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Abstract: In this paper, we introduce a new set of vector fields for the relativistic
transport equation, which is applicable for general Vlasov-wave type coupled systems.
By combining the strength of Klainerman vector field method and Fourier method, we
prove global regularity and scattering for the 3 D massive relativistic Vlasov—Nordstrom
system for small initial data without any compact support assumption, which is widely
used in the literature for the study of Vlasov equation.
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1. Introduction

1.1. Anoverview. Inplasma physics and also in general relativity, the dynamics of many
physical systems can be described by Vlasov-wave type coupled systems of equations.
For example, the motions of electrons and protons, which are particles, in solar wind are
subjected to the electromagnetic field created by the particles themselves. The dynamics
of particles and electromagnetic field can be described by the Vlasov—Maxwell system
in the collisionless case. Moreover, in general relativity, the motion of a collection of
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collisionless particles in the framework of Einstein’s general relativity is described by
the Einstein—Vlasov system, which is also a Vlasov-wave type coupled system. For our
interest, we restrict ourself to the three dimensions case.

An interesting problem, which is also widely studied in the literature, is to understand
the long term regularity for these Vlasov-wave type coupled systems. Most of previous
results imposed compact support assumption on the initial data. The long term regularity
problem for unrestricted data is less studied.

In this paper and its companion [40], based on two new observations, we prove global
regularity for the 3D massive relativistic Vlasov—Nordstrom system (see Sect. 1.2) and
the 3D massive relativistic Vlasov—Maxwell system (see Sect. 1.3) without imposing
compact support assumption on the small initial data.

The first observation is that there exists a new set of vector fields for the massive
relativistic Vlasov equation, which depend on a geometric observation about the light
cone in (x, v)-space instead of solely in physical space. The second observation, which
will be elaborated in [40], is that the spatial derivative in the rotational in v direction,
i.e., v/|v| x Vy, plays a role of null structure for the Viasov-wave type nonlinearity of
the Vlasov equation.

In this paper, we will elaborate the first observation and the construction of the new set
of vector fields, which helps to control the energy of Vlasov part near the light cone. More-
over, we introduce a framework for the Vlasov-wave type coupled system that allows
us to combine the strength of Klainerman vector field method and Fourier method. As a
result, we prove small data global regularity for the 3D relativistic Vlasov—Nordstrém
system without compact support condition. The Fourier method implemented here is
motivated by the method developed in the study of relatively simpler Vlasov—Poisson

system in [41]. We remark that, thanks to the smallness of coefficient “m? /v m?%+|v|?”
in the relativistic Vlasov—Nodstrom system (1.1), there is no need to exploit the null
structure mentioned in the second observation.

Since the benefit of good coefficients is not available for the relativistic Vlasov—
Maxwell system, in [40], we will elaborate the second observation and show how to
exploit the hidden null structure, which is related to the structure of the time resonance
set, by using a Fourier method.

1.2. The Vlasov—Nordstrom system. The Vlasov—Nordstrom system describes the col-
lective motion of collisionless particles interacting by means of their own self-generated
gravitational forces under the assumption that the gravitational forces are mediated by a
scalar field. This system was proposed by Calogero [4] as a laboratory substitution for
the more complicated and also more physical Einstein—Vlasov system. We refer readers
to [4—6] for more detailed introduction.

Mathematically speaking, the 3D relativistic Vlasov—Nordstrom system reads as
follows,

2
m- f
P —ANgp=| ———d (R xR RS R,,
( t ) - m2+\v|2 v, f t XNy XK, —> IRy
(RVN) m?

atf"'ﬁ'vxf_((at+{)'Vx)¢(tvx))(4f+v'vvf)_ \/ﬁvxqﬁ'vvf:(),
FO,x,v) = folx,v), ¢(0,x)=0¢o(x), 9¢(0,x)=ai(x),
(1.1)

where 9 = v/y/m? + |v|?, “m” denotes the mass of particles, ¢ (¢, x) denotes the scalar
gravitational field generated by the particles and f (¢, x, v) denotes the density distribu-
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tion of the particles. After normalizing the mass of particles, we only need to consider
the case m € {0, 1}, which corresponds to the massless case and the massive case re-
spectively. Since we are interested in the massive case, from now on, m is normalized
to be one.

If the initial particle density f(0, x, v) has compact support, Calogero [5] proved that
the 3D RVN system (1.1) has a unique global classical solution. However, no asymptotic
behavior nor the decay estimate of the scalar field were obtained in [5]. If the initial data
are small and moreover the initial scalar field has a compact support, Friedrich [12]
proved the global existence of the solution and the decay estimates for the scalar field.
Note that the high order derivatives of solution were not studied in [5,12].

Recently, in the spirit of the Klainerman’s classic vector field method [25,26] for the
nonlinear wave equations, Fajman—Joudioux—Smulevici [9, 10] proposed a very interest-
ing modified vector field method to study the propagation of regularity for the solution
of the RVN system. For the 3D massless RVN system, i.e., m = 0 in (1.1), and the
massive RVN system in dimension n, n > 4, they proved global regularity for suitably
small initial data. In particular, the important compact support assumption was removed
for these scenarios.

For the 3D massive RVN system, it was not clear whether the compact support
assumption assumed in [5,12] can be removed and the propagation of regularity can
be studied at the same time. A recent interesting result by Fajman—Joudioux—Smulevici
[10] shows that the 3D massive relativistic RVN can be solved forwardly in the sense
of the hyperboloid foliation of the space-time for small initial data, which in particular
implies the existence of global solution for small initial data with compact support.

For the more physical Einstein—Vlasov system, Taylor [39] proved that global stability
holds for the massless case if the initial small particle density has compact support
in “x” and also in “v”. Recently, Bigorgne-Fajman—Joudioux—Smulevici—Thaller [3]
showed global stability of the Minkowski spacetime for the massless Einstein—Vlasov
system without compact support assumption. For the massive case, global stability of the
Minkowski spacetime also holds if the small initial particle density has compact support
in “x” and in “v”, see Lindblad—Taylor [29]; or the small perturbation of the Minkowski
spacetime is compact in the sense that it coincides with the Schwarzschild data outside
a compact set and the small initial particle density has compact support in “x” but not
in “v”, see Fajman—Joudioux—Smulevici [11]. See also [22,36] for related work on the
Vlasov—Poisson system.

1.3. The Vlasov—Maxwell system. First of all, we would like to emphasize the purpose
of introducing the Vlasov—Maxwell system in this paper. For the sake of simplicity and
conciseness, we don’t redo similar computations, which concern the new introduced
vector fields, in our second paper [40], which studies the small data global regularity
problem for the 3D relativistic Vlasov—Maxwell system in details. Therefore, we for-
mulate the related results in a way such that they are applicable for both the RVN system
and the RVM system. For readers who are not interested in the Vlasov—Maxwell sys-
tem, they can skip this subsection and related discussions without having any problems
understanding the Vlasov—Nordstrom system.

In plasma physics, a sufficiently diluted ionized gas or solar wind can be considered
as a collisionless plasma, which means that the collision effect between the particles is
not as important as the electromagnetic force. The dynamics of the collisionless plasma
is described the Vlasov—Maxwell system. We are interested in the physical massive
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relativistic case, in which the the speed of light is finite, particles are massive and the
speed of massive particles is strictly less than the speed of light.

After normalizing the mass of particles and the speed of light to be one, the relativistic
Vlasov—Maxwell system with given initial data reads as follows,

Qf+0-Vif+(E+0xB) -V, f =0,

V'E=4n'/f(t,x,v)dv, V-B=0,
(RVM) (1.2)
3,E=VXB—4n/f(l,x,v)ﬁdv, 0B=—-VxE,

fQO.x,v) = fo(x,v), E(0,x)=Eo(x), B(0,x)= Bo(x),

where f (¢, x, v) denotes the density distribution function of particles, (£, B) denote
the electromagnetic field, and v denotes the relativistic speed. More precisely, 0 :=
v/ 1+|v%

The Cauchy problem of long term regularity for the 3D RVM system has been
considered by many authors. A remarkable result obtained by the Glassey—Strauss [17]
says that the classical solution can be globally extended as long as the particle density has
compact support in v for all the time. A new proof of this result based on Fourier analysis
was given by Klainerman—Staffilani [27], which adds a new perspective to the study of
3D RVM system. See also [15,32,37] for improvements of this result. An interesting line
of research is the continuation criterion for the global existence of the Vlasov—Maxwell
system instead of assuming the compact support in “v” assumption. In [21], if the initial
data decay at rate [v|~7 as |v| — oo and the assumption that ||(1 + [v]) (¢, x, V)|l poo 1
remains bounded form all time, then the lifespan of the solution can be continted.
Recently, an interesting new continuation criterion was given by Luk—Strain [31], which
says that a regular solution can be extended as long as ||(1 + |v|)?/% (¢, x, v)IILng
remains bounded for 6 > 2/q,2 < g < +00. See also Kunze [28], Pallard [33], and
Patel [34] for the recent improvements on the continuation criterion. See also [16,30,31]
for results in other physical dimensions.

Although the assumptions in above mentioned results don’t depend on the size of
data, the assumptions are imposed for all time, which are strong. One can ask whether
it is possible to obtain global solution by only imposing assumptions on the initial data.
The first positive result was given by Glassey—Strauss [20]. It, roughly speaking, says
that if the initial particle density f(0, x, v) has a compact supports in both “x” and
“v” and also the electromagnetic field (E(0), B(0)) has compact support in “x”, and
moreover the initial data is suitably small, then there exists a unique classical solution.
An improvement by Schaffer [35] shows that a similar result as in [20] also holds without
compact support assumption in “v”” but with compact support assumption in “x” for both
the initial particle density and the electromagnetic field.

Itis also interesting to ask for the 3D RVM that whether the regularity of solution can
be unconditionally propagated for all the time and whether sharp decay estimates hold.
This question can be answered in higher physical dimension n > 4 for small initial data,
see Bigorgne [1]. For the two dimensional case, global regularity for large data has been
established by Glassey—Strauss [18,19] with compact momentum support assumption
and then later extended to the non-compact support case by Luk—Strain [31]. After the
completion of [40], Bigorgne [2] also showed sharp decay estimates for the 3D massive
RVM for small initial data, see also Wei—Yang [42] for global existence of the 3D RVM
for the partial large initial data, more precisely, the initial particle distribution is small
and the initial electromagnetic field is large.
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1.4. A rough statement of the main result, the method, and the outline of this paper.
Since the precise statement of the main theorem, Theorem 4.1, depends on two sets of
vector fields discussed later, we postpone it to Sect. 4.4. In this subsection, to give a
sense, we provide a rough theorem for the 3 D relativistic Vlasov—Nordstrom system.

Theorem 1.1 (A rough statement). Given any smooth suitably small localized initial
particle density f(0, x, v) and initial data of scalar field (d)o(x), ¢1(x)), where the
particle density f(0, x, v) decays fast but polynomially as (x, v) goes to infinity. Then
the 3D massive relativistic Vlasov—Nordstrom (1.1) admits a unique global solution.
The regularity of initial data can be globally propagated and the nonlinear solution
scatters to a linear solution in a low regularity space. Moreover, the high order energy
of solution only grows sub-polynomially and the scalar field and its derivatives have
sharp rate 1/(1 + |t]) over time.

In this paper and its companion [40], motivated by the recent progress in the nonlin-
ear dispersive equations, e.g., [7,8,13,14,23,24], we introduce a Vector fields-Fourier
method, which combines the strength of both the vector fields method and the Fourier
method, to study the small data global regularity problem and the asymptotic behavior
of the Vlasov-Wave type coupled system.

From the seminar works of Klainerman [25,26], we know that there exists a set
of vector fields which generate the Lorentz group that leaves the Minkowski spactime
invariant. One of the main strengths of the Klainerman vector field method is that the
decay rate of the nonlinear wave equation is controlled by the L>-type energy, which
involves the vector fields, via the Klainerman—Soblev embedding.

Following this idea, we introduce a new set of vector fields for the Vlasov-type
equation, which aims to improve the understanding of the acceleration term V,, f, which
causes the main difficulty in the small data global regularity problem as V, doesn’t
commute with the transport operator d; + 0 - V. This type of estimate is not true

In connection with the space-time resonance analysis, the normal forms, we also
appeal to the Fourier method to handle the delicate decay estimates of both the wave part
and the density type function of the Vlasov equation. This method has been successfully
applied in the small data global regularity problem in water waves and plasmas, see
[7,8,23,24]. In this paper and [40], the Fourier method has been used in an essential
way. For example, note that the inhomogeneity of the Vlasov—Nordstrom system (1.1)
contains the linear density type function, which is problematic in the energy estimate.
To overcome this difficulty, we do the normal form transformation, which involves a
Fourier multiplier operator, at the initial stage to utilize the absence of time-resonance
set, which essentially comes from the fact that the speed of particles is strictly less than
the speed of wave.

The rest of this paper is organized as follows.

e In Sect. 2, we define notations used in this paper, introduce profiles for the RVN
system (1.1), and prove two basic L{°-type linear estimates.

Here the profile of a nonlinear solution means the pull back of the nonlinear solution
along the linear flow, e.g., the profile of the Vlasov distribution function f (¢, x, v) is
defined to be f (¢, x + 10, v).

e In Sect. 3, we introduce the concept of inhomogeneous modulation of light cone in
(x, v)-space, construct two sets of vector fields and decompose the bulk derivative
“Dy = V, —tV,0 - V,” in terms of the new set of vector fields. In particular, the
coefficients of the decompositions of D, are related to the inhomogeneous modulation.
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e In Sect. 4, we set up the high order energy estimates for the Vlasov—Nordstrom
system, give a more precise statement of the main theorem of this paper, Theorem 4.1,
and use a bootstrap argument to prove our main theorem.

e In Sect. 5, we control the increment of both the high order energy and the low order
energy over time for the profiles of the nonlinear wave equation.

e In Sect. 6, we control the increment of both the high order energy and the low order
energy over time for the profiles of the particle distribution function.

e In Appendix A, for the sake of readers, we give detailed computations for the com-
mutation rules between the bulk derivative D, and the new set of vector fields as well
as the case when the vector fields act on the inhomogeneous modulation function.

2. Preliminaries

2.1. Notation. For any two numbers A and B, weuse A < B, A~ B,and A <« B
to denote A < CB, |A — B| < cA, and A < ¢B respectively, where C is an absolute
constant and c is a sufficiently small absolute constant. We use A ~ B to denote the case
when A < B and B < A. For an integer k € Z, we use “k,” to denote max{k, 0} and
use “k_" to denote min{k, 0}. For any two vectors &, n € R3, we use Z(£, n) to denote
the angle between “£” and “n”. Moreover, we use the convention that Z(¢, n) € [0, «].

For terminology from Fourier theory used in this paper, we refer readers to the
seminar work by Stein [38]. For f € L(R3), we use both f (&) and F(f)(&) to denote
the Fourier transform of f, which is defined as follows,

F(HE) = / e f(x)dx.
R3

We use F~! (g) to denote the inverse Fourier transform of g(£). Moreover, for a dis-
tribution function f : Rf’c X R?) — C, we treat “v” as a fixed parameter and use the
following notation to denote the Fourier transform of f(x, v) in “x”,

fE v = / e f(x, v)dx.
R3

We fix an even smooth function v/ : R — [0, 1], which is supported in [—3/2, 3/2]
andequalsto“1”in[—5/4, 5/4]. Forany k € Z, wedefine Y, <k, ¥>k : R3UR — R
as follows,

Y () = ¥ (1x1/2% — P (xl/257h,
Yk () == P (1x1/25 = Y (),

I<k
Yo (x) =1 = Y<—1(x).
Moreover, we use Py, P<; and P> to denote the projection operators by the Fourier

multipliers ¥ (-), ¥<k(-) and ¥> () respectively. We use fi(x) to abbreviate Py f (x).
For f € L'(R?), we define

fr=f PAfli=f f=f, P_[fl:=F. (2.1)
Define
xi = {(k1, k) : |ky — ka| < 10, k < max{k, k) + 1}, (2.2)
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Xi = (k1. ko) 1y < ki — 10, |k — ki | < 1},
Xi = {1 k) t ki < kp =10, [k — ko| < 1), (2.3)

where Xkl corresponds to the High x High type interaction and Xk2 and X/? correspond
to the High x Low type interaction and the Low x High type interaction respectively.
We define unit vectors in R3 as follows,

e1:=(1,0,0), e2:=(0,1,0), e3:=(0,0,1).

Moreover, we define the following vectors,

X,-:eixx, Vi=eiXU, V,-:eixﬁ,
~ - v
Vi=e xv, v:i=—,
v
ﬁ,’ ::f)-e,', 131' ::6~e,~. (2.4)

where i = 1,2, 3. As a result of direct computations, the following equalities hold for
Yu,v € R3,

i=1,2,3
o 0]
U T
vaﬁ:L ie{l,2,3}. (2.5)
(L+ o)t -

For any k € Z, we define S,‘:O-norm associated with symbols as follows,

Im@llse == Y. 2*KFVEmE Y @]l (2.6)

l|=0,1,...,10

Moreover, we define a class of symbol as follows,

S¥i={m@): m@Els~ = sup [m(&)llspe < oo} 2.7)
€

Definition 2.1. We define a linear operator as follows,
Qi = —Ri|VI™', Q= (01, 02, 03), ie{l,23), (2.8)
where R;, i € {1, 2, 3}, denote the Riesz transforms. Hence, we have

1d=V-Q. 2.9)
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2.2. The profiles of the relativistic Vlasov—Nordstrom system. The idea of studying the
profile of the system instead of the original variables is not new, it has been widely used
in the study of nonlinear dispersive equation, e.g., see [7,8,13,14,23,24]. One benefit of
studying the profile is that the effect of linear flow has already been taken into account
in the transformation, we can focus on the nonlinear effect.

In this subsection, we define the profiles of the Vlasov part and the scalar field part
and obtain the evolution equations for the profiles over time. We will also perform similar
procedures in Sect. 4.2 when we apply vector fields on the Vlasov—Nordstrom system.

We first define the profile “g (¢, x, v)” of the particle distribution function “ f (¢, x, v)
”as follows,

g(t,x,v) = f(t,x +0t,v), = f(t,x,v) =g, x—vt,v). (2.10)

As aresult of direct computations, the profile g(, x, v) satisfies the following equation
from the system of equations in (1.1),
0,g(t,x,v) = (0 +0-Vy)op(t, x + ﬁt)(4g(t, x,v)+v-Dyg(t,x, v))
N Ve (t, x + 01)

- Dyg(t, x,v). (2.11)
V1+|v)?
where

Dy =V, —1Vyd -V, Dy =0y —13,0-Vy, i€{l,2,3). (2.12)

Hence, to control the nonlinear effect in (2.11), it’s crucial to understand the role of
derivative “D,,” acts on the profile g, which will be elaborated in Sect. 3.1.

Next, we define the profile “A(¢)” and the half wave u(¢) of the scalar field part in
(1.1) as follows,

ht) = e"WVu@), u@):= 0 —i|V)o@).

Note that, we can recover ¢ and d;¢ from the half wave u(z) and the profile A(z) as
follows,

o = 02O
¢ = %: Do VTt o),

nef+,—}
cpi=in/2, u@) =e "Vh@).

In terms of the half wave u (), we can rewrite the equation satisfied by the profile
g(t, x,v)in (2.11) as follows,

1
0,g(t,x,v) = Z (5 +cyu - R)u“(t, X+ f)t)(4g(t, X, V)
nel+,—}
cuRut(t, x + 1)

1+

+v- Dvg(t,x,v))+ -Dyg(t,x,v), (2.13)



3D Relativistic Vlasov—Nordstrom System 1851

where R := V,/|V| denotes the Riesz transforms. Moreover, on the Fourier side, we
have

48 E V)= Y /R M EDTIIETI R g — ) (al(v. € — MR 7. V)

nel+ -}
+al(v. & —n) - (Vy —itVyd - n)g(t, n, v))dn, (2.14)

where

B icM“;“

a,(v.£) = (2+idc,d £E17"), a,(v.&) = 2(1 +i2c,0 - E[E]7") + m
(2.15)

From the system of equations in (1.1), we can derive the equation satisfied by u(#)
as follows,

1 1
(@ +i|V|)u(t)=/ —f(t,x,v)dv=/ ————g(t, x — 0t, v)dv.
f w T+ 0P w T+ 0P
(2.16)
On the Fourier side, we have
dh(r,8) = / AL L g—— )Y 1) 2.17)
R0 ST+l

Note that, the inhomogeneity of the above equation is linear with respect to the
Vlasov part, which, generally speaking, very hard to be controlled directly in the energy
estimate.

However, we observe that the nonlinearity in (2.17) is actually oscillating in time.
To take the advantage of the oscillation of the phase “|&| — 0 - £” in (2.17) over time,
instead of controlling the increment of the profile 4 (¢) over time, we control the following
modified profile,

n@t. &) = h, it|g|—iti-€ iA 1 oo,
(t,8) (t€)+/Rze ISI—vf\/Wg(tgv)v

Recall the Egs. (2.14) and (2.17). After doing integration by parts in v once, we can
derive the equation satisfied by the modified profile /(¢) as follows,

i, = [ e L
R3 V1+v]2 &l —

— Z pitlEl=itpulg—n|—itdn
} R3 JR3

——09,8(1, &, v)dv
v-&

ne{+,—
ay (v, & & — A (t, & — M, 0, v)dndv (2.18)
where
| _ > 2 _
ay (v, —1) = fdyy (v = 1) —Vy - ( e v & — 1) ). (2.19)

VI+ (gl —v-§) V1I+ (gl - v -§)

where a/, (v, £), i € {1, 2}, are defined in (2.15).
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2.3. Linear decay estimates. Itis well known that the density of the distribution function
decays over time. Now, there are several ways to prove this fact, e.g., performing change
of variables, using the vector fields method. We refer readers to a recent result by Wong
[43] for more detailed discussion. In [41], we provided another proof for this fact by
using a Fourier transform method.

Intuitively speaking, on the Fourier side, we can represent density p(#, x) in terms
of the profile g(z, x, v) defined in (2.10) as follows,

p(t,x):/ f(t,x,v)dv:/ g(t,x — 10, v)dv
R3 R3

ZA;@ /R% NETIE (1 & v)dEd.

Therefore, from the stationary phase point of view, the decay rate of density function
is connected with the regularity. In practice, we can do integration by parts in v in the
above integral. As a result, we can gain r~! decay rate by paying the price of losing

g1~

More precisely, the following Lemma for general density type functions holds,

Lemma 2.1. For any fixed x € R3 a,t eR st [t] > 1, a > —3, and any given symbol
m(€,v) € LS, the following decay estimate for the density type function holds,

| / f TETIE 6 1) E193 (1 &, v)dvdt |
R3 R3
SO (D> IVEmE v)liges~)

0<c1<5+la] 0<c2<5+|a]

17370+ )V g, 0, )

+ A+ )+ Ve (2, x, v) g ] (2.20)
Proof. See [41][Lemma 3.1]. O

Asinthe previous subsection, instead of studying the nonlinear wave equation directly
in this paper, we study a nonlinear half wave equation, which is convenient to study on
the Fourier side. Hence, we provide a L{°-type decay estimate for the linear half wave
equation in the following Lemma.

Lemma 2.2 (The linear decay estimate). For any u € {+, —}, the following estimate for
the half-wave solution holds,

| /R TETI () @)y (€)dE| < minf2, (L ]+ )T m (€) lspe
x (D0 2UVEFG V®) e + 21V F e V) ll). (221)

0<n<l

Proof. By using the volume of support of &, we have

| /R T ) 7 (&) v (6)dg |
S 2Xm@ sl FE Y@l ge- (2.22)
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Hence finishing the proof of the first part of the desired estimate (2.21).
Itremains to prove the second part of the desired estimate (2.21).Based on the possible
size of ¢ and x, we separate into two cases as follows.

Casel If x| =31+t or]t] < 1.
For this case, we do integration by parts in £ once. As a result, we have

/ IV ETIRIE () F (&) Y (8)dE = / eV ETIHIEL
R3 R?

