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Magnetoresonances on a Lasso Graph 

P a v e l  E x n e r  j 

Received September 5, 1996 

We consider a charged spinless quantum particle confined to a graph consisting o f  
a loop to which a halJline lead is" attached, this' system is placed into a 
homogeneous magnetic field perpendicular to the loop plane. We derive the reflec- 
tion amplitude and show that there is an infinite ladder o f  resonances; analyzing 
the resonance pole trajectories, we show that half o f  them turn into true embedded 
eigenvalues provided the Jlux through the loop is" an integer or half-integer multiple 
o f  the f lux unit hue. We also describe a general method to solve the scattering 
problem on g~'aphs o f  which the present model is' a simple particular case. Finally, 
we discuss ways in whieh a state localized initially at the loop decays. 

I begun my career at times when the world was much less connected, and 
of most  parts we knew only from journals arriving not quite regularly. My 
first encounter with the mathematical  theory of  unstable quantum systems 
and related scattering problems occurred in this way, particularly through 
Refs. 24 and 25 and related papers by Larry Horwitz; the subject remained 
for me as well as for him an old love to which we return regularly from 
time to time. Only many years later did I have an opportuni ty to meet him 
in person and to appreciate also his charisma. A distinguished birthday is 
a good opportunity to come up with another  decay scattering system; 
I should say that I prefer presents which are amusing rather than expensive. 

1. I N T R O D U C T I O N  

Quantum mechanics for a nonrelativistic particle whose configuration 
space is a graph has been studied a long time ago in connection with 
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models of organic molecules/33~ The recent new interest in these 
problems(l, 4, 5, 6, 11, 12, 16, 17, 2o, 23) has been stimulated, in particular, by the 
progress of experimental solid state physics which allows us to produce 
semiconductor "quantum wire" structures and other "mesoscopic devices;" 
quantum mechanical graphs represent a natural model for many of them. 

Graph systems provide a convenient means to study various quantum 
effects both from the theoretical and experimental points of view, because 
the freedom in setting the geometry of the configuration space allows us to 
create different dynamics; at the same time, models of this type are often 
explicitly solvable. This concerns, in particular, resonance scattering effects 
associated with the existence of quasistationary states in graph loops and 
appendices--see, e.g., Ref., 18. These effects fit well, of course, into the 
general theory of decay scattering systems as exposed in Ref. 10, Chaps. 1, 
3, Ref. 28, or Ref. 32, Sect. XII.6, but they also make it possible to illustrate 
it and to draw fully specific conclusions. 

Our aim here is to investigate one more solvable model of this type. 
It consists of a half-line attached to a loop placed into a magnetic field; the 
parameters are the magnetic flux through the loop and "coupling strengths" 
between the graph links at the junction. Our analysis differs from an earlier 
treatment of similar systems (8, 30) in several aspects. First of all, we consider 
a different and more general coupling between the loop and the half-line, 
and we emphasize the analytical solution of the problem. Furthermore, we 
will be concerned with the decay and scattering properties of the system 
rather than with persistent currents induced by the magnetic field. 

Let us review briefly the contents of the paper. The Hamiltonian of the 
model we are going to study is introduced in the following section. Next, 
we derive in Sect. 3 its spectral and scattering properties. Then we make a 
digression and describe a general method to treat scattering problems on 
an arbitrary graph by "discretizing" it, i.e., transforming the corresponding 
Schr6dinger equation into a set of linear equations involving just the 
wavefunction values at the graph nodes. Returning to our model, we 
analyze in Sect. 5 its resonance structure by deriving an explicit expression 
for the resolvent and finding the resonance-pole trajectories. Finally, in the 
concluding section we treat our model as a decay system and show how a 
state localized initially at the loop decays (or does not decay) in the course 
of time. 

2. DESCRIPTION OF THE M O D E L  

Consider a quantum particle confined to the lasso-shaped graph F 
sketched in Fig. 1, i.e., a circular loop of radius R to which a half-line lead 
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Fig. 1. A lasso graph. 
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is attached. We suppose that the particle is nonrelativistic, spinless, and 
charged. To be specific, we assume that its charge is q = - 1 ;  we adopt the 
usual rational system of units, e = c = 2m = h = 1. The system is placed into 
a homogeneous magnetic field of intensity B; the vector potential A can be 
chosen tangent to the loop with the modulus 

~b (2.1) A =  BR L 

where q~ is the magnetic flux through the loop and L is the the loop 
perimeter. Under the convention we have adopted, the natural flux unit ~8) 
is hc/e=2~, so the rhs of (2.1) can be also written as r where r is the 
flux value in this scale. 

