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Abstract
For each simple Lie algebra g, we construct an algebra embedding of the quantum
group Uq(g) into certain quantum torus algebraDg via the positive representations of
split real quantum group. The quivers corresponding to Dg is obtained from an amal-
gamation of two basic quivers, each of which is mutation equivalent to one describing
the cluster structure of the moduli space of framed G-local system on a disk with 3
marked points on its boundary when G is of classical type. We derive a factoriza-
tion of the universal R-matrix into quantum dilogarithms of cluster monomials, and
show that conjugation by the R-matrix corresponds to a sequence of quiver mutations
which produces the half-Dehn twist rotating one puncture about the other in a twice
punctured disk.
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1 Introduction

For any finite dimensional complex simple Lie algebra g, Drinfeld [5] and Jimbo [27]
associated to it a remarkable Hopf algebra Uq(g) known as quantum group, which
is certain deformation of the universal enveloping algebra. To better understand the
structure of Uq(g), a very natural problem is to find certain embeddings into simpler
algebras. In [14,15], through the generalization of Gelfand–Tsetlin representations,
embeddings of the whole quantum group Uq(g) into certain field of rational functions
C(Tq) of quantum torus have been found. Another well-known result is provided
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by Feigin’s homomorphism [1,18,40] which embeds the lower Borel part Uq(b−) of
Uq(g) directly into a quantum torus algebra C[Tq ]. However, the explicit extension
of Feigin’s map to the whole quantum group, i.e. given by polynomial embeddings of
Uq(g) into certain quantum torus algebra, appears to be much more subtle. While the
case for Uq(sln) is known previously [30], the cases for general types have only been
solved recently with the introduction of positive representations of split real quantum
groups.

1.1 Quantum group embeddings via positive representations

The notion of positive representations was introduced in a joint work with Frenkel
[11] as a new research program devoted to the representation theory of split real
quantum groups Uq(gR) and its modular double Uqq̃(gR) introduced in [6,7], in the
regime where |q| = 1. It is motivated by the simplest case Uqq̃(sl(2, R)) which has
been studied extensively by Teschner et al. [3,38,39] from the point of view of non-
compact conformal field theory. Explicit construction of the positive representations
Pλ of Uqq̃(gR) associated to a simple Lie algebra g has been obtained for the simply-
laced case in [11,20,21] and non-simply-laced case in [22], where the generators of
the quantum groups are realized by positive essentially self-adjoint operators acting
on certain Hilbert spaces.

As a consequence of the construction, if one forgets the real structure of such
representations, one can express the generators in terms of Laurent polynomials of
certain q-commuting variables, and we obtain a full embedding of quantum groups

Uq(g) ↪→ C[Tq ] (1.1)

into certain quantum torus algebra, thus solving the long-standing problem of gener-
alizing the Feigin’s homomorphism.

The construction of the positive representations of Uq(gR) relies heavily on
Lusztig’s total positivity of reductive groups and is closely related to the structure of
the quantum principal affine space Oq [G/N ]. Its harmonic analysis on L2(G+

qq̃(R))

through the Gauss-Lusztig decomposition [24,26] also involves the structure of the
coordinate ringOq [G] and the double Bruhat cellOq [Gw0,w0 ]. Therefore the theory of
positive representations is long considered to have a strong connection to the theory of
quantum cluster algebra [2] in which these objects represent [13,16]. In particular both
theories share a similar positivity phenomenon under somemutation operations, where
for example the generators of Uq(gR) are always represented as Laurent polynomials
of positive operators with positive q-integral coefficients, thus naturally acting on Pλ

as positive self-adjoint operators.
In a recent work of [41], Schrader and Shapiro found explicitly an embedding

of Uq(sln) into certain quantum torus algebra Dsln , generalizing the well-known
result of Faddeev [6] in the case of Uq(sl2). This arises from quantizing the Fock and
Goncharov’s construction of the cluster coordinates on the moduli spaces of framed
PGLn-local systems on the punctured disk with two marked points, where the struc-
ture can be nicely summarized into certain quiver diagrams given by n-triangulations
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[10]. It turns out that their construction fit nicely into the framework of positive rep-
resentations, and one can carry over the explicit constructions of Pλ and obtain a new
quantum torus algebra embedding for arbitrary type of Uq(g).

Our first main result (Theorem 4.15) states that there is a polynomial embedding
of algebra

Uq(g) ↪→ Dg/ ∼ (1.2)

into a quantum torus algebra (modulo some central elements), which can be repre-
sented by some quiver diagrams associated to Dg. The embeddings of the generators
of Uq(g) can then be expressed explicitly by certain paths on the quiver. In particular,
the previously rather ad hoc explicit expressions, especially in the exceptional types,
can now be visualized in a very simple manner (see Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12, 13).
We expect that such new visualization of the embedding of Uq(g), especially for type
En , will provide more insight into their combinatorial aspects in general.

Furthermore, a change of words of the reduced expression of the longest element
w0 ∈ W of the Weyl group, which induces unitary equivalences of the positive
representations, correspond to certain quiver mutations and hence quantum cluster
mutations ofDg. This makes the connection between positive representations and the
theory of (quantum) cluster algebra much more explicit. It strongly suggests that in
fact we have an embedding into the global functions on the corresponding cluster
X -variety

Uq(g) ↪→
⋂

i

Di
g/ ∼ (1.3)

associated to all the seed equivalence class of Dg, where the generators of Uq(g)
stay polynomial in any cluster. However this requires a separate proof and will be
considered in future works.

Finally, the proof of injectivity of the embedding in type An by [41] involves
explicitly some combinatorial hive-type conditions related to the work of Knutson–
Tao [33]. It will be interesting to see the analogues of such combinatorics coming from
other types of quantum groups from our construction using positive representations.

1.2 Basic quivers and framed G-local systems

The quiver corresponding toDg is naturally associated to the triangulation of a punc-
tured disk with two marked points. It can be constructed by gluing (amalgamating)
two copies of “basic quivers” Q associated to a triangle. It turns out that the basic
quiver is mutation equivalent to the quiver giving a (classical) cluster algebra structure
on the moduli space of framed G-local system, or the configuration space Conf3AG

of triples of principal flags, recently discovered for classical types [35] and type G2
[34]. Both constructions require the use of elementary quivers associated to simple
reflections appearing in the reduced decomposition of the longest element w0.

In particular, by providing a different construction than the ones in [34,35], the
description of Q in this paper may allow us to construct quantum higher Teichmüller
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theory in full generality in a representation theoretical setting of quantum groups,
where the quiver describes the coordinates of the framed G-local system and their
Poisson structure, and hence also the quantization of these coordinates. The uniqueness
of Q can also potentially be used to solve the series of conjectures proposed in [34].
We also expect that such geometric description of the basic quivers will let us better
understand the geometric construction of another quantum group embedding via the
Grothendieck-Springer resolution proposed by [43], which turns out to be quite hard
to write down explicitly.

The basic quiver plays an important role in the description of the universal R-matrix
realized as half-Dehn twist, which we will described next.

1.3 Universal R-matrix as half-Dehn twist

Using the quantum cluster embedding (1.2), our second main result (Theorem 9.5
and Corollary 9.6) of the paper gives the factorization of the reduced R matrix into
products of quantum dilogarithms such that the arguments are given by monomials of
the quantum cluster variables Xi ∈ Dg associated to the chosen reduced expression
of w0, and the factorization is invariant under the change of reduced expression.

This result generalizes the factorization of [41] in type An for a specific choice of
w0, and the earlier well-known result forUq(sl2) by Faddeev [6]. It is different from the
usual multiplicative formula discovered independently by Kirillov-Reshetikhin [32]
and Levendorskii-Soibelman [36,37], which was further extended to the superalgebra
case in [31]. Since each factor is expressed in terms of quantum cluster variables, in
fact it can be viewed as a sequence of quiver mutations on two copies of theDg-quiver
associated to a disk of two punctures and two marked points.

Our finalmain result of the paper (Theorem10.1) shows that the conjugation by the
universal R-matrix corresponds to a sequence of quiver mutations which produces the
half-Dehn twist rotating one puncture about the other in the twice punctured disk. This
factorization can also be split into 4 blocks such that each block corresponds to a flip of
triangulations of the twice punctured disk, where the basic quiver Q associated to each
triangle is being mutated to a different configuration. This new description of the flip
of triangulations by quiver mutations associated to the reduced R-matrix provides a
new and important tool to study the long standing conjecture of the closure of positive
representations under taking tensor product, which has been tackled recently for type
An in [42], as well as the restriction to the quantum Borel subalgebra in general types,
which will appear in a separate publication [19]. (See also the remarks about split real
setting in Sect. 1.4 below).

