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1. Introduction

In this paper, we study the long time behavior of the motion of an inviscid incom-
pressible fluid, e.g., water, inside a time dependent region €2(¢). A fascinating feature of
this problem, which is also known as the free boundary problem, is that the boundary
of “Q(t)” will affect the motion of the fluid and will also be affected by the motion of
the fluid. In other words, to study the motion of the fluid, we need to study the motion
of the fluid and the motion of the boundary at the same time.

To be more precise of the problem setting, we assume that there is a vacuum above
the water region Q(¢) and there is no vorticity inside Q(t). Moreover, we consider the
gravity effect and neglect the surface tension effect. The system under consideration is
also known as the gravity water waves system.

Despite recent gratifying progress devoted to improving the understanding of the long
time behavior of the water waves system, which will be discussed later, there are still
many open questions. One of them is how the fixed bottom of the water region “Q(¢)”
changes the behavior of the solution in the long run. Although we do have evidence
that shows that the structure of bottom indeed plays an important role in the long run,
the mechanism is not mathematically clear even in the small data regime. Here comes
evidence. For the 2D gravity water system, small traveling waves don’t exist in the infinite
depth setting (without a bottom) but do exist in the flat bottom setting, see [12]. Here
comes an open question, does the presence of the flat bottom affect the stability of zero
solution? Please note that the zero solution is indeed stable under small perturbation
for the infinite depth setting. See the work of Germain—-Masmoudi-Shatah [15] and Wu
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[32] in 3D; see the work of Tonescu—Pusateri [22], Alazard-Delort [3], Ifrim—Tataru [19]
in 2D.

In this paper, we will answer this question definitely in 3D for small initial data. In
conclusion, the global stability of the zero solution also holds for the 3D gravity water
waves system in the flat bottom setting. For any suitably small initial data, the solution
globally exists and scatters to a linear solution. Moreover, the nonlinear solution decays
sharply over time in a weak L°°-type space.

We arrive in this conclusion by carefully analyzing the low-frequency part of the
nonlinear solution, which is the main difference between the infinite depth setting and
the flat bottom setting. We remark that the high-frequency part of the nonlinear solution
in two settings are essentially same, see [1,2].

1.1. Gravity water waves system above a flat bottom

In this subsection, we give a more precise mathematical description of the 3D gravity
water waves system in the flat bottom setting.

Assume that the water region (t) has a free interface I'(¢) and a fixed flat bottom
Y.. We normalize both the depth and the gravity constant “g” to be “1”. As a result, we
can describe the domain, the interface and the bottom in the Eulerian coordinates as

follows,

Qt) :={(z,y) : € R?, -1 <y < h(t, )},

L(t) :={(z,y) :x € R* y = h(t,x)}, T:={(zx,y): 2R y=—-1},

where h(t,x) denotes the height of the interface at point z and at time ¢. Since we will
be in the small data regime, readers can imagine that h(¢,z) is a small perturbation of
“0”.

The evolution of the fluid is described by the Euler equation with boundary conditions
as follows,

Oou+u-Vu=-Vp—g4(0,0,1)

V-u=0, Vxu=0, u0)=up

u-n=0 on X (1.1)
p=0 on I'(t)

O + u - Vtangents to Uz I'(¢) on I'(t).

As the velocity field is irrotational, we can represent it in terms of velocity potential
¢. Let ¢ be the restriction of velocity potential on the boundary T'(¢), i.e., ¥(¢t, z) :=
o(t,z, h(t,z)). From the divergence free condition and the boundary conditions, we can
derive the following harmonic equation with two boundary conditions: a Neumann type
condition on the bottom and a Dirichlet type condition on the interface,
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¢
%|2 =0, ¢|F(t) = . (1.2)

(Ap +07)p =0,

Following the work of Zakharov [36] and the work of Craig—Sulem—Sulem [11], we can

reduce the motion of fluid to the evolution of the height “h” and the velocity potential
on the interface “i” as follows,

8th = G(h)d);

. 2
b = —h — L[V + (G(h)¢ + Vh-VY) (1.3)

2(1+1|Vh|?) ’

where G(h)y) = \/1+ |Vh[]2N(h)y and N(h)y is the Dirichlet-Neumann operator at
the interface T'(t). For the gravity water waves system (1.3), the following conservation
law holds as long as the solution exists over time,

M0, 0(0) = [ GIHOP + 0G0 = HAO)00). (1)

R2

1.2. Previous results

There is extensive literature on the study of the water waves system. Without being
exhaustive on the progress made so far, we only mention several results on the initial
value problem here. For the results on the blow-up behavior and the “splash singularity”
of solutions, interested readers please refer to [7,14,10] and references therein.

On the local theory side, Nalimov [27] and Yosihara [35] considered the small ini-
tial data case, Wu [31,32] considered general initial data in Sobolev spaces, see also the
subsequent works by Christodoulou-Lindblad [8], Lannes [25], Lindblad [26], Coutand-
Shkoller [9], Shatah—Zeng [28] and Alazard-Burq—Zuily [1,2]. If the effect of surface
tension is also considered, local existence also holds, see Beyer—Gunther [6], Ambrose—
Masmoudi [5], Coutand—Shkoller [9], Shatah—Zeng [28] and Alazard-Burq—Zuily [1,2].

On the long time behavior side, we have several results. For the gravity water waves
system in the infinite depth setting. In the 3D case, Wu [34] and Germain-Masmoudi—-
Shatah [15] proved global existence for small initial data. In the 2D case, see the work
of Wu [33] and the work of Hunter-Ifrim-Tataru [18] for the almost global existence,
see the work of Tonescu—Pusateri [22], Alazard-Delort [3], Ifrim—Tataru [19], Wang [30]
for the global existence results. For the capillary water waves system in the infinite
depth setting. See the work of Germain—-Masmoudi-Shatah [16] for the 3D case. See
the work of Ionescu—Pusateri [23,24] and Ifrim—Tataru [20] for the 2D case. For the
3D gravity-capillary water waves in the infinite depth setting, see the recent work of
Deng-Tonescu—Pausader—Pusateri [13] for the small data global existence result.

For the water waves system in the flat bottom setting. What we know so far about the
flat bottom case can be summarized as follows: (i) on the one hand, the local existence
holds (with bottom not necessarily flat) by the work of Lannes [25] and the works of
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Alazard-Burq—Zuily [1,2] and the large time existence holds by the work of Alvarez-
Samaniego and Lannes in [4]; (ii) on the other hand, there exist traveling waves, which
are arbitrary small in L?. Note that the existence of traveling waves depends on the
dimension and the ratio of the surface tension coefficient and the gravity constant.

The existence of traveling waves makes the global regularity problem more delicate
and more complicated. Traveling waves are more likely to exist in 2D. More precisely,
in the 2D case, the traveling waves exist as long as g # 0 regardless the presence of
surface tension effect, see [12] and references therein. In the 3D case, the existence of the
traveling waves are only known in the strong surface tension case so far, more precisely
the case when o/g > 1/3, see [12].

1.3. Main result

Before stating our main theorem, we first define the main function spaces. Define a
L*>-type space as follows,

£ llwe o= @% 4+ 2) | Pefllzoe,  Ifllwe == fllwro, 0<b< A,
keZ

where “P” denotes the standard Littlewood—Paley projection operator, which will be
defined precisely in the subsection 2.1.
We define the Z-normed space and the auxiliary space “By ;” as follows,

Hfllziziup Yo Iflse,

€2 j>max{—k,0}

£l = 27%(1 +2°)27 || gj (2) - Pefll2, o =1/10, (1.5)

where the cutoff function go? (z) localizes the physical position with a threshold deter-
mined by the localized frequency. The detailed formula of gp?(:r) is postponed to the
subsection 2.1.

The Z-normed space of this type was first introduced by Ionescu—Pausader in [21] for
the Euler—Poisson system. A basic idea of using this Z-normed space is that not only
this atomic space has the localized L2-type structure, which is very convenient, but also
it is stronger than the corresponding L!-type space. Note that the L'-norm of the profile
of the nonlinear solution, which is the pullback of the nonlinear solution along the linear
flow, suggests the decay rate over time for the nonlinear solution. Hence, we will control
the Z-norm of the profile instead of the L'-norm.

Our main result is stated as follows,

Theorem 1. Let Ny = 1000 and § € (0,107°] be fized and sufficiently small. If the initial
data (ho,0) satisfies the following estimate,

[1holl zrvo+1/2 + 1A% [ rvo + [ (ho, Atho) [l z + [[Fl(ho, Avo)l(§)l g < €0 <,
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A= /|V|tanh|V]|, (1.6)

for some sufficiently small constant €, then there is a unique global solution for the system
(1.3) with initial data (ho,g). Moreover, the following estimate holds,

S )(1 + )7 (R AP) ()| v + (14 )[Ry A) (1) [lwaza + ([ (B +iAY) (1) 2 S o-
€(0,00

(1.7)

Remark 1.1. From (1.7), we know that there is no traveling wave below a certain small-

W=

ness level determined by “€” in the above theorem.

Remark 1.2. As a byproduct of deriving the improved Z-norm estimate for the profile
of the nonlinear solution, we know that the solution is scattering to a linear solution in
a lower regularity Sobolev space, e.g., H°(R?).

1.4. Summary of the local results for the gravity waves system

In this subsection, we will discuss the local behavior of the gravity waves system (1.3)
studied in [29], which is the starting point of this paper. Note that the local existence
of the system (1.3) is already known, e.g., see [2]. Our goal is to extend the lifespan of
the nonlinear solution. Hence, it is very natural to use the bootstrap argument to iterate
the local result. To close the bootstrap argument, it is very essential to have a good
understanding of the dispersion of the nonlinear solution.

Because the gravity waves system (1.3) is quasilinear and moreover the system (1.3)
behaves badly at the low-frequency part in the flat bottom setting, it looks unlikely that
the decay overtime rate of the nonlinear solution will be same as the decay rate of the
corresponding linear solution. Note that even the decay rate of the linear solution, which
is 1/(1 + t), is barely integrable to close the bootstrap argument. As a result, a rough
energy estimate is not sufficient to control the growth of energy in the long run.

To get around this issue, we introduced a new energy estimate in [29], in which we
paid special attention to the low-frequency part of the nonlinear solution. The reason
why we did so is due to the expectation that derivatives can compensate for the decay
rate over time for the nonlinear solution of (1.3). The intuition of having this expectation
is simple. If the main issue lies in the low-frequency part, then the derivatives at the
low-frequency part, which are small, will provide extra smallness.

We state the new energy estimate obtained in [29] as follows,

Theorem 2. If the initial data ( hg, Abg) € HNoH/2(R?) x HNo(R?) satisfies the small-
ness condition (1.6), then there exists some T > 0 and a unique solution (h,Ay) €
CO([O,T];HN° (R2%) x HNo (RQ)). Moreover, the following energy estimate holds for any
te0,T],
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1Ry AY) ()1 Frve S €5 +/ [y M) (8) [lwra 4 [1(Py M) (8) 1] 1Py M) (8) 110 s
0
(1.8)

Remark 1.3. The smallness assumption assumed in [29] is weaker than the smallness
assumption (1.6). Only W%-norm of initial data is required to be small in [29]. Hence,
we can use the new energy estimate derived there directly in this paper.

There are two main ingredients to derive the energy estimate (1.8): (i) Thanks to the
works of Alazard-Burq—Zuily [1,2], we can use their paralinearization and symmetriza-
tion procedures to avoid losing derivatives at the high-frequency part; (ii) The careful
study of the Dirichlet—Neumann operator at the low-frequency part.

1.5. Some properties of the Dirichlet—Neumann operator

Note that the gravity waves system (1.3) is fully nonlinear, which is very inconvenient
to analyze. Thanks to a fixed point type structure lies in the Dirichlet—Neumann opera-
tor, due to the small date regime, it enables us to control the Z-norm of the remainder
terms (the cubic and higher order terms). We discuss it with details in this subsection
as follows.

To identify the fixed point type structure inside the Dirichlet—-Neumann operator, we
need to reformulate the velocity potential inside the water region Q(t). More precisely,
for any fixed time “t”, we map the water region Q(t) to the strip S := R? x [~1,0] via
change of coordinates as follows,

(ilf,y)—)(l',Z), Z::—l A [—1,0]
We define the velocity potential in (z, z)-coordinate system as follows,

o(z, 2z) := ¢z, h(t,z) + (h(t,z) + 1)z). (1.9)

From (1.2), the following identity holds,

(Ay+00)¢ = 0= Py :=[A, + @07 +b- V0. +20:Jo = 0,0| _ =1,0.0| __, =0,
(1.10)

where

G Lt (2 +1)2|Vh|?

(14 h)?

—2(z+1)Vh
= s C =

—(z+1)Azh 2(z +1)|Vh|?
1+h

(1+h) (14 h)?
(1.11)

S




812 X. Wang / Advances in Mathematics 346 (2019) 805-886

As a result of direct computations, we can formulate the Dirichlet—Neumann operator
in terms of ¢ as follows,

1+ |Vh)?

G(h)Y = [-Vh-V¢+ 0y¢] |y=h(t,x)  1+h

00|,y — V- Vh. (1.12)
From (1.12), it is easy to see that the only nontrivial term inside the Dirichlet—
Neumann operator is 8Z<p|Z:0. Therefore, to estimate G(h)y in a normed space, e.g., a
X-normed space, it is sufficient to estimate 0,¢ in the LI° X-normed space.
Now, we will show that a fixed point type structure for “V, .¢” is hidden inside the
elliptic equation (1.10). To see so, we reformulate the equation (1.10) as follows,

(az + |v|)(6z - |V|)30 = (1 - d)a?(p - 6 : vaz@ - Eaz@ = g(Z)

= 0.91(2) + g2(2) + V - g3(2), (1.13)
where
_2h+ h? — (z 4 1)2|V h|? (z+1)Vh- -V -
+ 1|V h|?0, Vh-V + 1)V ho,
ga(2) = (z+ DIVA["0:¢ ¥ g3(z) = (,z)—<p7z €[-1,0]. (1.15)

(14 h)? 1+ h '’ 1+ h

By treating “g(z)” in (1.13) as some given nonlinearity, we can solve p(z, z) explicitly
from the equation (1.13) and the boundary conditions in (1.10). As a result, we can solve
Va2 “explicitly” as follows,

Varo= [ e wu, o |+ 2]+
0
+ [0~ Kale.s) = Kol ))(0a(6) + 7 - gas))ds
21
0
+ /K{;(z, s)|Vlsign(z — s)g1(s) — |V|[K1(z, s) + Ka(z,5)]g1(s)ds,  (1.16)
21

where K;(z,s), i € {1,2,3}, are some linear operators that only depend on z and s, see
[29] for their detailed formulas.

From (1.14) and (1.15), it is easy to see that g¢;(z), i € {1,2,3}, are all linearly
depending on V, .. Moreover, g;(z), i € {1,2,3} are at the higher order than V, ¢
because of the smallness of the height of interface “h(t, z)”. Because of this observation,
now it is easy to see that there exists a fixed point type structure inside (1.16).
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From the fixed point type formulation (1.16), we can derive the Taylor expansion for
the Dirichlet—Neumann operator, which is crucial to the study of the long time behavior
of the water waves system.

Because the decay rate of the nonlinear solution is critical in the 3D case (2D inter-
face), it is crucial to know precisely what the linear term and the quadratic terms of the
Dirichlet—-Neumann operator are.

From (1.16) and (1.12), it’s easy to see that the linear terms of V, .o and G(h)y are
given as follows,

e~ GEFDIVI 4 o+D)IV cGHDIV] _ o—(+1)|V|
M [V 0] = “ P } ; IV + oIV Viy], (1.17)
M [G(R)Y] = Mi[0-0],_] = |V tanh(]V])¢. (1.18)

Now, we identify the quadratic terms of the Dirichlet—Neumann operator. Because of
the hierarchy of the smallness, we can plug-in the linear terms of V, ¢ in (1.17) to (1.16)
to calculate explicitly the quadratic terms of 0., which further give us the quadratic
terms of G(h)y from (1.12). As a result (see [29][Lemma 3.4]), we have

M[G(h)Y] = =V - (WV¢) — V] tanh [V[(A]V] tanh [V]1)). (1.19)

For the cubic and higher order terms, although it is not necessary to figure out ex-
plicitly what they are, we still need to estimate them over time to show that they do not
have much accumulated effect in the long run. From (1.16), we can derive a fixed point
type formulation for A>3[V, .| as follows,

A23[vw,z@} = Z C;(h,w, ?7/1) + h(j;(hﬂ% Ez) + (1 + h)QOz(BQa ﬁ27A§2[Vx,z<p])

i=1,2
+ B2C, (hy ho, ) + T (hi, A>3[Va.0]) + CL(h, ha, A>3[Va .¢0])
+ (1 +h)253(ﬁ27ﬁ27A23[vr7290])7 (120)

where C?, C’;, C., C'Z, 5;7 i € {1, 2} are some trilinear operators with symbols that satisfy
the rough estimate (6.20), T¢ are some bilinear operators with symbols that satisfy the
rough estimate (6.19), and h; and hy are defined as follows,

- 2h+h? - h
hy = —= 2= T 7

(1+h)?’

see [29][Lemma 3.7]. Due to the small data regime, it is easy to see that the formulation
(1.20) provides a mechanism to estimate A>3[V .¢].
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1.6. Main ideas of the proof of Theorem 1

From the new energy estimate (1.8) in Theorem 2, we know that it would be sufficient
to close the argument if we can prove that the decay rate of the nonlinear solution in
W42 gspace is sharp, which is 1/(1 + t) over time. From the linear decay estimates
in Lemma 2.3 and the fact that the Z-norm constructed in (1.5) is stronger than the
corresponding L! type norm, we can reduce our goal to prove that the Z-norm of the
profile doesn’t grow over time.

Although the proof presented in this paper is very complicated at the technical level,
we mention three key observations that make it possible to close the argument.

The first key observation is that we can decompose the phases of quadratic terms into
two parts which have the same sign. For example,

O (&,m) = A(Ig]) — A€ —nl) + Adnl) = A€l — AIE] + [n]) + A(In])
——

Phase Positive

A(lg] + [n) — AUIE = D), A(€]) == V/[¢|tanh [¢], &,n € R?. (1.21)

Positive

Because of this observation, we know that the phases always have a lower bound despite
it is of cubic level smallness. See also the Lemma A.2.

The second key observation is that, we can gain one degree of the smallness of the
output frequency in the 1 x 1 — 0 type interaction, which means that the frequencies
of two inputs are of size “1” and the frequency of the output is of size “0”, see the
estimate (2.19) in Lemma 2.4. Although this smallness is not sufficiently strong to control
completely the accumulated 1 x 1 — 0 type interaction effect over time, it makes the
choice of small “«” in the definition of Z-norm in (1.5) possible. The availability of a
small “o” is important, because of the following two facts: (i) the gain from the choice
of “a” in the 1 x 1 — 0 type interaction becomes the corresponding loss in the 0 x 1 — 1
type interaction, which means that the frequencies of the output and one input are of
size “1” and the frequency of the other input is of size “0”; (ii) The null structure is not
available for the gravity waves system (1.3) in the Low x High type interaction, because
the size of the symbol is “1” instead of “0” in the 0 x 1 — 1 type interaction.

The third key observation is that the angle between the output frequency and the rel-
atively smaller input frequency plays an important role when the phases associated with
quadratic terms degenerate. To illustrate this observation, we use the phase ®~(&,n)
and the case |n| < |€| as an example. From (1.21), it is easy to see that

(& m) = AUE] + Inl) — A(E —nl) = A'(IED (1€] + Inl — 1€ = nl)

o 2ellnl(1 + cos(Z(E,m)))
IR L I I S
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From the above approximation, we can see that the size of phase is of linear level
smallness, which is not so small, if the angle between ¢ and — is not small and the size
of phase is of cubic level smallness, which is the worst scenario, if £ and —n is almost in
the same direction. That is to say, the size of the ¥~ (£, 1) highly depends on the angle
between “¢” and “—n”.

Because of this observation, we will first localize the angle between the output fre-
quency and the relatively smaller input frequency if the associated phase is highly

degenerated and then carefully analyze the role of this angle in the Z-norm estimate.
1.7. The outline of this paper
This paper is organized as follows.

e In section 2, we introduce the notation used in this paper, reduce the system (1.3)
into a quasilinear dispersive equation, and then prove some bilinear estimates with
the angle localized, which are very important in the Z-norm estimate.

e In section 3, based on the behavior of the associated phases, we first introduce the
set-up of the Z-norm estimate for the profile and then decompose the quadratic
terms into good type terms and bad type terms.

e In section 4 and section 5, we derive the improved Z-norm estimate for the good type
terms and the bad type terms respectively by assuming that the improved Z-norm
estimate for remainder terms (cubic and higher order terms) holds.

e In section 6, we derive the improved Z-norm estimate for the remainder terms. Hence
finishing the bootstrap argument.

e In the Appendix A, we analyze properties of phases associated with system (1.3).

Acknowledgment The author thanks his Ph.D. advisor Alexandru Ionescu for many
helpful discussions and suggestions. The first version of the manuscript was completed
when the author visited Fudan University and BICMR, Peking University. The author
thanks their warm hospitalities during the visits.

2. Notation and some lemmas
2.1. Notations

For any two numbers A and B, we use A < B and B 2 A to denote A < C'B, where
C is an absolute constant. We use A ~ B to denote the case A < B and B < A. We use
A =~ B to denote the case |A — B| < ¢|A|, where ¢ is some small absolute constant. For
any two vectors &, € R?, we use Z(&,7) to denote the angle between & and 7. Moreover,
we use the convention that Z(&,n) € [0, ).

Throughout this paper, we will slightly abuse the notation of “A”. When there is no
lower script under A, then “A” denotes “y/tanh(|V|)|V|”, which is the linear operator
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associated for the system (1.3). When there is a lower script “p” under A where p € N,
then A,(N) denotes the p-th order terms of the nonlinearity N if a Taylor expansion of
N is available. Also, we use A>,[N] to denote the p-th and higher orders terms. More

precisely, A>p[N] =37 o Ag[N].

We provide an example here to better illustrate the notation. For example, As[N]
denotes the quadratic term of A" and A>2[N] denotes the quadratic and higher order
terms of NV.

