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Abstract: Given any smooth, suitably small initial data, which decays polynomially
at infinity, we prove global regularity for the 3D relativistic massive Vlasov—Maxwell
system. In particular, the compact support assumption, which was widely used in the
literature, is not imposed on the initial data. Our proofs are based on a combination of
the Klainerman vector field method and the Fourier method, which allows us to exploit
a crucial hidden null structure in the relativistic Vlasov—Maxwell system.
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1. Introduction

One of the most important systems in plasma physics is the 3D relativistic Vlasov—
Maxwell system (RVM), which describes the evolution of a sufficiently diluted ionized
massive gas under the effect of the electromagnetic forces created by particles them-
selves. After normalizing the mass of particles and the speed of light to be one, the 3D
RVM with given initial data ( fo(x, v), Eo(x), Bo(x)) reads as follows,
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0 f+0-Vyif+(E+0xB) -V, f =0,

V~E=47r/ f(t, x,v)dv, V-B=0,
(RVM) R? (1.1)
8,E:V><B—4n/ f(t, x,v)odv, 9,B=-V xE,

fQO.x,v) = fo(x,v), E(0,x)=Eo(x), B(0,x)= Bo(x),

where f (¢, x, v) denotes the density distribution function of particles, (E, B) stands for

the classical electromagnetic field, and ¥ := v/+/1 + |v|? denotes the relativistic speed
of particles, which is strictly less that the speed of light.

Due to its importance, there is a large literature in the study of RVM. For our interest,
we mainly concern with the Cauchy problem of RVM. We mainly restrict ourselves to
the three dimensions case and refer readers to [14,29,30] for the corresponding results
in other dimensions.

An interesting line of research is the continuation criterion for the global existence of
RVM, which is devoted to studying the large data problem. A remarkable result obtained
by the Glassey—Strauss [15] says that the classical solution can be globally extended as
long as the particle density has compact support in v for all the time. A new proof of
this result based on Fourier analysis was given by Klainerman—Staffilani [25], which
adds a new perspective to the study of the 3D RVM system, see also [13,32,39]. In
[18], Glassey—Strauss showed that the lifespan of the solution of the relativistic Vlasov—
Maxwell system can be continued if the initial data decay at rate |v|~” as |v| — oo and
[[(T+ v f(t, x, v LeL) remains bounded for all time. An improvement of this result
was given by Luk—Strain {30], which says that a regular solution can be extended as long
as ||[(1+ |v| )g/zf(t X, U)”L‘ILI, remains bounded for 6 > 2/q,2 < g < +00, see also
Kunze [26], Pallard [33], and Patel [34] for the recent improvements on the continuation
criterion.

For the small data problem, we understand more. The first positive result of Glassey—
Strauss [17], roughly speaking, says that if the initial particle density f(0, x, v) has a
compact supports in both “x” and “v”” and also the electromagnetic field (E(0), B(0))
has compact support in “x”, and the initial data are suitably small, then there exists a
unique classical solution. Later an interesting improvement was given by Schaffer [37],
which removed the assumption of compact support in “v”

An interesting question one can ask is that is it poss1ble to remove the compact
support assumption completely? The main goal of this paper is devoted to answering
the above question in 3D for small data. More precisely, we show global regularity and
scattering properties of the 3D RVM for suitably small initial data without any compact
support assumption. We also refer readers to our first paper [42] for a more detailed
introduction, which also includes related discussion on other Vlasov-wave type coupled
systems. After the completion of this paper and its companion [42], Bigorgne [3] also
showed sharp decay estimates for the 3D massive RVM for small initial data, see also
Wei-Yang [45] for global existence of the 3D RVM for the partial large initial data, more
precisely, the initial particle distribution is small and the initial electromagnetic field is
large.

1.1. A review of the framework developed in the first paper. The main difficulty of
doing energy estimate for the Vlasov equation is caused by V, f in the acceleration term
because V, doesn’t commute with the transport operator d; + v - Vy.
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To improve the understanding of V,, f and to get around this difficulty, in our first
paper [42], we developed a framework that combines the strength of the vector field
method and the Fourier method for the Vlasov-wave type coupled system. Comparing
with the pure classical vector field method, a benefit of this method is that it allows us
to exploit the benefit of delicate oscillation in time. We refer interested readers to the
seminar works of Klainerman [23,24] for a more detailed introduction of the vector field
method and to the work of Germain—-Masmoudi—Shatah [12] and the work of Ionescu—
Pausader [22] for a more detailed introduction the Fourier method.

In [42], we studied the following 3 D relativistic Vlasov—Nordstrom (RVN) system,
which is a toy model for the more complicated and more physical Einstein—Vlasov
system,

07 — M) =

R} /1+|v|?

8tf+ﬁ‘1vxf — (@ +0- V)@, )4 f +v-Vy f)

———=Vx¢ -V, f =0.
V1 + ]2

Now, we explain some main ideas used in [42] and the main difference between RVM
and RVN that causes new difficulties. First of all, instead of studying the vector field V,
directly, we study the following vector field,

Ky i= Vo + (t — 1+ |v|20(x — 0, v)Vyd - Vi,
==V, = Ky — (t =1 +|vwlx — dt,v)Vyd - V, (1.3)

where “w(x, v)” is designed such that the coefficient “(t — /1 + [v|2w(x — 0t, v))”
almost vanishes on the light cone “|7| — |x| = 07, see Sect. 3 for more details.

Note that K, commutes with the linear operator “d, + 0 - V. It is more promising to
control the energy of K, f than V,, f over time. Based on this idea, we constructed a new
set of vector fields in [42], which not only commute with the linear operator “d; + 0 - V,”
of the relativistic Vlasov equation but also help to understand the bulk derivative V,, f
inside the nonlinearity of the Vlasov equation.

Recall (1.3). Now, it remains to control the difference between K v f and V,, f, which

is (t — /1 + [v|2w(x — 0t, v))V, D, in the energy estimate. Note that

(RVN) (1.2)

t w(x,v)

T+ T+

Moreover, we notice that “0” decreases much faster in the radial direction. More pre-
cisely,

d(t, x,v) = — |d(t, x,v)| < T+]||t] — |x +0]]. (1.4)

v V.4 1 v
_ V= —m———= —,
ol A+ )32 ol
v . 1 v .
(ei x m) -Vyu = W(&' X m% ief{l, 2,3}, (1.5)

where ¢;, i € {1, 2, 3}, denote the standard unit vectors of the Cartesian coordinates
system in R3, see (2.4). From (1.4) and (1.5), we have

R v . d(t,x—9t,v) v
t—V1+ P Pwkx —0t,v)— -V = ——O L —| 1.6
il vl NS (0
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(t — 1+ [P — b, v))(er %) Vb =1+ [02d(t, x — b1, v)(ei x ﬁ).
v v

(1.7)

Thanks to the good coefficient “1/4/1 + |v|?” in the RVN system (1.2), the loss of
weight of size “1 +|v|” in the rotational direction (1.7) is not an issue for RVN. However,
it indeed is an issue for the RVM. We will elaborate on it in the next subsection.

Lastly, it remains to control the size of the distance to the light cone from the coeffi-
cients. Note that, the classical decay rate of the scalar field suggested by the Klainerman—
Sobolev embedding, which is ((1+]¢]) "' (1+]|¢| — |x||)~!/2, is insufficient. To get around
this issue, after using a Fourier based method to carefully study the low-frequency-part
of the scalar field, we prove a stronger decay estimate for the scalar field, which is
((L+ 1D~ A+ (1] = 1xID "

1.2. The losing weight of size “|v|” issue. Unfortunately, unlike the RVN system (1.2),
the benefit of the good coefficient is not available in the relativistic Vlasov—Maxwell
system, see (1.1).

Recall the decomposition used in (1.3) and the equality (1.7). We restate this decom-
position as follows,

(e; x |Z—|)'va = (¢; x %) SRy f + 1+ [0]2dt, x — b1, v)(e; x |—Z|) V. f.
(1.8)

From the above equality (1.8) and the first equality in (1.5), we know that the issue
of losing a weight of size “|v| 7, which is very problematic when |v]| is extremely large,
only appears for the directional derivatives along directions that are perpendicular to v.

Alternatively, instead of using the vector field K v, We can use the rotational vector
field ©; := (e; x x) - Vy + (¢; X v) - V,, which also commutes with the linear operator
of the relativistic Vlasov equation “d; + 0 - V. More precisely,

(% ) Vof = By f = (e x )V, . (19)
[v] [v] [v]
Note that the coefficients are small when |v| is extremely large.

Unfortunately, there exists a regime that it doesn’t make the essential difference
by choosing either the decomposition (1.8) or the decomposition (1.9) to control the
rotational in v directional derivative of f (¢, x, v). For example, the decomposition (1.8)
and the decomposition (1.9) doesn’t make any essential difference in the case |x| = [¢],
|d(t, x — 1, v)| ~ 1, and |v| ~ /1 + [7]. Because the coefficients in the decomposition
(1.8) and the decomposition (1.9) are all of size /1 + |¢].

To control this case, we show a hidden null structure inside the Vlasov equation
of the RVM system (1.1). It’s worth pointing out that the null structure we show in
RVM is very subtle and also different from the classical sense. For the nonlinear wave
equations, generally speaking, the existence of null structure is inherent with nonlinearity
and is independent of how one takes derivatives for the solution. We understand the
null structure in RVM in the following sense: the symbol of the rotational derivative
(e; x v/|v])- V, is small near the time resonance set of the nonlinearity of the Vlasov part,
which allows us to exploit the oscillation in time by doing normal form transformation.
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A more detailed discussion about this observation will be carried out in Sect. 7.1. For
the intuitive purpose, we give an example here. Before that, to better see the oscillation
of the electromagnetic field, we study the profiles of the RVM system, which are defined
as follows,

g(t,x,v) i= f(t,x +t,v), hi(t):=e"VV|T (8, —i|V|)E®),
ho(t) := &"WVIIVI7H (3, — i|V]) B@).

Intuitively speaking, we have the following bulk term when we study the evolution
of (e x v/|v]) - Vi V¥ (2, x, v),

dr(ei x v/[v]) - Vi VIg(t, x,v) = a; (x + 01, v)e 1V (e; x v/[vl) - Vihi (2, x + 1),
x(e; x v/|v]) - VyVZg(t, x, v) + other terms, (1.10)

where |«| is very large and the coefficient a; (x + 07, v) comes from the decomposition
(1.9), which satisfies the following estimate,

la; (x + 01, v)| < |x + 0t]|v| L (1.11)
We restrict ourselves to the case |v| & /T + [t], where || > 1. Define
g%, x,v) = (e; x v/v]) - Vi Vig(t, x,v),
8%(t, x,v) := |vla; (x + 01, v) g% (¢, x, v). (1.12)
Now, we can rewrite the bulk term in (1.10) as follows,
bulk term := ¢~ 1Vl(e; x v/|v|?) - Vihi(t, x + 01)3%(t, x, v). (1.13)

A key observation for the above bulk term is that there exists an oscillation phase,
which only depends on the profiles of the electromagnetic field. More precisely, after
rewriting the bulk term in (1.13) on the Fourier side, we have

e X

F(bulk term) (&) :=f e*”"?‘”fﬁ'"i('v—'zv )i, Mg, § —n, v)dn.
R3
(1.14)

Note that the oscillation phase “|n| — 0 - n”” in (1.14) satisfies the following estimate,

. 1 e XV 1.2
—bepz Y + ALY 1.15
Il =v ﬂ~i:l,2’3|ﬂ|(1+|v|z ( [v] IUI)) (1)

From the above estimate, we know that the symbol in (1.14) is very small near the time
resonance set, which means that the directional derivative (e; x v/|v]) - V, plays the
role of null structure. Moreover, from (1.15), the following estimate holds for any fixed
v e R3,

e X v 1
. <
Cor DS

Therefore, from the estimate (1.11), we know that the symbol of the bulk term in (1.13)
exactly covers the loss caused by the coefficient “|v|a; (x + 0, v)” of g*(¢, x, v) (see
(1.12)) near the time resonance set.

ifnefn: Inl—0-n=1/A+th}
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1.3. The main result of this paper. Before starting the main theorem, we define the
X,,-normed space as follows,

Ihllx, == sup 2" D IVERGE E)Yi(@)ll e, n € {0.1,2,3). (1.16)
keZ

Moreover, we define the following classic set of vector fields,
731 = {S’inLivaxi9i€{172’3}}9 (117)

where S := 19; + x - V. denotes the scaling vector field, 2; := (e; x x) - V. denotes the
rotational vector field, and L; := 19y, +x; 9; denotes the Lorentz vector field, i € {1, 2, 3}.

Theorem 1.1. Let Ny = 200, 8 € (0, 10~°]. Suppose that the given initial data ( fo(x, v),
Eo(x), Bo(x)) of the 3D RVM system (1.1) satisfies the following smallness assumption,

2 2 20430N,
Do A+ xP+ x0)? + PNV fo(x v) 22
loer|[+Hlea2|<No

+ 0D D T Eo)lle

l¢|<No I'e Py ne{0,1,2,3}
+[T¥Bo ()2 + IT* Eo(x) || x, + [IT* Bo(x) || x, < eo, (1.18)

where € is some sufficiently small constant. Then the 3D RVM system (1.1) admits a
global solution and scatters to a linear solution in a lower regularity space and the
high order energy of the nonlinear solution grows at most at rate (1 + |t)® over time.
Moreover, we have the following decay estimates for the derivatives of the average of
the distribution function and the derivatives of the electromagnetic field,

1/p
sup ) <1+|r|>‘3+'°">/"\/ vilraxow|do] " S e,
1€[0,00) |41 < Np—20 R3

where p € [1,00) N Z, (1.19)
sup Z L+ DA+ [t = [x[D“HH(|VEE®, x)| + [VEB(t, x)|) S €. (1.20)

t€[0,00) la|<10

The rest of this paper is organized as follows.

e In Sect. 2, we introduce the notations used in this paper and then record a linear
decay estimate for the half-wave equation and a decay estimate for the average of the
distribution function.

e In Sect. 3, we introduce the framework of the vector field method for Vlasov-wave
type coupled system developed in [42]. More precisely, we introduce two sets of
vector fields for the Vlasov equation, the commutation rules between these vector
fields, and the process of trading regularities for the decay rates of the distance to the
light cone.

e In Sect. 4, we set up the energy estimate, classify the nonlinearities of the high
order derivatives of the distribution function into the non-bulk term and the bulk
term, and define appropriate low order energy and high order energy for both the
electromagnetic field and the distribution function.

e In Sect. 5, we estimate the low order energy and the high order energy for the
electromagnetic field over time.
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e In Sect. 6, we estimate the low order energy and the high order energy of the non-bulk
terms for the distribution function over time.

e In Sect. 7, we estimate the high order energy of the bulk terms over time under the
assumption that a key Lemma, Lemma 7.9, holds.

e In Sect. 8, we finish the proof of Lemma 7.9.

e In Sect. 9, we use a bootstrap argument to prove our main theorem, Theorem 1.1.

2. Preliminaries

For any two numbers A and B, weuse A < B, A~ B,and A < B todenote A < CB,
|A — B| < cA, and A < ¢B respectively, where C is an absolute constant and c is a
sufficiently small absolute constant. We use A ~ B to denote the case when A < B and
B < A. For an integer k € Z, we use “k,” to denote max{k, 0} and use “k_"" to denote
min{k, 0}. For any two vectors &, n € R3, we use Z(£, ) to denote the angle between
“&” and “n”. Moreover, we use the convention that Z(§, ) € [0, 7 ].

For an integrable function f (x), we use both f (&) and F(f)(&) to denote the Fourier
transform of f, which is defined as follows,

F(f)E) = / e f(x)dx.

We use F _l(g) to denote the inverse Fourier transform of g(£). Moreover, for a
distribution function f : R? x R? — C, we use the following notation to denote the
Fourier transform of f(x, v) in “x”,

FEv) = / V€ £(x. v)dx.
]R3

Basically, “v” is treated as a fixed parameter during the Fourier transform.
We fix an even smooth function ¢ : R — [0, 1], which is supported in [—3/2, 3/2]
and equals to one in [—5/4, 5/4]. For any k € Z, we define

Y (x) =P (/25 — (e /2), Ya) =9 /2N =) i),

1<k
Yok (x) =1 — -1 (x).
Moreover, we use Py, P<; and Psj to denote the projection operators by the Fourier

multipliers ¥ (), ¥<k(-) and Y= (-) respectively. We use fi(x) to abbreviate Py f(x).
For any integrable function f, we define

fr=Ff RAfli=f fi=F PAfl=7F. @1
Define the cutoff function v, ;(-) with the threshold [ as follows,

Y_p(x)if I =1

Yi(x) ifl > L. (2:2)

%;,—(X) = {

In particular, if the threshold I = 0, we use the following notation,

Dk <k<k, Yk (X) ifky >0
(Pk(x) = 1//k;0(x), keZ,, §0[k1,k2](x) = 2.3)
VY <k, (x) ifk; <O0.
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We define the unit vectors of the Cartesian coordinate system in R3 as follows,

e1:=(1,0,0), ex:=(0,1,0), e3:=(0,0,1). 2.4
Moreover, for any i € {1, 2, 3}, we define the following vectors,
Xi=e; xx, Viz=ejxv, Viz=ejxd, Vi=e x0, f)::ﬁ,
v
V,:=0-¢, Vj:=10-¢ (2.5)
As a result of direct computations, we have
— (5 ~ 7. 7. 3 ~ n__ v
u_(v-u)v+.2 Vi-w)Vi, ueR, - Vo= T o
i=1,2,3
Vi - Vyb = Vi i€ {1,2,3 2.6
z'uv—my ie{l,2,3}. (2.6)

For any k € Z, we define the S°-norm of symbols and a class of symbols as follows,

Im@llse ==Y 2XIF T VEmE @]l 8 = {m(&) :

[=0,1,...,10
[m (&) llse = sup [[m (&)l s < 00} (2.7)
kel

For any given Fourier symbol m(§) € S, we define its corresponding Fourier
multiplier operator as follows,

T(f) = fR eEmE) f e

We call the linear operator T as the Fourier multiplier operator with the Fourier symbol
m(&), see also [40].

Definition 2.1. We define a linear operator as follows,

Qi == —RiIVI™', Q= (01, 02, 03), ie{l,23}, (2.8)
where R;, i € {1, 2, 3}, denote the Riesz transforms. Hence,
Id =V - Q. (2.9)

Itis well known that the density of the distribution function decays over time. Now, there
are several ways to prove this fact, e.g., performing the change of variables, using the
vector fields method. We refer readers to a recent result by Wong [44] for a more detailed
discussion. In [43], we used a Fourier based method to derive two decay estimates as in
the following Lemma,

Lemma 2.1. For any fixed a(v) € {v, 0}, x € R3 a,1r e R st [t| > 1, a > =3, and
any given symbol m(&, v) € L{°S®, the following decay estimate holds,

| / f FEHA S & ) [E1"R (& v)dvdE| S Y (D] IVEmE v)lps~)
R3 JR3
loe|<5+la] |Bl=5+lal
1173740+ D VIR, 0, v)ll s+ (eI + [v]) >

(L +xDVyg(t, x, )l ]- (2.10)
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Proof. See [43, Lemma 3.1]. |

In the latter argument, we will reduce the Maxwell equation to a nonlinear half-wave
equation, which is convenient to study on the Fourier side. For the linear half-wave
equation, we have the following L{°-type decay estimate.

Lemma 2.2 (The linear decay estimate). For any u € {+, —}, the following estimate
holds,

| /R ETIE @) FE) e (©)dE| < min(2, (1 Jrl + 1) T2 Im E) sz

x( D2 2KUVET @ O Nl + 21 Ve i, OY(©) ) 2.11)
o] <1
Proof. See [42, Lemma 2.2]. O

3. Two Sets of Vector Fields for the Relativistic Vlasov—Maxwell System

In this section, we review the framework we introduced in the first paper [42] for the
study of 3D relativistic massive Vlasov—Nrodstrom system. This framework is very
general and suitable for the study of Vlasov-wave type coupled systems.

In [42], we used two sets of vector fields for the relativistic Vlasov equation. The first
set of vector fields for the distribution function f (¢, x, v) is given as follows,

Pr:={S, Q, Li, 8y, i € {1,2,3}}. 3.1

Correspondingly, we define the following set of vector fields for the electromagnetic
field (E(z, x), B(t, x)),

Pr={S, Q, L;, dy,,i €{1,2,3}}, (3.2)
where

S:=td+x-Vy, U=X;-Vy, Q:=Vi-Vy+X;-Vy, i=1273(3.3)

Li =13y, +x;0, Li:=1dy +x;0 ++/1+|v|2dy,, L:=(Ly, L2, L3),
L:=(Ly, Ly, L3), (3.4)

where “S”, “Q;”, and “L;” are the well-known scaling vector field, rotational vector
fields, and the Lorentz vector fields, which all commutate with the linear operator of the
nonlinear wave equation, see the classic works of Klainerman [23,24] for the introduction
of the original vector field method and the works of Fajman—Joudioux—Smulevici [8—10]
for more detailed introduction of vector fields in 3.

The second set of vector fields constructed in [42] aims to better understand V, f in
the nonlinearity of the Vlasov equation. To better see the structure of V, f, we studied
the profile g (¢, x, v) of f(¢, x, v). More precisely, we define

g(t,x,v) = f(t, x +0t,v),—> (8t +0-Vy)ft,x,v) = (B,g)(t, x — 0t,v),
Vo f(t, x,v) = (Dyg)(t, x — 0t,v), where D, :=V, —tV,0 - V.

Therefore, for any given vector field that commutes with 9;, we can find a corresponding
vector field that commutes with “9, + 0 - V,”. With this intuition, we are looking for a
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good unknown w (x, v), which doesn’t depend on ¢. Instead of decomposing D, into V,
and —1V, - 0 - Vi, we decompose it as Vy, — w(x, v)Vy and w(x, v)Vy — 1V, - V,.

The choice of good unknown w (x, v) depends on an observation of the light cone
C; = {(x,v) :x,v € R3, [t| — |x + 0] = 0} in (x, v) space. In [42], we defined an
inhomogeneous modulation for the light cone |f|> — |x + 9¢|> = 0 in (x, v)-space as
follows,

Definition 3.1. We define the homogeneous modulation d(t, x, v) and the inhomoge-
neous modulation d(t, x, v) as follows,

t x-v+/(x-v)?+|x?

d(t, x,v) = — 3.5
(, x,v) e N (3.5)
d(t, x,v) = ! (x, v) where w(x, v) = l/fzo(|x|2 +(x - v)?)

L+? JT+p)
x(x - v+y(x-v)2+]x?). (3.6)

The main intuition behind the above definition is that |f|*> — |x + 0¢|> = 0 if and only if
d(t, x,v) = 0. More precisely, the following identity holds,

2
R t 2tx - v
62| — |x + 0t)* = x| = d(t, x, v)

T+ TP
x(t = V142 (x-v—v(x-0)?+[x?)). 3.7

Moreover, from (3.5), (3.6), and (3.7), it is easy to check that the following estimate
holds,

|d(t, x, v)| +|d(t, x,v)| < 1+]]t] — |x + 0z]]. (3-8)
With the above motivation, we define,

Ky =V, =1+ 2w, v)Vyd-V,, SV :=0-V,, S":=17-V,,
Q=Vi-V,, @ =V;-V,, (3.9)
where i € {1,2, 3}, v and \N/l are defined in (2.5). Moreover, we define a set of vector

fields as follows,

w(x,v ~ -
LGP QN =V, Ky =Q —ox,vQ, Ky, =K, e.
1+ |v|?

SV i=5.-K,=S8" :
(3.10)

Note that the vector fields defined in (3.10) will be applied on the profile “g (¢, x, v) :=
f(t, x + 0t, v)” instead of the original distribution “ f (¢, x, v)”. Note that
Kyg(t,x,v) = (Vo — vV 1+ v]2w(x, v)Vyd - Vi) (f (¢, x + 01, v))

= (Vo f)t, x +0t,0) + (t — 1+ 02w (x, v))Vyd - Vi f(t, x + 0, V)
=: (K, f)(t, x + 01, v),
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where

Ky = Vy+ (t — 1+ [v2w(x — t, v))Vyd - V. (3.11)

Since K, commutates with d;, we know that fv commutates with the linear operator
9; + 0 - V, of the Vlasov equation.

To sum up, we define the following set of vector fields, which will be applied on the
profile g(t, x, v) instead of the original distribution function f (t, x, v),

Po:={I;, iefl,...,17}}, (3.12)

where
Ty =9Y=1(v)SY, Ta:=v=1(v)S*, Tz = V=1, Tiss = ¥=1(0)Q,
(3.13)

Tivg 1= Y<0(lWD Ky, Tisit i=Yeo(v))dy, Tisia =, i=1,2,3. (3.14)

Correspondingly, we can find the following associated set of vector fields which will be
applied on the original distribution function f (¢, x, v),

Py={Ty, ie{l,....,17}}, (3.15)
where
Ui = yo1(o)i- Ky Toi= yai(u)S™. Tia = va1(w)Vi - Ko
Dis = ¥=1(lv)€;, (3.16)
Tivs i= ¥<0(vDKy, Tivnri= Yeo(vDdy, Tiwa =, i=123.
(3.17)

For convenience, we define notations to uniformly represent those vector fields. The
notations were introduced in [42]. For readers’ convenience, we redefine them here.

Definition 3.2. We define a set of vector fields as follows,

X1 =y=1(0)3 - Dy, Xini=y=1(0)Vi - Dy, Xia=yr<o([v))Dy,, i=1,2,3,

(3.18)

From (3.18), we have
Dy = 0X1+ ViXim +eiXia = ) ()X, (3.19)

i=1,.7
where

a1(v) = Y=1([0D0, @1 (V) = Y1 (WD Vi, iaa(®) = Yoi(lvher, i=1,2,3.
(3.20)
For any vectors e = (e1,...,¢;) € R", f = (f1,..., fm) € R, whereey, ..., e,,

fla”-’fm ER,Wedeﬁne

eofi=(et,orew fioo fu) leli= D leil, = leo fl=lel+Ifl.

i=1,...,n
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Definition 3.3. Let

A:={a:ae{0, 1} 13 =0,1}, 0:=(,...,0),
=,..., 1 ,...,0), if0,d €A, B:=Ugen, A
i-th
rf:=r1d, T%:=8, I =g, I¥.=q, I =L, i=123,
(3.21)
=14, T4 =8, T4 :=3p,, [ .=Q;, % .=[; i=12,3.
(3.22)

Hence, we can represent the high order derivatives of the first set of vector field 31 and
Py (see (3.1) and (3.2)) as follows,

[®1°02 .— [ [@e0 . [P o gy e B, (3.23)
Definition 3.4. We define
K:i={¢: ée{0,1}'7,1|=0,1}, 0:=(0,...,0),¢ :=(0,..., 1 ,...,0),

if 0, € K,
S:i=Uran kb, AVi=1d, A% =T, TiePs & ek,
where 3, is defined in (3.12). Hence, we can represent the high order derivatives of the
second set of vector fields for the profile “g(¢, x, v)” as follows,
AT = ACAT e, fes.

I

Definition 3.5. For any «, y € S, we define the equivalence relation between “«x” and

“y” as follows,
k ~yand A ~ AY, if and only if A“A(x, v)
= AV h(x, v) for any differentiable function/(x, v), (3.24)
k = yand A“ »~ AY, if and only if A*h(x, v)
# AV h(x, v) for some non-constant differentiable functionz(x, v).
(3.25)

Very similarly, we can define the corresponding equivalence relation for a1, @y € B.
Note that, for any § € S and o € B, there exists a unique expansion such that

ﬂN[]O"'[‘ﬁ‘, LiGIC7|Li|=17 ie{la"'a|ﬂ|}a
(3.26)
U ~YLO:Val )/l'EA,|)/i|=1, iE{l,...,|Ol|}. (3.27)

Definition 3.6. For any ( € K/ {6} and B € S, we define two indexes as follows,

) = | TIEA ~ SV or Qi €{1,2,3) i = LifA' ~ Qi € {1,2,3}
0 otherwise 0 otherw1se

(3.28)
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cB)= Y. cw). iB= Y i@). wheref~1io...up. 1 €K/{0}.
i=1,...,|Bl i=1,..|Bl
(3.29)

Remark 3.1. The indexes ¢(8) and i (8) defined above are same as the index ¢y, (8) and
i(B) defined in [42]. The index “c(B)” indicates the total number of *“good derivatives”,
which are S? and Q7,1 e {l1,2,3}, inside the total derivative “AP”. We will explain

with more details about in what sense derivatives S and Q7 are “good” in Sect. 7.1.
The index i (8) counts the total number of Qf ,1 € {1, 2,3}, derivatives inside AP.

With the above defined notation and the vector fields defined in 3 (3.1) and 3,
(3.12), as in the following Lemma, we can view the bulk derivative “D,” as two linear
combinations of the above defined vector fields with good coefficients.