X—u

After using the volume of support of & for the above equality, we have

| /R EIE ) &) () de |

= 2m®lsye

~

o G HW® ey
+ 22V Ft, OY(®) 1) (2.23)

Now, our desired estimate (2.21) holds from the above estimate and the estimate (2.22)
if |x| =31 +[t]) or |7] < 1.

Case2 If [x| <3(1+]¢t|) and |?| > 1. B

Note that Vi (x - § — ut[§]) = Oif and only if § /16| = px/t = px/|x| := &. Let
be the least integer such that 2/ > 27%/2(1 + |¢|)~!/2. From the volume of support of £,
we have

\ /R ST P m &)Y (€)Y (£ (§. 0))dé S22 (@) 5 I FE V@)l e
S A+ 2 Im@ llspe 17, HYa®) e (2.24)

For the case when the angle is localized around 2/ where [ > I, we first do integration
by parts in £ once. As a result, we have

fR 3 e ETIHIE F(EYm (€)Y (E) Y (L (&, E0))dE = I} + I,
where

1= / grreintlsl ! XTHHETE) G ey o) g )y (L, £,
e Flx/t+ g /€]

2= [ ety [ UL g 26 50| Fieds,
R 0 st i

From the volume of support of £, the following estimate holds for I,',

11 S A+ D272 m ) 50 1V FE )l e
S A1) 2 m @) s 1 Ve F (2, )Yl ge- (2.25)
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For 112, we do integration by parts in “£” one more time. As a result, the following
estimate holds after using the volume of support of &,

171 S (1) 72722 Im @) llspe (27 F a8, )Y (®) e
+ 27NV F @ )l
S A+ D727 m @) llspe (251 £ Y@ llge
+ 24|V (8, )Yl ge)- (2.26)
Hence, from (2.25) and (2.26), we have

oS AT 2 Im @) llspe (417 )9 @)llge

I<l<2

+ 22V F (0. )Yl ge)- (2.27)

Now, our desired estimate (2.21) holds from the estimates (2.22), (2.24) and (2.27) for
the case |[x| <3(1+|¢t])and |¢|] > 1. O

3. Constructing Vector Fields for the Relativistic Vlasov-Wave Type Coupled
System

In this section, based an observation on the light cone C; := {(x,v) : x,v € R3, || —
|x +10| = 0} in (x, v) space, we construct a new set of vector fields, which will be used
to decompose the bulk derivative D, defined in (2.12). Before that, we first introduce
a set of classic vector fields which are applicable for both the Vlasov equation and the
nonlinear wave equation. The classic set of vector fields enables us to obtain decay
estimate from the energy estimate for the wave equation, which is well known as the
Klainerman—Sobolev embedding.

Recall (2.4). For any i, j = 1, 2, 3, we define the first set of vector fields for the
Vlasov—Nordstrom system and the Vlasov—-Maxwell system as follows,

S =10 +x-Vy, Qi,]’ =xi8x]. —x]'axi,

Q = X; -V,

Qi =V, -Vy+X; Vg, (3.1)
Li =18y, +x;0;, L;:=1dy +x;0; +/1+]|v]2dy,,
L:=(Ly, Ly, L3), L:=(Ly, Ly, L3), (3.2)

where “S§”, “Q; ;”, and “L;” are the well-known scaling vector field, rotational vector
fields, and the Lorentz vector fields, which all have favorable commutation rules with the
linear operator of the nonlinear wave equation, see the classic works of Klainerman [25,
26] for the introduction of the original vector field method. Note that 2; ; € {u2;, u €
{+,—},i €{1,2,3}} forany i, j € {1, 2, 3}.

As pointed out in Fajman—Joudioux—Smulevici [9] that the commutation rules be-
tween the vector fields S, fzi, and I:,- and with the linear operator of the relativistic
Vlasov equation are very favorable. More precisely, we have

[0, +0-Vy,S1=08,+0 -V, [8+0 -V, Qi]1=0,
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[8; +D- Vi, Li]=0; (3 + 0 - Vy), (3.3)
(8 +0- Vi, Q1 =[8,+0-Vy, Vi - Vy + X; - Vy]
= (- Ve(Xi) Ve = Vi -V =0, (3.4)

We define the first set of vector fields for the distribution function f(z, x, v) as
follows,

7)1 = {S9 Qi, I:i’ ax,"i € {1’ 27 3}} (35)

Correspondingly, we define the following set of vector fields for the nonlinear wave part
as follows,

PBi =S, Q, Li, dy;, i € {1,2,3}}. (3.6)

Lemma 3.1. Foranyt € R, x € R3, the following equalities hold,

(> = x/), =tS—x-L,

2 = |x|?)o; = Z —x;Qj+tL; — xS, i€({l,2,3}. (3.7)
j=12,3

Proof. Desired identities follow from direct computations. O

Unfortunately, we cannot represent the bulk derivative “D,” as a “good’ linear com-
bination of vector fields defined previously, i.e., Vy, S, Q,-, and L i, in the sense that one
of coefficients is of size “¢”, which is too big to control in the long run. This is also why
we seek for a new set of vector fields.

3.1. A new set of vector fields. Our new set of vector fields is inspired from the following
identity regards the light cone C; := {(x,v) : x,v € R, |t| — |x + 0| = 0} in (x, v)
space.

Lemma 3.2. The following identity holds,

A t a)+(x,v)
12— |x+0t) = (1 el m)(f — V1 +vw_(x,v)), (3.8)

where

0r(x,0) =x - v+/(x -2+ ]x]2, o_(x,v)=x-v—+/(x-v)2+x2. (3.9

Moreover, the following rough estimates hold,

— x|
1+ o]

w-(x,v) S ;0= ou(x,v) S Ix[(1+v)). (3.10)
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Proof. Note that

2

t _ 2tx - v P
L+l2 T+ 2
t t
= (ﬁ — (,()+(.X, U))(ﬁ —C()_(.x, U))7

2 —|x+0t)] =

1+]|v 1+]|v
where
o (X, 0) =x - v+/(x -0+ x3, o_(x,v) =x-v—+(x- v)2+]|x]%

@3.11)

From the above detailed formulas, the desired estimate (3.10) holds straightforwardly.
]

From the equality (3.8) and the estimate (3.10), we know that “|¢| — |x + 0z] = 0” if and

only if “¢ /(1 + [v]?) — w4 (x, v)/(/1 + |v]2) = 0”. This fact motivates us to define the
modulation of the light cone in (x, v)-space as follows, which plays the role of distance
to the light cone.

Definition 3.1. We define the following function as the modulation with respect to the
“light cone” in (x, v)-space

At x.v) = — (X, V) (3.12)

TP ST

Since we will only care about the distance with respect to the “light cone” when
“lx| + |x - v] 2 17, we define an inhomogeneous modulation d(t, x, v) as follows,

t w(x,v)

L+ T+ )2

d(t,x,v) = (3.13)

where w(x, v) is defined as follows,

w(x,v) = Yoo (x| + (x - V) (x, v)
= Y=o(x)? + (x - ) (x - v

+y/(x - v)2 + [x]?). (3.14)
From (3.8) and (3.10), we have
|d(t, x, )| S 1+t — |x+0t]]. (3.15)

With the above definition of the inhomogeneous modulation function d (t, x, v), the
construction of our new set of vector fields is motivated from a good decomposition of
the derivative D, . Recall (2.12). Instead of “naturally” decompose D, into two parts,
which are “V,” and “tV, 0 - V,”, we decompose D, into two parts asfollows,
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Dy =V, — tVyd - V,

=V, —V1+ 0o, v)V,d -V,

Part I

— (t =1+ vPw(x, v))Vyd - Vy. (3.16)

Part IT

The main intuition of the above “good” decomposition is that it is more promising to
control the burden of extra degree of modulation than the burden of extra degree of “‘t”
over time for the nonlinear wave solution.

With the above motivation, we define,

Ky =V —V1+ 020, v)Vyd - Ve, S':=0-V,,
=05V, Q=V,-V,, Q=V-V,, (3.17)
where i € {1, 2,3}, v and \71 are defined in (2.4).
Moreover, we define a set of vector fields as follows,

’§v —=73-K =Sv_w(x’v) X
' v 1+ |v|?

Q =V -K,=Q —ox, Q. K, =K, ¢, ic{l,2,3}. (3.18)

Note that we used the equalities in (2.5) in the above equation.

We remark that the vector fields defined in (3.18) will be applied on the profile
“g(t,x,v)” instead of the original distribution “f (¢, x, v)”. Also, it’s not difficult to
find the corresponding vector fields act on the original distribution function f (¢, x, v).
For example, from (2.10), we have

Kog(t,x,v) = (Vo =1+ 0P (x, )Vyd - Vo) (f (1, x + 01, 0))
= (Vo f)(t,x +0t,0) + (t — 1+ [ (x, v)Vyd - Vs f(t, x + 01, V)
=: (Kyf)(t, x +0t,v),
where
Ky i=Vy+(t — 1+ 0w — 0, 0))Vyd - V. (3.19)

As aresult of direct computation, we know that K » commutates with the linear transport
operator “9; + v - V,.” of the relativistic Vlasov equation.

With the above defined new set of vector fields, in the following Lemma, we decom-
pose the bulk derivative “D,” in terms of the new set of vector fields.

Lemma 3.3. The following two decompositions holds for “D,”,

V1+PViY), (3.20)
\4 |2 123

D, = (08" + ViQY) —d(1, x, v)(

Dy = 58" — dt, x, v) 2+ ‘7'52 V'( 5S*
v = VS — , X, U — —(X; - v
JI+IE Al ol
+ Y (Xi+Vit) - Vi), (3.21)

j=1,2,3
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Proof. Recall (2.12), (3.17), and (3.18). From (2.5), we have

198* - 1V, Q¥
D,=08" - ——— + V.V — —— (3.22)
' (L+ ]2 1:23 IRV TE

—~ o~ - vS* -
@8V + ViQY) — d(t, x, v)(——— + 1 + V]2V, QF). (3.23)
1.2125‘73 ' V1 +|v2 '

Hence, finishing the proof of (3.20).
Now, let’s proceed to prove the desired equality (3.21). Recall (3.1) and (3.17), we
have

Q=—Q - o V.. (3.24)

From (2.5), (3.22) and (3.24), we have

Vi

- 5.5* .V R
Dy =10S8" —d(t.x,v) ———+ —Q; — —(X; +Vit) - V,
SR Al Tl
U b~ Vi .V N
=58 —d(t, x, V) + L0 — —L(X; + Vir)
VitpP A7 V]
(17SX + Z VJQ);)
j=1,2,3
[P 7S~ Vi~V y
=08 —d(t,x, V) —— + —lQi—ﬁ[Xi’va
v

V1+? =123 [v]

+ Y X+ Vi) V7).
j=1.23

Hence, finishing the proof of (3.21). O

Remark 3.1. Because the coefficients of Q7 in the first decomposition (3.20) are of

size “(1 + [v])|d (¢, x, v)|”, we use it when “|v|” is relatively small and use the second
decomposition (3.21) when “|v|” is relatively large.

Thanks to the coefficient 1/4/1 + |v|? in the Vlasov—Nordstrom system, see (1.1), the
first decomposition of “D,” in (3.20) is sufficient for the Vlasov—Nordstrom system.

Motivated from the two decompositions in the above Lemma, we define the following
set of vector fields, which act on the profile g(t, x, v),

Po:={Iy, ief{l,...,17}}, (3.25)
where

T = y=1(0)8,
[ = Y21 (v)S",
Tiv2 = Y1 (0)QY,
Tiss 1= Y21 (1), (3.26)



3D Relativistic Vlasov—Nordstrom System 1859

[Ciyg = ¥<0(v)Ky,,
Civit := ¥<0(v)0y;,
Civia =S, i=1,2,3. (3.27)

Correspondingly, we define the following associated set of vector fields which act on
the original distribution function f(t, x, v),

Py=(T;, ie{l,..., 17}}, (3.28)
where

T = Y1) - Ky,

Iy = ¥=1(v)SY,
Tiv2 = Y21 (0)Vi - Ky,
Lits i= ¥=1(0)Q7, (3.29)

-~

Liyg = wgow)l?u,. ,

-~

Cisi1 := ¥<o(v) 0y,

o~

Civia =S4, i=1,23. (3.30)

For the convenience of notation, we don’t distinguish these two sets of vector fields
(B2 and Py) if there is no confusion. For simplicity, we define a set of notations to
represent the above defined vector fields uniformly.

Definition 3.2. For any vectors ¢ = (e1,...,¢,) € R*and f = (f1,..., fm) € R",
where eq, ..., en, f1,..., fm € R, we define

eofi=(el...en fioooi ) leli= D leil, =>leo fl=le|+|fl.

i=1,...,n

Let

A:=1{a:ae{0,1}'° 3 =0,1}, 0:=(0,...,0),
G :=0,..., 1 ,...,0), if0,d €A B:=Ugn,A".

i-th
r0:=7d, ré.=5, .=y,
[ditd .— Qi a7 .— L;, i=1,2,3, (3.31)
0= a4, T .=,
D+l =9, T =@,
a7 = [, i=1,2,3. (3.32)

We represent the high order derivatives of the first set of vector field 31 and P; (see
(3.6) and (3.5)) through composition as follows,

[1002 .— [UIPe2  [e100 . — PUT® o gy e B, (3.33)
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Definition 3.3. We define

Ki=1{: ¢c{0,1}'7,18=0,1}, 0:=(0,...,0),&
=0 1.0, if 0, € K,
i-th
SIZUkeNJCk, A6 =1d,
T0.=1d, A% =T},
réi :=ﬁ~, F,‘E‘Bz,ﬁ'epz, e € K,

where “P,” is defined in (3.28) and ““P3,” is defined in (3.25). Hence, we can represent
the high order derivatives of the second set of vector fields for the profile “g(z, x, v)”
through the composition defined as follows,

AT = ACAS, T =T/, e, fes.

Definition 3.4. For any «, y € S, we define the equivalence relation between “x”” and
“y” as follows,

kK ~yand A ~ AV,
if and only if A“A(x, v) = AYh(x, v) for any differentiable function i (x, v),
(3.34)
K = yand A“ =~ AV, if and only if
A“h(x,v) # AV h(x, v) for some differentiable function A (x, v). (3.35)

Very similarly, we can define the corresponding equivalence relation for a1, a2 € B.
Note that, for any 8 € S and « € B, there exists a unique expansion such that

,3~L10-~-L“5‘, L,'G’C,|L,‘|=1, iE{l,...,|,3|}, (3.36)
o~ YOVl vieAlyl=1, ie{l,...,|al}. (3.37)

With the above notation, without the complexity caused the constant coefficients, we
can represent the Leibniz rule by the equality as follows,

A= Y. AfaPg Bes, (3.38)
B1.B2€S.B1+B2=p

where f and g are two smooth functions.

To capture the effect of different sizes of coefficients in the decompositions of “D,”
in (3.20) and (3.21) and effect of good efficients in the Vlasov—Nordstrom system, we
define an index “cy,(¢)” for the Vlasov—Nordstrom system, which classifies derivatives
in B into good derivatives, bad derivatives, and ordinary derivatives by setting cyp(¢)
to 1, —1, and O respectively.

As a comparison, we also define the corresponding index “cym(¢)” for the Vlasov—
Maxwell system. For simplicity, we will not redo similar computations and will use part
of results obtained in this paper directly in [40]. Hence, related results will be formulated
in both indexes.
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Definition 3.5. For any ¢ € I, we define an index “cy,(¢)” for the Vlasov—Nordstrom
system (1.1) and indexes “cym(t)” for the Vlasov—Maxwell system (1.2) as follow,

1 ifA ~ SV
cn() =4 -1 ifA'~Q;,i€{l,2,3},
0 otherwise

1 if A~ SPor QF,i e {1,2,3})
cym(L) = . (3.39)
0 otherwise

Moreover, forany g € S, we have B ~ 110 g}, 1; € IC/{6}. We define

wmB = Y. cn). cm@B= Y cm). (3.40)
i=1,..,|p| i=1,...,|p|

With the above defined notation, we can reformulate the results in Lemma 3.3 sys-
tematically as follows.

Lemma 3.4. The following two decompositions for “D,” holds,

Dy= Y dp(t.x,v)A" = > e,(t.x,v)A", (3.41)
pekl,|pl=1 pell,|pl=1

where the detailed formulas of coefficients d, (t, x, v) and e, (t, x, v) are given as follow,

D=1 (v) if AP ~ =1 (0)SY

0d(t, x, v)(1L+ )TV 2Y=_1 () if AP ~ Yo (v) S

Virs_1 (v) ifAP ~ Y Qi =1,23
dp(t,x,v) = 1 Vid(t, x, )1+ ) V2P _1(v)  if AP ~ Y1 (QF,i=1,2,3 .

Yo (v) if AP ~ Yo Ky i =1,2,3

—d(t, x, )1+ W) Vb2 (V) if AP ~ Yeo@)dy. i = 1,23

0 ifAP ~Q;i=1,2,3

(3.42)

Wao1) ] if AP ~ Y1 (1) S

—llfzfl(v)((f(:ljl’;;)ljz 41 ()I(vil. U)) if AP ~ Y= (v)S*

0 AP ~ Y1 (VQY,i=1,2,3
PNV =N g @RI V0V AP~y )R = 1,2,3°

Y<2(v) if AP ~ Yo Ky, i =1,2,3

—Yo)d(t, x, v)(1 + [v]})Vyi; if AP ~ Ye(0)dy. i =1,2,3

Y= _1 ()|, AP ~Qi=1,23

(3.43)
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Moreover, the following estimates hold,

Yo A+ P, x, v

pell,|pl=1
+] (L + DTG dy (2, x, v)| + [ (1 + ) TP, (1, x, )]
< 1+1d(t, x,v)|. (3.44)

Proof. The above results follow directly from the results in Lemma 3.3, which will be
used for the case when |v| 2 1 and the validity of the following decomposition, which
will be used for the case when |v| < 1,

Dy =K, — (1 +v[)d(t, x, v)Vy (@ - Vy).

Recall the detailed formulas of d, (¢, x, v) in (3.42) and the definition of indexes ¢y, (1)
and cym (1) in (3.39). Our desired estimate (3.44) holds from straightforward computa-
tions. O

3.2. Commutation rules. Inthis subsection, we mainly obtain two types of commutation
rules.

The first type of commutation rules apply to the commutation between the classic
vector fields associated with the wave equation in B (see (3.6)), and general Fourier
multiplier operators. This type of commutation rules appears when we try to prove that
the scalar field ¢ not only has sharp decay rate over time but also has extra 1 /(1+|[¢|—|x]|)
decay rate with respect to the light cone.

The second type of commutation rules apply to the commutation between the vector
fields defined in previous subsection and the derivative “D,”. This type of commutation
rules appears when we do high order energy estimate for the profile g(z, x, v) of the
Vlasov part.

Definition 3.6. For any linear operator 7" and any « € B3, || = 1, we use the following
notation to denote the commutator between 7" and I'* € P,

T, = (T)y :=[T*, T (3.45)
We use “T; ” to denote T o Py, where k € Z.

We explicitly compute the commutator “T;,” if “T” is a Fourier multiplier operator
as follows.

Lemma 3.5. For any Fourier multiplier operator T, which has a Fourier multiplier
m (&), we have

T, =Ty oTy, (3.46)
where
7o 19 T e{ly, Ly, L3}
* 7 1 1d otherwise, ’
—F o (g -Vem(§)oF ifT =8,
~ Jo fre=0,,i=123,
Ta=9 714 ((ei x &) - Vem(§)) o F if T =Q;,i=1,2,3, (3.47)
F o (idgm(€))oF fre==L;i=12.73
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Proof. Since 9,; commutes with T, it is easy to see that the commutator is zero for this
case. Now, we consider the case when I'* = S. Note that the following equality holds
on the Fourier side,

FUS, TIF1, &) = —(3+& - Ve) (m©E) f ¢, )
+m@E(B+5-Ve) f.6)
= —(5 - Vem(®) 72, 9).
Ifr* = Q;,i € {1, 2, 3}, we know that the following equality holds on the Fourier side,
FIUQi TSI, §) = (¢ x €) - Ve(m(E) [ (1.8))
—m(§)(e; x §) - Ve f(1,8)
= ((ei x &) - Vem(®)) F(2,6).
Lastly, we consider the case when I'* = L;, i € {1, 2, 3}. For this case, we have
FULL T 6) = FIT@ ) = Tty HI06) N
= (0, (m(§)d, f(1,8)) — im(§)dg 9, f (¢, §) = idg;m(5)d, f (1, ).
Hence finishing the proof. 0O

Recall the equality (3.7) in Lemma 3.1. We use the following notation to represent it
systematically,

(P = xPd = Y cailt, )% i €{1,2,3},
aeB, lal=1
COl(t’ -x) = (C(X,l (t’ -x)v Ca,Z(ta -x)5 C(X,3(tv .X)), (348)

where “cy (¢, x)” denotes the unique determined vector coefficient associated with I'*
in (3.7). Moreover, we have

> lealt, O+ tdcat, OIS (el + 12D, D [Veca(t, )| S 1. (3.49)

aeB,|a|=1 aeB,la|=1

With the above notation and the commutation rules in Lemmas 3.5, in 3.6, we prove
a Fourier version of the equality (3.7) in Lemma 3.1. It enables us to prove that the scalar
field decays at rate 1/((1 + |z] + |[x])(1 + ||¢] — |x]])), see Lemma 6.3 for more details.

Lemma 3.6. For any given Fourier multiplier operator T with Fourier symbol m(&),
the following equalities hold for any k € Z,

(P = X[ Tl £1(2. x)
= > &t )T, £ + (1P = [xPea(t, )T (37 — A) f).
i=0,1,2,0eB,|x|<3
(1P = PP’ Tulo fl, 0 = ) (3.50)
i=0,1,2,aeB,|a|<3
¢ (. )T, @ f) () + ([t = |x[Pel (2, x)
x T (0F = M) F) (., x) + (12 = x D22 (0, ) T (07 — A f)(2, %), (3.51)
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where the coefficients 5(’;[ (t, x), cfx (t,x),i =0,1,2,e4(t, x), eé (t, x), and eg (t, x) satisfy
the estimates in (3.59), (3.60), (3.63), (3.64), and (3.65). _
Moreover, the symbols r?zk O((éj) of the Fourier multiplier operators “T’ MO NN S

{0, 1, 2, 3}, and the symbols m mk (&) of the Fourier multiplier operators T’ o(+) satisfy
the estimates in (3.58) and (3. 62) respectively.

Proof. Recall the definition of commutator in (3.45) and the definition of operator “Q”
in (2.8). From the equality (3.48), we have
(11 = KTl 1, %) = (1P = 12V - Q 0 Te(f)(t, %)
= Y calt,x) - T*Qo Ti(f)(t, %)
aeB,|al=1
Y calt,x)
aeB la|=1

[Q o i )1, %) +(Q 0 Ti) , ()1, ¥)]. (3.52)

Very similarly, after doing this process one more time, we have

(e = )’ Tl £1t, x)
= Y ) [UP =PV Qo[Qo T )
aeB,|a|=1

+(Qo 1) (N 0]
= Z Coy (£, X) - I:Caz(t’ X) - [Q 0 Q o Ty (T'®° f)

ay,a€B, o |=laz|=1

+0 0 (Q o T)g (T2 f)

+(Q 0 Qo Ti)g, (T f)

+(Q 0 (Q 0 Ti)a)e ()] (. X). (3.53)

Note that the following commutation rule holds for any linear Fourier multiplier operator
K?

[T*, Kod]=Kyo0d +K[T% 3],

-0, ifIr'* =
[[* 0]=13 -0y fIr*=0L;iefl, 23} (3.54)
0 otherwise.