For an integrable function f(z), the Fourier transform of f is defined as follows,

F()E) = / e~ f(2)du

We will also use ]?(E ) to denote the Fourier transform of f. We use F~!(g) to denote
the inverse Fourier transform of g(§).

We fix an even smooth function 1 : R — [0, 1] supported in [-3/2,3/2] and equals to
1in [-5/4,5/4]. For any k € Z, we define

Ui () = (x/2%) = p(a/2" ),
bep() =1p(@/2) = di(x), Vsr(@) =1 <po1(2).

<k

We use Py, P<j and P>y to denote the Fourier multiplier operators with symbols

Yi(€), Y<i(€) and >5(€) respectively. We use fi(z) to abbreviate Py f(x).
For an integer k € Z, we use k4 to denote max{k,0} and use k_ to denote min{k, 0}.
The cutoff function “gpk( )” used in (1.5) is defined as follows,

o) = {wg_k@:) if j = —k_ )

’(/)J(l‘) ifj>k_.

We define a linear operator “Qy ;” as follows,

Q[ = P2 pig (o5 (@) - Puf]. (2.2)

We use fi ;(x) to abbreviate Q ; f(x). From the above definition, it’s easy to see that
the following decomposition holds

Paf= > Quifi F=D_Pf=Y Y. Qu;f (2.3)

G>—k_ keZ kEZ j>—k_

For any integrable function f, we define

f+::f7 P+[f]::f7 f_::fa P—[f]:f_ (24)
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For two localized functions f(z) and g(z) and a bilinear form Q(f,g), we use the
convention that the symbol ¢(-,) of Q(-,-) is defined in the following sense throughout
this paper,

FIQU(E) = 535 [ F€~matmate — n.njan (2.
R2

Very similarly, for a trilinear form C(f, g, h), its symbol ¢(-, -, -) is defined in the following
sense throughout this paper,

1 ~ ~
FICU9.1NO = 151 | [ &=t - hio)ets ~ .1 - 0,0)dndo
R2 R2
We define a class of symbol and its associated norms as follows,
S :={m:R* or R® — C,m is continuous and ||F~*(m)|z: < oo},
[mls= = |FHm)ller,  m& s, ., = lm(&mvr(€)vr € —n)w, ()]s,
Im(&;m, 0)lsimy, iy iy 7= M0E 15 )1 (E) Uk, (€ = M)k, (1 — )iy (0) [ o< -

We have the following lemma on the multilinear estimates,

Lemma 2.1. Assume that m, m’ € S, p,q,r,s € [1,00], then the following multilinear

estimates hold,
[ - m || S [lmlsee [lm|| s~ (2.6)

Lp

|71 [ miemfic —matan) |, < Imls=Nflulaler i =247 @)
RQ

Ls,

|71 [ mtemofie - witoratn - oyindo] || S I lls= 1511 gl e
R2 R2
(2.8)
where 1/p=1/q+1/r +1/s.
Proof. The proof is standard. See [22] for details. O

To estimate the Sp5 ., or the Sg5 . mnorms of symbols, we use the following

Lemma.

Lemma 2.2. If f : R* — C 4s a smooth function, i € {2,3}, then the following estimate
holds for any ki,--- ,k; € Z,
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7 +1 4
[ s e T (e deiley, . S 30 S 2" |08 o~ (29)
R2¢ Jj=1 m=0 j=1

Proof. Let’s first consider the case when i = 2. Through scaling, it is sufficient to prove
the above estimate for the case when k; = ko = 0. From Plancherel theorem, we have
the following two estimates,

SN &)llee s

T1,T2

||/f(fla52)€i(x1{1+x2.€2)¢0(£1)¢0(52)d§1d§2||L2

R2¢

T1,T2

[(lz1] + |22])? / F(&r, &) ™ Etea82)ypg (¢4 )ohg () dErdEa|| 2
RQi

3

S 108 Flloee + 108 flle< ]

m=0

which are sufficient to finish the proof of (2.9). The proof of the case ¢ = 3 is very similar.
Hence we omit the details here. O

We will use the following lemma to derive the L>°-decay estimate for the corresponding
linear solution of the gravity waves system (1.3).

Lemma 2.3. For f € L*(R?), the following L™ type estimates hold,

[etVIVItanh IVIp £l e < (1 + [6) 722552 fl L1, if k> 0. (2.10)
etVINTRnb VTP gl < (14 )= 522 ||, 0<0<1, ifk<0. (2.11)

Proof. After checking the expansion of the phase, we can apply the main result in
[17][Theorem 1:(a)&(b)] directly to derive the above estimates. O

2.2. Reduction of the gravity waves system (1.3)

In this subsection, we reformulate the gravity waves system (1.3), which is a coupled
system, into a quasilinear dispersive equation, which is diagonalized and has explicit
quadratic terms.

Recall (1.18) and (1.19). Based on the order of nonlinearities, we can rewrite the
gravity waves system (1.3) as follows,

O = N2 — Vi - (W) ~ V] tanh ||V tanh [V]) + Aol G},
(2.12)
Ous = —h = SV + SINUP + Shsa[ (1 VR (B0,

where
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Y+ Vih -V

G(h)
B(h)y = 2.13
(o = SR (213)
Define u = h 4 iAy, where A := /|V|tanh |V|. Very naturally, we have
h=" ;r u’ Y= Afl(c+u +c_u), where ¢y = —i/2,c_:=1i/2. (2.14)
From (2.12), we can derive the equation satisfied by “u” from (2.12) as follows,
O +ibu= Y Quulu',u)+R, (2.15)
wve{+,—}
where
Qo (Ul u”) = —%”vw (WA ) — %|V| tanh | V| (u*Au”)
1CuCy Vv \%
Al = =¥ - =0 + AuPAu” Nl
5 [ AU g + AutAu”], (2.16)

R = Ass[0h] +iMAss[0] = Ass[G(R)Y] +iA (Ass[(1 + [VAP)(B(RE)]).  (2.17)

Note that, in (2.16), we used the notation defined in (2.4).
For any fixed k € Z, we define

xb o= {(k1, ko) : k1, ko € Z,k < max{ky, ko} — 5 < min{ky, ko }},
X2 = {(k1, ko) : k1, ko € Z,ky < k —5, |k — k| < 4},
Xa = {(k1,k2) : k1, ko € Z,k — 5 < min{ky, ko } < max{ky,k2} < k + 5},
Xp o= {(k1, ko) s ki, ko € Zoky <k —5, ko — k| < 4},

where Y} corresponds to the High x High type interaction with the output frequency
relatively small, x7 and x} corresponds to the High x Low type and the Low x High
type interactions with a relatively small input frequency, and x} corresponds to the case
when two inputs frequencies and the output frequency are all comparable.

When (kq, ko) € x? we can do change of coordinates to switch the roles of k1 and k.
As a result, we have

Y Quulutu)= Y Y > Quo(uy,uy,), (2.18)

wre{+,—} mvE{+,—} REZ (k1,k2) €x3UXFUXS

for some bilinear operator QW,(u”, u”). Let g, (§ —n,n) denote the symbol of quadratic

term Quﬁy(uﬂ,uy).

Lemma 2.4. For k,k1,ko € Z and any p,v € {+,—}, the following estimates hold for
any k € Z, (k1,k2) € x3 U Xz U X3,
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19,0, (€ = m,0)llsis,, ., S 2V/2HE/2HR, (2.19)

Proof. From (2.16) and (2.18), it is easy to compute the symbol g, ,(§ — n,71) explic-
itly. Therefore the desired estimate (2.19) holds directly from the estimate (2.9) in
Lemma 2.2. O

2.83. Bootstrap assumption and proof of the main theorem

We prove Theorem 1 via the standard bootstrap argument. The bootstrap assumption
is stated as follows,

sup (1) AG)Ollavs + 14+ 80z S e 1= 5% (2.20)
te[0,T

As a result of the new energy estimate (1.8) in Theorem 2, the following Proposition
holds.

Proposition 2.1. Under the bootstrap assumption (2.20), we have the following estimate,

sup (1+6)7°(|(h, AY) ()| rvo S €o- (2:21)
t€(0,T

Proof. Note that the following estimate holds under the bootstrap assumption (2.20),

1/4 3/4 _
. A) (0w S 10k, ALYy 1 ALY D S (1 8) e,
From the estimate (1.8) in Theorem 2, the following estimate holds for any ¢ € [0, T7,

t

1 AD) (1) 20 < €3+ /

0

3
€1

mds 5 (1 + t)25€(2).

Hence the desired estimate (2.21) holds. O

The rest of this paper is devoted to proving the following Proposition, which is suffi-
cient to close the bootstrap argument.

Proposition 2.2. Under the bootstrap assumption (2.20) and the energy estimate (2.21),
we have

sup e (h +iA)| 2 < eo- (2.22)
t€[0,T)

Therefore, from the linear decay estimates (2.10) and (2.11) in Lemma 2.3, the following
decay estimate holds,
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sup (1 +8)]|(h, A)(#)|lwa2e < €o. (2.23)
t€[0,T]

2.4. Bilinear estimates with the angle localized

In the later Z-norm estimate, we need to localize the angle between the output fre-
quency and the smaller input frequency to exploit the observation that the size of the
degenerated phase depends on this angle. Unavoidably, we need to estimate some bilinear
operators with the angle localized. More precisely, we have the following two Lemmas.

Lemma 2.5. For [, k, ki, ko € Z, | <2, ko < ky, and f,g € L> N L', we define a bilinear
form as follows,

T(f,g) = / e EM (€ (€ — m) e (ML (ZL(E, vm))m(€, ) TR(E — m)g” (),

R2

where p,v € {+,—}, m(&,n) € S, and the phase “®*¥(£,n)” is defined as follows,

¥ (6, m) := A(E]) — pA(E —nl) —vA(nl),  A(lE]) == VI[¢] tanh [£]. (2.24)

Then the following estimates hold,

IT(f, )|l
S llmllzge, min {225 £l pol[@ll g, 252721 Fll 2 Ngll 25 252 Lo llgll 2}
(2.25)
1T(f, 9)ll 2
S Imllge, min{25 9 Fll e llgllez, 2572 £l cellgl o2, 224Gl g (1 £ 1 22}
(2.26)

IT(f e S Imllsgs,, ., min{l| e ll221F e~ OGE)br, (O] e,
202 g () by ()| 2 1 e~ MO F () hn, (O]l ) (2:27)

Proof. e We first prove the desired estimates (2.25) and (2.26).

Note that for any given small number 0 < 2" < 1, we can decompose the unit circle S
into the union of angular sections with bounded (with upper bound given by an absolute
constant) overlaps, where each sector has angular size 2™. These cutoff functions form a
partition of unity. We label those sectors by their angles w = £/|¢|, use |w| to denotes
the size of angle and use ¥ () to denote a fixed standard bump function that supported
in this sector and form a partition of unity.

With the above defined notation, we use the angular partition of unity for “¢”, “¢ —n”
and “n”. Because of the localized angle between ¢ and v, the following decomposition
holdb7
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T(f,9) = > MM Y ()b, (€ = )by (M) (£(€, vm))m(€, m)

jwr | Jwal~2TR2 k1 2
|w1:‘:w2‘w2l+kzikl

|ws|~2", Jw —vws|~2!

X b e ()b (€ — )b () FA(E — n)g” (n)dn. (2.28)

From the L?-orthogonality of the localized angle in “£”, the following estimate holds,

ITrolks S| / e €My ()b, (€ — )by (MmE, )

w1,W2,wW3

same as in (2.28) R?

X7y (B2, i, (€ = M) FF(E = mg” ()b (m)el [

Slmlie min{ > 2 FE bz, (€= m)vn (€ = )IITa G120

w1,w2,wWs3
same as in (2.28)

(2.29)

Yoo 2R T, (E= ) (S 1B (), ()G()1Z2 - (2:30)

w1,w2,wW3
same as in (2.28)

For the simplicity of notation, in (2.29) and (2.30), w1, wa, and ws belong to the same
set listed under the summation of (2.28).

In the first estimate of (2.30), we used the volume of support of 7; in the second
estimate of (2.30), we used the Cauchy—Schwartz inequality for the integration with
respect to “n”.

Recall the set of wy,ws,ws under the summation in (2.28). Because of the partition
of unity, it is easy to check the following two facts: (i) the multiplicity (i.e., how many
times it has been counted) of the summation with respect to wy is a finite number; (ii)
the multiplicity of the summation with respect to ws is 21752 because there are 21 %2
sectors wy satisfy |w; — vws| ~ 2! and |wy & wa| ~ 21Fk2=F1 for a fixed sector ws.

Therefore, the following estimate holds after summarizing with respect to ws,

Do 2P FEmmbzy, g, (Em) o (E-m)ITa G 1T S 21 f 2 [G] 2ee

w1,w2,ws
same as in (2.28)

Do 2R bR, (€~ ), (€ = mEalIB (), ()G ()]

w1,w2,w3
same as in (2.28)

< 2252 fllellgll e

2
3

Alternatively, the following estimate holds after summarizing with respect to w3 and

~

using the volume of support of f(-),
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Yoo 2R FE = b, g (€ — )Wk (€ = 22167 (), ()G ()72

w1,w2,w3
same as in (2.28)

< ghetigh—kagthutha bt FIB ST b ()i, (0)3(0) 3

w3

S 2R 712 ][22

Hence finishing the proof of the desired estimate (2.25).
On the other hand, if we use the size of support of £ first, then the following estimate
holds in the same spirit as the proof of (2.25),

LHS. of (230) S lImlle S0 2FHFE b2y, (€~ ) (€~ 0l

w1,w2,ws
same as in (2.28)

x (167 () vow, (MG () 172

Slmlfe min{ 30 2ERRER FIR s ()i, ()G ()

wi1,wW2,ws

same as in (2.28)
PR fLalglz, Y 2
w1,w2,w3

same as in (2.28)

~

< NLFE =m0y iy (€ = Mra (€ = T 191175 }
<l ming22 422 T2 g2, 220 2 g 2, 2222 g2
Hence finishing the proof of (2.26).

e Now we proceed to prove the desired estimate (2.27). From the L?— L*° type bilinear
estimate (2.7) in Lemma 2.1, the following estimate holds,

(2:29) < Iml5z

min{ > F€ =B, g, (€~ vk, (€ =013

k,kq,ko
w1 ,wW2,wWs
same as in (2.28)
< NF e MG ks 12 D0 IG)b () tbrs ()17

w1,w2,ws
same as in (2.28)

X ||-7:_1[€_im(f_n)f(f - U)bf.ikQ_kl (&=, (§ — 77)”%30}

S llml&s,  min (|l fi, 7217 e A0 g (n)][|7 0, 20 )

kik1,kg

% [lgia 172 1F 7" fioy (W] Z0 -

Hence finishing the proof of (2.27). In the above estimate, we used the facts that the mul-
tiplicity of summation with respect to ws is 281 7F2 and the kernel of symbol b% (€)1 (€)
belongs L', where I,k € Z. O
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To take advantage of the oscillation in time when the frequencies are localized away
from the time resonance set, we do integration by parts in time. Unavoidably, we will
confront a bilinear operator with the small divisor issue because of the presence of the
degenerated phase in the denominator. Hence, we provide the L2-estimates of bilinear
operators of this type in the following Lemma.

Lemma 2.6. For m,k,ky, ko, k,01 € Z, ko < ky, t € [2™71,2™] k > —m + dm, and

f.g € L2N L', we define two bilinear operators as follows,

o o101 (2R B (€, _ _
Tis.g) = [ e en MR €ymte, ) € - ), ()
RQ
e V10,1020 (€ 1)
— teHY (€,m)
)= [ o (€. 1)

R2
x Y (E)m(E,m) FL (€ — n)gl (m)bi (L€, vn))dn,
where the phase 7 (&,m) is defined in (2.24). Then the following estimates hold,

(227 g
1

1Ty (f;9)ll2 S 27" Imllsg,, ,, sup  min{fle” 2o llgk,l 2
|)\|§257n/2
e i lza} + 270 ol o lgalrs (231)

ITo7: e S 2 sz, sup {2042 N e g 12
<26m

le= A2 R gy e 1 fiy 122} + 2710 il e 1| o 22 I gha 2

(2.32)

Proof. To prove (2.31), we use the inverse Fourier transform to reformulate T1(f, g) as
follows,

Tu(f.9) = gz [ [ 275 0RE I 0RO mlem T (€ - ma, (n)dnad

R R2

where

R0 = [eoe 0 gy oS 0L )
R

Hence, when || < 2°™/2 we use the L? — L™ type bilinear estimate (2.7) in Lemma 2.1,
which gives the first part of estimate (2.31). When |A| > 29™/2_ from (2.33), Y(\) provides
fast decay. After using the size of support of & first and then use the L?2—L? type estimate,
we derive the second part of estimate (2.31).
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With minor modifications in the above estimates and the proof of (2.27), we can prove
the desired estimate (2.32) very similarly. Hence, we omit details here. O

3. The set-up of the Z-norm estimate

Note that our goal is reduced to prove the Proposition 2.2. In other words, we will
prove that the Z-norm of the profile “e™*(h + iAvy) = e'*u” doesn’t grow over time. In
this section, we first introduce the set-up of the Z-norm estimate and then reduce the
proof of Proposition 2.2 into the proof of three Propositions.

3.1. The first reduction

Recall the equation satisfied by w in (2.15) and (2.18), we define the profile of u as
f(t) := e u(t) and then rewrite the equation (2.15) in terms of profile f(t) as follows,

8tf = Z Z Z Tﬂ’l/(f]glvfllclz) +R/’ (31)

pvE{+,—} KEZ (k1,k2)Ex}Ux2EUX}

where R’ = ¢ R and the bilinear operator T**(-,-) is defined as follows,

T (g, h) == F~! [/em’“"u(f’")’g\(ﬁ — ()0 (€ =1, n)dn],

R2

[13ph

where “¢g” and “h” are two localized L? functions.

Because of the presence of the space resonance but not time resonance set, which is a
small neighborhood of ( ¢ , &/2 , &/2 ), instead of estimating
~— ~—~— ~—
output frequency input frequency input frequency
the Z-norm of the profile f(t) directly, we will estimate a good substitution variable

instead.
We first identify this good substitution variable by utilizing the normal form trans-
formation. More precisely, we define

v(t) == u(t) + Z Z Ay (ugy (1), ug, (1)), (3.2)

pove{+,—} k€Z,(k1,k2)EXE

where the symbol m,, ,,(-,-) of A, ,(-,-) is defined as follows,

B qlt,u(f -1, 77) )

i (€, 1) 3.3)

mu,l/(g - 77a77) =

From the estimate (2.19) in Lemma 2.4 and the estimate (A.4) in Lemma A.2, the
following estimate holds,
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”m/»hl’(f - 77)'4[]16 (5)1/%1 (5 - 77)'4[1192 (77) HLE‘)’H 5 2k—min{k,k2}—2k1Y,+3k1,+/2. (34)

Since the phases are alway bounded from below (see the estimate (A.4) in Lemma A.2),
for simplicity, instead of remove a very small neighborhood of (£,£/2,£/2), we removed
the case when the output frequency and the two inputs frequencies are all comparable,
i.e., the case when (k1,k2) € x3, in (3.2).

For the Z-norm estimate of the normal form transformation, we have the following
Lemma.

Lemma 3.1. Under the bootstrap assumption (2.20), the following estimate holds,
swp | > Do M A 0, uf, ()], S e (3.5)
DT et~} ke, (kr ka)exd
Proof. Postponed to subsection 6.2. O
Define the profile of the good substitution variable “v(t)” as g(t) := e v(t). Recall
(3.2). From the estimate (3.5) in Lemma 3.1, it is easy to see that the Z-norm of f(t)

and g(t) are comparable. Hence, it would be sufficient to prove the following estimate to
close the argument,

sup llg(t) — g(t)llz < 279, [2"’_1,2"”'1] c[0,7], m>1. (3.6)
tq,tp€[2m—1 2m+1]

In the rest of this paper, time “t” will be naturally restricted inside the time interval
[2m=1 2m+1] where “m” is a fixed and sufficiently large number.
From (3.1) and (3.2), we can derive the equation satisfied by the profile g(t) as follows,

dgr(t) = > > T (fa fr) + B[R]

v €{+,—} (k1,k2)ExLUXE

Py Y e

w,ve{+,—} (k1,k2)EX? R2

X mu,u(g - 77’77)815(]0151 (taf - n)f].ci(tan))dn] (37)
3.2. The second reduction

In this subsection, based on the properties of the associated phases, we classify the
quadratic terms in (3.7) into two types: good type and bad type. Moreover, we reduce
the proof of the desired estimate (3.6) into the proof of three propositions.

Definition 3.1. We call the phase ®**(£,n) a good phase if and only if

(klvk%/f’w V) € Pgood = Xllc X {(_7 _)7 (+v+)} U X% X {(_’ _)7 (_a +)} (3'8)
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Recall that the phase ®* (£, n) is defined as follows,

or(&,m) = A(IE]) — pA(I€ —nl) —vA(nl),  pve{+ -}

It is easy to verify that the following estimate holds,

|DHY (&, m)| ~ 2R/ ETRL=2 0 if g 2k e — | ~ 2R

|77| ~ 2k2a (kla ko, V) € 7Dgood‘ (39)

From (3.9), it is easy to see that the sizes of phases are not highly degenerated, which
is why we refer the phases in the scenarios mentioned above as good type phases.

Definition 3.2. We call the phase ®#*(£,n) a bad phase if and only if

(k17k27/’La V) € ,Pl';cad = Xllc X {(+’ _)’ (_’ +)} U X% X {(+7 _)7 (+7+)} (310)

We refer the phases in the scenarios mentioned above as bad type phases because
the associated phases are of cubic level smallness in the worst scenario, see the estimate
(A.6) in Lemma A.2.

Recall (3.7). We can rewrite the equation satisfied by the frequency localized profile
g(t) as follows,

drgi(t) = good,,(t) + bady(t) + Px[R], (3.11)
where
good, () = Z TV (1 £, (3.12)
(k17k27/‘7y)€p§ood
bade(t) = > TR+ D S FHEM(SLL )]
(k1,k2,m,v)EPE, 4 (k1,k2)exs pve{+,—}
(3.13)

where the bilinear operator K*¥(-,) is defined as follows,

KM (fh o fi) = /e“wu(g’”)mw(ﬁ — 0,8 (L (1.6 = n)JE, (t.m)) . (3.14)

Hence, from (3.11), the following identity holds,

Prg(t2) — Peg(ty) = /goodk(t) + bady (t) + Pi[R'(t)]dt.

