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Figure 1: Starting from a single input mesh along with a set of non-linear constraints, our geometric framework allows local characterization,
navigation, and exploration of the corresponding shape space. The figure shows a sample design (right) created using our method, starting
from a flat circular mesh (left).

Abstract

We present a general computational framework to locally charac-
terize any shape space of meshes implicitly prescribed by a col-
lection of non-linear constraints. We computationally access such
manifolds, typically of high dimension and co-dimension, through
first and second order approximants, namely tangent spaces and
quadratically parameterized osculant surfaces. Exploration and
navigation of desirable subspaces of the shape space with regard
to application specific quality measures are enabled using approx-
imants that are intrinsic to the underlying manifold and directly
computable in the parameter space of the osculant surface. We
demonstrate our framework on shape spaces of planar quad (PQ)
meshes, where each mesh face is constrained to be (nearly) pla-
nar, and circular meshes, where each face has a circumcircle. We
evaluate our framework for navigation and design exploration on a
variety of inputs, while keeping context specific properties such as
fairness, proximity to a reference surface, etc.

Keywords: shape space, manifold navigation, design exploration,
computational differential geometry, constrained mesh

1 Introduction

In geometry processing, meshes are often specified by a collection
of non-linear constraints, typically associated with mesh faces or
edges. Exploring and navigating the corresponding shape space,
i.e., the possible meshes sharing the same combinatorics as the in-
put mesh while satisfying the constraints, are widely believed to be
challenging. Even seemingly simple handle-driven deformations
restricted to such shape spaces turn out to be challenging, and re-
main an active topic of research (see [Botsch et al. 2006; Kilian
et al. 2007; Botsch and Sorkine 2008; Gal et al. 2009]).

In this paper, we propose a mathematical framework for the de-
sign and manipulation of non-linearly constrained meshes. Our
approach is based on the exploration of an appropriate shape space

as follows: Geometric models are mapped to points in a high-
dimensional space RD, where the models that satisfy the constraints
form a certain manifold M ⊂ R

D (shape space). Modeling pro-
ceeds by navigating in the practically useful parts of the manifold
M , as prescribed by application specific quality measures. Such a
manifold typically has high dimension and co-dimension, making it
difficult to directly employ standard differential geometry concepts
such as curvatures, especially in an efficient and computationally
feasible manner. We locally approximate the manifold using tan-
gent spaces and quadratically parameterized osculant surfaces, and
propose how to computationally estimate the local curvature of the
manifold to decide between the two representations.

We demonstrate the utility of our framework for two concrete ex-
ample scenarios: (i) planar quad (PQ) meshes, i.e., meshes with
each quad face being planar, and (ii) circular meshes, i.e., meshes
with each quad face having a circumcircle. These meshes are attrac-
tive geometry representations for architectural freeform structures.
Although various computational techniques have been proposed for
creating such meshes, effective exploration of the associated design
spaces remains largely unexplored (see [Ceccato et al. 2010] and
references therein). Starting from a single PQ/circular mesh, we
build the corresponding mesh manifold. Moving on the manifold
allows us to discover neighboring PQ/circular meshes, while retain-
ing aesthetic quality measures of the input model (see Figure 1).
Here, we already point to the fact that planarity or circularity of
faces is in practice subject to user-specified manufacturing toler-
ances. Our framework is capable of staying strictly within a given
tolerance band.
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Figure 2: Decoupling deformation and planarization is undesir-
able for shape design. Given a PQ mesh (left), the user prescribes
a deformation using vertex handles, and the deformed mesh is pla-
narized using an optimization approach [Liu et al. 2006]. The
result can be unsatisfactory (middle). In contrast, our PQ mesh
manifold exploration characterizes the (non-linearly constrained)
design space, allowing direct design (right).



In the context of mesh deformation, a naïve possibility is to ma-
nipulate a constrained mesh using a standard mesh deformation
tool, and then re-optimize to restore the prescribed constraints.
Unfortunately, due to the non-linearity of the constraints, a large
deformation followed by subsequent optimization can significantly
change the deformed model, thus making it challenging to warp the
shape into desired forms (see Figure 2). An alternate solution is
to take small deformation steps, interleaved with optimization, but
the process is slow, cumbersome, difficult to control, and hampers
the designer’s work flow. More importantly, such an approach nei-
ther provides a good interface to restrict navigation to the implicitly
prescribed shape space, nor does it enable exploration of good de-
formation directions while optimizing for desired quality measures.

1.1 Overview and contributions. Given a single input mesh
along with a set of non-linear constraints (in terms of the mesh
vertices), our goal is to explore other meshes with the same con-
nectivity while respecting the prescribed constraints. We model the
problem by mapping the meshes to points x ∈ R

D, where D is 3
times the number of deformable vertices. Each constraint defines
a hypersurface in R

D, and the intersection of all these hypersur-
faces is our corresponding shape space, or mesh manifold, M . For
example, face planarity leads to the PQ mesh manifold. We lo-
cally navigate in M (in fact – due to tolerances – close to M ) with
help of local approximations of M . These are tangent spaces and
quadratically parameterized surfaces having second order contact
with M (Section 2). Further, we report effective theoretical and
computational tools for estimating curvatures of such non-trivial
spaces (i.e., spaces with high dim. normal spaces), and understand
the trade-offs between tangent and osculant space navigation.

While any point of the shape space M represents a valid constrained
mesh, only certain parts of M are desirable according to application
specific quality measures, e.g., fairness of selected mesh polygons.
For design exploration, it is important to be able to efficiently iden-
tify such useful parts of M , and restrict navigation to such desirable
regions. We enable this with the help of appropriate energy func-
tions and their second order approximations that are intrinsic to M

(Section 3). Eigen-analysis of the intrinsic Hessians of energy func-
tions turns out to be a highly effective tool for the identification of
the good parts of the shape space for subsequent exploration (see
Figures 1, 9, 14, 16, 17, and 19). In Section 4, using the example
of PQ meshes, we demonstrate our proposed framework for de-
sign exploration, optimization, and handle driven deformation with
boundary conditions, while conforming to prescribed constraints.
Interestingly, the local approximants also provide a natural way to
access the relative difficulty of deforming various parts of the input
model (see Figure 11). In Section 5, we present exploration results
for circular meshes and explorative design examples starting from
flat meshes (see Figures 1 and 18).

