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Abstract. We propose an efficient threshold dynamics method for topology optimization for fluids modeled

with the Stokes equation. The proposed algorithm is based on minimization of an objective energy function

that consists of the dissipation power in the fluid and the perimeter approximated by nonlocal energy,
subject to a fluid volume constraint and the incompressibility condition. We show that the minimization

problem can be solved with an iterative scheme in which the Stokes equation is approximated by a Brinkman

equation. The indicator functions of the fluid-solid regions are then updated according to simple convolutions
followed by a thresholding step. We demonstrate mathematically that the iterative algorithm has the total

energy decaying property. The proposed algorithm is simple and easy to implement. A simple adaptive

time strategy is also used to accelerate the convergence of the iteration. Extensive numerical experiments
in both two and three dimensions show that the proposed iteration algorithm is quite robust and converges

in much fewer iterations and is more efficient than many existing methods.

1. Introduction

Topology optimization in fluid mechanics has become a significant problem due to its application in
many industrial problems such as the optimization of transport vehicles and biomechanical structure. The
process of topology optimization allows the introduction of new boundaries as part of the solution and is
thus more flexible than shape optimization, which requires that the topology be predetermined. The method
of topology optimization was originally developed for the optimal design in structural mechanics [4, 5] and
has been applied in a variety of physical fields such as acoustics, electromagnetics, fluid flow, and thermal
problems [5, 7, 11, 13, 35, 46]. Topology optimization was first applied to fluid mechanics by Borrvall and
Petersson [7] by adopting the concept of density methods to Stokes flows. In [7], the domain with fluid-solid
regions was treated as the porous medium, the Brinkman flow was introduced to obtain a well-posed problem
to minimize the total dissipation power, and the discrete optimization problem was further solved with the
method of moving asymptotes (MMA) [47] to obtain the optimal designed regions for fluids and solids.
Topology optimization in fluid mechanics has since been extended to the Darcy-Stokes flow model [24, 54],
Navier-Stokes flow [12, 19, 21, 38, 50, 56], and non-Newtonian flow [41], and it has also been applied in the
design of more complicated fluidic devices [2, 36,37].

Several successful methods have also been recently introduced to improve the performance of topology
optimization in fluid mechanics. For instance, the level set method was applied to fluidic topology opti-
mization (cf. [8,50,56] and the references therein), and the fluid-solid interface is described by the zero-level
set of a level set function. In [50], the authors further studied the fluidic topology optimization framework
by combining the level set method and the extended finite-element method. Phase field-based topology
optimization for fluids was considered in [19], in which the gradient flow method was used to find the op-
timal topology. Among these methods, a critical step is to update the fluid-solid regions by solving the
Hamilton-Jacobi equations in the level set method [56], by solving a parameter optimization problem via a
nonlinear programming method [50], or by solving the Cahn-Hilliard or Allen-Cahn system via the phase
field approach [19].
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The threshold dynamics method developed by Merriman, Bence, and Osher (MBO) [31–33] is an efficient
method for simulation of the motion of the interface driven by the mean curvature. The method alternately
diffuses indicator functions of regions and sharpens through thresholding to generate the interface motion
implicitly. The MBO method has been shown to converge to continuous motion by mean curvature [3, 9,
18, 48]. Esedoglu and Otto gave a variational formulation for the original MBO scheme and successfully
generalized this type of method to multiphase problems with arbitrary surface tensions [15]. The method
has attracted considerable attention due to its simplicity and unconditional stability. It has since been
extended to deal with many other applications, including the problem of area-preserving or volume-preserving
interface motion [45], image processing [17, 30, 52], problems of anisotropic interface motion [6, 14, 34, 44],
the wetting problem on solid surfaces [55], the generation of quadrilateral meshes [49], graph partitioning
and data clustering [20], and auction dynamics [26]. Various algorithms and rigorous error analysis have
been introduced to refine and extend the original MBO method and related methods for these problems (see,
e.g., [16,25,33,42,43,51]). Adaptive methods have also been used to accelerate this type of method [27] based
on nonuniform fast Fourier transform. Laux et al. [28, 29] rigorously proved the convergence of the method
proposed by [15], and a generalized manifold-valued threshold dynamics method was developed by [39,40,53].

In this paper, we introduce an efficient and simple strategy based on the threshold dynamics method
to update the topology of fluid-solid regions. In our approach, the total energy consists of the dissipation
power in the fluid and the perimeter regularization and is subject to a fluid volume constraint and an incom-
pressibility condition. The perimeter term is based on convolution of the heat kernel with the characteristic
functions of regions. Based on minimization of an approximate total energy, an efficient threshold dynamics
method is derived for topology optimization for fluids. The porous medium approach is used in our algo-
rithm, and we introduce the Brinkman equation, which “interpolates” between the Stokes equation in the
flow region and some Darcy flow through a porous medium (a weakened nonfluid region). We then solve
the Brinkman equation for the whole domain by the standard mixed finite-element method and update the
fluid-solid regions by convolution and with a simple thresholding step. In particular, the convolutions can
be efficiently computed on a uniform grid by fast Fourier transform (FFT) with the an optimal complexity
of O(N logN). The proposed algorithm is very simple and easy to implement. Extensive numerical results
show that the proposed algorithm converges at many fewer iterations than the method given by [7], which
indicates the high efficiency of the proposed algorithm. In addition, from the numerical experiments we did
so far, the algorithm performs very robust and is insensitive to the initial guess and the parameters. We
also show that the method has the total energy decaying property.

The paper is organized as follows. In Section 2, we show the mathematical model. In Section 3, we
introduce an approximate energy to the total energy and derive an efficient threshold dynamics method.
The unconditional stability of the threshold dynamics method (i.e., the energy decaying property) is proved
in Section 4. We discuss the numerical implementation in Section 5 and verify the efficiency and the energy
decaying property of the algorithm in Section 6. We make conclusions, and discuss some ideas for future
work in Section 7.

2. Mathematical model

In this section, we consider the mathematical model for topology optimization for fluids in Stokes flow.
Denote Ω ∈ Rd (d = 2, 3) as the computational domain, which is fixed throughout optimization, and assume
that Ω is a bounded Lipschitz domain with an outer unit normal n such that Rd\Ω is connected. Furthermore,
we denote Ω0 ⊂ Ω as the domain of the fluid, which is a Caccioppoli set whose boundary is measurable and
has a (at least locally) finite measure (cf. [23]), and Ω \Ω0 ∈ Ω as the solid domain. Throughout the paper,
we use the standard notations and definitions for Sobolev spaces (cf. [1]). Our goal is to determine an optimal
shape of Ω0 that minimizes the following objective functional consisting of the total potential power and a
perimeter regularization term,

min
(Ω0,u)

J0(Ω0,u) =

∫
Ω

(µ
2
|Du|2 − u · f

)
dx + γ|Γ|(2.1)
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subject to

∇ · u = 0, in Ω,(2.2a)

∇p−∇ · (µ∇u) = f , in Ω0,(2.2b)

u = 0, in Ω \ Ω0,(2.2c)

u|∂Ω = uD, on ∂Ω,(2.2d)

|Ω0| = β|Ω| with a fixed parameter β ∈ (0, 1).(2.2e)

Here, u : Ω → Rd, Du is the distributional derivative of u, µ is the dynamic viscosity of the fluid, p is the
pressure, uD : ∂Ω→ Rd is a given function, f : Ω→ Rd is a given external force, |Γ| is the perimeter of the
boundary of Γ = ∂Ω0, and γ > 0 is a weighting parameter.