Therefore, from the equality in (3.53), we have

(P = PPl = Y Y &0 0/,  (3.55)

aeB,|a|<2i=0,1,2

where the symbol m};’a(é) of the Fourier multiplier Tk"’a and the coefficient Efx (t, x)
satisfy the following estimate,

o> 2K mp @lse $27,

aeB,|a|<2i=0,1,2



3D Relativistic Vlasov—Nordstrom System 1865

D 1E 0+ (e + XDV (6, 0 S (el + x>, (3.56)

aeB,|a|<2

Lastly, we do this process one more time. Note that the commutator contains the time
derivative “9,” when I'* = L;, i € {1, 2, 3}. For simplicity, we don’t want to introduce
an operator with a third order time derivative “8,3”. Hence, we appeal to the nonlinear
wave equation itself for the second order time derivative. More precisely, from (3.55),
we have

1 = DTl fle ) = >0 > a0t = x)Vy
aeB,|a|<2i=0,1
Qo T (3] %)
+g(t, ) (|t = [x[)Vi - VT2, (f)
+([t? = [x1Eg (1, )T, (B — A FD),

- Z Z Zég(t,x)cp(z,x)

aeB,|a|<2 peB,|p|=1i=0,1

(Q o T{ ( (T3] f*) +(Q o T{ ), (3] )

+ 5 (8, x)cp (1, X) - [(VaTE ) (TP £ + (Ve TZ ) o (£)]
+([t* = [x1)eg (1. )T, (37 — A)F). (3.57)

From the results in Lemma 3.5 and the equalities in (3.54) and (3.57), the following
equality holds for some uniquely determined coefficients ¢, (¢, x) and e, (¢, x),

(P = PPl 0 = Y
i=0,1,2,aeB,|a|<3
&t )T (3 £, %)
+ (|11 = |x[Peq (t, )T, ((0F — A) ), %),

where the following estimate holds for the symbol r?z}( (&) of the Fourier multiplier
operator “T,fﬁa() 7,
>0 2K ©llse S 27, g @) llse S 27 (3.58)
i=0,1,2

Moreover, fori € {0,1,2},a € B, || < 3, from the estimate (3.49), the following
estimates hold for the coefficients ¢, (¢, x) and e, (¢, x),

185, (2, ) + 19, (1, x)| S (It + 1x)?,  lew(t, X)| + [treq (2, )| < (2] + X,
(3.59)
IVl (t, )| S (] +1xD)?, [Veea(t, )| S (] + [x]). (3.60)

With minor modifications, we can derive the following equality

(It? = 151 Tld, £, x) = > o (. )T, @0 f) (. x)

i=0,1,2,aeB,|a|<3
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+ ([t = 1xP)el (6, )T, (07 — M) f*)(1, x)
+ (1t = x0T (OF — A) f9) (@, x),
(3.61)

where the symbols n’i};’a (&) of the Fourier multiplier operators ﬁi,a (),i €{0,1,2,3,4},
satisfy the following estimates,

D 2 G lse S 27,

i=0,1,2

17135 ©)llse < 277,
178 o E)llse < 272, (3.62)

Moreover, the uniquely determined coefficients cfx (t,x), i € {0,1,2}, eé (t,x), and
eg (t, x), satisfy the following estimates,

Dl )]+ 19l (1,01 S (el +1x])°, (3.63)
i=0,1,2
e (t, )| + [tdpel (2, )| < (1] + |x )2,
€2 (2, x)| + 18,2 (, )| < (It] +|x]), (3.64)
Ve (01 S (el + XD [Veey (6, 0)] S el + 1],
i=0,1,2
|Vee2(r,x)] < 1. (3.65)

[}

Now, we proceed to the second type of commutation rules. For simplicity, we define
a set of vector fields as follows,

X1 = vY=1()0 - Dy,
Xis1 = ¥=1(v)V; - Dy,

Xi+4 = WSO(U)DU,W l = 17 25 37 (366)
From (3.66), we have
Dy = 0X1 +ViXin +eiXia = ) ai(w)Xi, (3.67)
i=1,..7

where

al(V) i= Y1 ()T, a1 (v) == Y=_1 (V)V;,
aipa(V) == Y<2()e;, i=1,2,3. (3.68)

As a basic step, we first consider the first order commutation rule, i.e., the case when
peEK,|pl=1
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Lemma 3.7. Forany p € K, |p| = 1, and i € {1, ..., 7}, the following commutation
rules hold,
[Xi, APl = Y ds(t.x,v)A*, ds (1 x,v)
kel lk|=1
= & (e, 0)d (1, x, ) + 0 (x, v), (3.69)

. ~0,K AP K
where the coefficients cf (t,x,v) and cf

mates,

(t, x, v) satisfy the following rough esti-

~p,K AD K
e (e, v +[¢; (x, V)]

< min{(1 + |v|)l+cvn(K)_Cvn(P)’ 1+ |v|)cvm(’()_cwn(p)}’ (3.70)
|AP (& (x, v)) | + AP (&0 (x, v))]
S A+ A+ P g es. (3.71)

In particular, for the case when i = 1, the following improved estimate holds,
07 (e, v) | + 1607 (x, v) | S (1 + Ju]) = Fem=emP), (3.72)

Moreover, ifi(k) —i(p) > 0, where i (k) denotes the total number of vector fields Qf in
A¥, then the following improved estimate holds for the coefficients of the commutation
rule in (3.69),

167" (e, )] S (14 o]y~ e =am@), (3.73)
Proof. Postponed to Appendix A. See the proof of Lemma A.2 in Appendix A. O

In the process of commutation between high order vector fields and X;, it is unavoid-
able that the vector field A, ¥ € K, might act on the coefficients. From the equality
(3.69) and the estimate (3.71) in Lemma 3.7, it would be sufficient to consider the case
when AX hits the inhomogeneous modulation d(z, x, v). For this case, we have the
following Lemma.

Lemma 3.8. Forany p € K, |p| = 1, the following equality holds,
AP(d(t, x,v)) == dy(x,v) = d(t, x, v)e] (x,v) + b (x, v), (3.74)

where the ?oe]ﬁa.ents bp (t, x,v)and bp (t, x, v) are some explicit coefficients and satisfy
the following estimate,

Yol S Y AP o) S A+ PIa+ppl pes.
i=1,2 i=1,2
(3.75)

Proof. Postponed to Appendix A. See the proof of Lemma A.1 in Appendix A. O

Now we are ready to introduce the high order commutation rules, which are basic tools
to compute the equation satisfied by the high order derivatives of the profile “g(z, x, v)”.

‘We will be very precise about the estimate of the top order coefficients, which matter
very much in the energy estimate. However, the estimate of the lower order coefficients
in (3.78), i.e., the case when |«| < |B| — 1, are rough because it’s not necessary to be
precise once we set a hierarchy for weight functions associated with the derivatives of
the profile g(z, x, v).



1868 X. Wang

Lemma 3.9. Foranyi € {1,...,7}, and B € S, we have

(X, AP1=1/ + > [&(t,x,v)é;:}(x,v)+é§’3(x,v)]AK, (3.76)
ceS,Ik|<IBl—1

where Yl./3 denotes the top order commutators and it is given as follows,

yf = 3 [d(t. x. v)ég )} (x.v) + 5 (x. v)]A . (BT
keS.IkI=IBLIit)~i(B)|<1

where i(k) denotes the total number of vector fields 2} in A*.
Foranyi € {1,...,7}, and k € S, the following estimates hold for the coefficients

Eg’}(x, v) and ég”%(x, V),

& 0, )]+ 157 (x, v)

S A+ PR PR phen i) < (8] — 1, (3.78)
125G ) + 1857 (o, v)

< min{(1 + [v]) OB (14 yyem®O=am B yphen || = |B], (3.79)
|APEH(x, v)] + | APEST (x, V)

5 (a+ |x|)lp\+|ﬂ|—|K|+2(1 + |U|)|ﬂ|+|ﬂ|—\/(\+4_ (3.80)

In particular, the following improved estimate holds if i = 1,

181 (e ]+ 1857 0] S A+ o) O D phen (i) = (Bl (3.81)

Moreover, ifi(k) —i(B) > 0and |k| = |B|, then the following improved estimate holds
for the coefficients é;lz (x,v) in (3.76),

1853 0r, v)] S (14 o]y~ HHemE@em®), (3.82)

Proof. From the equality (3.69) in Lemma 3.7, we have

[X;, AP] = [X;, A - AUBISTTAUBL 4 AL ..o AUBIEIX;, ALRL

= [X;, A AUPETTAUR 4 AT AT ( Z a’

i (X VAT

riek,lril=1
= [X;, A" - AUBI-T NS

+ > Do (M@ x v) A AT,

Uplsi
Kk1,01€8,k1+p1=tio--otg—1 y1 €, |y1]=1

By induction, from the above equality, we have
X AP = ) 2
J=21Bl=1kj,p; €S, |kj|=1.kj+pj=t10--0t)g]—

g’ PjOYjOUBI—j+20Uif|
Yo AT@ (X, 0) A
yviek.lyjl=1
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+ 2

Kk1,p1€S,|k11=1,K1+p1=t10--01|g] 1

YA @" (%, V)AP + Y’ (3.83)
y1el.lyil=1

where JZ:‘ (t, x, v) is defined in (3.69) and Yi’S is defined as follows,

V= 3 AT Y, 0 AT
yek.lyl=1
i’ , L1011 gl O OL|B|~i+20 "L |
Y Gy pp_inr i (8% V) A : (3.84)
i=2--,1B1-1

From (3.83) and (3.74), we have

X, Afl= >

j=2 IpI-1
Kkj.p; €S, |Kki|>1
K.,'+,0_/'=L10-~OLW_,'

Yo (@ v v+l v)) APITCE 2o

Upl—j+1si Upl—j+1:1
yi ek, lyil=1

+ 2

k1,p1€S, k1= 1K1 +p1=t10-0L |1

Z (c?(t,x, v)eyl”q;l(x, )

gt
ek, lyil=1
+ey1"q;2(x v))Ap‘OV' +vFP
Lw,i ’ [

Hence, our desired equality (3.76) holds for some determined coefficients Eg:,lc (x,v)

and Eg”i(x, v), whose explicit formulas are not pursued here.

Recall (3.84). Our desired equality (3.77) and desired estimates (3.79), (3.81), and
(3.82) hold from the decomposition (3.69) and the estimates (3.70), (3.72), and (3.73)
in Lemma 3.7. The desired estimate (3.78) follows from (3.69), (3.70), and (3.71) in
Lemma 3.7 and (3.74) and (3.75) in Lemma 3.8. O

4. Set-Up of the Energy Estimate

4.1. The equation satisfied by the high order derivatives of the profile g(t, x,v). In
this subsection, our main goal is to compute the equation satisfied by the high order
derivatives of the Vlasov—Nordstrom system.

Recall (1.1). For the sake of readers, we restate the equation satisfied by “ f (¢, x, v)”
as follows,

Wf+0-Vof =(@+0-Vp@t, x)Af +v-Vyf)+ Vg - Vo f

1
V1+]v)?

For any a € B, we define

FUr x,v) =T F @, x,v), ¢P@, x) =TPp@, x). 4.1)
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Note that the following equality holds,

(@ +0-Vy))f) = Z TP(@ +0- Vo, )TV @ f +v-Vyf)
B.yeB,B+y=a

+ ;rﬂ(vﬂb) T7V, f.

1+ 2

As a result of direct computations, the following commutation rules hold for any i, j €
{1 9 27 3}5

[8y;, ST =0, [dy,,2;]1=3yV;-Vy, [dy

i

Ljl= ——0,,, 4.2)
[0y, S1= 0y, [0, Q1= 05X, - Vo, [0, Lj1= 80, (4.3)

.
ST+

From the above commutation rules and the commutation rules in (3.3) and (3.4), we
have

V-V, Q2;1=0, [v-V,,81=0, [v-V,, L;]l= (4.4)

@+0-Vof = 3, (@+0-V¢'.x)

B.yeB,|Bl+y|<|al
(agepy W f7 +ag. 5., - Vy f7)
+(ag.5, VP (1. x) +ag. 5 ()9 (1, X)) - Vo f7. (4.5)

where a;, 8 J/(v), i €{1,2,3, 4}, are some determined coefficients, whose explicit for-

mulas are not pursued here. The following rough estimate holds for any 8, y € B, s.t.,
1Bl + 1y < lal,

gz, W]+ lagep, 1+ A+ 0D (lag.p, W) +lagg, W) ST (4.6)

Similar to the profiles defined in Sect. 2.2, we define the profile of f“(z, x, v) as
follows,

g¥(t, x,v) ;== fY(t, x +0t,v), = [, x,v)=g“@, x —0t,v).
From (4.5), we can compute the equation satisfied by the profile g% (¢, x, v) as follows,
88 (t, x,v) = > (00"

B.yeB.Ipl+y|<lal

+0 - VegP)(t, x +01))

(ag.p., (08" +ag. 5, (W) Dyg?)(t, x,v)

+(ag. 5., W) Vi?

+ag.g., )09 ) (1, x +01) - Dyg? (1, x, V), (4.7)

Now, we apply the second set of vector fields on g“ (¢, x, v). For any g € S and any
a € B, we define

g%‘(t,x, V) == Aﬂg“(t,x, v), B~tijoo---oupg,



3D Relativistic Vlasov—Nordstrom System 1871

i el lul=1, i=1,...,18l (4.8)

Note that [9;, AP] = 0. From (4.7) and (4.8), based on the order of derivatives, we
classify the nonlinearities of 9, g%‘ (¢, x, v) as follows,

B,gg(t, x,v) = K(,x+0t,v) - Dvgg(t, X, v) +h.0.t‘é(t, X, v)+ l.o.t‘é(t, X, v),
4.9)

where
K(t,x +01,v) :=v(d;¢(t, x +01) + 0 - Vi (, x + 1))

+;VX¢(t,x+ﬁt), (4.10)
and “h.o.t%(t, x, v)” denotes all the terms in which the total number of derivatives act
on g(t, x,v) is “la| + |B]” and “l.o.t%(t, x, v)” denotes all the terms in which the total
number of derivatives act on g(#, x, v) is strictly less than * |«|+|8|”. We remind readers
that the case of all vector fields act on the scalar field is included in “l.o.t%(t, x,v)".

For any o € B, 8 € S, from the decomposition of D, in (3.67), we decompose
“K(t,x +0t,v) - Dvg%‘ (t, x,v)” as follows,

K(t,x+0t,0) - Dygh(t.x,v) = Y Ki(t,x+0t,0) - X;g§(t,x,v), (4.11)
i=1,...,7
where

Ky (1, x + 01, 0) = Y= 1 0)|0](3,9 (1, x + 01) + 0 - Ve (2, x + 1))

ai(v) R
+ 20 G b, x + 1), (4.12)
1+
Kix+in) = 10 G o vrbn. ie(l.2.3), (4.13)

JT+v?

Kiwa(t,x +0t,0) = vi'(ﬂgz(v)(at(t)(t, X+0t)+0-Vip(t, x + ﬁt))
+ ai+4(v)

J1+ ]2

Based on the source of the high order terms, recall (3.67), we classify the high order
terms h.o.t%(t, x, v) as follows,

Vep(t, x +01), ie{l,2, 3. (4.14)

h.o.t(t, x,v) = Z h.o.t5.;(t, x,v) (4.15)
i=1,2,3
where
h.o.t%;l(t,x,v) = Z A(Ki(t, x +0t,v)X; g7 (1, x,v),
+x=p,|t|=1,1,k€S,i=1,...,7
4.16)
h.o.t5.5(t, x,v) = Z ag.,, ) (39"t x + 1)

lol=1ly|=la|-1
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+0 - VP (t, x + f)t))v . Dvgg(t, X, v)) + (az;p’y(v)

x Vi¢P(t, x + 0t) + aggp’y(v)atqﬁp(t, X+ ﬁt)) . Dvgg (t,x,v)

+4(8p (1, x +01) + D - Vg (1, x + 00)) g% (1, x, v), 4.17)
hotys(t.x,v)= Y Ki(t.x+0t,0)¥ g%t x,v). (4.18)
i=1,...,7

Similarly, we classify the low order terms “I. o.t‘g (t, x, v)” as follows,

Lo.t§(t, x,v) = Z Lo.ty. . (t, x, v), (4.19)
i=1,..., 4

where

l.o.t%;l(t,x, V) = Z Ki(t, x +0t, v)([Aﬁ, X;]1— Yiﬁ)g“(t,x, v), (4.20)

Loty (t, x,v) = Z ag. , ., (W) (3¢” (. x + 1)
lol<L.ly|=la|~1

+0 - Vep?(t, x +00))[AP, v - D,1g" (1, x, v))
+(ay. ), V2@? +ag. ,  (0)0,¢°)(t, x + 1)
;i (V)[AP, Xi1g7 (¢, x, v)
+ >
+k=B,lt|=1,1,keS,i=1,...,7
AY(K; (1, x + 01, ))[AS, Xi1g%(t, x, v), (4.21)
l.o.t%;3(t,x, V) = Z

1,k€S,B1,v1,P2, 728,
|o[+B1]> 11181 [+y1] <le|
|ol+21> 11| Bal+12 | <ler]
Aﬂ((3t¢ﬁl (t,x +0t) + D - VX¢/31 (t,x + ﬁt)))AK (a;;ﬂl,yl )
X" (1, x,v) +ag.g ., (V)V - Dyg” (1, x, )
+AP(ay. 5, ., VP (1, x + 1) - 0 (V) A (Xi g7 (2, x, V), (4.22)
l.o.tg;4(t, X, v) = Z

1,keS,B1.v1,B2,72€B,
o[+ B1|<11.|B1 [+[y1| <[]
lpl+IB2 <1112 1+ <o
Iy I<lel+pl—1. [yl <lal+pl -2

AP (3P (2, x + D)
+0- VPt x + ﬁt)))A"(a(},;ﬂW1 ()g" (1, x, v)
oy WV - Dyg” (1, X, 0))
+Ap[(a2;ﬁ2’y2(v)vx¢ﬁ2 (t, x + 01)

+ay. g, (PP (1, x + 1)) - 0 (V)| A*(Xig" (1, x, ), (4.23)

+a
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where l.o.t‘é, 1 (t, x, v) arises from the low order commutator between X; and AP, see
(3.76) in Lemma 3.9, l.o.tg,2(t, x, v) arises from the commutator between X; and A*,

k €S, k| =|B| — 1 or between X; and AP when there is only one derivative hits on
K'(t,x,v), l.o.t‘l’é,3 (t, x, v) arises from the case when there are at least twelve derivatives

hit on the nonlinear wave part, and l.o.t%. 4(t, x, v) denotes all the other low order terms,
in which there are at most eleven derivatives hit on the nonlinear wave part and the total
number of derivatives hit on g(z, x, v) is strictly less than |«| + |B].

To study the term of type AP (f (¢, x+0t)) in l.o.t%;3(t, x, v), see (4.22), the following
Lemma is helpful.

Lemma 4.1. The following identity holds for any p € S,
AP(f(r, x +01))
= Y tx o) f (tx+ D) (4.24)

eB.l=lpl
where the coefficients c"o (x,v), t € B, |t] < |pl|, satisfy the following estimate,
e, x, v)] S (L4 [x P (A 4 o P
min{(1 + [v]) @) (1 + [v])lel=em@)), (4.25)
For any k € S, the following rough estimate holds
|A"(cfo(t,x, v))| <1+ |x|)\/<\+lp\f|t\(1 + |v|)|:<|+|p|—u|
min{(1 + [v]) ") (1 + v])lel=emP)), (4.26)

Moreover, the following improved estimate holds if AP ~ Qf or Qf ief{l,2,3}|pl=
1,

e, x, v)| S (1 + o))~ (4.27)

Proof. To calculate A” (f(t, X+ Ot)), p € S, we induct on the size of | p|. Since the case

when p = 0 is trivial, we first consider the case lpl=1,1e.,p € IC/(3. Recall (3.17). It
is easy to see that the following equalities hold from direct computations,

SY @t x+01) = d(t, x, v)(1+ [ V28K £, x + 01), (4.28)
QUf(t x+01) = /1 +[0]2d(t, x, v)Q f(t, x + 1),
Qi(f(t, x +01)) = (i f)(t, x + 01), (4.29)

Ky ft,x+0t) = (1 + l)d(t, x, V) V- Vi f(t, x +01), i€{l,2,3}. (4.30)

Recall the equality (3.8) in Lemma 3.2 and the equality (3.7) in Lemma 3.1. We know
that the following equality holds for some uniquely determined coefficient b, (¢, x, v),

dt, x, V)Vof(t,x+00) = Y bylt,x, )T f(t, x + 1),
aeB,|a|=1

where the coefficient by (¢, x, v) satisfies the following rough estimate,

b (1, x, )| <1, [APbo(r, x, )] < (1 +xDPI1 + )P, wheref € S. (4.31)
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From the above rough estimate (4.31) and the equalities (4.28), (4.29), and (4.30), we
know that our desired equality (4.24) and the desired estimates (4.25), (4.26) and (4.27)
hold for the case |p| = 1.

Now, we proceed to consider the case when p € S, |p| > 1. Recall (3.36), we have

pr~o-tp, 4ie€K/0, i=1,...,]pl

From the equality (4.24) for the case |p| = 1 and the above equivalence relation, we
have

AP(fltx+dtm)= 3 Ao (ct‘pw(t, X, 0) U x + ﬁt)).
eB, =1

After keeping iterating the above process, our desired estimate (4.25) holds from the
Leibniz rule. O

4.2. The modified profiles of the scalar field. Recall (3.31), (3.32), and (3.33). We know
that the following equality holds,
re —re= > dg:p.y (V) - VOV, (4.32)
B.yeB.|Bl+lyI<lal,|81>1
where “aq. 8., (v)”, B, v € B, are some determined coefficients, whose explicit formulas

are not pursued here and the vector field “Vf ”, B € B, is defined as follows,

VB =Vo VP Byioyp, vie Ayl =1iefl,... Bl
ViV, ify =aj44,i=1,2,3

VI =4 V1+8, ify=di.i=123 whereye A (4.33)
1d otherwise,

Due to the fact that V,, may hit the coefficients during the expansion, we have |8| +
|¥| < || instead of |B] + |y | = || in (4.32). Let
aa:(),a (v) = 1’ == [‘0( = Z aaiﬂs}’(v) . Vz/)sfy (434)
B.y€B,|Bl+ly|<lal

With the above equality, we are ready to compute the equation satisfied by the high
order derivatives of the scalar field, i.e., '“¢. Recall (1.1). From (4.34), we have,

= f
(@7 = 2)¢) = Z / Aa:py (V) - VETY (—=—=)dv. (4.35)
B.yeB Ipl+yi<lal VK V1+ v

After doing integration by parts in “v”, we derive the equation satisfied by ¢* as follows,
0 — M= Y f Gy (0) f7 dv, (4.36)
R3
yeB.ly|<a|

where aq;, (v), y € B,|y| < |al, are some coefficients, whose explicit formulas are
not so important and will not be pursued here. From (4.33), we know that the following
equality and rough estimate holds,

e (0) = 1+ WH7V20 ag, )] < 1+ upl=I7], (4.37)
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Similar to the definitions of the half wave u(¢) and the profile 4 (¢) in Sect. 2.2, we
define

u®(t) == 3 — |V (1), h*() := "Vl @). (4.38)

Hence, we can recover 9;¢“ and ¢* from the half wave u®(¢) and the profile h%(¢) as
follow,

u®(t) +u®(r)

3% (1) = — ¢ (1)
—u®(t) +u”(t) -1 — =itV
=—N = D VI @ @), u ) = eV n o).
nel+,—}
(4.39)
From (4.35), we can derive the equation satisfied by u®(¢) as follows,
@ +ilVhut ) = > / oy (0) 7 dv
veB,lyl<lal
— Z / Aoy (V)Y (£, x — 1, v)dv.  (4.40)
veB,lyl<lal
On the Fourier side, we have
uh (&) = Y / eI (1 £ v)d.
veB.ly|=lal
(4.41)

Correspondingly, we can write the equation satisfied by g% (¢, x, v) in (4.7) in terms
of profiles on Fourier side as follows,

atg/&(t,é, v) _ Z / lt(é n)-0—itp)E— rll(hﬂ)u([ %‘ — )7)
B.yeB, |/5|+\V\<|Ol\ nel+—}

1 . _
[(5 +icud %)ai; 5y @)

e - 1
x g7 (1,1, v) + (( +icud %)aé:ﬁ MOLREXMMO)
+icuay.s., (V) é - m) (Vo —itn)g7 (¢, 1, v)]dn. (4.42)

Similar to the modified profile defined in Sect. 2.2, to take the advantage of the
oscillation of the phase over time, instead of controlling the increment of the profile, we
control the following modified profile,

Rt ) = ho (1, €) + > / ”f'—"‘ﬁ'fé"k—yélf)s?(z,g,v)dv. (4.43)
veB,ly|=lal
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Define
Fip = 2 g:ém’
55 = =itV (1) ;m i
Buy (P03) o= 7] [ 700
%JC (, &, v)dv](x). (4.45)

Hence, from (4.39) and (4.43), we have

P ) =¢*0) — Y VI (Im[Eay (€)(1)]).

veB,lyl<lal
9% = 0,8°(+ Y (Re[Eayy (1)) (4.46)
veB,lyl<lal

Recall the equations (4.41), (4.43), and (4.42). After domg integration by parts in “v”
once, which moves the “V,’ dern@tlve in front of vaV (t, n, v) around, we obtain the

equation for the modified profile he (t, &) as follows,

3}?& ,E) = ltIEI=itdE idg;y (V) 5 J
(h (2, ) yd%jﬂa/ P g7 (t, &, v)dv

_ Z / / it |=itpls—n|—itd- ﬂg (t,n, v)(hﬁ)“(t §—n)
R3 JR3

yeB.ly|<|al,pel+
B.keB, |ﬂ|+\K\<\V|

zaay(v) O
Ge—v-¢ 5(2 b o)
.(igla;y(v)

51 —0-&

1 _
(5 +icud- ﬁ)a;ﬁx(mu

xay.g . (V) =V

1y
+§ay;5’,((v)

é: —
£ — Z|))]d”d”

_ 3 / /}RS =I5 (1 (6, ) ()

B.y€B.IBI+ly|=<la| nel+

. 3
+lcﬂay;ﬂ’,((v)

FmyE valks () é )
x g7 (1, 1. v)(RBYE (1, € — m)dndo, (4.47)

wherea (v) w e {+, —},i € {1,2}, B,y € B, s.t., |B] +|y| < ||, are some
determmed coefﬁ01ents and m; (€, v), i € {1, 2}, are some determined symbol, whose
explicit formulas are not pursued here.
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From the rough estimates in (4.6) and (4.37), we have
D a5, S A+ o=,
i=1,2

Yo A+ OVImE v s S27F, ke Z (4.48)
i=1,2,0<a<5

4.3. Constructing the energy for the Viasov—Nordstrom system.

4.3.1. Control of the profile g(t, x,v) We define the high order energy for the profile
g(t, x, v) of the distribution function as follows,

S . fi1 132
Ejigh (1) = Ejjjg, (1) + Ejjioy (1),

11
El{igh(t) = Z ”w% ()C, U)g% (t’ X, U)HLE',U ’ (449)
aeB,BeS, |al+|B|=No

2

aeBB,BeS, al+Bl<No
ooy (e, gt x, V)l 2 (4.50)

where gg (t, x,v) is defined in (4.8) and the weight function a)g (x, v) is defined as
follows,

2
El{igh(t) :

w%(t, x,0) = (1+ |x]?+ (x - v)2 + [v]20)20No—10lel+IBD

(L+ o)), (4.51)

where the index ¢y, (B) is defined in (3.40). We separate out Eﬂ;fglh(t) as the strictly top
order energy.