Our main contribution, in the context of geometry processing,
is a computationally feasible yet mathematically precise formula-
tion that allows navigation and exploration of non-linearly con-
strained shape spaces, which are typically of high dimension and
co-dimension. Our focus is on the access to the variety of feasible
designs meeting the specified constraints and not on the solution
of a single constrained optimization problem. In the context of ar-
chitectural geometry, we unify two traditionally separate phases in
freeform design, namely, (i) shape design and (ii) rationalization in
view of the actual fabrication.

1.2 Related work. Although there is little prior work in the area
of design and shape exploration of nonlinearly constrained geomet-
ric models, we briefly present relevant research efforts.

PQ meshes appeared first in discrete differential geome-
try (cf. [Bobenko and Suris 2008]) as discrete counterparts of
so-called conjugate curve networks, in particular of the network
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Figure 3: Very local deformations of PQ meshes are possible while
preserving face planarity (see also Hoffmann [2011]). Such an ap-
proach, however, quickly destroys the aesthetics of the mesh, which
being visible in the beam layout forms an integral design element.

of principal curvature lines. The importance of PQ meshes for
freeform architecture led to the development of computational
tools which are based on nonlinear optimization [Liu et al.
2006; Pottmann et al. 2007], since theoretically existent direct
constructions turned out to be either unstable or impractical. The
difficulty in designing a PQ mesh is rooted in the fact that such a
mesh is strongly guided by the curvature behavior of an underlying
smooth surface. The layout of a PQ mesh on a given design surface
S basically amounts to the design of a conjugate curve network on
S [Zadravec et al. 2010]. So far, direct modeling of PQ meshes
and related structures such as developable strip models has been
limited to the interleaved subdivision and optimization approach
[Liu et al. 2006; Pottmann et al. 2008]. Only simple modification
tools have been presented such as tranformations based on natural
invariance properties (e.g., projective, Möbius, Laguerre and Lie
transformations) or on mesh parallelism [Pottmann et al. 2007].
The latter already indicated the difficulties in generating useful
designs from existing ones. This has further been confirmed by
recent work on very local PQ mesh deformations that are directly
performed within a projective geometric framework [Hoffmann
2011], but in our experience are not suitable as a basis of a design
modification tool (see Figure 3).

Shape deformation. Significant research efforts have been devoted
towards manipulation of triangle meshes using various linear and
non-linear formulations (see survey [Botsch and Sorkine 2008]), or
in presence of interrelations across feature curves [Gal et al. 2009].
In case of triangles, however, planarity is trivially satisfied. Other
approaches include isometric, as-rigid-as possible or conformal de-
formations (see [Gu and Yau 2008; Lipman et al. 2008] and the ref-
erences therein). Unlike such methods, in addition to deformations,
we also want to support optimization and explorations restricted to
the implicitly prescribed shape space.

Morphable models. In the context of character animation and mod-
eling, researchers have employed statistical tools to learn principal
modes of model variation. Starting from a representative template
and a collection of aligned models, morphable model learning tech-
niques have been effectively used for faces [Blanz and Vetter 1999],
human bodies, and animation poses characterized as deformation
gradients [Sumner et al. 2005]. In the context of shape analysis,
Huang et al. [2009] use eigen-modes of surface Hessians to learn
useful shape segmentations. Kilian et al. [2007] propose Rieman-
nian metrics for construction of useful shape spaces for design and
modeling of geometric shapes. None of these methods, however,
can be simply extended to characterize and explore the space of
nonlinearly constrained geometric models, which is the goal of our
work. Note that we explore the shape space as defined by a single
non-linearly constrained mesh, rather than a collection of meshes.
Thus our research is fundamentally different from work in machine
learning, where shape manifolds are computed from input poses.
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Figure 4: A given PQ mesh x0 is a point on the PQ mesh manifold
M of all PQ meshes which share the same connectivity. Vectors t ly-
ing in the tangent space at x0 represent deformation fields (bottom-
left) on the original mesh that preserve face planarity up to first
order. Typically, we can take non-trivial steps in such tangent di-
rections before the deviation from planarity maxi |Ei(x)| exceeds
fabrication limits, e.g., 10mm/m for glass panels (average panel
length is 1m in all examples). In this example, mesh A and mesh
B meet fabrication bounds, but mesh C does not (all illustrations
show computed results).

2 Constrained Mesh Manifolds

Given a single constrained mesh, our goal is to characterize, nav-
igate, and explore the space of meshes sharing the same connec-
tivity, while maintaining the prescribed constraints, within a tol-
erance margin. In this section, we formalize the notion of such
shape spaces (mesh manifolds), and derive their local tangent and
osculant approximations that subsequently form the basis of various
exploration metaphors.

Starting from an input mesh (in R
3), the family of meshes that share

the same mesh connectivity is simply represented by their varying
vertex positions, i.e., a point x = (v1, . . . , vn) ∈ R

D, where D is
3 times the number n of deformable vertices vi. Then any vector
d ∈ R

D is a deformation field on the mesh producing the new mesh
(x + d). A useful distance measure between any two meshes x1, x2

is defined as d(x1, x2) = ‖x1 − x2‖, i.e., as the Euclidean distance
of the corresponding points in R

D, which can be interpreted in R
3

via d2(x1, x2) =
∑

i(vi,1 − vi,2)
2.