Hence to prove the desired estimate (3.6), recall the definition of Z-norm in (1.5), it
would be sufficient if we can prove the following three Propositions,
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Proposition 3.1. Under the bootstrap assumption (2.20), for any 6 € [0,1], the following
estimates hold for the remainder term R':

to

sup sup 2% / PR (#)]dt|| B, < 27 e, (3.15)

t1,t26[2m71*m+1] kEZ,j>—k_ :
1

P IR/ (1)l + 27RO PR () 2 + IR (8,€) | S 27 e (3.16)

t€[2n1—1,m+1
Proof. Postponed to section 6. O

Proposition 3.2. Under the bootstrap assumption (2.20) and the assumption that Propo-
sition 3.1 holds, the following Z-norm estimate holds for any t1,ty € [2m~1 2mF1]
m € ZJ’_,

2}

sup 27 [ good, (0],
k€Z,j>—k_

< 270, (3.17)

~

t1

Proof. Postponed to section 4. O

Proposition 3.3. Under the bootstrap assumption (2.20) and the assumption that Propo-
sition 3.1 holds, the following Z-norm estimate holds for any t1,ty € [2m~1 2m+1],
m € ZJ’_,

to
sup 2% /badk(t)dtHBkd < 279, (3.18)
k€Z,j>—k_ ;

1

Proof. Postponed to section 5. O
3.8. The size of profile under the bootstrap assumption

In this subsection, we estimate the size of the profile in different function spaces under
the bootstrap assumption. These estimates will give us a good sense of what the profile
f(t) looks like with respect to the localized frequencies over time.

From the definition of Z-norm, the bootstrap assumption (2.20), the improved energy
estimate (2.21), and the linear decay estimates in Lemma 2.3, we have the following
estimates,

|Pef (£)]| 2 S 27 Noketome, (3.19)
IPef(O)llie S 207080k Fu(@)ll e S 270k krey, (3.20)

|e™ APy f| poe S 27Kk (3.21)



X. Wang / Advances in Mathematics 346 (2019) 805-886 829

where estimate (3.19) is derived from the energy estimate, estimate (3.20) is derived
from the Z-norm estimate, estimate (3.21) is derived from the linear decay estimates
(2.10) and (2.11) in Lemma 2.3.

Note that the L*>-estimate in (3.21) is not sharp when k is sufficiently small. Alter-
natively, after choosing § = 1 — « in the estimate (2.11) in Lemma 2.3, the following
estimate holds,

HeitAPkf”Loo S 27m+o¢m/223ak/2”fk”L1 5 27m+am/2+ak/2€1’ if k <0.
To sum up, we have the following linear decay estimate at the low-frequency part,
e AP fllpee < min{2 Mk gmmtam/24ak/2y e o if | <0, (3.22)

Note that the Lg°-estimate and the L2-estimate of the profile in (3.20) is derived
directly from the size of Z-norm. When “k” is extremely small, the upper bound provided
by the Z-norm is not sharp. It turns out that, under the bootstrap assumption (2.20), the
L‘E>o estimate of the profile grows at most at rate (1-+1¢)3°. More precisely, we summarize
those improved estimates in the following Lemma.

Lemma 3.2. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, the following estimates hold,

sup sup 2 F(1+ 1) || fu(t, z)| 22 < €0, (3.23)
te[0,T] kEZ
sup sup 27810, fr (8, )| L2 < 27 e, (3.24)
te[2m—1,2m+1] keZ
sup  sup || fi(t, &)l S 2% (3.25)

te[am—1,2m+1] k<0

Proof. Recall (3.1). From the L? — L type bilinear estimate (2.7) in Lemma 2.1, (2.19)
in Lemma 2.4, and (3.16) in Proposition 3.1, the following estimate holds,

sup sup 27| 9y 1. (t, )| L2
te[2m—1,2m+1] kEZ

S swp 27F|B[RI@) e + Y 27| iy ()] 2

te[amot,am] ko<k,

X e i, (8| S 27 Meg + Y 27Tk L Comme - (3.26)
ko <ki

Recall that the Lg°-norm of the initial data is of size €, see (1.6). Therefore, the following
estimate holds from the volume of support of the frequency variable “£”,

iglszllfk(oax)Hm SIFt Uz S €o- (3.27)
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Combining (3.27) and (3.26), it is easy to see that our desired estimate (3.23) holds.
Recall again (3.1). From the estimate (3.16) in Proposition 3.1, the following estimate
holds straightforwardly for any k € Z,k <0, and t € 2™~ 1, 2™],

t

ROl S 20+ Y| / e EM g (€ — )L (5,6 — 1)
k1,k2€Z,p,ve{+,—} [
ko<ky
X 7 (5, m) o (€)dpds] = (3.28)

From the estimate (2.19) in Lemma 2.4 and the estimate (3.23), the following estimate
holds when ki, ks ¢ [—2m, 28m)],

t
> I / P Mg, (€ —nm) L (5,6 =) FE, (s,m)vk(€)dnds|| L=
kl,k2¢[72m,2ﬂm]
PV €Lt — bkt ki €7,k <

S X R e Ol fn@le 277G (329)
<t<2m

ko<—2m, or k1>28m

When ki, ko € [—2m,28m], we do integration by parts in time once. As a result, the
following estimate holds from the estimate (3.4),

t

Z I /eisqw«v(ﬁm)q#yu(g - n, ﬂ)f,l:l (s,€ — n)f]’;z (s, n)wk(f)dndSHLgo
k1,k2€[—2m,28m],k2<k1
5 sup Z 2k—min{k,k2}—2k1,f+3k1,+/2 [kal (t)HL? ||fk2 (t)”L?
0<t<om

k1,k2€[—2m,28m],k1,k2 €Z,ko <k1

t
+/ 19: frey ()11 22 1L fra ()] 2 + 11 Frs ()] 22 100 fea (5) ] 2 ) ds] S mP2%0 e} < 2% e

0
(3.30)

From the estimates (3.28), (3.29), and (3.30), it is easy to see that our desired estimate
(3.25) holds. O

Therefore, under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, the following estimates hold for the profile “f(¢)” at the low-frequency
part,

: (1—a)k ok+306m
L2 5 ) )
|1Pef(®)lL2 < min{2 2 ter

1 Fe(©)ll e < min{27F 2% }e;, when k < 0. (3.31)
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Remark 3.1. Please note that the results in Lemma 3.2 cannot and will not be used
in the proof of Proposition 3.1, i.e., the estimate of the cubic and higher order terms,
because the validity of Proposition 3.1 is part of the assumptions in Lemma 3.2.

4. The improved Z-norm estimate: good type phases

The main goal of this section is to prove the desired Proposition 3.2. In other words,
we will prove the desired estimate (3.17) under the bootstrap assumption (2.20) and
the assumption that Proposition 3.1 holds. Note that the estimate (3.31) is valid in this
section.

Recall (3.12) and (3.8). In subsection 4.1, we consider the case (k1,ks,u,v) €
xi x {(+,4), (=, —)}. In subsection 4.2, we consider the case (ki,ko,u,v) € Xxix
{(=,+), (=, —)}. Hence finishing the proof.

4.1. When (]{11,/{;2,/,6,1/) S X]lg X {(_7 _)7 (+7+)}

For simplicity, we first rule out the relatively high-frequency case and the very-low-
frequency case. More precisely, the following Lemma holds.

Lemma 4.1. For any fized j,m € Z,, under the bootstrap assumption (2.20) and the
assumption that Proposition 3.1 holds, the following estimate holds for any k € Z, t1,t5 €
[2m—17 2m]7

to
> > 2 [ 1 e, 2. (@)
|k1—k2|<10 wve{+,—} th
k12(1+46)(5+m)/(No—8)
Moreover, for any k € Z s.t., k < —(1 4 100)(m + 5)/(2 + &), the following estimate
holds,

to

S Y 9 / TV (for fiea) | 51, < 2ep. (4.2)

|k1—k2|<10 p,ve{+,—} t

Proof. For any u,v € {+,—}, from the L2 — L. type Sobolev embedding, the L2 —
L2-type bilinear estimate and the estimate (2.19) in Lemma 2.4, the following estimate
holds for any (ki1, k2) € x1,

to
| /T“’”(fkl,ka)dt\\Bk,,- < 20K AT R g, (€ = mm)llsgen, o, 1Pes fllc2 | P £l 2
t1

< 2@ +e)ktbhy tmetjthi, ~2Noky, ¢ +20m 2 (4.3)
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From the estimate (4.3), it is easy to see that the desired estimates (4.1) and (4.2)
hold. O

To prove the desired estimate (3.17), from the estimates (4.1) and (4.2) in Lemma 4.1,
it is easy to see that it would be sufficient to prove the following estimate,

ta
26j|| /Tu)y(fkmfk'z)dt”Bk,j S 2726m726j603 (IU',V) € {(77 *)7 (+a +)}a (44)
ty

where fixed k, kq, and ko satisfy the following estimate
—(14106)(m+3)/(2+a) <k < ki —5 < ky < k145 < (146)(j+m)/(No—8)+10. (4.5)

Note that we used the fact that there are at most (m + j)? cases in total in (4.5), which
is only a logarithmic loss.

Based on the possible size of the fixed j, we separate into two cases, see Lemma 4.2
and Lemma 4.3.

Lemma 4.2. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j > (1 + 208)m, then the desired estimate (4.4) holds for any fized k,
k1, and ko that satisfy (4.5).

Proof. Firstly, we do spatial localizations for two inputs. As a result, the following de-
composition holds,

to to
/TH’V(flﬂ (t)afkfz (t))dt = Z /Tﬂ’y(fkhjl (t),kaJ‘Q (t))dt (46)
t1 jlzikl,—7j227k21_tl

If min{ji,jo} > j — 65 — dm, then the following estimate holds after using the L2 — L2°
type bilinear estimate, the estimate (2.19) in Lemma 2.4, and the LS — L2 type Sobolev
embedding,

to
3 2% / T oy (s Fonsa ()t 5
ty

min{j1,j2}>j—6j—6m

S > gektm (140)jght(1=2e)ke—i=d2 =3kt || £ || fi N 2
min{j1,j2}>j—0j—dm

< gmH20m—(1-30)j . < 9=20j-20m (4.7)

where we used the assumption that j > (1 + 200)m.
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Now we consider the case min{ji,ja} < j — dj — dm. Since |k; — ko| < 5, from the
symmetry between inputs, we assume that j; = min{j, jo}. Otherwise, we can simply
do change of variables to switch the roles of £ —n and 7.

For this case, we can do integration by parts in “£” to see rapidly decay. More precisely,
after integration by parts in “£” once, we have

ta

/Tu7y(fk17j1(t)’szyjz(t))dt
t1
to
= [ [ e s (46 = (e, & ) dndéat,
t1 R2 R2
where
. z +tVe ()
N tv IR = v — 1/ . 48
Qp, ( T § 77) Gy, (f n n)|$+tV§(I)“’V(£,77)|2 ( )
Note that
y T+ tVe PPV (€, .
Ve (€ m) S 1= (o) ~ 2 (49)

|z + tV (€, m)

Hence, we can gain 277 if doing integration by parts in “£” once.

In the meantime, we need to find out what the maximal loss is. If V¢ hits in-
put ]%1\]1(), then we at most lose 271. If V¢ hits the cutoff functions or the symbol
apu(t,x, &,m), it is easy to see that we at most lose max{27%,27% 1}. Note that
J1 > —ki,— and k;y > k — 10. Therefore, the net gain of doing integration by parts
in “6” once is at least max{27+/1 2777k} < 279779 Note that we used the fact that
j+k > 65 + om, which can be derived from the estimate (4.5) and the assumption that
7> (14 208)m.

We can do this process as many times as we want to see rapidly decay. As a result,
the following point-wise estimate holds after using the estimate (2.19) in Lemma 2.4 and
the L? — L? type bilinear estimate,

2
‘ /T%V(fkl,jl (t)> sz,jz (t))dt (p?(&?) S 2_1oj||fk1’j1 ||L2||fk27j2HL27 (410)

t1
which further implies the following estimate,

ta
Z 26m|| TH’V(kajl (t)v sz,jz (t))dt”Bk,j Sz 2m+2j_10j6% 5 2_26m_25j60'
min{j1,j2}<j—0j—dm t

(4.11)
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From (4.6), (4.7) and (4.11), it is easy to see that our desired estimate (4.4) holds if
j>(1+208)m. O

Lemma 4.3. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j7 < (1 + 200)m, then the desired estimate (4.4) holds for any fixed k,
k1, and ko that satisfy (4.5).

Proof. If j < (1 + 206)m, from the estimate (4.5), we have
—(2+1000)m/(2+a) <k <k —10 < ki < Bm, B := 1/980.

Note that the following equality holds,

to ta

7l / T (fi (), i (£)) ] (€) = / / I EM T (1€~ )T (£,0) e (€ — 1, ).

t1 t1 R2

Recall (3.9). To take advantage of the high oscillation in time for the good type phases,
we do integration by parts in time once for the above integral. As a result, we have,

to
7l / T (f (1), fon(0)d)(€) = 3 Endf + I (4.12)
t 1=1,2

where

End{""y = (-1)""* / P EM a1y, € — ) Yty ) (€ = 1) Uny (€ — 7)ok, (1) d,

]RZ
(4.13)
2
Tt = / / M Fh(t € — 0D [P (b )1 (€ =10, ) ks (€ = 1)ty (m)didt, (4.14)
t1 R2
to
s = / / P EM BTt € — )T () (€ — 0 m)n, (€ — )k (n)didt, (4.15)
t; R2

where the symbol m,, ,,(-,-) is defined in (3.3).
From Lemma 2.2, (2.19) in Lemma 2.4, and (3.9), it is easy to check that the following
estimate holds for any (k1, k2) € X} U X3,

(€ = mm) s, S 252723k he < g30m, (4.16)

From the L? — L*° type bilinear estimate (2.7) in Lemma 2.1, (3.24) in Lemma 3.2 and
(4.16), the following estimate holds if k1 < —48m or k < —408m,
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> 2VIF Endi i e, + 2 0F [
i=1,2

< QORI | e |

+ 2ak+6k++j+m+3ﬁm+26m (Hatfkl ”L2 ||efitAf]€2 ”Loc + |‘€7itAfk1 HLOO Hatsz ||L2)

5 2ak+(1—2a)k1+3ﬁm+25m€% g 2—25m—2¢5j€0- (417)

From the estimate (4.18) in Lemma 4.4 and the estimate (4.24) in Lemma 4.5, we know
that the desired estimate (4.17) also holds when k1 > —48m and k > —408m. Hence
finishing the proof. O

Lemma 4.4. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j < (1 + 208)m, then the following estimate holds for fized k,k, €
Zak € [74Oﬁmaﬂm]akl € [74Bm,ﬁm];

> 2V F T Endyi s, S 270 e (4.18)

i=1,2

Proof. Recall (4.13). After doing spatial localizations for two inputs, we have

Endgf;ﬁiz = Z Endzil:]’j k2,527 (4 19)

J12—k1,—,J22>2—ko —

Endf" ), 5, = (=)' / N CR S N G LW (S
RQ

Firstly, let’s consider the case “max{ji,j2} > m + &k + k; — 48m”. From the L? — L>
type bilinear estimate (2.7) in Lemma 2.1 and the estimate (4.16), we can put the input
with larger spatial concentration in L? and the other input in L. As a result, the
following estimate holds,

83 —1 JTR7X)
Z 2 H]: [Endklel,km]é} ”Bk,j
max{j1,j2 } >m+k+ki—48m
< Z oak-+6ky +(1+6)j+45m
max{ji,j2 } >m+k+k1—48m

x g7 maxtivgey=m=alth ko)) g 2| fry ol 2

5 2—m—(1+o¢)(k+k1)+9,6’m6% 5 2—25m—26j60. (420)

Lastly, let’s consider the case when max{ji,j2} < m + k + k; — 48m. For this case,
1))

we can do integration by parts in “n” many times to see rapidly decay. More precisely,
after integration by parts in 77 once, we have the following identity,
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Vi G T 7 .

End/’il Ji.ka.g2 T t; e’ (Eyn)v”] ’ (f]?l 1 (t1a§ - W)sz,jz (ti7 U)mu,u(f - U))dm
R2

(4.21)

my . (§ —1,1m) V@Y (€, 1)
i|V, @mv (€, m) |2 '

My (§ = 1,m) = — (4.22)

If V,, hits J?kl,jl and fkmg, we at most lose 2mx{71.72} If ¥, hits the symbol 1, , (-, -),
then from the estimates (A.16) and (A.17) in Lemma A.3, it is easy to see that the

[1y9e)]

maximal loss is 273¥-+*1.+ Therefore, the net gain of doing integration by parts in “n
once is at least 27 max{20@x{d1.j2t—k=ki+5k1,4/2 9=5k-+k1.+1 which is less than 27/,
Therefore, after repeating this process many times, it is easy to see that the following
estimate holds,

%) —1 RZx)
> 2V FH [Endi s, s
max{j1,j2 } <m+k+ki—48m

S > 2710 £, gy 22
max{j1,j2} <m+k+k1—48m

X kaz,jz HL2 5 2_267’1_2%60- (423)

From the estimates (4.20) and (4.23), it is easy to see that our desired estimate (4.18)
holds. O

Lemma 4.5. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j < (1 + 208)m, then the following estimate holds for fized k,k1 €
Z,k € [—408m, Bm], k1 € [—48m, Bm)],

S 29 F I s, S 2720k (4.24)
i=1,2

Proof. Recall (4.14) and (4.15). After plugging in the equation satisfied by 9;f in (3.1)
and doing dyadic decompositions for the quadratic terms of 9, f, we have

Vst E E HsVs T 150 i
Jkl,kz - Jki,ké + JRk17k2’
(KYk5)EXG, Uiy UXR,_, Tone{+ =}
V,T,K,% V,T,K,1
Tt = > Hy
J1=2—ky _gs>—kh _ji>—ki, -

b _ T T RS
Hpwr™t = Y Hpnet HphTtt= oy HERTR ie{1,2}, (4.25)
Ji>—ki - Jh>—kh

where
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VTR, 1
Jiidh g4
to
TR () T e T T
= [ [ et e ) Fo 6 T (o = ), (0)dndodt,
t1 R2 R2
Vs Ty K, 2
Ji331:9%
ta
= ///eit‘bg’ ' (g’n’a)m;’;,z(@n’U)flzi,ji (t, & — J)f;:édé (t,o — n)f,ZQ,jQ (t,n)dndodt,
t1 R2 R2
to
TR i = / / TP Fu(t, & — )R (8, )My (€ — 0, m) Pk, (€ — 0) ¥k, (n)dndt,
t1 R2

to
JR?, 1, = / / P ECMRIP (€ — ) F(, 1)y (€ — 1, 7)ok, (€ — 7)ok, (n)dndt,
t1 R2
T m,0) = A€) — pA(E —n) = TA( — 0) — KA(0),
5" (€, 0) = A§) = TA — o) — rA(e ) — vA(n),
m;’,z,l(fv m, U) = mu,u(f -, 77) (q-ru,m/ (77 -0, U))U¢k (5)%1 (5 - 77)%2 (77)7
m;),';,z(fv 7, U) = m,u,l/(g —n,1m) (q‘r#,lﬂt (§—0,0— n))uwk (§)¢k1 (e n)wlw (n)-

Here, we remind readers that “7v” is understood as the product of signs, e.g., +— = —.
From the estimate (2.6) in Lemma 2.1, the estimate (4.16), and the estimate (2.19)
in Lemma 2.4, the following estimate holds,

1 (€5 0) 0wy (0 = 0)hiy ()| s> + lmy,7 2§51, ) ks (€ = 0) iy (0 = )| 5=
< ghtky +4pm, (4.30)

From the estimate (3.16) in Proposition 3.1, we know that the Z-norm of R'(t) decays
at rate 27", which compensates the loss from the integration with respect to time. With
minor modifications, the method used in the estimate of Endgfl’; can be applied directly
to the estimate of JR,lgh,§2 and JRih,@. We omit details here.

Now let’s proceed to estimate Jl‘c‘,l’f’,;Z’ﬁ’l and J,’:,l’zj,g’ﬁ’z. From the L>® — L> — L? type
trilinear estimate (2.8) in Lemma 2.1 and the estimate (4.30), the following estimate
holds for fixed &} and kb,

851 —— TSR
> 2NF I
i=1,2

5 } : 2ak+6k++m+]’+k1+k'1,++4,8mHe—itAfki
i=1,2

ree e fig oo | fug Il 2

’ ’ ’
S 2ak+(lfa)k1+(172a)k:2 min{272k13++45m+206m’ me(No76)k1=++45m+306m}60.

(4.31)
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In the above estimate, we used the fact that [le ™A fi|lpe < 2k1||fk/ Iz2

~

< 9k Noki 4 M) From (4.31), we can rule out the case when k] > 28m or k}, < —68m.

It remains to consider the case when k] and &} are fixed and —65m < k}, < ki < 28m.