3. Derivation of the algorithm

In this section, we develop an efficient threshold dynamics method for the topology optimization problem
discussed in (2.1) and (2.2) for fluids in Stokes flow. Note that the goal is to determine the optimal interface
between liquid and solid that minimizes functional (2.1) subject to constraints (2.2). Motivated by the idea
from the threshold dynamics methods developed by [15], [55], [52], we use the indicator functions for the
fluid region and the solid region to implicitly represent the interface.

3.1. Approximate energy. Define an admissible set B as follows:

B :={(v1, v2) ∈ BV (Ω) | vi(x) = {0, 1}, v1(x) + v2(x) = 1 a.e. in Ω, and

∫
Ω

v1 dx = V0},(3.1)

where BV (Ω) is the vector space of functions with bounded variation in Ω, and V0 is the fixed volume of the
fluid region. We introduce χ1(x) to denote the indicator function of the fluid region Ω0, i.e.,

χ1(x) :=

{
1, if x ∈ Ω0,

0, otherwise,

and χ2(x) as the indicator function of Ω \ Ω0, i.e., χ2(x) = 1 − χ1(x). The interface Γ is then implicitly
represented by χ1 and χ2. Let χ = (χ1, χ2) and we have χ ∈ B. The perimeter of the interface Γ is then
approximated by,

|Γ| ≈
√
π

τ

∫
Ω

χ1Gτ ∗ χ2 dx,(3.2)

where Gτ (x) =
1

(4πτ)
d
2

exp

(
−|x|

2

4τ

)
is the Gaussian kernel (See [15] for more details on this approximation).

We solve the optimization problem (2.2) by iteration. At each iteration, one must solve the Stokes equation
in the fluid domain, which is changing in the iteration. It is more convenient numerically to use the porous
medium approach as in [10,19]. The idea is to “interpolate” between the Stokes equation in the fluid domain
(i.e., {x| χ1(x) = 1}) and u = 0 in the solid domain (i.e., {x| χ2(x) = 1}) by introducing an additional
penalization term,

∇ · u = 0, in Ω,(3.3a)

∇p−∇ · (µ∇u) + α(x)u = f , in Ω,(3.3b)

u|∂Ω = uD, on ∂Ω.(3.3c)

Here, α(x) is a smooth function that varies between 0 and ᾱτ through a thin interface layer around Γ, and
ᾱ−1
τ is the permeability. In the current representation of the interface, we use the 0.5 level set of φ = Gτ ∗χ2

to approximate the position of the interface Γ. It is well known that such φ is a smooth function between
[0, 1] and admits a change from 0 to 1 in an O(

√
τ) thin layer. Hence, α is given by

α = ᾱτφ = ᾱτGτ ∗ χ2.(3.4)
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In the limiting model (i.e., τ ↘ 0), ᾱτ should be set as +∞ to make the constraints {u = 0 in Ω \ Ω0}
satisfy. Also, to ensure that the velocity vanishes outside the fluid domain when τ ↘ 0, we add a penalty
term ∫

Ω

α

2
|u|2 dx =

∫
Ω

ᾱτGτ ∗ χ2

2
|u|2 dx

to the objective functional. In subsequent calculations, for numerical consideration, we fix ᾱτ as a sufficiently
large constant, ᾱ. In this porous media approach, the system (3.3) is solved for a fixed domain Ω.

Finally, combining (2.1), (3.2), (3.4), and the penalty term, we arrive at the following approximate
objective functional

Jτ (χ,u) =

∫
Ω

(
µ

2
|Du|2 +

ᾱ

2
|u|2Gτ ∗ χ2 − u · f + γ

√
π

τ
χ1Gτ ∗ χ2

)
dx.(3.5)

Remark 3.1. For simplicity, we use the same τ in the second and the fourth terms of the above approximate
energy. Indeed, one can also use different values of τ in the two terms and the property of the algorithm will
be similar.

Now, we consider the following approximate formulation of the problem by

min
(χ,u)

Jτ (χ,u), subject to χ = (χ1, χ2) ∈ B and u satisfies (3.3).(3.6)

In the following, we give the derivation of the threshold dynamics scheme to solve (3.6).

3.2. Derivation of the scheme. In this section, we use a coordinate descent algorithm to minimize the
approximate energy (3.5) with constraints (3.3). A similar idea has been applied in the design of a threshold
dynamics method of image segmentation [52]. Given an initial guess χ0 = (χ0

1, χ
0
2), we compute a series of

minimizers

u0, χ1,u1, χ2, · · · ,uk, χk+1, · · ·

such that

uk = arg min
u∈S

Jτ (χk,u),(3.7)

χk+1 = arg min
χ∈B

Jτ (χ,uk),(3.8)

for k = 0, 1, 2, · · · . Here, the admissible set S is defined as

S :=
{
u ∈ H1

uD
(Ω,Rd) | ∇ · u = 0

}
where H1

uD
(Ω,Rd) = {u ∈ H1(Ω,Rd) | u|∂Ω = uD}, and B is defined in (3.1).

Given the k-th iteration χk, we first solve (3.7) to get the uk. It is easy to see that the constraint
minimization problem is equivalent to the following

uk = arg min
u∈H1

uD
(Ω,Rd)

Jτ (χk,u) +

∫
Ω

p∇ · u dx

with p as a Lagrangian multiplier. Variation of the above functional leads to the following Brinkman equation.
That is, uk can be obtained by solving

∇ · u = 0, in Ω

∇p−∇ · (µ∇u) + αku = f , in Ω

u|∂Ω = uD

(3.9)

where αk = ᾱ
2Gτ ∗ χ

k
2 . Because Jτ (χk,u) is convex in u, the solution (uk, pk) of (3.9) is a minimizer of

Jτ (χk,u). The following lemma shows the existence of u for the system (3.9) for a given χ ∈ B.

