlFZg(t S—K)gk, (t, —K)rv W (E n,k)dndrdédt,

where
P 6010 1= gy (O € — KWk (6 = ) + g ey (5 =)0 (6 — 1. =)W (E = 1),

F (g ) = DTV (E.k) = —A(E =) = vA() + A(E = K) =V AK).
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Recall (4.14) and (4.15). From the Lemma 2.1, we know that the following estimate holds
(6.68) o (&, 1)V (DY, (€ = MWy ()] o0 = C2mxtb2ka} e,

where C is some absolute constant. From (6.68), and the 1.2 — L — L — L > type multilinear
estimate, the following estimate holds for some absolute constant C,

S1;2,2 ko kLY +k 112 —itA
10k 22k, < sup > cymtmed IR DI g (1) 2 le T gy (1) Lo
te[zm—l,zm]kéﬁkl_lo

x e gy (1) oo [T T2 ge (1) [ 2 < C27m/2H30Bmeg,

Next, we estimate Qi Ky s Recall (6.60). From the L2 — L™ type bilinear estimate (2.5) in
Lemma 2.1, (4.14) and (4.15), the following estimate holds for some absolute constant C,

| > Ot = sup Y ComER P [T T2g](0)])2
ka<kq+2,/k—k1|<10 tel2m712M] k<10
(6.69) x le™ " gie, (1) | Loo [T T2 g (1) [ 12 < €22 €.

[739% 2]

Lastly, we estimate Q ;’C’ ke dr Recall (6.61). By doing integration by parts in “” many times,
we can rule out the case when max{ji, jo} < m+ky——Bm.lf max{j;, jo} > m+k; _—fm,
from the L2 — L type bilinear estimate, the following estimate holds for some absolute
constant C,
J1,J2,3
Z | Qkf/qz,kz |
max{j1,j2}=m+k) ——Bm
< sup Yot > 21 gk iy (D2
€212 =15 J1=max{jz,m+ki,_—Bm}

X (”e_itAFigkz,jz(t)”Loo + ||e_itAgk2,j2([)“L°°)

+ > C224 2| gy, 1y (1) 12
Jazmax{j1,m+ky ——Bm}

< (e AT g, jy (D lLoe + lle™ " gry ) (Do) T T2 gie () 2
(6.70) < ComH20Bm—k2 2 < Cp=Bm2,

Hence finishing the proof. O

LEMMA 6.6. — Under the bootstrap assumption (4.49), the following estimate holds for
some absolute constant C,

1 28m 2
(6.71) > 1Pl k| < C227ed.
k1,k2€Z,lk—k11<10,k;<k;—10,k1 +kr>—19m/20,k1 <58m

Proof. — Recall (6.7) and (6.12). Same as in the High x High type interaction, we know

that the integral inside Pkl Ky ko vanishes if '/ = Q. Hence, we only have to consider the case

when I'! = L. Recall (6.17). We know that similar decompositions as in (6.25) and (6.28) also
hold. Recall (6.28) and (6.17). From the estimate (6.8) in Lemma 2.1, the following estimate
holds for some absolute constant C,

(6.72) 133 B Yk (E) Wiy (E = M) Vrkp ()| goo < €222, if ky < ky — 10.
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[739% 2]

After doing integration by parts in “n” once, the following decomposition holds,

1,2;1 1,2:2
(6.73) |I'k Tk k2| <y s k2| + T, kl,k2|*
where
Ill%llkz / / [ Fll"zgk(z g)g’f¢+”(§n)v
- i
Va @t (E ) .
‘(m G5, E—=nm[G+vE—n.n)

x (Tgy (t.§ — mgp, (t.) + & (1.6 — )Tg}_(t.m)
+ (T + Ty + A0 € = 0., (16— g (. 1)])

—TT2g, (1, £)e!®T Eny,

CI>+ v o /\
(P& =106 = 0, 0.1) P 1.6 = dndr

1,22 . 1,2;2
Dk, = > Dk i kaia®

J1=2—k1 —.jo=—k> —

th -
1,2;2 o 1120 itdtVEn T,
ks = [ [ P08 T ey,

V + —_—
(sl = 1sE = 0 0EE, . )dnded.

From the L? — L type bilinear estimate, the following estimate holds for some absolute
constant C,

1,2;1
Z |Fk,k1,,k2|

ko<k1—10,lk1—k|<10
< sup Z Z C2" 22 D' 2 g4 (1) 2

1€[2 712 ) <oy —10, 1k —k|<10i=1,2
< [(2% 11 VE 8k, (1. )2 + 25 V@i, (1.9 L2) e gy (1) Lo
+ 251 [le T A g (1) oo (252 V2 8k, (2. 6) | .2
+ I Veh, (46122 + 27Nl gr, (0 2)
IS o1k ik
+ Y TR () gk, (01|22 10y, ()8, (022
J1=Jj2
(6.74) + YD 22 g (g, (0227 g (¥, (0l 2] = €22
J2=1
Now, we proceed to estimate F,iilz ks By doing integration by parts in “z” many times, we
can rule out the case when max{ji, jo} <m + ki, — — Bm. If max{ji, jo} > m+ k- — fm,
from the L2 — L type bilinear estimate, the following estimate holds for some absolute
constant C,
1,2;2
Z Fk,kl,jl,kz,j2|

max{ji,jo}=m+tky —=Bm
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< sup Comtkethkif Z 2 Iggy (0] 2
re[2m=1,2m] J1zmax{jp.m+ky ——pm}
% (2—k2||e—il‘A . —itA o—1 v/ )
8ko,jnllLoe + |le I [Vegka,jn ]llLoe)
+ ) 27218, o (1) 2l A Ty, (o 1T T2 (1) 4

J2zmax{ji,m+k; ——Bm}
(6.75) < C2m/2+208m 2

Recall the estimates (6.25) and (6.73). From the estimates (6.74), (6.75) and the estimate
(6.76) in Lemma 6.7, we know that our desired estimate (6.71) holds. O

LEMMA 6.7. — Under the bootstrap assumption (4.49) and the assumption that k1 + ko, >
—19m /20 and k1 < 58m, the following estimate holds for some absolute constant C,

(6.76) T, k| < C27P7e.

Proof. — Same as in the High x High interaction, we do integration by parts in time once.
As a result, we have the same formulations as in (6.34), (6.35) and (6.36).

We first estimate F,l,ll ko Recall (6.34). By doing integration by parts in “” many times,
we can rule out the case when max{ji, jo} < m+ki,——pBm.If max{ji, j»} > m+k,_—pm,
from the L2 — L™ type bilinear estimate (2.5) in Lemma 2.2, the following estimate holds for
some absolute constant C,

2 Tl
max{j1,j2}=m+k; ——Bm
< sup  COMPRIII g
te[am—1 2m]
x [ > 2 gk, iy Ol 2 (lle™ 8y oo

J1zmax{ja,m+ky ——Bm}
-] —1 ~

+ 2217 F T ViGis o (O]

+ > 22772 gy gy O 2 (le ™ iy oo

Jozmax{ji,m+ky ——Bm}
+ 26017 F T V@i s (D]l1202)]
< C2—m—k2+20ﬁm65 < Cz—ﬁme(Z).
Now, we proceed to estimate ff:,lil ko Recall (6.36). Since now kq and k, are not compa-

rable, different from the decomposition we did in (6.37) in the High x High type interaction,
we do decomposition as follows,

1,2 _ 1,250
(677) Fk,k],kz - Z Fk,k],kz
i=1,..,7
~122 BN S BN A 1 k151 kS05:1
(6.78) 1_‘k,kl,kz = Z Iﬁk,kl,kz’ Fk,kl,kz - Z Fk’kl’kZJZ ’
ky<ki+10 Jaz—ka —,j{=—k| _.j5=—k5 _
=123 Sk kb2 okikp2 Bk Tk 2.2
679 Tit, = > T Tk = > Dekinks
kh<k|+10 hz=ki_.ji==ky _.j>=ki
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=12 =12 ;
Dikigs = > Ciindean | ESH

12—k —,ja>—k2 —

Tk = / A ] / TIT2ge(r, )" " EDe (g — yud gp, (1, 1)

% (G40 (. MTgi, (1€ =) + (Te + Ty + dr)s.o (E. )k (1. & — 1)) dndd.
which results from the case when 9, hits the input “gg, (¢, & — )" in (6.36).
Ve DD f [ [T e e it o)

w v e{+,—}

X v (€ —n—0,0)Yk, (§ - n)gkf (8§ —n— o)gk/ ,(1.0)
(6.80) X (G4.0(E = 0. TgYL L (t.1) + (Te + Ty +dr)do(§ = n.mgy, . (t.)dndéd,
which is resulted from the quartic terms when 9, hits the input “gg, (z,& — n)” in (6.36).
Pl DD / /Rz /Rz /Rz FIT2ge (¢, )e!"® ™ EDE(E — )i (6 —1.1)

W' e{+,—}

X By gy (1€ = e ™ OOy (G (0= 0.0)85 (6,1 0)
+ itrnq)“/’”/(ﬂ, O—)C?M’,v’(n — 0, O’)g;:,l ] (t, n— 0)]
(6.81) X gl‘;ﬁ ,(t,0)dodndé&dt,
2:J2
which is resulted from the quartic terms when 9, hits the input “@(r, n)” in (6.36).

(6.82)
123 [,
=1,2;4 . T2 itdTV(E,n), ~
Fk,kl Jukoj2 T /tl /R2 /1;2 Mr2g(, é:)elt € ")IC(S —1)
X [(TA2309:glky,jy (1.6 = mgg, 5, 1) + 8k, gy (1. € = MTA3[0:8" ks, 5 (8, 1)
+ A=3[0:8lkyy (.6 —mTgy, (2, )G+ (& —n.1)

(6.83) + (Te + Ty +dr)Gev (6 — 0. MA3[0:8lk, 5y (0. — 18y, , (t.m))dndEdt,

which is resulted from the quintic and higher order terms when 9, hits the inputs “gg, (¢),”
“ngl (t),” and “ngz(t),’ in (6'36)‘

=1,2;5 itd+v (&) _
e, Jergvkangz / /1;2 /1;2 te€ —m

x (9, T T2g (t.8) — ooy B,jk”/k/(z,g))

ve{+,—} (k}.ky)ex?
X (+0E = 0,0 (@ky (1.6 =gy, o (6, 1) + Tgiy i (6.€ =gy, (1)
(6.84) + (g + T)d+v(E — 0.8k, 5 (1.6 — gy, ;, (6. m)dndEdt,
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which is resulted from the good error terms when 9, hits “I''I"2g (t)” in (6.36).