Lemma 3.1. The following two decompositions for “D,,” holds,

Dy= Y dplt,x,v)A" = > e,(t.x,v)A", (3.30)
pel,|pl=1 pek,|pl=1
where
=1 (Jv]) if AP ~ Y= (U])S

d(t, x, v)(1+ o) "2 y=_ 1 (Jo]) if AP ~ Y1 (J0])S*

Vir=—1(Jv]) if AP ~ Yoy (W)Y, i=1,2,3
dp(t,x,v) = { Vid(t, x, v)(1 + ) 2¢=_1(Jv]) if AP ~ Yoy (VDR i =1,2,3 ,
Y<a(lv]) if AP ~Y<o(luDKy,, i =1,2,3
—d(t,x, V)1 + [P) Vi (o) if AP ~ Yooy, i =1,2,3

0 ifAP ~y,i=1,23

(3.31)
Y= —1(v]) if AP ~ Y (V) S?
71”2“('”')(((11&\):]2?132 * Vi(m D) it A2~y (oS
0 if AP ~ Y1 (U)QY,i =1,2,3

ep(t, x,v) = Y= (DI V(X + Vit) - Vi if A? ~ Y (DQF,i=1,2,3 7

Y<a(Jv]) if AP ~ YooKy, i =1,2,3
—Y<2(Jo))d(t, x, v)(1 + [v[)Vy b if AP ~yreo(lv)dy,. i =1,2,3
Y=—1(lvhlv[ 7V if AP ~Qi=1,2,3

(3.32)

From the detailed formula of d, (¢, x, v) in (3.31), we have

Z |1+ 1)~ (2, x, v)| S 1+1d(, x, ). (3.33)
pell,|pl=1
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Proof. See [42, Lemma 3.4]. O

As stated in the following Lemma, a very interesting property of the inhomogeneous

modulation “d (t, x, v)” is that its structure is stable when the vector fields in 3, (see
(3.12)) act on it.

Lemma 3.2. Forany p € S, |p| = 1, the following equality holds,

AP(d(t, x, ) = €] (x,v)d(t, x, v) + €5 (x, v),

Dy(d(t, x,v)) = &1 (x, v)d(t, x, v) + &2(x, V), (3.34)
where the coefficients satisfy the following estimate,

e} (x, v)| + €5 (x, v) +]é1(x, )| +]e2(x, )| S 1, [é2](x, v)¥=2(]x]) = 0.

(3.35)
Moreover, the following rough estimate holds for any B € S,
D 1Al (x,v)| + AP 8 (x, v) S (1 + x4+ o). (3.36)
i=1,2
Proof. See [42, Lemma A.1]. m]

Through using the vector fields in P; in (3.2), we can trade one spatial derivative for
the decay of the distance to the light cone in the following sense,

—X; t Xi
(t] = |x)9; = Qi+ Li — S, iefl,2,3},
’ j_1223|r|+|x| YUl T e+ 1]

(3.37)

where Q;; = x,-8xj —xj0y € {£Q;,i €{1,2,3}}.

We will use this idea to prove that the electromagnetic field (E (¢, x), B(t, x)) decays
atrate 1/((1 +t])(1+]]¢|—|x]||), which is slightly stronger than the Klainerman—Sobolev
embedding. To this end, instead of dealing with a perfect spatial derivative, we will deal
with Fourier multiplier operators. For any given symbol m(§) € S and the associated
Fourier multiplier operator 7', we derive an analogue of (3.37) in the following Lemma.

Lemma 3.3. For any k € 7Z and any given Fourier multiplier operator Ty with the
Fourier symbol my (§), the following equality holds,

(el = XD Tl £1(r, x) = > &t )T 3] f*)
i=0,1,2,aeB,|a|<3
+(|1] = |xDea(t, V)T, (07 = A) ), (3.38)

where the coefficients Efx (t,x),i =0,1,2, and ey (t, x), satisfy the following estimates
18 (t, )| + 109,EL, (1, %)| + lea (1, X)| + [13ea (t, x)| < 1,

IVl (t, x)| + [Vyeq (t, x)| S (] + [x]) 7" (3.39)

Moreover, the symbols nﬁ};’a(é) of the Fourier multiplier operators “T,ia()”, i €
{0, 1, 2, 3}, satisfy the following estimates

> 2K, @)llse 27K, i} @) llse $27H. (3.40)
i=0,1,2
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Proof. See [42, Lemma 3.6]. |

In the energy estimate of the profile g(z, x, v), we will use the commutation rules
between D, (equivalently speaking, X;,i € {1,...,7}, see (3.19)) and AP, B € S,
which are summarized in the following Lemma.

Lemma 3.4. The following commutation rules hold for anyi € {1,...,7},and € S,

X AP1 =Yl e Y [dGx 0)é o) +E @ n]AS, (341
KeS kl<Ifl-1

where Yiﬂ denote the top order commutators. More precisely,

v = > [d(t. x, v)E5 (x.v) + 857 (x 0)]AY. (342)
KeS.licl=IB1.liG)—i(B)|<1

Moreover, for any i € {1,...,7}, and k € S, the following estimates hold for the
coefficients é;ll (x,v) and é;lz (x,v),

|APE; (e )+ IAPEE (e 0)] S (14 [P g o P (3,43

125 e 0]+ 1857 (e )] S A+ L PITIE24 op PIZIE - when (] < 18] - 1.,
(3.44)

5! 2 < cc)=c(p) _

& (o )+ 1857 () S (4 [ul) . when || = |B]. (3.45)

Moreover, ifi(k) —i(B) > 0 and |k| = |B|, then the following improved estimate holds
for the coefficients é;’.? (x, v) of the commutation rule in (3.41),

|57 (x, v)| S (1 o) e, (3.46)
Proof. See [42, Lemma 3.9]. a

4. Set-Up of the Energy Estimate

Recall (1.1). We can reduce the equation satisfied by the electromagnetic field into
standard nonlinear wave equations as follows,

0 f+0-Vif+(E+0x B)-V,f =0,
V.E=4n/f(t,x,v)dv, V-B=0,

(RVM) 92E — AE = —471/ 3 f(t, x, v)odv — 4x / V. £(t, x, v)dv, (4.1)

2B — AB =4x | b x V. f(t, x, v)dv,
fO,x,v) = folx,v), E(,x)=Eo(x), B(0,x)= Bo(x).

Let

K(t,x,v) = E(t,x) + x B(t, x). 4.2)
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As aresult of direct computations, we have
Vy - K(t,x,v) =0. (4.3)

From (4.1) and (4.3), we can rewrite one of the nonlinearities inside (4.1) as follows,
/ 0 f (¢, x, v)0dv = — / 0.V, f(t,x,v)0dv + / f(t,x,v)K(t, x,v) - Vyvdv.
Therefore, we reduce the equation satisfied by the electric field in (4.1) as follows,
E)EE — AE =4rx / 0. Vi f(t,x,v)0dv — 4w / V. f(t, x,v)dv

+4m / ft, x, v)K(t, x,v) - Vyddv. (4.4)

4.1. The equation satisfied by the high order derivatives of the profile of the Vlasov
equation. For the sake of readers, as the starting point of doing energy estimate, we
compute the equation satisfied by the high order derivatives of the profile of the Vlasov
equation step by step.

Note that the following commutation rules hold for any i, j € {1, 2, 3},

[Vo, S1=0, [3y.Q;1=10yV; Vo, [y, L;]1=1[dy. 13, +x;0,

v
+V 1+ 08y, = ———10,;. (4.5)
Vit

From the above commutation rules, we know that the following equality holds for any
o € B,
(@ +0-Vo)f)=— Y. ([TPE+TP@ x B) -TV(Vof).  (46)
B,y eB,B+y=a
For simplicity in notation, we use the following abbreviation,
FUt, x,v) =T f(t,x,v), ul(t,x):=TPu(t,x), uel{E,B). 4.7
From the commutation rules in (4.5) and (4.6), the following equation satisfied by

f%(t, x, v) holds,

@ +0- Vo) f* = Yo (Gapy WEP +bap, 0)BP) -V f7 (1, x,0),
B.yeB.|Bl+ly|=lal
(4.8)

where dq. g, (v) and l;o,; g,y (v) are some coefficients, whose explicit formulas are not
pursued here. Moreover, the following equalities and the rough estimate holds for any
o, B,y €B,

) 0 —d3 )
do;0,0(V) = =1, bai00(@)=—| 03 0 =01 [, |du;py @)+ |ba;py WIS 1.
—b b0

(4.9)
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Define the profile of f*(¢, x, v) as follows,

g¥(t, x,v) = fY@t, x +vt,v), = f*(,x,v) = g%, x—vt,v).

From (4.8), we have

3g(t, x,v) = Y (Gapy WEP (. x + 1)
B.yeB.|Bl+ly|=lal|

+hy. g,y (0)BP (1, x +01)) - Dyg? (1, x, v). (4.10)
Define
Keipy (t, X +01,0) = Gg. g, (W EP (1, x + 01) + by g, (0) BP (1, x + 01).  (4.11)
In particular, from (4.9) and (4.2), we have
a Oa(t x,v)=—E(t,x) — 0 x B(t,x) = —K(, x,v). 4.12)

Recall the decomposition of D, in (3.19), we have
Kop.y (1, x + 01, 0) - Dyg? (¢, x,v) = Z Ki.g,(t,x +0t,0)Xig” (1, x, v),

(4.13)
where

Kl

B, y(t,x+ﬁt, v) =0 (V) - Koopp (8, x +0t,0), i=1,...,7. (4.14)

Therefore, we can rewrite (4.10) as follows,

3 g%(t, x,v) = > Z Klp, (t,x +01,0) - X;ig” (¢, x, v). (4.15)
B.yeB.IBl+ly|<lali=L..

Now, we apply the second set of vector fields on g% (¢, x, v). For any 8 € S and any
o € B, we define

gt x,v) == APg¥(t,x,v), B~uono oy, yeEK =1 i=1.., 1Bl
(4.16)

Note that [3;, AP] = 0. From (4.12) and (4.15), based on the order of derivatives, we
classify the nonlinearity of the equation satisfied by g/‘;(t, x, v) as follows,

B,gg(t, x,v) = —K(t, x +0t,v) - Dvg%‘(t, X, V) +h.0.tg(t, X,v)+ l.o.t‘é(t, X, v),
(4.17)

where “h.o.t%(t, x, v)” denotes all the terms in which the total number of derivatives
acts on g(t, x,v) is “ |a| + |B| ” and “l.o.t‘é(t, x, v)” denotes all the terms in which the
total number of derivatives acts on g(z, x, v) is strictly less than “ || + | 8]”. We remind
readers that the total number of derivatives act on the electromagnetic field is possible
to be || + |B] in “l.o.t%(t, x,v)".
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Based on the source of the top order terms, we classify “h.o.t%(t, x, v)” further into
three parts as follow,

hoty(t, x,v) = > hot§,(t x,v), (4.18)
i=1,2,3

where h.o.t‘g‘ (&, x, v) arises from the case when only one derivative of AP hits
Ki(t, x,v), h.o.t%.z(t, x, v) arises from the case when the entire derivative of AP hits
g7 (t, x, v) where |y| = |a|—1,and h.o.t%,3(t, X, v) arise from the top order commutator

between X; and AP, see (3.41) in Lemma 3.4. More precisely,

h.o.tf,(t, x,v) = Z AYK (1, x + 01, ) X; g% (2, x, v),
1,k€S,i=1,..., 7,1+ =P,|t|=1
(4.19)
hoty,(t,x,v)= Y D KL, (6 x+0t,0)Xig) (1, x, ), (4.20)
lol<Llyl=la|-1i=1,...7
hotys(t.x,v)= Y K'(t,x+0t,0)Y] g%t x,v). 4.21)
i=l,..., 7

Next, we will identify the bulk term which appears in the high order terms
h.o.t%(t,x, v). Based on the possible vector field of “A‘” in (4.19), we separate

h.o.t%, 1 (¢, x, v) further into two parts as follows,

ho.f.,(t, x, v) = h.o.r‘;g}(r, X, v) + h.o.rgf(r, X, v), (4.22)

where
h.o.t‘gii(t, X, v) = Z Z
J=L230=1 T vie=p, 1, €S, =1, A o6t (o) QYo o1 ([ 22

AY K (t, x + D1, 0)) X;8%(t, x, ), (4.23)

hotyi(t,x,v)= Y >

J=12300=0 0T v =p k€S, =1 A1 (W) Qor Y1 (02
AYK (2, x + 01, 0)) X g%(t, x, v). (4.24)
Note that the following equality holds if A ~ > 1(|v|)§; or w21(|v|)9’; , Where
je{1,2,3},
A K (1, x +0t,0)) = KLy (8, x + 01, 0) + K, (¢, x + 1, ), (4.25)
where
Kiy(ox+0t,0) = (VI+ P, x, ) ™Yoy v) - QUE@, x + 1)
+0 x B(t,x +00))¥r=1(|v]), (4.26)
Kot x+0t,0) = (I — c@)¥=1 (0D [V - Volei () (E (2, x + 1)
+0 x B(t,x +01)) +a;(v) - (V; - Vy)d x B(t, x +01))]. 4.27)
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Motivated from the above decomposition, we can separate “h.o. t%f% (t, x, v)” further into
two parts as follows,

h.o.t‘;ﬁ(t, X,v) = bulk%(t, X, v)+ error%(t, X, V), (4.28)

where
o P
bulkﬂ(t, X, V) = Z Z
J=123,i=1,.., 7L+K:ﬂ,t,xes,\t|:1,At~xpzl(\u|)sz;%orwzl(|v\)sz§

Kl (1, x + 1, v)Xig2(t, x, ), (4.29)

ermr‘é(r,x, V) == Z Z

J=1.230=10T e =B,1,k €S, [1|=1, At~ (|v|)§1]’.or1//21(|v|)§2’]‘.

Kot x +0t,0) X2 (1, x, v). (4.30)

Recall (4.17). Lastly, we classify the low order term l.o.t%(t, x, v) and decompose it
into four parts as follows,

l.o.t%(t,x,v): Z l.o.t%;i(t,x,v), (4.31)
i=1,..4
where
Lot (t.x.v) = Yy K (e, x + b1, v)[d(t, x, v)&F | (x, v) + &7 (x, v)]
i=1,...7keS,|k|<|B|—1
xASg* (1, x, v),
Loyt x,v) = > [AUK (6, x + 1, v)[AY, X;1g*(t, x, v)
t+k=p,t|=1
i=1,...,7,L,keS
+ Y A (Kl (tx + 01 0) AN X g (1, x,v)] (4.32)
lyI<lal-1
+Y 1 >0 K, @ x+ e 0) (AP, X187 (1, x,v))
IpI=1 Iy|=lel~1
+ > K, (. x+0t,0) x AP(X;g7)(t, x, v)], (4.33)
Iy |<lal-2
Lo.ty5(t, x, v) = > (A'KL.,., (6 x+ 06, 0) A (Xig” (t, x,v)),  (4.34)

p.yeB,|pl+ly|<|el
t+k=pB,1, k€S
i=1,...,7,[+|p|=12

Loty (1. x, v) = > (A'KL., (6 x+0t, 0) A (X;g” (£, x, v)),

0,y €B,|pl+ly|=|el|
1+k=PB,1,kES
i=1,....,7,1<|t|+]|p|<12

(4.35)
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where l.o.t%,l(t, x, v) arises from the low order commutator between X; and AP,
see (3.41) in Lemma 3.4, l.o.t‘g,z(t, x, v) arises from the commutator between X; and
A,k €8, k| =|B| — 1 or between X; and AP when there is only one derivative hits

on K'(t, x, v), or all other low order terms which have at most one derivative on the
electromagnetic field; l.o.t‘/’é;3 (t, x, v) arises from the case when there are at least twelve
derivatives hit on the electromagnetic field, and l.o.t%; 4(t, x, v) denotes all the other low
order terms, in which there are at most twelve derivatives and at least two derivatives
hit on the electromagnetic field and the total number of derivatives hit on g(¢, x, v) is
strictly less than |«| + | B].

Recall (4.11) and (4.14). To analyze “A‘(K;;p’y(t, X + 0t, v))” in (4.34) and (4.35),
the following Lemma is useful.

Lemma 4.1. The following identity holds for any p € S,
Ap(f(t,x+f)t)) = Z ¢, (x, v) f1(t, x + 01) (4.36)
LeB.|u<lp]

where the coefficients c"o (x, v), t € B, satisfy the following estimate,

let, G, v)| S (1 [P A P 4 o=@ where 1] < pl, (4.37)
leb G )] S L+ [u)™P,if ol =1, AP = Yoy (0DQY, or Y1 (0DRY, € {1,2,3).
(4.38)

Moreover, the following rough estimate holds for any k € S,
|AK(C,[O(X’ v))| <1+ |x|)|K|+|0|—\L|(1 + |v|)\K\+|P\—|l\(1 + |U|)|P|—C(P). (4.39)

Proof. See [42, Lemma 4.1]. m]

4.2. The equation satisfied by the profiles of the electromagnetic field. In this subsection,
we mainly compute the equation satisfied by the high order derivatives of the electro-
magnetic fields. Recall (3.1) and (3.2). Note that the vector fields we will apply on the
distribution function f (¢, x, v) and the electromagnetic field are not exactly the same.
As a preliminary step before computing the equation satisfied by the high order deriva-
tives of the electromagnetic fields, we compute the difference between the high order
derivatives I'* and f‘“, o € B, see (3.23).
Recall (3.21), (3.22), and (3.23). We have

re—pe = Z ag:p.y (V) - VETV, (4.40)
B.yeB,|Bl+ly|<lal,|Bl=1

where “aq; 8, (V)" B,y € B, are some determined coefficients, whose explicit formulas
are not pursued here and the vector “Vf ”, B € B, is defined as follows,

VB =Vlio .V Beyrooyp, vieAlnl=1ie{l,..., 181}
Vi -V, ify =dj4,i=1,2,3
2 1+|v|20y, if y = dj47,i =1,2,3 , where y € A. (4.41)

1d otherwise
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Due to the fact that V,, is possible to hit the coefficients during the expansion, we have
|B] + |y | < || instead of |B] + |y| = || in (4.40). From (3.3) and (3.4), we know that
the following rough estimate of the coefficients ay; ,, (v) holds,

lag:py WIS 1, B,y € B, 1Bl + 1yl <lal, |8l = 1. (4.42)

Let
aa:é,a(v) = 1’ - I = Z aa;ﬂs}’(v) ’ V{?f‘)’ (443)
B.y€B.IBl+ly|<lal

Recall (4.1) and (4.4). From (4.43), we have

r(2E—AE)= Y 4nﬁ«(aa;ﬂ,y(v)~v,’?f‘yvxf)f)

1Bl+ly <ol
47 ag.p., (v) - VETYV £ (1, x, )
+ Z Z 47V, - (EP + 0 x BP)ay., (v) - VIT* fdv, (4.44)

Bry = |dl+|x[<|y|

I*(3?B — AB) = Z /4nﬁ X (aa:p,y (v) - VELYV, f (1, x, v))dv.
[Bl+ly <lal
(4.45)
Note that
[07 — A, S]=—S, [0?—A,Q]1=0, [0>—A,L]=0.
From the above commutation rules, after doing the integration by parts in “v” for the

integral on the right hand side of (4.44) and (4.45) to move around the derivatives “Vf 7,
we know that the following equations satisfied by E*(z, x) and B*(t, x) hold,

(at2 — A)E* = 10(, (atz — A)B* = 2‘", (4.46)
where
N{x = Z v/\3gla;)/(U)V)Cf‘y(t’xvv)"'(N%’y(v)E'ﬂ(l‘,)C)
B.yeB.Ipl+lyI<lal* K
+5, () BP (1, %)) f7 (1, x, v)dv, (4.47)
Ny = Z / ‘?a;y(v)vxfy(l,)ﬁ v)dv, (4.48)
3
yeB.lyl<lal 'R

where dy.p, (V), E%,V (v), 5;)/ (v), and cfa;y (v) are some determined coefficients, whose
explicit formulas are not pursued here. Moreover, from the equality (4.41) and the rough
estimate of coefficients in (4.42), we have the following rough estimate,

|da:, ()| + 1D, ()] + 185, ()] + dasy (V)] S 1. (4.49)
Define the half-wave part of the electromagnetic field as follows,

ul(t, x) == V7@ — i|[VDE“(t, x),  uS(t,x) = V|7 (@ —i|V])B*(t, x).
(4.50)



736 X. Wang

As a result of direct computations, we can recover the electromagnetic field from the
above-defined half-wave as follows,

I A P— I o —uf +u¥ o —u? +ud
O E" = —-(uf +uf), 8B = (u2+j E* = 121 L B = 221‘ 2
4.51)
From (4.46) and (4.50), we have
@ +iVDus (1, x) = [V INE = NF w5
(B +iIVDug(t, x) = |V|TINE = N&.
Correspondingly, we define the profiles of uf‘ (1),i € {1, 2}, as follows,
RS (1) =" Vus(r), h§() = Vg @). (4.53)

On the Fourier side, from (4.52), the following equations satisfied by the profiles hold,

O (1, 8) = N[ (1.6) + N, (2, 8), (4.54)
3:@(&&) Z / it|&|— ltvéd (v)—gg)’(t £, v)dv, (4.55)
yeB,ly|<lel €1
where
'/T/’loi(t’g) = Z / lll%‘l ztvé“ (U)_;;:g (t g U)dl) (456)
yeB,lyl<lel €1
./\/f”f\ , = / / pitlEl—itplg—nl—itdn Z1 (fo P h,s £
o E) MEBXMJEH . IEI( o PRI & — 1)
[Bl+ly|=la|
+5%,y(v)PM[h§](z,§ — )87 (t, n, v)dndv, (4.57)

where the operator Py[-], u € {+, —}, is defined in (2.1) and ¢;, =i /2.

4.3. The modified profiles of the electromagnetic field. Note that both the equations
(4.54) and (4.55) contain a linear term, which is the density (i.e., the average of the
distribution function). To adjust the growth effect that comes from this part, we add the
correction terms to the profile and define the modified profiles as follows,

;714(;,5) = WY1, &) — Z / itIEI=itdE dg: y(v)é Gy OB 0 b,

yeB,|y|<|a| IEIIEI —v - &)
(4.58)
s z dury ()8
hs (t, = hY(t, ltlél itpg _ Gay\VJs £ v)dv.
§0.6) = .8 - VEB%%/ S (e v

(4.59)
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Correspondingly, for any @ € B, we can define the modified electromagnetic field as
follows,

E@(t) = coe VIR (1) 4 c_e= VIR (1), BE(t) = cre VIS (0) + c_em YIRS (1).

(4.60)
Define

—ithE 5(1;)/(”)5 -

EL, (), x) :=f*‘[/ e f(t, & v)dv](x), (4.61)

R3 E1(E1 =D - &)

EJ ()t x) = ]—‘_1[/ o i0E oy (V)§

VTS F(tE v)d . (4.62
R EEl— o) CEVRI®. ¢6)

Recall (4.51), we have

E*(1) = coe VRS (1) + c_e VRS (1), BY(t) = cre VIRG (1) + c_e M VIRS (1),
(4.63)
From the equalities (4.51), (4.53), (4.58), and (4.59), for any o € B, we can link the

relation between the electromagnetic field and the modified electromagnetic field via
the equalities as follows,

E“)=EC@n) — ) Im[Eg,(g)(0]. B*()=B0)
veB,ly|<lal
— Z Im[EZ. (g7)(1)]. (4.64)

yeB,lyl<la|

Recall the equations satisfied by the profiles A{(#) and h§ (¢) in (4.54) and (4.55).
From (4.58) and (4.59), it is easy to derive the equations satisfied by the modified profiles
h§(¢) and h§ () on the Fourier side as follows,

oA = 3 MO+ N8, o= Y MW (1,8),

ly<|a| [y=<|e|
(4.65)
where
ml N = _/ ltlé‘_ltﬁg da;y(v?\g 8/\)/ 5 ’ d ’
ay (h8) == [ € Ele =058 @&y
el—ipe | ey WE

N2 (t, ::—/ ig|—irE XV 5§ oy (¢, £, v)dv. 4.66
a,y(t %-) R3e |€|(|§|_US) 18 (t E U) v ( )

Recall (4.10). After plugging in the equation satisfied by 9,g", we have the following
equality for any fixed o, 8,y € B,
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N1 6)= / / GitlEl=iputlg —n|—itdn ~Cndoy V)
ay — -
LeeB, IL\+\K\<IVI/4€{+ _yJeo Je3 £1081 = - &)

x (A ) Pl 1,6 — )
by (V) Pulhb 1, =) - (Vo—it Vy (5 - m)gF (¢, n, v)dndv

_ 3 3 / / GitlEI—iptlE—n|—itin
R3 JR3

L EB, U +Hk <]y | nef+,—

Cﬂaa;y(v)s R _—
Vo ENE =0 . &) VYsbK Pulht 1, & —
) [lfl(lél g)(a%, W) Py[hY1(t, & — )
b K(U)P”[h 1.6 — m)]g¥ (t. 0, v)dndv. (4.67)

“ ’”

In the above equality, we did the integration by parts in “v” to move around the derlvatlve
“V,” in front of g¥ (¢, n, v). With minor modifications, we can reduce “‘ﬁz (t &)”

(4.66) as follows,

2 _ it|E|—iut|E—n|—ito-
WytD= 3 [ [

Lk eB,|U+k|<|y| nel+,—

v, - [ Cu a;y(v)é
E(|E] — D - &)
+ by (V) P[RS, & —m)]g* (2, 1, v)dndv. (4.68)

(A0 ) PRI, E — )

From the above equalities and the detailed formula of '/\//E (t, &) in (4.57), we know
that the nonlinearities of the equation satisfied by the modified profiles in (4.65) are
quadratic, which are more favorable in the energy estimate.

4.4. The energy functionals for the Vlasov—Maxwell system. In this subsection, we con-
struct the energy functionals for the Vlasov—Maxwell system. The energy functionals
we will use for the Vlasov—Maxwell system are similar to the energy functionals used
in the Vlasov—Nordstrom system, see [42]. For the sake of readers, we elaborate on the
ideas behind the construction of energy functionals.

We define the high order energy for the profile g(¢, x, v) of the distribution function
as follows,

El{i.gh (1) = Ehlgh () + Ehlgh 0, E]{!glh (1) = Z ”wg (x, v)gg @ x, U)”L?c.v ’
aeB,BeS, |al+|fI=No
(4.69)
Eim®i= Yl g, (4.70)

aeB,BeS, |al+|B|<No

where g%‘ (t, x, v) is defined in (4.16) and the weight function a)g (t, x, v) is defined as
follows,

it x,v) = (L x|+ (- 0)? o 202N 100HIED (1 oy o 1, 2, ) IO,
4.71)
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where the indexes c(f) and i(8) are defined in (3.28) and the time dependent weight
function ¢ (¢, x, v) is defined as follows,

X-v -

¢, x,v):=1- Tlxlf((l + D/ (xlvD)nx - V)Y=1(|v]), (4.72)
where n(x) :R — Ris supportedinside (—oo, —10] and equals to one inside (—oo, —20]
and the function f(x) : Ry — R is a bump function defined as follows,

efl/(1725x) 0<x < 2-5

0 Sl s = fw=o 4.73)

fx) :={

The mainideas of choosing weight function as in (4.71) can be summarized as follows:
(i) For different order of derivatives of the profile, we set up a hierarchy for the order
of the associated weight function. For the profile with more derivatives, we propagate
less weight inside the energy. The choice of such a hierarchy makes the estimate of
lower order terms easier in the estimate of the high order terms. (ii) Comparing with
the ordinary derivatives of the profile, we expect that the good derivatives of the profile,
which are S and 27, are capable of propagating more weight in “|v|”; (iii) We used an
anisotropic weight in x in (4.71) instead of a radial weight |x| to guarantee that the first
estimate (4.74) in Lemma 4.2 holds, which plays an important role for the case when
all the derivatives hit on D, g(t, x, v), see Proposition 6.1 for more details; (iv) We used
¢ (¢, x, v) in the weight function a)% (t, x, v) to capture the fact that the inhomogeneous

modulation d(z, x, v) is much smaller than the distance to the light cone ||z] — |x + 0¢]|
ifx-0<0,v] 2 1,and |x| > (1 + |t])/|v], see the second part of the estimate (4.74)
in Lemma 4.2. This observation is also crucial for the estimate of the worst scenario
after exploiting the null structure by doing integration by parts in time, see the proof of
Lemma 8.6 in Sect. 8.2.

Lemma 4.2. Foranyx € B, 8 € S, s.t., |a| + |B| < Ny, the following estimate holds
forany x, v € R3,

Dva)g(t, X, v) 1 < cf(t, X, 0)¢(x, v)
wg(t,x, v) L+t =[x +0t]| ~

— <1 @74
L+ (1] — |x + ot

Proof. Recall (4.71). Let
A% (x, v) = (1+ x>+ (x - v)? + [p20) 2N 100D (] 4y )P,

From [42, Lemma 4.2], we know that the following estimate holds,

D, c?)%‘ (x,v) 1
‘ (4.75)

<
c?)%(x,v) L+|[e] =[x +0t]] ~

Therefore, to prove our desired first estimate in (4.74), it would be sufficient to con-
sider the case when D, hits the weight function ¢ (¢, x, v). Recall (4.72). Note that the
following estimates hold for any fixed x, v € supp(¢ (¢, x,v) — 1),

1 t
I 0 e = 20+ D/l (476)

x-0<-—10, |x|>10,]v| =1, <
lx][v]

Based on the possible destination of D,,, we separate into three cases as follows.
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e The case when D, hits the coefficient (x - v) /(1 + |x|). Recall the equalities in (2.6).
The following decomposition of D, holds,

t
D, =08" — T4 ViQ) — —————QF. 4.77
=8 = , 122:3 aeppyt 470

As results of direct computations, the following equalities hold for any i € {1, 2, 3},

SU(x-v)=x-0, Q(x-v)=x-V;, $(x-v)=|vl, Q(x-v)=0,
4.78)

1 _ X-0 . 1 _ \7,~~x
1+|x|)_ Ix|(1+xP?’ Sz"(1+|x|)_ Ix|(1+]xP?