In the case ofUq(sl2), such identificationof the factorizationof the R-matrix appears
in quantum Teichmüller theory [28] as an element of the mapping class group, and
the corresponding factorization is also used to re-derive Kashaev’s knot invariant [17].
For general Hopf algebra A, Kashaev has constructed an embedding φ : D(A) −→
H(A)⊗H(A)op of the Drinfeld’s doubleD(A) into a tensor square of the Heisenberg
double H(A), and the image of the universal R-matrix can be similarly decomposed
into a product of 4 variants of the S-tensors [29]:
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φ⊗2(R) = S′′
14S13˜S24S

′
23 ∈ (H(A) ⊗ H(A)op)⊗2. (1.4)

This has been utilized for example to construct new quantum invariant for “colored
triangulations” of topological spaces recently [44]. Although the two factorizations
are realized on different tensor spaces, we believe there is a strong connection between
the two different factorizations, whereA is identified with the Borel part of Uq(g), and
it will be interesting to find an explicit relationship between them. We hope that the
factorization in this paper opens up a new class of invariants which can be explicitly
constructed.

1.4 Generalization to the split real setting

The embeddings of quantum groups as well as the factorization of R-matrix in this
paper is treated in a formal algebraic setting. However, as the construction comes
from the positive representations of split real quantum groups, it is natural to conclude
that the theory developed in this paper can be generalized to the split real setting.
For example, the monomials of the embedding constructed out of the quantum cluster
variables Xi ∈ Dg are all manifestly positive self-adjoint if we put back in the split
real form.

In particular, throughout the paper, we use the correspondence (see Remark 3.7 for
more details):

�q(x) ∼ g∗
b(x) (1.5)

to identify both the compact and non-compact quantum dilogarithm functions. This
suggests that in fact all the quiver mutations and R-matrix decomposition work in the
split real setting. In this case the non-compact version is well-defined as the quantum
cluster variables are manifestly positive self-adjoint, therefore the formal power series
manipulations can be replaced by actions of unitary operators.

Furthermore, Faddeev’s modular double can be easily recovered by applying the
transcendental relations [6,11] to the quantum cluster variables:

˜Xi := X
1
bi
i , (1.6)

and the simple analytic version of the Langlands duality [22] interchanging the long
and short roots can then be easily recovered as well (this is made more explicit in the
quiver diagrams of type Bn,Cn and G2). The perspectives of the applications of such
phenomenon in the split real case look very promising, andwill be explored elsewhere.

1.5 Outline of the paper

The paper is organized as follows. In Sect. 2, we fix the convention used throughout
the paper and recall the definition of quantum group Uq(g). In Sect. 3, we recall the
definition and properties of quantum torus algebra, the associated quivers, and their
cluster structure. In Sect. 4, we recall the construction of the positive representations of
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split real quantumgroups, and define the newquantum torus algebraDg inwhichUq(g)
embeds. In Sect. 5 we construct explicitly theDg-quiver associated to the algebraDg

using the elementary quivers, and in Sect. 6 we give an explicit embedding of Uq(g)
for all each simple types of g, where the generators are represented by certain paths
on the quivers.

In Sect. 7 we discuss the quiver mutations associated to a change of reduced expres-
sion of the longest element w0 ∈ W of the Weyl group, and we use this to show in
Sect. 8 that the basic quiver associated to a triangle of a triangulation is uniquely
defined.

In Sect. 9 we recall the definition of universal R-matrix, and using the quantum
group embedding, we give a factorization formula of R, which is proved in Sect. 11.
Finally in Sect. 10, we show that the factorization of R can be realized as half-Dehn
twist of a twice punctured disk with two marked points, where the basic quiver asso-
ciated to each triangle is mutated to certain new configurations, and we give explicitly
its sequence of mutations.

2 Notations and definitions ofUq(g)

In order to fix the convention we use throughout the paper, we follow the notations
used in [22,23] for the root systems and recall the definition of the quantum group
Uq(g), where g is of general type [4], as well as the Drinfeld’s doubleDg of the Borel
part.

Definition 2.1 Let I denote the set of nodes of the Dynkin diagram of g where

|I | = n = rank(g). (2.1)

Let w0 ∈ W be the longest element of the Weyl group of g, and let

N := l(w0) = dim n− (2.2)

be its length, which is also the dimension of the unipotent subgroup n− of g.
We call a sequence i = (i1, . . . , iN ) ∈ I N a reduced word of w0 if w0 = si1 . . . siN

is a reduced expression, where sik are the simple reflections of the root space.1 We
denote by R the set of all reduced words of w0.

We let nii ∈ Z>0 be the number of letter i appearing in i. We will write ni := nii
if no confusion arises. If we have another reduced word i′ ∈ R, we will sometimes
write i′ = (i ′1, . . . , i ′N ) and n′

i := ni
′
i .

Clearly we have

n
∑

i=1

ni = N . (2.3)

1 We will sometimes omit the commas in i for typesetting purpose.
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Definition 2.2 We index the nodes I of the Dynkin diagrams as follow, where black
nodes correspond to short roots, and white nodes correspond to long roots.

• Type An :

1 2 3 4 5 n

• Type Bn :

1 2 3 4 5 n

• Type Cn :

1 2 3 4 5 n

• Type Dn :

2 3 4 5 n − 10

1

• Type En :

1 2 3 4 n − 1

0

• Type F4:

1 2 3 4

• Type G2:

1 2

Definition 2.3 Let q be a formal parameter. Let {αi }i∈I be the set of positive simple
roots. Let (−,−) be the W -invariant inner product of the root lattice, and we define

ai j := 2(αi , α j )

(αi , αi )
, (2.4)

such that A := (ai j ) is the Cartan matrix.
We normalize (−,−) as follows: we choose the symmetrization factors (also called

the multipliers)

di := 1

2
(αi , αi ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 i is long root or in the simply-laced case,

1
2 i is short root in type B,C, F,

1
3 i is short root in type G2,

(2.5)
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and (αi , α j ) = −1 when i, j are adjacent in the Dynkin diagram, such that

diai j = d ja ji .

We then define

qi := qdi , (2.6)

which we will also write as

ql := q, (2.7)

qs :=
{

q
1
2 if g is of type Bn,Cn, F4,

q
1
3 if g is of type G2,

(2.8)

for the q parameters corresponding to long and short roots respectively.

Definition 2.4 Let A = (ai j ) denote the Cartan matrix. We defineDg to be the C(qs)-
algebra generated by the elements

{Ei , Fi , K
±1
i , K ′±1

i |i ∈ I }

subject to the following relations (we will omit the relations involving K−1
i , K ′

i
−1

below for simplicity):

Ki E j = q
ai j
i E j Ki , Ki Fj = q

−ai j
i Fj Ki , (2.9)

K ′
i E j = q

−ai j
i E j K

′
i , K ′

i Fj = q
ai j
i Fj K

′
i , (2.10)

Ki K j = K j Ki , K ′
i K

′
j = K ′

j K
′
i , Ki K

′
j = K ′

j Ki , (2.11)

[Ei , Fj ] = δi j
Ki − K ′

i

qi − q−1
i

, (2.12)

together with the Serre relations for i �= j :

1−ai j
∑

k=0

(−1)k
[1 − ai j ]qi !

[1 − ai j − k]qi ![k]qi !
Ek
i E j E

1−ai j−k
i = 0, (2.13)

1−ai j
∑

k=0

(−1)k
[1 − ai j ]qi !

[1 − ai j − k]qi ![k]qi !
Fk
i Fj F

1−ai j−k
i = 0, (2.14)

where [k]q := qk−q−k

q−q−1 is the q-number and [n]q ! := ∏n
k=1[k]q the q-factorial.
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The algebra Dg is a Hopf algebra with comultiplication

�(Ei ) = 1 ⊗ Ei + Ei ⊗ Ki , �(Ki ) = Ki ⊗ Ki , (2.15)

�(Fi ) = Fi ⊗ 1 + K ′
i ⊗ Fi , �(K ′

i ) = K ′
i ⊗ K ′

i , (2.16)

the counit

ε(Ei ) = ε(Fi ) = 0, ε(Ki ) = ε(K ′
i ) = 1, (2.17)

and antipode

S(Ei ) = −K−1
i Ei , S(Ki ) = K−1

i , (2.18)

S(Fi ) = −Fi Ki , S(K ′
i ) = (K ′

i )
−1. (2.19)

Definition 2.5 The quantum group Uq(g) is defined as the quotient

Ug(g) := Dg/〈Ki K
′
i = 1|i ∈ I 〉, (2.20)

and it inherits a well-defined Hopf algebra structure fromDg.