=~k k5,3 ki kS,3

~1,2;6 _ 1:%25
(6.85) o= 2 Diidat 2 Tiia
k| —kb|<10 k<K —10
(6.56) pRKS3 Z RIS 303 el
: kkykasi = Ky, jozi 0! I8

Jiz=k _izz—k5 _jaz—ka —

PN NI . @ 3
Dekibain = 2. / fRz/ T2, (1, )" N (g — )

w v e{+,—}

~ - it oM
X 1G4 (E = 0. &Y, o (1) (6 — el € "")g,z, ,(1.0)

x [iTey @ (€ = 1,0)Gw o (E =1 — 0,0)gl: (1.6 =1 —0)

(6.87) + Temy (G € = 1= 0,0)84, /(1.6 = 0 —0)) |dodndsa,

which is resulted from the quartic terms when 9, hits the input “F/g;1 (t,€—n)” in (6.36) and
moreover two inputs inside A,[0;"gx, (¢, & — n)] have comparable sizes of frequencies, see
(6.85).

~k",j! kL, +.v
R S [ N R e G T CE R AN
ve{+,—}
itet o v W
Xy (E-net® T EnO g 1 0)itTe @ (6,00 v E—1-0,0)8  (1.E-n0)
(6.88)
+F§—n(‘7+,v/($_77_070)g/k/171/(t75_77_(7)) ngf (.6~ 77—0)67+,w(§—n—0,0)]d0dnd5dt,

which is resulted from the quartic terms when 9, hits the input “lfg;k\1 (t,€—n)” in (6.36) and

moreover two inputs inside A,[d; I‘/g;1 (t, & —n)] have different size of frequencies (see (6.85))
and the bulk term of this scenario is removed.

=1,2;,7 itdt-v it T’ v,
Pelns = > > / /2 /2 ’ @i Epre " (E:1.00)
Ky <k, —10, k1 —k/ | <10 v/ {+,—} REJR

—

(6:89) x Tg(t.§ —mgy, (.M T2 (1.& — gy, (1. —k)dwdndEd,

which is resulted from putting the bulk term inside “A;[d, I{g?1 (t, & —n)]” and the bulk term
inside “A,[0,'1T"2g, (¢, §)]” together, and the symbol r,‘:;”,;, (&, n, k) is given as follows,
K

e (60K = EE — ) (E — 0. T5 & — 1 Vi (6 — )V, (6 — )Y ©)
FEE =0~ 0006 — k= 1T E — 1=y & — DYRE — 0, € — 11— ).

Recall (4.14) and (4.15). From the estimate (2.3) in Lemma 2.1, the following estimate holds
for some absolute constant C,

(6.90) [ T k’ (é: 1K) Vk, (n)l/sz ()| goo < Cpmax{ka k3 +3k1
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With the above preparation of classifying all terms inside Fli i | ky» SEC the decomposition
(6.77). Now, we are ready to estimate them one by one. From estimate (7.2) in Lemma 7.1
and the L2 — L type bilinear estimate, we have

71,21 2m+2k —
Tl < sup Y €2 F2R 18,21, 6)]) 2
te[szl,zm]i:l,z

x ([le™ AT gie, (D lLoe + lle ™ giey (0)llLoe) T T2gx (t) |2

< C2m+28m(2—21m/20 + 272m7k2+2¢§m)€§ < CZAB”’E%,

where C is some absolute constant. Now, we proceed to estimate F,i ’,fizkz. Recall (6.78) and

(6.80). We split into two cases as follows based on the size of difference between k| and k7.
If |k} — k5| < 5. — Note that k] > k1 —5 > k, + 5. By doing integration by parts in “n”
many times, we can rule out the case when max{jj, jo} < m+kj_ —Bm. Hence, it would be
sufficient to consider the case when max{;;, j>} > m + k/l,— — Bm. Fromthe L2 — L® — L
type trilinear estimate (2.6) in Lemma 2.2, the following estimate holds for some absolute
constant C,

Z Z i:k’l,j{,k/z,‘jz’,l
k.k1,k2,j2

|ky—k5|<5 |max{j{,j2}=m+kj _—Bm

< sup C22m+2kl+2k'1 ||F1F2gk(t)||L2
t€[2m_1,2m] Iki_kélfs
—itA
x| > lgk; jfllizalle™ *guslloo
jizmax{j2,m+kj _—Bm}
—itA -
X (le™ ™ gry jpllzoe + €T gry gy llLoo)

\ e o
+ > le™ 2 grr s llLoo2*2 T | ghy o 12 €™ gas (1) | ov ]
Jozmax{j{,m+k| _—Bm}

< C2—m—k2+20ﬂm63 < C2—2ﬂm6§'
If k) < kj — 5. — For this case we have |k; — k7| < 2 and k] > k, + 5. If moreover

k1 + k5 < —9m/10, then from estimate (5.15) in Lemma 5.3, the following estimate holds
for some absolute constant C,

=~k k1
) Tk ex
k% <min{—9m/10—ky k| —10}

< sup > C2m R TIM2 g (1) |12

1€R2L2M] 4 min{—9m/10—ky k1 —10}

X ™" g llos (Igks 122 + 17" ks 2)
x (2208 0. Ol + 27 T2 ReDI (1 §) Wiy () )
< C272mel,

[T 1)

Lastly, if ky + k5 > —9m/10, we can do integration by part in “oc” many times to
rule out the case when max{j;, j3} < m + ki — fm. Also, by doing integration by

ANNALES SCIENTIFIQUES DE I’ECOLE NORMALE SUPERIEURE
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[739% 2]

parts in “n” many times, we can rule out the case when max{jj, j»} < m + ki— — fm.
Hence, it would be sufficient to consider the case when max{;j{, j2} > m + ky,— — fm and
max{ji, j;} = m+ ki — pm, which implies that one of the following two cases must holds:
(1) j{ =m+ki——Pm; (i) j{ <m+ki,——Pmand jp, j5 > m + ki — fm. From the

L? — L™ — L type trilinear estimate (2.6) in Lemma 2.2, the following estimate holds for
some absolute constant C,

Z fkﬁ,j{,k’z,jﬁ,l
k.k1:k2,j2
max{j{,j3}max{j{,j2}=m+ky ——Bm
2m+-4k, —itA
< sup C2 [ > gk, iz lle™ " gy, s oo

tef2m=1,2m] Jiz=m+ky ——Bm

—itA —itA
S (”e i gkz,j2||L°° + ”e 1 ngz,janoo)
2ko+j —itA 112
+ > 22272 gy, o2 llgry g llz2lle ™ gur it lLos JIT T2 g (1)l 2
JhsJ2=m—+ki ——Bm
< Cz—m—k’2+2oﬂm€(2) < Cz—zﬂmeg_
Now, we proceed to estimate ’I:,l ’,313,(2. Recall (6.79) and (6.81). We separate into two cases
as follows based on the size of difference between & and k5.

If k] — k5| < 10. — Note that k| > k» —5. By doing integration by parts in “o,” we can rule
out the case when max{j{, j,} < m+ko_~kj  —pm.Ifmax{jj, j,} > m+ks_—k|  —Bm,
from the L2 — L — L type trilinear estimate (2.6) in Lemma 2.2, the following estimate
holds for some absolute constant C,

Z Z fki,j{ ,_k/z,jé,2
k.ky,j1.k2

[k} —k5|<10 |max{j{,js}=m+k> —=k| , —Bm

< swp C22 R PP g (1) 2
telm L2 e i <10
x ( > 242N +272) g (O l2lle ™ A gy g (D)oo
J{z{i}.m+ka ——k|  —Bm}
k/ -/ k _
+ N 229N + 272 ghy i (11227 Mgy (Ol 1)

Jaz{ji.m+ka ——k\ y—Bm}

x e A g, (t)||poo < C2MH2H20Bm 2 < co=2Bm 3

If k) < ki — 10. — For this case, we have k, —2 < k| < k» +2 < k; — 5. By doing
integration by parts in “»n,” we can rule out the case when max{,, j{} < m + k- — fm.
If max{ji, j{} = m+ ki,— — Bm, from the L? — L™ — L type trilinear estimate (2.6) in
Lemma 2.2, the following estimate holds for some absolute constant C,
k1, 71.kS,75.2
Z | Z Fk,kl,jl,kz

ky<ki=10 max{ji,j{}zm+k, =Bm
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’ —
< sup C2M T2 g () [ 2 lle ™A gy (1) oo

rel2mL2M e 1o

k/ =/ k k/ —
x ( > @t oty g G Ol227 gk g (Ol

Jj1zmax{j{,m+ky ——Bm}

k' +j! ko+k’ —itA

+ > @t 4 2Rty g ()2 lle T R gk gy ()| Loo)

J1=zmax{j1,m+ky ——Bm}
< Cz—m/2+20ﬂm€(2).
Now, we proceed to estimate F,i ’i;14k2 and F,i ’i;sz .Recall (6.77), (6.83), and (6.84). By doing
integration by parts in “n,” we can rule out the case when max{;, jo} <m + k; - — fm. If|
max{ji, j2} = m + ki, — Bm, from estimate (7.7) in Lemma 7.2, (6.137) in Lemma 6.14,
and the L2 — L™ type bilinear estimate (2.5) in Lemma 2.2, the following estimate holds for
some absolute constant C,
=1,2;0
Z Z |Fk,k1,j1,k2,j2|
i=4,5max{j,j2}>=m+ki, ——Bm

< sup C2m+2k1+ﬂm[ Z ki1

—1
refam=iom] Jj1=max{ jo,m+k; ——Bm}

x (e gry o ()|l Loo + ||e_itAng2,j2(l)||L°°)
< (2% (1 gky 1y Oz + 271 A23[008(O]ky 1 Il 12)

+ 272 g 11222522 | A s (008 (D]ky o 112

+ > 28T gk gy e + 27 A3 [0 8Ok, o 122) 2% 1 8k 122
Ja=max{ji,m+k, _—Bm}

+ 20272 (2% gy, ol + 27 | A=3[0: 8 (D]ksso 12)

x le T gp, s ()llpee] < C27mH0Bmka e < cpm2bm 3

Now, we proceed to estimate F,i:isz. Recall (6.85) and (6.86). We split into three cases
based on the difference between k] and k), and the size of k| + k5.
If |k} — k| < 10, ie., we are estimating f:/‘kfékjl — Note that we have k] > ki — 5.
Recall (6.87). By doing integration by parts in “o” many times, we can rule out the case when
max{jj, j;} < m+ki—=kj, —Bm Ifmax{j], j;} > m+ ki —kj  — Bm, from the
L? — L — L™ type trilinear estimate (2.6) in Lemma 2.2, the following estimate holds for

some absolute constant C,
Z f,k’l,jl’,ké,jﬁﬁ
k.k1,k2,j2;51
max{j{,jé}zm-i-k]__—k/ly_,’_—ﬂm