It’s worth to explain why we make such a choice of the weight function in (4.51). (i)
We set up a hierarchy for the order of weight function a)g (z, x, v). Note that the total
number of derivatives act on gg‘ (t, x, v) is |o| + | B|. The more derivatives act the profile,
the lower order weight function we use for a)% (t, x, v). (i1) Comparing with the ordinary
derivatives of the profile, we expect that the good derivatives of the profile can propagate
more weight in “|v|”; (iii) We choose an anisotropic weight in “x” in the definition of
the weight function a)g (x, v) in (4.51) to guarantee that the following Lemma holds,
which plays an essential role in the energy estimate.

Lemma 4.2. Foranya € B, 8 € S, s.t., |a| + |B| < Ny, the following estimate holds
forany x,v e R3,
1

‘] — < 1. (4.52)
L+ ] — | + |

v - Dva)g(x, v) Dvw%(x, V)
[ |+

a)g(x, v) w%()ﬁ v)

Remark 4.1. Essentially speaking, the estimate (4.52) says that, through a good choice
of the weight function a)g (x, v), the loss of size ¢, which comes from the coefficient
of D,, can be controlled by the distance with respect to the light cone when D, hits
the weight function. The desired estimate (4.52) is important in the energy estimate of
the distribution function for the case when all derivatives hits on V,, f, or equivalently
Dyg(t, x, v), see Proposition 6.1 in Sect. 6.1.
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Remark 4.2. Thanks to the presence of coefficient “1/4/1 + |v|?” in the Vlasov—Nords-
trom system (see (1.1)), we don’t need an estimate as strong as in (4.52) to close the
energy estimate for the Vlasov—Nordstrom system. However, for the purpose of being
more applicable in the study of the Vlasov-wave type system, e.g., the Vlasov—Maxwell
system, we prove a stronger estimate here.

Proof. Recall the decomposition of D, in (3.22). We have

Dvwg(x, v) - va%‘(x, v) ¢ v- an)g (x,v)
= 1 - )
wg (x, v) W (x, v) (1+ )2 wg(x, v)
_ Vi Vol (x, v) t Vi Vaoi(x,v)
+ > Vi( oy TIETE i o) ). (4.53)
i=1,2,3 A B\
From the explicit formula of a)g (x, v) in (4.51), we have
V- Vyw%(x, v) ‘7, - Vyw%(x, v)
(1+|v|)’%’+ 3 ’Tﬂ) <1, (4.54)
@Wp X, U i=1,2,3 Wp X, v
- Ve (x, B .
)v g (x v)‘< x-0+(x-v)v - 1+|v 455)
wf(x, ) S I D Y GO V) A YT R s [ P R Py R TV
“7,- - Veaf(x, v)’
o
isias @)
|x] 1
< < (4.56)

Ml xP )2+ 0 Y T x ] + x-v] + o

Recall the decomposition (4.53). From the estimates (4.54), (4.55), and (4.56), we know
that the desired estimate estimate (4.52) holds easily if |x| > 3|t].
It remains to consider the case when |x| < 3|z]|. For this case, we have
1 L+ 1]
T+t =[x +0t]| 1+ t]+[t2 — |x + 0t]?
1+ ¢

— T |2) . (4.57)

e -
- —|x
1+ |v? 1+ [v?
Based on the size of |x| and x - v, we separate into two cases as follows.

o If [x| > 2719 /(1 + |v]) or |x - v| > 27100#]/(1 + |v]), then from the estimates
(4.55) and (4.56), we have

1+t +

] Vi Vaoi(x, v)

31+|v| a)‘)ﬁ‘(x, v)

¢ V- Vio%(x,v)
1 P <1, (4.58)

~

[+

1+|v|? wf(x, ) 3

o If [x| < 2710071/(1 + |v]) and |x - v| < 27'%¢|/(1 + |v]), then from the estimate
(4.57), we have

2
1 i <1+|v|.
L+ f] — |x+0t]] ©~ 1+]¢]
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Therefore, from the above estimate and the estimates (4.55) and (4.56), we have,

I: |t| ‘vaxa)g(x,v)‘
1+v]? wf(x, v)

< 1. (459
1+ ]t] — |x + o7

5 It] Vi-vxwg(x,v)u 1
1+ |v| a)%(x,v)

i=1273

To sum up, for any x, v € R>, our desired estimate (4.52) holds from the decomposition
(4.53) and the estimates (4.54), (4.58), and (4.59). O

Similar to the study of the Vlasov—Poisson system in [41], from the decay estimate
(2.20) of the average of the distribution function in Lemma 2.1, we know that the zero
frequency of the distribution function plays the leading role in the decay estimate. With
this intuition, to ensure E., (g¥)(¢) defined in (4.45) has sharp decay rate, we define a
lower order energy for the profile g(z, x, v) as follows,

Ef, @) = 3 1% (0)(VEE7 (2,0, v) = Vo - Bay (1, 0)) I 2,
yeB,a€ly,a+|y|<Ny
c’o\f‘,(v) = (1 + |v|)20N0—10(a+|y\) (460)

where the correction term g, , (¢, v), which is introduced for the purpose of avoiding
losing derivatives in the study of V{g? (¢, 0, v), is defined as follows,

t
// K(s,x +0s,v)Vig¥(s,x,v)dxds ifa+|y|= Ny
0 JR3

Sa,y(t,v) = 4.61)

0 ifa+|y| < No,

where K (t, x + 0t, v) is defined in (4.10).

4.3.2. Control of the profiles and the modified profiles of the scalar field For the nonlinear
wave part, we define a high order energy as follows,

Efn@i=sup Y 2R )y (®) o

keZ o e B, lal<Ny
25002 . E)Yn®) e + 2 Veh (1 E) Y 2
I )2 + 150 ) 13- (4.62)

The first part of energy Eg)igh (1), which is stronger than L? at low frequencies, controls
the low frequency part of the profiles 42%(¢); the second part of energy El‘f’igh(t), which
has the same scaling level as the first part of energy El(figh(t), aims to control the first
order weighted norm of the modified profiles he (t) ; the third part of energy Eﬁ’l oh 1),
controls the high frequency part of the profiles 2% (¢) and the modified profiles 2% (t).
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Motivated from the linear decay estimate of half wave equation in Lemma 2.2, to
prove sharp decay estimate for the nonlinear wave part, we define a low order energy
for the profiles h%(z), « € B as follows,

Eb, @0 = Y R O)lx, + A+ D8 D)x,
n=0,1,2,3
ael3,|a|<20—-3n
+(1+ D218, Vo (1 + |V DT R0 |1 x, (4.63)

where the X;,,-normed space is defined as follows,

Illx, := sup 2" VK IVER G, )Yl n € {0,1,2,3). (4.64)
keZ

4.4. A precise statement of main theorem. With previous preparations, we are ready to
state the main theorem.

Theorem 4.1 (A precise statement). Let No = 200, 6 € (0, 10~2]. Suppose that the
given initial data fo(x, v), ¢o(x), ¢1(x) of the 3D relativistic Vlasov—Nordstrom system
(1.1) satisfy the following smallness assumption,

3 M+ P4 G 02+ PN VEVE e v+ Y

oy [+le2|<No aeB,la|<No
> AT (1Vigo)ll 2
ne{0,1,2,3}
+IT%(1V1¢0 () l1x, + 1T (@1 (0)) 2 + IT* (61(0) 1, < 0. (4.65)

where the X ,,-normed space is defined in (4.64) and € is some sufficiently small constant.
Then the relativistic Vlasov—Nordstrom system (1.1) admits a global solution and scatters
to a linear solution. Moreover, the following estimate holds over time,

sup (1+0)°[Ef (1)

te[0,00)
+ E;f,.gh(t)] +El ) +EP (1) S e, (4.66)

As byproducts of the above estimate, we have the following decay estimates for the
derivatives of the average of the distribution function and the derivatives of the scalar
field,

sup Y (1+|t|)(3+‘a|)/p‘/R3V?(f(t,x,v))pdv‘l/p

tel0,00) loe| <No—20
<€y, where p €[1,00)NZ, 4.67)

sup > (L[t + (e = [x D (| VD, (2, 1)

te[0,00) la|<10

+|VeV,p (1, 1)]) < eo. (4.68)
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4.5. Proof of the main theorem: A bootstrap argument. In next two sections, we will
estimate the increment of both the low order energy and the high order energy for the
nonlinear wave part and the Vlasov part with respect to time. Those estimates allow us
to prove the desire theorem, Theorem 4.1, by using a bootstrap argument.

We state our bootstrap assumption as follows,

_ i1 — ;2
sup (140 2 [Efb () + Ef (0] + 1+ 0~ 2ELS (1)
tel0,T]

+Ef

low

5/6
W)+ ED (1) < e :=¢)°, (4.69)
where T is the supremum of times such that the above bootstrap assumption holds.

Recall the definition of correction term in (4.61), From the linear decay estimate
(6.55) of the scalar field in Lemma 6.3, we know that the following estimate holds for
any t € [0, T], under the bootstrap assumption (4.69),

> 6 (0)Za.y (2, V)l 2

yeB,aels.a+ly|<No

t
< / (1+|s]) > efds < ep. (4.70)
0

From the estimate (6.38) in Proposition 6.2, the estimate (6.5) in Proposition 6.1, the
estimate (5.1) in Proposition 5.1, and the estimate (5.6) in Proposition 5.2, the following
improved estimate holds under the bootstrap assumption (4.69),

_ ;1
sup (1+1) S[E}{igh(tnEﬁgh(z)]
t€[0,T]

+(1+ t)*‘s/zE}{i;;(t) +EL )+ ED (1) S eo. .71

Therefore, we can close the bootstrap argument and extend “7"” to infinity. As a result,
we have

_ 1
sup (1+1) S[E}J;gh(t)+Eg’igh(t)]

te[0,00)

+(L+0) 7 PELS (@) + B (1) + B (1) S <o, (4.72)
which also implies our desired estimate (4.66).

The desired decay estimate (4.67) follows from the estimate (4.72) and the decay
estimate (2.20) in Lemma 2.1. The desired decay estimate (4.68) follows directly from
the estimate (4.72), the equality (3.7) in Lemma 3.1, and the decay estimate (6.55) in
Lemma 6.3.

Lastly, we explain the scattering property of the nonlinear solution. From the estimate

(6.38) in Proposition 6.2 and the definition of “El"gw(t)” in (4.63), we can construct a
limit for the profiles of the Vlasov—Nordstrom system by integrating the profile with
respect to time from zero up to infinity. After pulling back the limit along the linear flow,
we have our desired scattering linear solution.

Hence finishing the proof of Theorem 4.1.
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5. Energy Estimates for the Nonlinear Wave Part

This section is devoted to control both the low order energy E10W (1) defined in (4.63)

and the high order energy Eﬁ’igh(t) defined in (4.62) of the profiles of the scalar field over
time. For the low order energy estimate, our main result is summarized in Proposition 5.1.
For the high order energy estimate, our main result is summarized in Proposition 5.2.

The main tools used to prove Propositions 5.1 and 5.2 are some linear estimates and
some bilinear estimates, which are postponed to Sects. 5.1 and 5.2 for the sake of clarity
of presentation.

Proposition 5.1. Under the bootstrap assumption (4.69), the following estimate holds
foranyt €[0,T],

E 1) SEL ()+(1+ |z|)*1E,{,ﬁgh(r) +e. (5.1)

Proof. Recall (4.63). We first estimate the X,,-norm of d;4%(¢). Recall (4.41). From the
estimate of coefficients in (4.37), the estimate (5.16) in Lemma 5.1, we have

YooY a+n

0<n<3 aeB,|a|<20—3n

138 @llx, + (1 + 1)) 5 |v O Dlx,
SEL O+ A+t Ef 0. (5.2)

Now, it remains to estimate the X,,-norm of 4% (¢). Recall (4.43). As a result of direct
computation, we know that the symbol 1/(|&| — ¥ - ) verifies the estimate (5.15). From
the estimate of coefficients in (4.37) and the estimate (5.16) in Lemma 5.1, we have

DD D (ORI O] P
n=0,1,2,3 |a|<20—3n

S Ey )+ (L4117 Ef ). (5.3)

Hence, it would be sufficient to estimate the X,,-norm of the modified profiles he (1).
Recall (4.47) and (5.24). We know that B,h“ (¢, &) is a linear combination of bilinear
forms defined in (5.24). Therefore, from the estimate (5.31) in Lemma 5.2, we have

Yo ek,
n=0,1,2,3 |a|<20—3n
<+t 2E]

low

(O Efign(0) < (1+ [t 72}, (5.4)

Hence, from the above estimate (5.4) and the estimate (5.3), we have

Yo IRk, + 1k ),

n=0,1,2,3 |«|<20—3n
t
< e +f (1+|s])">*elds < €. (5.5)
0

To sum up, our desired estimate (5.1) holds from the estimates (5.2) , (5.3), and (5.5).
O
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Proposition 5.2. Under the bootstrap assumption (4.69), the following estimate holds
foranyt €10, T],

hlgh(t) S Ehlgh(t) +(1+ |t|) €0- (5.6)

Proof. Recall (4.62). Based on the components of E?
energy estimate into three parts as follow.

high (t), we divide the high order

e Case 1 Lgo-estimate of ﬁ?)‘(t, &) and f:%(t, &).
Recall (4.43). We know that the following estimate holds for any « € B, |a| < No,

sup 24| (% (1, €) — I (1 ) ®) e S Y
kez yeB.ly|<lal

1L+ D 0DV (g, )1y S Efign ). (57)

Hence, it would be sufficient to estimate the Lgo-norm of the frequency localized

h (t, &). Recall the equation satisfied by 8,I27" (t, &) in (4.47) . From the estimate (5.31)
in Lemma 5.2, which is used when the profile /(¢) has relatively more derivatives, and
the estimate (5.42) in Lemma 5.3, which is used when g(¢, x, v) has relatively more
derivatives, we have

sup 28 [|,h (1, EY®)llrg
kel

S A+ ) (B (0 + B (0) Efiy 0 S L+ 1) 2Pl (5.8)

Therefore, from the estimates (5.7) and (5.8), we have

> sup2X i (1, )9 e S .

|a\<N0k€Z

S sup M (1, )Y ®) e S By () + €. (5.9)

e <No k€2

e Case2 LZ2-estimate of f?&(t, &) and l:%(t, &).
From the estimate (5.7), after dyadically decomposing frequency “£”, we have

(72, ) — R, )l
5 Z Z 2—k||(1 + |v|)5+4(|a|_|7|)?(t, E, U)”L,I)Lg

k=0 |y|<lal
N 223"/2“(}?:'0» §) — h* (1, )Y@l
k<0
hlgh(t)+ Z
ly|<lal
lloo) (x, v)g” (2, x, Wlaez S E'{igh(t)' 10

Hence, it would be sufficient to estimate the L2-norm of he (, &). After using the first
estimate of (5.49) in Lemma 5.4 for the case when there are more derivatives act on the
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profile g(t, x, v) and using the second estimate of (5.49) for the case when there are
more derivatives act on the profile /(¢), we have

k%t )2 < (407 Efi (0 Efo, (1)
+ (140 2EL y (O Ef (0 S (14 (1) 71,
From the above estimate and the estimate (5.10), we have

D IOl + I )l

aeB,|a|<Noy

t
E}{igh(l‘)+60+/0 (1+[s])"efds < E{igh(t)+(l +t)%e. (5.11)

e Case 3 Lg—estimate of Vgl’:&(t, £).

Recall the equation satisfied by l;"(t, &) in (4.47). Based on the size of |y | in (4.47),
we separate into two subcases. e
If |y| < No— 10, we use the decomposition (4.43) for h#(t, £). As aresult, we have

a6 = Y

B.y€B.|Bl+ly|<lal

[/ / GitlEl—itulg—n|—itdn
R3 JR3

é n| +mi(§,v)

Xﬁﬁ’é ))g7 (t, n, v)(REYA(t, & — n)dndv

/// pitlE1—iti-(E—m) ity
R3 JR3 JR3

(ma(€. v)als () -

keb, \K\<\/3\
@iy @ I%‘ — nl
X, v) 00T )T 1, 0) P
() (1, & — 1, w)dndvdu]. (5.12)

For the firstintegral in (5.12), we apply the estimates (5.66) and (5.67) in Proposition 5.3.
For the second integral in (5.12), we apply the estimate (5.98) in Lemma 5.9. If |y| >
No — 10, we apply the estimate (5.66) in Proposition 5.3.

To summarize, the following estimate holds for any fixed k € Z,

220, Ve (1, Y(©) .2
S(A+1DT125 + A+ )72 ED L (0 Ef g (1)

+(1+ |z|)*2E}{Igh(t)( hlgh(t) + Ehlgh(t))
S A+ 2%l + (14 1)l (5.13)
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Hence, from the above estimate, we have

> 2V, 9 @) 2

lee| <No

t
< e +/ [(1+5)7%25 + (1 +5)7 7P ]efds S e+ (1+1)°2% €. (5.14)
0

To sum up, recall again (4.62), our desired estimate (5.6) holds from the estimates
(5.9), (5.11),and (5.14). O

5.1. Linear estimates and a bilinear estimate in the Lgo-type space. In this subsection,
we mainly prove several Lg"—type linear estimates for the density type functions, which
are summarized in Lemma 5.1, and a Lgo-type bilinear estimate, which is summarized
in Lemma 5.2.

Lemma 5.1. Given any n € Ny, s.t., n < 10, and any symbol m(&, v) such that the
following estimate holds,

Sup Z zikf(ﬂfl)k”(] + |v|)72074i
keZ g 1,...,10,0<a<15
VEVEmE v @©lrre S 1, (5.15)

the following estimate holds for any i € {0, 1, 2, 3},

| /R M 6 g, €, vdvly,

SOY L AT+ D OVEIRE, 0, v) I

0<b<i+n

Sy

BeS,|B|<i+n
L+ DA+ 1xP + ) AP g1, x, 0)ll 22 (5.16)

Moreover, for any fixed k € 7. and any differentiable function g(t, v) : R, x R?) — R3,
the following Lgo—type estimate holds,

2 fR I e 0 &, vk @)dvll

S2%(1A+ D (8, 0,0) = Vy - g2, 0) I 1
+ (14 (2291 + )2, v) 1

+25)1 (1 + x| + 10D Vg2, x, v) 1 212)- (5.17)

Proof. Note that for any i € {0, 1, 2, 3}, the following equalityholds,
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Vel /R T )8, £ v)d)
Z i ll lz(tis)v (518)
0<li+lr<i

where

111 L E) = Z / pltIE1—iprd-§ 12 k(”)

0<k<ly
§
(__

i—koi—li—l (& ~
g O TV TR (g - ud) m(E, ) VER(. £, v)dv,  (5.19)
where the clzl’k are some uniquely determined coefficients. From the above detailed

formula of H;. “ b (t, &), we know that our desired estimate (5.16) is trivial if [f] < 1.
From now on, we restrict ourself to the case |f| > 1.
If I; = 0, then we separate out the zero frequency of “g(z, &, v)” as follows,

¢ 106 bkl § a1~k gi—l
l ll 0([ S) Z / it|g]—ip Uf 1211 (lt) (E _ /"Lv) Vé 1
0<k<ly

((é_—| — ud) m(E, 1))2, 0, v)dv

it|&]— t,LLtUE lzk
//R Bk (ir)'"

h—kegi—t (& ~
(|€| /w) ! VE h ((E - /w) m(&, v)& - Veg(t, s&, v)dvds.
(5.20)
For the first integral of H O(t &) in (5.20), we do integration by parts in “v” n +[;

times. For the second 1ntegral of H 0 O(t &) in (5.20) and Hf_‘ll I (t,&), |lh] > 0,in
(5.19), we do integration by parts in “ *n+1, + 1 times. As a result, from the estimate
of symbol in (5.15), the following estimate holds for any fixed k € Z, i, [, and I3,

20N HS LG OWE e S Y A+ DT IA+ ) VERE, 0, v)

0<b<n+l;
> !

1<a<i—|

x (2OTDE L 2) 1+ D OVE VIR £ )Y @)l ey

S DL A+ THIA+ D PVIEE, 0, v)ll

0<b<n+z

+ Y !