Let Ei(x) = 0 denote the i-th constraint imposed on a mesh x, where
|Ei(x)| shall be a practically meaningful deviation measure. We
assume to have m constraints, which will mostly be non-linear. It is
possible to use any constraint function Ei(x) with our formulation
as long as gradients and Hessians are well defined. The correspond-
ing shape space M is then formed by those meshes (or points in R

D)
which satisfy all constraints, and thus it is the intersection of the m
hypersurfaces Γi = {x ∈ R

D | Ei(x) = 0}, i = 1, . . . ,m. Hence, M

is in general of dimension D − m and codimension m (e.g., 600-
1000 dimensions and 300-500 codimensions in our examples on
PQ meshes).

We illustrate our framework on the specific example of planar quad
meshes, where the non-linear constraints are the (deviation from)
planarity measure associated with each face (in Section 5, we also
investigate circular mesh manifolds). Specifically, in this work, we
use the signed distance between the face diagonals as the planarity
measure Ei(x) for any quad face fi. The definition directly corre-
lates to approximation margins typically allowed by various fabri-
cation technologies. For example, for glass panels of dimensions
2m×2m, a diagonal deviation margin up to 10 − 20mm is consid-
ered allowable. In practice, such near-planar panels are obtained by
cold bending of the panels, and do not require custom molds.

Tangent space. A given mesh corresponds to a point x0 ∈ M .
The tangent space of M at x0 is the intersection of the m tangent
hyperplanes to the hypersurfaces Γi.

The normal of any Γi at x0 is along the gradient ∇Ei(x0), and thus
the normal space of M at a point x0 is spanned by the gradients
∇Ei(x0), i = 1, . . . ,m. At any regular point of M , i.e., where the
gradients are linearly independent, we have a normal space of di-
mension m and a tangent space of dimension D − m. In practice
we remove any dependencies by computing a normal space basis
using SVD. The tangent space to the constrained mesh manifold M

is a linear space attached to the point x0 containing tangent vectors
t orthogonal to each of ∇Ei(x0) and is characterized as,

TM (x0) := {x0 + t | ∇ET
i (x0) · t = 0 ∀ i = 1, . . . ,m}. (1)

Suppose the basis of the normal space at the current point
x0 is {n1,n2, ..., nm} and the basis of the tangent space is
{e1, e2, ..., eD−m}. Then any tangent vector can be expressed
in the form t =

∑

j u je j where = [u1 u2 . . . uD−m]
T ∈ R

D−m

parameterizes the tangent space. Note that t represents a mesh
deformation field that satisfies prescribed constraints up to first
order (see Figure 4).

Osculant. Due to the non-linearity of constraints, tangent space
navigation may allow only small steps before one of the deviation
measures |Ei(x)| exceeds the prescribed tolerance. Hence we seek
a better approximation. A simple option to obtain a 2nd order ap-
proximation is to first compute the osculating paraboloid (2nd order
Taylor approximation) for each of the constraint hypersurfaces Γi,
and then compute their intersection. Unfortunately, the algebraic
computation of the intersection surface is cumbersome since the
intersection surface can be of order 2m. Instead, we derive a bet-
ter approximation in the form of a locally approximating surface
sharing second-order contact with the mesh manifold M . Let this
approximating surface, henceforth simply referred to as the oscu-
lant, be parameterized over the tangent space TM (x0) as,

S( ) = x0 +
D−m
∑

i=1

uiei +
1

2

m
∑

j=1

( T · A j · )n j. (2)

The parameterization of our surface exhibits quadratic forms with
symmetric (D − m)× (D − m) matrices A j, j = 1, . . . ,m for each
of the m coordinates in the normal space. Unlike (smooth) surface
points in R

3 with unique surface normals, any point x0 on manifold
M has a normal space of dimension m (see Figure 5).

In order for S( ) to be an osculant to M , it should have second
order contact at x0 with each of the hypersurfaces Γi : Ei(x) = 0.
The second order Taylor expansion of Ei at x0 is

Ei(x) = Ei(x0) + ∇ET
i · (x − x0) +

1

2
(x − x0)

T · Hi · (x − x0)

+o(‖x − x0‖
2),

where Hi denotes the Hessian of Ei evaluated at x0. Substituting
S( ) into the above form, we have

Ei( ) = Ei(x0) +
1

2

m
∑

j=1

(∇ET
i · n j)(

T · A j · )

+
1

2

D−m
∑

p=1

D−m
∑

q=1

(eT
p · Hi · eq)upuq + o(‖ ‖2), (3)

where we used the orthogonality of gradient vectors ∇ET
i and tan-

gent basis vectors e j. For the surface approximant S( ) to have
second order contact with Ei(x) = 0, each second order term upuq

should vanish, i.e.,
m
∑

j=1

(∇ET
i · n j)A

p,q
j + eT

p · Hi · eq = 0, ∀p, q = 1, ...,D − m. (4)
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Figure 5: At any point x0 of a PQ mesh manifold M the normal
space is spanned by the face planarity gradient vectors. For any
tangent line ut, the local osculant S to the manifold M defines a
unique vector n(t), shown in green, in the normal space which is the
axis of an osculating parabola p(u). Moving along p(u) amounts
to vertices tracing curved paths (parabolae), resulting in better pla-
narity preservation (compare with Figure 4).

where A
p,q
j is the matrix element of A j at the p-th row and the q-th

column. Considering constraints Ei of all m faces, we arrive at the
following linear system for A

p,q
j for j = 1, ...,m
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(5)
Note that the left matrix is independent of p and q, and hence can
be reused across p, q. By solving the above linear system, we can
compute the matrix element of the p-th row and q-th column for
each A j, and thus obtain the osculant S( ).