< sup  C2PFERAPID2g0 (1) alle T A gry (1) [l 1oe
te[am—1 2m]

ki +k/ kh+j1 —itA
x ( > @M 4 252 g s llalle T R gry g llzee

Jyzmax{js.m+ky _—k} , —Bm}
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+ 3 @Rtk 4 25t gk o227 gk )
jézmax{j{,m+k1,7—k/l’+—ﬂm}
< C2—m/2+20/3m€(2)'

@ Ifk}, < ki —10and k| + k5 < —19m/20. For this case, we have |k} — k| < 5. Recall

(6.85). From estimate (5.15) in Lemma 5.3, the following estimate holds for some absolute
constant C,

=k’ k5,3 _

Tk doal < sup  C2PRTIT2 g0 ()| 2 ]le ™ gay (1) | oo
tE[Z”’_l,Z’"]
X (@R L Dgerllze + ) 2% Vegk (¢,6)l2)

i=1,2
X (2218 g + 28R IRDIE OV ©Ollge)
< C272me2,

Ifk), <ki—10andk}+k} = —19m/20. — Recall (6.88). By doing integration by partsin “c”
many times, we can rule out the case when max{;, j;} < m-+k,——pm.By doingintegration
by parts in “»” many times, we can rule out the case when max{j, j} > m + k1,— — fm.
Therefore, we only need to consider the case when max{;{, j5} > m + ki - — fm and
max{ji, ja} = m + ki,— — fm. In other words, either j; > m + ki_ — fm or j;, j» >
m + ki— — Bm. From the L? — L™ — L* type trilinear estimate (2.6) in Lemma 2.2, the
following estimate holds,
> DA
max{j{,j;},max{j{,j2}=m+ki ——Bm

< sup C22mHAk( Z (mtkitky 4 okytily

tef2m=1,2m] J1=m+ki,——Bm

—itA i

—itA
x gy jill2lle ™ gry jsllzeelle ™" gicy o (1) | Lo
ki+ky ) ,—itA k) ,—itA o—1
+ Z @Mt gy irllLee + 22 e F T [Vegiy slliLee)
Jhrja=m4ki _—Bm
k
X N gis. 51222 18k Ol L2) IT T2 g1 (1) 2

< C2_2ﬂme§.

Lastly, we estimate F,i’,fi7k2. Recall (6.89). After doing spatial localizations for inputs

« 99 « 99 st ~1,2;7
I'gk,” and “gy,” inside Lk ko WE have

=127 TL27
(6.91) Fk,kl,kz = Z Fk,kujl,kz,]'z’
1z—ki,—,j2=—kz —

[5) ,
%7 = it E =it @V (k) 0
k) ) - > [ e Enk)

k4 <k{—10,lk1—k]|<10 v/ €{+,—}

—

(6.92) X iy (0.6 = gf, (LT T g (1.6 = )g), (1. —)dnddidr.
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[739% 2]

By doing integration by parts in “n” many times, we can rule out the case when max{j;, j>} <
m+ky ——Bm.1Ifmax{ji, j»} > m+ky_—PBm, fromthe L?—L>— L type trilinear estimate
(2.6) in Lemma 2.2 and (6.90), the following estimate holds for some absolute constant C,

Z |~1 257 |
k Kisj15k2572

max{ji,j2}=m+ky ——Bm

< sup C22m+max{k2,ké}+3k1 ”e—il‘Agké (l) ||Lc><>
te[zm—l,zm]k,zskl_m
x ( > ITgky, 5 )2 lle A gy jp (D)l]Lo0
J1=max{jo,m+ky _—pm}
—itA
+ > le™ AT gi jy (OllLoo | 8kro @)1 22) IT T2 (1) 2

Jozmax{j,m+ky ——Bm}
< Cz—m/4+20,3m 3 4+ C2 M k2+20/3m 2 <C2” Zﬂm 2

Hence finishing the proof. O

LeEmMA 6.8. — Under the bootstrap assumption (4.49), the following estimate holds for
some absolute constant C,

2 28m 2
(6.93) > |PZ 4 iy| < C227€]
k1,k2€Z,lk—k11<10,ky <k1—10,k +kp>—19m/20,k1 <58m

Proof. — Recall (6.8) and (6.12). Note that P? k1 .k, vanishes except when rN=rz=»L.
Hence, we only have to consider the case when I'' = I'? = L. We decompose it into two
parts as follows,

2 2, oty
Pk = X P =] [, / LLan(t. " V3G, (e )

i=1,2

where Zj’+v (E—n,n),i €{1,2},are defined (6.29) and (6.30). After doing integration by parts

[739% 3]

n” twice, from the estimate of the symbol Z]\i,v (¢ —n,n) in (6.31), the following estimate
holds,

+ki+3ky+k
Z |Pkk1 kz{ < Sull) Z om+ki+3ka+ki +
o<y 10001 —k|<10 €212 k) <k —10,i=1,2
[le™" 2 gy () los (1VE Gk, (1. )l 22 + 272 | VeBi (1. 6)12)
+ e gry (D) 1zow (I1VZ8hy (1. D)2 + 2752 Y8y (1. )2 + 272 1, (1))

k
n Z > m+2]2+11”(p]Z(x)gkz(t)HLz”gﬂjll (¥)&ky (D)l 2

J1=J2

+ 30 2R R gk, (O]l2 e (9)8k (Ol ]IT Tk (0)]2
J2ZJ1

< C228me§
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For “ k k o > we do integration by parts in time once. As a result, we have

(6.94)

2,1 _ i o1 _ Dil,J2,1
Pliw= 2 Piri P = > Ly
=1,2,3,4,5 J1=2—k1 —,jo=—ko —

e
Bl = 3 (1) /R [ T 2ge(t;, ) EMi2 L (e )
i=1,2
X G (116 — B,y (oo )
7L [ T il

+.v —
X By (.6 — Mgy, (t) — T EMi2 Bl (e g e )

(6.95) <gp @I T2~ S Y By o 9)dndsa,

vel{+,—} (k] .kb)ex?

(6.96)
~5 _ S2.k Ky 52k K, 52:.k1,71:k5.75
Plre= D P Peiss = > Pkt
K, <k|+10 J1=—k1—j{=—k] _,ji=—k) _
AZ,k/,j/,k/,j/ P
Poliil” = 2 / /2/ T2, )¢ ® " EMir2 Bl (6. gk 7, (1.6 — )
w v e{+,—} R
w v A -
(6.97) x Pyl 10, (i — o, o)gk, Ve o)gk, (. o)]dndgat,
(6.98)
~3 _ 53Kk, 53k kS 53:.k1.01:k5.75
Plrw= 2 P Pxiw = > P
|kj—k5|<10 J{z—ky _jpz—k5
K 2~
R = [T T g g e e
wov'e{+,—}
(6.99) X G (§ =1 = 0,008 (1,6 —n—0)gy, . (t,0)gy, (¢, mdndédt.
D4 _ D4
Pk,kl o T Z Pk,kl,jl ko, ja
J1=—k1,—jo=—ko —
(6.100)

~, +ov —
P]?,kl,jl,kz,jz == / Az /1;2 ir® Em; [ p-‘,— v(é’ n)Flegk(tvs)

% (Ax3[eglin (1.6 — n)gk2 B + g (& = A2300:8" 1k, (1. m))dndEd1
(6.101)

D5 _ it®tV(€,n) Al
P i = Z Z / /]1{{2[1;2/]1&2 it°py (.M

k5 <k(—10,lk1—k|<10 v €{+,—}

p———

[0 = mel, (L. mel " COTTT 2y, (1,6 — K)gy, (1K) (6 = K. K)
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+ T2, (. 8, (1 e €m0 (6 — 51— e, 0)

(6.102) xgﬁl(t,é'—n—x)g};; (t,K)]dndeédt.

_ 3 ) //// it ® Y (6 —itd Y ()
R2 JR2 JR2

kb <kj—10,lk1—k]|<10 v €{+,—}

/\

X it? k”k/ €. nK)g(t. & — n)gkz(l r/)Fleg(t E—K)gk,z(t —Kk)dndrdédt,

where the symbol “ﬁ},d ,(&,1)” is defined in (6.29) and the symbol’r‘;:;”,;, (&, 7, k) is defined as
K
follows,

T (€:1.) = B (6 ) —ur € — K, )Wy (€ — 10V, (€ = ) (©)
P (E — Ko (€ — 0.~V (€ — )V (€ — 0 — Y€ — ).

Recall (6.29), (4.14) and (4.15). From the estimate (2.3) in Lemma 2.1, the following estimate
holds,

(6.103) 74 (6 00y (M)W () | oo = C2mxthabib ol

where C is some absolute constant. After doing spatial localizations for inputs g, (t) and
8k, (1) in P k Ky o the following decomposition holds,

(6.104)
~5 . 5.k .k 55.k0.k, 55.k1.k,
Pk,k1,k2 - Z Pk,k1,k2’ Pk,kl,kz - Z Pk,kl,jl,kz,jz’
kh<k|—10,lk;—k}|<10 hz—ki,—,j2z—ka
=5,k k) i1 (8, ) —it @ T (E.0) ; 2~vv
Pkakll,jlz,kz,Jz - Z / /2/2 l s &9y 1K & n, K)gkl aEE—n)
e r2 JR
(6.105) X g,‘éz’jz(t, n)FIFng/l (t,&— /c)gk, (t,—x)dndrdédt.
With the above preparation, now we are ready to estimate P,é ki oo b € {1,...,5}, one by
one.