Lemma 3.1 ( [19,22]). For every χ ∈ B, some u ∈ H1
uD

(Ω,Rd) exist that satisfy ∇ · u = 0 such that∫
Ω

µ∇u · ∇v + αu · v dx =

∫
Ω

f · v dx, ∀v ∈ V,(3.10)

where V := {v ∈ H1
0 (Ω,Rd) | ∇ · v = 0}.
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Given uk, we now rewrite the objective functional Jτ (χ,u) into J̃τ,k(χ) as follows:

J̃τ,k(χ) := Jτ (χ,uk) =

∫
Ω

ᾱ

2
χ2Gτ ∗ |uk|2 dx + γ

√
π

τ

∫
Ω

χ1Gτ ∗ χ2 dx +

∫
Ω

µ

2
|Duk|2 − uk · f dx.(3.11)

The next step is to find χk+1 such that

χk+1 = arg min
χ∈B

J̃τ,k(χ).(3.12)

It is the minimization of a concave functional on a nonconvex admissible set B. However, we can relax it to
a problem defined on a convex admissible set by finding rk+1 such that

rk+1 = arg min
r∈H

J̃τ,k(r),(3.13)

where H is the convex hull of B defined as follows:

H :={(v1, v2) ∈ BV (Ω) | vi(x) ∈ [0, 1], i = 1, 2, and v1(x) + v2(x) = 1 a.e. in Ω,

∫
Ω

v1 dx = V0},(3.14)

The following lemma shows that the relaxed problem (3.13) is equivalent to the original problem (3.12).
Therefore, we can solve the relaxed problem (3.13) instead.

Lemma 3.2. Let u ∈ H1
uD

(Ω,Rd) be a given function and r = (r1, r2). Then

arg min
r∈H

J̃τ,k(r) = arg min
r∈B

J̃τ,k(r).(3.15)

Proof. Let r̃ = (r̃1, r̃2) ∈ H be a minimizer of the functional J̃τ,k(r) on H. Because B ⊂ H, we have

J̃τ,k(r̃) = min
r∈H

J̃τ,k(r) ≤ min
r∈B

J̃τ,k(r).

Therefore, we need only prove that r̃ ∈ B.
We prove by contradiction. If r̃ 6∈ B, there is a set A ∈ Ω and a constant 0 < C0 <

1
2 , such that |A| > 0

and

0 < C0 < r̃1(x), r̃2(x) < 1− C0, for all x ∈ A.
We divide A into two sets A = A1 ∪A2 such that A1 ∩A2 = ∅ and |A1| = |A2| = |A|/2. Denote rt = (rt1, r

t
2)

where rt1 = r̃1 + tχA1
− tχA2

and rt2 = r̃2 − tχA1
+ tχA2

with χA1
and χA2

being the indicator functions of
the domain A1 and A2, respectively. When 0 < t < C0, we have 0 < rt1, r

t
2 < 1 and

rt1 + rt2 = r̃1 + r̃2 = 1, and

∫
Ω

rt1 dx =

∫
Ω

r̃1 dx = V0.

This implies that rt ∈ H. Furthermore, direct computations give,

d2

dt2
J̃τ,k(r) = 2γ

√
π√
τ

∫
Ω

d

dt
rt1Gτ ∗

d

dt
rt2 dx

= 2γ

√
π√
τ

∫
Ω

(χA1 − χA2)Gτ ∗ (χA2 − χA1) dx

= −2γ

√
π√
τ

∫
Ω

(χA1 − χA2)Gτ ∗ (χA1 − χA2) dx

= −2γ

√
π√
τ

∫
Ω

(
Gτ/2 ∗ (χA1

− χA2
)
) (
Gτ/2 ∗ (χA1

− χA2
)
)
dx

≤ 0.

The penultimate step comes from the fact that the heat kernel is a self-adjoint operator and forms a semigroup
with various values of τ . From the above inequality, the functional is concave on the point r̃. Thus, r̃ cannot
be a minimizer of the functional. This contradicts the assumption. �

Now, we show that (3.13) can be solved with a simple threshold dynamics method. Because J̃τ,k(r) is

quadratic in r and concave, we first linearize the energy J̃τ,k(r) at rk by

J̃τ,k(r) ≈ J̃τ,k(rk) + Lτ,k
rk

(r − rk),(3.16)
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where

Lτ,k
rk

(r) =

∫
Ω

(
γ

√
π

τ
r1Gτ ∗ rk2 + γ

√
π

τ
r2Gτ ∗ rk1 + r2

ᾱ

2
Gτ ∗ |uk|2

)
dx(3.17)

=

∫
Ω

(r1φ1 + r2φ2) dx.

Here φ1 = γ
√

π
τGτ ∗r

k
2 and φ2 = ᾱ

2Gτ ∗|u
k|2 +γ

√
π
τGτ ∗r

k
1 . Then (3.13) can be approximately reformulated

into

(3.18) χk+1 = arg min
r∈H
Lτ,k
rk

(r) = arg min
r∈H

∫
Ω

(r1φ1 + r2φ2) dx.

The following lemma, in particular, (3.21) shows that (3.18) can be solved in a pointwise manner by{
χk+1

1 (x) = 1 and χk+1
2 (x) = 0, if φ1(x) < φ2(x) + δ,

χk+1
1 (x) = 0 and χk+1

2 (x) = 1, otherwise,
(3.19)

where δ is chosen as a constant such that
∫

Ω
χk+1

1 dx = V0.

Lemma 3.3. Let φ1 = γ
√

π
τGτ ∗ χ

k
2 , φ2 = ᾱ

2Gτ ∗ |u
k|2 + γ

√
π
τGτ ∗ χ

k
1 ,

(3.20) Dk+1
1 = {x ∈ Ω| φ1 − φ2 < δ}

for some δ such that |Dk+1
1 | = V0, and Dk+1

2 = Ω \Dk+1
1 . Then for χk+1 = (χk+1

1 , χk+1
2 ) with χk+1

1 = χDk+1
1

and χk+1
2 = 1− χk+1

1 , we have

Lτ,k
χk (χk+1) ≤ Lτ,k

χk (χk)

for all τ > 0.

Proof. Because Lτ,k
χk is a linear functional, we only need to prove that there holds

Lτ,k
χk (χk+1) ≤ Lτ,k

χk (χ)(3.21)

for all χ = (χ1, χ2) ∈ B.

For each (χ1, χ2) ∈ B, we know χ1 = χD̂1
and χ2 = χD̂2

for some open sets D̂1, D̂2 in Ω, such that

D̂1∩D̂2 = ∅, D̂1∪D̂2 = Ω and |D̂1| = V0. Let A1 = D̂1\Dk+1
1 = Dk+1

2 \D̂2 and A2 = D̂2\Dk+1
2 = Dk+1

1 \D̂1.

We must have |A1| = |A2| due to the volume conservation property. Because A1 ⊂ Dk+1
2 , we have

φ1(x)− φ2(x) ≥ δ, χk+1
1 (x)− χ1(x) = −1, ∀x ∈ A1.

Similarly, because A2 ∈ Dk+1
1 , we have

φ1(x)− φ2(x) < δ, χk+1
1 (x)− χ1(x) = 1, ∀x ∈ A2.