The state Hilbert space of the model is ~ L Z ( - F  ') :=L2(0 ,  L ) O  
L2(~+) ;  the wave functions will be written as columns, ~ = (~). To con- 
struct the Hamiltonian we begin with the operator describing the free 
motion on the loop and the lead under the condition that the graph vertex 
is "fully disconnected," so H ~  = Hloop(B ) (~ Hhalf_line , where 

Hloop(B) = ( - i ~x + A)2, Hhalf-,ino = --9 2 (2.2) 

with the Dirichlet condition u (0 )=  u(L)= f ( 0 ) =  0; if there is no danger of 
misunderstanding we abuse the notation and employ the same symbol for 
the arc-length variable on both parts of the graph. The operator Hloop has 
a simple discrete spectrum; the eigenfunctions 

Z , ( x ) = ~ s i n  nx 
' n = 1, 2 .... (2.3) 

correspond to the eigenvalues (n/2R) 2, which are embedded into the con- 
tinuous spectrum of Hhalr-lino covering the interval [0, or). Notice that the 
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effect of the magnetic field on the disconnected loop amounts to a unitary 
equivalence, 

H, oo~(B) = u ~H, ood0) u~ (2.4) 

where (UAu)(x) := eiA"U(X). 
To couple the graph parts one has to follow the standard strategy r 

which means to replace Dirichlet by "connected" boundary  condition at 
the vertex. In general, there is a nine-parameter family of such conditions. 
This is too many; we will be concerned with its three-parameter sub- 
family,(17' ~8) in particular, with a one-parameter  set of boundary conditions 
known as g-coupling. ~2) Hence the Hamiltonian of our model acts as the 
free operator  specified by (2.2), 

The wave function is continuous on the loop, 

and satisfies the requirements 

u(O) = u(L)  (2.6) 

f (0)  = ~ou(0) + ~f'(0) 
(2.7) 

u'(O)-- u ' ( L ) = ~ f ( O ) - - o f ' ( O )  

for an ~,/~ E ~ and co e C; the values of u, f and their derivatives at the 
vertex are understood as the appropriate one-sided limits. However, we 
shall restrict ourselves to the case of time-reversal invariant couplings, 
which means to assume that ~ is also real; it has the meaning of a coupling 
constant between the loop (with a point interaction) and the half-line. In 
physical terms the conditions (2.6) and (2.7) express the conservation of 
probability flow at the junction. 

The 0-coupling corresponds to the choice/~ = 0 and c~ = l, in which 
case the wavefunction is fully continuous, 

and 

u(O) = u(L)  = f(O) (2.8) 

u'(O) -- u ' (L)  + f ' ( 0 )  = ~f(0) (2.9) 

For  the sake of simplicity we shall write Ha = H~, 0, 1. The parameter  a is 
a coupling constant between the disconnected loop and the half-line; the 
fully decoupled case corresponds to ~ = Go, as the notation suggests. 
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Remarks 

(a) The choice of the coupling at the vertex corresponds to a con- 
ceivable quantum-wire experiment. There is an approximation result ~ 
which means that the g-coupling constant ~ can be regarded as a mean 
value of a sharply localized potential. This corresponds, e.g., a screened 
electrode placed at the vicinity of the junction; in a similar way one can 
model some of the more general boundary conditions (2.6) and (2.7) 
relating the parameters to physical quantities which an experimentalist can 
tune. 

(b) In general, the vector potential enters the boundary condit ions--  
see Ref. 6 and the remarks in Sect. 4.3 below. In the present case, however, 
the outward tangent components of A at the junction have opposite signs, 
so their contributions cancel. This may not be true if the loop is noncir- 
cular and has corners or cusps, but one can always achieve a cancellation 
by a suitable gauge choice. If the loop is viewed from outside as in the 
scattering process, the only quantity which matters is the magnetic flux q~ 
threading it. 

(c) The S-matrix for a coupling of three semiinfinite wires equivalent 
to (2.6) and (2.7) was derived in Ref. 17. This comparison shows, in par- 
ticular that choosing 0~=/~ = 0  and putting e := [2m/(2 +co)]  2, we obtain 
the coupling used in Ref. 8. On the other hand, the authors of Ref. 30 
worked with the ideal g-coupling, 0~ = 0. 