[739% 1]

We first estimate 1’3k1 Ky de Recall (6.94) and (6.95). By doing integration by parts in “n
many times, we can rule out the case when max{ji, jo} < m + ki — — fm. If max{;j;, jo} >
m + ki— — Bm, from the L? — L type bilinear estimate (2.5) in Lemma 2.2, (7.7) in
Lemma 7.2,, the following estimate holds for some absolute constant C,

Z |P ]1 225 1|
koK1 ko
max{j1,j2}=m+k; ——Bm

< sup  CEmEAbmtkatakiteks > gk, (Dlz2

—1
ref2m=h2m] j1=max{ja,m+k ——Bm}

—itA —itA
X ”e 1 gkz,jz(t)”lzoo + Z ”gkz,jz(t)”LZ”e " 8k, 1 (I)HLOO)
Jazmax{ji,m+ky ——Bm}

< C2_2ﬂmeg.
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Now we proceed to estimate ﬁkz Ky o Recall (6.96) and (6.97). Based on the size of the
difference between k| and ky, we split into two cases as follows,

If k] > ki —5. — For this case, we have k| > k, + 5 and |k} — k)| < 5. By doing integration
by parts in “o,” we can rule out the case when max{j{, j;} < m + ka— —kj , — Bm.1f
max{j{, j;} > m+ka— — k| , — Bm, from the L? — L® — L type trilinear estimate (2.6)
in Lemma 2.2, the following estimate holds for some constant C,

Z Z ﬁZ,kﬁ I k5573
k.k1,j1,k2
ki=k1—5 |max{j{,j;}=m+ka _—k| , —Bm

C23m+ka+3k1+2k]

< sup
tE[2n171,2m] ‘ki—k£|§5
—itA
x ( > lgx;. i1 Oll2lle™ P guy s llLoe
Jizmax{j3,m+ka ——k\ | —Bm}
—itA
+ > lgxs, iy ONz2lle ™A gir o llLos)

Jazmax{ji,m+ky _—ky | —pm}
< [T T2 gk (1) 2 le ™A giy (1)l|Loe < €27 7R H30mes < co72hmeg
If k| < ki — 5. — For this case, we do integration by parts in “n ” many times to rule out
the case when max{j, j1} < m + k1 — — fm. If max{j|, j1} = m + k1,— — fm, from the

L? — L% — L™ type trilinear estimate (2.6) in Lemma 2.2, the following estimate holds for
some absolute constant C,

Z Z ﬁ2,k’1,j{,k§,j2/
k.k1,j1,k2

k4 <k’ <ki—5 |max{j{,j1}=m+ki ——Bm

< sup Z C23Wl+k2+3k1+2k/1
te[2m—1,2'"]késk/15kl_5
—itA
< ( ) Ik e Oll 2 e A gy oe
Jj{zmax{ji,m+ky _—Bm}
+ Z ”gkl,jl(l)”L2

Ji1=max{j{,m+ky _—Bm}

< lle™ A gpr jrlizeo)lle™ A gry (DllLoo T T gk (1) 2
< C2—m/2+306m6(2)'

Now, we proceed to estimate 1’3k3 ky k- Recall (6.98) and (6.99). Note that |k} —kj] <10
and “V, ®* V' (§ =1, 0)” always has a lower bound, which is =k By doing integration
by partsin “o ™ many times, we can rule out the case when max{{, j,} < m+ki,——k; . —pm.
If max{j{, j;} > m+ki——ky . —Bm, from the L? — L — L type trilinear estimate (2.6)
in Lemma 2.2, the following estimate holds for some constant C,

53.k1,71 k575
> > i

Ik} k5| <10 max{i{.i5}=m-+ki _—k;_, —Bm
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< sup C23m+k2+3k1+2ki
re2mL2M e kg <10
—itA
x ( > gy i1 Olz2lle™ gay g oo
j{zmax{jy,m+ki ——k} , —Bm}
+ > gy, 12l 22

Jh=max{j{,m+ki !,—k’l._i_—ﬁm}

X e R i jillzoe) le™ A gy (00w T T2 (1) 2
- Cz—m/2+30ﬂm€g.

Now, we proceed to estimate 1511 Ky s Recall (6.100). By doing integration by parts in “n”
many times, we can rule out the case when max{ji, jo} < m + k1 — — fm. If max{ji, jo} >
m-+ky——Bm, from the L?— L type bilinear estimate (2.5) in Lemma 2.2, estimate (6.137) in
Lemma 6.14, and estimate (7.3) in Lemma 7.1, the following estimate holds for some absolute
constant C,

D4
Z ”Pk,kl,jl ,kz,janz
max{ji,j2}=m+k; ——Bm

< sup C2HRHRyPIP2e (1))
te[z’"*l ,2’"]

—itA
x [ > 1A 23008k, s 2 lle ™D gry o llzoo
J1zmax{jz,m+ky _—Bm}

+ gk, 1 12222 1A >3[0: g1, ]I .2
+ > 1A>300: 8" Vs o 2 lle ™A gy o oo

Jazmax{j|,m+ki ——Bm}
+ 2% gks, o (D22 [ A3[0: 8 1l 2]
< C2—m—k2+40/3m63 + C2—m/2+406m65 < C2—2;3m€§.

Lastly, we estimate 15k5 Ky o Recall (6.104) and (6.105). For the case we are considering,
we have k), < k| —10and |k} —k| < 10. By doing integration by parts in “;” many times, we
can rule out the case when max{j,, jo} <m + ki,— — fm. lif max{ji, j»} > m+ky_ — Bm,
from the L2 — L® — L type trilinear estimate (2.6) in Lemma 2.2 and estimate (6.103), the
following estimate holds for some absolute constant C,

=5,k k)
Z Z |Pk,k1 SJ1 ,kz,j2|

kf<ki—10 max{ji,j2}=m+k;,——Bm

< sup C23m+k2+max{k2,k§}+4k1
1€ML s g —10
* IT 2 g (1) 2 > gk o 22 lle ™ gy gy lloo
J1zmax{j2,m+ky ——Bm}
+ > lgks, o lz2lle™  gry i lzoe) e ™ gry (1) 1200

Jozmax{jj,m+ky —=Bm}
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< Cz—m/2+30ﬁm 2+C2 m— k2+30ﬂm62 < Cc2~ 2Bm 2.

Hence finishing the proof. O

6.4. The Z, norm estimate of cubic terms

Recall (4.35) and (4.37). Note that we have k3 < k, < k; for the case we are considering.
For any '}, I‘g € {L¢, Q¢}, we have

LTEA[0, 8 O = ) > D i N (82}
T,k t€{+,—} k3<ko+1<k+2i=1,2,3,4
AN .
lf;:ltliz k3( %-) Z TI:,kl,jl,kz,jz,ijé(t’S)’ 1€ {374}7
J12—k1,—,jo=~ko —,j3=—k3 —
where
]:;c(ltklzk,;(t E) / /Rz ltCI>1:K (SﬂO’)d (g; n.n—o, U)Fgrggk (l g )
(6.106) x g (t,n — 0)g (t.0) Y (§)dndo,
Tkr;cclt,kzz,kg (1.8) = /Rz /Rz eitd)f,x,z(&',n,a)[l"g Fg(c?,,,c,t(é —n.n—o, 0))g1€1 (t,E—1)
6.107 rld _ _ N _
(6. ) + Z £ r,/c,t(é: n,n—o,0) sgk1 (t,& 77)]
{l,n}={1,2}

x g, (t.n—0)g; (t.0)yi(§)dndo,
2 3
T,K,L,3 _ itdTKL(E o) it DTHL(E,n,0) ] K,
Tk’kl’jlsk2aj2:k3:j3 (r.§) = [RZ ./RZ ! et "7 1[(FS(I)’K1(§, 77’0))

(6.108) x I'¢ (dt,lc,l(g =10.n—0,0)g ; ({.§— 7)))g£2’j2 (t,n—0)
X 8y 3 (1 0)Vk (E)dndo,

e PTKL
T/Q}fit”;‘l Kook (t, é:) — Az /;{2 eltCP (gaﬂ,U)IZ(Fg q)t,K,L(i_-’ }770,)1-?(1)1,/(4(%_’ n’o,))

(6.109) x dejeu(§ —mn—0,0)gf ; (1LE—mgL  (t,n—0)
x g, ;, (1, 0)Yr(§)dndo.

Therefore, we have
(6.110) Re / / F I‘ZA(t E)F$F§A3[8zg(t E)]wk(é)dédt]

= Z Z Z R kr;;ltliz k3]

Tk €{+,—} kza<ko<k;i=1,2,3,4
(6.111) T,:,’C‘l"liz’k% / / / (t E)Tk’,’;‘,;z Ky (. E)dEdL.
The main goal of this subsection is to prove the following proposition,
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PROPOSITION 6.9. — Under the bootstrap assumption (4.49), the following estimates hold
for some absolute constant C,

(6.112)
sup / | TITER GO Asloiz. O ©dgat]] = €2,
ty,tp€[2m— 12m] kEZ
(6.113)

sup Y > Y T )] < C2TE (1 g2k sk

te2m=1.2M) 13 3.4 kez ky<ka <k,

Proof. — To simplify the problem, we first rule out the very high frequency case and the
very low frequency case. Very similar to what we did in the estimate of quadratic terms (see
(6.55)), we do integration by parts in 7 to move the derivatives V, of Vegy, (t.§ — 1) =
—V, 8k, (t, § —n) around such that there is no derivatives in front of g, (t, & — 7). As a result,
from the L? — L™ — L type trilinear estimate (2.6) in Lemma 2.2 and the L*>® — L2 type
Sobolev embedding, the following estimate holds for some absolute constant C,

2m+2k+6k ko +k —2k:
Y TS k@O 2 < C2MRAK L g (0)]22°2785 gy (0] 12 (272 [ gay (]2
i=1,2,3,4

(6.114) + 272V ()l 2 + | VERk, (Dl 2) 5 €22 HAm—(Nom20k1 g,

From the above estimate, we can rule out the case when k; > 48m. It remains to consider
the case when k; < 48m. Next, we proceed to rule out the very low frequency case. If either
k < —2m or k3 < —3m — 30Bm, then from the L? — L>® — L type trilinear estimate, the
following estimate holds for some absolute constant C,

D I a8 1e = O 4222k horib 2k 25 (1, 9)] 12
i=1,2,3,4

(6.115) + 24| Ve @i, (1. )2 + Nlgr, (D22) llgrs Dl 2 llgrs ()2 < €277

Therefore, from now on, we restrict ourself to the case when k, k1, k», and k3 are in the range
listed as follows,

(6.116) —3m—30m <ks <k, <k, <4Bm, —2m <k <4fm.

Recall (6.107). From the L2 — L% — L™ type trilinear estimate (2.6) in Lemma 2.2, the
following estimate holds for some absolute constant C,

2 2k +4k —itA —itA i —itA
1T )l < COT 4t (e g oo + 3 e AT gy, l100) ™2 gy | o5
i=1,2

—3m/24508m 2 2 —m/24+508m 2
2 ”gk3”L2 =C2 m/2t Bmfo = |Tl:l’c(1lk2 k3| <C2 m/2+ ﬂmEO.

Since there are only at most “m* “cases in the range (6.116), to prove (6.112) and (6.113),
it would be sufficient to prove the following estimate for any i = 1, 3,4, any t,«,t € {+, —},
and any fixed k, k1, k2, k3 in the range (6.116),

(6.117)

IRe[ krllccltliz kz]l = C235m/2€0’ “Tkrllc{ltliz k3 ([’ S)”L2 = C2—m+<§m/2(1 + 22¢§m+k+5k+)€0’

where C is some absolute constant.
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From the results in the next three lemmas, i.e., Lemma 6.10, Lemma 6.11, and Lemma 6.12,
we know that our desired estimates in (6.117) indeed holds for fixed k, k1, k>, k3 in the range
listed in (6.116). Hence finishing the proof. O

LEmMMA 6.10. — Fori = 1,3,4 and fixed k,kq, k2, k3 in the range (6.116) , our desired
estimates listed in (6.117) hold if moreover ky < ki — 10.

