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1 Introduction

Quantum entanglement has played a central role in the study of modern theoretical physics,
including quantum information theory, condensed matter theory and quantum gravity. One
of the most important entanglement measures is the entanglement entropy, which captures
the correlation between A and B for a bipartite system A∪B in a pure state. The study of
entanglement entropy gains huge amount of extra attention because of the Ryu-Takayanagi
(RT) [1, 2] proposal, which reveals the deep connection between spacetime geometry and
quantum entanglement. In the context of the AdS/CFT correspondence [3–5], let us con-
sider a static region A in the boundary field theory and the minimal surface EA in the dual
AdS bulk that anchored on the boundary of A. The RT proposal relates the entanglement
entropy of A to the area of EA in Planck units, i.e.

SA = 1
4GArea(EA) . (1.1)

However, for bipartite (or multipartite) systems in a mixed state, the entanglement en-
tropy is not a good measure of entanglement as it mixes classical and quantum correlations.
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New entanglement measures in quantum information theory are proposed to take the place,
for example, the mutual information, the (logarithmic) entanglement negativity [6–8], the
entanglement of purification (EoP) [9], the partial entanglement entropy (PEE) [10–14] etc.

On the other hand, from the perspective of holography there exists a geometric quantity
called the entanglement wedge cross section (EWCS) ΣAB, that may capture certain type
of correlations between A and B for a mixed state ρAB. For example, consider AB ≡ A∪B
to be a subsystem of the boundary of global AdS3, the reduced density matrix ρAB has
a bulk dual named the entanglement wedge WAB [15–17]. The entanglement wedge is
the causal development of the homology surface RAB, which is a Cauchy surface with the
boundary being ∂RAB = A ∪ B ∪ EAB. The EWCS ΣAB is then defined as the minimal
cross section of RAB that separate A from B. Since ΣAB plays a special role in the bulk,
it is very likely to represent something special in quantum information theory.

So far, there are several proposals for the holographic dual of ΣAB. The first candidate
is the entanglement of purification (EoP) [9]. It was shown in [18, 19] that the EWCS and
EoP satisfy the same entropy relations in holographic theories. Also assuming a theory with
a tensor network description thus the surface/state correspondence [20] can be realized, the
calculation of ΣAB matches with the way we define the EoP. However, it could be very hard
to justify this proposal in more generic cases due to the large optimization procedure in the
definition of the EoP. Another well-known candidate is half of the reflected entropy [21],
which is defined on the canonical purification of ρAB. The reflected entropy proposal can be
confirmed under some mild assumptions. There are also other proposals which claim that
the EWCS is dual to, for example the logarithmic negativity [22, 23], the “odd entropy” [24],
the “differential purification” [25] and so on. See also [26–38] for a incomplete list about
recent studies related to the EWCS. It is worth pointing out that the above proposals are
indeed in tension with each other (see for example [39]), hence a deeper understanding of
the holographic picture for the EWCS is still in need.

Recently a new entanglement measure called the partial entanglement entropy
(PEE) [10–14] was proposed. For a given region A and a subset Ai of A, the PEE is
denoted as sA(Ai). Physically it is assumed to capture the contribution from Ai to the
entanglement entropy SA. The key property featured by the PEE is additivity, which is not
possessed by any other entanglement measures. The differential version of the PEE, named
the entanglement contour [10], is a function fA(x) defined on A that gives the contribution
from the degrees of freedom at any point x in A to SA. In other words it is the density
function of the entanglement entropy SA that satisfies,

SA =
∫
A
fA(x)dxd . (1.2)

Here d gives the dimension of A. The PEE sA(Ai) is then defined in the following

sA(Ai) =
∫
Ai

fA(x)dxd . (1.3)

Note that the PEE sA(Ai) only collect the contribution in the subset Ai.
Let us assume that Ā is some system that purifies A. Since the PEE sA(Ai) in some

sense captures the correlation between the subset Ai and Ā, it should be invariant under
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the permutation between Ai and Ā [14]. In order to manifest this permutation symmetry,
we also write the PEE in the following way

sA(Ai) = I(Ai, Ā) = I(Ā, Ai) = sĀi(Ā) ≡ IAiĀ. (1.4)

Note that we should not mix the PEE I(Ai, Ā) with the mutual information I(Ai, Ā).
Unfortunately, the fundamental definition based on the reduced density matrix for

the PEE is still missing. According to its physical meaning, the PEE should satisfy the
following physical requirements:1

1. Additivity: if Aai ∪Abi = Ai and Aai ∩Abi = ∅, by definition we should have

sA(Ai) = sA(Aai ) + sA(Abi) . (1.5)

2. Invariance under local unitary transformations: sA(Ai) should be invariant under
any local unitary transformations inside Ai or Ā.

3. Symmetry: for any symmetry transformation T under which T A = A′ and T Ai = A′i,
we have sA(Ai) = sA′(A′i).

4. Normalization: SA = sA(Ai)|Ai→A .

5. Positivity: sA(Ai) ≥ 0.

6. Upper bound: sA(Ai) ≤ SAi .

7. Symmetry under the permutation: I(Ā, Ai)=I(Ai, Ā), which implies sA(Ai)=sĀi(Ā).

Recent explorations on entanglement contour or the PEE include [10–14, 40–53]. Peo-
ple propose formulas to construct the PEE (or entanglement contour) that satisfies the
above requirements. Each of the existed proposals are restricted to special configurations.
The first one is the Gaussian formula [10, 41–45, 47, 50] that applies to the Gaussian states
in free theories, where the density matrix can be completely characterized in terms of the
correlation matrix. The second proposal is a geometric construction [11, 46, 48] in holo-
grahic theories, which is inspired by a natural slicing of the entanglement wedge following
the boundary and bulk modular flows. The third one is the partial entanglement entropy
proposal [11, 13] that claims the PEE is given by an additive linear combination of subset
entanglement entropies. The fourth proposal [14] follows the construction of the extensive
(or additive) mutual information (EMI) [54] (see also [51] for a related construction), which
tried to solve the above seven requirements in CFT.