3. SCATTERING AND B O U N D  STATES 

Consider now the scattering problem on F, i.e., the reflection of a 
particle traveling along the half-line from the magnetic-loop end. We limit 
ourselves to the stationary formulations looking for generalized eigen- 
vectors, in other words, solutions of the equation Ha(B)~p =kZlp which 
satisfy the definition domain requirements with exception of global square 
integrability. In view of (2.5), the most general Ansatz for such a solution is 

u(x)=fle iAxsin(kx+~), f (x)=e i~X+rei~X (3.1) 

with (k-dependent) parameters r, fl, and 7; the latter is generally complex. 
To find them we employ the boundary conditions. The identity (2.6) 

in combination with (2.1) leads to the relation 

sin kL 
tan )~ = ete _ cos kL (3.2) 
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The condit ions (2.7) yield then a system of  two linear equat ions  for r, fl, 
which is solved by  

r =  
(1 + i k l ~ ) [ c z - ~ / s i n  7] + io92k 

( 1  - ikl~)[o~ - ~ / s i n  ~] - icoZk 

with 

sin 7 
= k cos 7 - iA sin T - e ~ [ k  cos (kL + ~) - iA s in(kL + 7)] 

Using again (2.6) and  (3.2), we arrive after a simple a lgebra  at  the expression 

r(k) (1 + iktO[o~ - (2k/sin kL) (cos  ~ - cos k L ) ]  + io92k (3.3) 

= - ( 1 - iklt ) [ 0~ - (2k/sin k L  ) (co s ~ - co s k L  ) ] - ico 2k 

for the reflection ampli tude,  in part icular ,  

r(k) = (~ + ik) sin k L  - 2k(cos ~ - cos k L )  (3.4) 
( ~ -  ik) sin k L  - 2 k ( c o s  q~ - c o s  k L  ) 

in the g-coupling case. This (1 x 1) S-mat r ix  can also be wri t ten by  means  
of  the phase  shift. Fo r  instance, denot ing 

3 ( k )  -A(o~, ~; k)  :=  ( a - / k )  s i n k L - 2 k ( c o s  ~ -  cos k L )  (3.5) 

we can write the rhs of  (3.4) a s  e 2i'~(k) with 

rc k sin k L  
g(k) = ~ + arc tan  )tA'k~Re (3.6) 

As usual  the growth  of  the phase  shift is related to the n u m b e r  of  scattering 
resonances within a given energy interval. I t  is clear f rom (3.6) tha t  g(k) 
passes odd mult iples of  ~r/2 whenever  the denomina to r  (3.5) passes zero, of  
course, when there is not  a s imul taneous zero in the numera to r .  The  last 
n a m e d  si tuat ion occurs if and only if the flux q~ th rough  the loop is a 
mult iple  of  re. Hence  "one  half"  of  resonances is missing in tha t  case; 
similar conclusions can be made  in the general case of  b o u n d a r y  condi t ions 
(3.3) when 

{ c~ t g(k) = ~ + arc tan /zk + 0~ - (2k/sin kL) (cos  q~ -- cos k L )  
(3.7) 
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This is related to the existence of embedded eigenvalues at integer/half- 
integer values of ~b, which will be clearly seen from the resonance pole 
trajectories discussed below. The bound states can also be found directly: 

(a) It is clear that positive-energy bound states may be supported 
only at the loop. If we restrict our attention to the nontrivial case co r 0, 
this is possible in view of (2.7) when u (0 )=  u ' ( 0 ) -  u'(L)= 0. Hence such 
bound states exist only at integer/half-integer values of the magnetic flux 
(in the natural units) and the corresponding eigenfunctions are given by 
(2.3) with an even n for ~ integer and odd n for ~b half-integer. 

(b) In addition, there can be negative eigenvalues. To find them we 
suppose that the loop wavefunction is given by the first part of (3.1) with 
k =/1< and the half-line part is pe-~X, lc > 0. The boundary conditions then 
yield a system of equations for fl, p which can be solved provided 

2tc r 
- -  (cos ~ -- cos KL) = ~ + - -  (3.8) 
sinh KL 1 +/.tK 

It is easy to see that under the condition ~ ~> (2/L)(cos ~ - 1) has no solu- 
tion if/z ~> 0 and a single root otherwise; in the case at ~ < (2/L)(cos q5-  1) 
one more eigenvalue is added. 

4. A DIGRESSION:  A D U A L I T Y  FOR G R A P H  S C A T T E R I N G  

At this point we want to make a small detour to describe a general 
method to treat scattering problem on graphs. Recall that there is an equiv- 
alence between the spectral problem for one-dimensional Schr6dinger 
operators with point interactions and certain Jacobi matrices which is 
known in the literature as a "French Connection. ''(2' 7,9,21,22, 31) W e  have 
been able to extend this duality recently to a wide class of Schr6dinger 
operators on graphs; (14~ here we want to illustrate that the same method is 
applicable to scattering problems. 