Proof. — Recall the normal form transformation that we did in Subsection 4.1, see (4.30)
and (4.40). For the case we are considering, which is k, < k1 — 10, we have “z = +” and the
fact that the estimate |V OTKL(E, n, 0)| < 2k2 holds for some absolute constant C.

We first estimate 7,0 and T, %", (1,). Recall (6.106) and (6.111). From the
L? — L™ — L type trilinear estimate (2.6) in Lemma 2.2, the following estimate holds for
some absolute constant C,

1T e, (. Ol < €224, (22K V2 g (1, 6)ll 2 + 291 | Veh, (¢, §) Iz + llgk, (0l 2)
(6118) X ||e_itAgk2||L°°||e_itAgk3 ”Loo < C2—m+78m/3+k+5k+€0'

Since the LS decay rate of the nonlinear solution itself is slightly slower than t=1/2, a

rough L?—L*— L is not sufficient to close the estimate of 7, ;" 1k3 . Anessential ingredient

is to utilize symmetry such that one of the inputs putted in L associates with a spatial
derivative. To see the symmetric structure, we decompose T,::",i’z",; into three parts as follows,

. 12 —_—
+,k,1,1 _ +,k,t,150 +.6,0,1;1 1172 it®t kL& n,0)
Teivhaks = 22 Tekvioks Tekyiaks —/ /2 /2 Mg §)e e
i=1,2,3 f1 JR2JR

x P2 (1,6 —myi ()i, (§ =mg, (t.n —0)g, (1.0)dndodédr,
2 —_—
. ; +.x.t ~
et = [ [T e oe e (@ o) - @)
t R2 JR2
X YOTT2g, (1.6 —n)gE, (1.n—0)g; (1,0)dndod§dr,
2 —_—
. . +.k.t ~ —_
i = [ [, [ T8 0y 6 = nn— 0,008, (1= )
1

X Yi )8k, (1.0) (DA T2, (1.6 — ) — T1T2g, (1§ — n))dndodéds,

where e(£) is defined in (4.47). After switching the role of £ and £ — 7 inside ka',;‘;;, we
have

. N - 1 2 ————a——
RELT S S L2 +,k,t -
>, Re[pnill=" D0 Rell ) T0, = 5/ /Rz /RZFIFZg(z,g)
Tk LE{+,—} Tk LE{+,—} n

xeH O END G (6., 0) T 2g (1§ — gk (1.0 — 0)gl, (t.0)dndodEd,
where

dic i, (5,0,0) = e(&) Vi, (E — MYk ) + e(E — MY, E)Vr (€ — ).
Recall (4.47). From the estimate (2.3) in Lemma 2.1, the following estimate holds for some
absolute constant C,

(6.119) Ik ey (5.7 00k (0 = )Yy ()] oo < COmx 2RI HRIF4k o
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From (6.119), (4.46) and the L? — L™ — L type trilinear estimate (2.5) in Lemma 2.2, we
have
+,6,,150
Z Z |Re[Tk,k1,k2,k3]|
i=1,2,3 t,k0e{+,—}
< sup Comtk +4k1,++max{k2,k3}(22k1 ||V§§k1 (. 82
te[am—1 2m]
+ 25V [V, (1, §)ll2 + llgk, OllL2) IT T2 g, llz2lle ™ gay oo lle ™ gis [l
< C2—m/2+50ﬂm€§

where C is some absolute constant.

Therefore, now it would be sufficient to estimate kaz;;g and T,;:’,i;;@ (t.§),i € {3,4}.
Recall (6.108), (6.109), and (6.111). By doing integration by parts in “7” many times, we can
rule out the case when max{j;, jo} <m+k; - —Bm. lf max{ji, j»} > m+k; - —fm, from
the L2 — L™ — L type trilinear estimate (2.6) in Lemma 2.2, the following estimate holds

for some absolute constant C,

+,K,,0
Z Z Tk,k1,j1,k2,j2,k3,j3 (.8
i=3,4 |max{/1,j2}=m+k ——Bm L2
< C2m+3k1+k2+4k1,+ ”e—il‘Agk3 ||L°°
k j ki1+k —itA
dl > @I 4 (12 g e R gy, e
J1zmax{jz,m+ky ——Bm}
k —itA o—1
+ 3 (281 e A F (Vi 7y (1. Ol o

Jozmax{ji,m+k; ——Bm}

(L 2R o gy ) [ 2

< C2—3m/2+50ﬂm€0.

Note that above estimate is sufficient to imply our second desired estimate in (6.117). Hence
finishing the proof. ]

LEmMMA 6.11. — Fori = 1,3,4 and fixed k,ky, k>, k3 in the range (6.116) , our desired
estimate (6.117) holds if either k1 — ka| < 10 and ks < kp — 10 or |k; — k2| < 10,
|k3 —k2| <10,k < ky —10.

Proof. — The estimate of T} ,’(‘l‘klz 1, (1. &) is straightforward. As |[ky —k»| < 10, the size of]
symbol compensates the decay rate of e 7?4 gk, (t). From the L? — L> — L type trilinear
estimate (2.6) in Lemma 2.2, the following estimate holds for some absolute constant C,

TSN e )2 < C2RF4s (020|922, (1.8) 12 + 25 | Vegh, (1. 622 + gk, ()] 2)

(6.120) X ”e_itAgkz||L00||€_itAgk3||Loo < C273m/2+50Bm

Now, we proceed to estimate T,:’,';’L’,S’z k, (1,§) and T,:’,f]’",?z k;(1.6). Recall (6.108) and
(6.109). Note that, if either |k; — ko] < 10 and k3 < kp — 10 or k1 — ka| < 10,
|ks — kz| < 10,k < k; — 10, we know that V, ®>“*(§, n, k) has a lower bound, which

[739% 1)

is 25—48™ To take advantage of this fact, we do integration by parts in “;” many times to
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926 X. WANG

rule out the case when max{j,, jo} <m+k_ —58m. lf max{j,, jo} > m+k_ —5m, from
the L2 — L>® — L type trilinear estimate (2.6) in Lemma 2.2, the following estimate holds
for some absolute constant C,

+.K,L0
Z Z Tk,kl 2J1,k2,)2:k3,)3 .8)

i=3,4 |max{j;,j2}>m+k——58m L2

< C2m+2k+k1+4k1,+ ”e—itAgk3 ||Loo

x ( > ((1 4 2m¥2kny|le=ith gy [l + 2K1 o712
Jazmax{ji,m+k—_—58m}
X F [ Vegy g1 (ML) 18ks. ol
(6.121) + Z (2m+2k1 + 271 +k])||e—itAgk2,]_2 ||L°<> ||gk1,j1 ”LZ)

Jizmax{jz,m+k_—5Bm}
< C 2—3m/2+50;9m60

From (6.120) and (6.121), it is easy to see our desired estimates in (6.117) hold. O

LEmMMA 6.12. — Fori = 1,3,4 and fixed k, k1, k>, k3 in the range (6.116) , our desired
estimate (6.117) holds if k1 — ko| < 10, |k3 — k| < 10, and |k — k1| < 10.

Proof. — Since we still have |k; — ko] < 10, the estimate of Tkr,'c‘l‘kl2 ks (2. £) in (6.120)
still holds. It would be sufficient to estimate 7~ ,’: s k3 &, (t.6) and T,: ,';1’ ,fz k, (1.€), which is

[739¢ 1)

more delicate. For those cases, we need to study the space resonance in “n” set and the space
resonance in “o” set carefully as we did in the Z;-norm estimate of cubic terms in the proof]
of Lemma 5.7.

Recall that we already canceled out the case when (t,k,t) € &4 (see (5.32)) and
(¢ —n,n—o0,0) is very close to (§/3,&/3,£/3) in the normal form transformation. There-
fore, for the case when (z, «, t) € &4, we only have to consider the case when (§—n, n—0, 0) is
not close to (§/3,£/3,&/3), in which case either V,®“*(£, 1, k) or Vo ®"**(§,n, k) has a
good lower bound, which allows us to do integration by parts either in 7 or in o. The
estimate of this case is similar and also easier than the estimate of (6.121) in the proof of|
Lemma 6.11. We omit details here.

Now, we focus on the case when (t,k,t) € &;,i € {1,2,3}. By the symmetries between
inputs, it would be sufficient to consider the case when (z,k,t) € &7, i€, (1,k,1) €
{(+,—,-), (=, +, +)}. After changing the variables as follows (¢,7,0) — (£,2§ + n + 0,& + 0),
we have the following decomposition for i € {3, 4},

T g 0 8) = ) HIPRT2(1 ),

I, =1y

I1,02,7,i—2 _ I,,Ti—2
HU2 701 6) = ) Hiln ™6,

12—k1,—.jo=—k> —

]lll,jitl(t g) — Z / /Rz ltCI>1:K (Sna)lt( @‘L’KL(g 2§+T]+0§+0))§0111 (77)
{I,n}={1,2}

X 01,3 OV OTL (drau(—E = n— 0.6 + 1.6 + 0)gf (1.~ —1—0))
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X 8y i, E + M8, 1, (1.6 +0)dndo,
Hjlll’,g,ryz = _/ / eit5’~""(g,n,g)t2(rgl PHNE 26 +n+o.E+o0)
R2 JR2
X FgZCDI,K,L(E, 26+n+o0&+ O))dr,x,t(—é —n—0t+nE+0)

X g;i,,jl (t,—&—n— O)ggz’jz(t,%“ + n)gg(t,g + o)k (§)
X (pll ;if (n)wlz;it (U)dﬂdU,

where 5’”‘"(5 ,1,0) is defined in (5.35), the cutoff function @) is defined in (5.36) and the
thresholds are chosen as follows, [ := ky — 10 and [_ := —m/2 + 108m + ki,4+/2.

If t = +, ie, (t,k,t) = (4+,—,—). — Recall the normal form transformation that we
did in (4.1), see (4.20) and (4.30). For the case we are considering, (t,k,t) € S, we have
already removed the case when max{/;,l,} = . Hence it would be sufficient to consider
the case when max{/;,l>} > [4. Due to the symmetry between inputs, we assume that
I, = max{ly,l}. As [, > l_+, we can take the advantage of the fact that “V,,a”’“‘(&, n,0)”

.

is big by doing integration by parts in “n”. From (5.37), we can rule out the case when

[739% 2]

max{ji, j} <m + k_ — Bm by doing integration by parts in “»” many times.