(4.79)

S*(

Therefore, from the above equalities, the following estimate holds for any fixed x, v €
Supp(¢(ts X, U) - 1)7

SU((x - v)/(1+|x]) t S¥((x - v) /(1 +|x]) QY((x - v)/(1+1x]))
[| |+ 23/2| |+ > |
@(t, x,v) (1+v[?) B, x,v) s B, x,v)

. t |S2f((x “v)/(1+ |x])) |] 1
(1+[v2)l/2 o1, x,v) 1+t] — |x + ot

|71 [ It 1 Ix\] 1
T A+ DA ) A+ D D) x| = x|

(4.80)

Ifx-o < —2719x|?/z, from (4.76), we know that the following estimate holds for any
fixed x, v € supp(d(t, x,v) — 1)

t 1 t 12
S — CANNP N L B —— 4.81)
(T+h=fx-vf  |x-v 7 A+Johlxl (1 +v])=|x]

If x - o > —2719x| /¢, then from (4.76), the following estimate holds for the distance
with respect to the light cone,

1 1+ ||z] + |x + vt
L+ ]t] — |x + vt 1+||t|—|x+vt||+||t|+|x+vt||+|]+‘ ” —2x -0 — |x|?|
2] + [ x| 4.8
SRR (4.82)
Therefore, from the above estimate and the estimate (4.76), we have
t x 1 t 12
(i . i <
(T+1vl%)  x-v” T+]|]f] — |x + vt T+ 1vDlxl (1 +]vD)?lx]
(4.83)

To sum up, from the estimates (4.81) and (4.83), in whichever case, the following estimate
holds if D, hits the coefficient (x - v)/(1 + |x]),

(4.80) < 1. (4.84)

e The case when D, hits the cutoff function n(x - v).
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For this case, we know that x-v € (—20, —10) inside the support. Recall the equalities
in (4.78) and (4.79). We know that the following estimate holds for any fixed x, v €

supp(¢(t, x, v) — 1) N supp(n’(x - D).

|x| |7]
v| ol 1+ P

|Dy(n(x - 9))| < (4.85)

We first consider the case when |x| < 2'°|v|. Since |x| > (1 + |£])/|v] (see (4.76)), for
this case, we have |v| 2 (1 + |z))!/2. From the estimate (4.85), we have

|Dy(n(x - 9)| S 1. (4.86)

It remains to consider the case when |x| > 2'9Jv|. For this case we have |x|?> >
2100 x|lv] = (1 + |¢|), which implies that |x| > 2°(1 + |¢[)!/2. Therefore, from the
equality in (4.82), we have

1 +
]
1+t = |x +0t]] ~ |x)?

Therefore, from the above estimate and the estimate (4.85), the following estimate holds,

1 t 2
b . <1+ + <1. 4.87
| Dy (i (x ”))|1+||;|—|x+ﬁt|| SO vl xR @

e The case when D, hits the cutoff function f((1 + |¢])/(|x||v]|)). From the decompo-
sition of “D,” in (4.77), as a result of direct computations, we know that the following
estimate holds for any x, v € supp(¢ (¢, x, v) — 1),

l‘2

<
|x IIvI2 lx[?|v]?

1Dy (£ (L +1eD/(xloD)| S (4.88)

To sum up, from the estimate (4.84), (4.86), (4.87), and (4.88), we have the following
estimate,

|DU¢>(t,x,v)| 1

Pt x,v) T+l —|x+0r]]

(4.89)

Recall the definition of a)% (t, x,v) in (4.71), our desired first estimate in (4.74) holds
from the estimates (4.75) and (4.89).

Now, we proceed to prove the second part of the desired estimate (4.74). Recall the
equality (3.7). Note that the following estimate holds,

| d(t, x, v)¢(x, v) s L+]t|+|x+0]  |x-
1+IIt|—IX+ﬁtI| @+ (1 +[vD(x - vl +[x])
It +

~ +—
x| (1+

S+ e/ (x[lv])
J@+1eD/(xllvh) S 1. (4.90)

Hence finishing the proof of our desired second estimate in (4.74). O
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From the estimate (2.10) in Lemma 2.1, we know that the zero frequency of the
profile plays the leading role in the decay estimate of the density type function. With
this intuition, similar to the study of the Vlasov—Poisson system in [43] and the study of
Vlasov—Nordstrom system in [42], we define lower order energy for the profile g (z, x, v)
as follows,

EL= Y 0% ) (VI8 (1.0, ) = Vy - Zay (1, 1))l 2,
yeB,lal+ly|=No
@ (v) = (1 + [v])2ONo=100e+D, 4.91)

where the correction term Ea,y (t, v), which is introduced to avoid losing derivatives for
the study of the time evolution of Vg7 (¢, 0, v), is defined as follows,

t
N / —K (s, x +0s,0)V)g" (s, x, v)dxds if || + |y| = No
8a,y(t,v) = 0 JR3 (4.92)

0 if || + |y| < No,

where K (¢, x, v) is defined in (4.2). We remark that, despite there are the top order vector

fields applied on the profile, E{)W(t) only controls the zero frequency of the profile. We
call it low order energy in the sense of frequency instead of counting how many vector
fields are applied.

We define a high order energy of the electromagnetic field as follows,

ELa@ = 3 S [sup2 U, ) @)l + 2418 1, )Y ®)ll e

weB,ja|<Nyi=1,2 K€Z

$22 VR (1, €00n(E) | 2] + 1A (1, )] 2 + IE 1, )1 2. (4.93)

The first part of energy Eﬁi”gh (1), which is stronger than L? at low frequencies, controls
the low frequency part of the profiles h{ (), € {1, 2}; the second part of energy Eﬁibgh @),
which has the same scaling level as the first part of energy Eﬁf’gh(t), aims to control the
first order weighted norm of the modified profiles hf‘ (t), 1 € {1, 2}; the third part of
energy Eﬁibgh(t), controls the high frequency part of the profiles i (¢), i € {1, 2}.

Moreover, we define a low order energy for the profiles h;’ (1), i € {1,2}, of the
electromagnetic field as follows,

ESo:=[ Y > Y  Inolx,
n=0,1,2,3i=1,2 ael3, || <20—3n
+HL+ D3RO lx, + L+ Ve(L+ VDRI D)Ix, ], (4.94)

where the X,,-normed space, n € {0, 1, 2, 3}, is defined as follows,

IAllx, = sup 20 DK VER G, &)Y (©)l e (4.95)
keZ

To show that the electromagnetic field decays at rate 1/((1 +tD(L+]|t] — | x| |)) over
time, from the decay estimates in Lemma 4.3, it would be sufficient to show that the low

order energy Efobw (t) doesn’t grow over time.
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Lemma 4.3. For any given Fourier multiplier operator T with symbol m(§) € S*°, the
following estimate holds,

Z T @), 0+ A+ 1] = XDV T @)(1, )|

aeB,|a|<10,uc{E*, B%}

Y A = D VET ), )|

la|<10,ve{E, B}

S A+ DTN+t = XD m @) llse ELL (1), (4.96)
> | Py o T (8u)(1,x)| + | P o T(I\V|u)(t, x)|
aeB,|a|<10,uc{E*, B}
S A+ A+ e = 1x DT Im @) s B, (). (4.97)

Proof. With minor modifications in the proof of [42, Lemma 6.3], the desired estimates
(4.96) and (4.97) hold from the linear decay estimate (2.11) in Lemma 2.2. The main
idea of the proof lies in the process of trading one spatial derivative for the decay of
modulation of size “(1 + |¢| — |x|)_1” in the sense of equality (3.37) and the equality
(3.38) in Lemma 3.3. |

5. Energy Estimates for the Electromagnetic Field

This section is devoted to control both the low order energy and the high order energy
of the profiles of the electromagnetic field over time, i.e., controlling Eﬁb (t), which is

igh
defined in (4.93), and Efoliv(t), which is defined in (4.94), over time.

Although there is little essential difference between the nonlinear wave part of the
Vlasov—Maxwell system and the Vlasov—Nordstrom system, for the sake of readers,
we still give concise proof here. The main ingredients of the energy estimate of the
electromagnetic field are a linear estimate and several bilinear estimates, which have
been derived and proved in [42]. We first record these multilinear estimates here and
then use these general multilinear estimates as black boxes to estimate the increment of

the high order energy Eﬁibgh (t) and the low order energy E fé’w () over time.

5.1. Some multilinear estimates. Recall (4.54) and (4.55). To estimate the X,-norms,
n € {0, 1, 2, 3}, of the linear terms inside the nonlinearities of B,h?‘ (t,8),i €{l,2},a e
B, we use the following Lemma.

Lemma 5.1. Given any given n € Ny,n < 10, and any given symbol m(&€, v) that
satisfies the following estimate,

sup Z 2ik=( =Dk (1 4 |v|)’2°*4"V§V3M(§, VYKE) gLy S
keZ ;o 1,...10,la|<15

5.1)

then the following estimate holds for any i € {0, 1, 2, 3},
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I [ e gt vdvlly,

R3

SO DT+ [ VERE, 0, v)I
la|<i+n

+ Y AT+ P+ A g x V)l 2. (52)
BES,|B|<i+n

Moreover, for any differentiable vector value function g(t,v) : R, x R% — R3, the
following Lgo-type estimate holds for any fixed k € 7,

2 [ e, R, € vl

5 2nk(”(l + |-U|)20(/g\([, 0, U) - VU : g(t’ U))”Lvl)
+(1 + |t|2k)||(1 + |U|)20g(t, U)HL%, +2k||(] + |x| + |U|)3Og(t,x, U)“L)ZCL%) (53)

Proof. See [42, Lemma 5.1]. O
Recall (4.54), (4.57), (4.65), (4.67), and (4.68). Motivated from the Vlasov-wave type
interaction structure of quadratic terms, we study a bilinear form that will be suitable

for the estimate of all quadratic terms in B,ﬁ?‘(t, &) and atiz?‘(t, &),i € {1,2}. More
precisely, for any / € {0, 1} and any given symbol m (&, v) that satisfies the following
estimate,

sup D D A+ ) TIVEVEmG @) s S (54
ke€Z ;01,23 ja|<5

we define a bilinear operator as follows,

Tolh, £)(1,8) = / 3 f M )G & — ) FU . V).
R3 JR
(5.5)

For the above-defined bilinear operator, we have several bilinear estimates in different
function spaces, which will be used in the low order energy estimate and the high order
energy estimate.

Lemma 5.2. Givenanyn € {0, 1, 2, 3}, anyl € {0, 1}, and any given symbol “m (&, v)”
that satisfies the estimate (5.4), the following estimate holds for the bilinear form
Ty (h, [)(t, &) defined in (5.5),

sup 2 VKV (T (b, Y@ OWE e S Y Y (e~

kez BeS.|Bl<n+3 lal<n+3

(Y0 >0 D)

0<c<n 0<b=<n—c |a|<c

) I+ + DAL £, x, )20 (5.6)

Proof. See [42, Lemma 5.2]. m]
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Lemma 5.3. Given any symbol “m (&, v)” that satisfies the estimate (5.4) with |l = 1,
the following estimate holds for the bilinear form T, (h, f)(t, &) defined in (5.5),

sup 20 Tyu I, (1 E1V(®) e < Yo A+ TP ol,
€

n=0,1,2,aeB,|a|<4
I+ 1+ 10l £ (2, x, 022 (5.7
Moreover; the following L*-type estimate holds,
1Tk, @Oz Smin{ 3 A+ DT A @,
n=0,1,aeB,|a|<4
<11+ |x PP+ o) £, x, ) 212,
Yo A+ ROl I+ X+ HPAP Fx vl L (58)
BES,|BI<3
Proof. See [42, Lemma 5.3 & Lemma 5.4]. O

Lemma 5.4. Given any symbol “m(&, v)” that satisfies the estimate (5.4) withl = 1,
the following estimate holds for the bilinear form T, (h, f)(t, &) defined in (5.5),

PPV (Tuh, HEONWG N2 S D D ((T+)T" 25 + A+ 1)) A% @),

0<n<3 aeB,|a|<4
2 2,20
XN+ x 7+ DT f @ x, v)ll 22 (5.9)

Moreover, we have

sup 22| Ve (T (h, (8 6)) Y ©)ll 2 < (1+[¢) 7> (sup 2|lhr, V@)l
keZ keZ
+2M 2| Ve (e, £) Y (©)1l )

() A+ P+ POAR £ x ) 2p2)- (5.10)
BeS,|BI=4
Proof. See [42, Proposition 5.3]. O

Moreover, as summarized in the following Lemma, we also have a bilinear estimate
for the Vlasov—Vlasov type interaction.

Lemma 5.5. For any symbols m1 (&, v), my (&, v) that satisfy (5.4) withl = 1, and any
two distribution functions f, g : Ry x Ri X R% —> R, we define a bilinear operator as
follows,

K" (g, )1, &) == /R x /R 3 /R M D (€,

x 8(t,& —n,w) [ (1, n, v)dndudv. (5.11)
Then the following bilinear estimate holds for any fixed k € Z,

229 (K" (g, )& ) ¥n(®)ll 2

SO AHIDTEA+ P+ P x, v) 22 1+ e+ 01O AP (2, x, )22
BeS,IBI=5
(5.12)
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Proof. See [42, Lemma 5.9]. O

With the previous preparation, we first control the increment of the low order energy
estimate of the electromagnetic field over time. More precisely, the following proposition
holds.

Proposition 5.1. Under the bootstrap assumption (9.2), the following estimate holds for
anyt €[1,T],

low low

Ed () S EfLy ) + 1017 Ef () + <. (5.13)

Proof. Recall (4.94). We first estimate the X,,-norm of 9,4 (¢). Recall (4.54) and (4.55).
Form the estimate of coefficients in (4.49), the estimate (5.2) in Lemma 5.1, which is
used for the linear terms, and the estimate (5.6) in Lemma 5.2, which is used for the
quadratic terms, we have

2
SO D A+IDIRAE®)x, + (L) ahy (1),

n=0,1,2,3i=1,2 acBB,|a|<20—3n +1Val
S —1f
S Ejo (@) + 11| Ehigh(t)

He| T EL gy (O E(0) S B () + 1117 Ef (1) + €0, (5.14)

low

Now, it remains to estimate the X,,-norm of A% (r),i € {1,2}. Recall (4.58) and

(4.59). As a result of direct computations, we know the symbol &/ (|§ [(JE] — v - & ))
verifies the estimate (5.1). From the estimate of coefficients in (4.49) and the estimate
(5.2) in Lemma 5.1, we have

Yoo RO - ROk, S Eihy ) + 11T Efg (). (5.15)
n=0,1,2,3 |«|<20—3n

Therefore, it would be sufficient to estimate the X (p-norm of the modified profiles
hf‘ (t),1 € {1, 2}. Recall the equations satisfied by 8th§?‘ (t, &) in (4.65) and the detailed
formula of the quadratic terms in (4.57), (4.67), and (4.68), we know that d;h%* (¢, §) is a
linear combination of bilinear forms defined in (5.5). Therefore, from the estimate (5.6)
in Lemma 5.2, we have

YooY YT ROk, £ A+ DT ED O EL, () S A+ (i)
n=0,1,2,3i=1,2 |«|<20-3n
(5.16)

Hence, from the above estimate (5.16) and the estimate (5.15), we have

Yo Y IR @I, + 1A Ox, S Eihy () + 1] By (6) + €0

n=0,1,2,3i=1,2 |o|<20—3n

t
+/ ls| "2 eds. (5.17)
1

To sum up, our desired estimate (5.13) hold from the estimates (5.14), and (5.17). O
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Proposition 5.2. Under the bootstrap assumption (9.2), the following estimate holds for
anyt €[1,T],

Effn (@) < Ehlgh(t) + (1 + [t])’eo. (5.18)

Proof. Recall the definition of high order energy Em oh (t) in (4.93). Based on the different
types of norms in the high order energy of the electromagnetic field, we split into three
cases as follows.

e Case 1: The Lgo—estimates of the profiles and the modified profiles.

Recall (4.58) and (4.59). From the estimate of coefficients in (4.49), we know that
the following estimate holds for any « € B, |o| < No,

iugz"n(ﬁ?a,a—ﬁ(z,@)wk(@hg5 ) (O ) A (N VT PP
€

vEB.y|=|e|

< Efin ). (5.19)

Now, it would be sufficient to estimate the Lg"—norm of h{ (¢, &). Recall (4.65). From
the estimate (5.6) in Lemma 5.2, which is used when #; (¢) has relatively more derivatives,
and the estimate (5.7) in Lemma 5.3, which is used when g(t, x, v) has relatively more
derivatives, we have

sup 23,0 1, OVl S 1+ 1) (Eghy (1) + b, (0) By () S (1+ 1) 2],
€

(5.20)
From (5.19) and (5.20), we have

sup 3 S U OWE e o sup Y D XU EV®)

keZ |y <Ny i=1,2 keZ o 1<Nyi=1,2

Ef (1) + €0. (5.21)

e Case 2: The L2-estimates of the profiles and the modified profiles.

By using the first estimate in (5.8) in Lemma 5.3 for the case when there are more
derivatives on the distribution function g(¢, x, v) and using the second estimate in (5.8)
in Lemma 5.3 for the case when there are more derivatives on the electromagnetic field,
we have

sup 18,7 W@l 2 S (1 +07 Bl (OB 0+ (1 + 072 Bl (0 By ()
€

SA+0)"MeE < 1+ e, (5.22)

Moreover, from the estimate (5.19), which is used at low frequencies, and the Minkowski
inequality, which is used at high frequencies, we have

||(}::?‘(t, £) — e, é))lng < sz/thlgh(t)
k<0

0 2N g g vy
lyI<lel,k=0
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S Efn@+ Y 100 x.v)g" (. x. v) 212 S By (). (5.23)

[y I=]el

From the estimate (5.22) and the estimate (5.23), we have

sup 3" I EOWE)] 2+ IR EE 2 S B0+ (406,
*<% aeB al=No
(5.24)

e Case 3: The weighted L?-estimate of the modified profiles.

Recall the equations satisfied by h?‘(t, £),i € {1, 2}, in (4.65).

We use different strategies for different types of nonlinearity. If the total number
of derivatives act on the profiles is less than ten, then we use the estimate (5.9) in
Lemma 5.4. If the total number of derivatives act on the profiles is greater than ten,
by using the equalities (4.58) and (4.59), we first decompose the profiles A; (¢, & — 1),
i €{1,2},1in (4.57), (4.67), and (4.68) into two parts: the modified profile part and the
density type function part. Then we use the estimate (5.10) in Lemma 5.4 for the modified
profile part and use the estimate (5.12) in Lemma 5.5 for the density type function part.

As a result, the following estimate holds for any @ € B, |a| < Ny, i € {1, 2},

S(a+n7 25+ A+ ED (I)E}{i‘gh(t)

~ low

sup 2572118, Ve h (1, £) Y (§)] .2
keZ 5

+(1+ 1) 2 (B (0 + Ejfigy (0) Eff gy (0
SA+0)TM e+ (14077 S U+ 1256 + (141776,
(5.25)

Hence, from the above estimate, we know that the following estimate holds for any
i € {1,2} and any fixed k € Z,

> PRIV @2 S €0+ (14072 e, (5.26)

lee|<No

To sum up, recall (4.93), our desired estimate (5.18) holds from the estimates (5.21),
(5.24), and (5.26). O

6. Energy Estimates for the Non-bulk Terms

In this section, we mainly finish the following two tasks: (i) Estimate the increment of

the low order energy E l{)w (r) over time. (ii) Recall the equation satisfied by g%‘ (t, x,v)in

(4.17) and the decompositions of h.o.t% (t, x, v)in (4.18), (4.22), and (4.28). We estimate
the high order energy of all nonlinearities except the bulk term bulkg (t, x,v), see (4.29).
We refer those terms as non-bulk terms.

Because the issue of losing |v| caused by the bad coefficient doesn’t appear in the
low order energy estimate and the high order estimate of the non-bulk terms, there is
little essential difference between these estimates and the corresponding estimates in
the study of Vlasov—Nordstrom system in [42]. We only give concise proofs for these
estimates in this section.



Propagation of Regularity and Long Time Behavior 749

Recall (4.69), (4.70), and (4.17). As a result of direct computations, the following
equality holds for any fixed r € [1, T], ¢ € B, B € S, s.t., || + |8] < No,

1 1
St 2, vgh e x, VI, = Sl x, vghd,x, vlg,

t
= Kg‘(t) +Re[/l /1R3 /]R3 (w%(t,x, v))zg%‘(t,x, v)atgg(t,x, v)dxdv]

=Kin+ Y Rellf, 0], ©.1)
i=1,2,3,4
where
! 2
Kg(t) = /1 /R3 /IR»‘ wf (s, x, V)3 wg(s, x, v)|gg(s,x, v)‘ dxdvds, (6.2)
t
Ig;l(t) = —/1 /R3 /R3 (a)g(s, X, v))zgg(s, x, VK (s, x +0s,v) - Dvgg(s, x, v)dxdvds,
(6.3)
'
Ig;z(t) = /; /]1@ /]1&3 (w%(s, X, v))zgg(s, x, v)Lo.tg (s, x, v)dxduvds, (6.4)
t
Igﬁ(t) = /1 ./JR3 /1;3 (a)/"g‘(s, X, v))zgg(s, X, v)(h.().l‘;(s, X,v) — bulk%(s, X, v))a’xa’vds,
(6.5)
'
I, = /1 /1;{3 /]R} (0 (s, x, U))zgg(s, x, v)bulky (s, x, v)dxdvds, (6.6)

where bulk% (t, x, v) is defined in (4.29). Recall the definition of a)g (t,x,v) in (4.71)
and the estimate (4.73), we have

K§(1) <0, (6.7)

which is a good sign. Hence, there is no need to estimate this term. We defer the estimate
of bulk term Igi 4(1) to the next section and estimate all other terms; i.e, Igi (D), 0 €
{1, 2, 3} in this section.

Proposition 6.1. Under the bootstrap assumption (9.2), the following estimate holds for
anyt €[1,T],

> 115, (0] S (1+0)%e, > 115, (0] S 1+’
aeB,BeS, |a|+|Bl=No aeB,BeS, |al+|Bl<Noy
(6.8)

Proof. Note that
1 2 N
gg(tv-x’v)DUgg(t’-x’v)zEDU(gg(t’-xav)) ) DUZVU_tVUv'VX'

Recall (4.3). After doing integration by parts in x and v to move around the derivative
“D,”, the following equality holds,

, K (s, x+0s,v) - Dvwg(s, X, v)

t
I(x. ) = o X, o , X, dxdvds.
pa @) /1 /H‘RS /Rz (wﬁ(s X V)8 (s x v) 2wi(s, x, v) ravae
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Therefore, our desired estimate (6.8) holds from the L2 | — LI | — L%, type multilin-
ear estimate, the estimate (4.74) in Lemma 4.2, and the L°° decay estimate (4.96) in
Lemma 4.3. |

The main ingredients of the estimate of non-bulk terms, i.e., the estimate of 1,‘5;20)
and / "‘;3 (1), are several bilinear estimates, which have been studied and obtained in the
study of Vlasov—Nordstrom system in [42]. We record those bilinear estimates in the
following two Lemmas respectively.

Lemma 6.1. Given any fixed signs w,v € {+, —}, fixed time t € Ry, fixed k1, ko € Z.
Moreover, given any functions f1, fa : R; x Ri — C, and any distribution function
g Ry x Ri X Rg — R, we define a trilinear form as follows,

T(f1, f2. 8) :=/3/ze*W‘V'Pkl[fl](r,x+ﬁz)e*"“"V‘Pk2[f2](z,x+ﬁz)g(t,x,v)dxdv. (6.9)
R JR

Then the following estimate holds,

T, fo I S Y A+ DA+ x> (A + [v)P Vg, x, vl

|a|<4
x (27R= 1 Fi e, &)Y )2

+ Ve F1 (8, )Y )1 12) 72 1A, )Wk ()12 + IIVE e, )iy (E) 1 12).
(6.10)

Moreover, if |ki — ka| > 5, then the following estimate holds,

T ol S Y (A1) T527 ™ BRI (14 x> (1 + )P Vi Vig(, x, vy

la|<4
x (27F= 1 A1, )Y )2
+1IVe F1 (6, ) ) 12) Q72 1 -, )V ()12 + IIVE oty ©) Wi ()1 2). (6.11)

Proof. See [42, Lemma 6.4]. O

For any fixed sign u € {+, —}, any two distribution functions fi(¢, x, v) and f>(¢, x, v),
any fixed k € Z, any symbol m (€, v) € L°SP°, and any differentiable coefficient c(v),
we define a bilinear operator as follows,

Bi(f1, f2)(t, x,v) == fi(t, x, ) E(P[ f2(0)D) (x +a(v)1), (6.12)

where
EPULID( x) = /R 3 /R T cuym (&, w6, wdEdu.

For the above-defined bilinear operator, we have
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Lemma 6.2. For any fixed t € R, |t| > 1, and any localized differentiable function
f3t,v) Ry XR?) —> C, the following bilinear estimate holds for the bilinear operators
defined in (6.12),

1B (fi )t x 022 S (ImE ) llzesye + ImE. v)lpse)

| <5
< (1117225 [ (Je) | + Vo)) f3(5, v) 12
+ T2+ ol + xDPe@) ot x, 0) 22 + [ e @) (Fa(2,0,0) = Vi - f3(2,0)) [ 22]
N+l + 1 DPVE fie x vl 2z i keZ ™ S28 < 1. (6.13)

Alternatively, the following rough bilinear estimate holds for any k € Z,

IBe(f1, £2) (%, 022 S Y min{le] 7, 2% m (&, v)l| e

loe| <5
20
X [+ vl + X)) fat, x, V) 212

< (L ol + 1x)*0VE fi(e, x, v) 22 (6.14)

Proof. See [43, Lemma 3.2& Lemma 3.3]. a

With the above bilinear estimates, we are ready to estimate the high order energy of the
non-bulk terms.

Lemma 6.3. Under the bootstrap assumption (9.2), the following estimate holds for any
tell,T],

Z leof (2, x, v) (ho.tf(t, x, v) — bulk (1, x, V) 212 S (1 + lt))~1*e2,
aeB,BES,|a|+|Bl=No
(6.15)
Z leof(t, x, v) (ho.tf(t, x, v) — bulk (1, x, V) 212 S (1 + |t))~1+%/2e2,
aeB,BES, |a|+|B|<No
(6.16)

Proof. Recall the decompositions of h.o.t‘g (t, x,v)in (4.18), (4.22), and (4.28). We have

h.a.t%(t, X, v) — bulk%(t, X, 0) = Z h.o.z‘%;i(r, X, 0) + h.o.tZi}(t, X, v) + error%(t, X, v).
i=2,3

6.17)

Motivated from the above equality, we separate into three cases as follows.
e The estimate of h.o.t%;z(t, x,v) and h.o.t%ﬁ(t, X, V).

Recall (4.20) and (4.21). Moreover, recall the first decomposition of D, in (3.30) in
Lemma 3.1, the detailed formula of d, (¢, x, v) in (3.31), and the detailed formula of Yiﬂ
in (3.42). From the estimate of coefficients in (3.33), (3.45), and (3.46), the second part
of the estimate (4.74) in Lemma 4.2, and the decay estimate (4.96) in Lemma 4.3, the
following estimate holds from the Li’v — L3, type bilinear estimate,
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3 > lwg (2, x, v)ho.tg; (1, x, V)12
i=2,3 aeB,BES, al+f|=No
< > > o} (2. x, v)gl (£, x, V)l 2,

yEB.keS,|y|+|k|<Ny peB,|p|<3,uc{EP,Br}

I+ ([t = Jx o+ DeDute, x + 00|, S (1 +[E) T By 0 EfD, () < (1+ 1)~ +ef.

e The estimate of h.o.tgii (t, x,v).

Recall (4.23). For this term, we use the first decomposition of “D,” (3.30) in
Lemma 3.1. Recall the detailed formula of d, (¢, x, v) in (3.31). From the equality (4.36),
the estimate of coefficients in (4.38) and (3.33), the second part of the estimate (4.74) in
Lemma 4.2, and the decay estimate (4.96) in Lemma 4.3, the following estimate holds
from the L)%’v — L%, type bilinear estimate,

> (. x, u)h.().zg§} (t,x, 0ll2,
aeB,BeS,|a|+|Bl=Noy

< > > loof (1. x, v)g¥ (1. %, V)l 2,

~

yEB.KES, |y|+|k|=No peB,|p|<3,ue{EP Br}
)IC 1] = x + delDue, x + 00)llge, S A+ 1) ™ By VED, () < (1+ 11D e
(6.18)

e The estimate of error% (t, x,v).

Recall (4.30) and (4.27). We use the first decomposition of “D,” (3.30) in Lemma 3.1.
Recall the detailed formula of d, (¢, x, v) in (3.31). From the estimate of coefficients
(3.33), the second part of the estimate (4.74) in Lemma 4.2, and the decay estimate
(4.96) in Lemma 4.3, the following estimate holds from the Li’v — L%, type bilinear
estimate,

Z llewf (2. x, v)errorg(t, x, v)l 2,
aeB,eS. |al+|Bl=No

< > > oo} (&, x, )8 (t, %, v)l 2 |
yEB.keS,|y|+lk|<No peB,|p| <3, ue{EP,BP}
I+ ([t = Jx o+ De e, x + 00|, S (1 +[E) T By 0 EfD, () < (1+ 1)~ +e].
(6.19)

Hence finishing the proof of the desired estimate (6.15).
With minor modifications, our desired estimate (6.16) holds after redoing the above
argument for fixedo € B, 8 € S, s.t, |a| +|8] < Np. 0

Lemma 6.4. Under the bootstrap assumption (9.2), the following estimate holds for any
1e[l,T]

Z e (2, x, V) Lot (1, x, V)l 272 S (1+ |t))~1*0e2, (6.20)
lel+181=No
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Z oo (2, x, V)Lo.t5 (1, x, V)l 272 < (1+[t) ™2 (6.21)
le|+181<No

Proof. Recall (4.31). Based on the total number of derivatives act on the electromagnetic
field, we split into two cases as follows.
e The estimate of Lo.tg (1, x,v), i € {1,2,4}.