4.1. Schr6dinger Operators on a General Graph 

Let us first collect some notion we will need to formulate the result; 
for more details we refer to Ref. 14. A graph F consists of a finite or 
countably infinite number of vertices Y/ = { 5 f : j  e I} and links (edges) 5~ = 
{ A'~j,,: (j, n ) e I ~  c I x  I}. Without loss of generality we may suppose that 
each pair of vertices is connected by not more than one link; otherwise we 

825/27/2-4 
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just add some number of extra vertices. We assume that F is connected, so 
the set g / ( Y) ) =  {Y;,: n+ v ( j ) c  I \ { j } }  of neighbors of ~-, i.e., the vertices 
connected with Y} by a single link, is nonempty. Throughout  we shall 
assume t h a t / / ' ( ~ )  is finite for a n y j e L  

The graph boundary ~ is the subset of vertices having a single 
neighbor; it may be empty. We use the symbols I~  and I~ for the index 
subsets in I corresponding to ~ and the graph interior J := Y \ ~ ,  respec- 
tively. F has a local metric structure coming from the fact that each link =g~#, 
can be mapped to a line segment [0, ls,,]. It is also possible to equip the 
graph naturally with a global metric by identifying it with a subset of a 
plane or a higher-dimensional Euclidean space. The two metrics may differ 
at a single link; the local one which is important for us is usually given by 
the arc length of the curve segment representing 5~i~. 

Using the local metric, we are able to introduce the state Hilbert space 
in the way we did it for the lasso graph and similar problems, namely as 
L2(F) : =  @(j,n)~i~L2(O, lj.). Its elements, i.e., the wave functions, will be 
written as ~, = {$/,,: (j, n ) ~ I ~ }  or simply as {$+.~}. We shall suppose that 
the particle living on F is exposed to a potential; it is only important to 
know its values on the graph links, i.e., a family of functions V := { Vj,}; 
since we do not want to deal with mathematical subtleties here, we suppose 
that all of them are essentially bounded, Vs, , ~ L~(O, ljn). Then we are able 
to define the operator H~ =_ H( F, o~, V) by 

H:{~j~} := {--~b~,+ Vj,,~j,,: ( j ,n)eI~e}  (4.1) 

with the domain consisting of all ~ with ~bjn e W 2" 2(0, li,) subject to a set 
of boundary conditions at the vertices which couple the boundary values 

~j,,(j) := lim ~jn(x), ~)n(J) := lim ~.~(x) (4.2) 
x ~ 0 +  x ~ 0 +  

We have identified here x = 0 with the vertex ~.. In general, there is a vast 
family of boundary conditions which make the operator (4.1) self-adjoint. 
It can be characterized by 4M 2 real parameters, where M is the number of 
graph links, (2, 17, 32) even if we restrict ourselves to local boundary condi- 
tions which do not couple the boundary values belonging to different 
vertices, the number is still too large. 

As above we restrict ourselves to the simplest situation when the links 
connected in a vertex ~ satisfy the 6-coupling condition, i.e., Ojn(J)= 
t~s,,(j) =: ~/,j for all n, m ~ v(j), and 

O~n(j) = ~:tPj (4.3) 
n ~ v ( j )  
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with a real-valued parameter % e R (coupling constant). However, the 
results derived below can be reformulated easily for the case where (4.3) 
is replaced by a • or another type of local boundary condi- 
tions.(~2, ~7) 

As in the particular case discussed in the previous sections the relation 
(4.3) and other local couplings have an illustrative meaning of probability 
current conservation at the vertex; in a sense they represent an analogy of 
Kirchhoff's law. This means, in particular, that they are independent of the 
lengths of the involved links. Moreover, since the probability current is 
connected with the kinetic part of  the Schr6dinger equation, the coupling 
is also independent of the potential V as long as the latter is regular, which 
is the assumption we have adopted. At the graph boundary we employ the 
usual conditions 

~b i cos ~oj + ~pj- sin e~j = 0 (4.4) 

with a parameter coj; integer and half-integer multiples of rc correspond to 
the Dirichlet and Neumann condition, respectively. 

4.2. Coupling Two Link Bundles 

In the next step we attach a certain number of semiinfinite links to F 
which will support asymptotic solutions; in the standard stationary picture 
we shall consider a combination of a falling and transmitted/reflected plane 
wave on each of them. We might regard these "external" links as a part of 
the graph boundary; however, it is convenient to treat them separately. 
A reason for that is the following: while we declared the intention to for- 
mulate the result for graphs with d-couplings, it is desirable to have a 
coupling between the internal and external links which is slightly more 
general than (4.3). This could be useful, e. g., if we want to study pertur- 
batively resonances, which arise when eigenva~ues: of the original graph 
operator become embedded into the continuous spectrum of the leads. 