Approximate constrained meshes. Typically, a constrained
mesh is obtained via an optimization approach, e.g., a PQ mesh can
be created using the algorithm proposed by Liu et al. [2006]. Such
a mesh, however, is only approximate as the face constraints are
satisfied within a tolerance margin. Thus, the corresponding point
x0 is not exactly on the constrained mesh manifold M , but close
to it. The osculant surface then is an osculant to a slightly shifted
version of the manifold M in controlled distance to M . This is not
an offset in the usual sense. Consider a curve M in 3-space defined
as intersection of two surfaces, e.g., E1(x) = 0, E2(x) = 0. In
our approach, we would work on a nearly parallel curve, defined
as intersection of two surfaces Ei(x) = εi (for very small εi). In
contrast, an offset would be a pipe surface around M (see Figure 6).

Alternate formulation. A much simpler mathematical formu-
lation of constrained meshes would be to combine all the con-
straint scores into a single deviation measure Ẽ(x) :=

∑

E2
i (x)

(see [Liu et al. 2006] for PQ meshes). The corresponding level
sets Ẽ(x) = ε for small ε are pipes forming boundaries of tubu-
lar neighborhoods (see Figure 6). This approach has a number
of disadvantages: (i) it is hard to guarantee maximum tolerances
for each of the constraints; (ii) for such a measure Ẽ the gradient
∇Ẽ(x) vanishes for meshes on the exact constrained mesh mani-
fold; (iii) walking on any level set of Ẽ(x) has the disadvantage that
there is an (m − 1)-dimensional subspace of directions along which
we make insignificant progress. Note that our osculant surface is a
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Figure 6: In practice, instead of exploring the exact PQ mesh mani-
fold (blue curve), we work with the intersection (dotted green curve)
of hypersurfaces which are level sets to very small values εi of the
face planarity measures Ei. Alternately, one can use the ε-level set
(pipe-surface) of a combined energy Ẽ =

∑

E2
i . However, at any

point (A) on such a level set, there can be an (m − 1)-dimensional
space of undesirable directions (e.g., red vector) along which little
is gained in terms of navigating the (approx.) PQ mesh manifold.

better approximant than can be obtained using a second order anal-
ysis of Ẽ: Our osculant is in at least second order contact with the
corresponding level set Γ̃ of Ẽ, and it captures only those directions
that lead to significant progress when walking on Γ̃.

Osculating parabolae. Any straight line ut through the origin of
the parameter domain is mapped via our parameterization (Equa-
tion 2) of the osculant to an osculating parabola p(u), i.e., a
parabola with vertex at x0 sharing a second order contact with M

at x0. The surface S( ) is formed by all such osculating parabolae.
This is a generalization of the familiar osculating paraboloid of a
hypersurface. However, in the latter case all osculating parabolae
have the same axis (the unique surface normal), while in our case
the axis directions are varying. Each tangent direction t determines
the normal which is suitable as the axis of an osculating parabola
(see Figure 5). The plane of the osculating parabola contains a man-
ifold normal and hence it has second order contact with a geodesic
in M passing through x0 with tangent t. Also note that moving
along an osculating parabola p(u), we obtain a (constrained) mesh
deformation where all vertices move along parabolae (described by
those 3 coordinates of p which represent the corresponding vertex).

Curvatures and generalized Dupin indicatrix. The study of
curvatures for manifolds with high codimension (m in our case) is
considered to be complicated and cumbersome (see [Schouten and
Struik 1931] pp. 92 onwards), and we are unaware of any previ-
ous work that effectively maps to a computational framework. In
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Figure 7: Generalized Dupin indicatrix (in brown) in a 2D sub-
space spanned by third and fourth eigen-directions of the intrinsic
Hessian on combined fairness and orthogonality energies. The
10mm-tangent boundary (in black) has similar behavior as the in-
dicatrix since the PQ mesh manifold is less curved along the longer
indicatrix direction. Hence, although meshes A and B are equidis-
tant from the origin, mesh A has better planarity behavior.



fact, our osculants provide this framework, which shall be briefly
addressed below. The osculant S( ) is formed by the osculating
parabolae to all directions t in the tangent space TM (x0). Each such
parabola has x0 as its vertex, and in a local (x, y)-frame with the
tangent t as the x-axis and the y-axis lying in the normal space of
M , the parabola can be expressed as y = (κ/2)x2. Hence, |κ| is a
normal curvature κn(t) of M in the respective tangent direction t.
Since the manifold has a codimension m (≥ 2), assigning sign to a
normal curvature is meaningless. The points of any such parabola

at distance 1/2 from the x-axis have x-coordinates ±
√

1/|κ|, pro-
viding a measure of how quickly the manifold pulls off the tangent
plane in direction t.

This leads to a generalized Dupin indicatrix as a characterization
of the local shape of the underlying manifold. We collect all the
points of the osculant S( ) at a distance 1/2 from the tangent space
TM (x0) and project them down orthogonally to TM (x0), which is
also the parameter space of the osculant. We obtain a radial diagram

for
√

1/κn(t), a natural extension of the familiar Dupin indicatrix,
which is used for surfaces with codimension one [do Carmo 1976].
The generalized indicatrix is characterized as

Ψ := { |
m
∑

j=1

( T · A j · )2 = 1}. (6)

This is a centrally symmetric algebraic hypersurface Ψ of order 4
in the tangent space (for a 2D slice of an indicatrix, see Figure 7).
Extremal curvatures belong to those points on Ψ, whose normals
pass through the origin, i.e., are characterized by ∇G( ) = λ ,
where G( ) =

∑

j(
T · A j · )2.

3 Functions on Constrained Mesh Manifolds

The osculant locally approximates the mesh manifold M , and en-
ables a parameterized navigation in close proximity to the input
mesh x0. Often such constrained mesh families come with associ-
ated quality measures based on application specific functions. As
a result, large parts of M do not represent desirable meshes, and
hence are not useful for design and exploration. For example, in
the context of a PQ mesh manifold, for a 10 × 10 neighborhood
on a real model with about a 200-dimensional tangent space, we
found only about 15-20 dimensions being useful once we restrict
our inspection to mesh polygons with good fairness, a desirable
aesthetic property.