Though the above proposals have very different physical motivations, the PEE cal-
culated by different approaches are highly consistent with each other [11, 14, 46, 48, 50].
This implies the PEE should be unique and well defined. So far, the uniqueness of the
PEE is only confirmed for Poincaré invariant theories [14], by showing that the above seven

1The requirements 1–6 are firstly given in [10], while the requirement 7 is recently given in [14].
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requirements in these theories have unique solution. Due to the nice properties, the PEE
is also useful to study the entanglement structure in condensed matter theories.2

Since the entanglement contour is a finer description for the entanglement structure,
we expect that other entanglement measures could be extracted from the contour function.
In this paper, we study the correlations in mixed bipartite states using PEE. For a mixed
state ρAB, one can introduce an auxiliary system A′B′ thus the combined system is in a
pure state |ψ〉, which is highly non-unique. The state |ψ〉 is then called a purification of
ρAB. In section 2, we briefly review the PEE proposal and define a special PEE for any
purification. We call it the balanced partial entanglement (BPE), because the partition of
A′B′ should satisfy the following balance requirement, sAA′(A) = sBB′(B). In section 3,
we study aspects of the BPE for the case where A and B are adjacent. We calculate the
holographic BPE for the case of global AdS3, where AB is a subsystem on the boundary.
We find the BPE gives the area of the EWCS. Interestingly we find the crossing PEE
IAB′ = c

6 log 2, which is a constant independent from the length of A and B. We discuss the
entropy relations satisfied by the BPE and find that, they are quite similar to those satisfied
by EoP. Also, we consider the minimal purification in the context of the surface/state
correspondence [20], and find the BPE differs from the case of the global AdS3. In section 4,
we discuss the cases where A and B are non-adjacent. We confirmed that the relation
between the BPE and ΣAB still holds. In section 5, we discuss the canonical purification
for generic ρAB and show that, half of the reflected entropy is identical to the BPE we
defined. In section 6, we interpret the relation between the BPE and the EWCS using the
holographic picture for PEE, which are the geodesic chords in the bulk that normal to the
RT surfaces of relevant regions. At last we give a discussion in section 7.

2 The balanced partial entanglement

2.1 Definition

The balanced partial entanglement (BPE) is defined in the following: let ρAB be a density
matrix on a bipartite system HA⊗HB. We consider an auxiliary system A′B′ that purifies
AB, thus the whole system is in a pure state |ψ〉 and TrA′B′ |ψ〉 〈ψ| = ρAB. Let us partition
the auxiliary system into A′ and B′ properly in the following way. Firstly we require the
contribution from A to the entanglement entropy SAA′ equals to the contribution from B

to the entanglement entropy SBB′ . We call this requirement the balance requirement, i.e.

balance requirement : sAA′(A) = sBB′(B) , sAA′(A′) = sBB′(B′) . (2.1)
2The entanglement contour gives a finer description for the entanglement structure. In condense matter

theories it can be used to discriminate between gapped systems and gapless systems with a finite number
of zero modes in d = 3 [10]. It has been shown to be particularly useful to characterize the spreading of
entanglement when studying dynamical situations [10, 12, 47]. Modular flows in two dimensions can be
generated from the PEE [13]. The entanglement contour is also a useful probe of slowly scrambling and
non-thermalizing dynamics for some interacting many-body systems [53]. Holographically the PEE [11, 46]
correspond to bulk geodesic chords which is a finer correspondence between quantum entanglement and bulk
geometry [46, 55]. The new concept of entanglement contour in quantum information will play an important
role in our understanding of the gauge/gravity duality and the entanglement structure in quantum field
theories (or many-body system).
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Figure 1. The combined system ABA′B′ is in a pure state. The red arrow represents the PEE IAB

between A and B, while the blue arrow represents IAB′ . IAB′ and IBA′ vary with the partition
of the complement A′B′. The balance requirement IAB′ = IBA′ can be satisfied by adjusting
the partition.

Since SAA′ = SBB′ , only one of the above requirements is independent. In terms of the
PEE we have,

sAA′(A) = IAB + IAB′ , sBB′(B) = IBA + IBA′ . (2.2)

See figure 1. The first term IAB is supposed (though not proved in general) to be intrinsic
hence independent from the purification, because unitary transformations acting outside
AB should not change the correlation between A and B. While the second term IAB′ could
vary under different purifications. Since IAB = IBA, the balance requirement can also be
written as

IAB′ = IBA′ . (2.3)

When IAB′ (or IBA′) satisfies the balance requirement, we call it the crossing PEE of |ψ〉,
which can be used to classify the purifications.

The BPE is a natural quantity to consider for any purification |ψ〉 of ρAB. However,
in general the partition of A′B′ that satisfies the balance requirement is not unique. To
clarify this ambiguity we propose the following minimal requirement.

Minimal requirement: among all the partitions that satisfy the balance require-
ment we should choose the one such that sAA′(A) reaches its minimal value.

It is not hard to find a solution to this requirement since the purification is already fixed.
In most theories, the entanglement between any two local degrees of freedom decreases
with distance. When we set B′ to be as far from A as we can and set A′ to be as far
from B as we can, we can simultaneously reduce IAB′ and IBA′ while keeping the balance
requirement satisfied. Eventually we arrive at the following prescription for the natural
and simple partition: the whole system is partitioned into two parts AA′ and BB′ thus
separates A from B. In some sense the region A will be surrounded by A′ while B is
surrounded by B′. Also, there should be no embedding between the region B′ and A′.
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Figure 2. All the three figures have reflection symmetry between the left and right hand side,
hence we can easily see that the balance requirement is satisfied in all the figures. From the first
figure to the second one, the upper part of A′ and B′ exchange positions hence the upper part of
B′ gets further from A thus reduces the PEE between them. The third figure shows the proper
partition that satisfies our requirements for the case where AB is non-adjacent.

Later we will partition the purifier A′B′ following this prescription and not stress the
minimal requirement any more.

One can understand our prescription via the examples in figure 2. In the first two
figures AB is a connected interval in a circle, while the partition of the complement A′B′
is different. The circle is in a pure state. We require these two configurations to have
reflection symmetry between the left and right hand side, hence the balance requirement
can be satisfied in both cases. It is obvious that the sAA′(A) reaches its minimal value
in the second figure because, compare with the first figure, part of B′ get further from A

hence IAB′ decreases.
Then the BPE is defined as the partial entanglement entropy sAA′(A) under the par-

tition of A′B′ satisfying the above two requirements. We denote it as BPE(A,B,ψ), i.e.

BPE(A,B,ψ) = sAA′(A)|balance requirements . (2.4)

When the purification is specified we will omit the label ψ thus write BPE(A,B).
The third figure in figure 2 shows the proper partition for the reflection symmetric

case where AB is non-adjacent. For more generic cases with no reflection symmetry, the
boundary is partitioned similarly by two points and the both of the region A′ = A′1 ∪ A′2
and B′ = B′1 ∪B′2 contain two disconnected pieces which can be naturally set in pairs. For
example in figure 7, the two pairs are A′1 ∼ B′1 and A′2 ∼ B′2. Note that in the same sense
A ∼ B are also a pair. The balance requirements are indeed imposed on all the pairs,

sAA′(A′1) = sBB′(B′1) , sAA′(A) = sBB′(B) , sAA′(A′2) = sBB′(B′2) . (2.5)

Since SAA′ = SBB′ , only two of the above requirements are independent, which are exactly
the requirements that determine the two partition points.