Remark 2.6 Dg is the Drinfeld’s double of the quantum Borel subalgebra Uq(b) gen-
erated by Ei and Ki .

Definition 2.7 We define the rescaled generators

ei :=
( √−1

qi − q−1
i

)−1

Ei , fi :=
( √−1

qi − q−1
i

)−1

Fi . (2.21)

By abuse of notation, we will also denote by Dg the C(qs)-algebra generated by

{ei , fi , Ki , K
′
i |i ∈ I }

and the corresponding quotient by Uq(g). The generators satisfy all the defining rela-
tions above except (2.12) which is modified to be

[ei , f j ] = δi j (qi − q−1
i )(K ′

i − Ki ). (2.22)

3 Quantum clusterX -tori

We recall the definition of the quantum cluster X -tori following [10,41] and their
properties that are needed, as well as some notations and modification that fit the
needs of this paper.
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Fig. 1 Arrows between nodes
and their algebraic meaning

3.1 Quantum torus algebra and quivers

Definition 3.1 (Quantum torus algebra) A seed i is a triple (I, I0, B, D) where I
is a finite set, I0 ⊂ I is a subset called the frozen subset, B = (bi j )i, j∈I a skew-
symmetrizable Q-valued matrix called the exchange matrix, and D = diag(di )i∈I is
a diagonal matrix such that DB = −BT D is skew-symmetric.

Let q be a formal parameter. We define the quantum torus algebra Xi associated to
the seed i to be an associative algebra over C(qd), where d = mini∈I(di ), generated
by {Xi }i∈I subject to the relations

Xi X j = q
−2bi j
i X j Xi , i, j ∈ I (3.1)

where qi := qdi . The generators Xi are called the quantum cluster variables, and they
are said to be frozen if i ∈ I0. We call di themultipliers of the variables Xi . We denote
by Ti the non-commutative field of fraction of Xi.

The structure of the quantum torus algebra Xi associated to a seed i can be conve-
niently encoded in a quiver:

Definition 3.2 (Quiver associated to i)We associate to each seed i a generalized quiver
Qi = (Q0, w) with vertices Q0 labeled by I, and for each pair i, j ∈ Q0 a weight

wi j := dibi j = −w j i . (3.2)

Wewill drawarrows from i
wi j−−→ j ifwi j > 0.Wewill call an isomorphismπ : S 
 Q0

from a finite set S an external label of the quiver Q.

We will use squares to denote frozen nodes i ∈ I0 and circles otherwise. In the
sequel, when qi = qs or ql given by Definition 2.3, we will distinguish the arrows by
thick or thin arrows instead of writing the weights. We will also use dashed lines to
denote arrows with weightwi j = 1

2 , which only occurs between frozen nodes (Fig. 1).
We introduce the following notations which will be useful throughout the paper:

Definition 3.3 We denote by

Xi
m1
1 ,...,imn

n
:= qC Xm1

i1
. . . Xmn

in
, (3.3)
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where C is the unique rational number such that

qC Xm1
i1

. . . Xmn
in

= q−C Xmn
in

. . . Xm1
i1

.

Explicitly, if Xi X j = qci j X j Xi , then

C = −1

2

∑

p>q

m pmqci piq . (3.4)

If we introduce a ∗-structure such that q∗ = q−1 and X∗
i = Xi (and positive), then

the expression Xi
m1
1 ,...,imn

n
is also (positive) self-adjoint.

We also denote by

X(i1, . . . , in) :=
n
∑

k=1

Xi1,...,ik . (3.5)

Definition 3.4 A permutation of a seed σ : i −→ i′ is a bijection σ : I −→ I′ such
that

σ(I0) = I′0,
b′
i j = bσ(i)σ ( j),

d ′
i = dσ(i).

It induces an isomorphism σ ∗ : Ti′ −→ Ti by

σ ∗(̂Xσ(i)) := Xi ,

where ̂Xσ(i) denotes the quantum cluster variables of Ti′ .

3.2 Quantum cluster mutation

Next we define the cluster mutations of a seed and its quiver, and the quantum cluster
mutations for the algebra. Here we will use the notion that keeps the indexing I of the
seeds, which ensures the consistency of the relation μ2

k = Id.

Definition 3.5 (Cluster mutation) Given a pair of seeds i = (I, I0, B, D), i′ =
(I′, I′0, B ′, D′) with I = I′, I0 = I′0, and an element k ∈ I\I0, a cluster mutation
in direction k is an isomorphism μk : i −→ i′ such that μk(i) = i for all i ∈ I, and

b′
i j =

{−bi j if i = k or j = k,

bi j + bik |bk j |+|bik |bk j
2 otherwise,

(3.6)

d ′
i = di . (3.7)
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Then the quiver mutation Qi −→ Qi′ corresponding to the mutation μk can be
performed by:

(1) reverse all the arrows incident to the vertex k;

(2) for each pair of arrows i
wik−−→ k and k

wk j−−→ j , update the arrow i
wi j+ wikwk j

dk−−−−−−−→ j .
(3) delete any arrows with weight wi j = 0.

Definition 3.6 (Quantum cluster mutation) The cluster mutation in direction k, μk :
i −→ i′, induces an isomorphismμ

q
k : Ti′ −→ Ti called thequantumclustermutation,

defined by

μ
q
k (
̂Xi ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

X−1
k if i = k,

Xi

|bki |
∏

r=1

(1 + q2r−1
i Xk) if i �= k and bki ≤ 0,

Xi

bki
∏

r=1

(1 + q2r−1
i X−1

k )−1 if i �= k and bki ≥ 0,

(3.8)

where we denote by ̂Xi the quantum cluster variables corresponding to Xi′ with
exchange matrix B ′, i.e. b′

ki = −bki for every i ∈ I.
The quantum cluster mutation μ

q
k can be written as a composition of two homo-

morphisms

μ
q
k = μ#

k ◦ μ′
k, (3.9)

where μ′
k : Ti′ −→ Ti is a monomial transformation defined by

μ′
k(
̂Xi ) :=

⎧

⎪

⎨

⎪

⎩

X−1
k if i = k,

Xi if i �= k and bki ≤ 0,

qbikbkii Xi X
bki
k if i �= k and bki ≥ 0,

(3.10)

and μ#
k : Ti −→ Ti is a conjugation by the quantum dilogarithm function

μ#
k := Ad�qk (Xk ), (3.11)

where �q(x) is given by a formal power series in x :

�q(x) :=
∞
∏

r=0

(1 + q2r+1x)−1. (3.12)

In the remaining of the paper, however, we will use the notation

gbk (x) := �qk (x)−1, (3.13)
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g∗
bk (x) := g−1

bk
(x) = �qk (x) (3.14)

instead, in accordance to the universal R-operator formula given in [23]. The various
identities of gb(x) that are needed in this paper are summarized in “Appendix A”.

Remark 3.7 We remark that in the split real setting where |q| = 1 is given by q =
eπ

√−1b2 , gb(x) is the notation for the non-compact quantum dilogarithm, which plays
a central role in the theory of positive representation, various quantum Teichmüller
theories [10,28] and non-rational conformal field theories [3,38,39]. It is composed
by two commuting copies, associated to the so-called Faddeev’s modular double, of
the compact quantum dilogarithm �q(x) [6,8], and it is a unitary operator when x is
positive self-adjoint.

In this paper however, we are only interested in the formal algebraic theory, hence
one may consider only the compact part and think of the correspondence

gb(x) ∼ �q(x)−1 =
∞
∏

r=0

(1 + q2r+1
k x) = Expq−2

(

− u

q − q−1

)

, (3.15)

where

Expq(x) :=
∑

k≥0

xk

(k)q ! , (3.16)

(k)q := 1 − qk

1 − q
. (3.17)

The use of the notation gb(x) suggests that the theory of the current paper can be nat-
urally applied to the case of the non-compact split real setting, where all the algebraic
relations are satisfied, and naturally the positivity and self-adjointness of the operators
are automatically taken care into account, which makes the choice extremely natural.