Therefore, using χk+1
1 − χ1 + χk+1

2 − χ2 = 0, we have

Lτ,k
χk (χk+1)− Lτ,k

χk (χ) =γ

√
π

τ

∫
Ω

(χk+1
1 − χ1)φ1 + (χk+1

2 − χ2)φ2 dx

=γ

√
π

τ

∫
Ω

(χk+1
1 − χ1)(φ1 − φ2) dx

=γ

√
π

τ

∫
Ω

(χA2
(φ1 − φ2)− χA1

(φ1 − φ2)) dx

≤γ
√
π

τ

∫
Ω

(χA2δ − χA1δ) dx = γ

√
π

τ
δ(|A2| − |A1|) = 0.

�

To determine the value of δ, one can treat
∫

Ω
χk+1

1 dx−V0 as a function of δ and use an iteration method

(e.g., bisection method or Newton’s method) to find the root of
∫

Ω
χk+1

1 dx − V0 = 0. For the uniform
discretization of Ω, a more efficient method is the quick-sort technique proposed in [55]. Assume we have

a uniform discretization of Ω with grid size h, we can approximate
∫

Ω
χk+1

1 dx by Mh2, we then sort the
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values of φ1 − φ2 in an ascending order and simply set χk+1
1 = 1 on the first M points and χk+1

2 = 1 on the
other points.

Remark 3.2. In many implementations, one may solve Stokes equation on nonuniform grid points. To
preserve the volume for the discretization on nonuniform grids, although the volume cannot be simply
approximated by the number of grid points times the size of each cell, a similar technique can be applied.
One can still sort the values of φ1 − φ2 in ascending order, save the index into S, calculate the integrating
weight at each grid point into V, and set V = 0 and i = 0. Then, δ can be simply found by:

while V < V0; i← i+ 1; V = V + V(S(i)); end; δ = φ1(S(i+ 1))− φ2(S(i+ 1)).

Now, we are led to a threshold dynamics algorithm for topology optimization problem (3.6) for fluids in
Stokes flow in the following.

Algorithm 1. Discretize Ω uniformly into a grid Th with grid size h and set M = V0/h
d.

Step 1. Input: Set τ > 0, ᾱ > 0, k = 0, a tolerance parameter tol > 0 and give the initial guess χ0 ∈ B.

Step 2. Iterative solution:
1. Update u. Solve the Brinkman flow equations

∇ · u = 0, in Ω

∇p−∇ · (µ∇u) + α(χk)u = f , in Ω

u|∂Ω = uD

by mixed finite-element method to get uk, where α(χk) = ᾱGτ ∗ χk2 .
2. Update χ. Evaluate {

φ1 = γ
√

π
τGτ ∗ χ

k
2 ,

φ2 = ᾱ
2Gτ ∗ |u|

2 + γ
√

π
τGτ ∗ χ

k
1 .

Sort the values of φ1 − φ2 in an ascending order, and set χk+1
1 = 1 on the first M points and χk+1

2 = 1 on
the other points.

3. Compute ekχ = ‖χk+1
1 − χk1‖2. If ekχ ≤ tol, stop the iteration and go to the output step. Otherwise, let

k + 1→ k and continue the iteration.

Step 3. Output: A function χ ∈ B that approximately solves (3.6).

Remark 3.3. We note that in the original MBO method, on one hand, the algorithm can be easily stuck
when τ is very small because, in the discretized space, τ is so small that no point can switch from one phase
to another (i.e., χ1 changes from 0 to 1 or 1 to 0) at one iteration step. On the other hand, with a large τ ,
the interface can easily move but creates large error. Hence, we apply the adaptive in time technique [55]
in numerical experiments by modifying Algorithm 1 into an adaptive algorithm by adjusting τ during the
iterations. Indeed, we set a threshold value τt and a given tolerance et, if ekχ ≤ et, let τnew = ητ with
η ∈ (0, 1) and update τ := τnew in the next iteration unless τ ≤ τt. Otherwise, τ will not be updated, and
the iteration will continue with the same τ . We use this adaptive strategy for the choice of τ in the numerical
experiments.

4. Stability Analysis

In this section, we prove the unconditional stability property of the proposed algorithm. Specifically, for
the series of minimizers

u0, χ1,u1, χ2, · · · ,uk, χk+1, · · · ,
computed by Algorithm 1, we prove

Jτ (χk+1,uk+1) ≤ Jτ (χk,uk)

for all τ > 0.
We first introduce Lemma 4.1 which leads us to Jτ (χk+1,uk) ≤ Jτ (χk,uk) for all τ > 0.

Lemma 4.1. For a fixed uk, let χk+1 be the k + 1-th iteration derived from Algorithm 1, we have

Jτ (χk+1,uk) ≤ Jτ (χk,uk)

for all τ > 0.
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Proof. From the linearization of J̃τ,k(χk) in (3.16), we have

Jτ (χk,uk) =Lτ,k
χk (χk)− γ

√
π

τ

∫
Ω

χk1Gτ ∗ χk2 dx +

∫
Ω

µ

2
|Duk|2 − uk · f dx,

Jτ (χk+1,uk) =Lτ,k
χk (χk+1)− γ

√
π

τ

∫
Ω

(
χk+1

1 Gτ ∗ χk2 + χk+1
2 Gτ ∗ χk1 − χk+1

1 Gτ ∗ χk+1
2

)
dx

+

∫
Ω

µ

2
|Duk|2 − uk · f dx.

Then, we calculate

Jτ (χk+1,uk)− Jτ (χk,uk) =Lτ,k
χk (χk+1)− Lτ,k

χk (χk) + γ

√
π

τ

∫
Ω

(χk+1
1 − χk1)Gτ ∗ (χk+1

2 − χk2) dx

=Lτ,k
χk (χk+1)− Lτ,k

χk (χk)− γ
√
π

τ

∫
Ω

(χk+1
1 − χk1)Gτ ∗ (χk+1

1 − χk1) dx

=Lτ,k
χk (χk+1)− Lτ,k

χk (χk)− γ
√
π

τ

∫
Ω

(
Gτ/2 ∗ (χk+1

1 − χk1)
)2

dx

≤Lτ,k
χk (χk+1)− Lτ,k

χk (χk).

Because we have Lτ,k
χk (χk+1)− Lτ,k

χk (χk) ≤ 0 from Lemma 3.3, we are led to

Jτ (χk+1,uk)− Jτ (χk,uk) ≤ 0

for all τ > 0. �

We are now led to the following theorem which proves the total energy decaying property

Theorem 4.2. For the series of minimizers

u0, χ1,u1, χ2, · · · ,uk, χk+1, · · · ,

calculated with Algorithm 1, we have

Jτ (χk+1,uk+1) ≤ Jτ (χk,uk)(4.1)

for all τ > 0.

Proof. For all τ > 0, from (3.7) , we have

Jτ (χk+1,uk+1) ≤ Jτ (χk+1,uk).

From Lemma 4.1, we have

Jτ (χk+1,uk) ≤ Jτ (χk,uk).

Thus, combining the above together gives the stability estimate (4.1). �

Remark 4.1. We remark here that, as we proved, the energy is decaying for any given τ . If τ changes from
τ1 to τ2 at the kth iteration with τ1 > τ2 in our adaptive in time strategy, for example, χk is generated by τ1
and χk+1 is generated by τ2. The energy is decaying in the sense that Jτ2(χk+1,uk+1) ≤ Jτ2(χk,uk) where
the energy J at two iterations χk and χk+1 are approximated by the same τ2.