Recall (4.32), (4.33), and (4.35). Note that there are at most twelve derivatives hit
on the electromagnetic field. Recall the commutation rule between A and X; in (3.41)
and the equality (4.36). From the estimate of coefficients in (3.44), (3.45), and (4.37),
the following estimate holds from the linear decay estimate (4.96) in Lemma 4.3 and
the L)zcyv — L%, type bilinear estimate,

D> e x, vlod (6 x, vl 22

i=1,2,4 |a|+|B|=No
S > e (1, x, V)&l (1, %, V)l 2,
|y |+l |<No,|p|<12,p,yeB,keS,uc{EP ,BP}
x[|(1+1d (@, x, v)Due, x +00) |2, S (1+]e))7" Eh’;gh(z)Efobw(z) <A+~
(6.22)

e The estimate of l.o.tg,3(t, X, V).
Recall (4.34), (4.11), and (4.14). From the equality (4.36) in Lemma 4.1, the following
equality holds,

Lo.t(t.x,v) = 3 @550 e ) P (1, x + )

p.yeB.lplHly|=lel, | |=
k=P, ],|k|>0,.,keS

i=1,...7, |+ pl =12
o A
@02 0, 0) BP (2, x + D) A (Xig? (1, x, v)), (6.23)
h wnt, izt |1 » ~1,i50',2 . . .
where "o (x,v)”and o, oy (x, v) are some determined coefficients, whose explicit

formulas are not pursued here. From the estimate of coefficients in (4.9) and (4.37), the
following rough estimate of coefficients holds,

@t O, )|+ @ R0, )] S (1 [+ o)), (6.24)

From the equalities (3.41) and (3.42) in Lemma 3.4 and the first decomposition of
D, in (3.30) in Lemma 3.1, we have
A*(Xig” (1, x,v)) = [@;(v) - Dy o A +[A*, X;]]g” (t, x, v)
= Z o (v) - dy(t, x, V) APV (1, x, v)
pel,|pl=1
K.Y 1 ~k’,1 ~k',2 Ky
+YF g (1, x, v) + Z [dt, x, v)e s (x,v) + & (x, v)]A g7 (2, x, ).

k'eS, |k |<|k|—1

(6.25)
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From (6.23) and (6.25), and the detailed formula of d,, (¢, x, v) in (3.31), we can rewrite
“l.o.t‘é,3(t, x, v)” as follows

Lo.if4(t, x, v) = >
PES i1 k€ B uc(E,B).|pl<IB|
ot [+l <4181, 2] <lo|

[l | <al+|B]—12

(d(t,x v)ell, (. x,v)+ 282t x, ) (1, x +D)gk(t, x,v),  (6.26)

where the coefficients ’é“Kl;sz’ p(t, x,v),i € {1, 2}, satisfy the following estimate for any

i €{l,2},and any u € {E, B},

; 2 2 2|B1=2|p|— 1
186 s p (1 2. OIS (L [x P o oy 2112l el 10,

(6.27)

which can be derived from the estimate (6.24) and the estimates (3.44) and (3.45) in
Lemma 3.4.

The main difficulty of estimating L. 0.t‘/’§ 3 (t, x, v) is that we cannot use the decay of the
electromagnetic field or trade regularities for the inhomogeneous modulation because
the electromagnetic field can have the maximal number of vector fields. Moreover, the
loss caused by the coefficient is possible of size “1 + |¢|”, e.g., when x,v ~ 1. To
get around this issue, we exploit the smallness of the space-resonance set by using the
estimate (6.10) in Lemma 6.1, which allows us to gain some extra decay rate over time.

Recall (6.26). We first do dyadic decomposition for the electromagnetic field. As a
result, we have

Loty s(t,x,v) = Y Hi(t, x, ), (6.28)
keZ

where

Hi(t,x,v) = Z
peS.k1,k2€Bue{E,B},|p|<|B|
|ol+k1 | +i2| <lel+B], 2] <|et]
[ol+li2]| <|ee|+]B]—12

(c?(t, X, v)?f‘C;}Kz’p(t, X, V) +?f‘q;’2,(2’p(t, X, v))uz1 (t, x + 01)gg2 (1, x, v).
Based on the possible size of k, we separate into two cases as follows.
o Ifk<O.

Recall the equalities (4.58) and (4.59). From the estimate of modified profiles in
(5.21), the estimate of correction terms gy, (7, v) in (9.3), and the estimate (5.3) in
Lemma 5.1, the following estimate holds after using the volume of support of &,

> Y IECOWG I S 2 e+ 112 e,

aeB,|a|<Ngyi=1,2

From the estimate of coefficients in (6.27), after using the L2 — L®L? type estimate,
the volume of the frequency support of the electromagnetic field, and the decay estimate
(2.10) in Lemma 2.1, the following estimate holds if 2% < |7|~,
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g, x, v) H(t, x, v)ll 212
S Y T PR 126wl (x — Dt v)gl (r, x — D1, )22
lol+lk|=No—5
< |t|—1/2+6/2(2k/2 + |t|23k/2)€0. (6.29)

It remains to consider the case |t|’1 < 2K < 1. From the decomposition (4.64), the
following decomposition holds for Hy,

Hi(t, x,v) = HL(t, x, v) + H(t, x, v), (6.30)

where

Hkl(t,x,v) = Z

pEeS.k1,2€B,ue{E, B}, |p|<|B|
[ol+lkr|+e2 | <ler|+ Bl k2| <l
[pl+lic2 | <ler|+] B]—12

3 ;1 ;2 K] N
(d(t, X, v)'e‘f‘q’,(zyp(t, X, V) +'e\?1’,(2,p(t, X, v))uz' (t,x + vt)gg2 (t, x,v), (6.31)

sz(t,x, V) = Z

peS.k1,k2,neBue{E, B}, In|<|«1|
[o|+|rcr [+l [ <lal+| Bl k2| <|a]
[pl+l2 | <le|+B]—12,[p|<|Bl

—(d(t, %, v)8y, 4 )X, 0) + 25,y (0 x, V)IMIEL, . ()1, x + D0)]gs> (2, X, v).
(6.32)
Note that the following estimate holds from the estimate of coefficients in (6.27),
ot x ) HE (1%, 0172

= 2

K,y €B,[K|<No,|pl+ly ISNo—12,ly |<|a|.ue{E, B}
(1+r)2/ / |L7,§(t,x+ﬁt)|2c;g(z,x,u)dxdu, (6.33)
R3 JR3

where
GY (1, x,v) = |} (1, x,0)g) (¢, x, V) P(1+ [x|* + [p] ) 2Py 1#20,

Recall (4.60). From the estimate (6.33), the multilinear estimate (6.10) in Lemma 6.1, the
estimates of modified profiles in (5.21) and (5.26), the hierarchy between the different
order of weight functions and the Sobolev embedding in v, we have

llewf (2, x, Y H}! (2, x, v) [l 1212
S 2FPAHnTA + xR 008 (1 v) gk (1, x, 0) 22
[p|+k|<No—8
x (€0 + (1 +0)°2%€p) <2721+ 0)7322(1 + (1 +1)°2% ). (6.34)

Recall (6.32), (4.64), (4.61), and (4.62). Note that the terms inside Hk2 (t, x, v) have
the same structure as the bilinear form that we will define in (6.12). From the estimate of
coefficients in (6.27), the estimate of correction terms gf'a,y (t, v) in (9.3), and the bilinear
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estimate (6.13) in Lemma 6.2, we know that the following estimate holds for any k € 7Z,
st f|7t <2k <1,

2
”a)g(t’xav)Hk(taxav)”L.%L%
-1 —2~—k —2+6
SO (T TR el (x, v) gl (2, x, )22
[ol+lc|<No—5

To sum up, from the decompositions (6.28) and (6.30) and the estimates (6.29), (6.34),
and (6.35), we have

DY e x v H (e x vl 2p2

||+ B1<No k€Z,k<0
< Z |l|‘1/2+5/2(2"/2+|t|23k/2)eo+ Z (‘[|—1+5/2

~

2<)e| ! le| 1 <2k <1
+|l|—3/2+5/22—k/2 + ‘f|_2+5/22_k + |t|—3/2+252k/2 + |t|—2+25)60 S a +t)—1+5/2 10g(1 +1)eo.
(6.36)
o Ifk>0.

From the estimate of coefficients in (6.27) and the bilinear estimate (6.14)in Lemma 6.2,
we have

_ 2 _
e x ) HR x V)2 S 1 +0) (Bl (0)? S 1+ e,
k>0,keZ
(6.37)

Now, it remains to estimate “Hkl (t, x, v)”. Recall (6.31), we have

§ 1 2 § 2
” w%(tv X, v)Hk (t’x’v)“L)ch% 5 (1+t) Kk1,k29 (638)
keZ,k>0 k1,ko€Z,ky,k2>0

where

. yiuz X ~ ¥ ~
Kiy gy = > ‘/3 /3 Gt x, v) Wk, (1, % + 00 Uh)k, (1, x + Dr)dxdv,
K,y €B,|k|<Np,uy,ure{E,B} R* /R
lol+ly|=No=12.ly|<lal

(6.39)

where G;Z]z (t,x,v), ur,ur € {E, B}, are some determined function that satisfies the
following estimate,

DD DRI (6]
ui,ure{E,B}1eS,|1|<5

S OY e x, v)gl, (1 x, )P+ x|+ o) HeRBIael =2y 30,
€8S, |<5
(6.40)
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We first consider the case when |k; —k>| > 10. Recall (6.39). From the above estimate
(6.40), the trilinear estimate (6.11) in Lemma 6.1 and the Sobolev embedding in “v”
we know that the following estimate holds,

> | Kk ol S > >

ki,ko€Z,ky,k2>0, |k —k2|>10 ki,ka€Z,k1,ka>0,lk1—k2|>10 | p[+]y |<No—12

Z Z - max{k;,k;}

uy,ure{E,B} |a|<4

X (1+ 1) (B )10+ 1x )1+ pP)HVeVEGT 2 (1, 5, v) 1

< > (1L + 1) 7 ) (v, 0)gh (1, %, V7 2 (Efn )
peS,yeB,|al+|p|<No—5

S A+t~ (6.41)

Lastly, we consider the case when |k; —kz| < 10. Recall (6.39). Again, from the estimate
(6.40), the trilinear estimate (6.10) in Lemma 6.1, the Cauchy—Schwarz inequality, and
the Sobolev embedding in “v”’, we know that the following estimate holds,

|Kk1.k2|
k1,k2€Z,ky,ka>0,|k; —k2|<10
< > A+ D TNA+xP)A+ PP)VEGE R @, x, vl

piu
k1,k2>0, k1 —k2|<10
lee|<4,ur,u2€{E,B}
i=1,2,3,|p|+|y|<No—12

x(2TMPER O+ Y IR E) Y ©)]12) (272 Eghy (1)

LeB,|t|<Ny
Y IR E Y E) )
LEB,|t|=Ny
< > (I+1D 7l (x, v)gh (1 2 v)17 Lz(Eﬁ?gh<z>) S L+t ¢

peS,yeB,|al+|p|=No—5

(6.42)

From the estimates (6.38), (6.41), and (6.42), it is easy to see that the following estimate
holds,

| %(t, x, v)Hl(t, X, 0272 S (1 + |t|)73/2+2560. (6.43)
B k 1212 X
keZ,k>0

Recall the decompositions (6.28) and (6.30). From the estimates (6.36), (6.37), and
(6.43), we have

wp(t,x,v)l.oty,(t, X,V 2 +1 og +1)€g.
” ﬂ( )l /3,3( )”lx_v 5(1 ) 1+8/ 1 (1 )
OlEB,ﬂES,\O[H\ﬂ\SNO

(E' )

Recall the decomposition in (4.31). Our desired estimate (6.20) holds from the estimates
(6.22) and (6.44).
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Recall (4.92). Since the correction term §,1,,, (t, v), which contributes the logarithmic
growth in the estimate (6.36), equals zero if |«| + |y| < N, with minor modifications
in the above argument, the desired estimate (6.21) holds similarly.

O

Proposition 6.2. Under the bootstrap assumption (9.2), the following estimate holds for
anyt € [1,T],

Yo OIS A+ 0P, (6.45)
aeB,BeS, |a|+|Bl=No
> 12,0+ 1 1550)] S (1+ e (6.46)

aeBB,BeS, |al+|B|<No

Proof. Recall (6.4) and (6.5). From the estimate (6.15) in Lemma 6.3 and the estimate
(6.20) in Lemma 6.4, we know that the following estimate holds from the Lﬁ’v - L%U

type estimate,
> Mal+lgls Y
aeBB,BeS, |a|+|Bl=No aeB,BeS, |al+|Bl=No

t
/1 llwg (s, x, v)gg (s, x, v)IIL;Lg[IIwﬁ(s, x, v)Lo.tg(s, x, V)l 2.2

+||a)§(s, X, v)(h.o.t%(s, X, v) — bulk% (s, x, v)) ||L§L%]ds
t

< / (1 +5) " Pepds < (1+1)%e.
1

Hence finishing the proof of the desired estimate (6.45). With minor modifications, the
desired estimate (6.46) holds similarly from the estimate (6.16) in Lemma 6.3 and the
estimate (6.21) in Lemma 6.4. |

As a natural generalization of the aforementioned methods used in the estimate of
non-bulk terms, we prove the following two lemmas, which will be helpful in the estimate
of the bulk term in the next section.

Lemma 6.5. Under the bootstrap assumption (9.2), the following estimate holds for any

te[l,T],
> %o (£, x, V)AL (ho.t2(2, x, V)
aeB,k,peS,|pl=1,|a|+/k|<Nog—1
—bulk (1, x, )l 272 < (1+ (1)~ *eq, (6.47)
Z llwpoe (2, X, v)Ap(h.o.tz (t, x,v)
aeB,k,peS,|pl=1,|a|+|k|<Nyg—2
—bulk (, x,v)) 1272 < (1 + 1)1+ ¢, (6.48)

Proof. Recall the decomposition (6.17) and the corresponding detailed formulas in
(4.20), (4.21), (4.23), (4.28), and (4.30). Moreover, we recall the detailed formula of

Yl.’3 in (3.42). Based on the order of derivatives acting on the profile g(¢, x, v), we de-
compose Ap(h.o.t?;i), i €{2,3}, Ap(h.o.tifll), and A” (error) as follows,

—_~

Ap(h.o.tz;i)(t,x,v)=h.o.tz;ip(t,x,v)+l.o.t:;f(l,x,v), i €{2,3), (6.49)
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Ap(h.o.riff)(t,x, v) = h.o.t P(r x,v) + Lot ”(r X, v), (6.50)
Ap(errorg)(t, x,v) = error N Pt x,v) + error (t, X, V), (6.51)
where
hotap(t X,0) = Z Z K(i;[y(t x,v)a;(v) - DyAPgl(t, x, v),
=L lyl=lel-1i=1,..,7
(6.52)
l.o.tz;;g(t,x, V) = Z Z Ap K(’Y Ly (X, v)) gy (t,x,v)
l|<1,ly|=la|-1i=1,...,
+K.., Lt x VAP, Xilgl (1, x,v), (6.53)
h.o.tz;;g(t, xX,v) = Z Z K, x, v)(c?(t, X, v)éf(’yli(x, V)
€S, ll=lkl, i @W—i (k)| <1i=1,...,7
+257(x, V) A g2 (1, x, V), (6.54)
l.o.tz;;g(t, X, v) = Z Z Ap[Ki(t, X, v)(a?(t, X, v)éf(’i.(x, V)
E€S =k, i =i (k)| <1i=1,...,7
~1,2
+2,5(x, v)) el @, x, v), (6.55)
h.o. t(x p(t X,v) = Z Z
J=12.3,i=1,...7 4k =pB,1,k €S, |1|=1 1\">“1ﬁ>1(M)QUOY1P>1(|UDQA
AYK' (1, x, v))ei (v) - Dy AP gL, x, V),
l.o.tZ;f(t, X,v) = Z Z
j=1,2,3, t+c=pB,1,k€S,||=1,
=17 Atoeyrs 1 (0D Qor Yz (10D
APPK (2, x, ) Xi gl (1, x, v) + AYK' (¢, x, v)[AP, Xi1gZ (1, x., v),
errorz;f(t, X,V) = Z Z
j:1>2’3,i:1~,---s7L+K:ﬁ,L,K€S,|L\:1,A‘~w21(|v|)§';orghzl(lvl)ﬂ);
Kot x, v)ai (v) - DyAPg2(t, x, v),
error 2(t X,v) = Z Z
j=1,2,3 1+ =PB,1,k€S,|t|=1
=0T A~y (U QRYor Y1 (V)2
Ap(K[lyz(t5 x’ v))al (v) : D'Ugg(ta -xa v) + K[l’2(t7 -x5 v)[Apa Xl]g;({x(ta xa v)a
(6.56)

where K 2(t x, v) is defined in (4.27).
We use the the first decomposition of D, (3.30) in Lemma 3.1 and the equality

(4.36) in Lemma 4.1 for h.o.tK,ip(t, x,v),i €{l,2,3},and errorK,1 ?(t, x, v). Then from
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the linear decay estimate (4.96) in Lemma 4.3, the estimate of coefficients in (3.33),
(3.45), (3.46), and (4.38), the second part of the estimate (4.74) in Lemma 4.2, and the
Ly, — L, type bilinear estimate, we have

—~

o5
> Y et x, hotll x, vl
aeB.k,peS,|p|=1,|a|+k|<No—1i=1,2,3

—_~

ap
Hlwo (2, X, verror, [y (£, x, V)l 2 |
S 2
yeB.keS, lyl+lk|<No,peB,|p|<3,ue{EP, BF}

leof (2, x, )@l 6,6, )12 I+ [1e] =[x+ Bel D, x + D0 2o

X

<+ |t|)—1E}{igh(z>Ef(f’w(z) S A+, (6.57)

Recall (3.41), (3.34), (4.36), (4.11), and (4.14). From the estimates of coefficients in
(3.36),(3.43),(3.44),(3.45), and (4.37), the following estimate holds from the Lﬁ’v —L%,
type bilinear estimate,

> D N (tx, Lol (1, x, v g2

aeB,k,peS,|p|=1,|a|+k|<No—1i=1,2,3

asp
Hlwho, (¢, x, v)error s (8 x, V)2 |

S >
yeB,keS, |y |+k|<No,peB,|p|<3,uc{EP,BP}
o (1, x, vl (o )2, T+ 1 x, v)Dur,x + 00 e,

S A+ 1D Efigy (O EfS, () S (14 1t) e

Hence, our desired estimate (6.47) follows from the above estimate and the decomposi-
tions in (6.49), (6.50), and (6.51). With minor modifications, our desired estimate (6.48)

holds very similarly as we only allow E{i;](t) grows at rate (1 +7)%/? over time. O

Lemma 6.6. Under the bootstrap assumption (9.2), the following estimate holds for any
1e[l,T]

> e, p (. x. VAP (Lot (t, x. v)) 1272 S (1+ 1) Hed,
peS,Ipl=1,lal+|B1<No—1
(6.58)

—1+56/2 2
> leop (2, x, V)AL (Lotf(t, x, v)) 272 S (1+[t) ™1+ %€t
p€eS,|pl=1,la|+|BI<No—2

(6.59)
Proof. Recall (4.31), (4.32), (4.33), (4.34), and (4.35). We have

A (Lot (t.x,v)= > Lot (t, x,v), (6.60)
i=1,2,3,4
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where

l.o.t%:l(t,x,v) = Z Z A'O(K"(t,x+f)t,v)

i=1,... 7«8, |k|<|Bl-1
[d(t X, v)eﬂl(x v) +eﬂ ; (x u)]AKgOt(t X, v)) (6.61)
Loyt x,v) = Y AP[A'(K'(t,x +t, 0))[A¥, X;1g*(t, x, v)
k=P, |t|=1
i=1,...,7,L,keS
D0 N(KLG (x40 v)AXig” (1, x,v)]
[yI=]el—1
+ 3NN KL, (x i w)(IAP, XigY (¢ x,v))
Ipl=1 [y1=la|-1
+ Y KL, (tx+ 0t 0)AP(Xig? )t x, v)], (6.62)
[yI<]e] =2
l.o.l%;3(t, X,v) = Z AP [(A Ktlx I3 y(t' x + 1t v))AK (X[gy @, x, v))]’
p.YEB|pl+ly|=lalttk=p,1,k€S
=1,..,7,d+|p|=12
(6.63)
Lot (1, x,v) = > AP[(A'K,, (0 x + 00, 0) A (Xig” (2, x, v))].
p.veB.|pl+ly|<lal,tte=B,.keS
i=1,...,7,1<|d+|p|<12
(6.64)

Same as we did in the proof of the estimate (6.20), we split into two cases as follows.
e The estimate of 1.o.tgif(t, x,v),i €{l,2,4}.

With minor modifications in the proof of the estimate (6.22), we obtain the following
estimate,

> D lafeptx, v)APLOAEY (6, x, ) 212

aeB.B,peS.|p|=1.lal+|BI<No—1i=12.4
R

e The estimate of l.o.tgig(t, X, v).

With minor modifications in the proof of the estimate (6.44), we obtain the following
estimate,

lyos (1, x, VA LoAGE (1, x, V) 22 S (1 +1) "1 2¢
weB.p.peS.Ipl=1.lal+|BI<No—1

Hence finishing the desired estimate (6.58). With minor modiﬁcations the desired esti-
mate (6.59) holds very similarly because we only allow E h(t) grows at rate (1 + )%/ 2

over time and the correction term ga,y (t, v), which contrlbutes the logarithmic growth
in the estimate (6.36), equals zero if |«| + || < No, see (4.92). |

Lastly, we estimate the increment of the low order energy of the Vlasov part over
time as follows.
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Proposition 6.3. Under the bootstrap assumption (9.2), the following estimate holds for
anyt € [1,T],

t
El (1) S e+ / (1+5)7/*elds < e. (6.65)
1

Proof. Recall the definition of the low order energy E l}:)w (t) in (4.91) and the definition
of the correction term gy, (f, v) in (4.92). Since the set-up of the low order energy
estimate is same as we did in the Vlasov—Nordstrom system setting and the issue of
losing “|v|” plays no role in the low order energy, with minor modification in the proof
of [42, Proposition 6.2], our desired estimate (6.65) holds very similarly.

To give a sense, we summarize the key idea of the proof here. The key idea is that the
decay rate of electromagnetic field is improved because of the extra spatial derivative
in the worst scenario. Recall (4.15). Intuitively speaking, in the equation satisfied by
8,(V1‘j‘§?7(t, 0,v) — Vy - 8a,y (1, v)), we can move the spatial derivative V, in front of
“tVy0 - Vig'(t, x,v)” in K)’;;ﬂ’[(t, x + 01, v) - X;¢'(¢, x, v) to the electromagnetic field
by doing integration by parts in “x”. Hence, comparing with the sub-polynomial growth
of the high order energy, the low order energy doesn’t grow over time. O

7. The High Order Energy Estimate of the Bulk Terms

This section is devoted to controlling the bulk term of the high order energy estimate,
1/‘53‘; 4 (1) (see (6.6)), which is also the last term to be estimated in the high order energy
estimate.

The essential new ingredient of controlling the bulk terms is the hidden null structure
we mentioned in the Sect. 1.2. In this section, we will explain in what sense the hidden
null structure means and how to make use of the hidden null structure. More precisely,
we will lay out a step by step strategy to control Ig; 4(t) and reduce the estimate of bulk
terms to the proof of a multilinear estimate in Lemma 7.9, which will be carried out in
the Sect. 8.

From the decay estimate (4.96) in Lemma 4.3, we know that the electromagnetic
field decays faster in time if localized far away from the light cone. We can reduce the
estimate of bulk terms further by ruling out the far away from the light cone case, e.g.,
[[f] — |x + f)t|| > 27107], so that we can focus on the near light cone case later. More
precisely, we decompose Ig; 4(2) into two parts as follows,

Ig.,(t) =I5, (1) + T§.5 (1), (7.1)

where

1
N
o= % >
j=1,2,3 t+k=pB,1,k €S, |t|=1
=1 T Ayra 1 () QYor vz 1 (0

/Rs /Rs (0§ 5. x. v))zg%(s’ x,0) (V1 + [oPd(s, x, v))l_m)l/le (v

xY<_10(1 — |x + Ds|/|s et (v) - Qj(E(s, X+0s)+D
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X B(s, x +0s)); (v) - Dyg2 (s, x, v)dxdvds, (7.2)
ian= 3 >
j=1,2,3 1+ =PB,1,k€S,|t|=1

=1 T Atz 1 (W) QY0r Y21 (J0) 2

! 5 —c(t
/1 /Rg A@ (@55, x, 1) g8 (s, x, (VT + [VPd(s, 2, v) ' ™y (o)

XYs_o(1 — |x + 0s|/|s])evi (v) - Q;(E(s,x +0s)+ 0

xB(s, x + f)s))a,-(v) - Dygl (s, x, v)dxdvds. (7.3)

Lemma 7.1. Under the bootstrap assumption (9.2), the following estimate holds for any
re[l,T]

> 75,0 < (1+ 16, 3 18,01 S (1+ e
aeB,BeS, Ja|+|Bl=No aeB,BeS, lal+|Bl<Ny
(7.4)

Proof. Recall the second decomposition of D, in (3.30) in Lemma 3.1, we have

_ t
Ig, (1) = Z Z /1 /R3 /R3 (a)g(s,x, v))zgg(s,x, v)

Jj=1.23 +k=B,1,p,k€S,||=|p|=1,
=1 T Aoy (W) QYor Y1 (0) <2}

x (VI+ pRd(s, x, ) =i (o)
X Ys_o(1 — |x + 0s|/Is]e; (v) - QJJ‘ (E(s, X +05)
+0B(s, x + ﬁs))a,-(v) ep(s, x, V)AL g (s, x, v)dxduvds, (7.5)

where e, (s, x, v) is defined in (3.32). Recall (4.71). Forany t € K,k € S, s.t,, [t] =1
and ¢ + k = B, the following estimate holds,

w%(s, x, V)
| S A+ DO (G 5, x, ) O, 7.6)
%o, (s, X, V)

Note that the following estimate holds inside the support of the cutoff function “i> _9(1—
|x +0s]/Is)” in 14, (D),
ls — |x +Os|| ~ |x| +|s]. (7.7)

Hence, from the above estimate and the linear decay estimate (4.96) in Lemma 4.3, we
have

(|VXE(s,x +08)| +|VyB(s, x + ﬁs)l)wz,g(l —|x+0sl/|s]) < (|x| + |s|)72(1 +5) e
(7.8)

From the estimates (7.6), (7.7), and (7.8), the second estimate in 4.74 in Lemma 4.2,
and the detailed formulas of coefficients e, (s, x, v), p € K, in (3.32), we know that our
desired estimate (7.4) holds from the L)zw — Lﬁ’v — LY, type multilinear estimate. O
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Finally, the high order energy estimate is reduced to the estimate of bulk term 7[‘;‘; (D).
To be precise about the size of frequencies of the electromagnetic field and the size of the
distance with respect to the light cone “||¢| — |x + v¢||”, for any fixeda € B, B € S, we
localize both the frequencies of the electromagnetic field and the distance with respect
to the light cone “||t| — |x + 0¢]|” for 12;1(’) as follows,

Ig= Y > Ha®), (7.9)

deZ,d>0 keZ

where

Hea®) = ), 2.
j=1,2,3 t+k=P,1,k€S,|t|=1
=1 T Ay (W) QY0r Y21 (J0) 2

1
/1 /]R* /]R* (w%(S,X,U))zgg(S,x,v)(md(s,x,v))l_c([)llle(|v|)

xY<_10(1 — |x + 0s|/IsDea(|Is] — x + Ds|[)e (v) - Q);(Pk[E](S,X +0s5) + 0
x P[B](s, x + f)s))o;i (v) - Dyge (s, x, v)dxdvds, (7.10)

where the cutoff function “¢,(-)” is defined in (2.3).

For any fixed k, d, s.t., k € Z,d € Z, our strategy is to prove two estimates for
Hy 4, which are stated in Lemmas 7.2 and 7.3. Those two estimates will help us to get
around a summability issue in the frequency variable of the electromagnetic field, which
is equivalent to an issue of logarithmic growth in time.

To improve presentation, we define the following quantity, which measures the energy
of profiles and the energy of non-bulk terms in a region with the localized distance to
the light cone C; = {(x, v) : x,v € R3, |t] — |x + 0t| = 0},

Ef. (1) = > o (2. x, v)g (0. %, VIga—raeny (Il = 1x + 0011722
LKk, peS +k=p,|p|=|t|=1
+(1+ 02 [l (t. x. v) (ho.t (1, x, v) = bulk(t, 2, v))@ra—1.aeny (Il = 1x + 0l 172,2

o
e,

(1, x, 0) AP (o2, %, 0) = bulke (¢, x, v))@ra 1.y (1] = e + 01112

+||a)§(t, X, v)(l.o.t% (t, x, v))
*@a—t.aen (116 = P+ 0t 1722 + oo (1. 6, ) A

(Lot (0, x, ) gra—tasn (el = 1x +0111)172 ] (7.11)

Due to the fully nonlinear nature of the problem, the non-bulk terms A” (h. 0.12(t, x, v)
—bulk (t, x, v)) and AP (Lo.£2(t, x, v)) in (7.11) will appear when we utilize the hidden
null structure by doing integration by parts in time once in the later argument, see Sect. 8.
We separate out the localized energy “E g; 4(1)” to help us identify the main enemy when
estimating “Hy 4(t)”.