The following version of the useful Lemma from [41, Lemma 1.1] is rewritten in
the notation of the current paper:

Lemma 3.8 Let μi1 , . . . , μik be a sequence of mutations, and denote the intermediate
seeds by i j := μi j . . . μi1(i). Then the induced quantum cluster mutation μ

q
i1

. . . μ
q
ik

:
Tik −→ Ti can be written as

μ
q
i1

. . . μ
q
ik

= �k ◦ Mk, (3.18)

where Mk : Tik −→ Ti and �k : Ti −→ Ti are given by

Mk := μ′
i1μ

′
i2 . . . μ′

ik , (3.19)

�k := Adg∗
bi1

(Xi1 )Adg∗
bi2

(M1(X
i1
i2

))
. . . Ad

g∗
bik

(Mk−1(X
ik−1
ik

))
, (3.20)

and X
i j
i denotes the corresponding quantum cluster variables of the algebra Xi j .
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3.3 Amalgamation

We also recall the procedure of amalgamation of two quivers [9]:

Definition 3.9 Let Q1 := Qi1 and Q2 := Qi2 be a pair of quivers associated to
the seed i1 = (I1, I10, B

1, D1), i2 = (I2, I20, B
2, D2) and with edge weights w1, w2

respectively, and let J1 ⊂ I10, J2 ⊂ I20 be certain subsets of the frozen nodes of Q1 and
Q2 respectively. Assume there exists a bijection φ : J1 −→ J2 such that dφ(i) = di for
i ∈ J1. Then the amalgamation of Q1 and Q2 along φ is a new quiver Q constructed
as follows:

(1) The vertices of Q are given by Q1 ∪φ Q2 by identifying vertices i ∈ Q1 and
φ(i) ∈ Q2 and assigned with the same weight di ,

(2) The frozen nodes of Q are given by (I10\J1)�(I20\J2), i.e. we “defroze” the vertices
that are glued.

(3) The weights w of the edges of Q are given by

wi j =

⎧

⎪

⎨

⎪

⎩

0 if i ∈ Ik\Jk and j ∈ I2−k\J2−k for k = 1, 2,

wk
i j if i ∈ Ik\Jk or j ∈ Ik\Jk for k = 1, 2,

w1
i j + w2

φ(i)φ( j) if i, j ∈ J1.

Amalgamation of a pair of quiver induces an embedding X −→ X1 ⊗ X2 of the
corresponding quantum cluster X -tori by

Xi �→

⎧

⎪

⎨

⎪

⎩

Xi ⊗ 1 if i ∈ Q1\J1,
1 ⊗ Xi if i ∈ Q2\J2,
Xi ⊗ Xφ(i) otherwise.

(3.21)

Visually this is just gluing two quivers together along the chosen frozen nodes, such
that the weights of the corresponding arrows among those nodes are added.

4 From positive representations to quantum group embedding

In this section, we recall the explicit structure of positive representations of estab-
lished in the previous works, and from their explicit expressions we provide the main
construction of this paper, where we embed Uq(g) into certain quantum torus algebra
Dg.

4.1 Positive representationsP� ofUq(gR)

In [11,21,22], a special class of representations called the positive representations is
constructed for split real quantum groups Uq(gR) (and its modular double, which is
not needed in this paper). Here Uq(gR) is a Hopf ∗-algebra, defined to be the real form
of Uq(g) equipped with in addition the star structure
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e∗
i = ei , f∗i = fi , K ∗

i = Ki , (4.1)

and necessarily |qi | = 1 for every i ∈ I , whence we let qi := eπ
√−1b2i ∈ C for

bi ∈ R.

Remark 4.1 In the setting of positive representations, we assumed the qi ’s are not root
of unity for simplicity, such that the quantum dilogarithm function gb(x) consists only
of simple zeros and poles, and the intertwiners involving gb(x) are well-defined. In
the remainder of the paper however, we will treat qi as formal variables and hence
such assumption can be dropped.

Theorem 4.2 (Positive representations) There exists a family of irreducible represen-
tations Pλ of Uq(gR) parametrized by the R≥0-span of the cone of dominant weights,
λ ∈ P+

R
⊂ h∗

R
, or equivalently by λ := (λ1, . . . , λn) ∈ R

n≥0 where n = rank(g), such
that

• For each reduced word i ∈ R, the generators ei , fi , Ki are represented by positive
essentially self-adjoint operators acting on L2(RN ),

• Each generators can be represented by a sum of monomials generated by the
positive operators

{e±πbi xi , e±2πbi pi }i=1,...,N ,

where pi = 1
2π

√−1
∂

∂xi
are the momentum operators such that [pi , xi ] = 1

2π
√−1

,

and eachmonomials are positive essentially self-adjoint. These expressions depend
on the choice of reduced word i ∈ R.

• There exists a unitary equivalence� between positive representations correspond-
ing to different reduced words, hence the representation does not depend on the
choice of reduced expression of w0.

In the theory of positive representations of split real quantum groups, the represen-
tation carries a real structure and the operators are represented by unbounded positive
operators on certain Hilbert spaces. However in this paper, we will only be dealing
with the representations formally, so all the generators and relations are treated on the
algebraic level only. In particular, if we define formally

U±1
i = e±πbi xi , V±1

i = e±2πbi pi , (4.2)

then algebraically we have for i = 1, . . . , N :

UiVi = qi ViUi ,

UiVj = VjUi , i �= j . (4.3)

As a corollary, if we just consider the quantum torus algebraC[Tq ] generated by the
elements {U±1

i , V±1
i }i=1,...,N subjected to (4.3), then the irreducibility of Pλ implies

that
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Corollary 4.3 [21,22] The positive representations give an embedding of Uq(g) into
C[Tq ], generalizing the Feigin’s homomorphism Uq(b−) −→ C[Tq ].
Remark 4.4 In [21,22], we showed that one can shift the generators ei , fi by some
appropriate Ki factors such that the “modified quantum group” Uq(g) embeds into
the “true” quantum torus algebra C〈U±1

i ,V±1
i 〉 with the relations UiVi = q2i ViUi

instead.

4.2 Explicit construction ofP�

The positive representations Pλ were computed explicitly for all types of g. Let us
first recall some notations used in [21,22].

Definition 4.5 We denote by pu = 1
2π

√−1
∂
∂u and

e(u) := eπbu, [u] := q
1
2 e(u) + q− 1

2 e(−u), (4.4)

so that whenever [p, u] = 1
2π

√−1
,

[u]e(−2p) := (q
1
2 eπbu + q− 1

2 e−πbu)e−2πbp

= eπbu−2πbp + e−2πbu−2πbp

= e(u − 2p) + e(−u − 2p)

is self-adjoint.

Definition 4.6 (Notation) Let i = (i1, . . . , iN ) ∈ R be a reduced word for w0. We
associate to i a set of N variables indexed in two ways:

• uki denotes the k-th variables from the left2 in i corresponding to the root index i .
• v j denotes the j-th variable from the left in i, i.e. corresponding to i j , and i j is the
root index corresponding to v j .

• We denote the corresponding momentum operators as pki and p j respectively if
no confusion arises.

• v(i, k) denotes the index such that uki = vv(i,k).

Example 4.7 For type A3, let i = (1, 2, 1, 3, 2, 1). Then the 6 variables are ordered
as:

(u11, u
1
2, u

2
1, u

1
3, u

2
2, u

3
1) = (v1, v2, v3, v4, v5, v6).

Definition 4.8 By abuse of notation, we denote by

[us + ul ]e(−2ps − 2pl) := eπbs (−us−2ps )+πbl (−ul−2pl ) + eπbs (us−2ps )+πbl (ul−2pl ),

(4.5)

2 This differs from the previous notation used in [21,22] where the variables read from the right. This
version will be more convenient in this paper.
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whenever us (resp. ul ) is a linear combination of the variables uki and the parameters
λi , corresponding to short (resp. long) root index i . Similarly ps (resp. pl ) are linear
combinations of the momentum variables pki corresponding to short (resp. long) root
index i . This applies to all simple g, with the convention given in Definition 2.3.

Now we can summarize the construction of the positive representations as follows:

Theorem 4.9 Given a reduced word i ∈ R, the positive representation Pλ 
 L2(RN )

of Uq(gR) is parametrized by λ = (λi ) ∈ R
n≥0, and the generators are represented in

the form

fi := f1i + f2i + · · · + fnii , (4.6)

Ki := e

⎛

⎝2λi −
N
∑

j=1

ai j ,iv j

⎞

⎠ , (4.7)

where

fki =
⎡

⎣−
v(i,k)
∑

j=1

ai j ,iv j + uki + 2λi

⎤

⎦ e(2pki ) (4.8)

= e

⎛

⎝−
v(i,k)
∑

j=1

ai j ,iv j + uki + 2λi + 2pki

⎞

⎠ + e

⎛

⎝

v(i,k)
∑

j=1

ai j ,iv j − uki + 2λi + 2pki

⎞

⎠

=: fk,−i + f k,+i (4.9)

splitting according to Definition 4.8.
The representation of e j is explicitly written case by case. In general, if j = iN ,

then

e j = [vN ]e(−pN ), (4.10)

Otherwise

e j = � ◦ [vN ]e(−2pN ) ◦ �−1, (4.11)

where we recall� is the unitary transformation, expressed in terms of quantum dilog-
arithms, that relates Pλ to another representations corresponding to a reduced word
i′ ∈ R with i ′N = j .