5. Numerical Implementation

In this section, we illustrate the implementation of Algorithm 1, with a focus on Step 2. The Brinkman
equations (3.3a-3.3c) are solved with the mixed finite-element method, and the Taylor-Hood finite-element
space is used for discretization, which satisfies the discrete inf-sup condition [22].

Let Th be a uniform triangulation of the domain Ω, and Nh is the set of all vertices of Th. For a given
χh = (χh1 , χ

h
2 ) ∈ Bh where Bh is the discrete version of B defined on Nh. For the uniform regular triangulation

of the domain, all values are evaluated on uniform quad grid points. Thus, we can use FFT for efficient
evaluation of the discretized convolutions.
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We introduce the Taylor-Hood finite-element space

Vh := {v ∈ H1(Ω,Rd) | v|K ∈ [P2(K)]d, K ∈ Th},

Qh := {q ∈ L2(Ω,R) |
∫

Ω

q dx = 0, q|K ∈ P1(K), K ∈ Th}.

Let VD
h := {v ∈ Vh | v|∂Ω = uhD}, where uhD is a suitable approximation of the Dirichlet boundary condition

uD on the boundary edges/faces of Th. For the solution of (3.3a-3.3c), find (uh, ph) ∈ VD
h ×Qh such that

−(ph,∇ · vh) + (µ∇uh,∇vh) + (α(χh)uh,vh) = (f ,vh), ∀ vh ∈ V0
h,

(∇ · uh, qh) = 0, ∀ qh ∈ Qh.

The above bilinear form can be easily extended to the Brinkman equations both with Dirichlet boundary
ΓD and Neumann boundary ΓN , where ΓD ∩ ΓN = ∅,ΓD ∪ ΓN = ∂Ω, and (µ∇u− pI) · n|ΓN

= g.
When uh is obtained, we proceed to use the FFT to evaluate (φh1 , φ

h
2 ) on each node of Nh as follows:{

φh1 = γ
√

π
τGτ ∗ χ

h
2 ,

φh2 = ᾱ
2Gτ ∗ |uh|

2 + γ
√

π
τGτ ∗ χ

h
1 .

Following Algorithm 1, we can now use (φh1 , φ
h
2 ) to update the indicator function χh by the approach

stated in Algorithm 1.

6. Numerical experiments

In this section, we perform extensive numerical testing to demonstrate the efficiency of Algorithm 1 with
an adaptive strategy for the choice of τ . We choose η = 0.5 in the update of τ . If no confusion is possible,
we still denote by τ as its initialization in the following.

6.1. Two dimensional results. We firstly test the proposed algorithm for the two dimensional problems.
For most of examples in this subsection, we assume that the Dirichlet boundary condition with a parabolic
profile and the magnitude of the velocity is set as |uD| = g(1 − (2t/l)2) with t ∈ [−l/2, l/2], where l is the
length of the section of the boundary at which the inflow/outflow velocity is imposed. The direction of the
inflow/outflow velocity is illustrated in the following examples.

Example 6.1. The first example shown in Figure 6.1 is the optimal design of a diffuser that was tested
for topology optimization for fluids using MMA in [7]. Here, we apply Algorithm 1 to obtain the optimal
design of the diffuser. Let g = 1 and 3 for the inflow and outflow velocities, respectively. We first set the
fluid region fraction as β = 0.5 and test the problem on a 128× 128 grid.

1/3

1

1

Figure 6.1. (Example 6.1) Design domain for the diffuser example.

We first perform the simulations with ᾱ = 2.5 × 104, τ = 0.001, γ = 0.1 and with two types of initial
distribution of χ1, as shown in Figure 6.2; that is, the initial fluid region is restricted in the middle of the
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Figure 6.2. (Example 6.1) Left (Case 1): Initial distribution of χ1. Right (Case 2): Initial distribution of χ1.

Figure 6.3. (Example 6.1) Left: Optimal diffuser for the case ᾱ = 2.5 × 104 and the approximate

velocity in the fluid region. Right: Plot of energy curves for two cases of distribution of χ1. In this case,
the parameters are set as ᾱ = 2.5 × 104, τ = 0.001, γ = 0.1.

domain in the left graph of Figure 6.2 (Case 1), and the initial fluid region satisfies a random distribution in
the right graph of Figure 6.2 (Case 2). In both cases, from the experiments we did so far (i.e., with different
random initial conditions in Case 2), we always arrive at the same optimal design result shown in the left
graph of Figure 6.3, which also shows the quiver plot of the approximate velocity in the fluid region. The
optimal design result seems similar to the result obtained by MMA in [7]. The energy decaying property
can be observed in the right graph of Figure 6.3 which shows the energy curves for the above two cases of
the initial distribution of χ1. The iteration converges in fewer than 18 steps in both cases.

Next, we test the case (initial fluid region of Case 1) for various parameters. We first fix ᾱ = 2.5 × 104,
τ = 0.001 and vary γ = 0.01, 0.005, 0.001. We then test the cases for fixed γ = 0.001 and various choices of
τ = 0.05, 0.01, 0.001. The optimal design of the diffuser is similar to the result in the left graph of Figure 6.3.
Figure 6.4 shows the energy decaying property for each of these cases. In all cases, the iteration converges
in fewer than 25 steps.

In the next example, we increase ᾱ = 2.5 × 105. Again, we use the initial fluid region of Case 1 with
τ = 0.001, γ = 0.01. The optimal design of the diffuser and the approximate velocity in the fluid region are
shown in the left graph of Figure 6.5. It seems that the fluid region at the left boundary reaches top and
bottom boundaries in this case. The energy decaying property is also observed in Figure 6.5. The iteration
converges even more quickly at about 10 steps.

In order to further show the robustness of our algorithm, in the following we fix τ, γ and compare the
numerical results of our algorithm with different choices of the parameter β. Here β is related to the
parameter M in Algorithm 1. We test with the initial fluid region of Case 1 in Figure 6.2. The optimal
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Figure 6.4. (Example 6.1) Plot of energy curves for case 1 of distribution of χ1 with ᾱ = 2.5 × 104.

Left: For fixed τ = 0.001, energy curves for the cases of γ = 0.01, 0.005, 0.001. Right: For fixed γ = 0.01,
energy curves for the cases of τ = 0.05, 0.01, 0.001.

Figure 6.5. (Example 6.1) Left: Associated optimal diffuser and approximate velocity in the fluid
region. Right: Plot of energy curve for Case 1 of distribution of χ1. In this case, the parameters are set as

ᾱ = 2.5 × 105, τ = 0.001, γ = 0.01.

design of the diffuser (see Figure 6.6) is obtained respectively for different choices of β, and we can see from
Table 1 that our algorithm converges in fewer than 30 steps in all cases and with energy decaying property.