2.2 Review on the partial entanglement entropy proposal

In order to study the BPE, we need to calculate the PEE. The PEE proposal [11, 13] may
be the most powerful way to calculate the PEE in two dimension theories. Since we heavily
rely on this proposal, it is necessary to give a brief review here. The proposal claims that,
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Figure 3. The region A is shown by the red interval. When an arbitrary subset α is chosen, a
natural decomposition of A = αL ∪ α ∪ αR is determined. All the degrees of freedom in A lines in
a definite order.

the PEE is given by a linear combination of certain subset entanglement entropies. This
linear combination satisfies the key property of additivity. Furthermore, it was shown to
satisfy all the seven requirements using only the general properties of entanglement entropy,
thus can be applied to generic theories. Especially in Poincaré invariant theories the PEE
proposal has been shown to be the unique solution to all the physical requirements [14].

However, a definite order is required for all the degrees of freedom in A for the satis-
factory of the additivity. More explicitly, given a region A and an arbitrary subset α, when
there is a definite order inside A, in general it can be partitioned into A = αL ∪ α ∪ αR
(see for example figure 3). Here αL (αR) is denoted as the subset on the left (right) hand
side of α. In this configuration, the PEE proposal claims that

sA(α) = 1
2 (SαL∪α + Sα∪αR − SαL − SαR) . (2.6)

The order determines αL and αR unambiguously. In two-dimensional theories the defi-
nite order always exist in the configurations where the region A (whether connected or
disconnected) is embedded in a larger one-dimensional chain or circle.

Note that, a definite order does not always exist in generic two-dimensional systems.
This has not been carefully discussed in previous studies. For example in figure 4, the pure
state is settled on two disconnected circles. The region A is given by the two red half circles
which are also disconnected. When the subset α is chosen, A = α ∪ α1 ∪ α2 is partitioned
into three parts. In this case, the order between the three parts is ambiguous. One can
either take αL = α1 ∪ α2 , αR = ∅ or αL = α1 , αR = α2. These two choices represent
two different orders. Following (2.6), the two orders give different values for sA(α), thus
the PEE become ambiguous. Also in the case where A is a circle with no boundary, the
order is also ambiguous. When the order is not definite, then the proposal (2.6) become
ambiguous. In these cases, we should sue to other proposals to calculate the PEE.

It could be quite useful to make a clarification about the configurations where we can
explicitly calculate the PEE or entanglement contour, thus study the BPE.

1. The entanglement contour for one dimensional regions in general theories with a
definite order can be calculated using the PEE proposal [11, 13]. The logic of the
PEE proposal even works for disconnected intervals with a definite order (see for
example [50]).

2. The entanglement contour for highly symmetric regions in higher dimensions, which
can be characterized by a single coordinate, can also be calculated by the PEE pro-
posal [48]. These are called the quasi-one-dimensional configurations. For example
the contour function for balls and annuli with rotational symmetries, strips with
translation symmetries. This also works for general theories.
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Figure 4. In this case the region A is the red disconnected multi-interval. Since they lines in
different circles, there is no definite order inside A. It is not clear whether α2 should be considered
as the right-hand side subset of left-hand subset of α.

3. In holographic theories, the entanglement contour for regions with local modular
Hamiltonian can be calculated by the geometric construction. This works for the
intervals (static or covariant) and balls in higher dimensions [12, 48]. It is also valid
for holographic theories beyond AdS/CFT (see for example [46]).

4. In Poincaré invariant CFTs with general dimensions, the PEE between any two con-
nected regions and the entanglement contour for any connected region can be calcu-
lated by the general formula derived in [14].

In this paper, we mainly use the PEE proposal and the geometric construction to
one-dimensional regions. We will also not discuss the Gaussian formula. We will focus
on systems in two-dimensional spacetime, especially those with a geometric dual in the
context of AdS/CFT. Because in these cases we have more tools to calculate the PEE.
The adjacent cases and non-adjacent cases will be discussed separately.

3 Aspects of BPE when A and B are adjacent

In the previous section, we defined the balanced partial entanglement. Here we claim that
the BPE gives the area of the EWCS. In this section we explicitly calculate the BPE
in the case of the global AdS3 that duals to the vacuum state of the boundary CFT2.
We take A and B to be intervals on the AdS boundary, then the boundary vacuum state
is a purification of ρAB. We firstly consider A and B to be adjacent and leave the non-
adjacent case for the next section. We will explicitly calculate the BPE(A,B) and compare
it with the EWCS. Then we discuss the general entropy relations satisfied by BPE(A,B).
Also BPE(A,B) is calculated in the case of the minimal purification in the context of the
surface/state correspondence [20].

3.1 Holographic BPE for adjacent intervals

Let us consider the case in figure 5, where the circle is the boundary of the global AdS3.
The balance requirement (2.1) will determine the position of the point P that partition
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Figure 5. The above circle is the boundary of the global AdS3 in a time slice, while AB is an
interval in the circle. The complement A′∪B′ is partitioned by a point P . The balance requirements
can be satisfied by adjusting the position of P .

the complement A′B′ into A′ and B′. Note that, the requirement (2.1) does not refer to
any information from the bulk geometry.

Here we apply the PEE proposal to calculate the PEE in (2.1). The region here we
consider is AA′ while the subset is α = A. In this case if we define αR = A′, then αL = ∅.
Following (2.6) we have

sAA′(A) = 1
2 (SA + SAA′ − SA′) . (3.1)

Similarly we have

sBB′(B) = 1
2 (SB + SBB′ − SB′) . (3.2)

The balance requirement (2.1) then gives the following equation

SA + SAA′ − SA′ = SB + SBB′ − SB′ ,
⇒ SA − SB = SA′ − SB′ , (3.3)

which is enough to determine the point P .
In global AdS3, the entanglement entropy for an arbitrary interval of length l is given by

S = c

3 log
(2
ε

sin l

2

)
, (3.4)

where we have taken the length of the AdS boundary circle to be 2π, the AdS radius ` = 1
and c = 3

2G . Let us use lA, lB, lA′ , and lB′ to denote the length of all the relevant intervals.
Obviously, we have

lA + lB + lA′ + lB′ =2π , (3.5)

also (3.3) can be written as

sin(lA/2)
sin(lB/2) =sin(lA′/2)

sin(lB′/2) . (3.6)

– 9 –



J
H
E
P
0
4
(
2
0
2
1
)
3
0
1

The solution of the above two equations is given by

lA′ =− 2 cot−1
[1

2 csc
(
lA
2

)(
sin
(
lA + lB

2

)
− 3 sin

(
lB
2

))
csc

(
lA
2 + lB

2

)]
,

lB′ = 2π − lA − lB − lA′ . (3.7)

Plugging the solution into the PEE (3.1), we get the BPE,

BPE(A,B) = c

6 log
[4
ε

sin(lA/2) sin(lB/2)
sin((lA + lB)/2)

]
. (3.8)

One can check that, the BPE(A,B) exactly gives the area of the EWCS calculated
in [18, 19].