Theorem 4.10 Each generator e j is expressed as a Laurant polynomial in Ui and Vi
[(cf. (4.2)], with a unique initial term of the form [uki ]e(−2pki + · · · ) for some index
i and k. One determines this initial term by applying the transformation (4.11) and
tracing the changes of the corresponding initial term by the following rules:
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• if j = iN , then from (4.10) the initial term is [viN ] by definition.
• If we have a change of word (. . . i, j, i, . . .) ←→ (. . . , j, i, j, . . .), inducing a
change of variables

(. . . , uki , u
l
j , u

k+1
i , . . .) ←→ (. . . , ulj , u

k
i , u

l+1
j , . . .),

then the initial term changes from [uki ] ←→ [ul+1
j ].

• If we have a change ofword (. . . , i, j, i, j, . . .) ←→ (. . . , j, i, j, i, . . .), inducing
a change of variables

(. . . , uki , u
l
j , u

k+1
i , ul+1

j . . .) ←→ (. . . , ulj , u
k
i , u

l+1
j , uk+1

i . . .),

then the initial term changes from [ulj ] ←→ [ul+1
j ].

• In type G2, for the change of word (2, 1, 2, 1, 2, 1) ←→ (1, 2, 1, 2, 1, 2), the
initial term for e1 is [u31] ←→ [u11] and initial term for e2 is [u12] ←→ [u32].

From the explicit expression (4.8), we have

Proposition 4.11 If we write fi as

fi = fni ,−i + fni−1,−
i + · · · + f1,−i + f1,+i + f2,+i + · · · + fni ,+i ,

then each term q−2
i -commute (i.e. AB = q−2

i B A) with all the terms on the right, and
each term q−2

i -commute with K−1
i .

Remark 4.12 Feigin’s homomorphism Uq(b−) −→ C[Tq ] is given by the expression
of Ki and half of fi :

f ′i := f1,+i + f2,+i + · · · + fni ,+i

only, so the expression of Theorem 4.9 is really a “double” of Feigin’s homomorphism.

4.3 Embedding ofUq(g) into quantum torus algebraDg

Now we are ready to construct the quantum torus algebraDg in the flavor of [41] that
will provide a clear description of the embedding of the generators of the quantum
group Uq(g).

Definition 4.13 Define 2N + 2n variables indexed by

S = { f −ni
i , . . . , f nii }i∈I ∪ {e0i }i∈I 
 {1, . . . , 2N + 2n}
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as follows: For each i ∈ I , we take the consecutive “ratio” of the monomial terms of
fi as:

X f ki
:=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

fni ,−i k = −ni ,

qi f
k,−
i (fk−1,−

i )−1 k < 0,

qi f
1,+
i (f1,−i )−1 k = 0,

qi f
k+1,+
i (f k,+i )−1 k > 0,

qi K
−1
i (fni ,+i )−1 k = ni .

(4.12)

Let the initial term of ei be

[vn]e(−2pn) = e(vn − 2pn) + e(−vn − 2pn)

=: en,−
i + en,+

i

as in Theorem 4.10. Then we define

Xe0i
:= qie

n,+
i (en,−

i )−1 = e(−2vn). (4.13)

We note that the qi factors are chosen such that each Xk is self-adjoint. Moreover,
since all Xk are expressed formally as a monomial of {U±1

i , V±1
i } as in (4.2), we have

X j Xk = q
−2b jk
j Xk X j (4.14)

for some skew-symmetrizable exchange matrix B = (b jk) and q j := qi if j = f ki or
e0i . By abuse of notation, we will use the same variables for the definition below:

Definition 4.14 We define the quantum torus algebra Dg to be the algebra generated
by the N + 2n variables

X
f
−ni
i

, . . . , X f
ni
i

, Xe0i
, i = 1, . . . , n

subject to the relations (4.14).
The corresponding Dg-quiver is associated to the seed (S, S0, B, D) with frozen

nodes

S0 = { f −ni
i }i∈I ∪ { f nii }i∈I ∪ {e0i }i∈I

The multiplier D = diag(d j ) j∈S is defined by d j := di if j = f ki or e0i , and di for
i ∈ I is given as in (2.5).

Now we can state our first main result of the paper.

Theorem 4.15 We have an embedding of algebra

ι : Dg ↪→ Dg, (4.15)
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which induces an embedding of the quantum group into a quotient of Dg

Uq(g) ↪→ Dg/〈ι(Ki )ι(Ki )
′ = 1〉. (4.16)

Proof By construction from (4.12), we can write (cf. Definition 3.3)

fi = X
f
−ni
i

+ qi X f
−ni
i

X
f
−ni+1
i

+ · · · + qni−1
i X

f
−ni
i

. . . X
f
ni−1
i

= X( f −ni
i , f −ni+1

i , . . . , f ni−1
i )

K ′
i = X

f
−ni
i ,..., f

ni
i

.

Given a reduced word i = (i1, . . . , iN ) ∈ R, if i = iN , then one computes explicitly

ei = [u1i ]e(−2p1i )

= eπbi u1i −2πbi p1i + eπbi u1i −2πbi p1i

= X f
ni
i

+ qi X f
ni
i
Xe0i

= X( f nii , e0i ),

Ki = X
f
ni
i ,e0i , f

−ni
i

.

Otherwise, from the construction of positive representation, each mutation of the
reduced expression of w0 correspond to a unitary transformation � given by the
quantum dilogarithm function with an argument given by a consecutive difference of
the fni ’s in the corresponding mutated quiver. (This is described in detail in Sect. 7.)
Hence ei will be expressed as a sum of monomials, each of which is expressed as a
product of X f ni

and the ratios between the initial term, which is given by Xe0i
. The

explicit expression is given in the next section.
Furthermore, the unitary transformation � has the properties that for any reduced

word i ∈ R, if e j is expressed as a sum

ei = Xi1 + · · · + Xi1,...,ik ,

then the leading term Xi1 = X f
ni
i

and the ending term satisfies

Xi1,...,ik X f
−ni
i

= q−2
i X

f
−ni
i

Xi1,...,ik .

The unitary transformation �, while inducing a change of variables given by a
linear transformation, will preserve the monomial Ki . Hence from the relation

[ei , fi ] = (qi − q−1
i )(K ′

i − Ki ),
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we see that the term X
i1,...,ik , f

−ni
i

does not vanish. Since we already have K ′
i =

X
f
−ni
i ,..., f

ni
i
, we must have

Ki = X
i1,...,ik , f

−ni
i

,

hence giving the desired homomorphism of Dg into Dg.
To see that ι is an embedding, we first note that the positive representation Pλ is a

faithful irreducible representation coming from the quantization of the induced repre-
sentation of the left regular representation. Then by choosing explicitly the parameters
λ such that

2
√−1λi ∈ Qi + biN, Qi := bi + b−1

i , (4.17)

we recover every finite dimensional highest weight irreducible representation for the
compact quantum group Uq(g). (see [25], where this fact has been utilized to calculate
the eigenvalues of the positive Casimir operators.) In particular, all the PBW basis
cannot be identically zero in the representation, hence the homomorphism ι is indeed
an embedding.

Finally, we note that the monomial ι(Ki )ι(K ′
i ) lies in the center of the algebra

Dg. Hence taking the quotient with 〈ι(Ki )ι(K ′
i ) = 1〉, i ∈ I we obtain the desired

embedding of Uq(g) as well. ��

Remark 4.16 This result is stronger than the embedding given by Corollary 4.3 since
we do not require to take inverses of the generators of Dg, i.e. it is a polynomial
embedding.

Remark 4.17 Note that by the Cartan involution, one can also define another embed-
ding

ιw : Dg −→ Dg,

ei �→ ι(fi ),

fi �→ ι(ei ),

Ki �→ ι(K ′
i ),

K ′
i �→ ι(Ki ).

This interchanges the expressions of the explicit embeddings of ei and fi in the quantum
torus algebra Dg.