Recall that |k; — k2| < 10. With minor modifications, we can estimate J“,l"’,;g’“’z and

J ,’j,’”,;,”i’l in the same way. Hence, we only show the estimate of J// Vk,T 1 in details here.
1272 172

py'r, —7,1

Firstly, we consider the case when x = —7. For J;, , we can first rule out the

case when max{ji,j4} < m — 208m by doing 1ntegrat10n by parts in o many times to

see rapidly decay. More precisely, after doing integration by parts in “o”, we have
2
= [ [ [ et 0w, i o)
t1 R2 R2
X (6 & =TT (tn = 0)foy T, (t,0)) dndodt, (4.32)
where
AT (E ) = Cmy (6 o) Ve T (E U)_ (4.33)

iIVo @€, 0)?
From the estimate (A.16) in Lemma A.3 and (4.30), we have

[y 3 (€, 0)| S 200, (Vg (€, 0)| S 272t )Tk E9Bm < gm/2 - (4.34)

From the estimate (4.34), it is easy to see that the net gain of doing integration by
parts in “o” once is at least max{2~"/2, 2= mH+158m—max{j1.i2}} which is less than 277™.
Therefore, we can repeat this process many times to see rapidly decay.
From (4.30) and the L? — L> — L type trilinear estimate (2.8) in Lemma 2.1, the
following estimate holds after putting the input with the higher spatial concentration in
2 and other inputs in L,

s = T,1
2. UHET s,

max{ji,j5} =m—208m

< Z gak+6k +m+(148)j ok1+4Bm+k]

~

max{j} j} } >m—208m

x ek ekt mekagmamomaxiL il £ il 2l g gl 2| |z S 27 €. (4.35)

Lastly, we consider the case k = 7. Note that V,®/""" (£, n,0) = 0 if 0 = /2. Hence,
we localize around a small neighborhood of (£,71,7/2) and split H ]“ l; T]T’l into two parts
as follows,

to

JW,T, ,1 o W, T, T —_ —_—
HZZ;JZ - /// we (5770) ,uul(g 7, )f]ghjl(tg_n)f;@—i,ji(tan_a)
t1 R2 R2
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xfk, ,(t 0)Y<k,—10(n — 20) dndadt—l—/// HETTT(Em.0) uul(g n,0)

t1 R2 R2

X [ (6.6 = (6.0 — 0) F, (£, 0) 5k, -10(7 — 20)) dndodt. (4.36)

Note that ‘|n| — €= 77” < 274n| because (k1,ks) € x+. It is easy to see that |£ —n| —
|n — o| ~ |n| when o locates inside a small neighborhood of /2. Hence, we can take the

“n” when o is

advantage of the high oscillation in “n” by doing integration by parts in
close to 1/2.

Therefore, we do integration by parts in “n” for the first integral in (4.36) and do

integration by parts in “o” for the second integral in (4.36). As a result, we have
= [ [ [ e,
t1 R2 R2
(€ o)L (€ =TT (= o), (1.0))
+ %eit‘b‘f’f’f(émyﬂ)vn
(T (Em o) L (€= ) (b — )T, L, (t.0))dndodt, (4.37)
where

m;’;; ('ga n, U)Vaq)lf"rﬁ(ga m, 0)7/}>k2710 (77 - 20)
iIVe @ (E,m,0)? ’
# ” T(€ n,o )VW(I)}{’T’T(€7 m, 0)77[}<k2—10 (77 - 20)

~7'7; , = - T,T 2 ' 439
yiv2(&5m,0) iV, @7 (€, 0)]? 9

i1 (Em,0) (4.38)

From the estimates (A.16) and (A.17) in Lemma A.3 and (4.30), we have

[ 01 (&, o)+ [y o (6, 0)| S 27 R ketiomm, (4.40)
Vo1 (€m,0)| + Vi), 5 (€, m,0)| S 272 R )miatofm <gm/2 - (4.41)

Hence, from estimates (4.40) and (4.41), we can see that the net gain of doing integration
by parts in “c” (when o is away from 7/2) and “n” (when o is close to 7/2) once is
at least max{2-™/2 27 xgmax{ji.ii.dz}—ka—k; +1Oﬁm}, which is less than 275 when
max{j1, 71,75} < m+ ks + kb, — 163m. Therefore, we can repeat this process many times
to see rapidly decay, hence ruling out the case when max{j1, j1, j5} < m+ko+kb—168m.

It remains to consider the case when max{ji, j1,75} > m + k2 + kb — 168m. From the
estimate (4.30) and the L? — L>° — L type trilinear estimate (2.8) in Lemma 2.1, the
following estimate holds after putting the input with the largest spatial concentration in
L? and other two inputs in L,
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j 1
25] Hl‘l«yl";Tvl‘ﬂ )
Z I Ji3J1,3% ”B’w
max{j1,51,J5} >m+ka+ksH—168m

< E gok+6ky +m+(1+8);
~Y
max{j1,51,j5} >m+ke+k;—168m

« le+4/3m+k’ly+2—ak;—aké—ak22—2m—max{j17jiJé}||fk1’j1 HZka’lJi ||Z||fké,jé ||Z

< 27m/2¢. (4.42)

Hence finishing the proof. O
42 When (kh k27/% V) € X% X {(_7 _)a (_7 +)}

As we did before, we first rule out the very-low-frequency case and the relatively-high-
frequency case. More precisely, the following Lemma holds.

Lemma 4.6. For any fized j,m € Z,, under the bootstrap assumption (2.20) and the
assumption that Proposition 3.1 holds, then the following estimate holds for any k € Z,
t1,t2 € 2m71 2™,

to

3 S o) / T (fos i)t 5, 2. (4.43)
(k1,k2)EXE wve{+,—} t1

ko <—(14108)(m+j)/(2—«)

Moreover, for any k € Z s.t., k ¢ [—(1+108)(m+j)/(4—«), (1+108)(m+3)/(No—10)],
the following estimate holds,

to
Sy 9 / TV (for fiea)dt| 5y, < 27ep. (4.44)
(k1,k2)exi mve{+,—} th

Proof. From the L? — L® type bilinear estimate (2.7) in Lemma 2.1 and the estimate
(2.19) in Lemma 2.4, the following estimate holds,

to
I /T“’”(fkusz)dﬂbk,j S 20RO g (€ = mom)lsgey, o, (1P fllz2 lle ™" Py f | e
ty

(4.45)

S, 2m+j+k1+k1+(2—O¢)k2—(No—7)k:11+—4k2,++5m6%' (446)

From the above estimate (4.46), it is easy to see that our desired estimates (4.43) and
(4.44) hold. O
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Hence, from the estimates (4.43) and (4.44) in Lemma 4.6, we know that it would be
sufficient to prove the following estimate,

2| /TH’”(fkusz)dt||Bk,j S22 e, () € {(—4), (= )}, (4.47)
t1

where fixed k, k1 and ko satisfies the following estimates,

—(14100)(m+j)/(2— ) < ko < k—10,|k; — k| < 10, (4.48)
—(14108)(m +5)/(4 — a) < k < (14 108)(m + j)/(No — 10). (4.49)

Same as we did in the previous subsection, we separate into two cases based on the
possible size of j.

Lemma 4.7. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j > (14 200)m, then the desired estimate (4.47) holds for any fized k,
k1, and ko that satisfy the estimates (4.48) and (4.49).

Proof. Note that the rough estimate (4.9) still holds for the case (k1,ks) € 7. The sizes
of frequencies of inputs do not play a role there. With minor modifications in the proof
of Lemma 4.2, we can prove the desired estimate very similar if j > (14 20§)m. We omit
details for this case here. 0O

Lemma 4.8. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if 7 < (1 + 200)m, then the desired estimate (4.47) holds for any fized k,
k1, and ko that satisfy the estimates (4.48) and (4.49).

Proof. Since j < (1+4200)m, from estimates (4.48) and (4.49), we know that fixed k, k1,
and ko satisfy the following estimates,

—2(1 + 1008)m/(2 — o) < ky < k — 10, |ky — k| < 10, (4.50)
—2(1 + 1008)m/(4 — o) < k < 2Bm, J =1/980. (4.51)

Same as we did in the proof of Lemma 4.3, we do integration by parts in time to
take advantage of the high oscillation in time. As a result, we have the same identity
as in (4.12). For simplicity, we use the same notations used there. Note that the only
difference is that now (k1,ks) € x7 instead of belongs to x.

From the L? — L™ type bilinear estimate (2.7) in Lemma 2.1 and the estimate (4.16),
the following estimate holds when ky < —am,

> 2 F End s, + 21 F I
i=1,2



842 X. Wang / Advances in Mathematics 346 (2019) 805-886

e o A P T

+ 2ok FOk e F RO HmASEm (|6 =M, 1 || oo || fis |l £z + le™ ™ fioy Lo 10 fro | 2)

S 2(17a)k2+am/2+10ﬁm6% S 2725m75j60' (452)

Note that in the above estimate, we used the following estimate

o flie S X AT )l + 2P (R
wv€{+, =} ks <k

< Z oki+ky HefitAfk/l || oo ||67itAfk/2 [ 272m€0 < 272m+am/260,
k5 <kj

which can be derived from L*® — L type bilinear estimate (2.7) in Lemma 2.1, the
estimate (3.22), and the estimate (3.16) in Proposition 3.1. From the estimate (4.53) in
Lemma 4.9 and the estimate (4.54) in Lemma 4.10, it is easy to see that the desired
estimate (4.47) also holds for the case when ko > —am. Hence finishing the proof. O

Lemma 4.9. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j < (14208)m, then the following estimate holds for fized k, k1, ks € Z,
S't'; (kla k27:U'7 V) € X% X {(7? 7)7 (77 +)}f and kly k2 S [704777,, Zﬂm]y

> 29 F 7 End i s, S 272 e (4.53)

i=1,2

Proof. Firstly, we consider the case when max{j1, j2} > m+2ks—43m. From the L2—L>
type bilinear estimate (2.7) in Lemma 2.1 and the estimate (4.16), the following estimate
holds,

85 -1 I
Z 2 ”]: I:EndklfjlngajZ:I ”Bkd’
max{j1,j2} >m+2ka—48m
< Z 2ak+6k++(1+5)j+4[3m

max{j1,j2 } >m+2ka—48m

x 27 max{ji,jo}—m=alkr ) kahjl HZ||fk27j2 HZ 5 27m7(2+2a)k2+15ﬁm6%

< 9 20m=2j¢
For the case when max{ji,jo} < m + 2ky — 48m, we can do integration by parts in “n”
to see rapidly decay. If V,, hits -l?klyjl and fkmg, we at most lose 2max{ij2}—2k2+5k1, /2
which is less than 2~#™ If V, hits the symbol 72, ,,(+, -), then from the estimates (A.16)
and (A.17) in Lemma A.3, it is easy to see that the maximal loss is 27 k2 =#F1.-+k1.+ which
is less than 2™~ 7™, Hence the net gain is at least 277™ from integration by parts in “n”
once. We can repeat this process many times to see rapidly decay. Hence finishing the

proof. O
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Lemma 4.10. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j < (14208)m, then the following estimate holds for fized k, k1, ks € Z,
) (kla kQa,U'a V) € X% X {(*7 *)7 (*7 +)}) and kla k2 S [*O‘ma QBm];

Z 207 || F1 [J,gq,”,;i]||3,€,] < 9m20m=2%j (4.54)

~Y
i=1,2

Proof. Same as before, the method used in the estimate of Endgf,’f2 can be applied
directly to the estimate of JR}%,62 and JRihkz. Now we proceed to estimate J;:{VI::Z-’NJ
2
and J ,’;, Vk,T i
Recall (4.28) and (4.29). From the estimate (2.6) in Lemma 2.1, the estimate (2.19)
in Lemma 2.4, and the estimate (4.16), the following estimate holds,

Iy 1 (&, )iy (1 — o)y (0) s + (1), 2 (€, 0)¥ky (€ — )iy (0 — )| s
< gkiHapm (4.55)

From the estimate (4.55) and the L? — L> — L* type trilinear estimate (2.8) in
Lemma 2.1, the following estimate holds for fixed &} and kb,

Z 25]”]_— Jullez}HBkJ

1=1,2

< Z 226m+ak+6k++m+]’+k’1+4ﬂmHe i . ”e—itAfki ”Loo ||fk§ ||L2

i=1,2

< min{20 -k Tko)+118m o(1-a)kytmtafm—(No=8)ki 4 1e

From the above estimate, we can rule out the case when ki, k} ¢ [—148m, fm]. Now, it
is sufficient to consider the case when k] and k) are fixed and —14m < kb, < k7 < Bm.

Recall that || < 274|¢ — n| for the case we are considering. It is easy to see that
“€—n” and “n/2” are still not close. Hence, the methods used in the proof of Lemma 4.5
for the X}C case can be applied directly here. Therefore we can do integration by parts in

“ ” u »

is far away from 7/2 and do integration by parts in 7 when o is close to
1/2 to take the advantage of the high oscillation in ¢ or 7. As a result, we can rule out

when

the case when max{j;, ji,j5} < m+ ko + k§ — 168m.

For the case when max{j;, j1, 75} = m—+ka+ki—165m, it is easy to verify that a similar
estimate as in the estimate (4.42) is still valid for the case when ki,ky € [—am,26m]
and ki, k} € [-148m, fm]. Hence finishing the proof. 0O

5. The improved Z-norm estimate: bad type phases

The main goal of this section is to prove the desired Proposition 3.3. In other words,
we will prove the desired estimate (3.18) under the bootstrap assumption (2.20) and
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the assumption that Proposition 3.1 holds. Note that the estimate (3.31) is valid in this
section.

Recall (3.13) and (3.10). In subsection 5.1, we consider the case (ki,ka,pu,v) €
xi < {(+,=), (=, +)}. In subsection 5.2, we consider the case (ki,ko,u,v) € Xxix
{(+,+), (+,—)}. In subsection 5.3, we estimate K*"(ff ,f{ ), where p,v € {+,—}
and (k1,ks) € x3. Hence finishing the proof.

5.1. When (k1,ka) € xb, (1,v) € {(—,4), (+, =)}

Note that the estimates (4.1) and (4.2) in Lemma 4.1 holds regardless the sign of p
and v. Moreover, the proof of the Lemma 4.2 is also valid regardless the sign of p and v.
Hence, we can rule out the very-low-frequency case, the relatively-high-frequency case,
and the case j > (1 + 20d)m as in subsection 4.1. Moreover, from the estimate (A.4) in
Lemma A.2, it is easy to see that the phase is not degenerated if k; > 0. Therefore, the
case when k; > 0 can be handled in the same way as in the subsection 4.1. To sum up,
in this subsection, it would be sufficient to consider fixed k, kq, k2, and j that satisfy
the following estimate,

—1+8)m+7)/2+a)<k<k —10<ky <k +10<10, j<m+20dm. (5.1)
From the estimate of bad type phases in (A.4), we know that the size of phases

highly depends on the angle between & and vn. This fact motivates us to do dyadic
decomposition for the angle between ¢ and vn with a threshold I chosen to be 2k,— as

follows,

to

AT @i = X1 1= Y, 62)
1 I<1<2 J12—ki,—,j2>—ka

where

g = // P EM o (L€ m)aya(€ — ) TE L (8.6 — ) JE, L (tn)dndt, (5.3)

and ¢y, (+) is defined as follows,

Yi(z)  ifl<l<2
() = {1/);(%) 1= =2k _. o4

Note that there are at most m? cases in total for [, which is only a logarithmic loss.
Hence we will also let [ to be fixed in the rest of this subsection.
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To sum up, it would be sufficient to prove the following estimate in this subsection,
26jH}—_1 [Ilmu]HBk,j S 2_26m_25j60’ (/1471/) € {(_a+)7(+’_)}v (5'5)

where fixed k, k1, and j satisfy the estimate (5.1) and fixed I € [-2k; _, 2]. Based on the
possible sizes of j, k+ 2k, and k+ 2l, we separate into five cases. As a result, the desired
estimate (5.5) follows from Lemma 5.1, Lemma 5.2, Lemma 5.3, Lemma 5.4, Lemma 5.5.

Lemma 5.1. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if max{m+1, —k—1}+100dm < j < m—+200m, then the desired estimate
(5.5) holds for any fized k, k1, and ko that satisfy (5.1).

Proof. Note that the assumption on the size of j implies that & < —30dm because
otherwise max{m + [, —k — I} + 1000m > m + 20dm.

We first consider the case when min{ji, jo} > j — ém. From (2.26) in Lemma 2.5 and
(2.19) in Lemma 2.4, the following estimate holds,

> 2N F I B

min{j1,j2}>j—dm

< Z o(2+a)ktm+(1+8)j+k+k+1/2

~

min{j1,j2}>j—dm

[ frr gl 2

% kaz,jz HL2 S 2(2+a)k+m+26m—(1—6)j—2ak1+l/26% S 2(1—a)k+25m€0 5 2—267n—26j60'
(5.6)

Now we consider the case when min{j;,jo} < j — dm. For this case, we will do
integration by parts in “£” repeatedly to see rapidly decay. Recall that uv = —. From
the estimate (A.3) in Lemma A.1 and the estimate (A.15) in Lemma A.3, it is easy to
see that the following estimate holds,

Ve (€, ) oy (£(6 ) = [ (€D S — (e — n|>ff—” (L6 m)) S 2.

[3 1€ =l
From the above estimate and the assumption that j > m + [ 4+ 1000m, we have the
following estimate,

Vela - &+ 107 (&n)]|or, (L&, vn))eh () ~ 27. (5.7)

Hence, after doing integration by part in & once, we can gain 277 by paying the price
of at most max{2mintitdzt 2=F=11 " where 275! comes from the fact that V. might
hit the angular cutoff function ¢y, (£(&,vn)) or the symbol a,, . (t,7,§,n) (see (4.8)). As
j > —k — 14 100dm and min{ji,j2} < j — dm, we can see that the net gain of doing
integration by parts in “£” once is at least 279, Hence, we can keep doing this process
to see rapidly decay. More precisely, the following estimate holds.



846 X. Wang / Advances in Mathematics 346 (2019) 805-886

| FHIEY G )@)]@5 (@) S 271 faga 22 | ol 22
Hence, it’s easy to see that the following estimate holds

> 29| FHIY B, S 272 e (5.8)

min{ji,j2}<j—dm

Hence finishing the proof from the estimates (5.6) and (5.8). O

Lemma 5.2. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j < max{m+1l, —k—1}+1000m, then the desired estimate (5.5) holds for
any fized k, k1, and ko that satisfy (5.1) under the assumption that k4 2k; < —m+ fm,
and k+ 2l < —m + 28m.

Proof. From the assumptions that j < max{m+1, —k—1}+100dm, k+2k; < —m+ Bm
and k + 2] < —m + 20m, it is easy to see that j < —k — [ 4 28m + 100dm and k <
—-m/3 + pm.

From the estimate (2.26) in Lemma 2.5, the estimate (2.19) in Lemma 2.4, and the
estimates (3.23) and (3.25) in Lemma 3.2, the following estimate holds,

25j ||]:—1[Ilmu] ”Bk,]‘ 5 225m+ak+m+(1+6)j+k+k+k1+l ||fk1 ||L2 ||fk2 (t, f) ”Lgo

g 2(1+a)k+m+2k1+36m60 S 2&k+4Bm60 S/ 2—26m—26j60.

Hence finishing the proof. O

Lemma 5.3. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j < max{m+1l, —k—1}+1000m, then the desired estimate (5.5) holds for
any fized k, k1, and ko that satisfy (5.1) under the assumption that k+2ky < —m+ m,
and k + 20l > —m + 28m.

Proof. From the assumptions on j, k + 2k, and k + 2[, it is easy to see that j < m+1+
1006m and k < —m/3 + fm.

e We first consider the case when max{ji,j2} > m+k—k;+1—4pm. From the estimate
(2.27) in Lemma 2.5 and the estimate (2.19) in Lemma 2.4, the following estimate holds,

67 —1r7m,v ak+m+(1496)j
§ 2 ”]: [Il;jl,jQWBk,j S E 2 (
max{ji1,j2 } >m+k—ki+l—48m max{j1,j2} >m+k—ki1+l-48m

~ 2k+ﬁm7m72ak17max{j1,j2} Hf/ﬁ < 2ak+(172a)k1+6ﬁm6% S 2726m726j60.

g llzll fragallz S

e Now we consider the case when max{ji,j2} < m+k — ky + 1 — 48m. For this case,
we can keep doing integration by parts in “n” to see rapidly decay. Because k + 2] >
—m + 28m, which means that we are away from the space resonance set, there is no

problem when V, hits the symbol 7, , (£ — n,m) when doing integration by parts in
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7, see (4.22) and (A.14) in Lemma A.3. From (A.14) in Lemma A.3, we can see that
the net gain of doing integration by parts in “n” once is at least 2™ max{2~F=2/+/m,
gmax{ji.jeb—ktki—1436mY “\which is less than 277™. Therefore, we can keep doing this

process to see rapidly decay. 0O

Lemma 5.4. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j < max{m+1l, —k—1}+1000m, then the desired estimate (5.5) holds for
any fized k, k1, and ko that satisfy (5.1) under the assumption that k+2k; > —m+ fm,
and k + 21l < —m + 28m.

Proof. From the assumptions on j, k 4+ 2k, and k + 2I, it is easy to see that j < —k —
I+ Bm+100dm, k < —m/5+ fm and | < ky + Bm/2.

Because k + 2k > —m + m, which means that we are away from the time resonance
set, we do integration by parts in time once to take advantage of the high oscillation in
time. The formulas are very similar to (4.12) and (4.25). For the sake of readers, we still
state them in details as follows,

v _ Moyt V5T
I =y Endi, + JEL,
i=1,2
vyt § E oV, TRy 7 ;
Jl;k1>k2 - Jl;ki,ké + JRl;k‘LkQ’ te {1’ 2}’ (59)
ki,kéGZH’,f@/E{—‘r,—}
HVSToRyE § : VT
Jl§k7/1akl2 ) 1,3i331,05°
J1>—k, _gh>—ky _gi>—ki -
wv sV
Endl;khkz - Z Endl;khh,kz,jz’ (5'1())

J12—k1,—,j2>—ko

P TR E : FH TRt TR E : HHwTRE 1.2 11
151,32 1,5i531,35° 1,54391 L,ji531,35° {2}, (511)

2

Ji>—ki, — Jh>—ky _
where
Moyt
Endl§k17j17k27j2
- S v —_ —_—
= (=1)"! /em’ Cm gl (& =), 5 tim)my (€ = n,m)ep (£(6,vn))dn,
]R2
(5.12)
ta
w7k DT (€m0, T ,
mpgt = [ [ e e ngs 6 oo (46 om)
t;1 R2 R2

X f}’:l g1 (t, €~ n)f;@l g (t,m— U)f;':é,jé (t,o)dndodt, (5.13)
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HY 5 = / / / e m I o (€m0 ) (46 vm)

t1 R2 R2
X i (€= ) (to —n)ff, . (tn)dndod, (5.14)
to
TRy, = [ [ € ED PR E =R (tm)my (€ = n.m)
/]
X ¢k1 (f - n)wkz (n)@f,l(l(ga Vn))dndta (515)
to
JRIz;kl,kQ = eitq’“"/(f,n)@(t’ 5 - n)?;(tv U)mu,u(f - 77)
/]
X Qﬁkl (f - n)wkz (n)@i,l(l(ga Vn))dndta (516)

where m,, ,(§ —n,m), m;;, (& n,0), and m;} (£, n,0) are defined in (3.3), (4.28), and
(4.29). From the estimate (2.9) in Lemma 2.2, the estimate (2.19) in Lemma 2.4, the
estimate (A.4) in Lemma A.2, and the estimate (A.14) in Lemma A.3, the following
estimates hold,

1m0 (€ = .m0 (£(6,vm)) || g, S 28 7F72maxtin ot (5.17)

1m0 (€ = 1 e £06 v s,
< maX{2k—k—2 max{ky,_,l}—3ky, _ 2k—k—2 max{klyf,l}—?)l} < 92 max{kl,,,l}—6k1,,.