β Number of iterations

1/3 27

2/5 29

2/3 27

3/4 25

Table 1. The number of iterations of our algorithm for Example 6.1 with ᾱ = 2.5 × 104 by different

choices of β and fixed τ = 0.01 and γ = 0.001.

We also test the problem with the same inflow Dirichlet boundary condition as above, but we replace the
outflow Dirichlet boundary condition with a homogeneous Neumann boundary. A similar optimal design of
diffuser is then obtained as above for the cases of ᾱ = 2.5× 104 and ᾱ = 2.5× 105.

Example 6.2. In this example, we test the double pipes problem shown in Figure 6.7. The inflow and
outflow Dirichlet boundaries are located with centers [0, 1/4], [0, 3/4], [1, 1/4], [1, 3/4], as shown in Figure 6.7.
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Figure 6.6. (Example 6.1) Associated optimal diffuser and approximate velocity in the fluid region based
on different choices β. Top-left: β = 1/3; Top-right: β = 2/5; Bottom-left: β = 2/3; Bottom-right: β = 3/4.

In this case, we fix the parameters as ᾱ = 2.5 × 104, τ = 0.01, γ = 0.001.

Let g = 1 for the inflow and outflow velocities, respectively, and let the fluid region fraction be β = 1/3. We
test the problem with ᾱ = 2.5× 104 on a 128× 256 grid for d = 0.5 and on a 192× 128 grid for d = 1.5.

Figure 6.7. (Example 6.2) Design domain for the double pipes example.

For the case d = 0.5, we choose a random initial distribution χ1, as shown in the left graph of Figure 6.8.
We remark that γ can also be set to zero in Algorithm 1. For fixed τ = 0.001, we test γ = 0.01, 0.001, 0. The
optimal design result is nearly the same for the three choices of γ, as shown in the middle graph of Figure
6.8, and the energy decaying property is observed from the energy curves in the right graph of Figure 6.8.
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Figure 6.8. (Example 6.2) For the case d = 0.5. Left: Initial distribution of χ1. Middle: Optimal double

pipes and approximate velocity in the fluid region. Right: For fixed τ = 0.001, energy curves for the cases
of γ = 0.01, 0.001, 0.

Figure 6.9. (Example 6.2) For the case d = 1.5, the parameters are set as τ = 0.01 and γ = 0.0001.
Left: Optimal double pipes and approximate velocity in fluid region. Right: Energy curve.

For the case d = 1.5, we choose an initial distribution χ1 with the fluid region located in the middle of
the domain as Case 1 of Example 6.1. We set τ = 0.01 and γ = 0.0001. The optimal design result and
the approximate velocity are shown in the left graph of Figure 6.9, and the energy decaying property is also
observed from the energy curve in the right graph of Figure 6.9. For the large jump in this energy curve at
the iteration steps 9 and 10, we observe that this is due to the fact that there is a large topology change of
the fluid and solid regions at these two steps. Compared with the computational cost used by MMA in [7],
we find that our algorithm converges in fewer iterations to the optimal result.

Example 6.3. We consider another example studied in [7] that includes a body fluid force term imposed
in the local circular region with center [1/2, 1/3] and radius r = 1/12. We show the design domain in Figure
6.10. The inflow and outflow Dirichlet boundaries are located with centers [0, 2/3] and [1, 2/3] respectively.
Let g = 1 for the inflow and outflow velocities, and let the fluid region fraction be β = 1/4. We test the
problem with various choices of body fluid force on a 128 × 128 grid, and we always choose ᾱ = 2.5 × 104,
τ = 0.01, γ = 0.0001 in this example.

We test the cases for three different force terms f = [−1125, 0], [562.5, 0], [1687.5, 0]. We choose the initial

distribution χ1 with the fluid region located in a circular region with center [1/2, 1/2] and radius 1/
√

3π.
The optimal results and energy curves are plotted in Figures 6.11 to 6.13 for various values for force f , and
the new algorithm also converges more quickly to the optimal results than the MMA shown in [7]. One can
observe that for f = [−1125, 0] the fluid flow is in a clockwise direction near the center roundabout (left
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Figure 6.10. (Example 6.3) Design domain for the example with a force term.

Figure 6.11. (Example 6.3) For the example with a force term f = [−1125, 0] on a grid 128× 128. Left:

Optimal design result and approximate velocity in the fluid region. Right: Energy curve.

Figure 6.12. (Example 6.3) For the example with a force term [562.5, 0] on a grid 128 × 128. Left:

Optimal design result and approximate velocity in the fluid region. Right: Energy curve.

graphs in Figure 6.11), while for f = [1687.5, 0] it is in a counterclockwise direction (left graph of Figure
6.13).
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Figure 6.13. (Example 6.3) For the example with a force term [1687.5, 0] on a grid 128 × 128. Left:
Optimal design result and approximate velocity in the fluid region. Right: Energy curve.

Figure 6.14. (Example 6.3) Optimal design results for for example with force term f = [1687.5, 0]. Left:
Optimal design result on a coarse grid 128 × 128. Right: Optimal design result on a fine grid 256 × 256.

An interesting phenomenon observed in this example was the appearance of a tiny local solid at the center
of the roundabout for the two cases of f = [−1125, 0], [1687.5, 0], and the tiny local solid is clearer when the
grid is finer (cf. Figure 6.14).

Example 6.4. Finally, we consider optimal design for a three-terminal device shown in Figure 6.15. The
inflow and outflow Dirichlet boundaries are located with centers [0, 0.3] and [1, 0.7], and the homogeneous
Neumann boundary is located on the left boundary with center [0, 1.1]. Let g = 0.5 for the inflow velocity
and the fluid region fraction be β = 0.3. We choose ᾱ = 2.5× 104, τ = 0.01, γ = 0.0001 in this example and
test the problem on a grid 80× 112.

We choose the initial distribution χ1, with the fluid region located in double parallel pipes [0, 1] ×
[13/60, 23/60] ∪ [0, 1] × [37/60, 47/60]. The optimal result was obtained after 29 iterations. The optimal
design result and the approximate velocity are shown in the left graph of Figure 6.16. The energy decaying
property is also observed from the energy curve in the right graph of Figure 6.16.

6.2. Three dimensional results. We now present the numerical examples in three dimensions. For the
Dirichlet boundary condition in the following examples, we always assume that the magnitude of the velocity
is set as

|uD| = ḡ
(

1− (y − a)2 + (z − b)2

l2

)
,
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Figure 6.15. (Example 6.4) Design domain for the example with a force term.

Figure 6.16. (Example 6.4) Left: Optimal design result for example of three-terminal device and ap-

proximate velocity in the fluid region. Right: Energy curve.

where ḡ is the prescribed velocity at the center of the flow profile at which the inflow/outflow velocity is
imposed, l is the radius of the flow profile, (y, z) are Cartesian coordinates on a x-plane, and (a, b) are the
center of a circle on a x-plane.