If max{ji, jo} > m + k_ — Bm, from the L? — L® — L type trilinear estimate (2.6) in
Lemma 2.2, the following estimates holds for some absolute constant C,

11,l2,7,i
) D IHY @8l

max{ji,jr}>m+k_—Bmi=1,2

< C2m+4k1+4k1.+< Z (2m+2k1 + 2k1+j1)
Jj1zmax{jz,m+k_—Bm}

X ”gkl JJ1 (l‘)“L2 ”e_itAgkz,jz (t)”LOO
+ Z ((2m+2kl + Dle A gr, i ()l
Jazmax{ji,m+k——Bm}
(6.122) + 250 e T Ve, 5y (Do) ks, ()22 ) e gy (1) oo

<C 2—2m+50ﬂm co.

If t = —, ie, (t.k,t) = (= +,+). — Note that the estimates (5.38) and (5.39) hold for the
case we are considering. Same as before, due to the symmetry between inputs, without loss
of generality, we assume that [, = max{/y, [>}.

cc, 9

We first consider the case when I, > [_. Recall (5.37), by doing integration by parts in “
many times, we can rule out the case when max{ji, jo} < m + [, — 48m. If max{ji, j»} >
m + I, —4Bm, from the L2 — L® — L™ type trilinear estimate, the following estimate holds
for some absolute constant C,

2 > MHET 9l = Com kL

max{ji,j2}>m+ir—4fmi=1,2

< ( Yoo @R R g Oz e gk, () 129
Jrzmax{jz,m+Ilr—4Bm}
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+ > (2t e R gy (0)]lLoe
Jazmax{ji,m+Ilr—4Bm}
(6.123) + 251 e T Ve gy (1 6] l) 8ks, o (D2 ) e gy ()0

< C2—2m+50ﬁm6(2).

Lastly, we consider the case when I, = [_ = —m /2 + 108m + k1,+/2. Recall the estimate
(5.38). For this case, we use the volume of support in “n” and “o”. As a result, the following
estimate holds for some absolute constant C,

S HET )

i=1,2
< Cotkur (2mreltakn gmtSIEaky) (0Kt g (1) 2+ | Vegi (1. 6)(0)]]2)
(6.124) X | gk, (DllL1 gk (@)l < C27mH1000m G,
Hence finishing the proof. O

6.5. The Z, norm estimate of the quartic terms

Recall (4.38). For any '}, FSZ € {Lg, Q2¢}, we have

112 -~ JU2,V1 52,0
TiTZA4[0:2(. )]y (§) = > > D KRN0, 8),
12,01 ,v2€{+,—} ka<k3<ko <k, i=1,2,3,4
L1512,V ,V2,0 _ JL1512,5V1 V2,1 .
Kk ko ks by (1:8) = > Kk it deanimskaks (1 6) 1 € (3,4,

J1=2—k1 —jo=—k> —

where
(6.125)
H1,142,V1,V2,1 — it ®M1-H2:-V1:V2 (£,n,0,k)
Kk,k1,k2,k3sk4 (.8) = /Rz /Rz /Rz ’
(6.1206) X ey pawima (6§ =N —0,0 —k, K)rgrgg;:ll )

—

X g2t —0) gl (1,0 — k) g2 (1 )Y (E)dkdodn,
H1s12,V1,V2,2 o it ®M1-H2V1-V2 (£,7,0,K)
Kic kv dez ey (08) = /Rz Az /Rze Vi ()

X [TETZ (Curwawiva (E =0 — 0,0 — K, 10)) g (8,6 — )

+ Z Fgéul,uz,m,vz(s_U,H—G,U—K’K)Fglglljll (t’i:_rl)]

{l,n}={1,2}
(6.127) X g (t,n— a)g;; (t,0 —K)g> (t.k)drdodn,
,MU2,V1,V2,3 . [t M1 -M2V1-V2 (E,1,0,k) +
Kﬁkﬁilljlizgz,k3,k4(t’s) = Z /2/2 2wk(g)e”¢ i
ny={1,2y VR ISR
x (Féq)m,uz,vl,vz(f, 1,0, K))Fg(ém,uzm,m(s —1n,01—0,0 —K,K)

—_—

x gl (tE=m)g?  (t.n—0)g (.o —K)g>(t.k)dkdod).
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x TRV (£, 0,108, iz (€ — 1.7 — 0.0 — Kok)
(6.128) X g (18 = g2 L (40 = 0)gs (1.0 — )y (1, k) ddndo.
The main goal of this subsection is to prove the following proposition.

PROPOSITION 6.13. — Under the bootstrap assumption (4.49 ), the following estimates hold
[for some absolute constant C and any t € [2™~1, 2™,

(6.129)
o Z/ / TITZZ( NI TR A B (. Ol (E)dgdr | < C2Pmel.

t1,tr€[2m—1 2m]

(6.130) sup [[T{TZA40,2(, )] 2 < C27H0med
16[2”171,2’”]

Proof. — As usual, we first rule out the very high frequency case and the very low
frequency case. Same as what we did in the estimate of cubic terms, we move the derivative
Ve = —V,, in front of gk, (¢, § — n) around by doing integration by parts in 7 such that there
is no derivative in front of g, (t, & — ). As a result, the following estimate holds,

2 2k\~6k
YKL )2 < €O+ 22 FREK A g (1) 2
i=1,2,3,4

(6.132) < (IV286 &)z + 272 Vegiy (4. )22 + 2722218k, () 2)
x 2K tka | g ()2 llgh, ()2 < C22mHAm=(No=100k1 4 2.

where C is some absolute constant. Hence, we can rule out the case when k; > 48m. It
remains to consider the case when k1 < 48m. We can also rule out the very low frequencies
case. If either k4 < —3m — 308m or k < —2m, then the following estimate holds for some
absolute constant C,

1 2 2k\~k+ka+4k
D KRN 1, €) |2 < C(1 4 22m 2Kk rhat ek
i=1,2,3,4

(22K VEgk, (1.8 12 + 2 [ Vegi, (1.8l + gk, (D)]22)
x le ™ gr, ()l|Loe llgks () 221 8xa (D12 < C27"7P7eG
Now it would be sufficient to consider fixed k, k1, k2, k3, and k4 in the following range,
(6.133) —3m—308m <ky <ks <k, <ky <4Bm, —-2m <k <3Bm.
From the L2 — L® — L>® — L type multilinear estimate, the following estimate holds

2k1+4k
D KL D) < CoPreekL
i=1,2

x (29V1VEGk, (1. 8)ll> + 2511 VeZk, (1 D)l + N1k, (1.)].2)
(6.134) x e A giy (1)l zoe lle ™ gry (D)oo lle ™M gy () | Loo < C273/2H30Bm R,

where C is some absolute constant.
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It remains to estimate the case when i = 3, 4. We first consider the case when k1 —10 < k3.
For this case, the following estimate holds from the L2 — L™ — L — L type estimate, the
following estimate holds for some absolute constant C,

Z IIKMI’“Z’vl’vz’i(t,S)Ile < Comtaki+ak

k.,k1,k>.k3,kyq
i=3,4
< [(le™ gr, (1)l|zoe + 251 e A F 1 [Vgk, (1. E)]llLoo) + 2" TR e A gy (1) Lo |
(6.135)
x [le™ A giey ()| oo lle ™ gay (1)l ool iy ()2

< C2—m+8m/2€§'

Lastly, we consider the case when k3 < k; — 10. Recall (4.32) and (4.41). Because of|
the construction of the normal form transformation we did in Subsection 4.1, we know that
the case when 7 is very close to £/2 and |0, [x| < 271°|¢| is removed, which means that
“Vy@H1-H2:VE2 (£ o, k)7 has a lower bound, which is 2k=k1.+ To take advantage of this
fact, we do integration by parts in “n” many times to rule out the case when max{j, j>} <
m+k_—5B8m. If max{ji, jo} > m+k_—5Bm, from the L? — L® — L — L> type estimate,
the following estimate holds for some absolute constant C,

H1,02,V1,V2,0
Z Z ”Kk,khjl ,k2,j25k3,k4(t’ )l

i=3,4 max{ji,j2}>m+k—_—58m
< Z C2m+k+k2+2k1+4k1,+(2m+k+k1 + 2k1+j1)||gkl INOIE

J1zmax{jo,m+k_—58m}

—itA —itA —itA

X e 2 gy, o (D llLoolle ™ P iy ()| Lo le ™ gy (1) || Loo

+ Z (:zm-i-k-l-k2+2k1+4klAJr (2k1 ”e—itA 037—1 [ng(la E)]”Loo
Jo=max{ji,m+k——5Bm}

(6.136)
omtkrk e TitA g ()20 ) 252 | 8ky, o () 2 €T gas ()| 200 | g1y () ]2
< C2—3m/2+50ﬂm€(2).

To sum up, from the estimates (6.134), (6.135) and (6.136), we know that our desired esti-
mates (6.129) and (6.130) hold. O

LEMMA 6.14. — Under the bootstrap assumption (4.49), the following estimates hold for
anyt € [2"1, 2™ and any T}, I‘g € {Lg, Q).

(6.137) TIT2A3[0, 80 (2. 6)]ll2 < ComHdm (1 4 p2mtk+skiy o
E-E0=

Proof. — The desired estimate (6.137) follows straightforwardly from the estimate (6.113)
in Proposition (6.9), the estimate (6.130) in Proposition (6.13), and the estimate (7.13) in
Lemma 7.4. m
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7. Fixed time weighted norm estimates

There are mainly two tasks to complete in this section. (i) Firstly, we prove some fixed
time weighted norm estimates, which are stated in Lemma 7.1 and Lemma 7.2 and have been
used in previous two sections. (ii) Lastly, we estimate both the low order weighted norm
(Z1-norm) and the high order weighted norm (Z,-norm) of the profile of the quintic and
higher order remainder term 21, see the equation satisfied by the good substitution variable
v in (4.21). Therefore, finishing the bootstrap argument of the weighted norms of the profile
g(t) = e u(r) over time.

LEMMA 7.1. — Under the bootstrap assumption (4.49), the following estimates hold,

~ sup 19,8k (2. €) — Z Z B,lfkv] ,kz(l’ gz < C2—21m/205()v
te[am—1m] w,ve{+,—} (kl,kl)eXk

(7.2) sup 19,8k (1, £)[ 2 < C ming2 2k +2Im pomtbmy oy co=21m/20
te[am—1 2m]
(7.3) sup ([ As3[0:8ic(t, £)]ll 2 < C273m/2HBme,
tG[Zm_l ,2m]

where C is some absolute constant, y} i is defined in (6.2) and Bk ey e (t,&) is defined in (4.36).

Proof. — For the cubic and higher order terms, after putting the input with the smallest
frequency in L2 and all other inputs in L, the decay rate of L2 norm is at least 2737/2+8m
which gives us our desired estimate (7.3). Hence to prove (7.1) and (7.2), we only have to
consider the quadratic terms “B” k1 koo (,£)”. Recall (4.36), after doing spatial localizations
for two inputs, we have

B &)= 3 BN,

J1z2—ky —,jo=—k> —
B2 (1,8) = / NG G, (€ ey, (L E =gy . n)YrE)dn.