The above calculation shows that the BPE captures the specific correlation between
A and B, which is represented by the area of the EWCS. Since the BPE can be defined in
general quantum system, the BPE could be considered as a generalization of the EWCS
to non-holographic systems.

More interestingly we find that the crossing PEE IAB′ in this case is a constant inde-
pendent from lA and lB. Using the PEE proposal and the solution (3.7), we find

IAB′ = sA′AB(A) =1
2 (SA′A + SAB − SA′ − SB)

= c

6 log
[sin ((lA + lA′)/2) sin ((lA + lB)/2)

sin (lA′/2) sin (lB/2)

]
= c

6 log 2 . (3.9)

This is surprising that the crossing PEE is independent from the partition of the pure
state, hence can be used to characterize or classify the purifications. Later we will show
that the crossing PEE for the canonical purification is also c

6 log 2. However, there is no
evidence that the crossing PEE is invariant under all the purifications.

3.2 Entropy relations for BPE

The PEEs which can be written as a linear combination of the entanglement entropies
SA, SB and SAB are of course purification independent. For example,

I(A,B) = 1
2I(A,B) , (3.10)

I(A,A′B′) = 1
2 (SA + SAB − SB) , (3.11)

I(B,A′B′) = 1
2 (SB + SAB − SA) . (3.12)

Note that the relation (3.10) between I(A,B) and the mutual information I(A,B) only
holds for the adjacent cases. The balance requirements give one more purification inde-
pendent quantity

(IAA′ − IBB′) = SA − SB. (3.13)

– 10 –
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Unfortunately the crossing PEE, as well as BPE(A,B), is not purification independent.
BPE(A,B) is only invariant under the unitary transformations which keep IAB′ fixed.
These include

• the local unitary transformations on A′ and B′ respectively,

• the unitary transformations that adding or removing correlations between A′ and B′,

• the unitary transformations that adding or removing correlation between A and A′
while adding or removing the same amount of correlation between B and B′, i.e.
keeping IAA′ − IBB′ fixed.

Note that, the correlation here means the PEE.
Now we discuss the general entropy relations satisfied by BPE(A,B). The upper bound

of the PEE indicates sAA′(A) ≤ SA and sBB′(B) ≤ SB. Imposing the balance requirement,
we directly get

property 1 : BPE(A,B) ≤ min(SA, SB) . (3.14)

The above relation can be satisfied in general cases.
When the balance requirements are satisfied, BPE(A,B) = IAB+IAB′ . In the adjacent

cases we also have (3.10). Then the positivity of the PEE directly gives the following
relation

property 2 : BPE(A,B) ≥ 1
2I(A,B). (3.15)

Note that in the non-adjacent cases the above relation cannot be proved in the same way.
In terms of the PEEs, the entanglement entropy satisfies the following decomposition

SA = IAB + IAA′ + IAB′ , SB = IAB + IBA′ + IBB′ . (3.16)

In the cases where AB is a connected region, we also have

SAB =IAA′ + IAB′ + IBB′ + IBA′ . (3.17)

One can easily see that the above decompositions directly gives

I(A,B) = SA + SB − SAB = 2I(A,B). (3.18)

However the decomposition (3.17) is not accurate for the non-adjacent cases,3 thus the
comparison between BPE(A,B) and 1

2I(A,B) is not clear.
3Note that this evaluation of entanglement entropy using PEE is very subtle for disconnected regions.

For example, previous studies [14, 51, 56] showed that naively taking an uniform cutoff for all the endpoints
of multi-intervals in CFT2 will give the results of refs. [57–60], which is only justified for free fermions
while incorrect in more general theories. So the relation I(A, B) = 2I(A, B) only holds when AB is a
connected region.
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The properties (3.14) and (3.15) directly lead to other interesting entropy relations.
For example the polygamy inequality for a the system ABC in a pure state,

property 3 : BPE(A,B) + BPE(A,C) ≥ BPE(A,BC) . (3.19)

and the saturation of the upper bound when the Araki-Lieb inequality is saturated

property 4 : |SA − SB| = SAB ⇒ BPE(A,B) = min(SA, SB) . (3.20)

The monotonicity of the BPE(A,B) can also be justified using the additivity and posi-
tivity of the PEE. We assume that the partition point P satisfies the balance requirement.
Let us consider a region C which is inside B′ and adjacent to B. We define the comple-
ment of C inside B′ to be B′′ thus B′ = C ∪B′′. According to the additivity and positivity
we have

sAA′(A) = sBB′(B) < sBB′(BC) . (3.21)

Then we combine B and C, and consider BPE(A,BC). Since B expands to BC, the
balance requirement is now sAA′(A) = sBB′(BC). We need to adjust the position of P to
go back to balance. In other words we should increase sAA′(A) and reduce sBB′(BC) by
adjusting P . Since PEE is additive, we can write

sAA′(A) = I(A,BC) + I(A,B′′)

sBB′(BC) = I(BC,A) + I(BC,A′) (3.22)

Our goal can be easily achieved by moving P towards A, thus B′′ expands while A′

shrinks. Due to the positivity and additivity, this procedure increases I(A,B′′) and re-
duces I(BC,A′). After P is properly settled down such that sAA′(A) = sBB′(BC), the
PEE sAA′(A) = BPE(A,BC) is bigger than its previous value BPE(A,B). In other words,
we get the monotonicity of BPE,

property 5 : BPE(A,BC) ≥ BPE(A,B) . (3.23)

In the cases where A andB are non-adjacent, the partition point is more than one. A similar
argument also lead to the monotonicity using the positivity and additivity of the PEE.

In summary our arguments for properties 1 and 5 also applies for non-adjacent cases.
The argument for property 2 applies to the adjacent cases in a generic theory. The proper-
ties 3 and 4 follows from properties 1 and 2. The properties 1–5 are all satisfied by the EoP.

3.3 BPE in the minimal purification and the entanglement of purification

Then we consider another purification, which is closely related to the EoP. The EoP is
defined in the following: assuming a bipartite system AB is in a mixed state ρAB. Let
|ψ〉 ∈ HAA′ ⊗HBB′ be a purification of ρAB. The EoP Ep(A,B) [9] is defined by:

Ep(A,B) = min
φ,A′

SAA′ , (3.24)
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Figure 6. Here A′B′ is deformed to be the RT surface of AB, it is also the RT surface of itself.
SAA′ reaches its minimal value when EAA′ coincide with ΣAB , which is the purple line.

where minimization is over all the purifications and all the partitions of A′B′. The EoP is
an intrinsic entanglement measure independent from purifications.