Example 6.5. The design domain of this example is shown in Figure 6.17. For the inflow, we let ḡ = 1,
l = 1

2 , and (a, b) = ( 1
2 ,

1
2 ) on x = 0 plane. For the objective of mass conservation, we let ḡ = 9, l = 1

6 ,

and (a, b) = ( 1
2 ,

1
2 ) on x = 1 plane. We set the fluid region fraction is β = 0.35. This example was

already tested by the level set method in [8]. Here we apply our new Algorithm 1 to obtain the optimal
diffuser. Throughout this example, we choose the initial distribution χ1 with fluid domain in a region of
{(x, y, z) : x ∈ (0, 1), y ∈ (0, 1), z ∈ ( 7

20 ,
7
10 )}.

Firstly, we test the case with ᾱ = 2.5×104, τ = 0.05, and γ = 0.01 on 32×32×32 and 64×64×64 grids.
In the following, the interface between solid and fluid regions for the optimal design is shown, and the fluid
region locates in the interior of subdomain surrounded by the interface. The optimal diffusers are presented
in the left graphs of Figure 6.18 and Figure 6.19 and the energy decaying property can be observed in the
right graphs of Figure 6.18 and Figure 6.19. The optimal design results seem to be similar to that in [8].
The iteration converges in about 25 steps and 35 steps on coarse and fine grids respectively. Additionally,
the slice of optimal design result at y = 0.5 on 32 × 32 × 32 grid and the approximate velocity in the fluid
domain are provided in Figure 6.20.



THRESHOLD DYNAMICS METHOD FOR TOPOLOGY OPTIMIZATION FOR FLUIDS 17

Figure 6.17. (Example 6.5) Design domain.

Figure 6.18. (Example 6.5) Left: Optimal design result on a 32 × 32 × 32 grid. Right: Energy curve.

In this case the parameters are set as ᾱ = 2.5 × 104, τ = 0.05, γ = 0.01.

Figure 6.19. (Example 6.5) Left: Optimal design result on a 64 × 64 × 64 grid. Right: Energy curve.
In this case the parameters are set as ᾱ = 2.5 × 104, τ = 0.05, γ = 0.01.
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Figure 6.20. (Example 6.5) The slice of optimal design result and the approximate velocity in fluid

region at y = 0.5 on a 32 × 32 × 32 grid. The parameters are set as ᾱ = 2.5 × 104, τ = 0.05, γ = 0.01.

Next, the energy decay properties of the Algorithm 1 with different parameters τ and γ for this problem
are shown for the same case of ᾱ = 2.5 × 104 in Figure 6.21. We note that the optimal design results for
different parameters τ and γ are similar to that in the left graphs of Figure 6.18 and Figure 6.19. From the
two graphs of Figure 6.21, we find that the energy converges to almost the same value when τ or γ is fixed.

Figure 6.21. (Example 6.5) Plot of energy curves for ᾱ = 2.5× 104 on 32× 32× 32 grid. Left: For fixed

τ = 0.05, energy curves for the cases of γ = 0.1, 0.01, 0.001. Right: For fixed γ = 0.01, energy curves for the
cases of τ = 0.05, 0.01, 0.001.

Example 6.6. In this example we assume that there are four flow profiles on the inflow boundary and one
flow profile on the outflow boundary. The design domain is shown in Figure 6.22. For the four inflow profiles,
we let ḡ = 1, the radius is set as l = 1

8 and the centers of circles are ( 1
4 ,

1
4 ), ( 1

4 ,
3
4 ), ( 3

4 ,
1
4 ) and ( 3

4 ,
3
4 ) on the

x = 0 plane respectively. For the outflow profile, we let ḡ = 1, l = 1
4 and (a, b) = ( 1

2 ,
1
2 ) on the x = 1 plane.

We set the fluid region fraction as β = 1
4 .

We test this problem based on the Algorithm 1 with ᾱ = 2.5×104, τ = 0.05, and γ = 0.01 on 32×32×32
and 64× 64× 64 grids. The initial distribution χ1 with fluid domain is located in a region of {(x, y, z) : x ∈
(0, 1), y ∈ (0, 1), z ∈ ( 1

2 ,
3
4 )}. The corresponding optimal design result is shown in the left graphs of Figure

6.23 and Figure 6.24. From the left graphs of Figure 6.23 and Figure 6.24, we can see that the interface
between solid and fluid regions is more smooth when the simulation is performed on the fine grid. From the
right graphs of Figure 6.23 and Figure 6.24, the energy decaying property is also observed. The iteration
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Figure 6.22. (Example 6.6) Design domain.

converges in about 50 steps and 70 steps on coarse and fine grids respectively. In Figure 6.25, we present
the slice of optimal design result at z = 25/64 on a 32 × 32 × 32 grid, and the approximate velocity in the
fluid region is also included.

Figure 6.23. (Example 6.6) Left: Optimal design result on a 32 × 32 × 32 grid. Right: Energy curve.

In this case the parameters are set as ᾱ = 2.5 × 104, τ = 0.05, γ = 0.01.

6.3. Discussions on the robustness and efficiency of our algorithm. The numerical results in the
previous subsections demonstrated the robustness and efficiency of our algorithm. First, the final optimal
design result seems to be insensitive to the initial distribution of χ1. As shown in the first and second two
dimensional examples for the case with α = 2.5 × 104, even with a random initial distribution of χ1, we
always get the same final optimal diffuser (cf. Figures 6.2-6.3). From the viewpoint of energy stability, the
energy decaying property is proved mathematically and observed numerically for the problem with different
initial distributions of χ1. Moreover, from the numerical results in Figure 6.4 for the Example 6.1 and Figure
6.21 for the Example 6.5, we can see that our algorithm is also robust for the different choices of parameters
used in the algorithm.

In our algorithm, only a Brinkman problem is solved without the need to solve adjoint problem at
each iteration step, and the indicator functions of fluid-solid regions are easily updated based on simple
convolutions followed by a thresholding step. Therefore, the computational cost at each iteration is less than
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Figure 6.24. (Example 6.6) Left: Optimal design result on a 64 × 64 × 64 grid. Right: Energy curve.
In this case the parameters are set as ᾱ = 2.5 × 104, τ = 0.05, γ = 0.01.

Figure 6.25. (Example 6.6) The slice of optimal design result and the approximate velocity in fluid
region at z = 25/64 on a 32 × 32 × 32 grid. The parameters are set as ᾱ = 2.5 × 104, τ = 0.05, γ = 0.01.

that in MMA [7] or in the level set approach [8]. Moreover, our algorithm is much simpler and easier to
implement, and converges in fewer steps than those methods.