As another preliminary, therefore, consider two bundles of Ieads which 
g M support wavefunctions {J~} x and { ~.} .~=  ~; the endpoints are placed to 

the point x = 0. Suppose first that we have separate O-couplings for each 
bundle, 

A ( 0 I  . . . . .  fN(0)  = :  f ( 0 ) ,  

g , ( 0 )  . . . . . .  g.(O) =:  g (0 )  
(4.5) 
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together with N t 52, =, f , ( 0 )  = ~(0) and M Zm=l  g~,(0)=gg(0). TO couple the 
two bundles, we preserve the separate continuity (4.5) and replace the 
derivative conditions by 

N M N M 

f (O)=o~- '  ~ f ' . (O)+7 ~ g'.(O), g(O)=~7 ~ f ' . (O)+8  a ~ g'.(O) 
n ~ 1 m -  l n = 1 t n -  1 

(4.6) 

with a complex parameter 7; an elementary integration by parts then shows 
that the corresponding boundary form vanishes under these conditions. 
The parameter modulus is the coupling strength; if the coupling is required 
to be time-reversal invariant, 7 has to be real. An overall O-coupling is 
achieved, of course, if 0~ = 07 = y - ~. 

4.3. The S-Matrix Equation 

Suppose now that a bundle of mj half-lines, 0 ~< mj < oo, is attached to 
the point Y~ of F the coupling being given by (4.5), (4.6) with the 
parameters 0~ s for the graph links joined at ~., c~/for the external links at 
~., and 7j. We call t h e j t h  bundle ~,  and ~m will be the ruth half-line in 
it, so the full state Hilbert space will now be L2(F) G ( Oj~  ~ @ ;;~ ~ LZ(~em) . 
For the sake brevity, the graph extended by the external links will be 
denoted by F~ =-Fw ~, and for the state Hilbert space we will use the 
shorthand L2(Fe). The symbol H~=-H(Fe,{~j, gj, Tj}, V) means a 
Schr6dinger operator on F~. with the described coupling; for simplicity we 
assume that the potentials on the external links are zero. 

As usual the stationary scattering problem means finding a generalized 
eigenvector of H~ with prescribed behavior in the asymptotic region, i.e., a 
solution to the equation 

H~qJ =k2~ (4.7) 

which belongs locally to D(H~) satisfying all the domain requirement (in 
particular, the boundary conditions at each vertex) apart of the global 
square integrability, and such that 

~pj,,(x) = aim ei~x + bsm eikx (4.8) 

holds for x~d~, l. The vectors a-{aim } and b-{bsm } of dimension 
card g = Zs~irn s represent the incoming and outgoing amplitudes, respec- 
tively; we are interested in the operator that maps the former into the 
latter, b -- Sa. 
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To proceed further, we need some further notation. The symbol H~  
will denote the decoupled operator obtained from H~ by changing the con- 
ditions (4.3) at the points of the graph interior J to Dirichlet, while at 
the boundary they are kept fixed; we also define J~f~:={k:kZ~a(H~), 
Imk~>0}. Next we take an arbitrary link 50..:.=[0, lj.] of F, the right 
endpoint being identified with Y}, and denote by uj~, v:. the normalized 
Dirichlet solutions to the corresponding component - f " +  Vjnf=kZf of 
the Schr6dinger equation (4.7). In other words, we demand that the following 
boundary conditions be satisfied, 

Uj.(lj.) = 1 - u':.(lj.) = O, vj.(O) = 1 - v~-n(O) = 0 (4.9) 

provided n c I : ;  at the graph boundary we replace the last requirement by 
vj.(0) = s i n o .  and v ) . ( 0 ) = - c o s  co.. The Wronskian of these solutions 
equals 

W:. = -v:.(l:.) = u:.(O) (4.10) 

for n e I :  and W : , = - u j , ( 0 ) c o s c % - @ , ( 0 ) s i n c o ,  otherwise. All these 
quantities depend in general on the spectral parameter k but we shall not 
indicate this fact explicitly. Now we can formulate the mentioned result: 

Proposition. Let k r J:~ with k= e ~, Im k ~> 0. Under the assumptions 
given above, the corresponding on-shell scattering matrix for the graph F:  
is given by the following system of N := card I +  card g equations: 

and 

I Z Wj. Z --~i Oj-ik~ 
,, �9 v(j) ,~ L: ~, �9 v(j) . , , .  

=-ikaj?/  mjc~jl-2 ~,, aim (4.11) 
m = 2  

~/:: ( Z r Z @(!/.) ~/: + b:,(~:- ikm:) 

mj 

= - - a j l ( ~ / - F i k m j ) - - 2 i k  Z a im ( 4 . 1 2 )  
m = 2  

bjm=bjl +ajl-ajm , m=2,...,mj (4.13) 

Remarks. 