It was proposed [18, 19] that in the context of AdS/CFT the EoP Ep(A,B) is dual to
the area of the EWCS ΣAB in the following way

Ep(A,B) = Area(ΣAB)
4G (3.25)

Also the entropy relations satisfied by ΣAB are the same with those satisfied by EoP.
Though it is hard to prove this duality, in the context of the surface/state correspon-
dence [20] the calculation of the area of ΣAB perfectly agrees with the definition of the
EoP [18, 61]. The surface/state correspondence proposes much more general correspon-
dence between bulk codimension-2 convex [20] spacelike surfaces and quantum states,
based on the tensor network description of the AdS/CFT correspondence. In the case
of AdS3/CFT2 the main points of the surface/state correspondence are in the following.

• Convex curves that homologous to a point correspond to pure states (for example
circles in the bulk with no black hole inside), otherwise the curves correspond to
mixed states (like intervals in the bulk or circles that surrounding a black hole).

• Any two surfaces σ1 and σ2 that are connected by a smooth deformation preserving
convexity, are related by an unitary transformation.

• The entanglement entropy for any convex curves σ are calculated by the area of the
minimal surfaces that homologous σ, which is a straight forward generalization of the
RT formula.

In the case of global AdS3, the boundary ABA′B′ is a circle in a pure state. Let us
consider the simple case of figure 5. In the context of the surface/state correspondence it
is convenient to perform unitary transformations on A′B′ by deforming of the curve A′B′
while keeping the endpoints fixed. Among all the deformations and partitions, SAA′ arrives
at its minimal value when A′B′ is deformed to the RT surface EAB and A′B′ is properly
partitioned thus EAA′ is normal to EA′B′ = A′B′. It is easy to find that EAA′ coincides with
ΣAB, (see figure 6). Hence the calculation of the length of ΣAB can be achieved via the
minimization of SAA′ among all the purifications and partitions.
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Then let us consider the configuration of figure 6 without specifying the partition of
A′B′. We can evaluate the BPE(A,B) using the PEE proposal and balance requirements.
Since A′B′ is a minimal surface, using the generalized RT formula for the bulk convex
curves we have

SA′ = lA′

4G , SB′ = lB′

4G . (3.26)

Since EAB = A′ ∪B′ we have

SA′ + SB′ = SAB . (3.27)

The balance requirement requires that

SA′ − SB′ = SA − SB (3.28)

Solving the above two equations we have

SA′ = c

6 log
[

2 sin lA
2 sin lA+lB

2
ε sin lB

2

]
, SB′ = c

6 log
[

2 sin lB
2 sin lA+lB

2
ε sin lA

2

]
. (3.29)

The above solution determines the position of the partition point P . It is interesting that
the point P is exactly where ΣAB intersecting with EAB. One may wonder that here the
BPE(A,B) may also give the length of ΣAB. This is obviously not true because

SAA′ > sAA′(A) . (3.30)

Also according to the generalized RT formula and (3.8) we have

SAA′ = Area(ΣAB)
4G = c

6 log
[4
ε

sin(lA/2) sin(lB/2)
sin((lA + lB)/2)

]
, (3.31)

while the BPE(A,B) is given by

BPE(A,B) =sAA′(A) = 1
2 (SA + SAA′ − SA′)

= c

6 log
[

2 sin lA
2 sin lB

2
ε sin lA+lB

2

]
+ c

12 log 2

=IAB + c

12 log 2 . (3.32)

Here we used the solution (3.29). Also one can easily read that the crossing PEE is just
given by

IAB′ = c

12 log 2 , (3.33)

which is again a constant independent from lA and lB. However, it is different from
the constant c

6 log 2 for the case of the global AdS3. In other words, in the context of
the surface/state correspondence the unitary transformation, that evolve the boundary
vacuum state of the global AdS3 to the “minimal” purification shown in figure 6, changes
the crossing PEE IAB′ hence changes the BPE(A,B).
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Figure 7. The region AB is disconnected two-interval with connected entanglement wedge. The
partition of the combined system ABA′B′ follows our prescription to minimize the sAA′(A) and is
determined by the position of two points P1 and P2 under the balance requirements,.

4 BPE for non-adjacent intervals

Then we consider the cases where A and B are non-adjacent intervals on the AdS boundary
and the entanglement wedge WAB is connected. For example, see figure 7. In this case
the compliment A′B′ of AB on the boundary is also disconnected. It is partitioned by
two points P1 and P2 into four regions that are classified into two pairs. Let us denote,
for example, the region partitioned by P1 as A′1 ∪ B′1. As we have mentioned previously,
the position of P1 and P2 can be determined by the balance requirements (2.5). Here we
rewrite the two independent requirements in the following

sAA′(A′1) = sBB′(B′1) , sAA′(A′2) = sBB′(B′2) . (4.1)

Note that sAA′(A) = sBB′(B) follows from SAA′ = SBB′ .
Let us denote the length of the intervals to be

lA = 2a, lB = 2b, lA′1 = 2a1, lB′1 = 2b1 lA′2 = 2a2, lB′2 = 2b2. (4.2)

Given the length and position of A and B, the length and position of A′1B′1 and A′2B′2 are
also determined. Assuming a1 + b1 = α we have a2 + b2 = 2π − 2a − 2b − 2α. Since α is
known to us, there remains only two undetermined parameters. Let us take them to be a1
and a2 thus

b1 = α− a1 , b2 = π − α− a− b− a2 . (4.3)

The balance requirements (4.1) give that

SA′1 − SB′1 = SAA′2 − SBB′2 , SA′2 − SB′2 = SAA′1 − SBB′1 . (4.4)
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Using the holographic result for entanglement entropy (3.4) and the relations (4.3), the
above equations can be rewritten as,

sin[a1]
sin[α− a1] = sin[a+ a2]

sin[α+ a+ a2] , (4.5)

sin[a2]
sin[α+ a+ b+ a2] = sin[a+ a1]

sin[a+ a2] , (4.6)

which uniquely determine the partition points of A′B′. The solutions are in the following,

a1 = cos−1
[

sin(a− α+ a2) + 3 sin(a+ α+ a2)√
2
√
−2 cos(2(a+ α+ a2))− 2 cos(2(a+ a2)) + cos(2α) + 3