In this section, we abstract mesh aesthetics and other mesh proper-
ties in the form of functions F(x) defined on the embedding space
R

D (not just restricted to the mesh manifold) and derive correspond-
ing intrinsic Hessian approximations to study the behavior of F(x)
restricted to the osculant. Subsequently, this allows us to restrict
navigation to only the good regions of the mesh manifold as (im-
plicitly) prescribed by the chosen functions.

Second order intrinsic derivative of F(x)

The second order Taylor expansion of F(x) at mesh x0 is

F(x) = F(x0) + ∇FT · (x − x0) +
1

2
(x − x0)

T · HF · (x − x0)

+ o(‖x − x0‖
2), (7)

where HF denotes the Hessian of the function F at x0. If we re-
strict navigation of the mesh manifold to the tangent space TM (x0),

we are restricted to points of the form x = x0 +
∑D−m

i=1 uiei. The
function F(x) can be expressed in terms of parameter vector as

F(x0) +
D−m
∑

i=1

(∇FT · ei)ui +
1

2
T · Hr

F · + o( 2), (8)

0 10mm0 10mm10mm10mm10mm10mm10mm10mm10mm

A

B
tangent
osculant

tangent mesh (B)tangent meshmeshmeshmesh (B) (B) osculant mesh (A)

maxi |Ei |

average displacement/vertex(mm)

100

10mm

Figure 8: Tangent space navigation with fairness assessed using
the reduced Hessian (Equation 8) vs. navigation on the osculant
with fairness assessed using the intrinsic Hessian (Equation 10).

where Hr
F is the reduced Hessian of HF with respect to the tan-

gent space spanned by {e1, e2, . . . , eD−m}. Specifically, the reduced
Hessian is of the form Hr

F = [e1 e2 . . . eD−m]
T HF [e1 e2 . . . eD−m].

Restriction to the tangent space, however, is quite misleading since
we ignore the curvature of the underlying manifold M . The local
osculant S( ) allows us to correctly analyze the function behavior
directly on the manifold. We define the function f ( ) = F(S( ))
on the tangent space (parameter domain of the osculant) and ob-
tain its second order approximation at x0 ( = 0) by inserting the
parameterization (Equation 2) of the osculant into the Taylor ap-
proximation (Equation 7) of F ; we get

f ( ) = F(x0) +
D−m
∑

i=1

(∇FT · ei)ui +
1

2
T · HI

F · + o( 2). (9)

Here, the quadratic terms are described by the intrinsic Hessian at
x0 given by

H I
F = Hr

F +
m
∑

j=1

(∇FT · n j)A j. (10)

Recall that any tangent t gets mapped onto the osculant S( ) as an
osculating parabola having second order contact with the geodesic
in M passing through x0 in direction t. Thus, our second direc-
tional derivatives obtained with the Hessian H I

F can also be seen as
second directional derivatives of f ( ) along geodesics. This is a
completely intrinsic formulation, and hence we refer to H I

F as the
intrinsic Hessian. Figure 8 demonstrates the importance of analyz-
ing the function directly on the osculant manifold as opposed to a
tangent space approximation using the reduced Hessian, especially
in regions of high curvature (see discussion of Dupin indicatrix).

Remark: The intrinsic Hessian equals the reduced Hessian in two
very special cases: (i) the gradient of F is tangential to M , i.e., all
the directional derivatives of F in directions orthogonal to M van-
ish; in particular, ∇F may be zero meaning that x0 is a stationary
point of F or, (ii) M has a flat point at x0, i.e., all the matrices A j

vanish.

We now describe various aesthetic and practical mesh quality mea-
sures and then demonstrate their typical applications to design ex-
ploration (Section 5).

Fairness energies. Away from extraordinary vertices, a mesh is
naturally decomposed into families of polylines. These are three
families for a triangle mesh and two for a quad mesh. In architec-
ture, even for a hex mesh one would select sequences of vertices
which should form aesthetically pleasing polylines. Thus, we now
assume that we have selected polylines Pk, k = 1, . . . ,K, (with ver-
tices vk, j) about whose fairness we care.
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Figure 9: Spectral analysis of the intrinsic Hessian of energy functions helps to identify good meshes in the neighborhood of an input PQ
mesh. The user can interactively navigate a parameter plane T 2, while we show the corresponding meshes (points on the osculant). The
boundary of maxi |Ei| = 10mm is shown on T 2 for guidance. Regular sampling of the boundary polygon provides a quick overview of the
exposed design space (see accompanying demo for examples in d = 3). See Figure 11-second row for the starting model.

We use two different types of fairness energies. The first one is
based on second order differences (see also [Liu et al. 2006]), and
for a single polyline Pk, reads

f
(2)
k, f air(x) :=

∑

j

[∆2(vk, j∗)− α∆
2(v0

k, j∗)]
2. (11)

Here, ∆
2(vk, j∗) = vk, j−1 − 2vk, j + vk, j+1, and ∆

2(v0
k, j∗) is similarly

defined for the original mesh x0. Parameter α = 0 denotes absolute
fairness, and α = 1 denotes fairness relative to the input mesh x0.

The second type of fairness is based on the third order differences,

f
(3)
k, f air(x) :=

∑

j

[∆3(vk, j∗)− α∆
3(v0

k, j∗)]
2. (12)

with ∆
3(vk, j∗) = vk, j−1 − 3vk, j + 3vk, j+1 − vk, j+2.

The final fairness energy of a mesh is the sum of energies of the
selected polygons. Our mesh energies constitute just examples.
Depending on the application, other selections may be preferable.