Remark 4.18 In [41], the proof of the injectivity of ι for type An is explicitly checked
on the PBW basis. The expression relating the PBW exponents to those of the q-
tori generators turns out to involve some combinatorial hive-type conditions from the
work of Knutson–Tao [33]. It will be interesting to see explicitly analogues of such
combinatorics in other types.
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5 Construction of theDg-quiver

In the previous section, we show the embedding of the quantum groups into a quan-
tum torus algebraDg, where the q-commutation relations are encoded in the exchange
matrix B. In this section, let us describe the general construction of the quiver associ-
ated to the Dg algebra for g of all types in more details.

5.1 Relation among cluster variables

First we have the obvious relations.

Lemma 5.1 X f 0i
and Xe0i

mutually commute with each other.

Proof By Definition 4.13, the formal expression of all the X f 0i
’s and Xe0i

’s do not
contain any momentum operators e(2p), hence they commute with each other. ��

Next we have the following observation:

Lemma 5.2 Recall that Fk,±
i is defined in (4.8). We have

Fk,±
i Fl,±

j = q
∓ai j
i Fl,±

j Fk,±
i (5.1)

if v(i, k) < v( j, l).

Proof Let us consider the + case, while the − case is similar. By definition, if
v(i, k) < v( j, l), then there are no terms of ulj appearing in Fk,+

i , hence e(2plj )

in Fl,+
j commutes with everything in Fk,+

i , while e(2pki ) from Fk,+
i q-commutes

with e(· · · + ai j uki + · · · ) from Fl,+
j giving the factor q

−ai j
i . ��

Thus one can derive the commutation relation directly between the variables X f ki
and X f lj

. First, by construction we have

X f ki
X f li

= q−2
i X f li

X f ki
(5.2)

whenever l = k + 1 and commute otherwise.

Corollary 5.3 Assume i �= j, k, l ≥ 0 and v(i, k) < v( j, l), we have:

X f ki
X f lj

= qCi X f lj
X f ki

, (5.3)

where

C =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2ai j v(i, k) < v( j, l) < v(i, k + 1) < v( j, l + 1),

0 v(i, k) < v( j, l) < v( j, l + 1) < v(i, k + 1),

0 v(i, k) < v(i, k + 1) < v( j, l) < v( j, l + 1),

ai j k = ni and l = n j ,
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where in the inequalities we let the boundaries be v(i, 0) := −∞ and v(i, ni ) := +∞.

Next, we observe that by construction, the cluster variables X f ki
and X f lj

with

k, l ≤ 0 have exactly the commutation relations opposite to (5.3), while if k, l �= 0
have different signs they commute with each other.

Finally, the cluster variables Xe0i
is given by e(−2ukj ) where [ukj ] is the initial term

of the positive representation of ei which is determined explicitly by Theorem 4.10.
Then we have

Xe0i
X f kj

= q2i X f kj
Xe0i

,

Xe0i
X f k−1

j
= q−2

i X f k−1
j

Xe0i
, k �= 1.

Combining the above relations among Xk , this completes the description of the Dg-
quiver. From Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, we can also conclude:

Corollary 5.4 For specific choices of w0, the Dg-quiver is plannar when g is of type
An, Bn,Cn, F4 and G2, i.e. when the Dynkin diagram has no branches.

5.2 Elementary quiver associated to simple reflections

With the above observations, a more conceptual way of constructing the Dg quiver
motivated by [34] is as follows. We define the following quiver:

Definition 5.5 The elementary quiver Qk
i associated to the k-th simple reflection si

with root index i of the reduced expression ofw0, i.e. to the variable uki , is constructed
by the frozen nodes

f k−1
i f ki

di

and for every j ∈ I with ai j < 0 we have in addition

f k−1
i f ki

f lj

for the unique l with v( j, l) < v(i, k) < v( j, l + 1), and the nodes f ai have weight
di .

Recall from Definition 3.2 that the weight of the dashed arrows are w = 1
2 .

For example, in type A3, an elementary quiver associated to s2 is drawn as in Fig. 2,
where we indicate the corresponding simple reflection.

Proposition 5.6 The subquiver of the Dg-quiver generated by f ni with n ≥ 0 corre-
sponding to the reduced word i = (i1, . . . , iN ) ∈ R is given by amalgamation of the
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Fig. 2 Elementary quiver in type
A3

fa
2 fa+1

2

f b
1

f c
3

s2

elementary quivers Qk
i in the same order as i along vertices with the same indices,

ignoring the arrows between f 0i ’s.
The subquiver of the Dg-quiver generated by f ni for all n corresponding to the

reducedword (i1, . . . , iN ) ∈ R is obtained by amalgamation of the elementary quivers
Q±k

i in the same order as ii along vertices with the same indices, where Q−k
i are the

elementary quivers corresponding to the oppositeword i = (iN , . . . , i1)of the opposite
nodes f −k

i .

Proof This follows directly from Corollary 5.3. ��
TheDg quiver is then obtained by the above amalgamation together with additional

arrows connecting the nodes e0i .

6 Explicit embedding ofUq(g)

In this section, we apply the construction of the previous section for each type of g
and display graphically the embedding Uq(g) ↪→ Dg explicitly as certain paths on
a quiver diagram. In particular one can write down immediately a Heisenberg-type
representation of Uq(g) just by looking at the quiver diagram.

In the previous section, we constructed the Dg-quivers as amalgamation of the
elementary quivers Qk

i together with the arrows joining the nodes e0i . In particular,
they can be presented in a way that is symmetric along a vertical axis, where the
arrows are flipped over. It turns out that this can be expressed as an amalgamation
of a pair of basic quivers associated to g, and that these basic quivers are mutation
equivalent to the cluster structure of framedG-local system associated to the disk with
3 marked points, recently discovered by [34,35]. We will determine and describe the
basic quivers in Sect. 8.

By Theorem 4.15, the action of Ki (resp. K ′
i ) are obtained by multiplying X

f
−ni
i

(resp. X f
ni
i

) to the last term of ei (resp. fi ), hence we will omit it from the description

below for simplicity.

Definition 6.1 (Ei and Fi -path) Since fi = X( f −ni
i , . . . , f ni−1

i ), we will call the path
of the quiver given by the nodes
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f −ni
i −→ f −ni+1

i −→ · · · −→ f ni−1
i −→ f nii

an Fi -path.
On the other hand, if ei = X(m1,m2, . . . ,mk) (or similar variants in type Cn , E8,

F4 and G2), we call the path of the quiver given by the nodes

m1 −→ m2, . . . −→ mk −→ f −ni
i

an Ei -path. From the relations [ei , fi ] = (qi −q−1
i )(K ′

i − Ki ), one can derive the fact
that the path always begin with m1 = f nii .

Remark 6.2 In [41], the Ei -paths and Fi -paths are also known as the Vi -paths and �i -
paths respectively in type An , which describe the corresponding shapes of the paths,
see Fig. 4.

6.1 Toy example: type A2

In this section, we illustrate the method of recovering the Dg-quiver. Let g = sl3,
and recall the notation from Definition 4.5. For simplicity we label the variables
(u11, u

1
2, u

2
1) below by (u, v, w).

Proposition 6.3 [21] The positive representationPλ of Uqq̃(sl(3, R))with parameters
λ = (λ1, λ2) ∈ R

2≥0, corresponding to the reduced word i = (1, 2, 1) acting on

f (u, v, w) ∈ L2(R3), is given by

e1 = [w]e(−2pw),

e2 = [u]e(−2pu − 2pv + 2pw) + [v − w]e(−2pv),

f1 = [−u − 2λ1]e(2pu) + [−2u + v − w − 2λ1]e(2pw),

f2 = [u − v − 2λ2]e(2pv),

K1 = e(−2u + v − 2w − 2λ1),

K2 = e(u − 2v + w − 2λ2).

In the expanded form, we have

e1 = e(w − 2pw) + e(−w − 2pw),

e2 = e(u − 2pu − 2pv + 2pw) + e(v − w − 2pv)

+ e(−v + w − 2pv) + e(−u − 2pu − 2pv + 2pw),

f1 = e(−2u + v − w − 2λ2 + 2pw) + e(−u − 2λ2 + 2pu)

+ e(u + 2λ2 + 2pu) + e(2u − v + w + 2λ2 + 2pw),

f2 = e(u − v − 2λ1 + 2pv) + e(−u + v + 2λ1 + 2pv).

We recover the following cluster variables following Definition 4.13 by taking
successive ratios of the fi generators, which by definition are positive self-adjoint
monomials:
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X f −2
1

= e(−2u + v − w − 2λ2 + 2pw),

X f −1
1

= e(u − v + w + 2pu − 2pw),

X f 01
= e(2u + 4λ2),

X f 11
= e(u − v + w − 2pu + 2pw),

X f 21
= e(w − 2pw),

X f −1
2

= e(u − v − 2λ1 + 2pv),

X f 02
= e(−2u + 2v + 4λ1),

X f 12
= e(v − w − 2pv).