]
, (4.7)

a+ 2a2 = tan−1
[

sin(a− b)(sin(a) cos(η)− sin(b))− 2λ sin(a) sin(η),

− sin(a) sin(η) sin(a− b)− 2λ sin(a) cos(η) + 2λ sin(b)
]
, (4.8)

where

λ =
√

sin(a) sin(b) sin(a+ α) sin(α+ b) ,

η =a+ b+ 2α . (4.9)

Following the PEE proposal we have

sAA′(A) = 1
2
(
SAA′1 + SAA′2 − SA′1 − SA′2

)
= c

6 log
[sin[a+ a1] sin[a+ a2]

sin[a1] sin[a2]

]
. (4.10)

The above PEE gives the BPE(A,B) when we plug in the solutions (4.7)–(4.8). At last,
we find

BPE(A,B) = c

6 log
[
2 λ+ sin(a) sin(b)

sin(α) sin(a+ α+ b) + 1
]

(4.11)

Though the solution to the balance requirements is a bit complicated, the BPE has a simple
expression. One can check that it exactly matches with the length of ΣAB previously
calculated in [19]. Compare with the calculation of [19], our requirements are simple and
donot have to refer to any information from the bulk geometry. Later we will explain why
this matching appears using the holographic picture for entanglement contour.

The BPE also satisfies certain entropy relations when A and B are non-adjacent. The
property 1 holds in general. The property 2 is not easy to prove for disconnected AB in
a generic purification. This may due to the disadvantage that our understanding of the
entanglement contour for disconnected regions is not clear [14]. However, for holographic
cases, because the mutual information is monogamous [62], it was proved in [13] that the
PEE satisfies the following inequality,

sAA′(A) ≥ 1
2I(A,BB′) ≥ 1

2I(A,B) . (4.12)

Since the BPE is also a PEE we have BPE(A,B) ≥ 1
2I(A,B).

– 16 –



J
H
E
P
0
4
(
2
0
2
1
)
3
0
1

For non-adjacent cases, so far we donot have the proof for property 2 for non-
holographic theories. We want to point out that, the monogamy of the mutual information
is not a necessary condition for the property 2. So it is still possible to prove it in gen-
eral cases. We leave this point for future study. Since the property 3 and 4 follow from
property 2, they are also only justified for holographic theories. While the property 5 of
monotonicity can be understood for generic configurations using the similar arguments in
the previous section.

5 The canonical purification and the reflected entropy

The canonical purification discussed in [21] is another example where we can explicitly
study the BPE. In [21] a new quantity named the reflected entropy was defined and its
holographic relation to the EWCS was established. In this section, we will show that the
reflected entropy is indeed identical to the BPE for canonical purifications. Consequently
the relation between the BPE and ΣAB in the canonical purification follows directly. Note
that the reflected entropy is only defined in the canonical purification cases, while the BPE
can be defined for a generic purification. The BPE can be considered as a generalization
of the reflected entropy for generic purifications.

Let us firstly give a brief review on the canonical purification and the reflected entropy.
Consider a bipartite system A∪B with the Hilbert space HAB and the orthonormal bases
{|ψi〉}. The system is in a mixed state

ρAB =
∑
i

pi |ψi〉 〈ψi| . (5.1)

Then we introduce a system A′ ∪ B′ with the same copy of the Hilbert space, and the
partition is just a reflection of the partition of AB. The canonical purification is given by
the following pure state for the combined system ABA′B′,

|√ρAB〉 =
∑
i

√
pi |ψi〉AB |ψi〉

∗
A′B′ , (5.2)

where {|ψi〉∗} is another orthonormal basis of HAB. Now the mixed state is the reduced
density matrix ρAB = TrA′B′

∣∣√ρAB〉 〈√ρAB∣∣. The thermo-field double state is a simple
case of the canonical purification. The reflected entropy is then defined as the von Neumann
entropy (or entanglement entropy) for AA′,

SR(A : B) = SAA′ = −TrρAA′ log ρAA′ , (5.3)

where ρAA′ = TrBB′
∣∣√ρAB〉 〈√ρAB∣∣.

It is important that, for holographic systems the canonical purification has a bulk
geometric description. For example the eternal black hole [63] describes the thermo-field
double state. For more generic cases where AB is a subsystem of a holographic boundary
state, the geometric dual for the canonical purification is the manifold glued from the
homology surface RAB and its CPT conjugate RA′B′ along the RT surfaces EAB and EA′B′ .
For example see figure 8. This glued manifold, denoted as RR′AB, is the gravity dual of
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Figure 8. The homology surfaces RAB and RA′B′ are glued at the RT surface EAB , which is the
blue line. This configuration RR′

AB is the gravity dual of the canonical purification of ρAB and
has the reflection symmetry at EAB . The solid purple line is the ΣAB while the dashed purple line
is its image under reflection.

the canonical purification |ρAB〉. By construction it has reflection symmetry at the RT
surface EAB. This holographic construction is proposed in [21] using the Engelhardt-Wall
procedure [64, 65]. The entanglement entropy SAA′ is then holographically calculated by
the minimal surface EAA′ in RR′AB that anchored on the boundary of AA′.

It was shown in [21] that EAA′ is closely related to ΣAB. In general ΣAB can be
determined by the following two properties. Firstly it should be a geodesic chord in RAB
that separates A from B. Secondly it should be anchored on the RT surface EAB vertically,
which is required by the reflection symmetry. For example, in figure 8 where A and B are
adjacent, ΣAB is the geodesic chord that emanates from the joint point of A and B and
end on EAB vertically, which is shown by the solid purple line. The dashed purple line is
the image of ΣAB under reflection. The RT surface EAA′ is just formed by ΣAB and its
image. This directly gives that

Area(EAA′) = 2Area(ΣAB) . (5.4)

The reflected entropy is then related to ΣAB in the following way

1
2SR(A,B) = Area(EAA′)

8G = Area(ΣAB)
4G (5.5)

Now let us calculate the BPE(A,B). We see that in figure 8 the combined system
ABA′B′ forms a circle and AA′ is a connected interval with a definite order. In this case
we can calculate the PEE sAA′(A) using the PEE proposal (2.6),

sAA′(A) = 1
2(SA + SAA′ − SA′) = 1

2SAA
′ . (5.6)

We used SA = SA′ in the above equation, which follows from the reflection symmetry.
However the definite order for AA′ is not guaranteed for generic configurations. Fortunately
there exists a generic way to calculate sAA′(A) in canonical purification cases using the
reflection symmetry. The reflection symmetry indicates that the contribution from A andA′
to SAA′ are equal. Regarding the normalization property that sAA′(A) + sAA′(A′) = SAA′ ,
in general we have

sAA′(A) = sAA′(A′) = 1
2SAA

′ = 1
2SR(A,B). (5.7)
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Figure 9. In the left figure A and B are non-adjacent and WAB is connected. In the right figure
there is a black hole in the bulk and EAB is disconnected. Here the PEE proposal does not apply
because AA′ is a circle.