We first consider the case when |k; — k5| < 10. From the L2 — L® type bilinear estimate
(2.5) in Lemma 2.2, the following estimate holds for some absolute constant C,
(7.4)

k —itA —m48
Y B @Ol s Y C2% gk Nz e gk (0l < €27 e
lk1—kzl<10 k1 —ka|<10

[739% 1)

Meanwhile, after doing integration by parts in “n” once, the following estimate also holds,

ki~r—m—k+k —itA —itA
Yo IBE 6O < Y R R (e A gy oo + [le T A g, 1)
|k1—k2|<10 lk1—k2|<10

(7.5) % (I1Ve8k, (0. §)ll2 + | VeBir (1. 812 + 271 | ga, (1) 2) < C272mHH28me

Now, we consider the case when k» < k; — 10 and k; — + k» < —18m/19. Similar to
the proof of the estimate (5.10) in Lemma 5.2, from the estimate (5.15) in Lemma 5.3, the
following estimate holds for some absolute constant C,

Z Z Bkk1 kz(t’é)

ki —Fko<=18m /19 ve{+ =}
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< > Cligk, (1) 2 min{221 2 g, ()] .2,
ki, —+koy<—18m/19

x 2KH3k2 g (1, 6) | oo + 22K1F22 [Re[u] (1. £) Vi, (6) |20}

< Z C23¥m min{22k1.—+k2 p2k2 (Zkl,_+k2+m + 22k1,_+2k2+2m)}
ki —+kr,<—18m/19
< C2_21m/2060.

Lastly, we consider the case when k, < k; — 10 and ky - + k; > —18m/19. After
doing integration by parts in “»” many times, we can rule out the case when max{ji, j»} <
m + ki— — Bm. If max{ji, jo} > m + ky.— — Bm, from the L? — L™ type bilinear estimate
(2.5) in Lemma 2.2, the following estimate holds for some absolute constant C,

> IBE .9

max{ji,j2}>m+ky ——Bm

ky | ,—itA
< Z C2 e A gr, i lloollgiy i llz2
J1zmax{jz,m+ky ——Bm}
2y ,—~itA
7.6) n 3 C2% e ™ A gr, i ool gk joll L2

Jazmax{ji,m+ki ——Bm}
< C2—3m—2k2—k1,7+3ﬂm60 < C2_21m/20€0.

Combining the estimates (7.4), (7.5), and (7.6), it is easy to see that our desired estimate (7.2)

holds. O
LEMMA 7.2. — Under the bootstrap assumption (4.49), the following estimate holds for any

t €21, 2m,

(7.7)

19, T Tagr (t, &) — > > 521’("1’,(2(;,5)”” < CommHBmEIm (1 4 g2bmetkeskey
velt,—} (ki ,ka)ex?

where C is some absolute constant, Ty, Ty € {L, 2} and §Ij ,’c”l ks (t, &) is defined as follows,

. e . _
(78) B .86 = A; DG (6 — ) TaTage, (1§ — Mgy, (1 )Y ()dn.

Proof. — From (6.113) in Proposition 6.9, (6.130) in Proposition 6.13, and (7.13) in
Lemma 7.4, we know that all terms except quadratic terms inside 8,F1/F—Ek (t,&) already
satisfy the desired estimate 7.7. Hence, we only need to estimate the quadratic terms. Based
on the possible size of k; and k,, we separate into two cases as follows.

If (k1,kz) € X}C, i.e., k1 — ka| < 10. — Note that the following equality holds,

112 pit,v _ JURTS
TiTEBL, o) = > Ky

i=1,2,3

Kot = /}R L EMTITE (G, (6 = n. g, (1.6 = )8l (e ),

K}‘ffféi;z — Z /Rz eit@#ﬁ(é,ﬂ)ﬁ(l"é@ﬂ«&(%—, n))l—*g (q,u’v(g_- -, 77)
Iim={1,2}
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x g (t.€ —m)gy, (. mdn,
KLt = = [ 0 (r @ e T3 6m) e €~ 10

x gp (1.6 —n)gL (t.ndn.

From the L? — L type bilinear estimate (2.5) in Lemma 2.2, the following estimate holds
for some absolute constant C,

v, 151 ~ ~ ~
> KL e < C22R (221 VERk, (1.8) 2 + 251 VB, (4. 62 + 18k, (1 6) I 12)
|k1—k2|<10

x [le™ A giy (1)lLoe < €27+ eq,

cc, 9

We do integration by parts in “n ” once for K ]’jl’v,;;;z and do integration by parts in “n ” twice

for K ]‘fl’v,é;ﬁ. As a result, the following estimate holds for some absolute constant C,

W, 150
> 2 K e

lk1—k2|<10i=2,3
< Y k(> 2R Vige (.62 + 2K Vigk, (. §)ll2)

lk1—k>|<10 i=0,1,2
% (Ile™ gie, (1) |Loo + €72 g, ()| oo)

+ ) Do e T Vegiy g (6 O lLoe [ Ve, (1. )2
|k1—k2|<10 ji>max{—k1 —,j2}

+ ) > 2 e A I Ve, gy (4O Lo | VeBhy. s (1 )2

|k1—k2]|<10 jo=max{—ko —,j1}
— § — 1 k i k
< CamHme 4 N cam R 6 (g (D2 (Y 2721052 () gk, (0)22)
j1>—k1 — J2=J1
— i k . k
+ > Cam R 02 g, ()2 (Y 27 ey (X) gk, (0)]]2)
Ja=—ko — J1=Jj2

< Cz—m+8m€0.

If (k1,ks) € )(i, i.e., ko < ki —10. — For this case we have u = +. We separate it into two
cases based on the size of k1 + k». If k1 + k5 < —18m/19, the following estimate holds from
estimates (5.15) in Lemma 5.3,

2| X KER | X Biwed

i=1,2,3 |lve{+,—} 12 ve{+,—} L2
y
= (( X 2%1Vi8, (. 9)l2)
i=0,1,2

2R (N 2R VgL, (1. 6) o) + 22T gy <z)||Lz)
i=0,1

x Cmin{2° 32 g, (1) || Lge + 2717222 | Refv] (1. )k, (§) lge. 2% 72 gk, 2}
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< C(2k1+(§m + 22m+3k1+2k2+21§m) min{2k1+k2 23k2+m + 2k1+4k2+2m}60
< 2 Pme,

where C is some absolute constant.

Now, we will rule out the case when k; is relatively large. Same as before, we move the
derivative V¢ = —V),, in front of gi, (¢, £ — n) around by doing integration by parts in 7 such
that there is no derivative in front of g, (t,§ — n). As a result, if k; + k> > —18m/19 and
k1 > 5Bm, the following estimate holds for some absolute constant C,

+.v,151 nt,
> K e + 1B 4, @ 62
k1+ko>—18m/19,k1>58m i=1,2,3
< C22m+2k1 +ko+4ky 4 ”gkl (l)||L2

x (IVZ8ks (1, E)ll 22 + 27| VeBiy (1 )22 + 2722 | gk (1) 2)
< Z C22m+ﬂm+2k1—k2—(N0—lO)k1!+€% < C2—m—/3m60.
ki+ks>—18m/19,k|>5Bm
Lastly, we consider the case when k; + k, > —18m/19-and k1 < 58m. Note that

4

itptv - Sy TR ;i

TiTZB Y (1,6)— / e ENG L E =TT 2ge, (1. E =gy, (t.nydn = ) K
R i=1

where
K = [ et g, e —n g 0,6 = T T, (i
Kl:’,‘;gzz;z = Z K’jl:l},lz,;kzz,jz’
J1zki,—,jo=—ko
KGR im0 [ e g e 6 - DT,

(,n)€{(1,2),(2,1)}
+ (CL+ T} + deni (€ — 0. (Mg, (.6 — gy, (1)
+ B (6~ )Igy (1))
it (T + TYOBYE ) TE + T+ drn)gew € — 0.0k (1. — 8L, L (1.7)
+ (O + T+ dpa)(TE + T2 + )0 (6 — 1.8k, 1 (12 = Mg, o, (E.0)d.

_ e ]
Kidt= [ T e € € )
tme((1.2),@.03 7 F

X (8, (. MT gk, (1.6 — 1) + giey (6, € — T gy (t.m))dn
. S H.v ~
K2 = [R L TTEDRT + T (E TE + THOTE MG (€ —1.1)

X 8k, (t.& — gy, (t.mdn.
From the L2 — L™ type estimate (2.5) in Lemma 2.2, the following estimate holds,

” Klj_lj,l;cjzz;l “L2 =< C 2%k “FIFngz 02 ”e—itAgkl ()|l < C2_m+8m60,
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where C is some absolute constant. Now, we proceed to estimate K ,:rl ‘,;222 By doing integra-

tion by parts in  many times, we can rule out the case when max{ji, jo} <m + ki — fm.
From the L? — L* type estimate (2.5) in Lemma 2.2, the following estimate holds when
maX{jlv ]2} Z m + kl,— - ﬁms

+,0,2;2
Z ”Kkl,jl,kz,jz”Lz

max{j,j2}=2m+k; ——Bm
< Z C22k1 (2j1+k1+k2+j2 ¥ 2m+k1+k2)
J1zmax{m+ky ——Bm,j2}
X ”gkl J1 (t) ||L22_m ”gkz,jz (t) ”L1
+ Z C 2%k (2j1+k1+k2+j2 + om+tki +k2)
Jozmax{m+ky ——Bm,j1}
X &k jo Ol 227" 18Ky, 1 Dl 1
< C2—2m—k2+20ﬂm€0 < Cz—m—ﬁmeo,

where C is some absolute constant.

Lastly, it remains to consider K k+1 ,1;(,22;1" i € {3,4}. We do integration by parts in “n” once
for. K ,:“1 ‘;(223 and do integration by parts in “n” twice for K ,:r] ’,‘;(’22;4. As a result, the following
estimate holds,

+,v,2;3 +,v,2;4
K22 e + K4 2

<C( Y. 2%|Vigk, (. )2 + 2 IVigk, (1. 6)2)
1=0,1,2
x (221 e A gy [lpoe + 2F1TR2 e A gy ]| 0o
— i j k k
+ > C2mtkitke 272 || oS () g (1)1 22 1052 (%) 8y (1) I 2

J1zmax{—kj —,j2},j2>—ka —
+ > Camm kTRt 2201 || o8 () g ()12 102 (%) 8y (0] .2
Jazmax{—ka —,j1},j1=—k1,—

< C27m+28m+5m/2+k60

]

where C is some absolute constant. Hence finishing the proof. OJ

The rest of this section is devoted to prove the weighted norm estimates for the remainder
term 2 in (4.35), which will be done by using the fixed point type formulation (3.8). Before
that, we first prove the weighted norm estimates for a very general multilinear form, which
will be used as black boxes.