(5.18)

From the estimate (2.26) in Lemma 2.5, estimates (3.23), (3.24) and (3.25) in Lemma 3.2,
and the estimate (5.17), the following estimate holds,

> 2| F T Endp s, + Y 2V IF T I s

i=1,2 i=1,2
< E 2ak:+(1+6)j72 max{k1,—,l}+28m+k+ki1+1
~y

i=1,2

% (1 Fe (Ol fra_ Iz + 271 Fie (£ )| e 190 s,

5 2ak+3ﬁm6% 5 2—25m—25j60.

)

Hence finishing the proof. O

Lemma 5.5. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j < max{m+1l, —k—1}+1000m, then the desired estimate (5.5) holds for
any fized k, k1, and ko that satisfy (5.1) under the assumption that k+2ky > —m+ Sm,
and k + 20l > —m + 2pm.
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Proof. From the assumptions on j, k + 2k, and k + 2[, it is easy to see that j < m+1[+
1006m and k1 > —m/3. Same as in Lemma 5.4, we do integration by parts in time first
to take advantage of high oscillation in time.

e FEstimate of the endpoint case. Because k42l > —m+2m, which means that we
are away from the space resonance set, we can first rule out the case when max{ji, jo} <
m+k — k1 + 1 — 48m by keep doing integration by parts in “n” many times.

Now it would be sufficient to consider the case when max{ji, jo} > m+k—ki+{—48m.
From the estimate (2.26) in Lemma 2.5 and the estimate (5.17), the following estimate
holds after putting the input with higher spatial concentration in L? and the other input

3 o0
mLE.

oj — Wyt
Z Z 2 J”]: 1[Endzk1/1fj1»k2,j2]“3k=j

max{j1,j2} >m+k—ki+l—48m i=1,2
< Z 2ak+(1+6)j—2 max{ki,_,l}+k+ki1+l—max{j1,j2} —2ak1
max{j1,j2 } >m+k—ki+1—48m
k+2ky +1—2 ki _ 1} —20k,+68m 2 k+(1—2a)k;+6
X || fr o 12| Frg g | 2 S 20K 2Rt 2maxthn, — [} =20ka £66m 2 < gak+(1=20)k+60me,
From the above estimate, we can rule out the case when k1 < —78m or k < —705m.
It remains to consider the case when k1 > —78m and k > —708m. From the estimate
(5.18), we have

(& = 1 m)ra (L& vm))llsge,, ,, S 27F0-+20m < 9580m, (5.19)

From the L? — L® type bilinear estimate (2.7) in Lemma 2.1 and the estimate (5.19),
the following estimate holds after putting the input with higher spatial localization in
L? and the other input in L°.

67 — Uyt
Z Z 2Y|lF 1[Endﬁkulfj1,k2,j2“|3k,j
max{j1,j2 } >m+k—ki+l—4pm i=1,2
< > gokt (L) +58pm—max{jrjal=m=2aks | f ol /|l i, o 2

max{j1,j2 }>m+k—ki+l—48m

S 2—m—(1—a)k+(1—2a)k1+705m6% g 2—m+1405m60 S 2—26771—25]'60.

e Estimate of J{; . i€{1,2}. Recall (5.9), (5.10), and (5.11).

Since the decay rate of Z-norm of R’ is 27™, with minor modifications, we can estimate
of JR}.y, x, and JR], 4, in the same way as we did above for Endﬁ;:l’fb. We omit details
here.

From the estimate (A.4) in Lemma A.2, it is easy to see that the size of ®*¥ (£ —n,n)
is greater than 2F+2maxtkill “which is greater than 2=™#™, From the estimate (2.32)
in Lemma 2.6, after putting fx, (t) in L and T™"(fx;, fi;) in L?, the following estimate
holds
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¥ —171 7H,V,T K,
§ 2 ||]: [Jz;k'hké ]HBk,j
i=1,2

S sup
Al<28m/2

x 28 [e ™A fig [l oo | frg |l 2

+ 2—10m+k+ak+m+j—2 max{l,k1,_} kal ||L2 ”e—itAfki ||L°° ”fké ||L2

2ak+m+(l+5)j—2 max{l,kly_}+2ﬁmHe—i(t—Q—Q’k’zl)\)fk (t) ||L°°
1

5 min{Q(l—2a)1<’2-|r3ﬁm7 2(1—2a)k§+m+3,6’m—(NU—S)k’LJr }60. (5.20)

From the above estimate (5.20), we can rule out the case when ki, k) ¢ [—4pm, Bm)].
Now, it remains to consider fixed ki, k € [—48m, Bm].

Firstly, we consider the case when max{j;, j;,j5} > m + k1 + k{ — 108m, i € {1,2}.
From the estimate (2.32) in Lemma 2.6, the following estimate holds after putting the
input with the maximal spatial concentration in L? and the other two inputs in L*°, the
following estimate holds,

A
2 > 2N

i=1,2 max{j;,j1,j3} >m+ki1+ky —108m
2B8m (gak+m+j—2 max{l,k1,_ }o—m—ak;
< ) 220m (2 2
max{ji,j{,js} >m+k1+ki —108m

+ 2—10m+k+ak+m+j—2 max{l,kly_})

x k1= max{ji.ji gz} —m—a(ki+ky)| £

i 20 kel 211 i 53 2

< 27m7k17(1+a)(k/1+k§)+24ﬁm60 < 2726m726j60. (5.21)

In the above estimate, we used the fact that k4 > —m/3.

Now, we consider the case when max{j;, 71,75} < m+k1 +kj —108m, i € {1,2}. We
separate further into two cases based on the possible size of ky. If ky > —108m, then
the cubic degeneracy of the bad type phases doesn’t cause much difference, with minor
modifications, the argument used in the proof of Lemma 4.5 for the good type phases
also works out for this case.

Lastly, we consider the case when k; < —108m. Recall that —48m < k}, <k} < Bm.
In other words, we have |n| < |[n—o| ~ |o| or | —n| < |—0]| ~ |0 —n|. Hence, we can do
integration by parts in ¢ to take the advantage of high oscillation in o. More precisely, the
net gain of doing integration by parts in “o” is at least max {2~ tmax{ii.jz}—k1 =k +36m_
g—momin{ki,ko}—4k1+56m \which is less than 2777 see estimates (A.16) and (A.17) in
Lemma A.3. Therefore, we can do integration by parts in “o” many times to see rapidly
decay to rule out the case when max{j{, 75} < m + ki + k] — 48m. Hence finishing the
proof. O
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5.2. When (k1,ka) € X3, (1, v) € {(++,4), (4, =)}

Note that the estimates (4.43) and (4.44) in Lemma 4.6 and Lemma 4.7 hold re-
gardless the sign of p and v. Hence, we can rule out the very-low-frequency case, the
relatively-high-frequency case and the case j > (1 + 20§)m as in subsection 4.2. From
the estimate (A.4) in Lemma A.2, it is easy to see that the phase is not degenerated
when k > 0. Therefore, there is little difference between the bad type phase and the good
type phase and the method used in subsection 4.2 also works for this case. To sum up, it
would be sufficient to consider fixed k, ki, k2, and j that satisfy the following estimate,

—2(1+1008)m/(2 — o) < ky < k — 10, |ky — k| < 10, (5.22)
—2(1+1008)m/(4 —a) <k <0, j<(1+208)m. (5.23)

For fixed k; and ko in the above range, we do dyadic decomposition for the angle
between ¢ and vy with the threshold I chosen to be 2k;,_ and then spatially localize two
inputs as in (5.3). For simplicity, we use the same notations listed in (5.2) and (5.3) but
readers should keep in mind that now (k1,ks) € x7 instead of xj.

To sum up, it would be sufficient to prove the following estimate in this subsection,

29| FH I By S 272 e, (pyv) € {(+, ), ()} (5.24)

where fixed k, k1, and j satisfy the estimates (5.22) and (5.23) and fixed [ € [-2k; _, 2].
Based on the possible size of j, ko and [, we separate the proof of the desired esti-
mate (5.24) into five cases, see Lemma 5.6, Lemma 5.7, Lemma 5.8, Lemma 5.9, and
Lemma 5.10.

Lemma 5.6. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if max{m + [,min{—ks — I,m}} + 100dm < j < m + 200m, then the
desired estimate (5.24) holds for any fized k, ki, and ko that satisfy (5.22) and (5.23).

Proof. Recall that j < m + 20dm. From the assumption on j, it is easy to see that we
only need to consider the case when ko +1 > —m, j > max{m+1, —ks — I} + 1006m and
k1 < —206m.

Recall (5.3). Although k; and ko are not comparable in the case we are considering,
the following rough estimate always holds,

Ve @ (&, m)leor, (£(E, vm)) bk, (€ — n)Yow, (n)
+ Ve (€, € — )|y (L(& (& =)y (n)or, (€ — 1) S 20
Recall that j > max{m +1, —ks — I} + 100dm. Hence, by doing integration by parts in

¢ once, we gain 277 and pay the price of max{2™ir{iniz} 9=k2=11 " where 22~
from the fact that V¢ might hit the angular cutoff function or a, , (t,z,§ —n) (see (4.8)).

comes
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Hence, we can rule out the case when min{ji, jo} < j—dm by doing integration by parts
in £ many times.

It remains to consider the case when min{ji, j2} > j — 0m, from the estimate (2.25)
in Lemma 2.5, the following estimate holds,

Z 25j||]: [Ilujll/ JZ]HBk,]‘ S Z 2ak+m+(1+6)j+k+k2+l/2”fkl,jl ||L2
min{ji,j2}>j—dm min{j1,j2}>j—m
X || i o ll 2 S 2K HAm@katmt20m=j+1/22 < ol=a)kat20me, < 9=20m=25¢,  (5.25)

Hence finishing the proof. O

Lemma 5.7. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j < max{m + |,min{—ko — I, m}} 4+ 100dm, then the desired estimate
(5.24) holds for any fixed k, k1, and ks that satisfy (5.22) and (5.23) under the assumption
that (2 — 2a)ks < —m — 208m, and ke + 21 < —m + 48m.

Proof. Note that the assumptions on j, ko, and [ implies that j < min{—ks — [ +
48m,m} + 1000m. Since k1 and ko are not comparable for the case we are considering,
whether jo is the smaller than j; makes a difference.

o If jo < 41, then from the estimate (2.25) in Lemma 2.5, the following estimate holds,

Z 907 ||]: I[H]’lf ]2] HBk,j < Z 226m+ak+6k++m+j+k1+k2+l/2||fk1,j1 ||L2 ||fk2,j2 HL2

J2<71 —k2<j2<j1

5 212Bm+m+k17l/2+(2704)k:260 5 272677176]’60'

o If j; < jo, then we can improve the upper bound of j. More precisely, as j; < ja, there
is no need to switch the role of £ —n and 7. As a result, the following improved estimate
holds from the estimate (A.14) in Lemma A.3,

(Ve (&, m) | (£(8,vn)) = N (€2 — A€ = nl) |\<ﬂu( (& vm)) S 2k Mt

iy € -

With the above observation, we can redo the argument used in the proof of Lemma 5.6
to further rule out the case when max{m + (1 — a)(k2 — k1) +1,—k1 — 1} +38m < j <
max{m-+1I, —ke — [} +1006m. More precisely, a similar estimate as in the estimate (5.25)
holds for the case when j; > j—dm. Recall (4.8). Note that the price of doing integration
by parts in & once is 2751~ when V¢ hits a,,, (t, 2, &, n). Hence, by doing the integration
by parts in “£” many times, we can rule out the case when j; < j — dm.

Lastly, it remains to consider the case when j < max{m+ (1 —«a)(ka — k1) +1, —k; —
[} + 3pm. From the estimate (2.25) in Lemma 2.5 and the estimates (3.23) and (3.25)
in Lemma 3.2, the following estimate holds,
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D 2NFTIY s, S D 22mrektmAs bk ket f G fra ol 2
J1<J2 J1<72

5 max{27[3m+2m+(3—2a)k2+k1+2l60’ 27,8m+m+(2—o¢)k2+k1 60} 5 2—26m—25j60. 0
Lemma 5.8. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j < max{m + [,min{—ke — I, m}} 4+ 1000m, then the desired estimate
(5.24) holds for any fixed k, k1, and ko that satisfy (5.22) and (5.23) under the assumption
that (2 — 2a)ke < —m — 208m, and ko + 21 > —m + 48m.

Proof. Note that the assumptions on j, ko, and [ implies that j < m + [ 4+ 100dm and
I > —m/4. Moreover, note that we are away from the space-resonance in “n” set since
ko 4+ 20 > —m + 48m.

We separate into two cases based on whether j; is smaller than j, as follows.

e We first consider the case when jy < j;. Note that the net gain of doing integration
by parts in 1) once is at least 2~™ max{2max{in.j2}=1436m 9—k2=2l+6m1 \which is less than
2-8m if §, < m +1 — 4fm. Hence, we can first rule out the case j; < m +1 — 48m by

1P}

doing integration by parts in “n” many times. From (2.25) in Lemma 2.5, the following
estimate holds for the case j4 > m+1—48m
8| =117 26 k ko +2ko+
> W e, s Y gk
J2<ji,m+1—-4Bm<j1 J2<j1,m+l-4Bm< g

X ||fk17j1 ||L2||fk2,j2 HL1 S 2m+(2—a)k2+k1+l+6ﬂm€0 5 2_25m_26j60'

e Lastly, we consider the case when j; < jo. For this case, we can improve the upper
bound for j. More precisely, following the same argument used in the proof of Lemma 5.7,
we can rule out the case when max{m + (1 — a)(ka — k1) +1,—k1 =1} +36m < j <
max{m + [, —kg — I} + 100dm.

It remains to consider the case when j < max{m+ (1 —«)(ka—k1)+1,—k1 —1}+38m.
Moreover, same as in the case jo < j; considered previously, we can further rule out the
case when jo < m + [ — 48m by doing integration by parts in “n” many times to see
rapidly decay.

To sum up, it would be sufficient to consider the case when j < max{m+ (1 —a)(ks—
k1) +1,—k1 — 1} + 38m and jo > m + 1 — 48m. From the estimate (2.25) in Lemma 2.5
and the estimate (2.19) in Lemma 2.4, we derive the following estimate,

Z 26j||‘771[]‘ll—'f]7'11/,j2]“3k,j < Z 920mtak+m+jtkitki+ka+l
J1<g2,m+l—4Bm<jo J1<j2,mAl—4Bm<j2

« ||fk1,j1 HLl kaz s ”L2 5 max{2m+(272o¢)k2+k1+l+12[3m’ 2125m+(1704)k2+k17l}6%

—2dm—26j
S 2 m JEQ.

In the above estimate, we used the fact that ko < —m/(2 — 2a) — 128m and | > —m/4.
Hence finishing the proof. O
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Lemma 5.9. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j < max{m + [, min{—ks — I, m}} + 100dm, then the desired estimate
(5.24) holds for any fixed k, k1, and ks that satisfy (5.22) and (5.23) under the assumption
that (2 — 2a)ke > —m — 208m, and ko + 21 < —m + 48m.

Proof. Note that the assumptions on j, ko, and [ implies that j < —ko —14+1000m+45m,
I < —m/5 and ky < —m/10. For this case, we first do integration by parts in time. As a
result, we have the same equality as in (5.9).

From the estimate (2.9) in Lemma 2.2, the estimate (2.19) in Lemma 2.4, the estimate
(A.4) in Lemma A.2, and the estimates (A.16) and (A.17) in Lemma A.3, the following
estimates hold,

1m0, (€ = 0, m) @i (L&, vm)) || 1o, S 201~ 2maxtind}) (5.26)

||mu7y(§ —-n, 77)501',1(4(57 I/T]))HSE?MJCQ 5 max{2k1*k2*2 maX{k?l,—J}*?ﬂ’{:l,—7

2](717](}272 max{kl,,,l}fiil} < Zkilfk)QfQ max{kl’,,l}fﬁkly, . (5.27)

o FEstimate of the endpoint case. Recall (5.12). From the estimate (2.25) in
Lemma 2.5, the estimates (3.23) and (3.25) in Lemma 3.2, and the estimate (5.206),

the following estimate holds,

Z 26j||]:—1[Endg}cl/177ik2]||3k’j 5 Z 226m+ak+j—k1—k2+k1+k2+l|‘fkl (ti, §)||Lg° ||fk2 (ti)HLQ
i=1,2 i=1,2

5 2ak+4,6’m+2005m60 SJ 2—26m—26j60'

e  FEstimate of Jl’;‘,’c’:’;z, i € {1,2}. Recall (5.9). With minor modifications, we can
estimate of JRll;kl’kQ and JRZQ;kth in the same way as we did for Endf‘;;:l’sz. We omit
details here and proceed to the estimate of Jl’f,’g’;’,:’z. From (2.25) in Lemma 2.5, (2.19)
in Lemma 2.4, (3.23) and (3.25) in Lemma 3.2, and (5.26), the following estimate holds
after putting 77" (fx;, fi,) in L? and the other one in Lg®,

%) — W TyR, 1
S 2 F I s
i=1,2

< 226m+ak+m+j—k1—k2+k1+k2+l||fk\1(t,é“)HLgo ok2tki | ||e_”Afk; |l Lo

X || fugllgz + 220 oktmts kot 2ot f (1, €) | e 251K e A fig | oo | g L2

S min{2ak+(1_a)ké —4k/1,++3ﬂm, 2m+ak+(1—a)k§+k’1—Nok/1,++3,8m}60. (528)

From the above estimate, we can rule out the case when k}, < —108m or k] > pfm.

It remains to consider fixed &} and k4 such that —108m < k) < kf < Sm. Recall that
k1 < —m/10. In other words, we have |n| < |n —o| ~ |o] or | —n] K |£ — 0| ~ |0 — 7.
From the estimates (A.16) and (A.17) in Lemma A.3, we know that V,®""(¢,n,0)
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always has a good lower bound. Hence, we can rule out the case when max{ji,j5} <
m+ ks + K} —48m by doing integration by parts in “o” many times. It would be sufficient
to consider the case when max{j{, j5} > m+ ks + &} —48m. From (2.25) in Lemma 2.5,
the following estimate holds after first putting T7"(fr; j1, fry,j5) in L? and then putting

2
the input with higher spatial localization in L? and the other input in L,

S || L] THVT R
> > 2INF e 3k gl B
1=1,2 max{j1,j2} >m+ka+ki—48m
< 225m+ak+m+j
~Y
max{j1,j2 } >m+ka+ki—48m

s 9—k1—katkitkatl ||fk\1 (t, )Lz ok2+k] 4 9—m—ak]—ak;—max{j],j;} i 2N fag sl 2

+gektmti—h kot 2ot B (4 )| o2 R gmmeki—akymmaxd i | 14 fig gyl 2

S 27m7(1+a)k27(1+2a)k'2+4ﬁm60 § 2726m725j60.
Hence finishing the proof. 0O

Lemma 5.10. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j < max{m + |,min{—ke — I, m}} 4+ 1000m, then the desired estimate
(5.24) holds for any fixed k, k1, and ko that satisfy (5.22) and (5.23) under the assumption
that (2 — 2a)ks > —m — 208m, and ko + 21 > —m + 40m.

Proof. Note that the assumptions on j, ks, and [ implies that j < m + [ + 100dm.
Moreover, note that we are away from the space-resonance in “n” set since kg + 21 >
—m + 48m. For this case, we do integration by parts in time once and have the same
identity as in (5.9).

e [Estimate of the endpoint case. Recall (5.12). We separate into two cases based
on whether j; is smaller than j, as follows.

(1) If jo < j1, then we can first rule out the case when j; < m + 1 — 48m by doing

integration by parts in “n” many times. It would be sufficient to consider the case when
j1 > m~+1—48m. From (2.25) in Lemma 2.5, the following estimate holds if k; < —308m

5 e i
Z Z 2 J”J—: I[Endzkyljjlykz,jz]HBkyj

J2<j1,m+l—4fm<j1 i=1,2
< E 226m+ak:+j+k:1—k:2—2 max{l,k1}
~J
J2<j1,m+1—-4pm< 51

X 22Bm+2k2+l“fk1,j1 ”L2 ||fk27j2 ”Ll S 2(17Q)k2+15ﬁm60 5 2726m726]—60'

If ks > —30Bm, then the following estimate holds from estimate (5.27), L? — L™ type
bilinear estimate (2.7) in Lemma 2.1 and (5.27) to derive the following estimate,



856 X. Wang / Advances in Mathematics 346 (2019) 805-886

Z Z 26J||]:_1[Endﬁ}:l’jjhk%jz]”Bk,j
J2<j1,m+l—4B8m<j; i=1,2
S Z 25m+ak+j*k2*7k1
J2<j1,m+l—4pm<j1
% ||fk1,j1 HL2 He_itAsz,jg ||L°° 5 2—m—(1+a)k2—7k1+15[3m6% 5 2—26m—26j60.