(a) If N <  oc the above relations represent a system of linear equa- 
tions. In the opposite case they have to be interpreted as the appropriate 
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operator equation on 12. This can be done under some additional assump- 
tions on F, e.g., if there are positive numbers c~, c2 such that c~ ~< lj,, ~< c2 
holds for all (j, n) e I ~ ;  see Ref. 14 for more details. 

(b) The results generalized easily to the situation when F as a subset 
of R ~ is placed into a magnetic field, not necessarily homogeneous, 
described by a vector potential A. The boundary conditions (4.3) are 
modified replacing O}.(j) by O~.,(j)+ iAj,(j), where Aj,(j) is the tangent 
component of A to L~j, at y).(6) The particle abiding on F is supposed here 
to be an electron; otherwise A has to be replaced by -qA  where q is the 
particle charge. The magnetic case can be handled by means of the unitary 
operator U: LZ(F) --~ LZ(F) which acts as 

( L )  (U~k)j ,(x):=exp i Aj,(y) dy t)/,(x) 

the values xj, are fixed reference points. Then the functions (UO)/, satisfy 
(4.3) and it is sufficient to replace the function values 0 ,  in (4.11), (4.12) 
by eiAnO~ provided the magnetic phase factors Aj are chosen to obey the 
natural consistency condition 

A / - - A , = f ~  Aj,(y ) dy 

required by the wave function continuity. 

(c) Consider a simple situation where a single half-line is attached to 
every point of F and denote the "graph part" of the above system, i.e., the 
operator represented by the two sums on the lhs of (4.11), as h. If the 
coupling is ideal, 0~j = 0 for all j ~ I, the S-matrix is given by 

h+ik 
h - i k  

It is illustrative to compare this to the formula used recently by Sadun and 
Avron (24) in a study of scattering on discrete graphs; the only difference is 
the replacement of - i k  by e*, the energy being 2 cos k in this case. 

To prove the proposition, it is sufficient to use the transfer matrices 
which relate the Schr6dinger equation solutions at both ends of each 
link. (~4) Since the Wronskian is nonzero for k r  ~2, we get 

: =  qO.(J) = u).(o)  + 

- = 

i - , , 
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The sign change on the lhs of the last condition reflects the fact that 
(4.2) defines the outward derivative at ~ .  We express O~.~(n) from the first 
relation and substitute it in the second one. This yields 

,/,n , ,(j,,(/j,,).,. 

for n e I j ,  while at the graph boundary we get with the help of (4.4) instead 

~ , ; , ( j )  = G(/J-) ~j 

Now one has just to substitute these values into the boundary conditions 
at each vertex to arrive at the relations (4.11)-(4.13). 1 

It is not difficult to check that the lasso graph with the 6-decoupling 
can be treated within this general scheme. We use the normalized Dirichlet 
solutions at both loop "ends," k 1 sin kx and - k  ~ sin k(x-L), and add 
a vertex into an "interior point." Using (4.11) and (4.12) and excluding the 
function values at the added point, we arrive after a straightforward 
calculation at the equations 

( ei'P + e -iq" coskL  ) 
- k  s inkL + 2 k ~ + 0 ~  ~b-ikb=-ika 

~p=b+a 

from which we recover the reflection amplitude (3.4). 

5. R E S O N A N C E S  

5.1. The Resolvent 

Let us return now to our model. The most natural way to study spec- 
tral properties of an operator is through its resolvent, and therefore we 
want to find it for Ha(B). The "decoupled" resolvent is found easily: it is 
a matrix integral operator with the kernel 

e iA(x y) sinkx<sink(x>-L) ) 
y; 1,) = - kTn  o 

0 s inkx< exp(ikx>) (5.1) 

k 
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where x< and x> mean conventionally the smaller and larger of the 
variables x, y, respectively. We abuse here again the notation and employ 
the same symbol for the arc-length variable on the loop and the lead as 
well as for the pair of them. 