Similarly we have

sBB′(A) = sBB′(A′) = 1
2SBB

′ . (5.8)

Since SAA′ = SBB′ , we straightforwardly find

sAA′(A) = sBB′(A′) , (5.9)

which is exactly the balance requirement. In summary in the canonical purifications
for any ρAB where the partition of A′B′ is a reflection of the partition of AB, we have
sAA′(A) = BPE(A,B). This further more indicates that the BPE(A,B) is directly related
to the EWCS,

BPE(A,B) = 1
2SR(A,B) = Area(ΣAB)

4G . (5.10)

Then we consider the case where AB is a disconnected but has a connected entan-
glement wedge, which is shown in the left figure of figure 9. In this case AA′ has no
boundary hence EAA′ is determined totally by the homology constraint, which turns out
to be the minimal circle that warps on the bulk wormhole geometry. It is easy to see
the relation (5.4) also holds. Note that, in this case the order in AA′ is ambiguous hence
the PEE proposal does not apply. Using the reflection symmetry, we can easily find that
sAA′(A) = sBB′(A′) = 1

2SR(A,B), hence (5.10) follows. In the right figure of figure 9 where
EAB is disconnected, one can also find the relation (5.10) holds using similar arguments.

The canonical purification is different from case of global AdS3. It is interesting to find
that in both of the two purifications the BPE(A,B) gives the area of ΣAB, which indicates
that the crossing PEE are the same for these two purifications. One can easily check this
for the case of figure 8, where the crossing PEE can be calculated by the PEE proposal,

IAB′ = IA′B = 1
2(SAB + SAA′ − SB − SA′)

= c

6 log
( sin[(lA + lB)π/L]

sin[lAπ/L] sin[lBπ/L]
2 sin[lAπ/L] sin[lBπ/L]

sin[(lA + lB)π/L]

)
= c

6 log 2 . (5.11)
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In the above equation we used the relation SA′ = SA. Also SAA′ is calculated by twice of
the length of ΣAB, which is given by (3.8). Again we arrive at the constant c

6 log 2 which
is the exactly the one we got for global AdS3.

6 Interpretation for the correspondence between the BPE and
the entanglement wedge cross section

In this section we show that the EWCS can be interpreted as certain types of PEE following
the holographic picture for entanglement contour proposed in [11, 13]. We find that, the
PEE that correspond to ΣAB satisfies the balance requirement thus is a BPE. This justifies
our previous claim that the BPE gives ΣAB when ρAB has a geometric dual.

6.1 Brief review on holographic entanglement contour

In [11], the author gave a holographic picture for the entanglement contour for a single
interval in the context of AdS3/CFT2. Following the bulk and boundary modular flows, it
was shown in [11] that the entanglement wedgeWA has a natural slicing using the modular
slices (see the left figure in figure 10). A modular slice is the orbit of a boundary modular
flow line in the bulk.4 This slicing gives a one-to-one correspondence between the points
in the interval A and the points in its RT surface EA. More explicitly the correspondence
means the contribution to SA from any point in A is represented by its partner point on
EA. In all the cases where both of the above geometric construction and the PEE proposal
applies, the two proposal give the same results. This consistency even goes beyond the
AdS/CFT correspondence [46].

When the interval A is static, the point-to-point correspondence have a simple de-
scription using geodesics normal to EA. It was shown in [48] that, any point on EA can
be connected to its partner point on A via a static geodesic that is normal to EA (see the
right figure in figure 10). These normal geodesics are where the modular slices intersect
with the static homology surface RA.

In the same sense this correspondence induces a correspondence between the geodesic
chords Ei on EA and the PEE of certain subset Ai in A,

sA(Ai) = Length (Ei)
4G . (6.1)

For example see figure 11. The above relation gives a finer correspondence between quan-
tum entanglement and bulk geometry than the RT formula.

6.2 The holographic BPE and the entanglement wedge cross section

The geodesics normal to the RT surfaces play an important role in the fine correspondence.
As we know the EWCS ΣAB is also a geodesic chord normal to the RT surface EAB, ΣAB

can be interpreted as the gravity dual of certain PEE following (6.1). In other words, we
4The modular flow that exactly settled at the boundary has no orbit in the bulk, because the boundary

modular flow equals to the bulk modular flow. Here the boundary modular flow is not exactly at but
infinitely close to the boundary [11, 13].
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Figure 10. The left figure shows the slicing of the entanglement wedge with modular slices (the
blue surface), while the left figure shows a time slice of the entanglement wedge and the fine
correspondence between the points in the interval A and its RT surface EA using the dashed purple
geodesics normal to EA.

Figure 11. The purple dashed lines are the static geodesics that normal to EA. They are the lines
which set the subsets of A and the subsets of EA in pairs in the sense of (6.1). The points in Ai

correspond to the points on Ei.

can relate the length of ΣAB to a PEE, and furthermore to a linear combination of the
entanglement entropies of relevant boundary intervals following the PEE proposal (2.6).
The prescription to determine this PEE is to extend ΣAB to a RT surface of some boundary
region. As a portion of this RT surface, ΣAB will correspond to a PEE in this region.

Firstly, let us consider the cases in figure 12 in the context of AdS3/CFT2. The upper
figures are Poincaré AdS3 and the lower figures are global AdS3. Firstly we determine the
RT surface that contains ΣAB. This can be easily done by extending ΣAB to a geodesic
anchored on the boundary, which is a RT surface of certain boundary interval. For the
left figures in figure 12, AB is connected and one of the endpoints of ΣAB is settled on the
boundary. The extension of ΣAB will also intersect with the boundary on another P . The
point P partition the complement of AB into two parts, which we denote as A′ and B′.
The extension of ΣAB is just the RT surface EAA′ (or EBB′) of the interval A′A (or BB′).
Secondly, since the two RT surfaces EAB and EA′A are normal to each other, EAB can be
considered to play the role of the dashed purple line in figure 12. According to the fine

– 21 –



J
H
E
P
0
4
(
2
0
2
1
)
3
0
1

Figure 12. Here the ΣAB is extended to a geodesic that anchored on the boundary, which is just
the RT surface EAA′ . Then we consider the PEE in AA′ and use EAB , which is the blue line normal
to EAA′ , to.

correspondence (6.1) we learn that ΣAB corresponds to the sAA′(A),

Area(ΣAB)
4G = sA′A(A) . (6.2)

Note that EAA′ is also the RT surface EBB′ of BB′. Using the fine correspondence between
the points on EBB′ and BB′, we also have

Area(ΣAB)
4G = sBB′(B) . (6.3)