(#3) If j1 < ja, then we can first rule out the case when max{m + (1 — a)(ks — k1) +
l,—k1—1}+38m < j < max{m+I, —ky—1}+1000m by redoing the argument used in the
proof of Lemma 5.7. Moreover, by doing integration by parts in “n” many times, we can
further rule out the case when jo < m+1—48m. Therefore, it is sufficient to consider the
case when j < max{m+(1—a)(ka—k1)+l, —k1—=1}+30m = m+(1—a)(ka—k1)+1+38m
and jo > m + 1! — 4pm. From (2.25) in Lemma 2.5, the following estimate holds if
ko < =308m

Z Z 2| FH EndY g s llB, S Z gfmrakts

J1<j2,m+1—-4Bm<js i=1,2 J1<j2,m+l—48m<j2

> 2k17k272 max{l,k1,— }+2Bm+k1+ka+l ||fk1,j1 ||L1 ||fk2,j2 HL2 S 2(172a)k2+105m€0

—20m—47j
< 9m2om=bdig

If ko > —308m, then the following estimate holds from the L? — L> type bilinear
estimate (2.7) in Lemma 2.1 and the estimate (5.27),

&7 —1 787X}
2 > 2F T Bk,

Jj1<j2,m+l—48m<jz i=1,2

< Z 2,6’m+ak+j—k2—7k1,,+2ﬁm

J1<j2,m+1—4Bm<js

X ||f/€27j2HLzHe_itAfkhjl ||L°C S 2—m—(1+o¢)k2—7k1+155m€% 5 2_26m_26j60'

e  FEstimate of Jl’f,’g’i,w i€ {1,2}. Same as before, we omit details for the estimates
of JR}.j, x, and JR], 4, here and proceed to the estimate of Sl directly. From the
estimate (2.25) in Lemma 2.5, it is easy to see that the following estimates hold,

26]‘||]_-—1[JM,V,T,N,1]||BICJ 5 226m+ak+m+j+k1—k2—2 max{l,k1,— }+k1+ka+l

Liky,k
X [ e ()l 222 [l g Lo | fugy 122 (5.29)
2| F M I By, S 22kttt ka2 maxbk, )2kt
X | o () o2 lle™ g Lo | iy 1 22 (5.30)

From (5.29) and (5.30), it is easy to see that the following estimate holds if k7, k) ¢
[—2m, 28m)],
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Z 907 H]:—l [Jllj;clz:‘lfv,:,i} ||Bk,j < min{2m+(1_“)k5+1°ﬁm, 22m-{-(1—o¢)ké-|—10,8m—(N0—8)k£7Jr }6%

i=1,2

< Q72m=Wijg,, (5.31)

From the estimate (5.32) in Lemma 5.11 and the estimate (5.42) in Lemma 5.13, it is
easy to see that the desired estimate (5.31) also holds if ki, k5 € [—2m,25m]. Hence
finishing the proof. O

Lemma 5.11. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j < max{m 4+, min{—ks —1,m}}+100dm, k, ki, and ko satisfy (5.22)
and (5.23), (2 — 2a)ky > —m — 208m, and ke + 21 > —m + 4P8m, ki, kb € [-2m,28m)],
then the following estimate holds,

98] ||]:71 [Ju,vmml] ||BM

—26m—24j
(o <2 o. (5.32)

Proof. Recall (5.10) and (5.13). Note that (k}, k5) € x5, Ux},Ux}, and j < m-+14+1005m.

Case 1: If k), — 38m < ko. From the estimate (2.32) in Lemma 2.6 and the estimate
(3.23) in Lemma 3.2, after putting T"™"(fy:, fiy) in L? and the other input in L, the
following estimate holds,

&j — W,THK, 1
253 | AT
5 M|S<ul:; 226m+ak+m+j+k1—k2—2 max{l,k1,7}2(k1—k2)/22k2He—itAfk/l|
<2Pm

| L

% | fug 2 lle #2722 TN £ @)

+ 2710m+k+ak+m+j+k17k272 max{l,k1, - }+k2

% ||fk1 ”L2 ||€_itAfk’1 ||L°° Hf/f’z ||L2 5 2kg—ak;+(k1—k2)/2+ﬁm/260 5 2(1—2a)k;/2+2f3m€0.

From above estimate, we can rule out the case when k) < —75m.

It remains to consider the case when k), > —78m. As ko > kb, — 38m, we have
ko > —108m. That is to say, all frequencies are relatively large, which implies that the
cubic degeneracy of the phases is not an issue. Recall that |n| < |£ — n| ~ |£|. From the
estimates (A.16) and (A.17) in Lemma A.3, it is easy to verify that V,®"""(¢,n, o)
is bounded from below by 2¥2+#2=46™ when o is away from 7/2 and V,®47"(&,n,0)
is bounded from below by o2 tky—4fm when ¢ is close to 1/2. As a result, we can do
integration by parts in ¢ and n many times respectively to rule out the case when
max{j1, 71,75} <m+ ky + k) — 108m.

Now, it’s sufficient to consider the case when max{j1, 71,75} > m + ko + k5 — 108m.
From the estimate (2.32) in Lemma 2.6 and the estimate (2.19) in Lemma 2.4, the
following estimate holds after putting the input with the maximum spatial concentration
in L? and the other two inputs in L,
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%] —17 7,V TyK, 1
2. 29 F G B
max{j1,j{,j5} >m-+ka+ks—108m
< E : 928m+ak+m+joks —kz—2 max{l,k1, -}

max{j1,j1,45 } >m+ka+ks—108m
o ,
X 2(k1*k2)/227m704k1 2k2fm7maX{J1aJ17]2}*2ak2 ”fki,j{ ||Z||fké,jé ||Zka1,j1 ”Z

+2710m+k+m+j+k17k272 max{l,k1,7}+k2‘|fk j ||Z
1,J1

o o
w« 9—m—max{j1.j],55} 2ak2||fk',jg||Z||fk;,j§||z

1
5 27m73ké+2005m60 /S 2725m726j€0'
Case 2: If k), — 38m > ko and (K}, kb, vr,vK) € ngow Note that the assumption

ky — 38m > ky implies that (K7, k5) € xj,-
Recall (4.26). A key observation for this case is that the phase /""" (¢, n,0) is rela-

tively large. More precisely, from the estimate (3.9) and the estimate (A.6) in Lemma A.2,
we have
2k’2—k’2y+/2 5 2ké—ké,+/2 _ 2k2+2 max{l,k1,_} < |¢§L,V,T,K(€7 n, o_)l

S 2ké—ké,+/2 + 2k2+2 max{l,kl,,} 5 2ké—kéy+/2.

Hence, we can take the advantage of the above fact by doing integration by parts in time

again. As a result, we have

vl _ :
Tt = D0 (F)'Ei+ Hy,
i=1,2

et T (€, o) (L(E,vm)) fL (ti € — )

e-f ]
R? R?
to
X fk;’l (tiyn — a)f,i(ti, o)dndo, H; =— 2T (Em o)
t1 R2 R2

xS 1 (6.1, 0)@ry (206, vm) 0 (L (8.6 — ) FL, (.0 — 0) I (t, 0) ) dndordt,
(5.33)

where

”"_';LT,K (5 n 0') _ m;:i,l(€7na0-> _ q;;,,u(f - 7],77) (qm—’yﬁ(?] — O',O'))V
et &1 0) = SR ) T e g ) T e, o)

_ QM,V(€ -1, 77) (QTumu(n — 0, U))V
—‘I’“’”(&U) (I)llt,y"rﬁ(g:nao')

X Pr_10,10) (2771 @V (E, 1)) [—10,101 (272 T(E, n, 0)),
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where

K1 = kQ —+ QmaX{kl, l}y k2 = k/2 - k;7+/2

Using the inverse Fourier transform twice, we have

16774////2 =00 RO)

R R2 R2

E; =

(L2 2R Em )2 NS ) o (/€ 1))

Xquu(ﬁ 1) (@ (= 0,0))" T (3, € - ) Fi (tin —

o) Ffy (t, 0)dndodads
e [ [
1671'4

R R2

(t+27 "2 X427 "1 X)) DY (E,m)Fiv(ti+27 "2 X)) A( )Sﬁll( (571/77))

X G (€ = ) FI (€ = T (g Srg) (M) dnd s dAa,

where

T3  (frgs i) (0)

/e—i(ti+2**‘2Az)(rA(In—o\)JmA(\al))( () — 0, g)yfkﬁl (ti,n — U)fé(ti, o)do.
R2

Using the rapidly decay property of X(\), very similar to the proof of (2.31) in Lemma 2.6
we can derive the following estimate

27| FHE | 5,

< sup 225m+ak+j+k1—n1—K22(k1—k2)/2Hei(tﬁ_Q—nl>\1+2,K2>\2)Afk ||Loc
1
b [A1]s| Az |<28m/10
! - —~
T (Fps Fiog) ()| 2 + 27 10mhathamma—wat Zhot 2k E20 1 E ]| B e
N sup

o, /102 3ka/2+k1/2—k +k2+10/3mHei(ti+2*f~:2>\2)/\fk, ||L°°||fk’ HL2 + 2—26m 25]6
1], | Az <20

< 27m7(1+2a)k2/2+k1/2+13ﬁm60 +2 26m 25]60 < 2726m725j60 (534)
In the above estimate, we used the fact that ks > —m/(2 — 2a) — 128m and also used
the estimate (3.23) in Lemma 3.2 and (2.19) in Lemma 2.4

With minor modifications, we can estimate H; very similarly. From (2.25) in
Lemma 2.5, and (3.24) in Lemma 3.2, the following estimate holds if ks < —108m
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27| F ]|l

2267’!7, [2ak+m+j+k17517/$2 Q(kilfk:g)/Q i(ti+2_ml A1 4+27"72 )\Q)Afk
1

< sup
[A1],[A2|<28m/10

X (1T (B fry s Fry) MLz + 1T (fry Orfry) ()|l £2)
4 goktmtithi—ri—ra ket /25, £ | s
o NTT o S )0l 2] + 20k hs s stk (19, £ i

1 2 108 fg 22 ] Fry 122 A 1 2 1 Fig 122 1195 fig Il 2)
< 27(1+2a)k2/2+k1/27m+13ﬁm60 + 2725m725j60 + 2(17a)k2+k1/2+8[3m60 < 27257’?’1,725]‘60'

(5.35)

le [l Lo~

If ks > —108m, then instead of using the inverse Fourier transform twice, we use the
L? — L — L™ type trilinear estimate directly. From Lemma 2.2, (2.8) in Lemma 2.1,
and (3.24) in Lemma 3.2, the following estimate holds,

209 | F Y| g, S 220 okt m =200 (110, £ Nl lle™ ™ fy oo le™ ™ fig | Lo

+ 110 alle ™ fuy iz e figllzoe + 10 fag Nl z2lle ™" fig o e fiy | o)

< 9m—22katTm, < 9=20m—20j (5.36)

Case 3: If kj — 38m > ko and (k},kj,vr,vk) € P;2,. Note that the assumption
ky — 38m > ky implies that (K7, k5) € xp,-
For this case, we first localize the angle between 1 and vko and then decompose

VTR, 1
‘]l;k’l,k’Q as follows,

oV, ToR, 1 E E J152
ik, = B 55t s (5.37)

>k e ke {2kl b2~k f<f<o

ta
. . . 787 —_— —_—
HJv = / e o (L(& )y (€ )l 5, (86 = M @Qka [ T7, 7 (D] (m)dit,
t1

(5.38)

where | = max{l — 63m/5,2k; _} and

lejfiij(t) _r1 [/eit‘t’m(n’g)f”f;j{ (t, n—a)f,:;jé (t,0)qurvr(n—o, a)gol:;[(é(n, vko))do].
R

For simplicity, we also use the following notation,

o ijjz
H g1 s > LT b’

j1>2—k1,—,jo>—ka —,
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Ji.d2 _ J1.J2 VTR (4 VT VK
Hl,i - Z Hl,i;ji,jé’ Tf (t) = Z Ti;ji,jé(t)'

A=Ky _jh>—kh _ J12—ky, g >k

e We first consider the case when either 2k; ~ > 1 —63m/5 or 2k} _ < 1 — 68m/5,
[ >1=1-68m/5. Recall that [ € [2k; _,2] and ky < kj —36m, i.e., [n| < |n—o| ~ |o].
For the case we are considering, we have ko + 20 > ko + 21 — 12m/5 > —m + 85m/5

“ 2

and | — [ < 68m/5, which means that we are away from the space resonance in “o
set. Hence, we can do integration by parts in “o” many times to rule out the case when
max{j},j4} <m+ky — ki +1—28m.

On one hand, from (2.31) in Lemma 2.6 and (2.27) in Lemma 2.5, the following

estimate holds,

35| 71 -
> 2V F 7 H, gy gl
max{j1,j5} >m+ks—kh+I—28m
} 20m—+ak
hS E sup 2
[A|<28m

max{j},j4} >m-+ks—kj+I—28m

o 9mtiki—ka—2max{lk1 - }g(ki1—k2)/2 ||€7i(t+27k272 max{l,ky, })\)fk ()| Lo
1

k' _ _ ./,./ _ k/
« 9ka—m—max{j],j5}-2a 2||fki7ji“Z

~ ||fk/ i HZ + 2—10m+k+ak+m+j+k1—k2—2 max{l,k1,_ }+k2 Hf/ﬁ HL2
2102

_ _ -/ -/ _ !/
x gmmmmaxinaz} =20k | g |z )| frg |2

5 2—3k2/2—k1/2+kg+105m—m60 5 2—m/10+11,6m—k1/2€0 § 2—am/2—k1/2€0. (5.39)

On the other hand, from (2.25) and (2.27) in Lemma 2.5, the following estimate also
holds,

%) —
Z 2V I[Hlj;jivjé]”BM
max{j},j4 } >m-+ks—kj+I—28m

< Z gak+m-+tjtki—kz
~Y
max{j{,j5}>m+ko—ky+1-28m

—_ -/ . ’
x g 2maxtb - Jkibke | f (4, €)|| g 28I 2R | |2 fig gyl 2

< ok F10Bme, (5.40)
Therefore, combining estimates (5.39) and (5.40), we can derive the following estimates,

| F— - - 1/2
Z 25]”; 1[Hl,l~;ji,jé]HBk,j 5 (2 am/2 k1/260) / (2k1+1OBm60)1/2
max{j},j} } >m+ka—kj+I—28m

—20m—2467
< 9m20m=285
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e Lastly, we consider the case when 2kj _ <1 —68m/5 and [ =1=1-68m/5 Hence,
we have k), < —38m/5 and ko < —188m/5.

If we view the bilinear term 77" (¢) in (5.38) as a single input, then it is easy to see
that the estimate of Jl’j k}l/:‘ll;éﬁl is very similar to the estimate of the endpoint case in the
proof of Lemma 5.10. More precisely, we separate into two cases based on whether j; is

smaller than js.
(i) If j2 < ji. Then we can first rule out the case when j; < m + 1 — 8m by doing

integration by parts in “n” many times for (5.38). It remains to consider the case when
j1 = m+1— pm. From the estimates (2.25) and (2.27) in Lemma 2.5, the following
estimate holds,

Z 26j||f_1[HlJ}7J2]”Bk,j

J2<j1,m+l—Bm<jy
< Y ek ka2 bk BT ()]
m—+l—Bm<j1
S, Z 27k1/2+2m+l+1006m7j1 ka1,j1 ||Z2k2 HefitAfk,1 ”LOO kaé ||L2
jizm+l—Bm

< 2k:2/2+(172a)k'2+5m+1005m60 < 920m=20j,

(ii) If jo > j1. For this case, we can rule out the case when jo < m +1 — Bm
by doing integration by parts in “n” many times for (5.38). Therefore, it remains to
consider the case when j, > m + [ — fm. Note that jo, > m+1— fm >m +1+ Bm/6,
ko +20 > ko + 21 — 128m/5 > —m + 88m/5, and kb > ko + 38m. Now, it is easy to see
that all conditions in Lemma 5.12 are satisfied. Therefore, from (2.25) in Lemma 2.5,
(3.23) in Lemma 3.2, and (5.41) in Lemma 5.12, the following estimate holds,

55 —17r7d1,72
S 2 F s,
J1<g2,m+l—pFm<g
< § 226m+ak+m+j+k:1—k2—2max{l,k1,7}+/€2+l/2
~Y
m+l—Bm<jo

Ao 221 Qua g F I @)le S D

m+l—Bm<js

2m+(172a)k:2+31/27j2+2006m60

< 9—20m=25j
Hence finishing the proof. O

Lemma 5.12. Under the bootstrap assumption (2.20), the following estimate holds if
(k1, ko, i, v) € PE , and t € [2m~1 2m],
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1Qk.; [f‘l [/em”’”“’")ﬁ(t,f — )L () (€ — mm)py (Z(E, Vn))dn]} 22

R2

< gUm2edk=m=g+20me -yt 5 > max{m + 1, —k — I, —kg — I} + 1000m and [ > 2k, _.
(5.41)

Proof. To prove the desired estimate (5.41), we only need to redo the proof of Lemma 5.1
and the proof of Lemma 5.6. From the second estimate in (5.6) and (5.25) instead of
the last estimate in (5.6) and (5.25), it is easy to see that our desired estimate (5.41)
holds. O

Lemma 5.13. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j < max{m+1,min{—ks —1,m}}+1006m, k, k1, and ko satisfy (5.22),
(2 = 2a0)ky > —m — 208m, and ko + 21 > —m + 40m, ki, kbl € [—2m,28m], then the
following estimate holds,

29N F e N e

—20m—2467
i, £ 27 e, (5.42)

~

Proof. Recall (5.10) and (5.14). Note that (k},k5) € xj, U X7, UX}, -

We first rule out the case when 7 = k = —. Note that the phase ®3""(£,n,0) is at

JuvTRL
Lkiky
we can do integration by parts in time to take the advantage of the fact that the size of

least of size 2%t for this case. Hence, same as what we did in the estimate of

phase is big. With minor modifications in (5.34), (5.35) and (5.36), it is easy to see that
our desired estimate (5.42) holds.

For the case when (7, k) # (—, —), we divide it into four cases as follows.

Case 1: 1If Il > —2am/3 and k) + 2k; < —m/2 — am + 3Bm. Recall that kg + 21 >
—m + 48m, which means that the frequencies are away from the time resonance set.
From (2.32) in Lemma 2.6 and (3.23) in Lemma 3.2, it is easy to see that the following
estimate holds after putting the input fr, in L and T7"(fx;, fi;) in L?,

| =1 [ o2
2N F I Wb

< 20¢k+m+j+k17k272 max{l,ky,_} i(t+2_k2_2m‘“x“‘k1ﬁ})\) ¢
~ sz( )

sup |le e

A <20m

’ o _ ’ s
x 22 e fi o | fig e+ 2710 fiy 2 le T fig e L fig N 22)

< 2m+2k1+2ﬁm+k;7k27l(22k2+6m)1/2(27m+am/3)1/260 < 2fam/6+65m60

< 972m=20j ¢, (5.43)

~

Note that we used the following fact in the above estimate,

le™" fiy ()| L S min{277 ¥ Bey 252 | P, f(1) |12} S minf27mrem/? g2hatomye,,
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Case 2: If I > —2am/3 and k) + 2k; > —m/2 — am + 38m. Recall that (K, k}) €
Xk, UX7, Ux3, - For this case we have max{ky, k| } > —m/6—am/3+8m and min{k,, kj}+
4k > —5m/6 — 5am/3 + 55m > —m + 55m.

When 76 = —, from (A.16) in Lemma A.3, it is easy to see that we are away from
the space resonance in “o” set. Hence, we can do integration by parts in ¢ many times
to rule out the case max{ji,j5} < m+ k] + k1 — 48m.

For the case when 7x = +, i.e., 7 = Kk = + as the case 7 = k = — is ruled out, we
separate into two cases based on the size of the angle Z(§ — 0,0 — 7).

If Z(§ — 0,0 —n) > 277%™ then the net gain of doing integration by parts in “o” once
is at least max{2 - "tom—max{jijz}+26m o—m—ki+2em+26my - which is less than 27/™
when max{ji,j5} < m —2am. If Z({ — 0,0 —n) < 27" then we have Z(§ — n,0 —
n) < 27" and Z(o — n,vn) ~ Z(€ —n,vn) ~ 28 > 2720m/3 For this case, we do
integration by parts in “n”. The net gain of doing integration by parts in “n” once
is at least max{2 7 I-max{jz.j2}+26m 9—m—k>=2l+26mY which is less than 277" when
max{js, j5} < m — 2am.

Therefore, in whichever case, we can rule out the case when max{js, j1,j5} < min{m+
k1 + k) — 48m,m — 2am}. Tt is sufficient to consider the case when max{js,j1, 75} >
min{m+k, +k] —48m, m—2am} > m+ky +k} —48m—2am. From (2.32) in Lemma 2.6,
the following estimate holds,

o7 —1 VTR, 2
Z 2¥IF [Hl,jz;ji,jgmBk,j
max{jz2,j1,55} >m+ki+ki —4Bm—2am
< E 226m+ak
~Y

max{j2,j1,75} >m+ki1+k]—48m—2am

X 2m+jk1—k2—2 max{l,klv_}z—m—akg‘lfk j ||Z
25J2

x b mmemax(a gLzl el ek | || fag gl 2

+ 2—10m+k+ak+m+j+k1—k2—2 max{l,kl,,}ka i ||Z
2,2

« 9k1—m—max{jz,j; i3} — ok} —aky | Frr it 121 Fg sl 2

S, 27(1+a)k27l+2amfozk'2+48m7m€0 5 2725m726j60'

Case 3: If | < —2am/3 and k} + 2k1 < ko + 2max{l,k; _} + Sm. From (2.32) in
Lemma 2.6 and (3.23), estimate (5.43) also holds and
(545) < 2l+2k1+k'27k272 max{l,kly,}+am/3+8ﬁm60 + 2726m725j60
< 272am/3+am/3+95m60 + 2726m725j60 < 2725m725j60'
Case 4: Ifl < —2am/3 and kb +2ky > ko +2max{l, ki,_} + Sm. The assumption in

this case implies that k; <1/2 < —am/3, kb > ko4 Bm. Recall (4.27). From the estimate
(A.4) in Lemma A.2, the following estimate holds for the size of phase ®5"""(¢,n,0),
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4 ’
|(bl2hlj7‘l',l€(é—7 7, O')| Z 2k2+2k1 _ 2k2+2 max{l,ka} z 2’€2+2k1 . (544)

With this observation, it motives us to do integration by parts in time again and have
a similar identity as in (5.33). Very similar to the proof of the estimate (5.34), after
using the inverse Fourier transform twice, the following estimate holds from the estimate
(2.25) in Lemma 2.5, (3.23), (3.24) and (3.25) in Lemma 3.2,

— STk, 2
2| F I g

< Z sup 920m+ak-+j+2k1 —ky—2 max{ky,l}—ra+ka+1/2

~Y
ro>kh+2ky (M1 hIA2[<20m/10 =

X freo ()| 2 [le ™2 222208 fr | oo | frg | 2

+ gak+m-+j+2ks —ka—2 max{ki,l}—rot+ka+1/2

X (1|01 fr |2l 2 TEADA | oo frg I 2

| fo |2 lle ™ FF2TEADA | oo [0 frg | 22)

+ 2ak+m+j+2k17k272 max{k1,l}—ro+2ko+l

X [ fia (8, €) g e~ H2 AN || e |10 fig | 2

+ 27 1omhe etk () £\l e | fig 12 | Frg o2 + 1 Frall 221100 fig 21| Frey 2

+110¢ frea 2 fig 122 I iy ez + 1 fiall 2 WL fr Nl 22 10 fig N 2)
S 2k27ak/27max{l,k1,,}/2+,8m60 + 2k2+k'1+2l7k;72 max{l,k1’7}+5m+am/360 + 2726m726j60

5 2(172a)k2/2+2ﬁm60 + 2l+o¢m/3+26m€0 + 2725m725j60 5 2725m725j60.