Since H~,~,~ and Ho~ are both self-adjoint extensions of the same 
symmetric operator with the deficiency indices (2, 2), the resolvent of the 
former is by Krein's formula (Ref. 2, App. A) given by 

2 
G~,f,, ~(x, y; k) = Go~(x, y; k) + ~ 2jtFj(x) F~(y) (5.2) 

j , /= l  

where the symbol " t"  means transposition, Fj are vectors of the corre- 
sponding deficiency subspaces which we shall choose in the form 

(wT,) (0) 
F~(x) := F2(x) := (5.3) ' e ikx 

with 

w(x) := e iAx e i~sin kx - sin k(x  - L)  
sin k L  

and 2y are coefficients to be found. Introducing 

h l : = f ~ w ( y )  v(y)dy ,  h 2 : = f f  eikyg(y)dy 

for a given (g)e ovf, we find easily that the boundary values of the function 
(~) := (H~,~,c~-k2) -~ (g) are in view of (5.2) given by 

b/(0) = b/(L)=,,~1i hi-k- ~12h2, f ( 0 )  = 22~hl + 222h2 

2k 
u'(O) - u'(L) = hi + ~ (cos g~ - cos k L ) ( 2 u  h I "b 212h2) 

f ' (O) = h2 + ik(22~h~ + 222h2) 

However, (~) belongs to D(H~,~,.o~) for any (g), so substituting these 
boundary values into (2.7) we get a system of four linear equations which 
yields the sought coefficients: 
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1 - i/lk co 
2 1 1  - -  - - ,  /~12 = - - - -  

cos 45 -- cos k L  
/~[2k 0~] _oo2 

co sin k L  
2 2 1  - -  9 '  2 2 2  - -  

(5.4) 

with 

~ -~(0~ , /~co ;  k ) : = ( 1 - i l t k )  I 2 k  
cos 45 - cos k L  7 

o~j - ico2k (5.5) 
sin k L 

In the case of  g-coupling, /1 = 0, co = 1, the coefficients acquire a par- 
ticularly simple form, 2jl = - ~  1, j, l = 1, 2. 

5.2. Pole Trajectories 

As usual in such situations ~3' ls~ the singularities of  G ~ ( x ,  y; k) cancel 
with those of the added term in (5.2) and the resolvent poles are given by 
zeros of  the denomina tor  (5.5); the exception is represented by the case of  
an integer or half-integer ~. 

For  the sake of  simplicity, we shall speak mostly about  the g-coupling 
situation. If the coupling is ideal, ~ = 0, the pole condit ion becomes 

2(cos 45 - cos k L  ) = - i sin k L  (5.6) 

and one is able to solve it explicitly. No  singularities exist in the upper  half- 
plane, hence we write 

k = K - iq (5.7) 

Substituting into the above condition, we find that  for 1451 < (re/6) (mod re) 
there is a pair  of  poles with K - - n n / L  and 

~ / = ~ l l n ( 2 ( - 1 ) n c o s 4 5 + x / 4 c o s 2 4 5 - 3 )  (5.8) 

where ( - 1)n cos 45 > 0. On the other  hand, for the remaining values of  45 
the poles are found at the line parallel to the real axis with t /=  - l n 3 / 2 L  
and 

1 ( f 3 )  K = _+~ arc cos cos 45 (5.9) 
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We see that both poles are in the open lower half-plane with the exception 
of q~ = nrc, i.e., ~b integer or half-integer, when one of them turns into an 
embedded-eigenvalue pole at the real axis. The pole trajectories with 
respect to q~ are not smooth despite the analytic form of the condition 
(5.6); this is due to the fact that 9 = 0  at the crossing points ( l /L)  
( ~ n - - ( i / 2 )  In 3), so the implicit function theorem does not apply there. 
A similar picture is obtained for the boundary conditions (2.7) with 
~ = / ~ = 0  and I~ol<v/2, in which case the "horizontal" line has ~/= 
11n[(2+co2)/ (2-~o2)] .  On the other hand, in the case Iol ~>~,/2 the pole 
trajectories are "vertical" segments with K = rcn/L only. 

If ~ r 0 the 6-coupling pole condition (5.6) is replaced by 

2k(cos ~ - c o s  k L  ) = (o~ - ik) sin k L  

Writing separately the real and imaginary parts with the help of the 
parametrization (5.7), we find that for ~c = rcn/L a zero can exist only at the 
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Fig. 2. Pole trajectories from the condition (5.10) for different values of the coupling con- 
stant  (dashed: ~ = 0.5, full: c~= 0.1, dotted: ~ =  0.05). 
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real axis if ~ = mrc. For  other values of ~c the pole condition can be cast 
into the form 

2t/-- K cot KI 
coth r/L = 2 + ~ J/(q _ c~) + k 2 ( 5 . 1 0 )  

which has to be solved numerically. The resulting pole trajectories are 
shown in Fig. 2. 

6. DECAY O F  L O O P  STATES 

Up to now we have considered the lasso graph as a scattering system. 
Now we shall suppose that the system is prepared at an initial instant in 
a state whose wavefunction is localized at the loop. It  is not so important  
how such a situation is realized. For  instance, one can place an electron at 
an isolated ring and "switch in" the junction at t = 0. The state is generally 
unstable under the evolution governed by H~,~ .... and we are interested in 
the way in which it decays. 