Lemma 7.2. Forany k € Z,d € Ny, t € [1, T], we have the following estimate,

t
|Hea ()] S @432 4 2020074 e[ 37 EE (1) + [ (1+5)7 Ef, /(s)ds].
1
Tefl.t}

(7.12)
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Proof. See Sect. 7.1. O

Lemma 7.3. Foranyk, € Z,d € Ny, d > 10, ¢t € [1, T], we have the following estimate

t
|Hea(D)] S @742 K200 3 [ 3 EG (o) + / (1+5) 7 ES. ,(5)ds].
1
refl,1}

(7.13)

Proof. See Sect. 7.1. O

Assuming the validities of the estimate (7.12) in Lemma 7.2 and the estimate (7.13) in
Lemma 7.3, as summarized in the following Lemma, we finish the estimate of the last
term Ig. (D).

Lemma 7.4. Under the assumption that the Lemmas 7.2 and the 7.3 hold, we have

> 115,01 < (1+ %€, > T35, S 1+ ).
aeBB,BeS, |a|+|Bl=No aeBB,BeS, |al+|Bl<No
(7.14)

Proof. Recall (7.9). From the estimate (7.12) in Lemma 7.2 and the estimate (7.13) in
Lemma 7.3, the following estimate holds,

IINg’l(t” 5 Z( Z (2k+d +22k+2d) + Z (z—k—d +2_7k/2_7d/2))€]

d>0 k<—d k>—d

t
<[ > Eg;d(r)+/ (1+5) 7 ES, (s)ds]. (7.15)
1

Te(l,1)

Recall (7.11). From the estimates (6.15) and (6.16) in Lemma 6.3, the estimates (6.47)
and (6.48) in Lemma 6.5, the estimates (6.20) and (6.21) in Lemma 6.4 and the estimates
(6.58) and (6.59) in Lemma 6.6, we have

> > Ef (1) S (A+0%ef, Y > Ef (1) S (1+1)°€f.

deN; aeB,BeS, |al|+|B|=No deN; aeB,BeS, |al+|B|<Ny

(7.16)

Therefore, our desired estimate (7.14) holds from the estimates (7.15) and (7.16). 0O

7.1. Reduction of the proof of Lemma 7.2 and the proof of Lemma 7.3. This section is
devoted to lay out a strategy to prove the estimate (7.12) in Lemma 7.2 and the estimate
(7.13) in Lemma 7.3.

Intuitively speaking, there are two main ingredients in proving these two desired esti-
mates. Firstly, by doing integration by parts in time, we exploit the hidden null structure
by taking the advantage of high oscillation of phase in time, which solely depends on
the electromagnetic field. Secondly, by using the equality (3.38) in Lemma 3.3, we can
trade the spatial derivative for the decay rate of the distance with respect to the light cone
“||t] — |x + 0t]|”. After comparing the gain and the loss, we decide whether to do the
trading process. More precisely, to prove our desired estimate (7.12) in Lemma 7.2, we
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don’tdo the trading process. However, to prove the desired estimate (7.13) in Lemma 7.3,
we do the trading process.

To better explain our strategy, as an example, we use the following term inside
Hye q(1),

t
[ L L @hsx o) s oot =+ s1ish
x 1+ [v2d(s, x, v)Y=1(|v])a; (v) - Dygl (s, x, v)
X god(llsl —|x+ ﬁsll)a[(v) . SZ’; (Pk[E](s,x +0s)+0 X Pr[B](s, x + ﬁs))dxdvds,
(7.17)

where 8 = k +tand A" ~ > (|v|)§?, see (7.10). To make the coefficient /1 + |v|? in
(7.17) controllable when “|v|” is extremely large, we use the second decomposition of
D, in (3.30). After replacing D, in (7.17) by the second decomposition of D, in (3.30),
as an example, we consider the following term,

t
/1 /Rs /Rz (s %, 1) g (5. 3, V)Y r0(1 — e+ Dl /1))

x v/ 1+ o2 (s, x, v)¥=1(vDea(lls] = lx + Dsl)e; (v) - e, (s, x, v)

x APgX(s, x, v)o (v) - Q)j‘ (Pk[E](s, X +0s)+0 x P[B](s, x + ﬁs))dxdvds,
(7.18)

where AP ~ Q;‘t e{l,2,3}.

Since A” is a good derivative, from (4.71) and the second part of the estimate (4.74) in
Lemma 4.2, we know that the following estimate holds for the case we are considering,

H c?(s, X, V) 1
0% (s, x, V) T+ [[s] =[x+ Os[] 1 T+ v|

(7.19)

o
‘ a)ﬁ(s, X, V)

Thanks to the dyadic localization of the distance with respect to the light cone, we
know that the size of “||s| — |x + Os||” is at most “29+2”, d e N,. Let

Fg(t,x,v) == Z_d(a)%(t, X, v))zgg(t, X, VAP, x, vV)Y<_10(1 — |x + 0r]/]t])
s v/ 1+ [vPd(t, x, v)pa(Ilt] — 1x +t]]). (7.20)

From the above definition and the estimate (7.19), we have

IFE@ vl € D lef@.x vghe x vea(lltl = lx+ oll)I7; (7.21)
aeB,BeS

From the definition of F/‘; (t, x, v) and the detailed formula of e, (s, x, v) in (3.32),
we can rewrite the integral in (7.18) as follows,

t ~ A ~
—f / / 2 Fg (s, x, v)ei (0) - Vi1 (oD o] 7 (X + Vjs) - Vi
1 JR3JR3
x & (v) - 2] (PLLEN(s, x +0s) + 0 x P[B](s, x + Us))dxdvds. (7.22)
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Since the magnetic field can be handled in the same way as the electric field, it would
be sufficient to estimate the following term,

t
// / Fg(s,x,v)l/bl(lvl)lvl_l~Q§Pk[E](s,x+ﬁs)dxdvds, (7.23)
1 JR3 JR3 B

where
fg(s, X, v) = Fg(s, x,v)(X;+ Vjs) V2 (v) - Vjai(v).

To better see the hidden null structure, we write the integral in (7.23) on the Fourier
side. Here, we do Fourier transform in “v”

“ 2

and view “t” and “v” as fixed parameters.
As a result, we can reduce the integral in (7.23) as follows,

> wﬂ/ /}R}/ FolFG1(s, & v)e Sy () V; - 1o~ Y @)hi (s, §)dEduds,

pef+,—}

(7.24)
where h1(t) is the profile of electric field E (¢), see (4.50) and (4.53). Note that

).

&1 — ud - £ 2 1&1( + (1 — cos(uv, s>)>|1+| | (7.25)

1+ |v|?

From the above estimate, we know that the price of doing integration by parts in time can
be paid exactly by the symbol “y/> | (|v|)‘7j -&|v|™1in (7.24). As a result, the integral
over time doesn’t grow dramatically.

Moreover, from the estimate (7.25), it is easy to see that both Z (v, &) and (1+|v[)~ !
acts like the null structure. Note that S? contributes the smallness of (1+|v))~3 and QF

contributes a symbol Vi - & ~ |E|Z(nv, £) when these derivatives hit the pulled-back
electromagnetic field u(z, x + vt), where u € {E, B}. Because of this fact, we call these
derivatives as “good derivatives”.

In practice, we will use a more delicate version integration by parts in time. Instead of
doing integration by parts in time on the Fourier side directly, we will compare the size
of phase “|&| — w0 - £ with the size of “¢”. Moreover, since it is more convenient to work
in the physical space due to the presence of complicated weight function associated with
the energy, we will formulate the Fourier based integration by parts in time into equality
on the physical space, which is the equality (7.29) in Lemma 7.5.

Definition 7.1. For any given Fourier symbol m (§) and any function h(z, x) € {h{ (¢, x),
i €{1,2},a € B, |a| < 10}, we define

i) g—inule) ZIMEVEE) 5

T/ (m(€). h) (1, x + 1. v) :=/ e Rt 010 (1 (] — 1 - £))dE,

. 5 € el
(7.26)
H (&), h)(t, x + 01, v) :=/ SHE~ ”“‘f‘%amms>w>lo(z(|5|—uﬁ-é))ds,
R3
(7.27)

K} (m(&), h) (1, x + 01, v) := / el CHOEIIE Ly (6) g (A1, §)
]R3

x[ = ipnpl ot (€] — 1d - §) + Y<io(t (1§ — pd - §))]dg. (7.28)
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With the above definition, now we can decompose the good derivative of the elec-
tromagnetic field into good errors and the time derivative of a linear operator. More
precisely, we have

Lemma 7.5. For any « € B, u € {E“, B*}, k € Z, j € {1, 2,3}, and any Fourier
multiplier operator T with symbol m(§), the following equalities hold for some | €
{1, 2},

DTNt x +00) = Y cu[ATLGV) - EmE), (W)t x + 1, v)
pnel+,—}
FH{ V- §m(E). (h)") (1. x + 01, v)
+KI V- Em(E), (h{HM)(t, x + 0t v)], (7.29)
1 8
STl ) x 400 = D0 STV EEImE), (), x + 01, v)
nef+ -}
+H[ (V) - EJEIm(E), (h{)")(1, x + D1, v)
+K (V) - §1EImE), (W)@, x + b1, v)]. (7.30)

Proof. Recall (4.51) and (4.53). Note that, for any j € {1,2,3}, « € B, and u €
{E*, B*}, the following equalities hold for some [ € {1, 2},

)

QTN x40 = Y /R3ei(ﬁtﬁ)'s”"‘"“icﬂj~ém<s>@?a,s>wk(s)da
pnef+,—}
(7.31)

QDU 11, x + 1) = #6{;} fR DL 16 Im (@) () 1, 6) Y (§)d.
(7.32)

Hence, our desired equalities (7.29) and (7.30) hold from (7.31), (7.32), (7.26), (7.27),
and (7.28). O

With the above preparation, we are ready to lay out the strategy for the proof of the
desired estimate (7.12) in Lemma 7.2. Recall (7.10). Firstly, we will using the equality
(7.29) for SZ’]‘ Py[u](t, x +0t), u € {E, B}. Then, we do integration by parts in time once

to move the time derivative in front of 9, Tk“ (i f/j - &, hy)(t, x + 0t). The rest of terms in
the equality (7.29) will be good error terms.

Now, we proceed to lay out our strategy for the proof of the desired estimate (7.13) in
Lemma 7.3. Same as the proof of the desired estimate (7.12) in Lemma 7.2, we will also
use the oscillation in time for the electromagnetic field. The only extra procedure we will
do is trading the spatial derivatives for the decay of the distance to the light cone, which
will provide the factor of 273k=3¢ 4. 2=4=4d anq also explains the difference between
the desired estimates (7.12) and (7.13).

We summarize the main result of the trading process in the following Lemma.

Lemma 7.6. Forany j € {1,2,3}, u € {E, B}, and k € Z, the following decomposition
holds after trading the spatial derivatives for the decay of the distance to the light cone,

Q) (t,x + 1) = L[]t x +00) + Li [ (e x + 0t,0) + Y Bl [ul(r,x+ dt,v), (7.33)
i=l,...,5
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where the leading terms L}w. [u](t, x + 0t) andf/:;[u](t, X + 0t, v) are given in (7.44)
and (7.51) respectively, and the error terms E;‘(,j[u](t, x+ot,v), i € {1,...,5)}, are
given in (7.43) and (7.52) respectively. '

Proof. From the equality (3.38) in Lemma 3.3, we can rewrite Q’J‘ (up(t,x +0t), u €
{E, B}, as follows,

QY (it x + ) = (1] = x + D) Q3 ((r] — x + D) un(t, x +00)) = 3(5(|e] — |x + )
(1] = 1x + D) " Lug (2, x + 01)
= > Y Wl =+ ) TIQY[E ¢ x + DT, B u) (e, x + 1) + (1] — |x + Dt e (¢, x + 1)
aeB,|a|<3i=0,1,2
X T2 (07 — M) (2, x +01)] — 3(QYlt| = |x + D) (1] — x + or))TH[E (¢, x + OO T] L (9 u®) (2, x + 01)
+([t] = |x + Dt Dea (t, x + DT, (87 — Au) (e, x + 1))
= >3 el =+ 0T (e x + DOQ (T 0lu) (1. x + D) + el (0 x + 0T, (3lu) (1. x + br)

aeB,|a|<3i=0,1,2

+8% ) (1, x + DT (07 — M)t x + 06) + 85 (¢, x + DR (T, (3 — M) (t, x + 1)), (7.34)
where

el x + 1) = (jr] — x + D)) QY(E (1, x + 1))
—3(Q5(Ie] — |x + DeD)(le] — |+ De]) 4 (1. x + D), (7.35)
’é‘}"l(t,x +01) = (Jt| — |x + ﬁt|)*39’;((|t| — |x + 0t)e(t, x + ﬁt))
—3(Q5(Ie] — |x + DeD) (1r] — |x + D)) ea (. x + 1), (7.36)

?‘;20, x+01) = (|t] — |x + 1)) ey (t, x + 01). (7.37)

To better estimate the coefficients, we classify and decompose ’c\é, [t x,0), 0 €
{0, 1, 2}, and?;‘ 1 (t, x, v) into two parts as follows,

j A ALl ~ ~j;2 ~ ~
cé;i(t, X +0t) = SZ’]‘-(Itl —|x+ vtl)ca;i(t, X + Ut) +cé;i (¢, x + vt), 'E‘/’-"l(t, X+ Ut)

= Q¥(|t] = |x + De)ey (¢, x + 1) + 5 (2, x + 1),

where
Chi(t x4 00) = =3It — Ix + 0t 4t x + 00), T, x,v)
= (It] = |x + ) QY (&, (1, x +00)), (7.38)
(e, x + 01) = —2(|t] — |x + D1]) eq (1, x + D1), E‘Ji‘jf(t, x,v)
= (It] = |x + D)) 7> QY (eq (1, x + 01)). (7.39)
Note that
Vj - X

Q)j(|t| —|x+0t]) = — (7.40)

|x + 0t
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As a result of direct computations and the estimate (3.39) in Lemma 3.3, the following
estimate holds,

37 el = e+ 0P RETE v+ (] — x+ 92 v 0)] S (

i=0,1,2 t+|x+ﬁt|)’
1=0,1,

(7.41)

Recall (7.34). For the term fj(afu“)(z, x + vt), we decompose it further into two
parts as follows,

T2 R u)(t, x +01) = T o (Au®)(t, x + 1) + T2 (97 — Mu®)(t, x + 0)(7.42)

From the equalities (7.34) and (7.42), we identify the leading terms of Q)j?uk (t, x + 0t)
and classify the error terms into four parts as follows,

QY (wi) (¢, x + 1) = Z L ;[u](t, x, v) + Errory j[u](t, x +Dt), Brror j[u](t, x + it)
i=1,2

= Z E} ;ul(z, x +00), (7.43)
where

Lyl x vy = Y (= e+ P[ Y & x + QT , (0[u®) (1, x + 1))

a€B,|a|<3 i=0,1
+E5 (1, x + DO (T, (Au) (¢, x +00)) ], (7.44)
Ll x+ = Y Y QY(t] — |x + de)[Ch; (t. x + DT, 0 u) (2, x + 1)
aeBB,|a|<3i=0,1
+Cn (1, x + DT (Au®) (2, x +01)], (7.45)
EL o x+on = > 3 @ x+ 00T, 0lu) (e, x + )

aeB,|a|<3i=0,1

+E 5 x4 DT (Au®) (1, x + 1), (7.46)
E} jTul(t, x + 1) = (t] — |x + D)) P& (1, x + 00)Q5 (T2, (97 — Ayu) (2, x + 1))
+2% 5, x + DN (T2 (37 — M), x + 1), (7.47)

Ep j[ul(t, x +01) = Q5 (1] — |x + Dt))T,; (1, x + DT, (97 — Ayu)(t, x + )

+Q5 (|t — |x + ﬁz|)z‘f?‘ (1, x + DT (07 — Du)(t, x + 1), (7.48)
E} J[u](t X+ 00) =5 x + DT, (02 — M) (2, x + 1)

+e T x + vt)Tkya((B,Z — Nu)(t, x + 01). (7.49)

Moreover, from the equality(7.40), we can split L,%’ j in (7.45) into two parts on the
Fourier side as follows,

L3 [u)(t,x +01) = Ly jlul(e, x + b1, v) + E§;[u)(t, x + 1, v), (7.50)

— : i) —H1E T,
Ly, j[ul, x +vt,v) = Z Z Z/ g ttﬂ\f\m

aeB,|la|<3 pe{+,—}i=0,1



Propagation of Regularity and Long Time Behavior 771

(cuCho (8, x + DO)RY o (€)

AN~ 1"\ 0t)m P [hY
—CpChy (1, x + D)} L (8)|E + QCéAl(t, X+ 00y o (§)|E1) Pulhf1(1. §)dE, (75D
R )£ -1 %
E,f.j[u](t,x+vt, v) = Z Z Z _/ el tu\é\m( B M|§|) vi
aeB,la|<3 pef+,—}i=0,1

(cpCho(t, x + DE)AY o (€)

1 _—
= CuCpa (X + DML  (O)IE + 5T (1, x + D)y 4 (§)[E]) Pulh1(e, ), (7.52)

where [ € {1, 2} is uniquely determined by the type of input u € {E, B}.
To sum up, our desired decomposition (7.33) holds from the decompositions (7.43)
and (7.50). |

Motivated from the decomposition (7.33) in Lemma 7.6, we decompose H 4 sim-
ilarly (see (7.10)) into three terms after trading the spatial derivatives for the decay of
the distance with respect to the light cone as follows,

~ ~ — — ——1
Hia(t) = H} 4(t) + H] 4(t) + Error 4 (1), Errorg g(t) = Y Error 4(t),
=1,...,5
(7.53)

where

ﬁkl,d(t) = / /1; []R3 wﬁ(s X, v) gﬁ(s X, v)

k=B, t|= l/ 1,2,3,i=1,.
A‘~¢zl(\t\)9”0r¢zl(\v\)QX

(V1+ (s, x, 0)) ™ e _10(1 = |x + ds]/Is])
<=1 ([oDga (Is| — [x + Dsl)oi (v) - (Ly SIEY(s, x + D) +D x (Lt ;[B](s, x +05)))esi (v)
Dy g2 (s, x, v)dxdvds, (7.54)

ﬁkz,d: //RS/R% wﬁ(sxv) gﬂ(sxv)

t+k=p,|l|= l/ 1,2,3,i=1,...,
A'N‘le(\UUQLO”ﬁzI(\v\)Qj

(V1+l2d(s, x, 0)) ™ e _10(1 = |x + ds1/Is])
s 1 (V) ga(Is] — 1x + s)ei (v) - (La [EN(s, x + Ds, v) +

(L ;[Bl(s, x + bs, v)))ai(v) - Dyg2 (s, x, v)dxdvds, (7.55)
i
Error 4 1= / / / a)ﬁ(s X, v) gﬁ(s X, )
=B, =1, j= 1231 Lo, S

A‘~\//31(\vl)ﬂlorllle(\v\)ﬂf

(VI+wPd(s. x.v) ™ ye_100 = x + Dsl/Is)
szl(lvl)wd(lsl —|x+ ﬁsl)a,-(v) . (Efw»[E](s, X+0s,0)+0
XEi,j[B](s, X + s, v))a,-(v) - Dyg2 (s, x, v)dxduds. (7.56)

We summarize the estimate of error term Errory 4(¢) in the following Lemma.
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Lemma 7.7. The following estimate holds,
|Errorg 4 < (27373 4. 27k=d)2~ 4"+/ (L +1sD ™ EfL () ES. 4 (s)ds.  (7.57)

Proof. Postponed to Sect. 7.2. O

From the equalities (7.44), (7.51), (7.29), and (7.30), modulo the coefficients and the
symbol of the Fourier multipliers, we know that both the leading term Ly ;[u](z, x + 0t)
and Ly ;[ul(t, x + 0t, v), which appears in ﬁkl,d and ﬁ,&d, and Q)J‘ (ur)(t, x +0t), which
appears in Hj 4, can be viewed as a good derivative Q)j‘ acting on a Fourier multiplier

operator. Motivated from this observation and the decompositions (7.29) and (7.30)
for the good derivative “Q); ” acting on a Fourier multiplier, we define the following

multilinear operator.

Definition 7.2. Forany fixedt1, 1 € R,i € {1,...,7},j € {1,2,3},a € B,B, 1,k € S,
wef{+ =} st,t+x =8, t] =1,and A" ~ 1//>1(|v|)§2 orw>1(|v|)§2x, any given

Fourier multiplier m (&), any given coefficients a : Ry — C,s.t.,a’(x) = 0if |x| <2~ 5
and ¢ : R, x Ri X Rg — C, and any given profile (t, x) € {h{ (¢, x),i € {1,2},a €
B, |a| < 10}, we define three multilinear forms as follows,

T(m,a,c,h) = / A‘@ /R3 wﬁ(s X, v) gﬁ(s X, V)

A‘N%l(\vl)ﬂlor% (Jvh &2}

(\/1 + [v]2d(s, x, v))1 c®

xCy(s, x, v)BsTkM(Vj ~Em(E), h)(s, x + Us, v)a; (v) - Dygg (s, x, v)dxdvds,
(7.58)

H@m,a,c,h) = / /]R* /ﬂ@ a)ﬁ(s X, v) gﬁ(s X, V)

A’Nl//>1(IV\)Qlorwﬂ(lvl)Qx

(V1+ [vPd(s, x, ) ="

xCy(s, x, v)H,ﬁL(VJ- ~Em(E), h)(s, x + Us, v)a; (v) - Dyge(s, x, v)dxdvds,
(7.59)

t
K(m,a,c,h) = > / / / (@3 (s, x.v) g% (s, 2, v)
~ 3 3
Ay (oD @orys upezs TR
(V1+[vPd(s, x, ) ™"
xCq(s, x, v)K,g(Vj ~Em(E), h)(s, x + Us, v)a; (v) - Dyg(s, x, v)dxdvds,
(7.60)

where the bilinear operators 7} (-, ), H}' (-, -), K}' (-, -) are defined in Definition 7.1 and
the coefficient C;(s, x, v) is defined as follows,

Ca(s,x,v) == a(lls] — |x + Ds|))c(s. x, V)Y<_10(1 — [x + ds|/IsDga(lIs] — |x + Ds[)=1(]v]).
(7.61)
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Now our goal is to show that the following two Lemmas hold for the above defined
three multilinear operators.

Lemma 7.8. For any given Fourier multiplier m(&), any given coefficients a : R, — C,
st,d'(x) = 0if |x| <27, and c : R, x ]R?C X Rg — C, and any given profile
h(t,x) e {h?‘(r, x),i € {1,2}, ¢ € B, |a| < 10}, the following estimate holds,

|H(m,a,c, h)|+|K(@m,a,c,h)
t

S @ 220207 gy m (&) | s | / A+ e, x, V)L, B (5) Ef. 4 (s)ds],
1

(7.62)

wherella|ly := sup,cg la(x)| + [xa’(x)].
Proof. Postponed to Sect. 7.3. O

Lemma 7.9. For any given Fourier multiplier m(€), any given coefficients a : R, — C,
s, d'(x) = 0if x| <273, and c : R, x Ri X R% — C, and any given profile
h(t,x) € {h¥(t,x),i € {1,2},a € B, || < 10}, the following estimate holds,

t
IT(m,a, ¢, )| S Q1242 4 226820074 gy /1 A+1sh™ (llets, x, v)llg,
+s]l9sc(s, x, v)llLge,

+IDye(s, x, V)25, ) 1m &)l spe Efy, () (1 + Efny () Ef 4 (s)ds. (7.63)

Proof. Postponed to Sect. 8. O

Assuming that the estimates in Lemma 7.9, Lemma 7.8, and Lemma 7.7 hold, we
can prove the desired estimate (7.12) in Lemma 7.2 and the desired estimate (7.13) in
Lemma 7.3.

Proof of Lemma 7.2:. Recall (7.10). From the equality (7.29) in Lemma 7.5, we know
that Hy, 4 isalinear combination of the trilinear forms 7' (1, 1, a; (v), h;), H(1, 1, a; (v), h;),
and K(1, 1, a; (v), h;), i € {1, 2}, where a; (v), i € {1, 2}, are some explicit coefficients
that satisfies the following estimate,

3 llai@)llege + 11+ ) Voa; ) S 1.
i=1,2

Therefore, the desired estimate (7.12) follows directly from the estimate (7.63) in
Lemma 7.9 and the estimate (7.62) in Lemma 7.8. o

Proof of Lemma 7.3:. Note that we have d > 10 for the case we are considering. Recall
the decomposition (7.53) and the equations (7.54) and (7.55). From the equalities (7.29)
and (7.30) in Lemma 7.5, the detailed formulas of L ,1( j [u](t, x + vt) in (7.44) and

fk\;[u](t, x+01) in (7.51) and the formulas of the coefﬁcients’c\&;i (t, x+01),i € {1,2, 3},

in (7.38), we know that we can write H k] 4 and H kz 4 @s linear combinations of multilinear
forms as follows,
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H,= Y Yo TR @), Ix I a2, (), E (1, x + D0)al (v), B (1))

aeB,|a|<3i=0,1,2,=1,2
+H (i, (8), 1x| 7 Yra—2.a42) (1),
&Lt x +00)al (), hf(0) + K (il (€), 1% Ypa—2.as21(x). & (1, x + D)al (v), b (1)),

H,= Y 3 T(RLEIET T i (). ¢ (¢ x + D) (), Y (1))
aeB,|x|<3i=0,1,2,=1,2

+H (il ()€,

X1 W pa—2,a421 (6, €L (1, x + Dr)aZ (), B (1)) + K (L (€)[E] 7,

1]~ Y a—2,a421 (), iy (2, x + Dt)a}, (v), B (1)),

where the symbols n%ﬁx (&) and the coefficients c/gl(t, x +0t),i € {0, 1,2}, are defined
as follows,

My &) =my &), my ) =my©)El, myE) =my &g,

c’f:(t, X +0t) 1= T AtlEfx(t, X +00)Y<_s(1 — |x +0t|/]t]), (7.64)
D
and a;'l(v), i €{0,1,2},1,n € {1,2}, are some explicit coefficients that satisfy the

follow’ing estimate,
Do ld e + 1A+ ) Veal, ) e S 1.

i=0,1,2,n,1=1,2
From (7.64) and the estimate (3.40), we know that the following estimate holds,
Do e @®lse 27 (7.65)
i=0,1,2

Recall the definition of Y-norm in Lemma 7.8. We have

27311 274(1’

, whend > 5.
(7.66)

From the above estimates (7.65) and (7.66) and the estimate (3.39) for the coefficients
Efx (t,x,v),i € {0, 1,2}, we know that the desired estimate (7.13) follows directly from
the estimate (7.63) in Lemma 7.9, the estimate (7.62) in Lemma 7.8, and the estimate
(7.57) in Lemma 7.7. |

To sum up, we reduce the proofs of Lemma 7.2 and Lemma 7.3 to the proofs of
Lemma 7.7, Lemma 7.8, and Lemma 7.9. We will prove Lemma 7.7 and Lemma 7.8 in
next two subsections. For clarity, the proof of Lemma 7.9, which is more complicated,
is postponed to Sect. 8.

_ —4
x> Yra—2.a421 () ly < s X Ypa—2,a @y S

7.2. Proof of Lemma 7.7. In this subsection, we estimate the error term which arises
from the process of trading the spatial derivative for the decay of modulations and finish
the proof of Lemma 7.7. The main ingredient of the proof is the following Lemma.

Lemma 7.10. The following estimate holds for any j € {1,2,3},i € {1,...,5}, p €
K, lpl=1deN;,d >5,

I+ o) =P ey, x, v) Ey ;[ul(t, x + 01, v)ga (lt] — x + Dt ]) <1001 — [x + 011/l | L2,
S (L4712 Hmtk g g =22k peb (1), (7.67)
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Proof. Note that the following estimate holds from the detailed formula of e, (¢, x, v)
in (3.32),

D+ TPt x, v)Y<10(1 — |x +Del/1t]) oo, S (1+[2]).
pell,|pl=1
(7.68)

Recall (7.46), (7.47), and (7.37). From the estimates of coefficients in (7.41) and
(3.39), the estimates of the symbols 7z} ko () of the linear operator Tk’ (+) in (3.40), and
the linear decay estimate (2.11) in Lemma 2.2, the following estimate holds,

> IELul x + 00@a(lt] — x + Dt]) ]| s,
ue{E,B},i=1,2

S (1407227 272k o33k pk=dke peb (1), (7.69)

Now, we proceed to estimate E,g,j[u](t, x + 0t) and E,‘("j[u](t, x+0t)u € {E, B}.
Recall their detailed formulas in (7.48) and (7.49) and the detailed formulas of corre-
sponding coefﬁcients in (7.38) and (7. 39) From the equality (7.40), the estimates of the

symbols 7! ko (8) of the linear operator T’ «(*) in (3.40), the estimate of coefficients in
(7.41), and the definition of low order energy in (4.94), we have

3 A ~
> IER jlultt, x + 90)ga(lt] — |x +0t]) | Les,
ue{E,B},i=3,4

S (1 + |t|)_2(2_4d_4k +2—3d—3k +2—2d—2k)2k—4k+E1eoliV(t). (770)

Lastly, we estimate E,f {ul(t, x +0t,v),u € {E, B}. Recall its detailed formula in
(7.52). Note that the followmg equality holds,

£
)

Hence, after doing integration by parts for £ in \7]- direction, we have

E e x+inn= Y Y % / ol N Einule

aelB,|a|<3 pe{+,—}i=0,1

ei(x+f1t)~$—itu|i;‘|( ‘7/ _ _i‘7j . VS (ei(x+13t)‘i;‘—itp_\é\).