In the above estimate, we used the fact that ko < ky — 5, ko < k) — Bm, (ki,k}) €
X}cl U Xil U Xil, I < —2am/3 and kg < k1 < —am/3 in the above estimate. Hence
finishing the proof. O

5.8. The estimate of K*Y(fi, ) in bady

In this subsection, we estimate the last term in “bady”, see (3.13). Hence finishing the
proof of Proposition 3.3.

Recall (3.13) and (3.14). Note that the output frequency and the two input frequencies
are all comparable as (ki,k2) € x3. From the estimate (3.4), the estimates (3.23) and
(3.24) in Lemma 3.2, the following estimate holds from the L? — L? type estimate and
the volume of support of &,

87 v v
27\ K (f s Fe)l s

S 20T =2k mt IR (119, frey ()] 22 | frs () |2 + 106 Fro () L2 1 fiy (B)]]22)
< Q{1+ (148)j—~(No—10)ks ¢ (5.45)
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Hence, we can rule out the case when k < —(1+46)5/(1+«a)—2dm or k > j/(Nog—20) +
106m. Moreover, it is easy to see that the proof of Lemma 4.2 is still valid. As a result,
it would be sufficient to prove the following estimate,

2
(Desired estimate) : 2% | /.7-"*1 [K”’”(ftl,f,i’z)]dtHBw < Q7m0 (5.46)

where fixed k, k1, ks and j satisfy the following estimate,
—(14+1008)m/(1 +a) <k <2Bm, (ki,k2) € x5, 7 < (14 208)m. (5.47)

Recall (3.14), after plugging the equation satisfied by 9; f in (3.1), the following equal-
ity holds,

to
[retm = XY Y S X K IR (548)
th ki, kb€Z m,re{+,—}1=1,2[;<i<2 j=1,2

where 1 1= 2k_, 15 := 0,

to
. _ -
Kz”iﬂ/m——///ff”<I>1 Ema) el (& m o) fl (8.6 =) fr, (t,n — o)

t1 R? R?

X Jfy (t,0)er(Z(& vm)dndodt, i =1,2, (5.49)

ty
K== [ [ [ @nsien o i e - o) f o -0

t1 R2 R2
X L, (b n)er, o (£(€, vm))dndodt, i =1,2, (5.50)

—

TR, = - / [ e @, 1.6 - T ) + T (.~ R, (1)

mi, (& —n.n)ep  (L(E,vn))dndt, (5.51)

where the symbols m}, ,(§ —n,7) and ¢, (§,1,0), i € {1,2}, are defined as follows,

i (&m, o) = mly (€ = 0,0) (Grwe(n — 0,0)) Vi (E)¥r, (€ = 0)r, (),
e (€, 0) = mly (€= 0,1) (Qurun (€ — 0,0 =) Yi(E) bk, (€ = 0k, (0),
m, (& —n,m) ==muu(E—nn)1 —cun(&n)),
My, (& —nm) = my (€ —n,m)euw (&), (5.52)
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where the symbols m,, ,(§ —n,1) ¢ (§,n), 1, v € {+, —}, are defined in (3.3), (A.1) and
(A.2) respectively.

In (5.48), we separated the cubic terms into two parts based on whether (£, ) is close
to the support of ¢, ., (&, n). We did this decomposition because the size of phases is not
small when (&, n) is close to the support of ¢, (£, 1), see (A.5) in Lemma A.2.

From the estimate (2.19) in Lemma 2.4, (A.4) in Lemma A.2, the following estimate
holds,

el (&, )iy (1 — 0)tbig (0) ey, 4 (£(6,vm)) | L

&m0

+ e (& m, o)y (€ = ) rg (0 = Mg (L& vm) | ge, , S 2F72max{bhodbhetn,,
(5.53)

From the estimate (2.19) in Lemma 2.4, (A.5) in Lemma A.2, the following estimate
holds,

52 (€, 0 g (0 — 0oy ()0 (26 vm) 2,

+ e 3 (&, o)t (§ = )iy (0 = )pp (L& vm))llgs, | S 28R (5.54)

For Kl“k'f 2,’”, i € {1,2}, we do spatial localizations for all inputs. As a result, the
followmg decompositions hold,

VTR, WV, TR, VTR,
Ky k1 = > Kiguitay By
j1>—ki,—,j1>— k/ _jh>— k; _
_ oV, T, R,
= > KI5
Jo>—ka —,j1 22—k _.,j5>—k5 _
where
ta
K[rmml = T En e (6, o) [ (L€ =) (60— o)
Lj1,g1.55 Hos 1S D ) S ey i AT ki,gi 2"
t1 R2 R2
—_—
K _ N
X fk’ " (ta U)(pli;l(é(ga Vn))dndadtv 1= ]-7 2, (555)

Kl = / [ [ enngmien i 6.6~ o) fi o )

t1 R2 R2
X ft, 5, tmer (£(6,vn))dndodt, i =1,2. (5.56)
Lemma 5.14. Under the bootstrap assumption (2.20) and the assumption that Propo-

sition 3.1 holds, if fixed k,ki,ks and j satisfy the estimate (5.47), then the following
estimate holds,
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Y X e, S 2 680

i1,i2=1,2,k1 k5 €Z ;) <I<2

Proof. We first rule out the case when (ki,ky) € Ui—12x}p, U Xi, or (ki ky) €
Ui=1,2X},, 7k = —. From the estimates (A.16) and (A.17) in Lemma A.3, we know
that V,®"""(¢,n,0) always has a good lower bound. Therefore, there is no extra diffi-
culty caused by the fact that (k1,k2) € x3. With minor modifications, we can redo the
argument used in the estimate of “good,,” and the estimate of “badi” to estimate those
scenarios. Hence, we omit the details here for those cases.

Now, we restrict ourself to the case when (k},k3) € xj, and 7x = +. We separate
into three cases based on the possible size of k.

o Ifk+2l <—m+ PBm. Note that this assumption implies that &k < —m/5 + fm.
From the estimate (5.54), (2.25) in Lemma 2.5 and (3.23) in Lemma 3.2, the following
estimate holds,

54 — TSR, 2
S 29| F KL s
i=1,2

S sup PRI (16 e o g1
te(ty,t2

< Q2005mogmet-dktle < gmt2kA2A+3Bme ) < 9=2Wm—20]¢ (5.58)

Now we proceed to estimate K ;Lkz};;l From the estimate (A.3) in Lemma A.1, it is easy
to see that the proof of Lemma 5.1 is also valid. Hence, we can rule out the case when
max{m + I, min{—k — I,m}} 4+ 1006m < j < m + 206m. Now, it would be sufficient to
consider the case when j < —k — [ 4 1006m.

From (5.53), the estimate (2.25) in Lemma 2.5 and the estimates (3.23) and (3.25) in

Lemma 3.2, the following estimate holds,

2 IFT G, § sup oot T o ()
12 telty ta

X |7 frr || o || fay |l 2 S 23PmTFey S 272020, (5.59)

o If —m+ fm < k+ 2l < —fm/100. Note that this assumption implies that k <
—Bm/500. From the estimate (A.4) in Lemma A.2, we know that |®*¥(-,-)| is greater
than 27™%A™ From the estimate (2.32) in Lemma 2.6, and the L2 — L° type bilinear
estimate, the following estimate holds after putting T7"( f,;',l , f/?g) in L?,

&3 — TR, 2
S 2| F L s
i=1,2

5 226m+o¢k+m+j+k—2m—3o¢k+k€? + 2—26m—26j6113 5 2—26m—26j€0.
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Same as the previous case, we can rule out the case when max{m + [, min{—k —
I,m}} +1000m < j < m + 20dm for the estimate of Klukl;‘ll;/:l Hence, it would be
sufficient to consider the case when j < m + 1+ 1000m, then from the estimate (2.32) in
Lemma 2.6 and the L2 — L% type bilinear estimate, the following estimate holds after

putting T”‘(fgi,f,’:é) in L?,

&7 —1[ VTR, 1 ak+m+j+k—2max{k,l} 9g—2m—3ak+k 3 —26m—2685 3
> 2V F K s, <2 thita €1 +2 €1-
i=1,2

< 9(1-20)k+2006m ¢ 4 9—20m—20j < 9=28m—28j (5.60)

e If —3m/100 < k + 2I. Recall (5.47). Note that this assumption implies that k €
[—$m /1000, 28m]. For the case we are considering, all frequencies are almost of size “1”,
which means that the localized angle Z (&, vn), which is of size greater than 2%~ and
the degenerated phase, which is of size greater than 23— play little role. As a result,
there is little difference between estimating K l“ 1:?,;’;711 and K l“ kli;,:lj , 4,j € {1,2}. For
simplicity, we only estimate K. k”,lz,:ll in details here.

From the L2 — L2 — L% type trilinear estimate, and the following estimate holds when
max{j1, 71,75} = 108m after putting the input with the maximum spatial concentration
in L? and the other two inputs in L>,

0 —1[ sV Ts k51
> 2N g g B
max{j1,j1,j5}>108m
< 2Bm+m+j—10k+—2m—3ak—max{j1J’Ljé} 3
~ €1
max{j1,51,j5}>108m
—25m—265
<2 €o. (5.61)

It remains to consider the case when max{ji,ji,j5} < 108m.
In the estimate of “good,” and “bady”, we used the fact that either | — 7| =~ |n

Woa?

or |n| < 27°|¢ — n| to show that the space resonance in “n” set doesn’t intersect with
the space resonance in “o” set (when o = 7/2), which means that we can alway do

({3 Woa

integration by parts in “o” or “n” to take the advantage of the high oscillation either in
“c” or “n” The only extra difficulty caused by the fact that (ki, k) € x} is that there

A9}

exists a space resonance in “n” and “o” set, i.e., V, ®/""" (&, n,0) and V, @7 (¢,n, 0),
i = 1,2, can equal to zero at the same time.

Therefore, we can decompose the support of frequencies into three regions: (i) the
frequencies are far away from the space resonance in “o” set; (ii) the frequencies are

[{P9e))

close to the space resonance in “o” set but far away from the space resonance in “n” set;

Woa?

(iii) the frequencies are close to the space resonance “o” and in “n” set. More precisely,

we decompose the symbols c;f,ll(f ,m,0) and c;,tlz (&,7m,0) into three pieces as follows,

qi&mo)= > eptl(&mo), eyt (Em o) =i o)y (0 —n/2),
j=1,2,3
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(6 m0) =T (Em o) sy, ((€—n) = pr(n— )b, (0 —n/2),

e, T3(£, n,0)=c i Em o) ((E=n)—pr(n— o)), (o —n/2),
l+ l+ + = l_ _ = —267’71, i_)+ = —m/2 + IOﬁm

Because max{ji, j;, 55} < 108m and the threshold I, we choose is away from —m/2,
by doing integration by parts in o or n many times, the terms with symbols €};7; L, m, o)
and e}, 7*(&,7,0) decay rapidly over time.

Now we consider the cubic term with the symbol e};7; 3(€,m,0). An important observa-
tion for the phase ®*"7(¢,n,0), (u,v,7) € {(+, —, —), (+,+,4+), (=, —,—)}, is that the
space resonance in 77 and o set is far away from the time resonance set. More precisely,
the following estimate holds,

DT m ), (€ =n) = pr(n—0))dg, (0 —n/2) 2270,
(1, 7,7) # (= +,4). (5.62)

Therefore, we can first do integration by parts in time once for this case. As a result,
we can gain 2~™ by paying the price of 277™ the extra gain of 2=™+8™ ig sufficient to
close the argument.

Lastly, we consider the case when (u,7,7) = (—, 4+, +). Note that the following equal-

Ko w

ity and estimate hold around the space resonance in n” and “o” set,

—+,+ . /
Ve®, (5777,0)|(n/2’w/2 A/(KDH_"A(K 77|)|§ 17|} (n/2,n,m/2) —

Ve T HEm o (6= 0)va (0 —n/2) S 27F-tAmtlos g gmm/2H120m,
(5.63)

Recall that max{j1, ji,j5} < 108m. From the above estimate (5.63), we can rule out
the case when j > m/2 + 148m by doing integration by parts in £ many times, see the
argument used in the proof of Lemma 5.1. For the case when j < m/2 + 148m, the
following estimate holds after using the volume of support of  and o,

Z 26]”]: [K_ RZR78 7N 1]||Bk y < 26m+o¢k+m+y+4l, +63 < 2—26m 26‘76

41,7195 ~
max{j1,51,j5}<108m

Hence finishing the proof. O
Lemma 5.15. Under the bootstrap assumption (2.20) and the assumption that Propo-

sition 3.1 holds, if fixed k,k1,ks and j satisfy the estimate (5.47), then the following
estimate holds,

ST 2 F IR B, S 27, (5.64)

1=1,27,<1<2
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Proof. Recall (5.51). As there are at most “m” cases of “I”, we first fix “I”. From the
estimate (2.25) in Lemma 2.5 and (3.16) in Proposition 3.1, the following estimate holds
if £k < —0Fm,

Z 26j||‘7:_1[JRZ};7ik2]HBk,j 5 Z sup 926m~+ak+m+j—2 max{l,k}QQk-‘rlHPkirR(t)”L2
i=1,2 7 i=1,2 te[ta,t2]
X ||fk37i(t,§)||[,go 5 2k+2006m€0 S 2—,8m/2€0_

From the L>°—L? type bilinear estimate (2.7) in Lemma 2.1 and (3.16) in Proposition 3.1,
the following estimate holds if £k > —gm,

> 2 F IR s, S Y sup 2O BR8] | e le” M fry e
i=1,2 i:l,gte[tth]

< gmem/de
Hence finishing the proof. O
6. Remainder estimate and the proof of Lemma 3.1

This section is devoted to prove Proposition 3.1 and Lemma 3.1. The main idea of
proving Proposition 3.1 can be summarized as follows,

(i) We first decompose the remainder term R into two parts: cubic type terms, which
don’t depend on A>3[B(h)y] and terms that do depend on Ax3[B(h)y]. We will
prove a Z-norm estimate for a general trilinear form, which is sufficient to estimate
the cubic type terms.

(ii) To estimate the Z-norm of the profile of A>3[B(h)y], it would be sufficient to esti-

“ ”

mate the profile of A>3[V, .¢] in the L Z-normed space, where “¢” is defined in
(1.9). Due to the small data regime, based on the equality (1.16), we can use a fixed
point type argument to estimate the L°Z-norm of A>3[V, .¢].

Step (i) is straightforward. Recall (2.17), we have

R = Ax3[(1+ [VA[*)B(h)y] + iAAss[(1+ [VA*)(B(h)Y)?]
= Ass[(1+ [VA*)(A<a[B(h)Y)]
+ Ass[B(R)Y))] + iA5[(1+ [VA?) (A<2[B(R)¥] + Ass[B(h)Y])*] = Leubic + Ips,

where

Teubic = |V Ao [ B()]
+ M (IVHEA<a[BI)])? + (s BRI + 20 [BRYIM [B(R)Y]), (6.1)
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Iips = (L4 [VAP)Aso[B(h)] +iA (1 + [VAP) (A [ B()Y)?

+2(1+ IVh|2)(AS2[B(h)lb])(Azs[B(h)w]))- (6.2)

Since the explicit formula of A<s[B(h)Y] is known, we can explicitly represent “Icypic”
in terms of h and ¥. More precisely, we can rewrite “I.ynic” as follows,

Icubic = Z C/,L,V,T(“‘“? ul/7 UT) + CL’V(U/#’ uu7 hl) + Cu(u#a h2a h3) + C(h4; h57 h6)7
v, T€{+,—}
(6.3)

where h;, 1 <1 < 6, denotes some determined quadratic term in terms of u and u, whose
explicit formulas are not pursued here. Generally speaking, they can be represented as

follows,
hi= Y T, (u"u’), 1<i<6,
pve{+,—}
where T}, ,(-,-), i € {1,--- ,6}, are some determined bilinear operators.

Proof of Proposition 3.1. Recall (2.20) and (2.21). From (6.14) in Lemma 6.2, we have

sup sup e hs]l 2 < eo.
1<i<6te[zm—1,2m+1]

From the above estimate and estimates (6.16), (6.17), and (6.18) in Lemma 6.2, the
following estimate holds for k € Z, § € [0,1], and t,t;,t, € [2m7 1, 2m+1]

||eitA [Icubic:I ||Z + 2_(1_0)k+9m”Pk (eitA [Icubic] ) HL2 S 2_m60a

to
sup 25jH /eitA [Icubic] dtHBM < 279
k€Z,j>max{—k,0} ;

1

From L? — L? — L™ type trilinear estimate (2.8) in Lemma 2.1, we put the input with the
medium frequency in L> and the other inputs in L?. As a result, the following estimate
holds,

- ~ ) ) 3 _
sup  emelt &)l S27 ST (e ullz + e hillz)* S 2 e, (6.4)
t€[2m—172m] lgigﬁ

Combining the above estimates with estimates (6.5) and (6.6), it’s easy to see that
Proposition 3.1 holds. O
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6.1. Z-norm estimate of terms depend on A>3[B(h)i]

In this subsection, we mainly do step (ii), which is stated at the beginning of this
section. More precisely, we have the following lemma,

Lemma 6.1. Under the bootstrap assumption (2.20) and the improved energy estimate
(2.21), the following estimates hold for any k € Z, 0 € [0,1], and t,t1,ty € [2m~1, 2m+1],

1 [Trps] [l 2 + 27 =R P (A [Lips] )l 22 + I rps (8, )22 S 270, (6.5)
to
sup Q‘SJ‘H/e“A [Ips] dt|| B, S 270y, (6.6)
k€Z,j>max{—k,0} ;
1

Proof. To estimate the Z-norm of A>3[B(h)1], it is sufficient to estimate the L°Z-norm
of A>3[V; .¢]. Recall (1.20). We define

1 = hy + 200, G = ho + iAY,

hence
- _2h+h2:>a _2u_%2h+h2_ h?
YT A+ )2 ' 2 (1+h)?2 201+ h)?
B Butu) i +ar  (u+a) g+ 22
=2u 1 2 4 ( 2 ) (6.7)
s h _ h (u + @)(tg + 1z)
hQ—H—h:>’U/2—U7h u — . (68)

1+h A

With the above notation, we can easily transfer the fixed point type formulation (1.20)
into a fixed point type formulation in terms of u, @, @; and @;, i € {1,2}.

Let us first estimate the Z-norm of the profile of @;. From (6.7) and (6.8), the following
estimate holds by using the estimate (6.14) in Lemma 6.2,

dolle™iilz Serte Y ez, = D ez S e
i=1,2 i=1,2 i=1,2

Now we are ready to prove Lemma 6.1. From the estimates (6.14), (6.15), (6.16),
(6.17), and (6.18) in Lemma 6.2, and Holder type estimates, we can derive the following
estimate from (1.20),

€ As5[Va @)l Loz S 270 + €1]le™ As3[Va ]| Loz, (6.9)
1A23[Va 2@l Lo re S 270 + eolle™ Axs[Va 29l Lo 2, (6.10)

27 (O P A3 (Vi @]l n2 S 2760 + colle™ A3 [V s@llllzz,  (6.11)
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ta

sup 25j||/eitAAz3[Vw,z<P]||Lg°BkJ S 270y 4 25m/2 bup||Pk[Az3[Vw,z<P]]||LgoL2
k€EZ,j>—k_ ; €7
1

< 279, (6.12)
In the above estimate, we used the fact that the case when j > m + 100dm can be ruled
out easily as we did in the previous two sections. Also we used the L? — L™ type estimate
for all quartic-and-higher order terms in (1.20).

From the estimates (6.9), (6.10), (6.11), and (6.12), we have the following estimates,

e Ass[B(R)Y]| 2 + 2~ C=Ok0™ B BR[| 12 < (€ A5 (Va2 ¢]l|l Lz

+27 AR PN 5[ Ve @]l Lo re S 27 ™o, (6.13)
sup 27| / A (B 5, , < 2 Meo,
kEZ,j>—k_

[A>3[B(h )l S 1A23[Va 2]l e re S 27 €0

Following the same procedure, recall (6.2), it’s easy to see that our desired estimates
(6.5) and (6.6) hold. O

Lemma 6.2. For any p,v,x € {+,—} and f, g, h € HNo N Z, which satisfy the following
estimates,

[fllz~o + [lgllzvo + [1Bllzve < A Nfllz + llgllz + IRz < B,

the following estimates for any t,t1,to € 2771 2mH] 'm € Z, , and 0 € [0,1],

€2 QUe™™ ), (e 7))z S I flizllgllz + 271 (A + B)?, (6.14)
iuIZ) 2—(1—0)k||Pk [eitAQ((e_itAf)“, ( —itA ) )] HL2 < 2—9mB2 (6.15)
€

leAC (7™M ) (e ) (e 1))z S 27" £l zllgllz Al z + 271 (A + B)?,

(6.16)

sup 2—(1—0)k||Pk [eitAc(( —ztAf) ( —itA ) ,(e_itAh)K)]”Lz S 2—(1+9)mB3’ (6 17)
kEZ

sup 25]“/ 1tAO 7ztAf) ( —itA ) 7(efitAh)n)dtHBkd S 27105m(A—|—B)3,
k€Z,j>—k_

(6.18)

where the symbol ¢(§ —n,n) of bilinear operator Q(-,-) and the symbol c(§ —n,n — 0,0)
of trilinear operator C(-,-,-) satisfy the following estimates respectively,
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g€ = mm)llsg,, ,, S 2Pmexthokate, (6.19)
le(€ =mn = 0.0)lsge,, ., S 24 M kadele, (6.20)

Proof. ¢ We first prove the desired estimates (6.15) and (6.17). Since (6.17) can be
proved very similarly, we only prove (6.15) in details here. From the bilinear estimate
(2.7) in Lemma 2.1, the following estimate holds for any k € Z and any 0 € [0,1],

b];uIZ) 27(179)k|‘Pk [eitAQ((efitAf)y’ (efitAg)u)] ||L2
S

S Y WO A e gkl 22 - e A g [l | fia 2]

Ko<k —10
+ Z 2—(1—9)k+(1—0)k+3k1,+He—it/\fklH%w||fk1||(Ll;9)Hgk2”L2 < 9—0mp2
[k2—k1|<10

e Now we proceed to prove the desired estimates (6.14) and (6.16). Since the proof of
the desired estimates (6.16) and (6.14) are very similar, we only prove (6.14) in details
here.