Taking the ratio of the initial terms of the ei generators (i.e. the first and last terms in
the expanded form) we have

Xe01
= e(−2w),

Xe02
= e(−2u).

Hence treating the operators as formal algebraic variables, from their commutation
relations we recover the quiver describing the quantum torus algebra Dsl3 in Fig. 3.

f
−2
1

f
−1
1

f0
1

f1
1

f2
1

f
−1
2

f0
2

f1
2

e01

e02

Fig. 3 A2-quiver, with the Ei -paths colored in red (color figure online)
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Using the notation from Definition 3.3, we see that the Fi -path is expressed as
V -shaped paths in the quiver diagram.

f1 = X f −2
1

+ X f −2
1 , f −1

1
+ X f −2

1 , f −1
1 , f 01

+ X f −2
1 , f −1

1 , f 01 , f 21

= X( f −2
1 , f −1

1 , f 01 , f 11 ),

f2 = X f −1
2

+ X f −1
2 , f 02

= X( f −1
2 , f 02 ),

K ′
1 = X f −2

1 , f −1
1 , f 01 , f 11 , f 21

,

K ′
2 = X f −1

2 , f 02 , f 12
.

Since the exponents of the variables {X f ki
}k �=0 and Xe0i

for i = 1, 2 forms a complete
basis of the linear space spanned by 〈u, v, w, pu, pv, pw, λ1, λ2〉, one can solve for
the ei action in terms of these cluster variables. As a result, we obtain

e1 = X f 21
+ X f 21 ,e01

= X( f 21 , e01),

e2 = X f 12
+ X f 12 , f 11

+ X f 12 , f 11 ,e02
+ X f 12 , f 11 ,e02, f

−1
1

= X( f 12 , f 11 , e02, f −1
1 ),

K1 = X f 21 ,e01, f
−2
1

,

K2 = X f 12 , f 11 ,e02, f
−2
1 , f −1

2
,

which gives the Ei -path (highlighted in red) as �-shaped paths in the quiver diagram
as desired.

Let us now turn to the general cases.

6.2 Type An

The quiver associated to type An and the quantum group embedding Uq(sln+1) is fully
described in [41]. Let us choose the reduced word

i = (1 21 321 4321 . . . n (n − 1) . . . 1).

Then ni = n + 1 − i . Using the explicit expression of the positive representations
from [21] in type An , we have

fi = X( f −n+i−1
i , . . . , f n−i

i ),

ei = X( f n−i+1
i , f n−i+1

i−1 , . . . , f n−i+1
1 , e0i , f −n+i−1

1 , . . . , f −n+i−1
i ).
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e04
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Fig. 4 A5-quiver, with the Ei -paths colored in red (color figure online)

Here the initial terms are given by

Xe0i
= e(−2un+1−i

1 ).

The quiver is shown in Fig. 4. We see that the Fi -path follows a �-shaped path,
while Ei -path follows a V -shaped path in the quiver (highlighted in red). The quiver
can obviously be generalized to arbitrary rank.

6.3 Type Bn

Using the explicit expression of the positive representations from [22], we choose the
reduced word

i = (1 212 32123 4321234 . . . n (n − 1) . . . 1 . . . (n − 1) n). (6.1)

Here recall that 1 is short and all other roots are long. Then n1 = n and ni = 2n+2−2i .

f1= X( f −n
1 , . . . , f n−1

1 ),

fi = X( f −2n+2i−2
i , . . . , f 2n−2i+1

i ) i≥2,

e1= X( f n1 , f 2n−3
2 , f n−1

1 , f 2n−5
2 , . . . , f 12 , f 11 , e01, f −1

1 , f −1
2 , . . . , f −2n+3

2 ),

ei = X( f 2n−2i+2
i , f 2n−2i−1

i+1 , f 2n−2i
i , f 2n−2i−3

i+1 , . . . , f 1i+1, f 2i , e0i , f −2
i , f −1

i+1, . . . , f −2n+2i+1
i+1 ) i≥2.
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Fig. 5 B5-quiver, with the Ei -paths colored in red (color figure online)

The initial terms are given by

Xe0i
=
{

e(−2u11) i = 1,

e(−2u2i ) i > 1.

The quiver is shown in Fig. 5. Both the Ei -path and Fi -path follow a zig-zag shaped
path in the quiver. Moreover, the quiver can naturally be generalized to arbitrary rank.

6.4 Type Cn

We choose the same word as type Bn :

i = (1212 32123 4321234 . . . n (n − 1) . . . 1 . . . (n − 1) n).
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Here 1 is long and all other roots are short. Then the expression for fi is the same3

as type Bn , while ei are the same for i ≥ 2, but modification is made to e1:

e1 = X( f n1 , ∗ f 2n−3
2 , f n−1

1 , ∗ f 2n−5
2 , . . . , ∗ f 12 , f 11 , e01, f −1

1 , ∗ f −1
2 , . . . , ∗ f −2n+3

2 ),

where X(. . . , a, ∗b, . . .) means adding the extra factors as follows:

· · · + X ... + X ...,a + [2]qs X ...,a,b + X ...,a,b2 + X ...,a,b2,... + · · ·
= · · · + X ... + (X

1
2
...,a + X

1
2
...,a,b2

)2 + X ...,a,b2,... + · · · . (6.2)

The initial terms are same as type Bn :

Xe0i
=
{

e(−2u11) i = 1,

e(−2u2i ) i > 1.

The quiver is shown in Fig. 6. We see that the quiver is exactly the same as type
Bn case, except that the weights of the arrows are modified, displaying the Langlands
duality. Furthermore, the Ei -path for e1 now “stops” at certain vertices [corresponding
to (6.2)], which we highlighted in red.

6.5 Type Dn

We choose the word corresponding to splitting of type Bn−1:

i = (012012 320123 43201234 . . . (n − 1) . . . 2012 . . . (n − 1)), (6.3)

where 0 and 1 are the splitting nodes that are paired.
Then n0 = n1 = n − 1 and ni = 2n − 2i for i ≥ 2:

f0 = X( f −n+1
0 , . . . , f n−2

0 ),

f1 = X( f −n+1
1 , . . . , f n−2

1 ),

fi = X( f −2n+2i
i , . . . , f 2n−2i−1

i ) i ≥ 2,

3 Although the algebraic expressions are the same, the q-commuting relations are not due to different long
and short roots.
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Fig. 6 C5-quiver, with the Ei -paths and the repeated nodes of e1 colored in red (color figure online)

and

e0 = X( f n−1
0 , f 2n−5

2 , f n−2
1 , f 2n−7

2 , f n−3
0 , f 2n−9

2 , f n−4
1 ,

f 2n−11
2 , . . . , f 12 , f 1ε , e00, f −1

ε , f −1
2 , . . . , f −2n+5

2 ),

e1 = X( f n−1
1 , f 2n−5

2 , f n−2
0 , f 2n−7

2 , f n−3
1 , f 2n−9

2 , f n−4
0 ,

f 2n−11
2 , . . . , f 12 , f 11−ε, e

0
1, f −1

1−ε, f −1
2 , . . . , f −2n+3

2 ),

ei = X( f 2n−2i
i , f 2n−2i−3

i+1 , f 2n−2i−2
i , f 2n−2i−5

i+1 , . . . , f 1i+1, f 2i , e0i , f −2
i ,

f −1
i+1, . . . , f −2n+2i−1

i+1 ) i ≥ 2,

where ε = n(mod 2) ∈ {0, 1}.
The initial terms are given by

Xe0i
=

⎧

⎪

⎨

⎪

⎩

e(−2u1i ) i = 0, 1, n is even,

e(−2u11−i ) i = 0, 1, n is odd,

e(−2u2i ) i > 1.
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Fig. 7 D6-quiver, with the Ei -path of e0 and e1 colored in red and green respectively (color figure online)

The quiver is shown in Fig. 7. Note that the action of Ei and Fi are the same as type
Bn−1 for i �= 0, 1. Furthermore, it follows naturally that the Bn−1-quiver comes from
a folding of the Dn-quiver, with the weights of the arrows appropriately adjusted. In
the quiver, we highlight the E0-path in red and E1-path in green, where we see that
E0-path alternates between root 0 and root 1, while the E1-path interchanges 0 and 1.