- Al L0
mvj - Ve[ (cuCyuo(t. x + D)y o (&)

1 —_—
—CCyy (1, x + D0)G  (E)E +2 w1 (1, X + 00 (8)[E]) Pulhf1(2, €)]dE.

From the above formula, the detailed formula of coefficients in (7.38), the estimate of
coefficients in (3.39), the estimate of symbols in (3.40), the linear decay estimate (2.11)
in Lemma 2.2, the following estimate holds,
ll IEf,j[u] (t, x +0t, V)P<s(1 — |x + 0t|/|tpa(|t] — [x + 0t]) [l L,
< (14 |r]) 22 Hd—Hhpk=4ke peb (), (7.71)

To sum up, our desired estimate (7.67) holds from the estimates (7.68), (7.69), (7.70),
and (7.71). |
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Proof of Lemma 7.7. Recall (7.53) and (7.56). We use the second decomposition of
“Dy” in (3.30) in Lemma 3.1. From the estimate (7.67) in Lemma 7.10, the second
part of the estimate (4.74) in Lemma 4.2, and the L)%’v — L)%’v — L%, type multi-linear
estimate, we have

] 4

§ |Error 4| < (2773 4 27k=d)p 4k / (1+|s|)_1Ef0bW(s)Eg;d(s)ds.
1

=1,...,5

(7.72)

Hence finishing the proof of the desired estimate (7.57). O

7.3. Proof of Lemma 7.8. In this subsection, we prove our desired estimate (7.62) in
Lemma 7.8. The main tools that we will use are two linear estimates associated with the
bilinear operators defined in (7.27) and (7.28), which will be stated in Lemma 7.11 and
Lemma 7.12. We will first derive these two estimates and then use these two estimates
to prove the desired estimate (7.62).

Lemma 7.11. The following estimate hold,
LH (V- &m (&), h)(t, x + 0, v) || Lo, S min{(1+]¢]) 2%,
(L+ 1) 722274 Im (&) |l s Ef, (0. (7.73)

Proof. Recall (7.27). For any fixed x and v, we do dyadic decomposition for the angle
between & and pv. As a result, we have

o (r+10) E—itulg] iV EmE)Yr(€)

Kevr. . 0 =
H (V- Em@E). )t x +t,0) = Y fRB 5 E — uE]

nez,n<2
XY 10(t (€] — 12D - )3T (e, €)Yr (€)Y (L(E, vV))dE.

Hence, after using the volume of support of £ and the definition of the low order energy
E¢b (¢) in (4.94), we have

low

i (Vi - gm@E). D x+00, 01 S 2910 )Y (@)llge Im (@)l spe

neZ,n<2
S min{(1+[e))7'2%, (1+ 1) 722527 Im (@) |l s Ef2, (1. (7.74)
O

Lemma 7.12. The following estimates hold for any t € [2"~1, 2", m € Z, i,j €
{11 27 3})

I+ DT K (V) - Em(E), b, x + b1, ) | Lge, S 272 e lm (€)oo EL, (1),

(7.75)
1K (V) - Em(E), (@, x + 01, v) [0, S 27" Im (&) |l s Efy (1),

(7.76)
1CXG - DK (V) - Em(E), ), x + 8, v) [0, S 27" (&) | s D, (1),

(7.77)
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Proof. Recall (7.28). From the support of £ and the estimate (7.25), we know that the
size of || — u - & is less than 27", which implies that the angle between & and pv is
less than 27/27%/2 and the size of v is greater than 2”"/2*%/2_ As a result, the following
estimate holds,

(U + o) K (V) - Em(E), ) (E, x + D1, v)|
S D 2 PTRRRRRG Sy ) g Im®) sy

~

I<—m/2—k/2
< 272 () | 0 ESL, (). (7.78)

Similarly, we have

KE (V- em@E, @ x+ o0 S Y 225 9@l Im@)llsp
I<—m/2—k/2

< 2R o 8) | 500 B, (). (7.79)

Hence finishing the proofs of the desired estimates (7.75) and (7.76).
Lastly, we prove the desired estimate (7.77). Recall (7.28). We have

(Xi - D)K} (Vj - Em(E), h)(t,x +0t,v) = Iy + I,

where

I = /3 ei(x+zﬁ)-§—ilu\§\i‘7j %-m(%-)((xl +t‘7i) _ itﬂeié(' %_)
R

B[ — iy 1o (€] = 1D - £))) + Yi0(t (€] — D - £)) [ (e, E) (&),

I = ‘/RS ei(x+tﬁ)-$7it,u|§\”7j '§M(E)(ituei|; é)
B[ —ippl (&l — ud - )+ Y<io(r(1&] — pud - E))]Wk(é)il\(la §)d§.
(7.80)

From the volume of support of “£, we have

LIS Y 22 R Y@l lim@)llsp S 27T Im @) s Efy (0.
I<—m/2—k/2

(7.81)

Note that

e X&E\ S
o= (x+tv—itpu—)- V.

€] ) ( ISI) '

Hence, we can do integration by parts in £ once in the V; direction for /; in (7.80). As
a result, we have

((X; +1V) —itp

= /R e EIEN,  V [V - &m @Y )R(r, &) = iyl it (8] — b - £))
+P<10( (€] — - £))]dE.
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By using the volume of support of “£”, we have

s Y @2 R HYE) e lim @) s

I<—m/2—k/2
25NVeh(t, )Y )l e llm )l s
S 27 (&) || s EfD, (). (7.82)

Therefore, our desired estimate (7.77) holds from the estimates (7.81) and (7.82).
Hence finishing the proof.
O

Proof of Lemma 7.8:. e The estimate of H(m, a, c, h).

Recall (7.59). For this case, we use the second decomposition of “D,” (3.30) in
Lemma 3.1 for the term “D, g2 (¢, x, v)” in (7.59). From the estimate (7.68), the second
part of the estimate (4.74) in Lemma 4.2, and the estimate (7.73) in Lemma 7.11, the
following estimate holds after using the Li’v — L)%,v — LT, type multilinear estimate,

1
|H(m, a,c,h) 5/] (1 + IsD2 llally | HE (V- Em(&), h)(s, x + s, v) |1,

lleCs, x, V)lILgs, Eg.4(s)ds

t
<25 ally m @) lsge f] (1 1sD ™ (s, %, V), Efgy () Ef g (5)ds.

(7.83)

e The estimate of K (m, a, c, h).

Recall (7.60). For this case, we use the second decomposition of “D,” (3.30) in
Lemma 3.1 for the term “D,gZ (¢, x,v)” in (7.60). Recall the detailed formulas of
ep(t,x,v), p € K,|p| = 1, in (3.32). From the estimates (7.75), (7.76), (7.77) in
Lemma 7.12, the following estimate holds,

Do A+ D TP e, 1, x, V)KL (V) - EmE), h)(E, x + 1, v)ga

pell,|pl=1
(1] = lx + D) Yr<—10(1 = lx + Dt/ 1£D)l 22,
S A+t @5+ 2227 I (&) | s Efy, (1. (7.84)

Therefore, from the above estimate, the second part of the estimate (4.74) in Lemma 4.2,
and the L)Zw - Li’v — L{°, type multilinear estimate, we have

(K (m,a,c, )| S @+ 222027 a|ly [m (&) || s

t
/1 A+ 1IsD 7 lets, x, V)L, Efm, () Ef§. 4 (s)dt. (7.85)

To sum up, our desired estimate (7.62) holds from the estimates (7.83) and (7.85). O
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8. Proof of Lemma 7.9

The main goal of this section is devoted to proving our last desired estimate (7.63) in
Lemma 7.9. Hence finishing the whole argument.

Recall (7.58). To take the advantage of oscillation in time for the electromagnetic
field, we do integration by parts in time to move around the time derivative in front of

“0y Tk“(Vj ~Em(&), h)(t, x + 0t)”. The proof of Lemma 7.9 will be very complicated by
the fact that many terms will be created when “9;”” hits gl‘; (t,x,v)or D,gi(t, x,v),e.g.,

see the equation satisfied by 8,g‘§ (t, x,v)in (4.17).
For clarity, we first classify those terms. More precisely, after doing integration by
parts in time for (7.58), we have

T(m,a,c,h) = T1(m, a,c,h)+ Tz(m, a, c, h) + Error, (8.1)

where

Tl(m,a,c, h) = Z

A1 ()R or s (0) QY

t
—/ /z /3 (a)g(s, X, v))zaxgg(s,x, V(V1+ [v]2d(s, x, v))lfc(l)
1 JR? JR
xCy(s, x, v)Tk”(Vj ~Em(E), h)(s, x + s, V) (v) - Dygl (s, x, v)dxdvds, (8.2)
fz(m,a,c,h) = Z

At () QY or o1 (W)

t

_// f (w%(s,x,u))zgg(s,x,U)(\/WJ(M’v))lw)
1 JR3 JR3

xCy(s,x, V)T (V- Em(E), h)(s, x + s, V) (v) - 3y (Dyg2 (s, x, v))dxdvds,  (8.3)

Error = Z

Ay () Qor s (D)2
t
_./1 /R3 /]R‘ (a)g(s, X, v))2gg(s, X, v)Tk”(f/j -Em(§), h)(s, x + Vs, v)
><83.[(\/ 1+ |v|2d(s, x, v))lfc(ocd(s, X, v)]oz,-(v) - Dyg2 (s, x, v)dxduds,
i 2 ~ "
e X e [ s ) T @ b v

i=1,2,11=1,0p=t
(VI+Pd(. x.v)'
xCa(ti, x, v)gg (i, x, V)i (v) - Dygy (t;, x, v)dxdv. (8.4)

Recall the equation satisfied by gg (¢, x,v) in (4.17), the classification of h.o.t‘; in

decompositions (4.18), (4.22), and (4.28). We decompose Ti(m, a, c, h) into four parts
as follows,

Ti(m,a,c,h)y= Y Ti(m,a,ch), (8.5)
i=l1,...4

where



780 X. Wang

fll (m,a,c,h) = Z
Ao (0D
or =1 (lvh e

t
/ / / (a)g(s, X, v))z(K(s, x + 05, 0) - Dugf (s, x, v)a; (v) - Dygg (s, x, v))
1 JR3 JR3
xCals, x, 0)(/1+ 0] (s, x, 0)) " TV} - Em(€), h)(s, x + bs, v)dxduds, (8.6)

flz(m,a,C, h) = Z /] /R3 /Rz

A1 (DR
or =1 (Ju) <

—(wg(s, X, v))za,-(v) -Dygy (s, x, v)(\/ 1+ |v|2d(s, x, v))]ﬂm
xCy(s, x, v)Tk“(\;j “Em(), h)(s, x + s, v)bulk (s, x, v)dxduds, (8.7)

t
T{m, a,c, h) = Z /1 /Rs /Rz

A1 (DY
o1 (Iv) 2}

—(a)g(s, X, v))zai(v) - Dygl(s, x, v)(V1+ lv|2d(s, x, v))l_c(l)
xCy(s, x, v)Tk”(Vj ~Em(&), h)(s, x + Vs, v)(h.o.t‘g(s, X, ) — bulk%(s, X, v))dxdvds,

(8.8)
t
Lfmacem= ) / / /
Aoy TR IR
or =1 (W)}
—(@%(s, 2. v) @i (v) - Dyg (s, x, v) (V1 + [o]2d(s, x, v)
xCy(s, x, v)Tkﬂ(f/j ~Em(&), h)(s, x + Vs, v)lo.tg(s, x, v)dxduvds. (8.9)
It remains to classify terms inside Tz(m, a, c, h). Recall (8.3). Note that
[Dy, 3] =[Vy —=tVy0 - Vi, 8] = Vi - Vo, = at(Dvg,?) = Dv(atgg) —Vyb- ng,?-
(8.10)

Recall the equation satisfied by 0; gg (t, x,v) in (4.17). Since the most problematic
terminside h.0.1% (¢, x, v) is bulk‘g (t, x, v), we first study the structure of“Dvbulk‘é (t, x,v)”,
which is summarized in the following Lemma.

Lemma 8.1. The following equality holds,
Dy (bulk® (¢, x, v)) = bulk, (t, x, v) + error. (t, x, v), (8.11)

where the detailed formula ofaﬁ;z (t, x,v) and mi (t, x, v) are given in (8.12) and
(8.14) respectively.

Proof. Recall (4.29). We have

Dy (bulk® (t, x, v)) = bulk, (t, x, v) + error. (t, x, v),
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where

bulk, (¢, x, v) = 3 3

J=LL3I=lee T i =i K €S =1 A ~ 1 (0D Qo Yz (02
Kj. (t, x + 01, v)e; (v) - DyDygl (£, x, v), (8.12)
5’?_07:: (t,x,v) = Z Z
J=L23 =1 T e =i, ! €S| =1, A~z 1 () QY or Y1 ([0 )2
Dy(K}. (1. x + 01, 0)e; (v)) - Dyg (L, x, ). (8.13)
Note that we used the fact that [D,,,, D,,] = 0, for any m,n € {1, 2, 3}. After using

the_ first decomposition of “D,” in (3.30) in Lemma 3.1 and the detailed formula of
K}, (t, x +0t,v) in (4.26), we have

e/ﬁ_o/ri(t,x,v) = Z Z

j=123,i=1,...,7 VHk'=k,l' k' €S
p1.p2EKC,|p1]=lp2|=1 |U\:1.AL’~¢21(\v|)§yor1//21(\v\)s2«j‘.

dpy, (t, x, v)dp, (1, x, V) AP (g2 (1, x, V)
) [AP (@ ) (V1 + [P (. x, 1) T Ve () - QE(E(, x +01) + 9 x B(t, x + 1))
+0 () (V14 [0Pd (1 6, v)' ™Yoy () - AP (QE(E (. x +00) + 0 x B(t, x +01))]-
(8.14)
0

We will show thatboth “D,, (h.0.2 (t, x, v) —bulky (t, x, v))” and “D, (L.o.t2 (t, x, v))”
are non-bulk terms. Motivated from this expectation and the decomposition (8.11) in
Lemma 8.1, we decompose 7>(m, a, c, h) into five parts as follows,

Tm.a,c.h)= ) Ti(m.a.ch), (8.15)

where

t
- 2
T (m,a,c, h) = Z / /3 /3 (w%(s,x, v)) g5(s, x,v)
Ay op@y 7R
or =1 (W)}

x(v1+ [v]2d(s, x, v))l_c(t)Cd(s, X, V)

X T (V; - Em(E), h) (s, x + s, v)a; () - Dy(K (s, x + 05, v) - Dyg¥(s, x, v))dxdvds,  (8.16)

Tzz(m,a,c,h) = Z or 1//21(|v|)52’j‘-/1 /R3 /R} —(a)%(s,)@ U))zgg(s,x, v)

Ay (D&Y

(v T+ [Pd(s, x, ) "V Cas, x, v)

><Tk“(\~/j ~Em(E), h)(s, x + Vs, v)a; (v) mﬁ: (s, x, v)dxdvds, (8.17)

~ 5]
ma,c,hy= Y /t /w fR% — (5. x.)) g5 (5. x. v)
I

Az (D&Y
or =1 (v
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x(v1+ [v]2d(s, x, v))]_m)

xCy(s, x, v)Tk”(Vj ~Em(E), h)(s, x + 0s, v)a; (V) - Dy (h.o.tﬁ‘(s, x,v) — bulkf (s, x, v))dxdvds,

(8.18)
t
T, a,c h) = Z / ./% /3 —(a)g‘(s’x, U))zgff(t,x, )
AL~1/;21(|U|)§; 1 Jr3 JR
or Y21 (Jv))2}
x(mcz(s,x, v))lfcu)
xCq(s, x, )T} (V; - Em(E), h)(s, x + Ds, v)at; (v) - Dy(Lo.t2 (s, x, v))dxdvds, "
t
machy= Y f / / (@505 5, ) (5. v, v)
At~w21(|u|)§; 1 Jr3 JRr3
or Y= 1 (|02}
VTR 2. ) Ot 2.0
XTE(Vj - Em(E), h)(s, x + s, v)e; (v) - [V - Vig% (s, x, v) — error, (s, x, v) |dxdvds.
(8.20)

Since there are many terms to be controlled to finish the proof of Lemma 7.9, for the
sake of readers, we provide the following plan of this section.

e Under the assumption that the L{°-type decay estimate (8.124) in Lemma 8.12
holds for the operator Tk“ (-, -) and the validity of Lemma 8.6, we finish the proof of
Lemma 7.9 by estimating terms in the decompositions (8.1), (8.5), and (8.15) one by
one in Sect. 8.1.

e Under the assumption that the L{°-type decay estimate (8.124) in Lemma 8.12
holds, we finish the proof of Lemma 8.6 in Sect. 8.2.

e We finish the proof of Lemma 8.12 in Sect. 8.3. Hence complete the whole proof.

8.1. Proof of Lemma 7.9. Recall the decomposition in (8.1). As summarized in the
following Lemma, the estimate of the error term “Error” in (8.21) holds.

Lemma 8.2. The following estimate holds,

[Error| < (24 + 2220) 2% gy [Im (@) s [ Y lle(r, x, v)ll L, Ef. o (1) Efo, (1)

tef{l,t}
t
+ / (1+]sh~!
1

x(lle(s, x, V)L, + sl (s, x, v)IIL;eU)Eg‘;d(s)Eféiv(s)ds]. (8.21)

Proof. Recall (8.4). Since there are many possible destinations of the time derivative
“9,”, we first classify terms inside the error term “Error”. Note that
f2
1+v]?
[t] + |x + 01|

= Z ci(t, x,v), (8.22)

i=1,2,3

—2tx -0 — |x|?

dd(t,x,v) = dd(t,x,v) = (L+ )7, 3 (t] — Jx +0r]) = 8,(
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where

[t] — |x + 01|

( r (x+00)- ﬁ) —2x - 0(|t] = |x + 1))
[t] + |x + 0f]

ci(t, x,v) == =
7] |x + vt

ﬁ—zm.ﬁ— |x|2
[¥=20(x - D1+ [0]3)/[¢])1{=10,00) (x - D)
+220(x - DL+ [0[3)/111) 100, —10) (x - D)2 (1 + [£])/|x[[v])].

2t —2x -0

= _ .01 2 ,
ca(t, %, v) (1+|v|2)(|t|+|x+f)t|)+|t|+|x+f1t|w 200 D1+ w5/ 1)
a3(t, x,v) = L'{’w (x-0(1 +|v|2)/|l|)1 (x - )Y 2((A + 12D/ 1x]|v])
3(t, x,v) = T+t o] >20 (—00,—10) <2 .
(8.23)
From the above detailed formula, we know that the following estimate holds,
1+ ||t] — |x + 0t
jer(tx, )l < S el < (8.24)

|t] L+ v

Hence, from the equalities in (8.22) and the detailed formula of Cy4(¢, x, v) in (7.61), we
can decompose the error term into three parts as follows,

Error = Error; + Error, + Errors, (8.25)

where

1
Error| = Z —/1 /ﬂ@ /R} (a)g(s,x, v))zgg(s,x, ) (8.26)

A1 (DY
or Y1 (W2
KT (V; - Em(&), h) (s, x + s, v) (/T + [vd(s, x, v)) '~
xYr=1 ([vD)[0s (c(s, x, V)Y <—10(1 — |x + Ds|/IsD))a(lls| — |x + Ds|])
x@q(|ls| — |x + s|)) + c1(s, x, v)(a'(lIs] = |x + sl
x@q(|Is| — |x +0s|]) +27%a(l|s] — |x + Ds|])
x@y(ls| — |x + ﬁs||))]a,-(v) - DygZ (s, x, v)dxdvds
+ oy =N /R3 /R3 (@8 @, x, 0)) T (V) - Em(E), h) (1, x + 01, v)

i=1,2,11=1,=t
i ~
x (V1 + 2d (i, x,v)) Vet x, V)= ()
xa([lti] — |x + 011D Y<—10(1 — |x + 01 /16 D (18] — |x + 05 1)
xgg (i, x, v)ai (v) - Dygy (1, x, v)dxdv,

t
Error, = Z —/1 /R3 /1; (w%(s,x, v))zgg(s,x, v)

A1 (0D
or =1(lv)€}

X/ (Vj - Em(E), h)(s, x + 05, V)¥<—10(1 — |x + Ds]/Is])
taneiets x0TIl )
xa(||s| — |x + 0s|Dga(lls] — |x + Ds|]) + 2 (s, x, ) (d(s, x, v))l—c(L)

(@ (lls| = 1x + dsIDga(lls| — |x +dsl)) +27a(lls] — |x + D))
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x@y(lls| — |x + f)sll))]ai(v) - DygZ (s, x, v)dxdvds.

t
Errors = Z —/1 /R3 /Rz (a)g(s,x, v))zgg(s,x, v)

A1 (0D @Y
or Y21 (v

XTJ (Vi - Em(E), h) (s, x + s, v)P<_10(1 — |x + s /s])
xy=1(lvDc(s, x, v)(\/ 1+ |v|2d(s, x, v))l_cwq(s, X, V)

x[a' (1] — |x + ds[D@a (1] — |x + Ds|]) + 27 %a(||z] — |x + Ds]])
><§0,/j(||5| —|x+ ﬁsll)](xi(v) -Dygg (s, x, v)dxdvds.

Very importantly, recall that a’(x) = ¢/,(x) = 0if |x| < 2719 we can localize away
from zero.

For the first part of error term “Error;”, we use the second decomposition of “D,” in
(3.30) in Lemma 3.1. From the estimate (8.24) and the estimate (8.124) in Lemma 8.12,
the following estimate holds,

|Errori| S 3 reqin lally
X[ ek pimt 29001+ )=, (7, x, v)

xTE (V- Em(&), h) (T, x + b, Wl ]lle(, x, v)lLe, Eg. ,(T)
+ 1 [ peicpimt 2N A+ ) O TE (V) - Em(E), h) (s, x + s, v)
xep (s, x, )|, J(1+ ISI)‘lllaIIYEg;d(S)
X (||c(s, x, V)llLes, +s95c(s, x, v)||Lg?U)ds < (2k+d + 22]“r2‘1)2_4k+
xllally lm@Else] Xreqr i e x, v, ES. (D) EfL, ()
+ [T+ 1D (lleCs, x, v) [l Les, + slldse(s, x, VLe,)
xE ($)Efy. 4 (s)ds]. (8.27)

For the second part of error term “Error;”, we use the first decomposition of D,
in (3.30) in Lemma 3.1. From the estimate of coefficients in (3.33) in Lemma 3.1,
the estimates(8.22) and (8.24), and the estimate (8.125) in Lemma 8.13, the following
estimate holds,

t
|Errora] 2% Jlally [lm (&) s /1 A+ 15D leGs, x, )l Les, (8.28)

xEf’ ($)Efy.4(s)ds.

Lastly, we estimate Errors. Recall (8.27). For this case, we use the first decomposition
of “Dy,” in (3.30) in Lemma 3.1. Recall the detailed formula of “d, (¢, x, v)” in (3.31)
and the detailed formula of c3(¢, x, v) in (8.23). From the equality (3.7), we have

(

d(t, x, v)es(t, x, v)|
|[£] =[x +0t]|
1
< —.
~ 1+ |v|2

|x - D
t+ (1+v) (|x - vl+|x]) 2]+ |x + Ot

JW<—s(1—|x+0r/lt]) <

(8.29)
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Recall the definition of ¢ (¢, x, v) in (4.72). The following estimate holds for any fixed
x, v € supp(c3(t, x, v)¥=1(|v])),

jett, x, o)l (o) _ x|
o xv) I+

(8.30)

From the above estimates (8.29) and (8.30), the estimate (8.127) in Lemma 8.13, and
the estimate (8.140) in Lemma 8.14, the following estimate holds

t 1 ~
|Error3| 5 ]; zd(“TlvlTkM(Vj Em(E), h)(s, x + s, U)HL%CU

I .
HITEW - EmE), W), x+ B, ) ge, Ylally le(s, x, vl e,

t
*Ef y$)ds 24 ally m @) o0 /] (L4157 leGs, x, )l 20, Efn () Ef. 4 (5)ds,

(8.31)

To sum up, recall the decomposition (8.25), our desired estimate (8.21) holds from
the estimates (8.27), (8.28) and (8.31). a

Lemma 8.3. The following estimate holds,

T} (m,a,c,h) + T, (m,a,c, h)| < (2K +22k+2d) =4+ 14|

xlm (@) s (f1 (1 +1sD (B, (90)7 ES, 4 (5)
x(llets, x, v)llzgs, + 1 Dves, x, V)25, )ds). (8.32)

Proof. Recall (8.6), (8.16), and (4.3). As a result of direct computations, we have
[D,,,D,,1=0, D, -K(t,x+0t,v)=0, m,n=1,2,3.

Hence, we have

K(t,x +0t,v) - Dvgg(t, x, 0 (v) - Dygl(t, x,v)
+gg(t, x, V)a; (v) - Dy (K, x+01,v) - Dygl(t, x,v))
= Z K (t, x + 1, v) Dy, g5 (t, x, v) (t; (V) Dy, 8¢ (¢, x, V)
mn=1,2,3
+g§(z, X, 0)(@ (V)m Dy, Kn (¢, x + 01, 0) Dy, g2 (¢, x, V)
+85 (t, x, V) (0t; (V) Kn (t, x + 01, V) Dy, Dy, g (1, x, )
= g5 (t, x, v)[ (i (v) - VyD) x Bz, x + b1)
—(K(t, x +01,v) - Vyo; (v))] - Dug2(t, x, v)
+Dy - [K (t, x + 01, 0)g§ (1, x, v)a; (v) - Dygg (1, x, v)]. (8.33)
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From the above equality, the following equality holds after doing integration by
parts in x and v to move the derivatives “D,,” outside “K (¢, x + 0t, v)g%‘ (t, x, v)a; (v) -
Dyg%(, x,v)”in (8.33),

i‘ll(m,a,c, h)+f21(m,a,c, h) = Z
I=1,....4,j=1,2,3,i=1,....7
> I iin (8.34)

t+K:ﬂ,L,K€S,|t|:l,A"\‘1/f21(|U‘)§?Ol“l//zl(|v|)ﬂ);
where

Ill(lj fl fR3 fR3 [gﬂ(s x, 0)e (v) - Dygg (s, x, v)]
x K (s, + 05, ) - Dy (@45, x, 0))?) (V1 + [v]2d (s, x, ) ¢

xCq(s, x, v)TM(\ﬂ/‘ -Em(&), h)(s, x + Us, v)dxdvds, (8.35)
th] fl /]R3 L/‘]Rz [(wﬂ(s X, U))2 (s,x,v)oti(v) 'Dvgff(S,X, U)]

xK (s, x +0s,v) - D[ (v/1+ [v2d (s, x, v))]fc(l)Cd(s, x,v)]
x T} (V; - Em(&), h) (s, x + s, v)dxdvds, (8.36)

LK i,j fl fR3 fR3 [(w (s, x, v))2 (s, X, v)a; (v) - Dygg (s, x, U)]

x(,/1+|v|2d(s,x,v))l “Oeus, x, v)

xK(s,x +0s,v) - DU(TkM(\;j ~Em(E), h)(s, x + Vs, v))dxdvds,

(8.37)
I””j fl Jrs fR;(a)ﬁ(s X, v))z[(al(v) Vyd) x B(s, x + Ds)
—(K(s,x+0s,v) - Vya; (v))] - Dyg¥(s, x, V)8 (s, x, V)Ca(s, x, v)
x (V1+[vPd(s, x, v) T W, - Em(E), h)(s, x + Ds, v)dxdvds.
(8.38)
e The estimate of / Ll i
Recall (8.35). For the term “Dy, g% (¢, x, v)” in “ILIK i ] , we use the second decom-

position of D, in (3.30). From the estimate (4.74) in Lemma 4.2, the decay estimate
(4.96) in Lemma 4.3, and the estimate (8.124) in Lemma 8.12, the following estimate
holds from the L%yv — Lﬁ’v — L$°, type multilinear estimate,

Il < 1 d” Dl(/)ﬁ(.& Xx,v)
| L,K,i,j' ~ Il D (s,x,v)
pek.keS,yeB,|pl=1 “p

XK (5, x + 08, 0) | o oo 10X (5, x, )8 (5, x, V)
X@ra—1,a+11(Is| =[x + ﬁSH)Hi%L% llally lle(s, x, v)llLes,
|11+ o)~ ®e, (1, x, v)@a(lls] — |x + Ds]])
XT (Vi - Em(E), h)(s, x + s, v) | L, ds
< (20 4+ 225202 gy m (&) | see f{ (1 +s]) 7!
2
Xle(s, x, v) Lo, (E,ow(s)) Eg;d(s)ds.
(8.39)
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o The estimate of Iz2;< i

Recall (8.36). From the second equality in (3.34), the estimate of coefficients in
(3.35), the second part of the estimate (4.74) in Lemma 4.2, we know that the following
estimate holds,

(@, x, 1)) VD, [(d(t, x, v) =i (whale] — x +De])
x@a(llt] = |x + dr[)W<_10(1 — |x + b1/l )e(t, x, v)]|
< 2ally (lle(, x, v) e, + | Doct, x, v) 125, ). (8.40)

For the term “D,gZ (¢, x, v)” in “1L2K ;"> we use the second decomposition of D, in

(3.30). From the estimate (8.40), the dec’ay estimate (4.96) in Lemma 4.3, and the estimate
(8.124) in Lemma 8.12, the following estimate holds from the L%L% — L%L% — LPL®
type multilinear estimate,

2 1 yk+d 2k+2d \»y—4k
|IL,K.i,j| 5 ZKG&}/GB,\K\Hy\fNO Zue{E,B} f] (2 2o )2 (841)

xllally o (5. x, v)ge (5. %, V)gra—1.as11(lIs| = lx + DsIDIIZ2
xlu(s, x +09)ll s, Im(E) | spe Efh, ()
x(llets, x, v) g, + 1 Dye(s, x, V)|, )ds
S @k 4 22020y 2 = a1y, lm () [l spo [ (1 + s~
*(le(s. x. v)lLge, + IDuc(s. x. 0) e, ) (EfL, () ES, (5)ds.

e The estimate of I[3K i

Recall (8.37) and (7.26). We know that the following equality holds,

Dy (T (V- Em(E), h)(t, x + 01, v)) = [ &/ CHDEZi01IE]

iV N 7
XVU[W%IO(IQH — ud - &A@, &)dE. (8.42)
Note that
Vo =0 Vy+ ViV - Vy, Vi Vy(-£) = 1+‘v|2Vz g, -V, S)—(1+|v|2)3/2.
(8.43)

Recall (8.42). From the above equalities (8.43) and the decay estimates (8.126) and
(8.127) in Lemma 8.13, we have

[+ DDy (T (V) - EmE), @, x + 1, 0)) | o S 2 NIm(@)llspe Efp, (1.

lus, <
(8.44)

For the term “D, g2 (¢, x, v)” in “113’,(’,.’].”, we use the first decomposition of D, in (3.30).
From the above estimate (8.44), the estimate of coefficients in (3.33) in Lemma 3.30,
the decay estimate (4.96) in Lemma 4.3, and the L2L2-L2L2-L®° L% type multilinear

estimate, the following estimate holds,
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3 t ~nd Y V4
i i1 S PokesyeB ikily=No 2oue(k,B) J1 24wk (s, x, v)gk (s, x, v)
X@d—1,a+1([Is| — |x + f)SH)Hisz llallylicGs, x, v)llLe,
x|luCs, x + 0s)(L+[|s| — |x + Ds|D g,

x| (1+ ) Dy (T} (V) - Em(E), h)(s, x + s, v))HLm
S A+ IsD T2 aly m (@)l spelles, x, )L,

x(Egh, (1) ES. ,(s)ds. (8.45)

e The estimate of / [4K i

Recall (8.38). As a result of the direct computation, we have

[(L+ DV d| +[(1+ ) Ve (0)| S 1.