Since we have an explicit expression for the resolvent, we are able in 
principle to write the nondecay amplitude explicitly (Ref. 10, Sect. 3.1). 
However, instead of trying to evaluate this function we limit ourselves to 
elucidation of its basic properties. 

6.1. Spectral Decomposition 

The relations (5.2) and (5.4) imply, in particular, that the resolvent 
form z~-~(~b, (H~,. , ,~--z)  l~b) is a meromorphic  function including its 
continuation to the second sheet. Its possible poles are associated with the 
discrete spectrum of Ha,~ .... which we also know explicitly. Since these are 
the only singularities, the function (~b, (H~,,, , ~ -  �9 )-1 ~,) is analytic for all 

belonging to the complement ~p(H~, ~, ~)• In particular, it is uniformly 
bounded in any finite part  of the strip IIm z[ < 1, and thus by the basic 
criterion (Ref. 32, Theorem XIII.19) such a vector belongs to ~4~c(H~,/,,~). 

Consequently, our Hamil tonian has no singularly continuous spec- 
trum. The initial state can therefore be decomposed into ~b = ~pp + Oao, and 
the corresponding nondecay amplitude equals 

(4,, ut4,) = (4,~, u,4,~) + (4,~ u ,o . c )  (6.1) 

where Ut :=exp{-- iH~,~, , , t} .  The second term on the rhs goes to zero as 
t ~ oo in view of the Riemann-Lebesgue lemma; the first one is a linear 
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combination of exponentials with coefficients coming from the Fourier 
decomposition of ~bp. If just one of them is nonzero, then the decay law of 
the corresponding loop state given by the squared modulus of (6.1) has a 
finite nonzero limit. Such a behavior is typical for unstable systems having 
bound states with a nonzero Fourier component in a decaying state; it has 
been observed recently in another context; see Ref. 15 and also Ref. 19 
where, however, the effect may be also related to the threshold violation of 
the Fermi golden rule discovered by Howland3 29~ 

If the loop state contains a superposition of a larger number of eigen- 
vectors, the nondecay probability does not  go to zero as t ~ ~ but  a limit 
does not exist. In view of the above discussion, such a situation can occur 
in the present model only if (a) there are two negative eigenvalues (see 
Remark (b) at the end of Sect. 3), or (b) if ~ = n n  with n ~Z .  The 
asymptotic behavior of the decay law depends then on the coupling 
parameters. If all the involved eigenvalues are commensurate, the 
asymptotics is periodic; this happens always if there is no negative-energy 
bound state. In the general case the decay law asymptotics is quasiperiodic. 

6.2. What Has All this in Common with Neutral Kaons? 

Concluding this study, let me mention one more topic to which Larry 
Horwitz made a contribution, namely the decay theory of neutral kaons. 
This subject attracted attention at the end of the sixties as an example of 
a system with a substantially nonexponential decay law exhibiting different 
time scales, as well as the possibility to "recreate" decayed particles by 
performing a set of noncompatible measurements. 

Mesoscopic physics makes it possible to tailor systems in which a 
similar effect can be observed. Consider our lasso graph with the initial 
wavefunction u on the loop such that x~--~ eiAXu(x) has no definite sym- 
metry with respect to the connection point x = 0  (say, u(x)= eiX~A-2~n/L)). 
If the flux value ~b is integer, the A-even component represents a superposi- 
tion of embedded-eigenvalue bound states and thus it survives, while the 
A-odd one dies out. In a real life experiment, of course, we cannot ensure 
that ~b is exactly an integer, hence we shall have rather a fast and a slowly 
decaying part of the wavefunction; recall the pole trajectories discussed in 
Sect. 5.2. 

Moreover, consider a loop to which two half-line leads are attached at 
different points and assume that we are able to switch the coupling in and 
out independently. We wait until the A-odd part in the above-described 
experiment essentially decays while the long-living component is still 
preserved, and switch from the first lead to the second one. Now the sym- 
metry with respect to the other junction is important. If the surviving part 



Magnetoresonances on a Lasso Graph 189 

of  the  w a v e f u n c t i o n  is a s u p e r p o s i t i o n  o f  an  A - e v e n  a n d  an  A - o d d  p a r t  

w i t h  respec t  to  the  la t ter ,  the  scena r io  repeats .  O f  course ,  the  " s e c o n d  

d e c a y "  m a y  p r o d u c e  a sma l l e r  c o m p o n e n t  A - o d d  w i t h  respec t  to  the  first  

j u n c t i o n ,  so the  a n a l o g y  is comple t e .  
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