Orthogonal and tangential energies. Deformation of the orig-
inal mesh in direction mainly orthogonal to the reference surface
results in large visible shape changes, while directions tangential to
the reference surface lead to self-slippage and vertex movement on
the underlying surface. Both types are of interest, and are captured
by respective energy formulations,

Fortho(x) :=
∑

i

‖n0
i × (vi − v0

i )‖
2

Ftang(x) :=
∑

i

‖n0
i · (vi − v0

i )‖
2, (13)

where n0
i is the surface normal at the current mesh vertex v0

i .

Deviation from reference surface. Sometimes it is desirable to
stay close to the original reference surface. To this end, we intro-
duce the closeness energy

Fclose =
∑

i, j

‖vi, j − v∗i, j‖
2, (14)

where v∗i, j denotes the closest point on the reference mesh from vi, j.
Note that, instead of a point-to-point distance measure, one can also
use a point-to-plane variant.

Combined energy functions. The function can be any energy we
are interested in like the ones presented above. These energies Fi-s
can be combined into a single energy F =

∑

i λiFi for a specific
task. Equation 10 for the intrinsic Hessian takes the form

H I(F) =
∑

i λiH
I(Fi), (15)

with desired weights λi. We precompute the individual Hessians,
and then allow the user to appropriately combine the various ener-
gies in a shape space exploration session.

4 Mesh Manifold Exploration

In this section, we describe ways to explore mesh manifolds using
tangent spaces and osculants, coupled with the various energy func-
tions. In our illustrations, we use PQ meshes, and in most cases, we
employ a combination of (third order) absolute fairness and orthog-
onal energies to explore the space of desirable meshes. By default,
chosen energies are given equal weights.

Subspace (sub-osculant) exploration. Spectral analysis of the
intrinsic Hessian identifies the directions of locally extremal second
directional derivatives of the chosen energy, with the corresponding
eigenvalues being these derivatives. Hence, it serves to quickly
identify the good subspaces (passing through x0) in the tangent
space, and hence on the osculant. We restrict navigation to that
subspace of the tangent space TM (x0) which is spanned by the
eigenvectors to the lowest few eigenvalues of the intrinsic Hessian
(lowest 5% in our examples). For example, using only a pair of
eigen-directions, i.e., navigating in the corresponding 2D parame-
ter plane T 2, the user can directly explore only meshes with good
aesthetic behavior.

For PQ mesh manifold exploration, we provide guidance as fol-
lows: (i) We compute a boundary curve on the plane T 2 around the
origin x0 to indicate where the planarity bound crosses an accept-
able threshold. We approximate the boundary using a polygon con-
structed by marching along equally spaced radial rays and searching
for the tolerance crossings. (ii) We color code the parameter space
based on the considered energy. Note that the user navigates in the
tangent plane T 2, but in fact directly explores meshes on that part
of the precomputed osculant (sub-osculant) which is parameterized
over T 2 (see Figure 9 and supplementary demo). The exploration
being interactive is suited for contraint-aware shape design.

Regular sampling of the sub-osculant. Although the above
metaphor extends to exploration in d = 3, direct 3D-parameter
space navigation can be difficult. Instead, we automatically com-
pute the range of various models in this space using the boundary
polytope P of the region with admissible planarity measure. We let
the user simply browse through the space of variations, and then
locally navigate the parameter space for refinements (see supple-
mentary demo). We start by sampling the polytope P, and then
relax the samples using Lloyd iterations to regularly distribute the
points, i.e., meshes, on the corresponding part of the sub-osculant.

Handle driven exploration. Traditional handle driven shape ma-
nipulation is easily incorporated in our framework. Suppose the
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Figure 10: Starting from an initial mesh (A), the user prescribes
four vertex constraints (in red), which correspond to a subspace in
R

D (blue region). We take steps by solving quadratic optimization
with linear constraints, thus traversing along the PQ mesh mani-
fold to reach the target region, while minimizing a chosen energy
functions. Stepping through the intermediate meshes, e.g., B, we
reach the final mesh (C) (for all meshes maxi |Ei| < 10mm).

user prescribes a vertex deformation v j → v′j and an influence re-
gion in which m constraints are active.

For small displacements, this amounts to solving for a tangent vec-
tor t ∈ TM (x0) as

min
t

F(x0 + t) such that,

∇ET
i · t = 0, ∀ i = 1, . . . ,m; t j = v′j − v j, (16)

where t j denotes the j-th ‘coordinate’ of t (actually 3 coordi-
nates, associated with vertex v j). While Equation 16 adds m + 3
constraints, the energy function is optimized with the remaining
degrees of freedom. For the fairness energy, the above form is
quadratic and convex, and minimization reduces to solving a sparse
linear system [Nocedal and Wright 2006]. In order to handle larger
deformations, we walk using small steps in the tangent space, re-
estimate the normal space in each step, and achieve the deformation
in several steps. Simultaneously conferring to multiple displace-
ments amounts to adding multiple positional constraints. In order
to maintain interactivity for large deformations, we use the tangent
approximation, to avoid the costly update of the osculant.

Note that we reach, in a greedy way, a possible deformation meeting
the input, but this is not the only solution (see Figure 10 and the
accompanying demo for local deformations). Additionally, we can
use other (presented) exploration tools to explore further possibili-
ties, while keeping v j fixed.

The feasibility of a local influence region depends on the nature
of the constraints. Globally effective constraints (as for example
planarity of polygons extending over large portions of the mesh)
may contradict the choice of a local influence region. In such cases
and for highly constrained meshes, handle-driven deformation may
not be the right tool to use.

Stiffness estimation. Constraints may make sections of a model
difficult to manipulate, leaving little freedom for deformations. We
illustrate this at hand of PQ meshes, but the basic ideas apply in
a much more general setting. Given an input model, we compute
both local and global stiffness maps to provide the user a sense of
design space restrictions. For local stiffness, at each vertex v j, with
a fixed neighborhood size (8-rings in our experiments), we estimate
how far v j can be displaced along its normal direction before either

local stiffness global stiffness

stiff malleable

Figure 11: We compute local, 8-ring neighborhoods in this exam-
ple, and global stiffness estimates for input models to provide the
user with relative estimates of flexibility in the neighboring design
space (see Section 4). Intuitively, the Opus model (bottom) is the
most restrictive given the large near-planar regions.