BeS.|Bl<i+n
I+ 1x” + [0 AP g (2, x, v) 122 (5.21)

Hence our desired estimate (5.16) holds from (5.18) and the above estimate (5.21).
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Now we proceed to prove the desired estimate (5.17). Note that the following equality
holds after subtracting the correction term V,, - g(¢, v) and doing integration by parts in
v,

A.@ eit\é\—imﬁ-ém(s’ v)§(t, £, V)Y (£)dv

=/ eSS 1y (6 0) (802, 0, V)
R3
Yy 5 )Y
- / Y, (e MET I e 0)) - 31, )Y (E)dv
R

3
1
+ / / eitlél*i/Ltﬁ‘fm(g, v)s
0 JR3

Veg(t, sE, v) Yy (§)dvds. (5.22)

Therefore, our desired estimate (5.17) holds from the above equality and the estimate of
symbol in (5.15). O

For any fixed/ € {0, 1} and any given symbol m (&€, v) such that the following estimate
holds,

sup Z Z 21 k+nk

k€Z ,_0.1,2,3 0<a<5
11+ (o)) OVEVEm(E, VY@ s S 1, (5.23)

we define a bilinear operator 7}, (-, -)(t, §), which represents the Vlasov-wave type in-
teraction, as follows,

Tu(h, )(t,8) = [1;3 [;{3 eil|§|—il/~f|$—n|—itﬁ~n
m(E V)AF (& — ) F(2. 7, v)dndv. (5.24)

Based on the relative size of |§ — n|/|&], we separate T, (h, f)(t, §) into two parts
as follows,

Tu(h, ). &) =Ty (h, f)(t.&) + Tr(h, )(2.8), (5.25)
T, (h, f)(t,§)=/ / i1 |=intlg—n|=itd-y
e R3 /]1}3
m(E, VR, E —n) ft, 0, vV)¥=—10(€ = nl/1EDdndv, (5.26)
Ti(h, f)(1,€) = fR} fw QitIE=iptIn|—itd-E—n)
m(&, )Rt ) f(t.& =0, v)Y-_10(nl/IEDdndv, (5.27)

where we changed the coordinates  —> & —nin T;% (h, f)(t, &). Note that the following
equality holds for anyn € {0, 1, 2, 3},
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V(T (h, f)(t.8))
= > le;;l(r,s), i=1,2, (5.28)

0<j=n

where

n,1 _ it|E|—ipt|E—n|—ito-n n,1 - N i
Tl E) = ) g /ﬂ@e cly (i) (If;‘l

0<as<j
E—1\a n—j & §—1\j-a
YRR T voamtl f
“e=a) Ve LG R

xm(E, VR (1€ —n)y=-10(¢

—nl/1ED)] f . n, v)dndv, (5.29)
T2 6) = Z‘A‘Qz /R3 ol IE1 =it n|—itd-(6 —n)

0<ax<j

n,2 . N7 E A\A—n—]

caj(zt)f(g—v) /A /

[~ “mee.w

x flt, & —n,v)¥-—10(nl/1ED)]

hi(t, n)dndv, (5.30)

1 2 . ..
where CZ F and cZ ; are some determined constants, whose explicit formulas are not

pursued here.
Our desired bilinear estimate is summarized in the following Lemma.

Lemma 5.2. For any n € {0, 1, 2,3}, any l € {0, 1}, and any given symbol “m(&, v)”
that satisfies the estimate (5.23), the following estimate holds for the bilinear form
T, (h, f)(t, &) defined in (5.24),

sup 20 DK V2 (T, (h, £)(1, )Y ()l e
keZ

SO DTS DT D Ik%y,)
BES,|Bl<n+4 0<c<n0<b<n—c |a|<c

I+ x P+ [P AP 2, x, 0) 22 (5.31)

Proof. Recall the decompositions in (5.25) and (5.28). To control X,,-norm of 7, (h, f)
(¢, ), it would be sufficient to control L°-norm of T:Jl (t, &) and Tlsz (t, £).

Recall (5.29). We first do integration by parts in*“ 1" j-times for T;’,’ Jl (t,&). As a
result, we have

n,1 — itE|—ipt|E—n|—itdn g
1.8 = Z '[;&3 /11%38 €. Vn

0<a<j
. é—r] A . S—r] _an . e
[ Pie=y 1Y Pfe=y — 1Y ey — 1Y

-n -n
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E E—ain i £
S \v4 2

g e ) Ve Gy
) " m(E, )RR, E — )

§—n
& — 1
Y=-10€ = nl/1€D)] 7@, n, )] -+ ] Jandv,

—

Now, we apply the dyadic decomposition for “6€ — 1 and “n”. As a result, we have
o1 — . j
T (6, E)Y ) = Z Hy o, (@, 6), (5.32)
(k,k2)€ X} Uxi

where

gl (t, &) = Z pltlEl—ipt|g—n|—itdn n.ly
kki,ko "> Jrs I3 a,j'n

O=a=j
[iué—Z—iﬁ [iué:—z‘—iﬁ
NTe—mn  2°Vn ' LTemny 2
=i - wil” =i - il
§ §—1\a n—j &
o---[(= — \v4 >
A
";: — N \j—a T
— CO)RH(E E —
pre ) me U)A (t.& )
X Y=—10(1& = nl/1ED)]F (2, n, v)]
o] [r® v, € — v (ndndv, (5.33)
Recall (5.30), after doing dyadic decomposition for & — 1 and 1, we have
TeH= Y KiLes (5.34)
(ki.k)ex;
where
KL (1, 8) = O;j /R} /RS =il =it 1.2 )
5 A\A o N—] é‘_ A\ Jj—a
> v S ;
Geg = e g =9 me
X [t & = n, 0)¥<—10(nl/1ED) |- )i, )Yk (€)Y,
x (& — n)dndv. (5.35)

Note that, from the estimate of symbol “m (£, v)” in (5.23), the desired estimate (5.31)
is trivial if |t| < 1. Therefore, from now on, we restrict ourself to the case |f| > 1.

e The estimate of H"*™"/ .
k,ki,k2

Recall (5.32) and (5.33). Note that (k1, k2) € Xk] U sz. After using the volume of
support of n and the estimate of symbol m (&, v) in (5.23), we have

A R AT
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SJ Z Z 2(’1+1—l)k+3k2—4k2,+”(1 + |U|)4n+10V§vgf(t’ E, U)l/sz (S)”L?OLL

0<a<40<|c|<n

x( ) 27PIVETTRG )Yk ©)ll)

0<b<n—c
DB R (D DD DI D L GTPAI ¢
BeS,|B|<4 0<c<n0<b<n—caeB,|a|<c

+1x PP+ [)OAP f (@, x, 0)ll 22 (5.36)

After doing integration by parts in v four times for “H;' ,’:11",{2”, the following estimate

holds,
2R HE L e ) g
Sl Dl SN (N 2 R ) ©)l)

0<c<n0<d<4 0<b<n—c

|1+ [y *1OVEVE (2. &, v)yn, (E)“L?"L})]

et () YW S Y 7/ 'S TG S [C R B

0<c=<n0<b=<n—cla|=c BeS,|BI<4

+10)PAP £ 2, 0l 2p2)- (5.37)
Therefore, from (5.36) and (5.37), the following estimate holds for any fixed k € Z,

Dk M,
Yo 2UVNIEE L ®) g
(k1.ka)ex) Ux?

5 ( Z 2(371)1{2 + Z |t|7427(1+l)k2)

ka,2k2 <[r| =1 ko, 2k2 > ¢~
(300 DTk YD N+ P+ OAP £, x, v)2p2)
0<c<n0<b<n—c |a|<c BeS,|B|<4
SO T Y k) (YD A+
0<c<n0<b<n—c |a|<c BeS,|B|<4
+0PAP £t 2, 0 2p2)- (5.38)

e The estimate of K}’ k';,’( .
Recall (5.34) and (5.35). From the estimate of symbol “m (&, v)” in (5.23), the fol-

@, 9

lowing estimate holds after using the volume of support of “n”,
20K, @ ) g

S 20 RSN 2R (1 OV Rl £ o) () ey
0<b<n—j
xRt )9k, )]
S 2V R A+ P+ P OAP £ (2 X, 0)l225:39)
BES,|Bl<n—j
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“v” “(j +3)” times for “K" (¢, &)”

Moreover, after doing integration by parts in ks Ko

in (5.35) and using the volume of support of “n”, we have

Dk grHsnJ
20 DK, )l

5 (l + |t|)732(n7j7172)k+3k|

x[ Y Y 27RIRG YL@l

0<b<n—j0<a<j+3
—i—b =
+ DT HOVIVETT F (L 6 0 ©)ll e ]

S Y AT R 1A P+ P OAP F (@ x, 0 2-

BES,|B|<n+3
(5.40)

Combining the estimates (5.39) and (5.40), we have

Yo 2RI L o)y
(k1.k2)ex?
S Ihlixl A+ e+ AP £ (2, x, v) 20 min {(1
BeS,|Bl<n+3
#2033 DE (14 iy 27y
S DTl I+ e+ [0 PPAP £, )20
BeS,|B|<n+3
(5.41)

To sum up, our desired estimate (5.31) holds from the estimates (5.38) and (5.41). O

5.2. Bilinear estimates in the high order energy space: Vlasov-Wave type interaction.
In this subsection, we mainly prove several bilinear estimates for the Vlasov-Wave type
interaction in different function spaces. As we have seen in the proof of Propositions 5.1
and 5.2, these bilinear estimates play important roles in the estimate of the high order

energy Et?igh (t) (see (4.62)) of the nonlinear wave part.
We first prove a Lgo-type bilinear estimate.

Lemma 5.3. Given any symbol “m(&, v)” that satisfies the estimate (5.23) with |l = 1,
the following estimate holds for the bilinear form T, (h, f)(t, &) defined in (5.24),

sup 2|1 Ty, (h. f)(2. )Y (®) e
kel

< > A+ D22 NRS @) N, 1+ P + [0l f @ x, v) 22
n=0,1,2,aeB,|a|<4
(5.42)

Proof. Recall (5.24). After doing dyadic decompositions for two inputs, we have

Tuh, @ EWE = Y > T 06, (5.43)

i=1.2.3 (ky ko) ex}
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where X,i,i € {1,2, 3}, are defined in (2.2) and (2.3) and the detailed formula of
Tk’fkl’kz(t, &) is given as follows,
Th (0 8) = /R 3 /R M )T, & — ) Pt m, 0 &

— Vi, (MY (§)dndv. (5.44)

From the above detailed formula, our desired estimates (5.42) and (5.49) hold easily

if [t] < 1. From now on, we restrict ourself to the case |t| > 1. Recall (5.44). After doing
integration by parts in n once for Tk’f ki (1 §), we have

. w i i
T E) = f / IS RIE =IOy (£ vy (£) -V,
o R3 JR3 t

N pE—m/1E—nl—70
(& =m)/1§ —nl = oI
X B, & — ) (2,0, V)W, (6 — MY, (n))dndv,  (5.45)

From the estimate of symbol “m (&, v)” in (5.23) and the volume of support of 1, we
have

20T @ )
< Je|7 P minth) (iR R &)y (€)1 + IVER G E) Y (E)Le)
(11 + 0D F (2.8 0y ()l ey +2"™ (1
+ 0D OVe £, & )Yk () o 11)

S emnte R g | x, (1 + |x ]
n=0,1,aeB,|a|<4
+ I £, x, 0) 2. (5.46)

€, 9

Similarly, the following estimate holds after doing integration by parts in “n” twice,
20T 1, 1 Ol
< > 12 1A Ol x, 1+ x4+ [0 £ x, v) 212 (5:47)
n=0,1,2,aeB,|a|<4

Combining the estimates (5.46) and (5.47), the following estimate holds for any fixed
kelZ,

ki
Yo 2T L@ Dl

i=1,2,3,(ki.k2)ex]

—2+38~8k1 —25k 2 2520
< > 1| 7202220 (L 2 + I f (1, 0) 22
n=0,1,2,k1€Z,|a|<4
—2+6 2
<[Ih*®)llx, < > 1724 | R (0) 1, 11 + |x]|
n=0,1,2,aeB,|a|<4
2520
+HP £t x V) 212 (5.48)

Hence finishing the proof of the desired estimate (5.42). 0O
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Now, we prove a Lg—type bilinear estimate.

Lemma 5.4. Given any symbol “m (&, v)” that satisfies the estimate (5.23) with | = 1,
the following estimate holds for the bilinear form T, (h, f)(t, &) defined in (5.24),

1Ty ) )2

. —1 2 2520
Smin{ Y A+ DR Ollx, 11+ P+ 0D FE x 0) 22
n=0,1,aeB,|a|<4

Do AR I+ x P+ 0PHPAP f 2, w2 ) (5:49)
BeS,|IBI<3

Proof. Note that the decomposition (5.43) and the equality (5.44) still hold and our
desired estimate (5.49) hold straightforwardly if |¢| < 1. Hence, we restrict ourself to
the case |f| > 1.

e Proof of the first estimate in (5.49). Based on the possible sizes of k, k1, kp, we
separate into three sub-cases as follow.

Subcase1 Ifk <O. From the estimate (5.46) and the volume of support of &, we
have

0
> > 1T )2

keZ.k=0 (ky kp)exi Ux2Ux}

s ) Yoo A+ ra vl
keZ,k<0n=0,1,aeB,|a|<4
<t 722 ollx, 0 Y 1T R @l 1+ 1x]?
n=0,1,aeB,|a|<4
2520
+ 02 £ (2, x, v) 212 (5.50)

Subcase 2 If k > 0 and (ki, k2) € x! U x2.

Note that we have k; > k — 10 and kp < k + 10 for the subcase we are considering.
Recall (5.45). From the estimate of symbol “m (&, v)” in (5.23) and the volume of support
of “£€” and “n”, we have

W
”Tk,kl,kz (,8) ||L2

S Y TR TR (1, g )l + IVER® (1 )Y (9l pe)

aeB, |a|<4

(1 + D' 7@ & )Yy Ol ey + 2201+ 0D OVe F 1. & 1)y ) o1t
S TR R ), 11+ [x

n=0,1,aeB,|a|<4

+v*f @ x0)l2pa- (5.51)

From the above estimate, wehave
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> > T 6O

keZk=0 (ky kp)ex} Ux?

S TR O A+ P+ O fE x )l 2. (5.52)
n=0,1,aeB,|a|<4

Subcase 3 Ifk > 0 and (ki, k2) € x.

For this case, we first switch the role of “€ — 1™ and “n” in (5.45). Instead of using
the volume of support of “£”, we use the Minkowski inequality. As a result, from the
estimate of symbol “m (£, v)” in (5.23), we have

> 1T )2

k€Zk=0, (k1 k2)ex}

< Z Z Z |t|—1231<1—k—4k1,+

keZ,k>0ky<k—5,|k—kz|<5 aeB,|a|<4
(10 + 10D F . & 0)Y @)l 2 + 291101
DOV P £ 00V ()l 12) (27 1R (1. 6) Y () e

FIVER @ Y Olle) S D0 Y T @l 10+ x?

n=0,1aeB,|a|<4

+10* X vl (5.53)

To sum up, recall the decomposition (5.43), our desired first estimate in (5.49) holds
from the estimates (5.50), (5.52) and (5.53).
e Proof of the second estimate in (5.49). Based on the size of k1 and k;, we separate
into three subcases as follows.

Subcase 1 1If (ki, k2) € x.

For this case, we have |k; — k| < 10 and k < k1 + 10. Recall (5.44). After using the
volume of “£”, the estimate of symbol “m (£, v)” in (5.23), the L?> — L? type bilinear
estimate, and the volume of support of “n”, we have

1T 4 )22 S 2200 )Y @121 A+ 0P F o, & 0, (0 )l 2
S 2R )y Ol A+ P T 0 (8 ey (554

Moreover, after first doing integration by parts in “v” three times and then using
the volume of “£” and “n”, the following estimate holds from the estimate of symbol
“m(&, v)” in (5.23),

1T s 0 O S Y 111732202 R )y, ) 2111
0<a<3

+ODPV £ Y (L ) oL (5.55)

From (5.54) and (5.55), wehave
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Z Z Ty o @ g2

keZ (k1 k) ex,

< Z [( Z Z 2k/2+3k1/2)

BeS.IBI<3  kyeZ,2%1 <|r|~1 k<ki+10

+( ) D 2R h@)

ky€Z,2k1>|¢|=1 k<k1+10

)L+ P+ AP f@x 0l S0 D0 1T IA@ Il + |x)?
BeS,|BI<3

+P AP f @ x 0a - (5.56)

Subcase 2 If (ki, k2) € x7.

For this case we have |k — k1| < 10, ky < k; — 5. Recall (5.44). After using the
volume of “n” and the estimate of symbol “m (&, v)” in (5.23), the following estimate
holds,

1T st )Mz 27 )Y @21+ )P F. 6 )l
(5.57)

Moreover, after first doing integration by parts in “v” three times and then using the
volume of support of “n ”, the following estimate holds from the estimate of symbol
m(&, v) in (5.23),

1T s @ Oz < D 271 MR )Y Ol 2 10+ )P V7 & 0) e

0<a<3

(5.58)

Therefore, from the orthogonality in L? and the estimates (5.57) and (5.58) derived
above, we have

1Y Y T kol

KEZ (k1 kp)ex?

S Y (Yt Leoie)’s Y Y

lk—k1|<10  ko<k;—5 BeS,|BI<3 k€L
( Z 22ky 4 Z |t|‘32_k2)||h(t,S)lﬁkl(E)lngll(l+le2
22 <)~ 2k > ¢!

2
+HPAP f 20 ]

S 2 2 TR OV O I+ xP + DA £ x0T,

BES,|BI<3k1€Z
S TR OITN A+ P+ PP AT £ e v (5.59)
BeS.IBI<3 ’

Subcase 3 If (k1. k») € x}.
For this case we have |k — k| < 10 and k; < k — 5. Recall (5.44). On one hand,
after using the L> — L type bilinear estimate, the L — L2 type Sobolev embedding,
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the estimate of symbol “m (&, v)” in (5.23) and the volume of support of the frequency
variable, we have

1T 4 82 £ 275200 )y, 9211
P & 0V @) 21y
,S 2—k+3k1/2+3k2/2”il‘(t’ E)I/’lq (é)”Lg”(l

)P F, & W)l gy (5.60)

On the other hand, we first do integration by parts in “v” three times and then use the
L% — L™ type bilinear estimate, the L> — L type Sobolev embedding, the estimate
of symbol “m (&, v)” in (5.23) and the volume of support of the frequency. As a result,
we have

—3~—k—3ko+3k1 /2T
1T 6Nz S 3 117727830 2 R, £y, §)ll 2111

0<a<3

NPV E )Y@z,
< D 72T R £y, )1l 2110

0<a<3

DBV R E V) ey (5.61)

Therefore, from the estimates (5.60) and (5.61), we have

Z Z | Tklfkl,kz(t’ g2

KEZ (ky kp)ex}

< Z ( Z Z 93k1/2+k2 /2

BES.IBIS3 ez, 2k2 <11 ki<ky—5

+ > D PRI @)

kyeZ,2k2>|¢|=1 k1 <k2—5
2 2520
XL+ x2 + [P AP £ (1, x 0l 2

SO0 WROIIA+ x P+ AP f @ x vl (5.62)
BeS,IBI<3

To sum up, recall the decomposition (5.43), our desired second estimate in (5.49)
holds from the estimates (5.56), (5.59) and (5.62). Hence finishing the proof. O

Our last bilinear estimates concern the weighted L?-type estimate, which corresponds to
the last part of the high order energy defined in (4.62). Recall (5.25), (5.26), and (5.27).
We have

Ve (Tu(h, £)(1,8)) = 0'(1,8) + 0% (1, &), (5.63)

where

0, &) = f [ MM EISIRHIE=NI=I0N G, (1 (6, V)RR (1, € — ) Ws—10(|&
R3 JR3
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—nl/IED) F(t, n, v)

1 G El=intnl =0 G0y,

x (m(&, V)W<_10(nl/IEN F (2, & — n, v))AE(, pdndv,

(5.64)
0%, :/ / inlgl—iptlg—nl=iton; (5 ST\ e i
(t,8) - 536 lt(|§| M|§—U|)m(g v)hH (1, §
—m ft, 0, v)¥=—1008 —nl/IED)
il s "”it(% — 8)mE, AR m T §
—n, v)¥<—10(nl/IEDdndv. (5.65)

For the sake of clarity, we first summarize our desired two weighted L2-type bilinear
estimates in the following Proposition. The proof of this proposition consists of four
parts, which will be elaborated in the next four Lemmas.

Proposition 5.3. Given any symbol “m(&, v)” that satisfies the estimate (5.23) with [ =
1 and any fixed k € Z, the following estimate holds for the bilinear form T, (h, f)(t, §)
defined in (5.24),

22V (Tu(hy )@, 6)) Y )l 12

<D0 D (a2 A+ )T I ),

0<n<3 aeB,|a|<4
I+ P+ [0 £ (2 x, v) 22 (5.66)
Moreover, the following bilinear estimate also holds,
22| Ve (T (h, ). 6)) Y ()l 12

S Y A+l (sup 2R, £y g + 221 Veh(E )Y ()l 2)
peS.|pl<4 kez
XL+ x P+ o) AP £, x, 0)ll 212 (5.67)
Proof. Recall (5.63), (5.64), and (5.65). The desired estimates (5.66) and (5.67) follows

directly from estimate (5.68) in Lemma 5.5, estimate (5.77) in Lemma 5.6, estimate
(5.84) in Lemma 5.7, and estimate (5.93) in Lemma 5.8. O

Lemma 5.5. For “O' (¢, £)” defined in (5.64), the following estimate holds for any fixed
keZ,

2210 (1, )Y@l 2
S (T2 A DT RS O, 11+ |x ]

0<n<3 aeB,|a|<4
2521
+HP £t x, 0 22 (5.68)

Proof. Firstly, we do dyadic decomposition for two frequencies “ £ — n” and “n”. As a
result, we have

O'w.eWME = > D Oy n8), (5.69)

i=1,2.3 (ky k) ey}
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where X,i, i €{l, 2,3} are defined in (2.2) and (2.3),

O s s 1 6) = fR . /R | EITIHETIE NG, (g, 0)RF 1€ = mY=—10(5 = nl/I5D)

X F(t. 0, 0) Yk, (€ = )Wy ()Y (E)dndv,  when (k1. k2) € xi U i
(5.70)

Of ko 1y (1) = fRS fR3 MG (g, 0) 0 & =0, v)W<—10(In1/IED)

X P (, ), (Y, (€ — MY §)dndv,  when (k1. k) € xg- (5.71)
From the above detailed formulas of 0,1 o & (& &), the desired estimate (5.68) holds

straightforwardly if |¢| < 1. It would be shfﬁczient to consider the case |¢| > 1. For any
fixed k € Z, we separate into two cases as follows.

e Case 1: If (ki, ko) € Xkl U sz. For this case we have k| > k — 10, kp < ki + 10.
Recall (5.70) and the estimate of symbol m (&, v) in (5.23). After doing integration by

[739% 1)

parts in “n” once, we have

220104ty 1y 0 112 S 20O gy 1, (0 D) e S (L+ 1)~ 1254 11
+DP 8 0V )l ey
x (272G ) §)ll g +27 MR Ve (@, £ (§) e
+I VR, €)Yk () ]1)
+ (27 MR R )Y (©)lage + VR, §)Yi (§)1ge) 11
+ D Ve F (0. 6 0¥ ®)ll o]

as > Y e TR (), 11+ [x [

n=0,1,2 aeBB,|a|<4
2520
+|v|%) f(f»X,U)||L§L%~ (5.72)

66, 9

Similarly, after doing integration by parts in “n” twice, the following estimate holds,

221104 44y 8 )l 2
SO0 DT TR TR @l 1+ X1+ 0D f (2, v) 22

n=0,1,2,3 aeB,|a|<4
(5.73)

To sum up, after interpolating the estimates (5.72) and (5.73), we have

D 208 4@ O

(k1.ko)ex) Ux?

SO0 AN Ol 1A+ x P+ [0 £ (2 x, )22 (5.74)

n=0,1,2,3
aeB, |a|<4
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e Case2: If (kj,kp) € X,?. Recall (5.71). After doing integration by parts in “n”
once, we have

1] =it || —itd-E—) | —ipun/|nl +iv ~
Oy sot.8)= [ [ ememniziieon L, [ D (e, v e
—n,v)¥<—10(nl/IED)
< B (1, )y, () 6 = ) [y ©)dindo.