For the term “D, g% (¢, x, v)” in “IL4K i / , we use the first decomposition of “D,” i
(3.30). From the L — L2 — L7, type multilinear estimate, the estimate of coefficients

in(3.33)in Lemma 3 30, the decay estimate (4.96) in Lemma 4.3, and the estimate (8.126)
in Lemma 8.13, we have

i )| S CwesyeBiisivizno Souetr.s) Ji 24 Nally ol (s, x, v)gl (s, %, v)
Xl 1.asn(lls] =[x+ BsIDIZ, 1 lleGs, v, vz,
x||u(s, x + ﬁs)(l +]|s| — |x + ﬁS||)||L§??U
x||Tk“(\~/j ~Em(E), h)(s, x + Vs, v) || Lo ds
S 2 lally m @) lsge f{ (1 +1s)~!
xllets. 2, iz, (EgL, () E% ,(s)ds. (8.46)

low

To sum up, our desired estimate (8.32) holds from the decomposition (8.34) and the
estimates (8.39), (8.42), (8.45), and (8.46). O

Lemma 8.4. The following estimate holds for any fixedi € {1,2} and j € {3, 4},
T (m.a,c. )] S (2444 +22420) 2= g |y m (&) | spo
(i A+1sh™ e, x, v, Efobw(s)Eg;d(s)dt). (8.47)

Proof. Recall (8.8), (8.9), (8.18), and (8.19). For these terms, we use the second decom-
position of “D,” in (3.30) in Lemma 3.1. From the L L2 — L°° type multilinear
estimate, the second part of the estimate (4.74) in Lemma 4, 2 and the estimate (8.124)
in Lemma 8.12, we know that the following estimate holds,

. )
1T/ (ma,e,mlS X f{2%allyllets, x, vz,
Lk, pES, 1+k=p
lpl=l=1

x[lwg (s, x, v)gg (s, x, VIQ—1.a+11(Is] — |x + DsIDll 2.2

x[[(1+ [Py (lIs| — |x + Dsl]e, (s, x, v)
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XTJ'(V; - Em(&), h)(s, x + b5, V)|, [0 (5, x, v)
X@ra—1.a+11(lIs| = x + 0s|]) (h.0.15 (s, x, v)
—bulk%(s, X, U>)”L§L% + ||a)g(s, X, v)(l.o.t‘;(s, X, v))
x@a—1,a+11(Ils| = Ix + 05Dl 212 + lwfo, (s, x, VAP (h.o.t(s, x, v)

—bulk (s, x, v))@a—1,a+11(Is| — |x + UsIDliz22 + e, (s, x, v)

X AP (Lot (s, %, v))@ra—1,a+1)(ls| = |x + Ds|Dll 22 ]ds
< (@ 4 2220) 27 gy [lm (&) llspe 1 (1 + s~

xlets, x, V)L, Effw(s)Eg;d(s)ds. (8.48)
Hence finishing the proof of the desired estimate (8.47). O

Lemma 8.5. The following estimate holds,

T3 (m, a, e, )| S 2% Jlally lm @)l spe [ (A +1sD"

xlle(s, x, V), Efb, () E§. ()1 + Ef2, (5))ds. (8.49)

Proof. Recall (8.20) and (8.14). Note that, as a result of direct computations, the fol-
lowing equality holds,
0] V;
Vyb -V, = S* + : Q.
T T T e i

Recall the first equality in (3.34) in Lemma 3.2 and the equality (4.36) in Lemma 4.1.
From the estimate of coefficients in (3.36) and (3.33), the second part of the estimate
(4.74) in Lemma 4.2, the decay estimate (4.96) in Lemma 4.3, the estimate (8.125) in

Lemma 8.13, and the Liv - L%’v — L%, type multilinear estimate, we have

+ t

T3 (m,a, e, )] S YaeB pes.atipl=ng Ji 24 lallyllcts, x, v)l 20,
2

1213

X[ X peB.ipl<4 Zuciee.pey L+ (1 +[ls] — |x + s])?

xVyu(s, x + ﬁs)”Lj’-‘_’,)]

X [lwg (s, x, v)gg (s, %, I[d—1,d+11(lls| =[x+ Ds|D]]

g T4 (V) - §m(E), h) (s, x + s, v) | oo, ds
S 2 ally Im @) llspe [{ (1 +1sD ™!

><||c(s,x,v)||L§oUEg:d(s)Eeb (s)(1+E€ (s))ds.

low low

In the above estimate, we used the fact that we can gain at least (1 + lv])~3 from the
hierarchy of the weight functions when estimating the error term e/r_ﬁﬁg (t,x,v). O

Lemma 8.6. The following estimate holds,
\TZ(m, a, c, )| +|TE(m, a,c, h)| < (2k/3+4/2 4 22k+2d) =4k
lally llm &) llse[ fi (1 +1sh~!
xlle(s. %, v)llzge, (EfL, () ES, 4 ()ds)- (8.50)
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Proof. Postponed to Sect. 8.2. O

Assuming the validity of Lemma 8.6 holds, we finish the proof of the desired estimate
(7.63) in Lemma 7.9.

Proof of Lemma 7.9. Recall the decompositions of T (m, a, c, h) in (8.1), (8.5), and
(8.15). Our desired estimate (7.63) in Lemma 7.9 follows directly from the estimate
(8.21)in Lemma 8.2, the estimate (8.32) in Lemma 8.3, the estimate (8.47) in Lemma 8.4,
the estimate (8.49) in Lemma 8.5, and the estimate (8.50) in Lemma 8.6. O

8.2. Proof of Lemma 8.6. Recall the detailed formula of le (m, a, c, h)in (8.7) and the
detailed formula of bulk terms in (4.29). Since new bulk terms are introduced because
of the integration by parts in time process, there is an issue of losing another weight of
size “|v|” caused by the new introduced bulk terms.

To get around this issue, intuitively speaking, we observe that there exists a hidden
null structure inside a bilinear form of the type “Q)J‘.u 1(t, x+f)t)£2fu2(t, X+08)",u1, unr €
{E, B}. To better explain this observation, we first do dyadic decompositions for E (¢, x +
vt) and B(t, x + vt) inside 7~”]2(m, a,c, h). As aresult, we have,

le(m,a, c, h) = Z K,ill’k, (8.51)
k1€Z
where
d ._

K= 2 >

Jj'=1,2,3 A‘”'/le(\vl)ﬂ}{ U+x'=B,1,k€S,|/|=1

P=loesT or gy (quhy A~z (DR or Yz (W),

2

Ji Jes Jos (%G5, x,0) i (v) - Dyg (s, x, v)

xajr (V) - Q’;,(Ek1 (5, X +08)+ 0 X By, (s, x + ﬁs))

x@; (v) - Dyg? (s, x, v) (v/T+ 02 (s, x, v))* O
xCy(s, x, v)Tk”(Vj ~Em(§), h)(s, x + Us, v)dxdvds, (8.52)

Recall (8.17), (8.12) and (4.26). Similarly, we do dyadic decor}lposition for E(t, x +
vt) and B(t, x + 0t) and have the following decompositions for T22(m, a,c,h),

Tzz(mv a,c, h) = Z S]?hka (8.53)
ki€Z

where

ta= ¥ % [ L ey

j'=1,2,3 AL~¢21(|U|)§L/_‘ U+’ =B,1,keS,|/|=1
P=lenT oryay (o) A~z (0D or vy (0D,

(W{Z(S, X, v))zfﬁ'(l)*c(ﬂ)
xgg (s, %, V)i (v) - 5 (E(s, x +05) +0 x B(s, x +05))ei (v) - (i (v) - DyDyggi (s, x,v))
xCy(s, x, V)T (V; - Em(&), h)(s, x + Ds, v)dxdvds. o
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We remark that similar to the dyadic decomposition we did in (7.9), we did the above
dyadic decomposition for the new introduced electromagnetic field in (8.51) and (8.53),
to get around a technical summability issue in the frequency.

From the detailed formulas in (8.52) and (8.54). We know that there exists a bilinear
form of type “Q)j‘.ukl (t, x + ﬁt)Tk”(Vj -Em(&),h)”, u € {E, B}. Motivated from this
type of product, we define a more general multilinear operator as follows.

Definition 8.1. For any fixed k, k1 € Z, fixed j, j' € {1, 2, 3}, fixed a, € {1/2,iun/2,
—ip/2}, any fixed f, g € {h{(t), h5(t),a € B, |a| < 10}, where h{(¢) and h (t) are
the profiles of the electromagnetic field, and any given symbol a1, a; € S*°, we define
a multilinear form TV (-, -, -, -) as follows,

TV(f. 8.1, a)(t. %, V) = Y cpe_y Jro Jo € CHOEitIE—I=itvlal (8.55)

V E-mVjn
xzaﬂf(t & —n)g(, U)W

xay(§ —max(my=10( (Il — v - )Y (M, (¢ — mdndé.

In particular, the multilinear form TV (f, g, a1, a2)(t, x, v) can be represented as a
product of two integrals as follows,

TV(f.8.a1,a2)(t. %, 0) = 3 ey a2 (F e 1 ay )y, () F 1, )11, x +01)
xT) (Vj -Saz(éj), &), x +0t, v), (8.56)
where the operator 7}/ (-, -) is defined in (7.26).

Toreveal the hidden null structure inside the multilinear form TV (f, g, ay, a2) (¢, x, v),
we decompose TV(f, g, a1, a2)(t, &, v) into two parts as follows,

TV (f, g, a1, @) (t, x,v) = T"'(f, g, a1, @) (t, x, v) + T"2(f, g, a1, a) (¢, x, v),

(8.57)
where
T(f g a)tx ) = Y / [ ettt sai-ininlia, f. g~ g
Hel+,— R JR?
(S v L)z, my
E—n "l
\%
W# L€ — mar (10t (0l — v5 - )V )iy € — mdndE, (8.58)
TV(f g ara)txv) = ) / / Gl st =i, 7. & — )
pefr—) /R IR
/ij"n,g\(t,n) \S—nl‘ij-n
0] [n| —vo-n

xay (& —max(my=10(t (0l — v - M)V (M, (¢ — mdndé (8.59)
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—vV £V -k
[EI(1E] — vD - §)
x Fay (), ()a(t, )1, x + 01), (8.60)

=F e EZ, £) a (E)P=10((1E] — 1 - ENYr (), x + 1, v)

where u € {0, E*, 9, B*, |V|E*, |V|B%, a € B, |a| < 10}.

We understand the hidden null structure of the above-defined multilinear form in the
sense that the decay rate over time can be improved. More precisely, for the first part
“TV:L(f, g, a1, a2)(t, x, v)”, we can gain “1/¢” by doing integration by parts in “”.
Meanwhile, for the second part, we have one more good derivative Q’]f/ acts on “g”,
which improves the decay rate.

Note that, as a result of direct computations, the following equality holds,

D Eitlsnl=inhil 7, ( §—n uvi)
& —nl nl
_ T V- vn(ei(x+tﬁ)<é—itu|5—rﬂ—itv|n|). 8.61)

Hence, after doing integration by parts in “n” for 7" 1 (f, g,a1,ax)(t, x,v), we have

TV f g, a1, a0)(t, x,v) =t (IL(f, g a1, @) (t, x, ) + I2(f, g, a1, a2) (1, x, v)),

(8.62)
where
1 _ _ i(x+10)-E—itp|E—n|—itv|y| ~.,
I,(f, g, a1, a2)(t, x,v) = ME{;,} /11@3 /111{3 e mis=n Ma, Vi
Vo (Ft, & =g — 0l (€ — mar € — )
_ V- .
XG0 (] = i )Y (. (8.63)
R(f g.aa)tx,v) = Y _/ / pHleHiEiule—nl=itstil g Fo g )7
pe{+,—} B RS
_ Vi
.V t, /7A
r](g( n)|77| 07

xar (M Yr=10(t (In] — nd - gk IE — nlve, € — nay (& — n)dndé
= F a1 &)y, E)i(t, £)](t, x + 1)
_Vj &

xF e B, Ve (— L
Vel = os g

gt §)ax(E)Y=10(t (5] — vD - )Y (§))1(r, x + 01, v),
(8.64)

where u € {0, E%, 9;B*, |V|E“, |V|B%, @ € B, |a| < 10}.
To sum up, from the decompositions (8.57) and (8.62), we have

TV(f, g, a1, a2)(t, x,v) —t " IN(f, g, a1, ax) (1, x, v)
=TV2(f, g, a1, @) (t, x,v) +t ' I2(f, g, a1, a)(t, x, v). (8.65)
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Recall the product formulas of T”‘z(f, g,ap,ax)(t, x,v)and Ivz(f, g,ap,ax)(t, x,v)in
(8.60) and (8.64). From the decay estimate (4.97) in Lemma 4.3, the estimates (8.126)
and (8.127) in Lemma 8.13, we know that the following estimate holds,

|T)(f. g a1, ax)(t, x,v) — 7 I} (f. g, a1, a2) (¢, x, v)|
XW<—s(l — |x +0t/[t])
SA+[D2A+l] = |x + ﬁtl)flzk”kf%'*%k*||a|(%’)Ilsgf

xllaz (€)1 spe (EfL, () (8.66)

With the above preparation, we are ready to estimate K} d .k and Sf - Recall the

detailed formulas of K} d Lk and Sk * in (8.52) and (8.54). For notat10na1 simplicity, we
define the following quantltles

Definition 8.2. For any fixed i,i" € {1,...,7},ve {+,—}a € B, B, 1,k ', k".y, €S,
stttk =U+k' =B, '+y =k, il =]/ =1, A' ~ 1p>1(|v|)S2x or 1//>1(|v|)Q“,

A~ w21(|v|)Q)]f, or ¢21(|v|)§;, for some j, j' € {1, 2, 3}, we define four integrals
as follows,

Kio= / / / (s, x, ) (v) - Dygl (s, x, V)t (v) - Dygl (£, x. )
R3 JR3
(md(s’x7v))2 c()—c()

xCy(s, x, v)[ _111(f g,ar,ax)(s, x, v)]dxdvds (8.67)
~;{112k ,_/ /}R3 A; a)ﬂ(s X, v)) a1 (v) - Dygpi(s, x, v)e (v) - Dygye (s, x, v)
(VI +02d(s, x, v)) <07

xCy(s, x, v)[T"(f g,ar,ax)(s, x,v) —s_lll(s X, v)]dxdvds (8.68)
§1‘<111k _/ A@ /N wﬁ(s X, v)) gﬁ(s X, v)oyr (oc,(v) D Dvgy(s X, v))
(V1+ [v|2d(s, x, v))2 e
xCy(s, x, V)[s I} ([, g. a1, @) (s, x, v)]dxdvds, (8.69)
t
Slglzk = /1 /1;3 /]12{3 (w%(S,x, v))zg%‘(s,x, vai - (e (v) - DyDygy (s, x, v))
(mg(s, X, v))z_c(l)_C(L/)

xCals, x, V)[T"(f, g, a1, a)(s, x, v) — s~ L;(f, & a1, a2)(s, x, v) [dxdvds.
(8.70)

Lemma 8.7. For the integrals K k and Sk k defined in (8.67) and (8.69), the following
estimate holds,

KL+ 150 <f (1+ 15D et 2, )i, (Efh, () ES. 4 (5)ds

x 20 (vt g )=t s gy flay (©) e lax©)llspe- - (B.71)
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Proof. e The estimate of K ky k Recall (8.67). For all the vector fields “D,” in
(8.67), we use the second decomposmon of Dy in (3.30) in Lemma 3.1. Note that the
following estimate holds for any p € K, |p| = 1 from the detailed formulas of e, (¢, x, v)
in (3.32),

1L+ o) =Pe (2, x, )Y s (1 — [x+0t] /[t 1220 S (1 +1). (8.72)

X

Recall (8.63). For any p € IC,|p| = 1, after representing the mulitlinear form
IV1 (f, g,a1,a2)(s, x,v) as a product form, we know that the following estimate holds
from the linear decay estimate (2.11) in Lemma 2.2 and the estimate (8.124) in
Lemma 8.12,
1L+ 10D =P, (2, x, v)@a(llt] — e + DD (S, g0 ar, a2)(t, x,v) s,
_ 2
< L+ n712R @0 4 220278 gy () | spe llaz (6) Nl spe (Bl (1)
(8.73)

Therefore, from the estimate (8.72), the estimate (8.73), the second part of the estimate
(4.74) in Lemma 4.2, and the L)%!U — Lﬁ’v — L%, type multilinear estimate, we know
that the following estimate holds,

gd,1 d+ky (Hk+d 2k+2d\n—4ky—4ky 4
|K | < Zyes,|a\+|y|5/v02 - '(2 T4 2o )2 L lally
X[} e (o v)gs (s, x, v)gra—t.asn(lls| = x + sIDIZ, 2
x(1+s])~! ||al($)||3°°||a2(§)llsg°
2
x[le(t, x, v)|lLe, (El"ubw(s)) ds]. (8.74)

e The estimate of Sd lk Recall (8.69). As in the estimate of K we use the second
decomposition of “DU” in (3.30) in Lemma 3.1 for all the vector ﬁelds “Dy,” in (8.69).
As a result, the following equality holds,

DyDygy(t, x,v) = Z ep, (1, X, V)AP (e, (1, x, VAP g, x, V).
p1.02€S,|p1l=|p2l=1
(8.75)

Note that the following estimate holds if t + (' + k' = 8, p, p’ € K/{@},
o
| wg (x,v)
wg’opo/(/('x’ U)

Recall (3.32). From the equality (3.34) and the estimate (3.36) in Lemma 3.2, the fol-
lowing estimate holds,

| ~(1+ |v|)C(l)+E(t’)—C(p)—C(p’)(¢(t’ x, v))i(p)+i(p’)—i(¢)—i(ﬂ)' (8.76)

Z 1+ ) =P APe, (1, x, V)Y<_5(1 — |x + otl/1tDllege, S (1+1).
p1,mES,|p1|=Ip2]=1

(8.77)

From the estimates (8.72) and (8.77), the estimate (8.73), and the estimate (8.76), the
following estimate holds for fixed y € S, s.t.,, 1+ +y = B,
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o Cx, ) (I [Pd (@, x,0) O™ D Dygl (1, x, v)
XT3V (f, g, a1, a2)(t, x, v)ga(||t] — |x + 0r])
xre_s(1 = x + 0r1/ItD 2,

dky (oktd | H2k+2d\H—dky —dk
S D okeS, lal+ik|<No 2 12 42 )2 et

xla1®)llspe laz®)ll s (£, ()

x|l (x, v)g¢ (¢, X, V)ga—2,a+21 (11t} = [x + 01|l L2 2. (8.78)

Therefore, from the above estimate (8.78) and the L)zc,v — Liv — L$°, type multilinear
estimate, the following estimate holds,

|§Iz{11,’1k| < pd+ki (2k+d + 22k+2d)274k+74k1_+ flt(l + |s|)71 lally
xla1®)llsge laz (@)l e, x, V)1, (B, () g y)ds. (8.79)
To sum up, our desired estimate (8.71) holds from the estimates (8.74) and (8.79). O
Lemma 8.8. For the integral l?gl”zk defined in (8.68), the following estimate holds,
|Elf{,2k| < (2k1/2+k/2+d +23(k1+k)/2+3d)2—4k1_+—4k+”a”Y
X a1 (€)1 llaz (@) llspe (1 (1 +1s)~!

x|lc(s, x, v)|| L, (El"obw (s))zEg;d(s)ds). (8.80)

Proof. Recall the detailed formula of I?fl’zk in (8.68). Based on the possible size of “|v|”,
“x - v”, and “|x|”, we separate into fours cases by utilizing the following partition of
unity,

L= " it x,0), mit,x,v) = Yeger/asio(Jvlle]7173), (8.81)
i=l1,....4
ma(t, %, 0) 1= Ve ey asto (10112172 ro(1x 1/ (121 /0] + 12112)), (8.82)
3, %, ) = 70 1]/ 1)V erkyy a0 (101121 772) x w0 (11 /(121 /10] + 1211/2)),
(8.83)
1a(t, %, 0) 1= Yo ey jasto (01217 2) (1= 7 - Ble1/1x1P)) x W=10(1x1/(Ie1/1v] + [¢1172)),
(8.84)

where 7(x) : R — R is a smooth function such that it equals to one inside (—oo, 274
and it is supported inside (—oo, 27]. Correspondingly, we define the following corre-
sponding integrals,

Jl(t) Z/ / (a)g(xvv))zai/(v)'Dvg,ocl’(t7-x7 U)(Xi(U)-Dvg,O(l(t,X,U)
R3 JR3

(md(t, X, v))zfc(l)fc(t/)
xCy(t, x, V[T (f, g, a1, a)(t, x,v) — t ' I} (f, g, a1, a2)(t, x, v)|mi (¢, x, v)dxdv,
(8.85)
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where i € {1, 2,3,4}. Hence, from the detailed formula of f,‘jlzk in (8.68) and the
partition (8.81), we have

K= /1 Ji(s)ds. (8.86)

@ The estimate of Jy, i.e., the case when 1 < |v| < 2(+kD/4+10(] 4 |1y1/2,

For this case, we use the first decomposition of D, in (3.30) in Lemma 3.1 for all vector
fields “D,” in (8.85). From the estimate of coefficients in (3.33), the second part of the
estimate (4.74) in Lemma 4.2, the estimates (3.8) and (8.66), and the L L2 - L%,
type multilinear estimate, we know that the following estimate holds for any ﬁxed time
t € [11, 2],

_ — 2
[J1(0)] S 28kt (1) TN (ERD, (0)TES. O llally
xllar©)llspela2 @)l spe et %, v)l1zge,

(274 (L + 1D T 0P Y <k asio (0117 2) o)
5 (1 + |t|)—1(23(k1+k)/2+3d+2k1+k+2d)

x 21— 1 Ly llay (§) Isgellaz(€)llspe
x[le(t, x, v)|l Lo, (Ezefw(t))zEg:d(t)' e

@ The estimate of J, i.e., the case when |v| > 2K+k1)/4+9¢|1/2
210(Je1/10] + 1211/2).

For this case, we use the second decomposition of “D,” in (3.30) in Lemma 3.1 for
all the “D,” derivatives in (8.85). Recall the detailed formula of e, (¢, x, v) in (3.32).
From the estimate (8.66), the second part of the estimate (4.74) in Lemma 4.2, and the
Liv — Liu — L$°, type multi-linear estimate, the following estimate holds for any fixed

t €1, 1],

+ 1 and |x| <

|2(0)] S 2R =R (10 72 ey a0 (0 11ETT2) e + (1 + () 7'129)

xllallylla1 @) llspellaz @) llspe e, x, v)llg, (Elow(t))zEg;d(t)- (8.88)

@ The estimate of J, i.e., the case when [v] > 251/2%91¢|1/2 4 1, |x| > 210(|¢|/|v] +
t1'/2), and x - § < —27*[x[?/]¢].

Recall the definition of ¢ (¢, x, v) in (4.72). We have (x, v) € supp(¢(t, x,v) — 1)
for the case we are considering. Recall the equality (3.7). We know that the following
estimate holds for the case we are considering,

d(t, x,v) - t 12

<
el = lx+ 0t~ r 4+ (14 [ul)(x - v + 1)~ (L+ [w)?]x?
1 x| t
¢t x,v) ™ x-v] "~ vllx]

(8.89)

For this case, we use the second decomposition of D, in (3.30) in Lemma 3.1 for all
vector fields “D,” in (8.85). From the above estimate (8.89), the detailed formulas of
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ep(t,x,v) in (3.32), the estimate (8.66), and the L? ,, — L2 | — LY, type multi-linear
estimate, we have the following estimate holds for any fixed time t € [1, T'],

|J3(0)] S 2Rk =33k (10| 20 ey ario (101161 N oo + (1 + [e))7127)

xllally llar@llspellazE)llspelle(, x, llzes, fé’wm)zEg;d(r). (8.90)

@ The estimate of Jy, i.e., the case when |v| > 2K1+0/2+9 4| 1/2 11 x| > 210(|t|/|v| +
t1'/2), and x - § > —27*[x|?/]¢].