(i) planarity bound maxi |Ei| is reached, or (ii) the combined fair-
ness and orthogonality energy becomes unacceptable. For global
stiffness maps, we use the intrinsic Hessians H I

F computed for the
prescribed energy function. Let {h1,h2, . . .} be the lowest eigen-
vectors (lowest 5% in our experiments) of H I

F expressed in R
D.

Then we assign a stiffness score at vertex v j as
∑

i ‖(hi) j‖, where
(hi) j denotes the j-th component of hi. Figure 11 shows local and
global stiffness maps for three models. The models are sorted top
down based on their relative stiffness measure, the most restrictive
model being the last. Note that according to the global measure,
the open boundaries are more malleable — the same behavior is
observed in Figures 4 and 5 by the long vectors at the periphery.

Newton relaxation. We have a second order approximation of
the energy F while moving on the osculant (Equation 9). When the
intrinsic Hessian is positive definite, we can hope to be sufficiently
close to the minimizer, and thus take a Newton step. Here, we
greatly benefit from having a parametrization of the osculant, and
not requiring side conditions to stay on the mesh manifold. Thus,
we can improve the considered energy functions, while maintaining
the quality of constraint satisfaction (see Figure 12). This is difficult
with a penalty-based optimization. Note that except in Figure 12,
we skip this optimization to show only the basic results.

5 Further Examples and Discussion

We tested our framework on a variety of designs. Please refer to the
supplementary material for navigation and exploration in PQ and
circular mesh manifolds on selected models. In this section, we
demonstrate how commonly used architectural design and fabrica-
tion constraints can be easily integrated into our framework.

Avoiding obstacles. Design spaces are often restricted by space
constraints and boundary conditions. For example, a new building
has to respect space constraints as dictated by existing structures.
Specifically, the designed surfaces should avoid specified obstacle
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Figure 12: At a mesh A, if the intrinsic Hessian H I
F of the

prescribed energy function (here, third order fairness combined
with orthogonality to the reference mesh) is positive definite, we
use a Newton relaxation, restricted to the PQ osculant surface,
to improve the mesh quality without compromising the planarity
(max |Ei| < 10mm for all the above meshes). Meshes B and C are
obtained by minimizing in a 2D tangent subspace (top-left) and in
the full tangent space, respectively.

regions R , e.g., the green box as shown in Figure 13. Given a set
of user prescribed vertex displacements, we deform the input shape
by taking small steps in the mesh manifold. In each step, starting
from the current mesh x, we compute the next mesh position x′

towards the target deformations using Equation 16. If the mesh
x′ does not intersect the obstacle, i.e., x′ ∩ R = /0, we continue
with further steps. Otherwise, we identify the intersecting vertex
set {v′k|v

′
k ∈ x′ ∩ R }, add the corresponding vertex inequality con-

straints of the form vk /∈ R to Equation 16, and solve the resultant
quadratic program [Coleman and Li 1996] to get a new x′. If the
current solution x′ still intersects the obstacle, we detect and add
additional constraints, and iterate; otherwise, we remove all the in-
equality constraints, and proceed with further steps. Since we try to
walk around the obstacles, we may fail to find a solution in compli-
cated configuration spaces. Note that adding inequality constraints

PQ mesh manifold

A

B

C

A

C B

Figure 13: PQ mesh manifold deformation in the presence of
an obstacle (in green). Given two user prescribed vertex con-
straints (in red), mesh B and mesh C are the deformed PQ meshes
obtained with and without obstacle constraints, respectively. The
obstacle (green box) acts as a forbidden region in R

D.

input model
deformed model (A)

after exploration (B)

after subdivision (C)

Figure 14: In architectural design, preserving planarity of pre-
scribed curves, e.g., floors, in course of design exploration is de-
sirable. Our framework can easily incorporate such constraints.
Here we show the result of handle-based deformation (A), subse-
quent shape exploration based on eigenanalysis of the respective
intrinsic Hessian (B), and subdivision combined with optimization
for planarity (C). Floor curves marked in blue.

for all vertices is not practical, since the resultant quadratic program
becomes too complex, and computationally expensive.

Planarity of selected polygons. In architecture, alignment of cer-
tain mesh polygons to prescribed planes, e.g., horizontal floor levels
(see Figure 14), is an important design constraint. It may also be
interesting to keep selected polygons (support elements) in vertical
planes. If the planes, or at least their normals are prescribed, these
are just linear constraints. Planarity of a polyline in an unspeci-
fied plane can be expressed by planarity of all quads formed by
successive polygon vertices. This would still allow for an overall
non-planar curve if 4 or more consecutive vertices lie on a straight
line, a rare event which may be detected by a function defined on
the resulting constrained mesh manifold.
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Figure 15: Tangent and osculant space meshes to a circular mesh
manifold. For equal displacements, the osculant surface produces
better quality circular meshes, e.g., in the highlighted (zoomed)
area, the average deviations of the associated circles from the mesh
vertex are 13mm and 0.5mm, for meshes A and B, respectively.



Circular mesh manifold. As another example, we explore circu-
lar meshes, which – together with conical meshes – are discretiza-
tions of the network of principal curvature lines and possess offset
properties important for supporting structures and multilayer con-
structions [Pottmann et al. 2007]. A quad mesh is circular if each
face has a circumcircle, i.e., it is a special type of PQ mesh. If
{α1,α2,α3,α4} are the angles of a planar quad face, the additional
face constraint is α1 + α3 = π or α2 + α4 = π. Thus, we have two
constraints per face, implying that the circular mesh manifold M c is
of dimension D − 2m (m being the number of faces), and of course
contained in the corresponding PQ mesh manifold. Exploration and
navigation methodologies described before apply directly to this
mesh manifold (see Figures 1, 15, 17, 18, and 19).