If V¢ doesn’t hit on f(t, & —n, v) in the above integral, we use the volume of support of
& and n. If V¢ does hit on f(t, £ — 1, v), we first use the L — L>® type bilinear estimate
by putting f(t, £ — 5, v) in L? and the other input in L and then use the volume of
support of 1. As a result, the following estimate holds,

2121104 4 i 0 O 12
S (1)~ 273 RRGL )y, @)l + IVeR G )Yk, 0D 1)
X (221 + )P T & 0 @ llery + 10+ D VeF . & )V @)l y.2
2511+ )P VR 6 0 ©)lly2) | (575)
From the above estimate (5.75), we have
>0 204, 1, )
(k1. k2)exi

SO Y TR A P+ oD x, 0

k1 <k n=0,1,aeB,|a|<4

<hOllx, S Y A+ 25ROl 1+ |x ]
n=0,1,aeB,|a|<4

+ w2 £ (2, x, ) 202 (5.76)

Combining estimates (5.74) and (5.76), our desired estimate (5.68) holds. O

Lemma 5.6. For “O'(t, £)” defined in (5.64), the following estimate holds for any fixed
k eZ,

2210 @, £)ynr(®) 2

<) Al (sup 2! §)Yn(®)llog + 22 Veh(t. £)vn©)ll 2)
BeS.IBI<3 kez

N+ P+ [P AP 2, x, 0) 22 (5.77)
Proof. Recall (5.69), (5.70), and (5.71). Since the desired estimate (5.77) is trivial when

[t|] < 1, we restrict ourself to the case when |f| > 1. We separate into two cases as
follows.

e Case 1 If (ki, ko) € x! Ux?. For this case, we have k; < ky + 10. Recall the
estimate of symbol “m(&, v)” in (5.23). On the one hand, after using the volume of
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w9

support of & and the Cauchy-Schwarz inequality for the integration with respect to*“ 1",
the following estimate holds,

2210 4y 1, (1. 81 12
S22+ )P T8 )Y @) llgery 7R Ok @) 2
+IVeh (. )i ) 12)
< 20 (sup 2, )i (©) e + 22 IVER (. )Y (©) )11 + 1+

+ P £, x, )22 (5.78)

On the other hand, after doing integration by parts in “v” three times, using the volume
of support of “£” and the L?> — L? type bilinear estimate, we have,

2210 4, 4,0 )l 2

< D0 PAEEAR QA £y 62 + 1VsR (. 6V )] 2)

0<a<3

XL+ 10DV F(, & 0 )l oLy

S Y Ikt (sup oM R, £)yr(©)
eS.IBI<3 kez

+ 252 Veh(e, )Y @)l 2) 1+ |x 2+ HPAP £t x, 0202, (5.79)
From (5.78) and (5.79), we have

k/2 1
sup - 2208, 4, (.61 2
(k1. k2)exiUxi

S X X 2 Y 2R (suwp 2tk Hva® iy
BES.IBI<3 k2k=pr|-! K2k > ]| kez

+2K2 Ve ke, )i (§) 1 12)

)+ P+ PPN fox vlia £ D0 117 (sup 24R( )Y g0
BeS,|BI<3 kez

+ 22 Veh(e, )Y @ )11+ 1x 2+ POAP f i x, 00 (5.80)

e Case2 If (k,kp) € X/?- For this case, we have k» < k; — 10 and |k — k{| < 10.
After using the L> — L™ type bilinear estimate and the volume of support of 7, we have

22110 gy 1, 1. 81 12
S 27 (2R, )y () 2 + IVER(E )Yy ©)I122) (1
)P 7 & )Y O)llery
S 20 (sup 20 ) (® e + 2N Veht 9 ®)ll2) I 1+ fal?

+10 £t %, 02 (5.81)
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After doing integration by parts in “v” three times and using the L? — L type bilinear
estimate and the volume of support of the frequency of the input putted in L$°, we have

22108 gy 1o (1 Ol 2

< D T2 A )Y ©)ll 2 + IVsh (. 6) Vi @)l 2)

1B1=<3
XN+ D™V £t & 0¥ @)l o

S Y0 T2 (sup 28I ©)Yr(®)llge
BeS. 1813 kel

+ 252V (e, E)Yr @)l 2) (1 + [x7 + 0PN £, x, 0)ll 212 (5.82)

From (5.81) and (5.82), we have

sup 2000, 02 S Y0 (DD 2K Yo 2l

(k1 k2 exi BES.IBI<3 k,2k<[t]~! K2k > (¢!
x (sup 24172, £)Y (E) e + 242 Veh(t, )yl 2) (1 + x|
keZ
+10 AP F (@ x v)ap

S D R (sup 28I, Y@l + 22 VeR( E) Y@l 2) (1 + |x )
BeS,IBI<3 kez

+oPPAP £t x vl (5.83)

To sum up, our desired estimate (5.77) holds from (5.80) and (5.83). O

Lemma 5.7. For “O%(t, £)” defined in (5.65), the following estimate holds for any fixed
k €Z,

RN oG S Y. D (A+i)TI2 ()T

0<n=<3 aebB,|a|<3

1R @)1, 1+ 1x 17+ 012 £ (2, x, )22 (5.84)
Proof. Recall (5.65). After doing dyadic decomposition for “£€ — " and “n”, we have

O, EHE = Y Y. O nt.8),

i=1,2,3 (k, ,kz)ex,i

where

Of syt (1:8) = ./1@3 /R3 e | AN AL Jm(E, v)y=—10(1§

N el "lE =l
—nl/IENAE(, & — 1)
X f(t, 1, VLV, (€ — MY, (Mdndv, if (k1,ka) € xi U xZ
(5.85)
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OF kg sy 1 6) = /R . fR . e""5“"“""""“"‘5‘”)it(% — )m(& V)Y 10(nl/[EDAR )

X Jt, & — 10, VY Vi, (DY, (E — mdndv, if (ki ko) € x}.
(5.86)

From the above detailed formulas of O,f k1 o ”, our desired estimate (5.84) holds straight-
forwardly if || < 1. Hence, from now on, we restrict ourself to the case |7| > 1.

e Casel If(ki,ky) e Xk] kaz_ For this case, we have k; > k—10and k» < k1 +10.

@, 9

Recall (5.85). After doing integration by parts in “n” twice for 0,3 ki.kp» We have

0 :, it|E|—ipt|E—n|— llvﬂ V il/‘(f—ﬂ)”é_’”_iﬁv
k128 = / /R ! [|u(s—n)/|s—n|—v|

rin@E—n)/IE —nl—iv
| —n)/IE —nl — 9|’

(i - - ) & v)Y=_1001& — nl/IEDR" (1, €

11 & —nl
=) (e, 0, Y, (6 — U)I/sz(n)]]dndv-

After using the volume of support of “£” and “n”, the following estimate holds,

2208 gy 1o 1 ) 2
S22 R, )y ©)llLe + 272 I Veh (W, )y, §)llL
HIVERGE )Wk ©)ll2ge) I+ )P 0§00V §) o
+ (270G ) )l + Ve, )Y (©)l1ge)
[+ [0 Ve f, € 0P @)l ory + 1A )Y E) el (1
HDPVEFE 8 0 )l ]

Nl (Y 1R D1, )+ 1P+ 10 F 2 2 0l 22
n=0,1,2,aeB,|a|<4
(5.87)

“ 2

Moreover, after doing integration by parts in three times first and then using the
volume of support of £ and 7, the following estlmate holds,

2210 4y 1, 0 0 12

< Z 1117210 () l1x, 11 (1 +|x|2+|v|2)20f(t,x,v)||L§Lg- (5.88)
1n=0,1,2,3,ael3,|0|<4

After interpolating the estimates (5.87) and(5.88), we have
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. 2P0k )l

(k1.k2)ext Ux?
S TR I+ P+ P fE )22 (5.89)

0<n<3,aeB,|a|<4

e Case 2: If (k1,k2) € Xk3~ Recall (5.86). For this case we have k| < kp — 10, |k —
k2| < 10. On one hand, the following estimate holds after using the volume of support
of 1 and the Minkowski inequality,

22007 41, 1 )12 S 2PN A+ D IRG )Yy ©) 2 11
P & 0V @)y
< (L+[eD2% minf272, 29 (1) | x, (1 + x|
+10H* f X vl (5.90)

On the other hand, after doing integration by parts in “n” three times first and then using
the volume of support of  and the Minkowski inequality, we have

2210 4, 1, 1 8 12
—2~—k/2+3k; —(3—b—a)k 25wb 7y
S DD D e el (R N e v O VT T PP
0<bh<30<a<3-b

<IVER(E, €)Y ©)ll1ge < > 722742

0<n<3,aeB,|a|,0<b<3

HDEVEF £ o)W )l 2 1A O]l x,

S R ming2 2 2 A @) |x, 1+ )
0<n<3,aeB,|a|<3
+ 02 £ x, ) 212 (5.91)

Therefore, from (5.90) and (5.91), we have

Y. 2PU08 k@ O

(k1.ko)ex}

SO0 ke S 1278 min(2 2 2400 | x,

0=n=3|a|<3 2ki<|s|~! 2K1 > 7|1
2 2,20 —1Ak—
)P+ 1P+ 0 f @ x vl S Y0 725 IR Ok, 1A
0=n=3,|a|<3

+1x P+ A £, x, 022 (5.92)

To sum up, our desired estimate (5.84) holds after combining the estimates (5.89)
and (5.92). O
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Lemma 5.8. For “0%(t, £)” defined in (5.65), the following estimate holds for any

kel,
2RN02 v S Y sup(+ )2 R YR g (L + |x )
peS.|pl<a ket
+WP)ONP f (e, x, 022 (5.93)

Proof. Recall (5.85) and (5.86). From the estimate of symbol in (5.23), the following

9

estimate holds after using the volume of support of “£”” and *“ n”,

2207, 4, (. O 2 £ 2R A4 ) R, £) 9 )11

P E 0¥ @ ller- (5.94)

Moreover, after doing integration by parts in “v” four times first and then using the
volume of support of “£” and “ ”, we have

22108 4y 1o 1. O 12

S D (Al 2RI G gy €)1

0<a<4

+ DV 6 0P @)l (5.95)

Therefore, from the estimates (5.94) and (5.95), the following estimate holds for any
ke,

k/2 2
Y. 2P0k k@O
(k1.k)exUx2ux}

S (D asEp2t+ Y a+ppT2)

O<a<4 k,2k<(1+]r])"! k262 (1!
x (sup 2417t )9 () l2ge) 1L+ WDV F (1, & )W () o)
keZ

S Y0 DT (sup A O)Yr®)lloge) 1L+ |x )
BeS,Ip1<4 kel

+10HPAP F (X, )20. (5.96)

Hence finishing the proof of the desired estimate (5.93). 0O

5.3. Bilinear estimates in the high order energy space: Vlasov-Vlasov type interaction.
In this subsection, we prove a bilinear estimate in the weighted L>-type space for the
Vlasov-Vlasov type interaction, which, more precisely, is the interaction between two
density type functions. This bilinear estimate has been used in the high order energy
estimate of the scalar field in the proof of Proposition 5.2. More precisely, the estimate
of the second integral in (5.12), which can be viewed as a linear combination of bilinear
forms defined in (5.97).
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Lemma 5.9. For any symbols m1 (&, v), ma (&, v) that satisfy (5.23) with “l = 1” and
any two localized distribution functions f, g : R; x Ri X Rf’) —> R, we define a bilinear
operator as follows,

K" (g, )1, &) == / / / HEIIEED it ey (& )1, &
R3 R3 ]R3
—n,u) f(t, n, v)dndudv. (5.97)

Then the following bilinear estimate holds for any fixed k € Z,

22 Ve (K" (8, N1 )@l 2

SO0 A+ TAA+ X + g x, v)ll 22 (L + [x )
BeS,IBI<5

+vPAP £t x 02 (5.98)

Proof. Similar to the decomposition we did in (5.63), we first separate “Ve (K*(g, f)
(t,£))” into two parts and then do dyadic decompositions for “6 — n” and “n”. As a
result, the following decompositions hold,

Ve(K" (g, /)t DY) = Y Ki(g, £)(t. &), Ki(g, f)(t,€)

i=12

=Y KL eHws, (599

(kl,kz)E)(,{,,l——l,Z,’j
where
Kk;l (g, /), 8)
ki.ko \8> )

= A;{z /W /M MGG (1 (8, v)mo (& — n, w)E(t, &

=, w)¥=—10(1& = nl/IED)
x Ft, 0, YR EWr, € — M¥r, (dndudv, if (ki k2) € x U i, (5.100)
K (2 (&)

- / / / I E=D G (1my (£, 0) F (1.6 — 0, V)W 10(In]/IED)
R3 JR3 JR3

X Z(t, 0, wyma(n, WYk €)Yk, (DY, (€ — Mdndudv, if (ki k2) € x7,
(5.101)

K% (8. (1. 6)

=/ / / eitIS\—iutﬁ-@—n)—itﬁ-n,-t(i_W;)ml(g,v)mz(g
R3 JR3 JR3 |€:|

- ?\v M)/g\(l, 5 -n, u)
X f(t, 0, VUK EVry (6 — MY, (dndudv, if (ki k) € x} U xZ,  (5.102)
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K% (g, (1, 6)
_ f / / It G0 (S gy (€ vyma (7, wR(E, 0, )
R’ Jr3 JR3 &1
X F (. & = 0. )YV, My & — m)dndudv, i (ki ko) € 5. (5.103)

From the above detailed formulas, our desired estimate (5.98) holds straightforwardly
if [] < 1. Hence, we restrict ourself to the case |¢| > 1.

e Case 1: If (k1,kp) € Xkl U)(k2. For this case we have k| > k—10and k> < k1 +10.
On one hand, from the size of support of “£€” and “n” and the estimate of symbols
“mi(&,v)”,i €{l,2},in (5.23), we have
2PIK 1y (8. N6 2
< AR () (14 )50 & ) () ey
+ 24+ DB VR &)Yy Gl o) 1A+ 0D P F (0, & )Yk (Bl o1y
S22+ P+ [ Pg @, x, )l 221+ x4+ [0 £, x, vl 22

(5.104)

Following the similar strategy, recall (5.102), the following estimate holds for K 1];1 ,2k2 (g, )
(. 8),
2K (8 N2 S 12 NA+ 1P + ) g2 ) 2211+

+101)% £, %, 0) 2 (5.105)

On the other hand, we first do integration by parts in v three times for K,]:l; 1k2 and do

integration by parts in v four times for K ,];; 2k2 and then use the volume of support of &
and 7. As a result, we have

2K L (8 N )2 + 21K (80 @O
S Y0 AT A+ P+ )P x, vz (L 2P
BeS,IBI<S
+ AP £ (2, x, )22 (5.106)

To sum up, from the estimates (5.104), (5.105), and (5.106), the following estimate
holds,

Z Z 2k/2||K]1§11k2(g, ), é)IILg_

(k1.ko)exjuyf i=1.2

S 2 (2 @esp?He T opT2R)

BES.IBI<S 2k2<|r|~! 2k2 > 7|1

I+ x P+ [0 g (2, x, vl 2 2 I+ P+ 010 AP £, x, v) 20
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SO T P g x )22 (L + [
BeS,IBISS

+vPPAP £ x 0l (5.107)
e Case2 If (ki,ky) € X;;?’- For this case, we have k1 < k — 10 and |k, — k| < 10.
On one hand, similar to the strategy used in obtaining the estimates (5.104) and

(5.105), the following estimate holds from the size of support of £ and 7 and the estimate
of symbols m; (¢, v) in (5.23),

> 2K (8 D@2
i=1,2
S 2B (L 2 27 A + 0D P68 0P Oy
+ 251+ )P Ve £ & 0 Ol o) 1+ )8 €)Y §) oy
S @ 22 (1 4+ 1x P+ 1010 (1 x, v) 22 (L
+101 £, %, 022 (5.108)

On the other hand, similar to the strategy used in the estimate (5.106), we do inte-
gration by parts in v three times for K,f;’lkz in (5.101) and do integration by parts in v

four times for K 11:1 ,2k2 in (5.103). As a result, the following estimate holds after using the
volume of support of £ and 7,

> 2K (8 @O

i=1,2
S D TR P+ )% x V) 2
BES.1BI<5
XL+ 12 + )AL £ x v - (5.109)

From the estimates (5.108) and (5.109), the following estimate holds,

> 2 PR 8 N

(k1.kp)ex i=1.2

S, Z ( Z Z (2k1+k2+|t|22k1+k2)

BeS,I1B1<5 2k2§|[|*1k1§k2+10
YD TR A P+ PP g x, v) 2211+ [x]
2k2 > |¢|=1 k1 <ka+10
+P)PAPf (@ x )2
SO TN+ P P x, )22 11+ [
BES.IBIS
+oPPAP £t x vl (5.110)

To sum up, our desired estimate (5.98) holds from the decomposition (5.99) and the
estimates (5.107) and (5.110). O
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6. Energy Estimate for the Vlasov Part

In this section, we estimate both the low order energy E/ (t) defined in (4.60) and the

high order energy Ehfigh(t) defined in (4.49) of the profile g(¢, x, v) of the Vlasov part.
The main ingredients are some general linear estimates and bilinear estimates, which

will be used as black boxes first in Sects. 6.1 and 6.2. We will prove these estimates in
Sect. 6.3.

low

6.1. The high order energy estimate for the Vlasov part. Recall (4.49) and (4.9). As
a result of direct computations, the following equality holds for any fixed ¢ € [0, T],
ae B, ges§,st,|a|l+]|B8] < No,

1 1
Sl (e 085 X VI, | = Sllef(x, 85O, x, VT,

f /R% ng %, 1)) g%t x, Vg4 (1 x v)dxdv = Y 1%, (6.1)

i=1,273

where

'
Ig.]:[f / (a)g(x,v))zgg(s,x,v)K(s,x+ﬁs,v)~D,,gg(s,x,v)dxdvds,
' 0 JRr3 JR3

(6.2)
/32 —/ /I‘&? /R* a)ﬂ(x v)) gﬁ(s X, v)lotﬁ(s x, v)dxdvds, (6.3)
13;3 :[0 A; /11@3 (w%(x,v)) gg(s,x,v)h.o.t‘g(s,x,v)dxdvds. (6.4)

The main result of this subsection is summarized in the following Proposition. For the
sake of readers and for clarity, we give a concise proof of Proposition 6.1 by separating
out two independent Lemmas first and then proving the validities of these two Lemmas.

Proposition 6.1. Under the bootstrap assumption (4.69), the following estimate holds
foranyt € [0, T],

Eiglh(t) < (1+0), E,{,gil(t) < (1+0)% 2 (6.5)

Proof. Recall the definition of the high order energy in (4.49) and the decomposition in
(6.1).

We first estimate Ig , and Ig Recall (6.3) and (6.4). From the estimates (6.8) and
(6.9) in Lemma 6.1 and the estimates (6.13) and (6.14) in Lemma 6.2, the following
estimate holds from the Lzy Lz’ type bilinear estimate,

t
g+ 5/ 1+ " Pepds S A+0%e0. Y I, |+ 1155
lerl+181=No 0 lal+IB1<No

< (1+1)°e. (6.6)
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Now, it remains to estimate Ig,l . Recall (6.2). Note that

N 1
DU = V1.) _tvvv : V)C’ - gg(tvxv U)Dvgg(t,x, v) = EDU(gg(taxa U))z'

Therefore, after doing integration by parts in x and v, the following equality holds,

) 2K (t, x +0t,v) - Dva)g(x, v)
ﬂ 1 —/ fﬂ@/? > a)ﬂ(x v)gﬂ(t X, v)) [ w%‘(x,v)

+Dy - K (1, x + 0t, v) |dxdv.

Recall (4.10). From the estimate (4.52) in Lemma 4.2, and the decay estimate (6.55)
in Lemma 6.3, we have

K(t,x +vt,v) - Dvw%(x, v)

D, -K(t,x +vt,v +‘
Dy - K ( )| )

SA+DTEL 1) S A+ i) ey 6.7)

low

To sum up, our desired estimate (6.5) holds from the above estimate (6.7), the Li’v —
L)%’v — L$°, type multi-linear estimate, and the estimate (6.6). O

Lemma 6.1. Under the bootstrap assumption (4.69), the following estimate holds for
anyt €[0,T],

> ooy Ce, VR0 a5t x, V)l 22 S (A +1e) e, (6.8)
aeBB,BeS, |a|+|Bl=No
> ooy Ce, Vb0 a5t x V)l 22 S L+ 1) e, (6.9)

aeB,BeS, |al+|B|<Ny

Proof. Recall (4.15). Motivated from the the decomposition of h.o.t% (t, x, v), we sepa-
rate into three cases as follows.

e Case 1:  The estimate of h.o.r5. | (. x, v).

Recall the equations (4.11), (4.16), and the first decomposition of D, in (3.41) in
Lemma 3.4. From the estimate of coefficients in the estimate (3.44) in Lemma 3.4 and
the estimate (4.25) in Lemma 4.1 and the decay estimate (6.55) in Lemma 6.3, we have

Yol vhoty, (x, v,

la|+]B1=No

hS > (ICL+1d (2, x, V)3 @ (1, x + D) | L,

0,8, yeB,|pl+|y|<No,|t|<1
+[[(1+1d(t, x, V))Vi'(t, x + ﬁt)||L§?v)||wg(x, v)gh(t, x, Wiz,

S A+ B O ED @), (6.10)

e Case 2: The estimate of h.o.t%;z(t, X, V).
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Recall the equation (4.17) and the first decomposition of D, in (3.41) in Lemma 3.4.
From the estimate of coefficients in the estimate (3.44) in Lemma 3.4, the estimate of
coefficients in (4.6) and the decay estimate (6.55) in Lemma 6.3, we have

Y lofte vhotf, . x vz,
]+ 81=No

< > (1L +1d (2, x, v)DB (7, x + 00) [ 125,
pteS,yeB,|pl+ly|<No, <1

+I(+1d (@, x, DV (1, x + 00 1139, ) ) (2, v)gh (1, x, V)2

S A+ Efy O ED, (), ©6.11)

e Case 3: The estimate of h.o.t%ﬁ(t, X, ).

Recall (4.18), the detailed formula of Yiﬁ in (3.77), and the detailed formula of
Ki(t,x,v),i € {1,...,7}, in (4.12), (4.13), and (4.14). From the estimates of coeffi-
cients in (3.79) and (3.81) in Lemma 3.9, the Liv — Lf?‘fv type bilinear estimate and the
decay estimate (6.55) in Lemma 6.3, we have

Y lofte vhotfstx vz,
[+ 81=No

< 3 (1CL+ 12, x, )3 (1, x + 00 120

pteS,yeB,|pl+ly|<No, <1
HIA+ 1, x, DV ¢, x + 00 10, ) ) (6, 0) Y (1, 3, v) 2

S A+ Efy O ED, ), (6.12)

To sum up, our desired estimate (6.8) holds from the estimates (6.10), (6.11), and
(6.12). With minor modifications, the desired estimate (6.9) holds very similarly. O

Lemma 6.2. Under the bootstrap assumption (4.69), the following estimate holds for
any fixed time t € [0, T],

> lefg (e, )Lo.t5 (1, x, V)l 22 S A+ e e, (6.13)
aeB,BeS, |a|+|Bl=Ny
> lofg (e, v)Lo.t5(t, x, V)l 22 S (A + e ep. (6.14)

aeBB,BeS, al+|B]<Noy

Proof. Since the case [f| < 1 is trivial, it would be sufficient to consider the case |7| > 1.
Recall the decomposition of l.o.t% (t, x, v) in (4.19). Based on the size of the total number
of derivatives acting on the scalar field, we separate into two cases as follows.

e Case 1: The estimate of l.o.tg;i(t, x,v), i €{l,2,4}.

Recall (4.20), (4.21), and (4.23). Note that there are at most ten derivatives hit on
the nonlinear wave part. Recall the commutation rule between AP and X; in (3.76) and
the equality (4.24). From the estimate of coefficients in (3.78), (3.79), (3.80), (4.25) and
(4.26), the following estimate holds from the linear decay estimate (6.55) in Lemma 6.3

and the L%’v — L%, type bilinearestimate,
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> > oy e, 0oty 2, x, ) 212
i=1,2,4aeBB,BeS,|al+|Bl=No
S > Yo el el x vl la

p,vEB.kES, |y |+k|<No,|p|<13 ue{d;¢?,V§P}

+1d(t, x, V)Du(t, x +00)| L,

S A+ ELyOED (1) < (L + e el (6.15)

low

e Case 2: The estimate of l.o.t%ﬁ(t, X, V).

The main difficulty is caused by the case in which the scalar field has the maximal
number of derivatives. For this case, we are forced to put the scalar field in the energy
space. The main ingredients in the estimate of /.o. t‘; .3(t, x, v) are the decay estimate of
the density type function and the fact that the space-resonance set is relatively small,
which is nontrivial.