For gi € HYo=19n 7, N Z,,i € {1,...,5}, we define a multilinear form as follows,

O, (81(1). £2(0),83(1). 84(1). g5 (D) (€)

N it @ (Em,0m,07) Tkl r
_////e - g €m0 0)
r2 Jr2 Jr2 JR

X gi(t, & — gkt n—0)gs(t,0 — gk (1.0 — o")gl(t, 0" )Y (§)da’dy dndo,
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T,K,L

where the phase ®,;;° (£, 1, 0,1, 0") is defined as follows,

QL5 E . 0.n' 0') = AED—TA(E—nD—kA(n—o)—tA(o—n'—pA(n —a')—vA(o]).

T’K,

and the symbol g% (&,n,0,1,0') satisfies the following estimate for some absolute
constant C,

”q;,ﬁf(%_» n,0, TI/» 0/)Wk (E)kal (‘i: - ’I)sz (77 - 0)1/fk3 (0 - T/)WIM (’l/ - 0/)1///(5 (0/)” g

< C22k1 +6max{ky,...k5}+ )

Fori € {0, 1,2}, we define auxiliary function spaces as follows,
(7.9)
1f1z :=sup sup [ fllg . [fllg =207 Dt @OSDREATH Gk (x0) Py f ] 2.
! keZ j>—k_ k.j k.j
From the above definition and the definition of Z;-norm, i € {1,2}, in (1.22) and (1.23), we
know that the following estimates hold for some absolute constant C,

> kOO VL f (1. 8) 2 < Clf N1z, £z, = Cllfz,
kez

where i € {0,1,2},/ € {1,2}.

LEMMA 7.3. — Let gi(t) € HNo71N Z, N Z,, i € {1,...,5}. Assume that the following
estimate holds for any t € [2™~1,2", m € Z,

27 @i ()l o0 + @i Dl zy +27° g (Dl zo < €1 :=€/®, i €{l,....5),

then the following estimates hold for any t € [2™~1,2™] and any w,v,k,t,t € {+,—},
(7.10)

Y 2T F TR (610 82(1). 83(0). 84(1). g5(1)(©)] 7, < C2TEHIEMEG,
i=0,1,2

where C is some absolute constant.

Proof. — As usual, we rule out the very high frequency case and the very low frequency
case first. Without loss of generality, we assume that k5 < k4 < k3 < k; < k;. From the
L?—L®— L% —[*®—L*® type multilinear estimate and the L>® — L? type Sobolev estimate,
the following estimate holds for some absolute constant C,

D 25 E QRN (81 (1) 82,k (1) 835 (1) 8akea (). 85,5 () O 57

i=0,1,2
(71 1) < C23m+(2+8)j230k1,++(1—5)k+k5 ”gk] ”L2 ||e—ilAgk2 ||Loo

i i

—itA —itA
[l gis lloe lle ™" giy Lo llgis I L2-

ks < —=3m—2(1428)j,ork <—3m—2(1+ 28);j. Hence it would be sufficient to consider
fixed k, k1, k2, k3, k4, and k5 in the following range,

From estimate (7.11), we can rule out the case when k; + > (3m + 2j)/(No — 45) or

(7.12) —3m —2(1+28)j <ks.k <ki+2<Qm+2j)/(No—45).
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From now on, k,k;,i € {1,...,5}, are restricted inside the range (7.12). We first consider
the case when j > (1+4) (m +k1,+) + Bm. For this case, we do spatial localization for inputs
“gx,” and “gg,”. Note that the following estimate holds for the case we are considering,

2710 < | Ve[x & + 1 @FS E 00 0 ][ () < 2710,

Therefore, by doing integration by parts in “£” many times, we can rule out the case when
min{jy, j} < j —§8j —dm, where j; and j, are the spatial concentrations of gx, and gi,
respectively. For the case when min{ji, j,} > j —§j —dm, the following estimate holds from
the L2 — L® — L® — L*® — L™ type multilinear estimate,

—i —1 K,
2. S 2D T OF @k, (). 82k (1),
mU PR R 02 834 (1), 2y (1), 254 O 5,
= > > C2B—Dm+ij+8j+3fm+(3—8)k1+30ky 4

i=0,1,2min{j,j2}>j—8j—8m

i i i

X g1, i1 1222°2 182,k 2 le ™ g3 s oo lle ™ A ga ey oo lle ™ g5 s 100

< C2—m/2+50ﬂm€g,

where C is some absolute constant.

It remains to consider the case when j < (1 4 §) (m + k1,+) + Bm. Recall (7.12). Note
that j now is bounded, we have —6m < k5 < ky < 58m. We split into three cases based on
sizes of the difference between k1 and k5 and the difference between k5 and k5 as follows.

T,K L

If ko < ki —10. — For this case, we have a good lower bound for V, &5 (&, n.0,1',0").
Hence, we can do integration by parts in “n” many times to rule out the case when
max{ji, j} < m + k;— — Bm. From the L2 — L® — L% — L*® — L type multilinear

estimate, the following estimate holds for some absolute constant C,

— -1 N3
Z Z 2(3 l)m” (’? [Q]E,I;Lfv(gl,]ﬂ ,J1 (t)! g2,k2,_/2(t)9
max{ji,j2yzm+ky ——pm i=0.1.2 8343 (1): 8a ey (1), 8515 (1)) (E)] 5,
< Z C23m+4ﬂm+3k1+30k1’+||g1,k1,j1 ||L2||e_itAg2,k2,j2”L°°

Jj1=zmax{—ki —,j>,m+k; ——Bm}

x [le A g3 as lreolle ™ ga ke oo lle ™ g5 ks llLoo
+ Z C23m+4ﬂm+3k1 +30ky, 4 +ka+ks ”g2 k
k2,

Jjazmax{~k> —,j1,m+ky ——Bm}

J2 [§%
i

i

A —itA
Bgigr i lleeele™ " g5 ks Lo g4k |2 1 g5,k5l2

< Cz—m/2+l80ﬂm€(2).

X |le”

If |ky — k2| < 10 and k3 < k; —20. — Note that, Vo ®;5" (6, 1,0,7',0") has a good lower
bound for the case we are considering. Hence, by doing integration by parts in o, we can
rule out the case when max{j,, j3} < m + ko — Bm, where j, and j; are the spatial
concentrations of inputs g, and gi, respectively. From the L2 — L®° — [® — [*®° — [
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type multilinear estimate, the following estimate holds for some absolute constant C,

3—i —1 Ky
Z Z 2 l)m”C? [Q;,va(gl,kl (1) 82k, (1) 83.k3,3 (1)
maxtjz,3)2m o, ~—fm 120,12 g (1) 851 OOl
< > CPmHBm RNt g2
J2zmax{—ka,—,j3,m+ki ——Bm}
—itA i i

—itA —itA —itA
S2ka jnllLoelle ™ gy lzoe le ™ ga iy oo lle ™ gs Il oo

+ Z C23m+4ﬂm+3k1 430k, ++ka+ks ||g3 ks s ||L2

J3zmax{—k3 —,j2,m+ki ——Bm}

X |le

—itA —itA
X [le™" g2 ko Lo lle ™ 2 g1 iy oo llga ks L2 1€5.k5 1 22

< C2—m/2+180,3m€§.

If |k1 — k| < 10 and |ko — k3| < 10. — This case is straightforward. By the L2 — L — L™ —
L% — L type multilinear estimate, the following estimate holds for some absolute constant
C b

> 28T O (81 (0. 82 (1 8y (1) 8y (1) 8545 () )] 137
i=0,1,2
< CPmHBm AR |l o (2 NeT A g1 ey (| Los e g2 e, ()] oo

i —itA

e A g3 as ()| Loolle™ " gaky () [lLoo
< szm/2+180ﬂm63.
To sum up, our desired estimate (7.10) holds, hence finishing the proof. O

With the multilinear estimate (7.10) in the above lemma, now we are ready to estimate the
Z;-norm of the quintic and higher order remainder term R, i € {1,2}.

LeEmMA 7.4. — Under the bootstrap assumption (4.49), there exists some absolute
constant C such that the following estimate holds for the profile of the remainder term R,

(7.13) sup [l A Ry llz, < €200,
l€[2m71,2m]i:1,2

Proof. — Recall the definition of u = Ah+iv and the definition of v in (4.20). To estimate
the weighted norms of the reminder term e’2 R, from estimate (7.10) in Lemma 7.3,
we know that it would be sufficient to estimate the weighted norms of e?*A A 5[B(h)y] =
eitAAzs[aﬂﬂ](f)]Z:O-

Recall the fixed point type formulation for V, ;¢ in (3.8). We decompose A >s[g;(z)] into
two parts: one of them doesn’t depend on A>5[Vy ¢] while the other part does depend
(linearly depend) on A>5[Vy ;¢]. For the first part, estimate (7.10) in Lemma 7.3 is very
sufficient. Hence, it remains to estimate the second part. As usual, by doing integration by
parts in § many times, we can rule out the case when j > (1+8)(max{m+ky,4,—k_})+fm.
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If j < (14 8)(max{m + k1 4+, —k_}) + Bm, from the estimate (7.10) in Lemma 7.3 and the
L? — L type bilinear estimate, the following estimate holds for some absolute constant C,

3 e Ass[Vez@) (1)o7, < C23m/2+2008me,

i=1,2

(7.14)
+ €22 (| A Vi 2] E) | o prislle T g w00 + (181120 VIAS Vi 2]l 20 ar15)
+ C2%" || gl 20 | A5V, z 0] (1, §) | oo 0.

Similar to the proof of (3.17) in Lemma 3.2, the following estimate holds for i € {5, 6},

| Asi [Vx,z(p]”L?"HZO
< C[Ilth. ) w301 |0, ) 1 30.0 1 ) 30 + [1Cr ) w30 [ A i [Vie 2]l Lo 20 |-

where C is some absolute constant. Under the bootstrap assumption (4.49), the above esti-
mate further implies the following estimate,

(7.15)  |A5i[Vx,z0]ll Lo° mr20
< 2C[|(h. ) llw o1 [ G ) 5300l s ) 30 < C2724Pmed i e (5,61
Therefore, from the estimates (7.14) and (7.15) and the estimate (7.10) in Lemma 7.3, we

obtain the following estimate,

(7.16) Z 162 Ass [V 0)(0) | Loz, < C23m/2+2008m
i=1,2
where C is some absolute constant. Hence finishing the proof of the desired estimate (7.13).
O
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