7. Discussion and conclusions

In this paper, we introduce a new efficient threshold dynamics method for topology optimization for fluids
in Stokes flow. We aim to minimize a total energy functional that consists of the dissipation power and
the perimeter approximated by nonlocal energy. During the iterations of the algorithm, only a Brinkman
equation requires solution by a mixed finite-element method, and the indicator functions of fluid-solid regions
are updated by a thresholding step that is based on the convolutions computed by the FFT. A simple adaptive
in time strategy is used to accelerate the convergence of the algorithm. The total energy decaying property of
the proposed algorithm is rigorously proved and observed numerically. Several numerical examples are tested
to verify the efficiency of the new algorithm, and we show that the new algorithm converges more rapidly
for most the examples than the MMA used in [7]. Compared to existing methods for topology optimization
for fluids, we believe that the proposed algorithm is simple and easy to implement. For the numerical
experiments that we have performed thus far, the proposed method always finds an optimal topology and
the numerical results are insensitive to the initial guess and parameters. We believe that our algorithm can
also be extended to topology optimization for fluids in Navier-Stokes flow.
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[14] M. Elsey and S. Esedoḡlu, Threshold dynamics for anisotropic surface energies, Math. Comp., 87 (2018), pp. 1721–1756.
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[26] M. Jacobs, E. Merkurjev, and S. Esedoḡlu, Auction dynamics: A volume constrained MBO scheme, J. Comput. Phys., 354

(2018), pp. 288–310.

[27] S. Jiang, D. Wang, and X. P. Wang, An efficient boundary integral scheme for the MBO threshold dynamics method via

NUFFT, J. Sci. Comput., 74 (2018), pp. 474–490.
[28] T. Laux and D. Swartz, Convergence of thresholding schemes incorporating bulk effects, Interfaces and Free Boundaries,

19 (2017), pp. 273–304.
[29] T. Laux and F. Otto, Convergence of the thresholding scheme for multi-phase mean-curvature flow, Calculus of Variations

and Partial Differential Equations, 55 (2016), p. 129.

[30] E. Merkurjev, T. Kostic, and A. L. Bertozzi, An MBO scheme on graphs for classification and image processing, SIAM J.

Imaging Sciences, 6 (2013), pp. 1903–1930.
[31] B. Merriman, J. K. Bence, and S. Osher, Diffusion generated motion by mean curvature, UCLA CAM Report 92-18, 1992.

[32] B. Merriman, J. K. Bence, and S. Osher, Diffusion generated motion by mean curvature, in Proceedings of the Geometry
Center Workshop, Minneapolis, MN, 1992.

[33] B. Merriman, J. K. Bence, and S. Osher, Motion of multiple junctions: A level set approach, J. Comput. Phys., 112 (1994),

pp. 334–363.
[34] B. Merriman and S. J. Ruuth, Convolution-generated motion and generalized Huygens’ principles for interface motion,

SIAM J. Appl. Math., 60 (2000), pp. 868–890.



22 HUANGXIN CHEN, HAITAO LENG, DONG WANG, AND XIAO-PING WANG

[35] T. Van Oevelen and M. Baelmans, Numerical topology optimization of heat sinks, Proceedings of the 15th International

Heat Transfer Conference, 2014, pp. 5985–5999.
[36] F. Okkels, L. H. Olesen, and H. Bruus, Application of topology optimization in the design of micro and nanofluidic systems,

NSTI-Nanotech (2005), pp. 575–578.

[37] F. Okkels, H. Bruus, Scaling behavior of optimally structured catalytic microfluidic reactors, Phys. Rev. E, 75 (2007), pp.
1–4.

[38] L. H. Olesen, F. Okkels, and H. Bruus, A high-level programming-language implementation of topology optimization
applied to steady-state Navier-Stokes flow, Int. J. Numer. Meth. Engrg., 65 (2006), pp. 975–1001.

[39] B. Osting and D. Wang, A generalized MBO diffusion generated motion for orthogonal matrix-valued fields, arXiv preprint

arXiv:1711.01365, 2017.
[40] B. Osting and D. Wang, Diffusion generated methods for denoising target-valued images, arXiv preprint arXiv:1806.06956,

2018.

[41] G. Pingen and K. Maute, Optimal design for non-Newtonian flows using a topology optimization approach, Comput. Math.
Appl., 59 (2010), pp. 2340–2350.

[42] S. J. Ruuth, Efficient algorithms for diffusion-generated motion by mean curvature, J. Comput. Phys., 144 (1998), pp.

603–625.
[43] S. J. Ruuth, A diffusion-generated approach to multiphase motion, J. Comput. Phys., 145 (1998), pp. 166–192.

[44] S. J. Ruuth and B. Merriman, Convolution–thresholding methods for interface motion, J. Comput. Phys., 169 (2001), pp.

678–707.
[45] S. J. Ruuth and B. T. R. Wetton, A simple scheme for volume-preserving motion by mean curvature, J. Sci. Comput., 19

(2003), pp. 373–384.
[46] O. Sigmund and K. G. Hougaard, Geometric properties of optimal photonic crystals, Phys. Rev. Lett., 100 (2008), 153904.

[47] K. Svanberg, The method of moving asymptotes–a new method for structural optimization, Int. J. Numer. Meth. Engrg.,

24 (1987), pp. 359–373.
[48] D. Swartz and N. K. Yip, Convergence of diffusion generated motion to motion by mean curvature, arXiv preprint

arXiv:1703.06519, 2017.

[49] R. Viertel and B. Osting, An approach to quad meshing based on harmonic cross valued maps and the Ginzburg-Landau
theory, arXiv:1708.02316, 2017.

[50] C. H. Villanueva and K. Maute, CutFEM topology optimization of 3D laminar incompressible flow problems, Comput.

Methods Appl. Mech. Engrg., 320 (2017), pp. 444–473.
[51] X. P. Wang, C. J. Garcıa-Cervera, and W. E, A Gauss–Seidel projection method for micromagnetics simulations, J.

Comput. Phys., 171 (2001), pp. 357–372.

[52] D. Wang, H. Li, X. Wei, and X. P. Wang, An efficient iterative thresholding method for image segmentation, J. Comput.
Phys., 350 (2017), pp. 657–667.

[53] D. Wang and B. Osting, A diffusion generated method for computing Dirichlet partitions, arXiv preprint arXiv:1802.02682,
2018.

[54] N. Wiker, A. Klarbring, and T. Borrvall, Topology optimization of regions of Darcy and Stokes flow, Int. J. Numer. Meth.

Engrg., 69 (2007), pp. 1374–1404.
[55] X. Xu, D. Wang, and X. P. Wang, An efficient threshold dynamics method for wetting on rough surfaces, J. Comput.

Phys., 330 (2017), pp. 510–528.

[56] S. Zhou and Q. Li, A variational level set method for the topology optimization of steady-state Navier-Stokes flow, J.
Comput. Phys., 227 (2008), 10178–10195.

School of Mathematical Sciences and Fujian Provincial Key Laboratory on Mathematical Modeling and High

Performance Scientific Computing, Xiamen University, Fujian, 361005, China

Email address: chx@xmu.edu.cn

Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon,

Hong Kong, China
Email address: mahtleng@ust.hk

Department of Mathematics, University of Utah, Salt Lake City, Utah, USA
Email address: dwang@math.utah.edu

Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon,
Hong Kong, China

Email address: mawang@ust.hk