Recall (4.22). From the equality (4.24) in Lemma 4.1, we have

l.o.t%ﬁ(t, X, V)

= > AP (9P (1, x + B1)
LKES, B1,v1,B2,72€B,
lo[+B11> 11181 [41y1] <o
lol41B21> 11182 141l <lel

+0- VP (1, x + f)t)))A" (aé;ﬁhyl )g" (@, x,v) + agz;fh,yl (v)v - Dyg" (t, x, v))

+ A" ((ag. 4, W V2§ + a;‘;ﬂz’yz(v)awm)(t, X +01) - (V) A (X872 (1, x, v)),
(6.16)
From the equalities (3.76) and (3.77) in Lemma 3.9 and the first decomposition of
D, in (3.41) in Lemma 3.4, we have
A“(Xig" (1, x,v))
= [@i(v) - Dy o A* +[A°, X;1]g" (2, x, v)

= Y @) dy(t.x, V)AP " (t, x, v)
pell,|pl=1

+Y g (1, x,v) + Z [cz(t,x,v)élf:;l(x,v)
€S Ik I<lk|—-1
+3 2 ]AN g (1, x, v). 6.17)

From (6.16) and (6.17), and the detailed formula of d, (¢, x, v) in (3.42), we can
rewrite “l.o.t%;3(t, x,v)” as follows

l.o.t%ﬁ(t,x, )

= Z [(J(l,x, v)’e\ilykz’p(t,x, v)

pES.k1,K2€B, K| <al,|p|<|BI,
[pl ey [+]r2 | <|a|+|B]
lol+lr2 | <loe|+|B]—12

Y A
+ 04, ey p (T2 X, 0)) 0" (2, x + D)
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~ 3 ~ ~
+(d(t, x, 008y (0 X V), (X, ) - Vi@ (1, x +00) | gh2 (1, x, v),

(6.18)
where the coefficients ?fﬂ ,Kz,p(t’ x,v),1 € {l,2, 3,4}, satisfy the following rough esti-
mate,

DD R (e B R e [ o e e (6.19)

i=1,....4

which can be derived from the estimate of coefficients in (4.6), the estimate (4.25) in
Lemma 4.1 and the estimates (3.78), (3.79), and (3.80) in Lemma 3.9.

Recall (6.18). After doing dyadic decomposition for the wave part, the following
decomposition holds,

l.o.t%ﬁ(t, X,v) = Z Hi(t, x,v), (6.20)
keZ
where
Hi(t, x,v)
— 3 [(d(t. x,v)e,, ., ,(t.x. )

peS.k1,k2€B, 2| <|al,|p|<|BI.
[pl+rcr | +2 | < o] +] B]
[ol+lka | <|er|+|B]—12

+02 e ot X, 1)) (B i (t, x + )

K1,K2,0
~ 3 ~ A
+ (d(t, X, V)€, ey p(ts X, V) + € 0 (2, X, v))(Vqﬁ’“)k(t, X+ vt)]ggz(t, X, v).

Based on the possible size of k, we separate into the low frequency case and the high
frequency case as follows.
o Ifk <O.

Recall the decomposition in (4.43). From the estimate (5.17) in Lemma 5.1, the
estimate of correction term in (4.70) and the Lgo—type estimate of the modified profile

in (5.9), we have

Yo NP N + PV T2 S 226 #1012 26 (6.21)

keB,|k|<No

After using the L2 — L°L? type estimate, the estimate of coefficients in (6.19), the
estimate (6.21), and the decay estimate (2.20) in Lemma 2.1, the following estimate
holds if 2F < |71,

o e, ) (e, x, )2z S (2% +1012%2) e (1 + 1e) 2 ELS ()
< e V220K2 (1 4 11128 €. (6.22)
Note that, we estimate the inhomogeneous modulation d (t, x, v) roughly from the above
by 1 + [¢| in the above estimate.

If |£|~! < 2K < 1, from the decompositions in (4.46), the following decomposition
holds for Hy,

Hi(t, x,v) = H (¢, x, v) + H}(t, x, v), (6.23)
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where
Hkl(t,x, V) = Z [(d(t X, v)eKI ‘. p(t,x, V)
peS.k1,k2€B, k2| <|al,|p|<|Bl,
|pl+ik1 |+ | <ler|+ ]
lpl+lic2|<|al+BI—12
+ 25, e p (1. X, 0)) (B )i (2, x + D1)
+(d(t, x, v)eK1 r.p(T: X, ) +eK1 ir.p (X, )
-(vx¢>m)k(z, x+00)] g2 (e, x, v), (6.24)
HA (1, x,v) = Z [(d(t.x, v)ey, ., , (1. x. V)

€S Kk1,k2,n€B, K2 <|al,|p|<|B]
[pl+lrr | +He2 |<|a|+|Bl, In| <Ix1]
[pl+lk2 | <|e|+ Bl —
+ 25, p (1 X 0))RE[E 1y (1) (2, x +01)]
—(d, x, v)eKl ir.p (1 X, V) +eK1 . p (s X, 0))
~R(Im(E,q;,7(gk)(t, X+ vt)))] pz (t, x,v). (6.25)
From the estimate of coefficients in (6.19), we have

1 2
||0)%(_x, v)Hk (tv X, U)”LEL%

< E E ]+t2 G (1. x. ) 5t zdd,
N €B,[k|<No,| |<|| ( ) /H@/R—* p( V)i vr)|"dxdv
k,y€B, |k 0, y o R X
lpl+ly|<No— ue(d ¢~ V. g¥)
(6.26)

where G% (t, x, v) is some determined function that satisfies the following estimate,
2 2 2181=21pl—|y|+5 2
1G7 (1, x, )| S lf(x, v)(1+ [x]? + o) IR0 0 (02,

Recall (4.44). From the estimate @.26), the multilinear estimate (6.60) in Lemma 6.4,

the estimates of modified profiles 2% (¢, &) in (5.9) and (5.14), and the hierarchy between
the different orders of weight functions, we have

1
||w%(x9 U)Hk (ts X, U)HL)ZCL%

S AP R 2 08 vy (it x, )l 22
[pl+lk|=No—7
Xt73/227k/2(60 + |t|282k7€0) 5 |t|73/2+5/22 k/2 2 + |t| 3/2+3527k/2+k,€12.
(6.27)

It remains to estimate sz(t, x, v). Recall (6.25), (4.45), and (4.46). Note that sz
(t, x, v) is a linear combination of bilinear forms that will be defined in (6.71). From the
estimate of coefficients in (6.19) and the bilinear estimate (6.72) in Lemma 6.5 and the
estimate of correction term in (4.70), we have

llof Ce, VY HE(, x, 0272 S (181702 4101722275 412172202 )ep. (6.28)



1914 X. Wang

To sum up, from the decomposition (6.23) and the estimates (6.22), (6.27), and (6.28),
we have

D e, v) Het, x,v) 22
keZ,k<0

S [( Z |t|—1/2+8/22k/2(1 + |t|2k)60) +( Z (|t|—1+5/2
2k<|t|-1 -2k <d
+ |t|_3/2+5/22—k/2 + |t|—2+5/22—k + |t|—3/2+252k/2)€0]

< (14072 Jog(1 + |t))eo. (6.29)

o Ifk>0.
From the estimate of coefficients in (6.19) and the bilinear estimate (6.73) in Lemma
6.5, we have

D NG v HEE x 022 S Y A+ P27Ked < (1+ 1) e,
k>0,keZ k>0
(6.30)

Now, it would be sufficient to estimate “Hkl (¢, x, v)”. Similar to the strategy used in
obtaining the estimate (6.26), we have

1 2 2
I Y. efwH xS Y 407Kk, (63D
keZ.k>0 ' k. k2 €7.k1.kr >0
where

Ky 1y = > > )/ / G, x, v)ug, (£,
R3 JR3
)

K,y €B,lk|<No U, 0E(B, 5, Vi BF
Ipl+y [<No—12,]y | <l A

+00) vk, (£, x + D)dxdv|, (6.32)

where GZfZ(t, x,v), u,v € {0:¢%, qubN" }, are some determined function that satisfies
the following estimate,

axgb ~ViV
E |VXVUGp;u(t,x,v)|
a,bel,a+b<5
u,ve{d; P, Vi ¥}

S ) e o)+ [x [P+ uf?) BRI O gy )2,

[+ [<Zlpl+]y|+5

(6.33)

Firstly, we consider the case |k; — k2| > 5. Recall (6.32). From the orthogonality in
L? on the Fourier side, we know that the frequency of “G;‘ ;(tx, v)” is localized around

omax{ki.k2} Hence, from the above estimate (6.33), and the trilinear estimate (6.61) in

Lemma 6.4, we have

> Kk

k,k1,ka€Z,k1,ka>0
|k1—k2|=5
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— max{kik —5+26 2
S Y ks

i=1,2,3,0<a<4 k,ky,kr€Z,ky,kr>0
peS,yeB,ly|<|al,|pl+ly|<No—12 |k1—k2|=5

<A+ YA+ )V VEGT (1, x, 0 S 17 e (6.34)
Lastly, we consider the case |k; — k2| < 5. Recall (6.32). Again, from the estimate

(6.33), the trilinear estimate (6.60) in Lemma 6.4, and the Cauchy-Schwarz inequality,
we have

> Kkl

k,kl,szZ
ki,k2>0
lk1—k2|<5
=5 2 25
< ¥ S AT+ DA+ EHVEG, x )
ki,koeZ — i=1,2,3,]la|<4

ki,k2=0 peS,yeB,|y|<|a|
lk1—=ka2|<5 " |p|+|y|<No—12
x(MPEL O+ Y IR O @)l ) (272 ED ()

1B, |t|<Ny

+ Y IR E Yk @) )

eB,|(|<Ny

_ 2 _
1 (B gy () Efign () S 1117593 (6.35)
From the estimates (6.31), (6.34), and (6.35), we have

1> o vH . x o)l S e (6.36)
keZ,k>0

To sum up, recall the decompositions (6.20) and (6.23), the following estimate holds
from the estimates (6.29), (6.30), and (6.36),

> lof(xr, Loty 5@ x, )z, S A+ e (6.37)
aeB,BeS, |al+|Bl=No

Therefore, our desired estimate (6.13) holds from the estimates (6.15) and the above
estimate (6.37).

Since the correction term g ,, (¢, v) defined in (4.61), which contributes the logarith-
mic growth in the estimate (6.29), equals zero if |&| < N, with minor modifications in
the above argument, our desired estimate (6.14) holds similarly. O

6.2. The low order energy estimate for the Vlasov part. In thls subsection, as summarized
in Proposition 6.2, we show that the low order energy Elow(t) are uniformly bounded
over time.

The main ideas of proving this fact are same as the ones we used in a relatively simpler
system, Vlasov—Poisson system, in [41]. For the sake of readers, we explain concisely
the main ideas in [41] as follows: (i) The main obstruction preventing the nonlinearities
of the Vlasov—Nordstrom system decay faster comes from the low frequency part of
the scalar field, which, intuitively speaking, is of size 1/z. (ii) In the worst case, the
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decay rate over time is compensated by the spatial derivative. The fact depends on two
observations. Firstly, since the output frequency is zero in the definition of low order
energy, see (4.60), the frequency of the scalar field is exactly same as the frequency of
the Vlasov part. Lastly, there is a spatial derivative in the bulk term 7V, 0 - V,g(t, x, v).

Proposition 6.2. Under the bootstrap assumption (4.69), the following estimate holds
foranyt € [0,T],

|EL, 0] S e+ / (1+5)7 28245 < e, (638)

Proof. Recall the definition of the low order energy El‘f)w (¢) in (4.60), the definition of
correction term in (4.61), the equation satisfied by g(¢, x, v) in (2.11) and the equation
satisfied by g% (¢, x, v) in (4.7). For the sake of simplicity in notation, we focus on
the case |y| = 0, i.e., y = Id. With minor modification, we can show general case
y € B, I)/I < No, similarly.

Let w(v) := wld(v) Note that, the following equality holds for any a s.t., 0 < a <
No,

3 (V8(t,0,v) — Vy - ga,14(t, V)

= > 4V (@ +0 - Vg (r, x +00)) Vi g(t, x, v)

3
b1+c‘1:a R

+ > V(@3 (1. x + 00)) (e )V (2, x,v)

by+cy=a,|c3|<Np—1
2
—1cy) sz Virg(t, x,v))

+ VRV, p(t, x + vt))(cbé’c2 W)V g(r, x,v) — thsz(v)Vfo;zg(t, x,v))dx,
(6.39)

where ch o (v),i € {l1,2,3, 4}, are some uniquely determined coefficients that satisfy
the followmg estimate,

el ) < (L+[v]), forany i € {1,2,3,4). (6.40)

Since our desired estimate (6.38) holds straightforwardly for the case |7| < 1, we
focus on the case when |f| > 1. Note that, after using the equality (3.7) repeatedly, the
following equality holds for any & € L HNo RY),

VPh(t,x+06) = Y tp o (v)VER(t, x + 1)

0<c<b

- Z 11t — |x + 0] 7Cp, (x, V)TV h(t, x + 1),
0<c<b,yeB,|y|=c
(6.41)

where the uniquely determined coefficients Cj,,, (x, v) satisfy the following estimate,

1Cp,y (x, VI S 1, [VaCpy(x, 0)] S 1/(2] + |x + 01]). (6.42)
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Note that ||| — |x+0¢|| = [¢|(1+]v|>)~Lif |x|(1+]v|*) < 2719)¢|. This fact motivates
us to decompose (6.39) into two parts as follows,
3 (Vg(t,0,v) = Vy - ga,14(t, )
= > HY .t v)+ K& (1,0),  (643)

keB,c1,c2€Zy,|Kk|=c1,c1+c2<Np,c2<No—1

where

HY ., (tv) = /R om0 (x| (L4 V1) /(L + D) [VE 8, (1, x

~ i1 1 ;2
+ vt)(agm WV g, x,v) — rali~ (v)

x VyVg(t, x, v)) + Vﬁ‘”qﬁ(t, X+ ﬁt)(a?;?cz(v)vlfﬁlg(t, X, V)
— %4 V)V V2g(t, x, v))]dx

C1,C2
K&X (t,v) = fR3 cey (t, 2, V[T p(t, x + D) (b2 (x, V)V g (1, x, )

— th%*2 (x, V)V, VE2g(1, X, V)

C€1,C2
+V, ¥ (t, x + f)t)(b?]’f‘cf; (x, v)Vetle(t, x, v)
— 1th%H (x, V)V, Vg (1, x, v)) Jdx,

1,02
where
Cey (t, %, 0) 1= Ye_1o(x (1 + [P /(1 +[ED)IEIM ] — |x + De] |71,

= leo, (1, x,0)| < (1+ v, (6.44)

From the estimates (6.40) and (6.42), the coefficients oszch (v) and b?l'CCzl (x,v),i €
{1, 2, 3,4}, satisfy the following estimate,

ladl ()] + D& (e, )| + [ VbS5 (x, v)] S (1 + [v)). (6.45)

C1,C2 1,2 1,2

Due to the high order weight function a)g (t, x, v) (see (4.51) ) we associated with

APg(t, x, v), the inverse of weight function provides fast decay rate if |x|(1 + |v]?) >
(1+]¢]). As aresult, the following estimate holds after using the L)2c — L% L% type bilinear
estimate,

108 WV HE o, (1 V)12 S (A + 1) 2 By (0 Ef (1) S (1417226} (6.46)

It remains to estimate K¢, (7, v). We emphasize the fact that, due to the cutoff
function Y¥<_10(|x|(1 +[v]|?)/(1 +|t])) in K&, (¢, v), the following estimate holds,

] = b+ B2l 2 1 (1 + ]~
After doing dyadic decomposition for the scalar field, we have

K&, @ o) = Z Jcal’ﬁ'z;k(t, v), (6.47)
keZ



1918 X. Wang

JECK (@, v) = /3 Cey (t, %, V[ Pe(, T @) (¢, x + 01) (b2 (x, ) VE2H g (1, x, v)
R

— b2 (x, V)V, Vile(t, x, v))

1,02

+ Pe(ViT“0) (1, x + 00) (b4 3 (x, v) V2 g (1, x, v)

€1,C2

— th®F I (x, v) VL Vg (1, x, v)) Jdx. (6.48)

Based on the size of k, we separate into two case as follows.

o Ifk>0.

If c; < 10, weuse the L° — L}C L%-type bilinear estimate by putting P [, "“¢](r, x +
vr) and Py [V, T“@]1(t, x +0t) in LY and the linear decay estimate (6.55) in Lemma 6.3.
If c; > 10, we redo the argument used in the estimate Hy (see (6.20)) in the proof of
Lemma 6.2. Recall the estimates (6.30) and (6.36). As a result, from the estimate of
coefficients in (6.45), we have

Y NF@IE Ny S DA+ 1) T2 (B (6) + Efp (0) Eifgy (0 + 11172
k=0 k>0

< 117 e, (6.49)

o Ifk <0.

For this case, we first do integration by parts in “x” in (6.48) to move the spatial
derivative “V,” in front of V, fozg(t, X, V).

If ¢; < 10, similar to the strategies used in the case k > 0, we use the LY — L}CL%-
type bilinear estimate. As a result, from the linear decay estimates (2.21) in Lemma 2.2
and the estimate (6.55) in Lemma 6.3 for the scalar field and the estimate of coefficients
in (6.45), we have

o et IEE 2 < DT min{(+ )T (1) T2 ED (O Ef ()
keZ,k<0 keZ,k<0

< 1+t~ 2e2, (6.50)

If ¢ > 10, then we rerun the argument used in the estimate of Hy, k < 0, in the
proof of Lemma 6.2. More precisely, if 2¢ < |¢|~!, then with minor modifications in
the estimate (6.22), we have

~ a,kk
D PN PP

keZ,2k<|t|-!
S Y @2 )61+ 24+ ) ELR @)
keZ,2k<|t|-!
< 1+t e, ©3D

If |¢1|~!' < 2% < 1, then similar to what we did in (6.23) and (6.48), we use the
decomposition of the profile in (4.46) for ¢ and 9;,¢'. Thanks to the extra spatial

derivative that comes from the integration by parts in “x”, the following estimate holds
from the estimate (6.60) in Lemma 6.4 and the estimate (6.73) in Lemma 6.5,

v/ N
Do et @I

keZ,|t|=1<2k<1
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ST S 1 B A 1 e R A
keZ,|t|~1<2k<1
< 1|73 (6.52)

To sum up, from the estimates (6.50), (6.51), and (6.52), the following estimate holds,

v Kk —3/2+36
> D et IEKE e S 17 e,

KeB,c1,c2€7y,|k|=c|,c1+c2 <Ny,co<No—1k€eZ,k<0

(6.53)
From the estimates (6.49) and (6.53) and the decomposition (6.47), we have
> o (K&, (@, vl S 1117 e (6.54)

keB,c1,c2€ZLy,|k|=c1,c1+c2 <Ny,c2<Np—1

Recall the decomposition (6.43). Our desired estimate (6.38) follows directly from the
estimates (6.46) and (6.54). 0O

6.3. Toolkit. In this subsection, we prove some basic estimates used in the previous two
subsections.

The first basic estimate is a linear decay estimate for the scalar field part, which shows
that the nonlinear solutions have sharp decay ate 1/((1 + )1 +]¢] — |x] |)) as long as
the low order energy of scalar field doesn’t grow over time. It is a natural application of
the linear decay estimate of the half wave in Lemma 2.2.

Lemma 6.3. Given a Fourier multiplier operator T with Fourier multiplier symbol
m(&) € 8%, the following estimate holds,

> T ), %)

ue{d,¢?,Vy¢P}, peBB,|p| <13

S A+ A+ e = eI mE) s~ ED (1) (6.55)

Proof. We first do dyadic decomposition for the frequency of u. As a result, we have

Tw)(t,x) =Y Ti(u)(t,x), Te=ToP.
kel

Recall (4.38) and (4.39). From the linear decay estimate (2.21) in Lemma 2.2, we have

> | Tr ()2, x))|
ue{Ver, o}, pelB,|p|<13
S > A+ Je]+ )22 lm (@) | spe | Ph® (1)1, (6.56)

i=0,1,2,aeB,|a|<15

From the above estimate, our desired estimate (6.55) holds straightforwardly if ||7| —
|x|| < 1. Hence, it would be sufficient to consider the case ||f] — |x|| > 1.

From the equalities (3.50) and (3.51) in Lemma 3.6, we can trade regularities for
the decay rates of the distance with respect to the light cone. More precisely, from the
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estimates of coefficients in (3.59), (3.63), and (3.64), the estimates of symbols in (3.62),
and the linear decay estimate (2.21) in Lemma 2.2, we have

3
> (1] = 1x1)” Tu ) (2, x) |
ue{Ver, ¢}, peB,|p|<13
S 2 A+ + DT m @) s (PR () 1 x,

aeB,|a|<16
PR O], ) + (2725 4 2] — |xfj27 2R3
e = el P27 ¥ 2 Im @) s 19k (1. )Y @) lnge- (6:57)

Recall the low order energy of the nonlinear wave part El‘f)w(t) in (4.63). From the above
estimate, we have

> | T (2, )] < (el =[x D~ m (@) s Efy, (0)
ue{Ver 8¢}, peBB,|p|<13
< [+ )27 = e ID T2+ A+ D TR27R e = DT+ (e TR
(6.58)

Therefore, after optimizing the estimates (6.56) and (6.58), we have
> T @) )] S A+ D] = eI Im @) s By, (0.
ue{Ver. ¢}, peB,|p|<13
Hence finishing the proof of the desired estimate (6.55). O

Next, we prove two trilinear estimates, which are used in the estimate of Hk] (t,x,v)
in (6.24). The key feature of the desired trilinear estimates is that we exploit the smallness
of the space-resonance set to get aimproved decay estimate, which is better than applying
the decay estimate of the density type function in Lemma 2.20 directly.

Lemma 6.4. Given any fixed signs u, v € {+, —}, fixed time t € Ry, fixed k1, ky € Z.
Moreover, given any functions f1, f> : Ry x Ri — C, and any distribution function
g: R, xR x Rg — R, we define a trilinear form as follows,

T(fi. fog) = /R 3 /R e B fi1(e x4 )
e VIVIPL L /13, x + 1) g(t, x, v)dxdv, (6.59)

then the following estimate holds,

IT(f1, f2, 9)
S Y A+EDTINA+ DA+ pDPVig, x, vy, (27 1A G &) E)l2

0<a<4

+ Ve Fit, )i, )l 12) 272 1 fat, )Y (©) 12 + IIVE Folt, €)Yy ()1 12).
(6.60)

Moreover, if |ky — ka| > 5, then the following estimate holds,

IT(f1, f2, 8)I
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S D )27 RN A A1+ [0)P VLV X, )

0<a<4

@A OV @)l

+ Ve A, )W, )l 2) 272 1 Bt )Y (©) 12 + IIVE Folt, €)Yy ()1 12).
(6.61)

Proof. Recall (6.59). Note that the following equality holds on the Fourier side,

T(fi, frg) = f / / 10T 5 R (1, 8
R3 BS R3
D Pt Mk, & — M (dndEdy. 6.62)

From the above formula of T'(fi, f», g), our desired estimate (6.60) holds straightfor-
wardly if |t| < 1. Hence, we restrict ourself to the case |t| > 1.
Firstly, we do integration by parts in “£” once. As a result, we have

T(f1, 2.8 =Ti(f1, f2,8) + Ta(f1, f2. 8), (6.63)

; . . . =<
_/‘/‘/ HUEiE =il g F g )
tJr3 JR3 JR3

. f—u@—nVK—nbﬁmS_m
|0~ nE =)/l —nll
XYk, (€ = m) ot My, (n)dndédv,

/ / / plt-E—itplE—nl— il g v) v) Ve
R3 JR? JR3

(T_M@_HVE_nBﬁ%E—m
|0 — & —n/IE =l
X Yy (€ — 1)) F (2, MY, (dndédv.