Projection to the constrained mesh manifold. Although naviga-
tion using the osculant approximation allows us to take longer steps
(e.g., in PQ mesh manifolds, we regularly observed 2-4x improve-
ment over tangent space navigation even along directions of low-
moderate curvature) while staying close to an implicitly prescribed
shape space, large steps of manifold navigation can still take us
too far off the underlying manifold. Additionally, many steps lead
to accumulation errors resulting in a mesh x off the initial shape
space (see Figure 6). In such cases, one can project the current
mesh using a constrained optimization since we have a good start-
ing guess, e.g., for PQ mesh manifold one can use a few iterations
of the method by Liu et al. [2006]. Since mesh x is close to the
PQ space, the optimization usually has little visual difference (in
contrast to Figure 2), but helps to lower the accumulated error. In
our experience, the osculant surface navigation accumulates error
only over large steps.

New design possibilities. Shape space exploration opens up new
ways for direct constrained mesh design. We start with a trivial
example of a mesh x0 satisfying the chosen constraints; this defines
the connectivity and the corresponding mesh manifold. We can then
design real freeform variants by deformation and/or exploration.

Due to the interactive performance on smaller models, we suggest
to start the design of new shapes at lower resolution (<500 faces
in our current implementation). Then, manifold navigation can be
based on osculant computation at multiple intermediate meshes.
Exploration combined with handle-based deformation offer an ef-
fective toolbox for the design of coarse models, which themselves
provide a perfect input for the subdivision and optimization ap-
proach of Liu et al. [2006] (Figures 14 and 16). Note that in
presence of increasing number of constraints, our method becomes
more useful (dimension of constrained mesh manifold decreases);
in contrast, other alternatives (e.g., optimization based approxima-
tion) become less predictable.

Interesting shapes result from flat circular meshes with nonregu-
lar combinatorics, reflecting the fact that the network of principal
curvature lines on a surface usually has singularities. One will
first analyze the shape variety at various types of singularities (see
Figure 17) and then proceed towards the design of more complex

Figure 16: Starting from a single PQ mesh (starting model shown
in Figure 11-top), our geometric framework allows navigation and
exploration of the shape space of PQ meshes, enabling easy cre-
ation of aesthetic model variants.

Figure 17: Eigenanalysis of the intrinsic Hessian is suitable to gen-
erate a catalog of basic forms. We analyse the mesh manifold in the
neighborhood of a (here circular) mesh x0 that lies entirely in a
plane. The basic types arising from a regular grid x0 are expected.
The more interesting forms come from circular meshes x0 with or
around singularities, and have been generated with conformal map-
pings (complex functions z 7→ 1/z (middle), z 7→ tanh z (right)).

circular meshes. Planar circular meshes discretize planar orthog-
onal curve networks and can be designed in various ways. Note
that this allows us to design surfaces by directly manipulating their
network of principal curvature lines. The combinatorics of the net-
work (circular mesh) defines the manifold M c in which the designer
can navigate (see Figures 1, 18, and 19). In Figure 1, additional
polyline planarity constraints were used for three of the pillars. In
Figure 19, the input is a circular mesh obtained from a simple rota-
tional surface, with two additional constraints: (i) polyline planarity
prescribed for the floor curve, (ii) the polylines at the two ends of
the tunnel are each constrained to lie on (unspecified) circles.

Performance. The most costly part of shape exploration is the
osculant computation, where we have to solve the (D − m)2 linear

Figure 18: Starting from flat circular meshes, circular mesh mani-
fold exploration allows quick creation of designs. Typically, in each
case, we require 1-2 minutes of interaction.
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Figure 19: Designed mesh obtained via shape space exploration,
starting from a circular mesh with polyline planarity (floor) con-
straint, and two polylines constrained on (unspecified) circles.

(m × m) systems of Equation 5. We used CUDABLAS, a GPU ma-
trix library with Nvidia Quadro 5000, that takes a few seconds for
m = 300 faces, but about several minutes for models with around
1K faces for computing the osculant and the spectral analysis of
the associated intrinsic Hessian matrix. Subsequent exploration is
real-time (see supplementary video). Handle driven deformation,
requiring only gradients of prescribed constraints, works at interac-
tive rates (see accompanying demo).

Limitations. In order to allow efficient design space exploration,
we precompute the osculant and the associated matrices. Even
with a GPU based parallel solver, the precomputation step is time
consuming for large models involving upwards of 3K faces. One
option is to investigate multiresolution approaches to efficiently re-
fine the model and enlarge the resultant shape manifold. In our
setting, a constrained mesh manifold is defined only based on spec-
ified constraints, and by itself does not prevent meshes from self-
intersecting. While a suitable energy function can help identify and
steer away from such undesirable meshes, it is more efficient to roll-
back during the path traversal once such events are detected, rather
than slow down the exploration phase with a global energy.

Conclusion and future research. We introduced constrained
shape spaces specified by a single mesh along with a collection of
non-linear constraints. We provided necessary mathematical for-
mulations to analyze such high dimensional and co-dimensional
surfaces, obtained approximations using tangent space and osculant
surface, which respectively share first and second order contact with
the mesh manifold. We also presented intrinsic Hessian approxi-
mations of energy functions directly on the osculant surface, and
use the same for navigation and exploration restricted to desirable
regions as dictated by prescribed quality measures. Using PQ and
circular mesh manifolds as typical test scenarios, we evaluated the
framework on a variety of designs and demonstrated its capabilities
towards design exploration.

We see multiple avenues for future research, such as, investigating
other constrained mesh manifolds, e.g., functional webs [Deng et al.
2011], encoding other mesh qualities as suitable energy functions,
and develop further tools for constrained manifold navigation.
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