Recall the first equality in (3.7). We know that the following estimate holds for the
case we are considering,

1 2 tlx] ) 1
w o * e RO S @9

12 = Ix + 01| = x)?, =

For this case, we use the second decomposition of “D,” in (3.30) in Lemma 3.1 for all
the “D,” derivatives in (8.85). Recall the detailed formula of e, (¢, x, v) in (3.32). From
the estimates (8.66) and (8.91), the second part of the estimate (4.74) in Lemma 4.2, and
the L)%,U — L)%’U — L$°, type multi-linear estimate, the following estimate holds for any
fixedt € [1,T],

[Ja(n)] $ 202070 (g iy ally lar §) s laa )l spe
2
xlle(t,x. vz, (i, () Ef.q (0. (8.92)

To sum up, recall the decomposition in (8.86), our desired estimate (8.80) holds from
the estimates (8.87), (8.88), (8.90), and (8.92). m|

Lemma 8.9. For the integral glgf,zk defined in (8.70), the following estimate holds,

t
= _ 2
AR /1 L+ 1D leGs. x, V) s, (Efoy ()" ES. 4 (s)ds

x (20rzed g 3020 ey ay (6) s a2 8) l sge- (8.93)

Proof. Recall (8.70). From the two decompositions of D, in (3.30), we know that the
following decomposition holds for the second order derivative “D, D,,”,

D,D, = Pl(Dva) + Ll(Dva) = PZ(Dva) + LZ(Dva)v (894)

where P;(DyD,), i € {1, 2}, denotes the principle term of “D, D,”, which is a second
order derivative and L;(D,D,), i € {1, 2}, denotes the lower order term of “D,D,”,
which is a first order derivative. More precisely, we have

Pi(DyDy) = Z dpl (, x, U)dpz(t,x,v)Aplo'Oz,
p1.m€K
[p11=[p2|=1
Py(DyDy) = Y ey (t, X, V)ep A, (8.95)
p1,02EK

lo1|=lp21=1
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Li(DyDy) = Y dp(t,x, )N (dpyr.x.)) A,
p1.m€eK
[p11=]p2|=1
L,(DyD,) = Z epy (t, X, V)AP (epy1x.0)) AP, (8.96)

p1.m2€C
[p11=lp21=1

From the detailed formulas of d, (¢, x, v) and e, (¢, x, v) in (3.31) and (3.32), the first
equality in (3.34), and the estimate of coefficients in (3.35) and (3.36), we know that the
following estimate holds,

5 2
Z |dy, (2, x, V) AP (dpz(t, X, v))| < (l +|d(t, x, v)|) (1+ |v|)2,
p1,02€K,|p1=lp2|=1

(8.97)
D e x A (eptx )W (/A4 1) S (L ),
p1,m2€K,|p1]=|p2]=1
(8.98)

Similar to the estimate of E,flzk in Lemma 8.8, by using the cutoff functions 7; (¢, x, v),

i € {l,...,4}, defined in (8.81), (8.82), (8.83), and (8.84), we decompose gg.’zk into
four parts as follows,

t
Sth=> /1 Si(s)ds, (8.99)

where

Si(t) = /R3 /R3 (0% (x, 1)) g%t x, V) - (i (V) - DyDyglit, x, v))
(VI+ P, x, )00

X Ca(t, x, v)ni (6, x, [TV(f, g, a1, a2)(t, x, v)— 17 1) (f, g, a1, a2) (¢, x, v) [dxdv.
Similar to the estimate of J;(¢), i € {1, 2, 3, 4}, in the proof of Lemma 8.8, we use
the first decomposition of “D,” for S1(¢) and use the second decomposition of D, for
Si(2),1 € {2, 3, 4}. More precisely, we separate into two cases as follows.
@ Theestimate of S;. For this case we use the first decomposition of D, . Equivalently

speaking, we use the first decomposition of D, D, in (8.94). As a result, the following
decomposition holds,

S1() = S1,1(1) + S1,2(2), (8.100)
where
s = [ [ (@) e (8.101)
R3 JR3

xatjr (V) - (o (v) - Py(DyDy)g2 (1, x. v)

x(VI+TPd x, )OO x vy . x, )
x[TV(f. g, a1, a2)(t, x,v) — TN g ar, @) x, v)|dxdv,
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$120 = [ [ (ot o) g

X (1) - (@ () - L1 (D Dy)g(t, %, v)

s (VI + Rd(t, x, ) Oyt x, vym e, x. v)

x[TV(f. g, a1, a2)(t, x,v) — TN g ar, @) x, v)]dxdv. (8.102)

Recall the detailed formula of Py (D, D) in (8.95) and the detailed formula of Sy 1(¢)
in (8.101). We know that Sy 1 (#) and J; (¢) are of the same type. With minor modifications
in the estimate of J;(¢) in (8.87), the following estimate holds,

|S1’](Z)| S (1 + |t|)—l(2k1+k+2d +23(k1+k)/2+3d)2—4k1,+—4k+
xllally llar &) llspellaz E) llspe

xlle(t, x, v)l 2, (Ef (t))2Eg;d(t). (8.103)

low

Recall the detailed formula of L1 (D, D,) in (8.96) and the detailed formula of S; 2(¢)
in (8.102). Since L1 (D, D, ) is a lower order derivatives, we can gain at least (1 + lv])~10
from the hierarchy of the weight functions between different order derivatives. As a
result, from the estimates (8.66) and (8.97) and the Li,v - Li,v — L, type multilinear
estimate, we have

1S12(0] < 1+ |t|)—12k1+’<+2‘12‘4’“-+‘4"+IIallyllal(é)lls,gf laz @) llseelle(r, x, v) g,
2
(Efon (D) Ef 4. (8.104)

@ The estimate of §;, i € {2, 3,4}. For these three terms, we use the second decom-
position of D, D, in (8.94). As a result, the following decomposition holds,

Si(t) =Si1(@®)+Si20t), i€{2,3,4}, (8.105)

where
S0 = [ [ @5 0) g5 v (@) - PaDu DG 7 0)

(1 +102d(, x, )0~

x Ca(t, x, )i (1, x, V[T (f, g, a1, ap)(t, x, v) =1 1} (f, g, a1, a2) (1, x, v)|dxdv,
(8.106)

Si2(t) = /11%3 ./12&3 (0 (x, v))2gg(tvx, v)a;r - (@ (v) - La(DyDy)gy (1, x, v))

(mﬁ(z, X, v))2—c(z)—c(u)

X Cy(t, x, V) (1, x, V[TV (f, g, a1, a)(t, x,v) —t "IN (f, g, a1, a2) (1, x, v)]dxdv.
(8.107)

Recall the detailed formula of P>(D, D, ) in (8.95) and the detailed formula of S; 1 (¢)
in (8.106). We know that S; 1 (¢) and J; (¢), i € {2, 3, 4}, are of the same type. with minor
modifications in the estimate of J;(¢), i € {2, 3, 4}, in (8.88), (8.90), and (8.92), the
following estimate holds for any i € {2, 3, 4},
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1Sia O] S (1+ Jr~! U072y k2 g =8 =8 aly flay (§) | e laz (€)1 spe
2
xle(t, x, v) [, (Efm () Ef. 4 (). (8.108)

Recall (8.107) and (8.96). Again, since L,(D,D,) is a lower order derivative, we
can gain at least (1 + |v])~'% from the hierarchy of the weight functions between the
difference of the orders of derivatives. Note that |v| > 2 (k+ky)/4+9 |£]Y/ 2 inside the support
of ni(t, x,v),i € {2, 3, 4}. Therefore, the following estimate holds from the estimates
(8.66), (8.98), and the L2 |, — L2 — L%, type multi-linear estimate,

3 1Sia(] £ 2T (1 ) T2y ek a0 (01122 o lallyllar ©)l.sge
i=2,3,4

x[la2®)lspolle(t, %, v)ll 20, (Efm ) Ef, (1)

< (U ey~ 12kt 2y =k =4k gy la1@®)llsgo
xlaa )l spe e, x, vl e, (B (10) BG4 0. (8.109)

To sum up, recall the decompositions (8.99), (8.100), and (8.105), our desired estimate
(8.93) holds from the estimates (8.103), (8.104), (8.108), and (8.109). |

Lemma 8.10. The following estimate holds,

|KI({1,kl | + |S]L(ll,k| S (2(k+k|)/2+(1 +23(k+k1)/2+3d +2k1+2k+3d)274k+74k1_+”m(E)”SkOC”a”Y
t
_ 2
x[/ A+ 1D ies, x, V)L, (Ef2, () E§. 4 (s)ds]. (8.110)
1

Proof. Recall (8.52) and (8.54). Note that, for any u € {E, B}, the following equality
holds from some i € {1, 2},

Qg (0, x + DT (V- Em(E), h)(, x + 1) = T (hi (1), h(1), 1, m).

From the above equality, we know that the desired estimate (8.110) follows directly from
the estimate (8.71) in Lemma 8.7, the estimate (8.80) in Lemma 8.8, and the estimate
(8.93) in Lemma 8.9.

0

To get around the summability issue in k1, same as what we did in the decomposition
(7.53), we also use the process of trading spatial derivatives for the decay of the distance
to the light cone ““||z| — |x + 0z]|”. As a result, we have

Lemma 8.11. The following estimate holds for any d € N, d > 10,
|K]ikl | + |S]gl,k| SJ [(2(k+k1)/2+d + 23(k+k1)/2+3d + 2k1+2k+3d)(2—3k1 —3d + 2—4k1 —4d)
+2k—k1 (1 + 2—2](1 —2d

k=2k1—d | nk+d\]y—dke 4k
+2 72 2 7T I (8) [ sp< Nally,

t
[/] L+ 15D et x, vz, (B, () ES. 4 (5)ds]. (8.111)
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Proof. Recall the decomposition (7.33) in Lemma 7.6. For any u € {E, B}, we have

Qg (1, x + 00 = Lyl x 400 + Ly ol x+0r,0)+ > B [ul,x +1,v),
i=l,...5
where L,i j,[u (t, x, v) and L/;;;/ [u](t, x + 0z, v) were defined in (7.44) and (7.51) and
k1 j,[u](t x +0t,v),i € {l,...,5}, were defined in (7.43) and (7.52).

Correspondingly, we decompose K ﬁ k, and S,f‘ k, into three parts as follows,

= > Ky K= X K Sl = X Stk St Z Skklw

i=1,2,3 i=1,...,5 i=1,2,3 i=l1,.

(8.112)

where

Kiw= 2 2 2

o

Jj’=1,2,3 At~w>1(|v|)gl U+’ =B,,keS, |V |=1
=L, orw>|(|v\)ﬂ‘ A ~11/>|(\v\)§2‘ oryr=1 (v,

//1R3/1R3 wﬁ(sxv) a,(v) DLgK(va)

xa;r (v) - (Lk],_,"[ 1(s, x +Ds) + D x Lkl.j/[ 10s, x + ﬁs))ozi(v) -Dyge (s, x,v)

X Ca(s, x, )T+ pd(s, x, 1)) OO TET, - em(E), h)(s, x + bs)dxdvds,  (8.113)
d;2 .
K=Y X 2
j'=1.2.3 At~w>1(|v|)g' U+k'=B.1.keS | |=1
=l orv/>.(|v\m‘ A ~111>1(\v\)9‘ 0r1//>|(\vl)9*

//RSAB wﬁ(sxv) a,(v) Dygli (s, x,v)

xa;r (V) - (Lk] S LE]Cs, x +0s,v)+0 X Lk] ' [B1Gs, x + Vs, v))ot,-(u) - Dyg2(s, x,v)

% Cals, x, V) (V1 + A5, x, )OO TV, - em(E), h)(s, x + Ds)dxdvds,  (8.114)

> X 2

Jj'=1 23At~¢>1(|y\)m V+k'=B,1, k€S, ||=1
U= oryy oy A~ ¥z (DR or vz (DS,

t
/1 /]1&3 /11;3 (0 (s, x, v))zai/(v) - Dygli(s, x,v)

xa; (v) - Dygy (s, x, v)a (v) - ( ki’ JLE](s, x +0s,v) + D X Ek L [[B1(s, x + Vs, v))
XCd(s X, o) (VI + PG, x, 1) O OTET,  Em(E), h)(s, x + Ds)dxdvds, (8.115)

kl» : Z Z

=123 At~y (WDQY V+k'=B,1,k €S |V |=1
/:1,“., Orl//>1(\u\)QX AV ~1//>1(\v|)QL Or\//>1(\v|)Q

//ﬂ%3fﬂﬁ‘ wﬂ(sxv) gﬁ(sxv)

xaj(v) - (Lkl.jr[E](s, X +08)+0 X Ly, i/ [B](s, x + ﬁs))a,-(v) . (oz,-(v) . DUDvgfj, (s, x, v))
% Cy(s, x, v)(y/T+ 2d(s, x, 1)) O OTET; - em(€), h)(s, x + ds)dxdvds, (8.116)
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= X

j'=1, 23A1~1//>1(M)QL U+i'=p,1,keS, |/ |=1
P=lnT oryay(up@y A ~Y=1 (v or vy (W),

//R3/1R3 a)ﬂ(vxv) gﬂ(vxv)

xaj(v) - (Lkliyj/[E](s X +0s,0)+0 X Z;:T;[B](s, x + 05, 0))e; (V) - (2 (v) - Dy DygZ (s, x, v))
><Cd(v X, ) (V1+ 02d(s, x, ) O OTET, - Em(E), h) (s, x + Ds)dxdvds, (8.117)

k] kz = Z Z
Jj'=1 2%AL~¢>1(|U\)QV U+K'=B,1,keS,|V|=1
P=lenT oryay (@) A~V (0D or e (0D,

//IR‘/ wﬂ(s,x,v))zgg(s,x,v)

xa; (v) - (Ekl,j,[E](s, X+0s,0)+0 X E,’;l’j,[B](s, X + Vs, v))oz,-(v) . (a;(v) . DUDUg,‘z‘/ (s, x, v))

X Ca(s, x, v) (V1 +02d(s, x, 1)) O OTT; - m(&), ) (s, x + bs)dxdvds. (8.118)

e The estimate of Kkk and Skk ,ie{l1,2}.

Recall (8.113), (8. 114) (8. 116) and (8.117). Moreover, recall again (7. 44) and (7.51).
For any u € {E, B},we know that the following equality holds for some i € {1, 2},

kl J,[u](t X, v)Tk (V ~Em(§), h)(t, x + 01)

= Y U= o) [ + IOT B @), h(@), g, o m)
aeB,|a|<3

il (1, x + OOTL (B W), h(0), €N, oo m) = S (1, x + DOT (B (0), h (o), [EPmE, o m)],
Lyl x )T (V- Em(E). b (e, x +90)

it
|x + 0|

= Y 3l —lx+vep?

aeB,|a|<3
x [0, x + DO (W (1), h(0), 1§71, gom) +iég (8, x +IOTL (W (), h(0), 1y oo m)

—Cq (t, x + IOT{ (1), h(0), €V, oo )]

Therefore, from the estimate of coefficients & Lt x+01),i € {1,2,3},in (3.39), the
estimate of symbols 7] ki (&) in (3.40), we know that the following estimate holds from

the estimate (8.71) in Lemma 8.7, the estimate (8.80) in Lemma 8.8, and the estimate
(8.93) in Lemma 8.9,

|Kk k1| + |Sk1 | + |Kk kll + |Skl k| < (2(k+k1)/2+d + 23(k+k1)/2+3d + 2k1+2k+3d)

(2—3](1 3d+2—4k1 4d)2—4k+ 4k +

t
xIm@llsllally[ /1 (L+ 15D~ leGs, x, vz, (Eh, () ES.(5)ds].
(8.119)

In the above estimate, we used the fact that d > 10 and |||x|_3<p[d_2,d+2] @ally <
27 ally.
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o The estimate of K,'ff and S,‘ffl.

Recall (8.115) and ’(é.l 18). Moreover, we recall the estimates of error terms (7.67)
in Lemma 7.10. For each fixed i € {1, ..., 5}, we use the second decomposition of D,
in (3.30) in Lemma 3.1 and the second decomposition of “D, D,” in (8.94). From the
estimate (7.67) in Lemma 7.10 and the estimate (8.124) in Lemma 8.12, the following
estimate holds for any fixed p1, p2 € S, s.t., [p1] = |p2| =1,

1L+ [~ PDe, (1, x, v)ep, (1, x, V) Ey, 1]t x, )T (V) - EmE), h) (@, x + 00 g,

S 1+ l‘)71 (274d74k1 + 272d72k1 )2k1 (2k + 22k+d)274k+74k11+ ||m(§)||sk°° (Eleo};v (t))Z.

(8.120)

Moreover, from the estimate (8.77), the estimate (7.67) in Lemma 7.10 and the
estimate (8.125) in Lemma 8.13, the following estimate holds for any fixed p;, p2 € S,
s.t, o1l = [p2| = 1,

(L + o' =P, (1, x, 0)APle,, (1, x, V) E}, o [1](2, x, v)@a(llr] — |x + 1))
T (Vj - Em(&), h)(1, x + )
XwS—S(l _ |X + {}tl/lll)”Loc < (1 +l)_l(2_4d_4kl + 2—2d—2k1)2k1 (2k +22k+d)2—4k+—4k1.+

X~

Im (@)l s (Egh, (). (8.121)

Recall (8.115) and (8.118). From the above estimates (8.120) and (8.121), the second
part of the estimate (4.74) in Lemma 4.2, and the L2 | — L% | — L%, type multilinear
estimate, the following estimate holds,

KIS0 i) S 2870 (14 2720720020 md gy g8 thic i &) | e fally

t
_ 2
x [/1 L+ 1D e, x, V)|, (Efoy ()" Ef. 4 (s)ds]. (8.122)
To sum up, recall the decomposition (8.112), our desired estimate (8.111) holds from
the estimates (8.119) and (8.122). |

Proof of Lemma 8.6. Recall the decomposition of le (m,a,c,h) and 7~"22 (m,a,c,h)in
(8.51) and (8.53). From the estimate (8.110) in Lemma 8.10, we know that the desired
estimate (8.50) holds directly if d < 10. If d > 10, then from the estimate (8.110) in
Lemma 8.10 and the estimate (8.111) in Lemma 8.11, the following estimate holds,

T2 (m,a,c, W) +|TFm a.c. )| S Y IKE ([ +1S | S (2824472 4 22ke2d)p =3k

ki€Z
[( Z 2k1/2+d/2+22k1+2d)
ki<—d
+[ Z ((2k1/2+d/2+22k1+2d)(273k173d+274k174d) +27k17d(1 +272k172d)])]
ki >—d

t
x|lm &)l s llally| /1 (L+ 15D~ Ml x, v, (B () ES.4(5)ds]
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< (242 4 222 i &) | o< llally
2
[/ A +1sD " e, x, V)L, (E () Eg;d(s)ds]. (8.123)

Hence finishing the proof of the desired estimate (8.50) in Lemma 8.6. O

8.3. The L -type decay estimate for the operator T} (-, -) . In this subsection, by prov-

ing several L°-type decay estimates for the operator Tk“ (-, -) defined in (7.26), we
finish the proof of Lemma 8.12, which have been used as black boxes in the previous
subsections for the proof of Lemma 7.9.

Lemma 8.12. The following estimate holds for any profile h(t,x) € {(h{(t,x),i €
{1,2},ax € B, |a| < 10} and any p € K, s.t., |p| =1

I+ D =Py, x, )TV - Em(E), h)(t, x + 00)@a(|lt] — 1x + Dt | 129,
<(2* +22k+’1)2_4k+||m($)||gooE10W(t). (8.124)

Proof. Recall the detailed formulas of the coefficients e, (¢, x, v) in (3.32) in Lemma 3.1.
We know that the desired estimate (8.124) holds directly from the estimates (8.125) and
(8.126) in Lemma 8.13 and the estimate (8.140) in Lemma 8.14. |

Lemma 8.13. For any i € {1, 2, 3}, the following decay estimate holds,

V
| / Jiceinle] m@) PO ey o] - - £) v )|
- 61— ud

S 2_4k+||m($)||5,§° mm{z"u DTS g + 1 x)> 2201 xo -

aeB, |a|<5

+v|

(8.125)

Moreover, the following estimates also hold for any n € Ny,i, j € {1, 2,3},

] e”"f*"”"f'%ﬂwzmwa —ub- s»wk(s)ds\
R (18] — pi - £)

S Y 2R ) Im@E) s (I lxo + 1F%1x,), (8.126)

aeB,|a|<5

. . Vi
. axﬁ—wlﬁl(’"@)ismf<s>w>lo<r(|5| ERYAG

L+1vl |&] — ud - §)
V; Vi
+\/ ot "”‘E‘LS)(,EI)J‘(E)W(E)WMOOGH o - £)de|
R |£1(18] — ud - &)
SO0 27D Im @) llsge mind25 (L4 )T (1 Do + 1FDx,)s 2260 xo -
aeB,|a|<5
(8.127)

Proof. After utilizing the volume of support of &, we know that the desired estimates
(8.125), (8.126), and (8.127) hold easily if || < 1. Hence, from now on, we restrict
ourself to the case when || > 1. Note that, for any fixed 7, s.t., [f| > 1, there exists a
unique m € Z,, s.t., t € [2"71, 2™,
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We first prove the desired estimate (8.125). Note that

Z )
6= & 2 el — cos(/E u) 2 A g 1)
+ |v| 1+ v

On one hand, after doing dyadic localization for the angle between £ and pv and using
the volume of support of £ and the above estimate (8.128), we have

_ ) Vi & ~ N
| [ sl NS ey (el — - £) v e
R3 |§| — MKV -

3
S Y MIm@lsE I FEHW@ e S Y 22 Im@E lse £,
1eZ,1<2 aeB,|a|<5
(8.129)
On the other hand, for any fixed x and v, we define & := ux/|x| and [ := —m/2 —

k/2 — 10. Note that there exists a unique constant /, ,,, which depends on x and v, such
that

£ (&, pv) € b=l 2bey, (8.130)
Using this observation, we know that the following partition of unity holds,
1=y _;(£,50)) + ¥ (L, oY (L, uv)) + Y j(L(E, E0)) Y. (L, nv))
=Y (£L(E, §0)) + ¥ (£, 50))
XY _j(£(§, pv)) + Z Vi, (L€, 80) Y=t —10(£L (€, )

>l

+ > Yy (L (€, &)y, (£ (&, pv)). (8.131)
I<lh<l1—10
I<l1 =2.|l1~Ly,,|<10

Hence, the following decomposition holds,

ki L m@Vi-§ ~ X
ix-&—ipt|§| — .
/1;3e T el = g ©V=00 ] = ud - )Y(§)ds

=Y I+ > Iy b (8.132)

I<l<2 I<lh<l1—10
I<ly <2,|l 1,y |<10

where

ki I m@V-§ ~ )
;= ix-§—ipt|§| B .
’l—/R3€ T BT = e g © V=100 8] —pd - E)vn®)

[V oi(£(5. 80) + V(L (&, €)W (£ (&, mv)) JdE,
g L m@V;-§ ~
_ [ Jixe—int
Il—/;@e : 1+|U| |%—|_Mﬁ§f(€)w210(t(|€|
—ud - ENVREVYI(LE, E0)W=1-10(L(E, pv))dE, ifl > 1,
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e L m@Vi-& ~
— ix-&E—iptl§| _
= [ e e AN (]

no - ENYr ()Y (£, o), (L(E, nv))dé.

From the volume of support of £ and the estimate (8.128), the following estimate holds
for Iy,

17 S 252 m @l 1 F @@l S Y 27" e m(@) 5 1L -

aeB,|a|<5
(8.133)
For I, , and I, | > I, we do integration by parts in “£”. As a result, we have
L=1'+1} =1, +17,, (8.134)

where

x_ & >
Ill = /eix'éfl/-iﬂfli )’C M|§| R ,ng(g)l m(é)VzAE
E + 1ol €l - 18- &

V=10t (1&] — u - ENYrE)Vi(£L(E, o) V=1-10(£(E, pv))dé,
112 — /‘eix-S—[,Lit|§|if"\(S)vs . [

X

Tohm L m@Vi-s

1] _M%|21+|U| |E] — pud - &

V=10t (1§ — 1 - )Yk (E)Y1(L(E, §0))¥=1-10(L(E, pv))]dé,
X §

: : T ~ 1 Vi
1111 b= /elx-E—lth|§|i t \? . .st(%.)l m(&) lA &
’ x — .
T ol 6 — b - €

V=10t (€] — - ENYr @)Yy, (L(E, 0¥, (L(§, pv))d§,

x _ & -

Ilzl — /Aei)cf—;l«itléli]’c\(é)v5 [ T T Mg 1 mE)V; - £
1’2 x_ ,E 121+ —ud -

5 b P I+ lol =o€

t

V=10t (1§ — 1 - )V (E) ¥, (L(E, §0) V1, (L(E, pv))]dé,
For 112 and 1121’ 1, We do integration by parts in £ one more time. As a result, we have

&
. . T M ~
f= [oren gy [EEE e,
1 —n G

%‘ ~
' T I m@)V;-§
£ |2 — uv -
tE — i L+l |§] —pv-§

XY (E)Y1(£L(E, §0))¥=1-10(£(, Mv))]]dé,

V=10 (1§ — v - §))

ok

1121 I = /elx'f—ﬂlt|§| — VS . I:_t H] zf(é)vg
| t|f = ngl
t 5]
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x_ & v
r T HE I m@Vi-§
X E P+l ] - ud-
(8= P Ul el = €

XYV (L. 60V (L& wo)) ] Jae.

V=10 (1§ — v - §))

Therefore, from the estimate (8.128) and the volume of support of “£”, the following
estimate holds,

TS 272 m @)l 1 Ve . ) ¥ @)l e, (8.135)

1y | S 27" 7R @) s 1 Ve 0, )Y @)l e, (8.136)

712722 i @) e (272 T, )Y@ g + 27 IV F OV e
(8.137)

1y S 27222 i ) | 5o (27222 F (1, )0 () g

27V F HY©) ), (8.138)

Recall that [ := —m /2 — k/2 — 10. From the estimates (8.135), (8.136), (8.137), and
(8.138), we have

1 2 1 2
Z Uy |+ 1171+ Z |Ill,12| + |Ill,12|

I<i<2 I<ly<l1—10
l_<lI§2y‘ll—[x,v‘§10
—m+k—4k
< Y 2 @) s (1 xo + 1/ Nx,). (8.139)
aeB,|a|<5

To sum up, recall the decompositions (8.132) and (8.134), our desired estimate (8.125)
holds from the estimates (8.129), (8.133), and (8.139). With minor modifications, all
other desired estimates (8.126) and (8.127) hold very similarly, we omit details here.

O

Lemma 8.14. Foranyi, j € {1, 2, 3}, the following estimate holds for any fixed x € R3,

&1 —no - &
2 2T @l (17w + 17 ) (8.140)

aeB,|a|<5

o Voog
] [ ettredre it O P ool - - £ €
<

Proof. Recall the first equality in (2.6). The following decomposition holds,

|x|:i.(ax.5+ > Vix V). (8.141)
] i=1,23
Therefore, to prove the desired estimate (8.140), it would be sufficient to control both
the radial part and the rotational parts. Note that the following decomposition holds for
any i, j € {1, 2, 3},

o Ve
_ /}R 3 e’(x””)‘s”“”é'lrgl(é_)iu%if(f)!ﬁzlo(t(lﬁl D EDVENE = Ty + D,
(8.142)
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V;
(x"j)A; ol (xH1)E= ”‘”S‘Mf(é)%m(t(lél ud - )Y (E)dE = Ky + Ka,

61— o &
(8.143)
where
. N
5= / e'(“’”*f-'”"f'(x—“—té)-wmﬂswm(ms\ b - )Y (§)dE,
. HRAGETT
(8.144)
b= [ mema it V4|§"“|@)7V‘§f<s>w>m<t<|s| o O EdE,  (8.145)
K= [ s - B Mf(é)%m(t(lél - )i §)de,
s e Vgl o€
(8.146)
. 7
Ko [ etmiesimel (o - ) GO ey o(rdel = o - ) vn(ende.
. e Vgl — o€
(8.147)

Note that
ei(x+tﬁ)§ z/u|$|( ,UJE) ‘7 _ —lV VS( i(x+tf))~§7iut|5|),ei(x+tﬁ)~$fiu.t|§|
53

(x +10— llLé_l) B = 0D Vg (/HOEintlel).

Therefore, we do integration by parts in & in the V; direction for J; and do integration
by parts in £ in the v direction for K. As a result, we have

Jq =j1+j2, K =I€1+IZ2, (8.148)

where

U /R FeSTIEL G [g@%wm(r(m b - €N (©)] F(&)de, (8.149)
z =[I;z eIl V- Vg f@)Mwﬂoaqa b - E)yE)ds.  (8.150)

/R3 e el v [";@)V’ iw»o(ma ub - O ©]f©)dg, (8.151)
K> = /R} e”“”""‘“iﬁ‘st(a%wm(rua wh- Y E)de.  (8.152)

Recall (8.145) and (8.149). From the estimates (8.126) and (8.127) in Lemma 8.13, we
have the following estimate,

[Ll+IATS Y 2% m@Else (1 x + 1/ %Nx,). (8.153)

aeB,|a|<5
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Now, we proceed to estimate K» and K 1. Recall (8.147) and (8.151). Note that
. |E] —pd - & N e R
(0 - ) B S T | —pv- | S .
€] €] ISI €]

Therefore, from the above estimate and the estimate (8.127) in Lemma 8.13 and the
estimate (2.11) in Lemma 2.2, we have

(Kol + 1K1 S Y 2% im@lse (1 xo + 1/%Nx,). (8.154)

aeBB,|a|<5

0 Ve(1§l —pd- 5)|—|

Lastly, from the volume of support of &, the following estimate holds for J, and K>,

LI+ 1Kol S Y 2 Im@) s Ve Ft, O)yi(®) e

1eZ,1=2

S 2 m@ s (1 Mxo + 1% Nx,)- (8.155)

ael,|a|<5

To sum up, recall the decompositions (8.141), (8.142), (8.143), and (8.148), our
desired estimate (8.140) holds from the estimates (8.153), (8.154), and (8.155). |

9. Proof of the Theorem 1.1

To prove our main theorem, we use the standard bootstrap argument. From the local
existence theory, we know that the lifespan of the solution is at least of size (1/€g)'/? if
the given initial data is of size €y, where €y < 1. Moreover, the assumption imposed on
the initial data in (1.18) is strong enough to guarantee that the initial energy is of size €.
For convenience, the starting time of our bootstrap assumption is one. More precisely,
the following estimate holds,

sup (1+ t)_‘S(Ehlgh(t) + Ehlgh(t)) +(1+ t)_5/2Ehlgh(t) +EL 1)+ E2 (1) S eo.
tel0,1]

9.1)

We expect that the high order energy grows sub-polynomially and the low order energy
doesn’t grow over time. Therefore, we make the following bootstrap assumption,

1 2 5/6
sup (1+1)~ ‘S(E}{Igh(z) + ELy(0) + (1 +1)7 5/2Elflgh(z) +El )+ EZ ) S e i=¢)",
te[l1,T]

9.2)

where T > 1.

Recall the definition of the correction term §a,y (t, v) in (4.92). From the L}%’v — Lffv
type bilinear estimate, the equality (3.37) and the decay estimate (4.96) in Lemma 4.3,
the following estimate holds for the correction term,

t
3 1% @)y 02 S fo (1+5)72

la+ly|=No

t
fofw(s)E,{igh(s)ds < / (1+5)2%edds < €. 9.3)
0
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Recall the decompositions (6.1) and (7.1). From the estimate (6.7), the estimate (6.8)
in Proposition 6.1, the estimates (6.45) and (6.46) in Proposition 6.2, the estimates (7.4)
in Lemma 7.1, and the estimate (7.14) in Lemma 7.4, we have

sup (1+ t)_‘SE
re(l1,T]

fan @+ A+ PELR (1) < . (9.4)

From the above estimate (9.4), the estimate (5.13) in Proposition 5.1, the estimate (5.18)
in Proposition 5.2, the estimate (6.65) in Proposition 6.3, the following estimate holds,

sup (1+1)~ SEhlgh(t)+E
+€[0,T]

)+ Elow(t) < ep. 9.5)

low

From the estimates (9.4) and (9.5), we know that our bootstrap assumption (9.1) is
improved. Hence, we can keep extending the length of the lifespan of the nonlinear
solution, i.e., T = +00. Moreover, the following estimate holds,

sup (1+0) 7 (B () + Eghy (0) + (L + 0P ELS () + EL (0) + BB, (1) < e0.
t€[0,00)

(9.6)

Since the low order energy doesn’t grow over time, from the definition of the low order
energy of the electromagnetic field in (4.94) and the estimate (6.65) in Proposition 6.3,
we know that the nonlinear solution scatters to a linear solution in a low regularity space.

Moreover, the desired decay estimates (1.19) and (1.20) holds directly from the decay
estimate (2.10) in Lemma 2.1, the decay estimate (4.96) in Lemma 4.3, and the fact that

the low order energy E/ jow (1) and Eb low (t) do not grow over time, see the estimate (9.6).
Hence finishing the proof of the main theorem.
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