For T1(f1, f2, g), we do integration by parts in “£”” one more time. As a result, we have

where

Ti(f1, f2, 8) :

I (f1, 2. 8) :

-1 e . _
Ti(f1, 2, 8) == —2/ / / el'«‘U'é_l1«‘M|§—7I\—lf‘u|7)|fz(l«7 n)wkz(n)vs
t R3 JRr3 JR3
V= pE—n/IE -l
16— n& —n)/1g =l
ngm'( 13—/1(5—77)/|%'—77|
[0 — & —n)/1E —nl|
—m fi(t, & —m)]dndédv. (6.64)

For T>(f1, f2, ), we first switch the role of “€ — 1™ and “n” and then do integration by
parts in “£€” once. As a result, we have

Ta(f1. fr. 8) = / f / IMOEIIN=IVIETITG TE Y, (Mﬁm)
R? JR? JR3 |6 — pn/Inl|?

P wlq (E
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Xlﬂk. () Fa(t, & = Yy (€ — mdnd&dv

PitV-E—itplnl—itv|E—nly
R3 JR3 JR3 y

_ Av—v(é—n)/lé ’7|2A(t§v)fz(té—ﬁ)l//kz(é—’?)]
|6 — v — /1§ =l

LB e, On)dndedv.
|0 — un/Inl|

x Vy -

After doing dyadic decomposition for “£”, we have the following decomposition,

Ti(fi. f2.8) = Y _TH(f1. f2.8). Talfi fr8) = D TE(f1. fr.8). (6.65)

keZ keZ

where

TF(f1, o, 8) = — / / / eMUETIRIETNI=IVIN S (¢ pyi (1) Ve
R3 JR3 JR3
1 b — & —n/IE —nl
|6 — & —m/1E =l

VeFa B - (T E IS e T
|6 — (e — m/l€ —
—m) Y (&)dndédv, (6.66)

Tzk(fl,fz,g): /}R3 /R% /M itd-E—itpln|—itv]g— 1y,

I Av—v(E—n)/lé' nle(, E.0) (1, £ —n)
6 —v(E —m)/IE — 1l

X Yty (€ — ]V, - (%ﬁ(n Wy (D) Yk (€)dndEd.
v—un/in

(6.67)

On one hand, if we use the volume of support of “£” and the Cauchy-Schwarz
inequality for the integration with respect to “n”, then the following estimate holds,

ITECfis fo L +ITS (1 20 9))
S D )2 (A + D OVER(L £ vl ey (7 IAG )Y D) 12

0<a<2
HIVe 12, E)Pr, )11 12) 2752 1 e, €)Yy () 12
+ Ve fa(t, )iy (©) 1 2). (6.68)

On the other hand, if we do integration by parts in “v”’four times for le( f1, f2, g) and

T2k (f1, f2, g), then the following estimate holds after using the volume of support of
“£” and the Cauchy-Schwarz inequality for the integration with respect to “n”,

ITE AL s 1+ ITECf, fos 8
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S D AHIDT2EA+ PP VIVER( £ )l e
0<a<4,0<b<2
X (27K 1 Fi e, €)Y ) 2
+IVe F1 (2, E)Vr, )l 12) 2752 1 (8, Wi ()N 12 + 1V o8, )Yty (8] 12).
(6.69)

Recall the decompositions in (6.63) and (6.65). From the estimates (6.68) and (6.69),
we have

IT(f1, f2, &)
S Y A+ TNA+ D A+ )P Vig, x, vl 7 I Y @)l
0<a<4
+1Ve Filt, )9k Gl 2) 7 1 Fale, )Wk E) 2 + 11 Ve ot )Yk, (B) 1 2).

(6.70)

Hence finishing the proof of the desired estimate (6.60).
Note that |k — max{ky, ko}| < 10if |[k; — k2| > 5. Hence the desired estimate (6.61)
follows directly from (6.69). O

Lastly, we prove two bilinear estimates for the Vlasov-Vlasov type interaction, which
have been used in the estimate of Hk2 (t, x, v) in (6.25).

For any fixed sign u € {+, —}, any two distribution functions fi (¢, x, v) and f>(¢, x, v),
any fixed k € Z, any symbol m(§, v) € Ly°Sp°, and any differentiable coefficient ¢ (v),
we define a bilinear operator as follows,

Bi(f1, f)(t, x,v) := fi(t, x, V) E(P[f2(1)]) (x + 1), (6.71)
where
E(PLfD(, x) = / f eV E T (Y (&, )Y (8) F (1, &, w)dEdu.
]R3 R3
As summarized in the following Lemma, we have two bilinear estimates for the above

defined bilinear operator.

Lemma 6.5. For any fixed t € R, |t| > 1, and any localized differentiable function
fa(t,v) : Ry XR?) —> C, the following bilinear estimate holds for the bilinear operators
defined in (6.71),

B (f1, f2) (1, x, V)l 212
S Z (ImE, v)llLese + Im(E, v)||Lgos;>°)[|f|_22k||(|6(v)|+|Vv6(v)|)f3(t, v)ll2

lo| <5
+ 117225011+ ol + 1D Pe) fa(t, x, v) 212
+t1 2 e@) (2, 0,v) = Vi - f3(t, ) l12]
[|(U+ o] + [XD)OVE fit, x, vl 22, iFkeZ, fi]7h S28 < 1. (6.72)
Alternatively, the following bilinear estimate holds for any k € Z,

1Bk (f1, f2)(2, x, v)lI1212
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< > min{je 7, 2% Im (&, )l sl + o] + xDPe) folt, x, 0) 1212

la|<5

I+ o]+ 1x)OVE fi (2, x, V)22 (6.73)

Proof. See [41][Lemma 3.2& Lemma 3.3]. O
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Appendix A. Commutation Rules

Although it is tedious to compute the commutation rules and check all the first order
derivatives in S acting on the inhomogeneous modulation d(¢, x, v), for the sake of
readers, we do detailed computations in this appendix. Hence proving Lemmas 3.7 and
3.8

In the following lemma, we compute several basic quantities to be used later, which
also directly imply our desired results in Lemma 3.8.

Lemma A.1. Forany p € S, |p| = 1, the following equality holds,
APd(t,x,v) = €] (x,v)d(t,x,v) + €5 (x,v), Dy(d(t,x,v)) =&(x,v)d(t, x,v)
+é3(x, v), (A.1)
where the coefficients satisfy the following estimate,

lef (x, v)| + €5 (x, v)| + [e1(x, v)| +[ea(x, v)| S 1, [éa(x, v)|=2(|x]) = 0.
(A2)

Moreover, the following rough estimate holds for any g € S,
Yo I8l o)+ [APE (x v) S (L4 )P+ P, (A3)
i=1,2

Proof. First of all, we compute two basic quantities. Recall (3.9). For any u € {+, —},
we have

(@Y - ﬁﬂf)wu(x, v) = [(Q - ﬁgf)((x )+ )2+ x]2)]

CR /L ' Vi x
N L

—uV; - x t
- \/(x.v)2+|x|2(\/1+|v|2 — vty 02+ Ix)

—y,‘;i - X t
= —w, (x,v)), A4
\/(x-v)2+|x|2 \/l+|v|2 nx v)) ( )

=[(Vi-x)+u
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t

t
(SU — WSX)Q)M(X,U) = (SU _ WS)C)((X V) + [ (X-‘U)2+|x|2)
Cwbx o, G @D
aoZ+2 (+p)32 e

—Ux -V t ( )) t|v|
= —wy(x, V) - —————.
Ve 02+ x2 i+ - (1+1v]2)3/2

Therefore,

=@-x+u

(A.5)

v 4 X t
(S - (1+|v|2)3/2S )(m—wﬂ(x,v))
. WU - X t
VT P TP
t

t
QY — Qr
(@ VI+ P ’)(\/1+|v|2

. uVix t
V024 x2 1T+ 2

Now, we consider the case with the cutoff function defined in (3.14). From the equalities
(A.4), we have,

— W (x, v)), (A.6)

— wy(x, v))

- CL)M()C, U)) (A7)

(Q'f—;Q%‘)w(x V)
Ve
_‘A/"i.x t

— 04 (x, ) ¥=0((x - V)% + [x]%)

- J(x-v>2+|x|2(ﬂ+|v|2

+ 2004 (x, VYL ((r - 0)> + [xP) (- v)(V; - x)

L Vx) = an 0d(x ) +ei(x ), (A.8)

V1+]v?

where ¢; (x, v) and ¢; (x, v), i € {1, 2, 3}, are defined as follows,
Vi-x

cix,v) =~ T Pyl 7+ el =
X - X

+20, (x, V)Y ((x - v)* + X))V - x], (A.9)

Vi-x
Vi) + [x]?
+204 (x, VYL ((x - 1) + [x D) (G- 0)(V; - x) — o(x, 0)V - x).

(A.10)

ei(x,v) = w1 (x, V)Y <0((x - 0) + X )P0 ((x - v)? + [x]%)

From the detailed formulas of ¢; (x, v) and ¢; (x, v) in (A.9) and (A.10), we have
lei(x, )] ST+l leitx, ) S 1, lei(x, v)[¥=2(x]) = 0. (A.11)
From the equality (A.5), we have

t

(¥ - RPITDEE SH) o (x, v)
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_[ —V-X ( t tlv| ]
02+ )2 T R (1+[v]?)3/2
xP=0(1x|? + (x - v)%) + 204 (x, VYL - )2 + [x[H)((x - V)T - x
t -
“ e Y

— w4 (x, U)) -

t|v]

= &(x, v)d(t, x,v) — ENEEE

Vso((x - v)2 + [x|?) +e(x, v),  (A.12)
where

N2 2
G, v) = —x - /14 |u|2[wzo((ix_ vl)’; ++|]|CT2| ) + 29 ((x - )2+ [x P (x, )],

(A.13)
&(x,v) = 20, (x, VIVL((x - v)* + [x[H@ - x)(x - v — 0 (x, )
+ i (x, v)LI/bo((x 0+ XD oo((x - v)? + [x]?).
VIXP+ w2
(A.14)

From the detailed formulas of ¢(x, v) and e(x, v) in (A.13) and (A.14), we have
lcte, )| S 1, fe(x,v)| S 1, le(x, v)|[¢=a(]x]) = 0. (A.15)

Now, we are ready to compute the quantity A” (d(t, x,v)),where p € S, |p| = 1. Recall
that

7 1
A= \/1+|v|2(\/1+|v|2 o) (A.16)
2 2
\/1+|U|2(\/1+|v|2 X v+ (x'v)2+|x|2)¢z()((x-v) +1x?).
(A.17)

A direct computation gives us the following equality,

- —1 (x-v)v+x 2 2
de Ny = = :
(t, x,v) 7 |v|2(v+ \/(x~u)2+|x|2)1/f_0((x V) + |x]%)

—M¢>O((x v)2 + 1x[) ((x - v)v +x). (A.18)
1+ |v|?

Therefore, from the above equality (A.18), we have
5-Vid@t,x, )l S 1,0 Y V- Vad (@ x, 0 S A+ (A19)
i=1,2,3

Moreover, from the equalities (A.8) and (A.12), we know that the following two equalities
hold,

t

t
J1+ |v|29f)(\/1 + 02

(Qf - —w(x, v))
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:—(Qf — ﬁﬂf)w(x, v) = —(ci(x, v)c?(t,x, v)+e;(x, v)), (A.20)
(s* S (—— (x, )
a2 N e O

— L ( v ;SX) ( )

IR R R (R TTO C

= —C(x, v)d(t, x,v) = %m«x 0+ x ) = éx, v)

= é(x, v)d(t, x, v) +é(x, v), (A.21)

where

&(x,v) 1= —&(x, v) — \/%WWO((X )2+ x]), (A.22)
x - L N2 (a2 RV
e(x,v) := —e(x,v) —1+|v|2w+(x,v)1/fzo((x V)" + x| Y<o((x - v)” + [x[7).

(A.23)

From the detailed formulas in above equalities (A.22) and (A.23) and the estimate of
coefficients in (A.15), we have

6, V)] + [e(x, v)] S 1, [e(x, v)|Y=a(lx]) = 0. (A.24)

Recall (A.16). To sum up, from the equalities (A.18), (A.20), and (A.21) and the
decomposition of “D,” in (3.22), we know that the desired equalities in (A.1) hold for
some uniquely determined coefficients.

Moreover, our desired estimates (A.2) and (A.3) hold from the estimate (A.19) and
the estimates of coefficients in (A.11) and (A.24).

O

Our desired results in Lemma 3.7 follow directly from the following Lemma.

Lemma A.2. Forany p € K, |p| = 1, and i € {1, ...,7}, the following commutation
rule holds,
[Xi, A”] = Z (Ef’K(x, v)d(t, x, v) +5f’K(x, v))A", (A.25)
kelC,lk|=1

. ~p,K AP K . . .
where the coefficients ¢;"" (t, x,v) and c;"" (¢, x, v) satisfy the following rough esti-
mates,

|5;~O’K(x, V)| + |é;?vK(x’ v)| < min{(1 + |v|)]+cm(K)*Cvn(,0)’ 1+ |v|)Cvm(K)*Cvm(,0)}’
(A.26)
IAP(E e, )+ AP (E e, )L S L+ P2+ 1P, B e 8. (A27)

Ifi(k) —i(p) > 0, where i (k) denotes the total number of vector fields Qf‘ in A¥, then
the following improved estimate holds for the coefficients Ef “(x,v),

&% (x, v)] S (14 o]y~ remmam (@), (A.28)
Moreover, for the case when i = 1, the following improved estimate holds,

187 (e, )] + 16 (e, v)| S (1 + fo])y = HremE—em@) (A.29)
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Proof. Note that the following commutation rules hold for any differentiable coefficients
“c1(v)” and “cz(v)” and any two vector fields “X” and “Y”

[t X, c2()Y] = c1(V)(Xe2()Y +c1(We2()[X, Y] = c2(0) (Y1 (v) X,
t

[Cl(U)(SU - st)y c2(v) - Vil = Cl(v)(5 : Vucz(v)) "
[e1(v) (2} W ). c2(v) - Vil = e (0) (Vi - Vo (v))
Vi, i€ef{l,2,3} (A.30)

Moreover, the following commutation rules hold for the vector field Qi €{1,2,3),

[sv—wiwsx,vaﬁwvv]:ﬁ(ﬁ?—mﬂf)
- i TR O

[} - mmx V4 ViVl = |1|(V VoVi = Vi - ViVj) -V,
_mm(vj.vx(xi)—w-vvvj)-vx
=) GZ(QZ—WQE) (A31)

k=1,2,3

where e . € {0, 1} are some uniquely determined coefficients.

Hence to prove the desired equality (A.25) and the desired estimates (A.26), (A.27),
(A.28), and (A.29), it would be sufficient to consider the case when A” € {{>1(v)S”, Sv
1//>1(U)Ql LYW Ky,;, i € {1, 2,3}}. Moreover, from the equality (A.30), it would be
sufficient to compute the commutation rules without the cutoff functions ¥~ (v) and
¥<o(v) during computations.

We first consider the case when A” = ¥>1(v)S S? and Xi = Y>1(v)v - D,. From the
equality (A.12), we have

L S S A TIPS
[(S (1+|U|2)3/2 )’( 1+|v|2 )
_ ! X QU1 _ QU w(x, v) X 4 X o(x, v) X
__[(1+|v|2)3/ZS’S] [S’ +v IZS]+[(1+|UI2)3/ZS’1+IUIZS]
~ t . v a)(x v) t x x
3t|v| N 2|v|a)(x,v) ‘. 1 v t N N
" e S T TeelS T G e vl
_ 3t|v| < 2o, v)
(1 +[v[2)3/2 (1+[v?)?
- ~ . 1]v]
— TT |v|2 [c(x, v)d(t, x,v) + e(x,v) — W

xPr=0((x - ) +x|)]S* = (Elx, v)d(t, x, v) +e(x, v))S", (A.32)
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where
o 3 2|v]
clx,v) = Ry e (c(x, v) + —(1 PENENYE
+Lw o((x - v) +1x[%)) (A.33)
1+ 127" ’ '
e(x,v) = —m(é(x, )
1 +'”|'v|2w(x, VY<o((x - v) +[x%), (A.34)

where ¢(x, v) and e(x, v) are defined in (A.13) and (A.14) respectively.
From the detailed formulas of ¢(x, v) and e(x, v) in (A.33) and (A.34) and the estimate
of coefficients in (A.15), we have

[Ex, v)| + [e(x, v)| < (1+[v])~2 (A.35)

Next, we consider the case AP = wzl(v)ﬁf, Xi = ¥>1(v)v - D,. Recall (A.12), we
have

t

[(SU - WSX), (le — a)(x, U)Qf)]

=[5, Q)1 —-[S", w(x, )] — [ S, Q7]

1+ o)

t
SY o, v)Q] =

AT

- iQ;’ — (8w (x, ) —w(x, v)[S, Q]

vl
t v X
+ (1 + |v|2)3/2 [Qi ’ N ]
e (SeE )R — i Lo
o (8 @@ )R = = @l o
3 - 3 tv]
_(c(x, v)d(t,x, U) + e(x, U) - W
xP=o((x - V) +|x|9))QF =
- |—1|§i + (& (x, v)d (1, x, v) + & (x, v)) 7, (A.36)
v
where
/ 2
Ci(x,v) = —¢(x,v) + 1|+||v|
—Lw o((x - v)? +|x[%) (A.37)
(I+ )2 7" ’ '
61, v) = —8(x, v) — — (x, V)Y ((x - v) + [x]%). (A.38)

—w
1+v)?
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From the above detailed formulas and the estimate of coefficients in (A.15), we have
(18 Ge, v)] + 183 G, ) P=—10(v) S 1. (A.39)

Next, we consider the case AP = wzl(v)gv, X, = wzl(v)f/,' - Dy. Recall (A.8), we
have

v _ t . v _ w(x,v)
[(Qi ng)’ (S (1+|U|2)S )]

— [V, Y] — [ @, sv] — [qy, 2 V)

v ————S"]
1+ w2 L+

fqr, 20V
SR A+ 2
1 t t
=—Q'+7-V, QF sV, QF
|v] (,/1+|v|2) +\/1+|v|2[ ]
w(x,v) w(x,v) . .
~ (@ S TS
t w(x,v)
QY s*
+\/W( l(1+|v|2))
_i( v_a)(x,v)
Tl 1+
tv)? . 1 - .
_ TFINBEE Qi) 1z e (ci(x, v)d(t, x,v) +e;(x, v))S

- |1_|Q +[Gi (x, v)d (2, x, v)

+ei(x,v)] - (8%, QF, @3, QF), (A.40)
where
~ ¢i(x,v) [v]61;
Cl(-x,v)) - (1+|v|27 (1+|U|2)1/2’
[v]82; [v83 )
A+ P27 (1+ 227
= ei(x,v)
el('x7v)=_(l+|vl270’050) (A.41)

From the above detailed formulas and the estimate (A.11), we have
e o) S A+~
3 Gl S 1
1=2,3,4
i (e, ) S (1 + (o) 72 (A42)

Next, we consider the case AP = wzl(v)ﬁy, X; = 1#31(1))‘71 - Dy, i,j € {1,2,3}.
Recall (A.8), we have

(R — ———— ), (2% — o, W) = [2F, 2]

VST
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t t
— [——QF, QU]+ —— (L w(x, 1))
/;1_'_“)'2 i J /71+|v|2( i ) J
—[Q}, o(x, V)Q}] = (Vi - VuVj = V; -V Vi) - V,

t ~ ~ ~ ~
+——(V; - VuVi) - Ve —o(x, 0)(V; - VuVj) - Vy

V1+v?

— (Q:-Ja)(x, v))S'Z + M

(Qxa)(x U)) |U|2

(VU —w(x, U)Vx)

t
V142

+V 1+ 02d(, x,0) (V- V) Vi) - Vi = [ci(x, 0)d (1, x, v) +ei(x, 0) |QF. (A43)
Note that

V, =08+ Z Ve, = (V; - V) Vi - Ve = ((V; - V) Vi) - 587
k=1,2,3

+ Y (V- Vi) - iy,
k=1,2,3
(ej x€) xv= ef‘ij,
where e . € {0, 1}, are some uniquely determined constants. Hence,
k

€. ~
(A.43)=ﬁsz%[ai,j(x,v)d(t,x,v)+e,-,j(x,v)]-(SX,Q);, 1.Q)). (Ad4)

where

ai j(x.v) = (@) ;(x, ). @} (v, v), a2 (x.v), @} (e, V),

al;(x.v) = V1+[2((V; - Vo) Vi) - B, (A45)
af ;. v) = VI+[R((V; - V) Vi) - Vi — cie, 08, k=1,2,3,
ei,j(x,v) = —(0, i (x, v)§;1, €; (x, V)32, €; (x, V)3;3). (A.46)

From the above detailed formulas and the estimate of coefficients in (A.11), we have
lai,j e, VIY=—10(v) S 1, e j(x, v S 1. (A47)

Lastly, we consider the case when X; = ¥<o(v)D,,, i € {1, 2, 3}. For this case we have
|v| < 1, which means that our desired estimates in (A.26), (A.27), (A.28), and (A.29)
are trivial. Hence, it would be sufficient to verify that the desired equality (A.25) holds.
Note that the following commutation rules hold for any i, j € {1, 2, 3},

[y, — 18,0 - Vi, 8y, — @ (1, V1 + 02y, 0 - Vil = ~[18y,0 - Vi, 8y, ]
— [8y;, w(x, v)\/1+|v|28U.A' ]
+[18y,0 - Vi, @ (x, V1T + 020y, 0 - Vil = 18y,8,,0 - Vs
— 3y, (@, V1 + 020y, 0) - Ve
+18y,0 - Ve (x, )V 1+ 028y, 0 - Vi = (1 — 0(x, ©)V1 + [v]2)dy, 8,0 - Vs
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+[10y,0 - Vi (x, )y 1+ 0] — 8y, (0(x, v)v/1 + [v]?)]8,,0 - V. (A.48)
Note that

13y, D - Ve (x, v)3/ 1+ [v]? = 3y, (0 (x, v)y/ 1+ [v]?)

(- v)vi 3 v o2, v+ pP) 2,2
= 1| (v; _ . .
[(v i (x~v)2+|x|2) (1+]v[?) (1ot + (x.v)2+|x|2)]w—0((x V)7 +1x1%)

#2104 6, 0) (WL (@ - 002 + [P (Cx - 0wy + )
v;

N mwzo((" )%+ D) v+ \v\z))

v; 2 (x - v)x; P )
——— LU)—4/ 1+ i+ =) V¥>0((x - V)" +

=) VI P+ S (e 0 el
=204 (x, )y 1+ [02Y Lo ((x - 02+ 1) (x v)x

= 1(— all Y=0((x - )2+ [x )

3 +
L+l* (x-0)2 + |x)?

+ 214 (x, V)5 YL (- 0)? + [x]) —

v

V1+v?
—y1+ P, v)#ﬂlz — 21+ oo (. YL (- 02 + ) - o)
X v X

w(x,v)

= V=0t v?+ |x|2)(t Vi o (. U))(l +v|iv|2 ’ (x - v);l2 + Ix\z)

+ 20704 (2, VYL (G 0)% + 32 (0= T+ 20 v) = (0, x,v) + e (x, ),

(A.49)
where
, N 2 g L XL+ )
¢ (x,v) = ¥>o((x - V)7 + |x] )(Uz + m
+2x; w4 (0, V)Y (- 0)? + X)L+ ), (A.50)
& (x, V) = —w, (X, V)P=0((x - v)* + [x[HPoo((x - v)?

v; + xim
VIR o2 +x
+ 25104 (6, VYL ((x - 1) + XDV T+ [V (0(x, v) — x - v). (A5])
Combining equalities in (A.48) and (A.49), we have
[0y, — 104,0 + Vi, By, — @0, IV T+ [0y, 0 - V]
=[G j(x, v)d(t, x,v) + &, (x, v)] - Vi, (A.52)

+1x)(

where
G j(x,v) = (1+ Ivlz)au,-av,-ﬁﬂi(x, V)dy; 0, & j(x,v) = e (x,v)dy;0. (A53)

To sum up, our desired equality (A.25) holds from the equalities (A.31), (A.32), (A.36),
(A.40), (A.44), and (A.52). Moreover, recall the definition of indexes in (3.39), our de-
sired estimates (A.26), (A.27), (A.28), and (A.29) hold from the estimates of coefficients
in (A.35), (A.39), (A.42), and (A.47). O
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