Firstly, we do dyadic decomposition for two inputs. From the L? — L™ type bilinear
estimate and the L>® — L? type Sobolev embedding, the following estimate holds,

I QU™ fi ), (e~ g1 )|

S guktoks (i ke masli k) £ (812 i (O]

< 2j+max{k1,k2}+(2—a) min{k1,k2 }+6m—(No—20) max{ki,k2}+ (A + B)2

Due to the symmetry between inputs, without loss of generality, we assume that ko <
k1 + 5. From the above estimate, we can rule out the very-low-frequency case and the
relatively-high-frequency case. From now on, we restrict ourself to the following case,

ko < ki + 5, k1 + (2 — Oz)kz > —j— 105771, k1 < 2,@] + dm.

With minor modifications in the proof of Lemma 4.2, we can rule out the case when
j > m + 10. It remains to consider the case when ;7 < m + 10. Note that we have
ko > —m/(2 — a) — Bm and k; < 3Bm for this case. From the L? — L type bilinear
estimate (2.7) in Lemma 2.1, the following estimate holds if ko < —am/2,

e Qe fiy)¥, (€™ gny )|, S 220 HHORTER A TR fy | Lol gy | 2

S PO gz § 271 £zl (6.21)

To sum up, it remains to consider the case when ki, ks € [—am/2,38m]. If moreover
(k1,k2) € x5 UX3, then from the estimates (A.16) and (A.17) in Lemma A.2, it is easy to

see that we are away from the space resonance in “n” set. Hence, we can do integration
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[{Pe]

by parts in “n” many times to rule out the case when max{ji,j2} < m — 2am. As a
result, we have

Yo et Qe (e g) ) ls,

ji<m+10
S DD Rk (N e g, 2 + 27107 (A + B)?
j<m+10 (khkz)exz
+ > bl 1/ PPN Py
—am/2<ky<ki1+5<38m

max{j1,j2 } >m—2am

Sflzlgllz +271™ (A + B)?.

e Now, we proceed to prove (6.18). The major difference between the estimate (6.17)
and (6.18) is that we can take advantage of the oscillation in time for (6.18). Firstly,
we do dyadic decompositions for all the inputs. Due to the symmetry between inputs,
without loss of generality, we assume that k3 < ko < k;. From the L2 — L>® — L™ type
estimate, the following estimate holds for any t,t, € [2™71,2™],

ta
25j|| /eitAC((efitAfkl),u’ (efitAglw)u7 (efitAh’%)n)dt”Bk)j
t1

5 sup 2(xk+6k++m+(1+5)j+4k1)+

te[am—1,2m]

X [le ™" figllzoe le ™" fig | zoe | fiy || 2 S 23720 e 0= (NomAD k140 (4 4 B3,

Therefore, from the above estimate, we can rule out the case when ky > (5 + dm or
ks < —(1+0)j/(2 — 2a) — fm. Hence, it would be sufficient to consider the following

case,
ks <ky <k <Bj+om, ks>—(1+4+0)j/(2—-2a)— pm.

As before, with minor modifications in the proof of Lemma 4.2, we can first rule out the
case when j > m + 10. For the case when j < m + 10, from the L? — L> — L™ type
estimate, we have

to

26j|| /eitAcv((e—itAfkl)u7 (e_itAng)V, (e_itAhkg)K)dt”BkJ
ty
S sup kLI g ),
te[2m—1,2m]

X [le™ A fr, ([ oo [le ™ fry [l e S 20 7200RsF96m B3,
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From the above estimate, we can rule out further the case when k3 < —128m. There-
fore, it remains to consider the case when ki, ko, k3 € [—128m, Sm]. In other words, all
frequencies are of size almost like “1”. The Z-norm estimate of a trilinear form of this
type has already been considered in the third case of the proof of Lemma 5.14. We omit
details here. 0O

6.2. Proof of Lemma 3.1

Note that (ki,k2) € x5 and t € [271,2™], m € Z,. Since we have already proved
the Proposition 3.1 in the previous subsection, under the bootstrap assumption (2.20),
the estimates in Lemma 3.2 are valid in this subsection.

From the estimate (3.4), the estimates (3.23) and (3.24) in Lemma 3.2, the following
estimate holds from the L? — L? type estimate and the volume of support of &, the
following estimate holds,

> 29 A (uf (1), up, ()|, S 20FFOEOTEERE IR ()| 2 | fry (8) 2
wve{+,—}

< 2(1+a)k+105m+j—(N0—10)k+ 6%.

Therefore, we can rule out the case when k < —(1 + 206)j/(1 + «) — 20dm and k >
j/(Ng — 20) + 106m. Moreover, it is easy to check that the proof of Lemma 4.2 is still
valid. Hence we can rule out the case when j > (1 + 20)dm. It would be sufficient to
consider the case when k and j satisfy the following estimate,

—(141000)m/(1+a) <k <28m, j<(1+20)dm. (6.22)

Recall the decomposition of symbol m,, (£ —n,n) in (5.52). We localize the angle
between ¢ and vn and have the following decomposition,

itA /1. v,i
]:[ A (ulﬁ uk2 Z Z lkl,k2

1= 121§l§2

lﬂkl:}? (t,§) = Z TI ke in (66, (6.23)

J12—k1,—,Jo>—ka -
where [; := 2k_, 1y := —4,
T}Mkll/ 31 k2,j2 (t7 5) = / e n)f“l ,J1 <t € n)ka ]2( )1 )mzl«,l’(f - 77)90[1,l(4(§7 V77>)d77
R2

Therefore,
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FHTES ka6 OUR(E)] = / / el SRR Em gl (8, & — ) fY ()

R? R2

xm, (& —mn,m)ep, (£(&vn)Pe(&)dndg,

where symbols m!, ,(§ —n,7), i € {1,2}, are defined in (5.52). Recall (6.23). It is easy
to see that our goal can be reduced to prove the following two Lemmas.

Lemma 6.3. Under the bootstrap assumption (2.20), the following estimate holds if fized
k satisfies the estimate (6.22),

> SNF I O] ls,, S o (6.24)

0<j<(14208)m [, <I<2

Proof. Recall that I = —4. From the L2 — L type bilinear estimate, the following
estimate holds,

oo > IF T O)ls,,

0<j<m+20[,<[<2
S Y 2R e fy ()] oo | i ()2
0<j<m+20
§ Z 2(17a)k72k++j*mﬁf 5 €o-

0<j<m-+20

Note that the following estimate holds if || ~ 27 and j > m + 20,
Vela - €+ 1017 (€, m)| ~ 27.

Therefore, after doing integration by parts £ many times, we can rule out the case when
min{ji1,jo} < j — 5. If min{j1,72} > j — 07, then the following estimate holds after
using the volume of support of ¢ first and then using the L? — L? type estimate,

DR P (Fr R (NS TN (3 [P
min{j1,j2}>j—38j
5 Z 2ak+j+k+8k+fj17j272ak€% S 27m/2€0.

J1,J2>5—03

Hence finishing the proof. O

Lemma 6.4. Under the bootstrap assumption (2.20), the following estimate holds if fized
k satisfies the estimate (6.22),

> SNF T O] s, S o (6.25)

0<5<(14208)m I, <1<2
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Proof. Recall that /; := 2k_. Note that the estimate (A.3) holds for the case we are
considering. Following the same argument used in the proof of Lemma 5.1, we first rule
out the case when j > max{m + [, —k — [} 4+ 100dm. It would be sufficient to consider
the case when j < max{m + [, —k — [} 4+ 1006m. Based on the possible size of j, k, and
[, we separate into three cases as follows.

o If k+ 2] < —m + 508m, then this assumption implies that j < —k — [ 4+ 2006m and
k < —m/5+ Bm. From the estimate (2.25) in Lemma 2.5 and the estimates (3.23) and
(3.25) in Lemma 3.2, the following estimate holds,

|1 F T (6 Ok, , S 2R 2 mexlh 2R £ €)| e | i 2

< 2ak+2005m6% < 9—Pme, (6.26)

o If k + 20 > —m + 506m and [ = [;, then this assumption implies that k > —m/5+
10dm. Note that the following estimate holds from the estimate (2.32) in Lemma 2.6,

S IFTE L GO s,,

Fi<m~+I1+80
S Y gk lbomi(ea)h b 2 L gmme2 <o (6.27)
J<m+1+80

If j > m + 1+ 80, then from the estimate (A.3) in Lemma A.1, the following estimate
holds if |z| ~ 27, and Z(&,vn) ~ 2,

Ve[z - & + " (¢, )| ~ 2.

Hence, we can do integration by parts in £ many times to rule out the case when
min{ji,j2} < j — 0j. From the estimate (2.25) in Lemma 2.5, the following estimate
holds if min{jq, jo} > j — 47,

Z ||]:_1[T‘ll;];’;:;1,k2,jz(t7g)wk<§>]”Bk'j
min{j1,j2}>5—0j
< > goki-2max{k—}+htli/2) £ L (1)) 2
min{j1,j2}>j5—035

X | frarjo )2 S 2’(1’25”*“’%% < 9—(1=28)m—(2+a)k- < 9-m/3¢, .

Note that the above estimate is more than sufficient to cover the logarithm loss of size
“m” caused by the summation with respect to j.

o If k+21 > —m~+508m and [ > [, then this assumption implies that j < m+I+1006m
and max{k, !} > —m/3+106m. Note that we are away from the space resonance in “n” set
for the case we are considering. Therefore, we can rule out the case when max{ji, j2} <

m + 1 — 48m by doing integration by parts n many times. From the estimate (2.32) in
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Lemma 2.6 and the estimates (3.23) and (3.25) in Lemma 3.2, the following estimate
holds,

DR TN GGG [N
max{j1,j2 } >m+1—48m
< Z 2(xk+j—2 max{kfjl}

max{j1,j2 } >m+Il—4Bm

x gmm—2ekmmaxiiuid=dhe g ()] 2] franga (B 2

S 27m+5ﬁm72 max{k,,il}fakeo S, 27Bm60'

Note that the above estimate is more than sufficient to cover the logarithm loss of size

“m?2” caused by the summation with respect to j and I. Hence finishing the proof of the

desired estimate (6.25). O
Appendix A. Analysis of the phases

In this appendix, we analyze and estimate the phase ®" (£, n), where p,v € {+,—}.
Recall that the phase ®*¥(£,n) is defined as follows,

Y (€,m) == A(I€]) — pA(€ —nl) — vA(lnl),  &n € R? A(l¢]) == /€] tanh [¢].

Note that
s _oarien & / -1
Ve@¥ (€ m) = A (|€\)m — A (I€ - TIDH’
V0 () = (16 = ) e — oA ()

It turns out that the relative size between V¢ ®"¥(&,n) and V,®*¥(£,n) plays an es-
sential role. Hence it is necessary to consider the relation between Z(&, u(§ — n)) and
Z(pu(€ —n),vn).

We will show that either the phase ®*¥ (£, ) is big or the sizes of angles Z(&, u(§—n))
and Z(u(€ —n),vn) are proportional to each other if the phase ®¥(£,n) is small, see
estimate (A.3) in Lemma A.1 and estimate A.5 in Lemma A.2. To this end, we define
axillary functions as follows,

(&) =1 c1(&n) = @((Inl = [€N/1€ =), (A.1)
ey (&m) = (] = mD)/1E = nl), e~ (&m) = (1€ —nl = [€D/Inl), (A.2)

where @(+) is a cutoff function such that ¢(z) = 1 if x < 27199 and it is supported inside
(—00,27%9].
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Lemma A.1. For any pu,v € {+,—}, [£] ~ 2%, |€ —n| ~ 2F1 |n| ~ 2%2 k. Ky, ke € Z, if
(&,n) € supp(l — ¢, (§,m)), then it is easy to verify that

(&€ —m)) ~ 2R L(Eum),  Z(u(€ —n),vm) ~ 28RL(E vm). (A.3)
Moreover, if (ki ka, p,v) € PE.4, then the above estimate also holds.

Proof. To prove the desired estimate (A.3), it would be sufficient to consider the case
when Z(&,vn) < 27100 1f (¢, ) € supp(1 — ¢, (€,7m)), then we only have to consider the
case when (u,v) # (—,—). Recall (A.1) and (A.2). For the case when (u,v) = (—,+),
(&,m) € supp(l — ¢, (&,m)) implies that |n| > |¢| + 27190|¢ — p|, which further implies
that the angle (§,7 — &) is small when Z(&,n) is small. The other two cases follows very
similarly, we omit details here.

Recall (3.10). We first consider the case when (k1, ko, p,v) € xj x{(+,—), (—, +)}, i.e.,
|€] < 275|n| and puv = — for this case. It is easy to see that Z (&, v(n—¢&)) is of same size as
Z(&,vn) as the angle Z(vn, v(n—¢)) is much smaller than Z(&, vn). The desired estimate
(A.3) also holds very similarly for the case when (k1, ko, 1, v) € X2 x{(+, =), (+,+)}. O

Lemma A.2. Given any k,k1,ko,l € Z, p,v € {+,—}, s.t., ko < k1 +5,1 <2, |[§] ~
2F 1€ —n| ~ 281 |n| ~ 2F2 and Z£(&,vn) ~ 2L, Then the following rough estimate holds,

v > omin{k,k2}/2+min{k,k2}_ /242 max{k,ka} - —k1,+/24min{k k2 }+21
[2*(&,m)| 2 2 +2 - (A4
If (&,m) € supp(c,.,(&,1m)), then the following improved estimate holds,
m,
|7 (&, m)| Z 2R /2, (A.5)
If (ky, ko, p,v) € PE ., then the following estimate holds,
bad
|(I)M’V(§, ,'7)| ~ 92 min{k,k2}+ /24 min{k,ko }+2k1, + 2min{k,k2}—k1,+/2+2l. (AG)
Proof. Note that the following estimate holds easily,
D77 (&, m) = A€ —nl) Z 28 /22, (A7)

Note that

(6 m) = A(g]) + A€ —nl) — A(E] + 1€ —nl) + A€l + 1€ —nl) — Alln),  (A8)
(& m) = AED) — A€ =0l + ) + A(E = ul + [n]) — A —nl) = A(lnl),  (A.9)
@ (€,m) = A(I]) + Allnl) — A + [nl) + AE] + nl) — Alg = ). (A.10)

Recall that [£] ~ 28 |¢ —n| ~ 281 |n| ~ 2k2, Z(&,vn) ~ 2!, and ke < Ky + 5. From the
estimates (A.20) and (A.21) in Lemma A.4, it’s easy to see that the following estimate
holds,
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B (¢, )| > 2F/2Hk-/242k1 = | g—ki /2 k2l (A.11)
BT (¢,m)| Z 2ke/2 ke /242hi | g=hip/2kat 2l (A.12)
|@+ (€, )| > gminkihe}/24min{kka} /242K~ 4 o=k /24 min{k ka}+20, (A.13)

To sum up, from (A.7), (A.11), (A.12), and (A.13), it is easy to see that our desired
estimate (A.4) holds.

Now, let’s proceed to prove the desired estimate (A.5). If (u,v) = (—,+), then the
assumption (£,7) € supp(1—c— (&, n)) implies that || < [£]|+27109|£ —n|. Recall (A.8).
From the estimates (A.20) and (A.21) in Lemma A.4, we have

@7 (&, m)| 2 28 /2,

The proof for the case (u,v) € {(+,+), (+,—)} is very similar, we omit details here.

Lastly, we prove the desired estimate (A.6). Recall (3.10). We first consider the case
when (k1, k2, p,v) € xi x {(—,+), (+,—)}. Since [¢] < |€ — n| ~ ||, from the equalities
(A.8) and (A.10), it is easy to see that our desired estimate (A.6) follows directly from
the estimates (A.20) and (A.21) in Lemma A.4. The case when (k1,k2,u,v) € X3 X
{(+,4), (+,—)} follows very similarly. Hence finishing the proof. O

Lemma A.3. Given ky, ko, k,l €Z,1 <2, ko < ki +4, p,v € {+,—}, such that || ~ 2,
|§ - T]‘ ~ 2k1a |77| ~ 2k2; 4(571/77) ~ 2l' If (k17k2) € Xllw then we have

(¢ — 77|)|§ | A'(Inl) i “ o ok—kitmax{l,2ks,}—ki, /2 (A.14)

If (k1,k2) € X3, then we have,

27k17+/2+max{l,2k17_} ,S |A/(|§ _ 77‘) f —-n _ VAI(InDi’ ,S 2max{l,2k1,_}. (A15)

€ =l [nl
Moreover, the following estimates always hold,
|A/ |§ 17|) ‘g | A/(l ‘ | | ’ > 2—3k1 +/24k+k1, — (A16)
£~ _
\A’(If—n\)m i A (Inl) |W>k 10(|n — &/2]) 2 273k /2hth (A.17)

Proof. o If (ki ko) € X}, i.e., |k1 — ko <5, k < k1 — 5, which means that 0 < |¢| <
|€ — n| = |n|. Note that

A" (I~ )2 +A’\| \~2—’“+/24<£ n, =) 282 e ||| (A18)

\5 Ul
(éayn) = 2 ’k < kl - 57$ A(E -, _77) ~ 2k_k1+l' (Alg)
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From (A.18) and (A.19), it is easy to see that the desired estimate (A.14) holds if
1> 2k _ — 10.

It remains to consider the case when [ < 2k; _ —10. Because the angle between £ and
vn is very small, as a result we have ||¢ —n| — [n|| ~ 2%, Again from (A.18) and (A.19),
it is easy to see that the desired estimate (A.14) also holds.

o If (ki,k2) € X3, i.e., |k1 — k| <4, ko < k—5, which means that 0 < |n| < [£ —n| ~
|€]. Note that

(¢ — n)éjj; - A'(\nl)%! ~ max{|A(|€ = n]) — N (jn])],275+/22(& — n,vm)},
é(ga Vn) ~ 4(5 - 77,1/77)7
[€—n] [€—n]
ghu s /242hy - / A" (r)|dr < [N (J€ = n]) — N (In])] < / A7 (r)]dr < 2%k1-.
[E—nl]/2 0

Hence, from the above estimates, it’s easy to see that our desired estimate (A.15) holds.
Lastly, let’s proceed to prove the desired estimates (A.16) and (A.17). Note that

(€ =) — m
5 i _ _

Therefore, those two quantities have corresponding lower bounds when the frequencies

N(ln |>|i— . = £=0,

A(1€ = nl)

are localized away from these two points. Following a very similar analysis as the proof
of the estimates (A.14) and (A.15), it is easy to see that the desired estimates (A.16)
and (A.17) hold. O

Lemma A.4. Let f(r) := +/rtanhr, then the following estimate holds for any r,s €
R,r>s>0,

f(r+s)— f(r) ~ smax{r, 1}_1/2, (A.20)
F(r) + f(s) = f(r+ ) ~ s2 min{s, 1}7 min{r, 1}2. (A.21)

Proof. From direct computations, we have

dre?m 4% — 1
/ —
fin = 2(1 + e2r)3/2(e2r — 1)1/291/2 >0, =0, (A.22)

2e17(1+ 8r?) — 1 — ¥ — 8e%r(2r — 1) — 8e?"r(1 + 2r)
4(1 + €2r)5/2(62r _ 1)3/27“3/2 ’

f”(?‘) _ r>0. (A.23)
An important observation is that f”(r) <0 and f”(r) = 0 if and only if » = 0. To prove
this claim, we only have to prove that the numerator is non-positive. We define f (r) to
be the numerator of f”(r) in (A.23). Note that the following decomposition holds,
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A

f(r)y:=g(r)+h(r), g(r):=16e"r? —8e5r? — 8e?1r? = —8e?"1?(e*" —
h(r) :=2e* — 1 — €% — 8e5r(r — 1) — 8e*r(1 + 7).

1)?,

Obviously, ¢g(r) < 0 and g(r) = 0 if and only if » = 0. It remains to check h(r). After
taking up to four derivatives for h(r), we have h(™(0) = 0 for n € {0,1,2,3}, and the

following estimate holds,

D (r) = —128¢%"(5 4 51 + r2 + 27e* (1 + 3r?) + 32e5" — 27e% — 4e%7) < 0,

hence h(r) < 0 and h(r) =0 if and only if r» = 0.
Note that f(0) = 0. Hence,

r+s

Fr+s)— f(r) = / F(r)dr > 0,

s

F)+F(5)— F(r+s) = / [F(r)— f'(s+7)ldry = / / () dradm, > 0.
0 0 0

Note that

, 1 ifr<1 / - ifr<1
F(r) {r_1/2 if r > 1, Fir) —p3/2 if » > 1.

Hence, from (A.24) and (A.26), we have
fr+s) = f(s) ~ smax{r, 1}~ /2.
From (A.25) and (A.26), the following estimate holds if r, s < 1,
Fr)+ f(s) = f(r +5) ~ 1%,

If s <1< r, we have

s S //,f//(ﬁ +m)dridre < f(r) + f(s) — f(r+s) < f(s) < s.

1/2 0

Lastly, if 1 < s <r, we have

s / /_JM(T1 +1o)dradry < f(r) + f(s) = f(r+s) < f(s) <52

s/2s/2

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)
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To sum up, from estimates (A.28), (A.29), (A.30), we have
Fr)+ f(s) = f(r+5) ~ s min{s,1}2 min{r,1}?, 0<s<r. (A.31)
Hence finishing the proof. O
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