Then we directly find that the balance requirement is satisfied by the partition induced by
the extension of ΣAB,

sA′A(A) = sBB′(B) = BPE(A,B) . (6.4)

One can also explicitly check that the partition of A′B′ induced by the balance requirement
and the extension of ΣAB are exactly the same. This confirms our previous observation that

BPE(A,B) = Area(ΣAB)
4G . (6.5)

Similarly, for the non-adjacent AB with connected WAB (see the figures on the right
hand side), the extension of ΣAB is a geodesic anchored on the boundary at two points P1
and P2. We see that P1,2 partition the boundary into two regions AA′ and BB′ and the
extended ΣAB is the RT surface EAA′ of AA′. In this case A′ = A′1 ∪A′2 and B′ = B′1 ∪B′2
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Figure 13. A time slice of the eternal black hole. The blue circle is the horizon, while the purple
lines are ΣAB and its extension.

are disconnected. Since EAA′ is normal to EAB, according to the fine correspondence (6.1)
and the PEE proposal we have

Area(ΣAB)
4G = sAA′(A) (6.6)

Also note that EAA′ = EBB′ , the fine correspondence between BB′ and EBB′ indicates that

Area(ΣAB)
4G = sBB′(B) , (6.7)

hence, again we arrive at (6.5).
Then we discuss the case where the boundary is in a mixed state. For example a

thermal state that duals to a BTZ black hole. For simplicity we take AB to be the
whole boundary. Here we consider the thermal field double state [63] which is a canonical
purification discussed in [21]. The gravity dual of the thermofield double state is the eternal
black hole [63]. The two copies of CFT on each boundary are entangled thus purifies each
other. The Hilbert space factorizes into the left and right subspaces H = HL ×HR. The
thermo-field double state is in the following:

|Ψ〉 = 1
Z

∑
n

e
−βEn

2 |En〉L |En〉R . (6.8)

where En is the energy eigenvalue of the energy eigenstates |En〉.
The two figures in figure 13 draw the left and right hand side of the eternal black hole

in a time slice. They are glued together at the horizon. Assuming that B is larger than
A. When A is small enough the ΣAB is just the RT surface EA. As A becomes larger there
will be a phase transition for ΣAB from EA to the two geodesic chords emanating from the
endpoints of A and intersecting with the horizon vertically (see the two solid purple lines in
figure 13). Let us consider the later case and use the previous prescription to determine the
partition of A′B′. Since the two bulk sides are glued together at the horizon, the extended
ΣAB will enter the right bulk side through the horizon and eventually intersect with the
right boundary. See the dashed purple line in figure 13. The intersection points are the
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partition points that divide the right boundary into A′ ∪B′. The partition determined by
the extension of ΣAB is exactly a reflection of the partition of AB, which is just same as
the canonical purification cases. Following our discussion for the canonical purifications,
we have

BPE(A,B) = Area(ΣAB)
4G . (6.9)

When A is small, ΣAB = EA which cannot be extended to the right bulk side. We may need
to use the reflection image of ΣAB to partition A′B′, which is identical to the canonical
purifications cases.

For the cases where AB does not cover the entire boundary, the reflection symmetry
between AB and A′B′ no longer exist, which differs from the canonical purifications. Since
there are subtleties for evaluating the PEEs, we will not discuss for these cases further.

7 Discussion

The entanglement contour is a finer and more comprehensive description for the entangle-
ment structure of a quantum system. It has the key property of additivity, which makes
it different from all the other known entanglement measures. It is natural to expect that,
other entanglement measures can be extracted from the entanglement contour. In this
paper, we consider a special PEE satisfying the balance requirements for any purification
of a bipartite mixed state ρAB. We call it the balanced partial entanglement BPE(A,B,ψ)
for the purification |ψ〉, which is omitted when the purification is specified. We find that,
for canonical purifications the BPE(A,B) is identical to half of the reflected entropy. While
for the holographic purification on the AdS boundary, the BPE(A,B) gives the area of the
EWCS divided by 4G. These results show that, the BPE unifies the quantum information
interpretation for the EWCS in both the canonical purification and purifications on the
AdS boundaries. Since the BPE can be defined in general quantum systems, in some sense
it generalizes the concept of the reflected entropy to generic purifications, and generalize
the EWCS to purifications with no geometric description.

Again, note that the partition that satisfies the balanced requirements is not unique.
We eliminate this ambiguity by imposing the minimal requirement, which can be satisfied
by our prescription to partition the purifier introduced in section 2. For continuous systems,
the balance requirements can always be satisfied by continuously adjusting the partition.
However, for discrete systems, especially few-body systems, the continuous adjusting no
longer exist and the number of partitions is finite. In these cases, there is no obvious reason
for the existence of a partition that satisfies the balanced requirements. We hope to clarify
this point in the future. The study of the BPE in few-body systems is feasible and will
be interesting. Calculations in section 3 and 4 can also be generalized to lattice models
on one-dimensional chains or circles, if the entanglement entropies for single intervals can
be calculated.

Also the study of the BPE can be extended to higher dimensions at least for several
highly symmetric configurations where the PEE can be explicitly calculated. It will be
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very interesting to test the relation between the BPE and the EWCS in higher dimensions.
We can also explore the relation between the BPE and other entanglement measures like
EoP, entanglement negativity and odd entropy in non-holographic systems.

Though the BPE depends on purification, it is independent from a large class of unitary
transformations on the complement A′B′. The purifications with the same crossing PEE
IAB′ gives the same BPE. Interestingly we show that, in both of the canonical purifications
and the holographic purification on the boundary of global AdS3, the crossing PEE equals
to c

6 log 2, which is a constant independent from the partition of the pure state. While for
the “minimal” purification in the context of the surface/state correspondence, the crossing
PEE equals to c

12 log 2. It seems that the crossing PEE is a constant that characterize the
purifications, hence could be a useful tool to classify purifications or quantum states. Is
there any bounds for the crossing PEE and how can they be saturated? Is the crossing
PEE a useful tool to distinguish between holographic and non-holographic states? The
physical meaning of these constants deserves further investigation.

The study of BPE bases on our understanding of the PEE or entanglement contour.
However, our understanding of the entanglement contour or the PEE is still on a primi-
tive stage. The fundamental definition for the PEE based on density matrix is still not
clear and the proposals are not enough to calculate the PEE for even a generic quantum
system in two dimensions. It is also important to point out that the BPE is not sensitive
to the phase transition between connected and disconnected entanglement wedge. More
explicitly the BPE(A,B) does not vanish when the entanglement wedge of AB become
disconnected. A naive explanation is that the subset entanglement entropies in the PEE
proposal are all connected regions, which are insensitive to the phase transition. This con-
fusion may be understand if we have a deeper understanding of the entanglement contour
for disconnected regions.
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