6.6 Type En

For type En , we let 0 be the extra node (cf. Definition 2.2). The explicit expression
of the positive representations for the generators fi and K ′

i is given by Theorem 4.9
and Theorem 4.15, while the expression for the generators ei is given in the Appendix
of [21] reproduced from the author’s Ph.D. Thesis [20].4 The explicit expression is,
however, rather ad hoc.

4 Here we choose i to begin with 343 instead of 434 for technical convenience.
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Using the procedure describe in the beginning of this section, we can solve for
the cluster variables Xi to rewrite the expression as certain E-paths on some quiver
diagrams, which is a lot easier to visualize. Interestingly, we see that unlike type A to
D, most of the actions of ei actually pass through rows corresponding to other roots
throughout the whole quiver. We expect that such new visualization of the embedding
of Uq(gEn ) will provide more insight into the combinatorial aspects of Lie algebra of
type En in general.

As before,we only list the representations of ei and fi , while again the representation
of the Ki and K ′

i variables are expressed as the product of the last term of ei and fi
with X

f
−ni
i

and X f
ni
i

respectively.

6.6.1 Type E6

Following [20], we choose the longest word to be

i = (3 43 034 230432 12340321 5432103243054321),

which comes from the embedding of Dynkin diagram

A1 ⊂ A2 ⊂ A3 ⊂ D4 ⊂ D5 ⊂ E6

by successively adding the nodes 3,4,0,2,1,5 to the diagram.
Then the fi variables are expressed as

f1 = X( f −4
1 , . . . , f 31 ),

f2 = X( f −7
2 , . . . , f 62 ),

f3 = X( f −11
3 , . . . , f 103 ),

f4 = X( f −7
4 , . . . , f 64 ),

f5 = X( f −2
5 , f −1

5 , f 05 , f 15 ),

f0 = X( f −5
0 , . . . , f 40 ),

while the ei variables are expressed as certain paths on the quiver:

e1 = X( f 41 , e01),

e2 = X( f 72 , f 31 , f 52 , f 83 , f 30 , f 63 , f 34 , f 43 , f 10 , f 23 , e02, f −2
3 ,

f −1
0 , f −4

3 , f −3
4 , f −6

3 , f −3
0 , f −8

3 , f −5
2 , f −3

1 ),

e3 = X( f 113 , f 62 , f 93 , f 54 , f 73 , f 32 , f 53 , f 12 , f 33 , f 14 , f 13 ,

e03, f −1
3 , f −1

4 , f −3
3 , f −1

2 , f −5
3 , f −3

2 , f −7
3 , f −5

4 , f −9
3 , f −6

2 )

e4 = X( f 74 , f 103 , f 40 , f 83 , f 42 , f 11 , f 22 , e04, f −2
2 , f −1

1 , f −4
2 , f −8

3 , f −4
0 , f −10

3 ),

e5 = X( f 25 , f 64 , f 93 , f 52 , f 21 , e05, f −2
1 , f −5

2 , f −9
3 , f −6

4 ),
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e0 = X( f 50 , f 103 , f 64 , f 15 , f 44 , f 63 , f 20 , f 43 , f 24 , e00, f −2
4 , f −4

3 , f −2
0 ,

f −6
3 , f −4

4 , f −1
5 , f −6

4 , f −10
3 ).

The initial terms are given by

Xe01
= e(−2u41), Xe02

= e(−2u23), Xe03
= e(−2u13),

Xe04
= e(−2u22), Xe05

= e(−2u21), Xe00
= e(−2u24).

The quiver is shown in Fig. 8, where the labeling of each row is given by
f −ni
i , . . . , f nii , hence each Fi -path is represented as a horizontal path. The differ-

ent Ei -paths, starting from f nii and ending at f −ni
i , are shown in different colors.

6.6.2 Type E7

Following [20], we choose the longest word to be

i = (3 43 034 230432 12340321 5432103243054321 654320345612345034230123456),

which comes from the embedding of Dynkin diagram

A1 ⊂ A2 ⊂ A3 ⊂ D4 ⊂ D5 ⊂ E6 ⊂ E7

by successively adding the nodes 3,4,0,2,1,5,6 to the diagram.
Then the fi variables are expressed as

f1 = X( f −6
1 , . . . , f 51 ),

f2 = X( f −11
2 , . . . , f 102 ),

f3 = X( f −17
3 , . . . , f 163 ),

f4 = X( f −12
4 , . . . , f 114 ),

f5 = X( f −6
5 , . . . , f 55 ),

f6 = X( f −3
6 , . . . , f 26 ),

f0 = X( f −8
0 , . . . , f 70 ),

while the ei variables are expressed as certain paths on the quiver:

e1 = X( f 71 , f 102 , f 153 , f 104 , f 45 , f 16 , f 25 , f 64 , f 93 , f 52 , f 31 , e01, f −1
1 ,

f −5
2 , f −9

3 , f −6
4 , f −2

5 , f −1
6 , f −4

5 , f −10
4 , f −15

3 , f −10
2 ),

e2 = X( f 112 , f 163 , f 70 , f 143 , f 94 , f 35 , f 74 , f 103 , f 40 , f 83 , f 42 , f 21 , f 22 , e02,

f −2
2 , f 01 , f −4

2 , f −8
3 , f −4

0 , f −10
3 , f −7

4 , f −3
5 , f −9

4 , f −14
3 , f −7

0 , f −16
3 ),

e3 = X( f 173 , f 114 , f 153 , f 92 , f 133 , f 84 , f 113 , f 62 , f 93 , f 54 , f 73 , f 32 , f 53 , f 12 , f 33 , f 14 , f 13 , e03,
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f −1
3 , f −1

4 , f −3
3 , f −1

2 , f −5
3 , f −3

2 , f −7
3 , f −5

4 , f −9
3 , f −6

2 ,

f −11
3 , f −8

4 , f −13
3 , f −9

2 , f −15
3 , f −11

4 ),

e4 = X( f 124 , f 55 , f 104 , f 143 , f 60 , f 123 , f 72 , f 41 , f 52 , f 83 , f 30 , f 63 , f 34 , f 43 , f 10 , f 23 , e04,

f −2
3 , f −1

0 , f −4
3 , f −3

4 , f −6
3 , f −3

0 , f −8
3 , f −5

2 , f −2
1 , f −7

2 , f −12
3 , f −6

0 , f −14
3 , f −10

4 , f −5
5 ),

e5 = X( f 65 , f 26 , f 45 , f 94 , f 133 , f 82 , f 41 , e05, f −4
1 , f −8

2 , f −13
3 , f −9

4 , f −4
5 , f −2

6 ),

e6 = X( f 36 , e06),

e0 = X( f 80 , f 163 , f 102 , f 61 , f 82 , f 123 , f 50 , f 103 , f 64 , f 15 , f 44 , f 63 , f 20 , f 43 , f 24 , e00,

f −2
4 , f −4

3 , f −2
0 , f −6

3 , f −4
4 , f −1

5 , f −6
4 , f −10

3 , f −5
0 , f −12

3 , f −8
2 , f −4

1 , f −10
2 , f −16

3 ).

The initial terms are given by

Xe01
= e(−2u21), Xe02

= e(−2u22), Xe03
= e(−2u13), Xe04

= e(−2u23),

Xe05
= e(−2u41), Xe06

= e(−2u36), Xe00
= e(−2u24).

The quiver is shown in Fig. 9, again the labeling of each row is given by
f −ni
i , . . . , f nii , hence each Fi -path is represented as a horizontal path. The differ-

ent Ei -paths, starting from f nii and ending at f −ni
i , are shown in different colors.

6.6.3 Type E8

Following [20], we choose the longest word to be

i = (3 43 034 230432 12340321 5432103243054321 654320345612345034230123456

765432103243546503423012345676543203456123450342301234567),

which comes from the embedding of Dynkin diagram

A1 ⊂ A2 ⊂ A3 ⊂ D4 ⊂ D5 ⊂ E6 ⊂ E7 ⊂ E8

by successively adding the nodes 3, 4, 0, 2, 1, 5, 6, 7 to the diagram.
Then the fi variables are expressed as

f1 = X( f −10
1 , . . . , f 91 ),

f2 = X( f −19
2 , . . . , f 182 ),

f3 = X( f −29
3 , . . . , f 283 ),

f4 = X( f −22
4 , . . . , f 214 ),

f5 = X( f −14
5 , . . . , f 135 ),

f6 = X( f −9
6 , . . . , f 86 ),

f7 = X( f −3
7 , . . . , f 27 ),

f0 = X( f −14
0 , . . . , f 130 ),
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while the ei variables are expressed as certain paths on the quiver:

e1 = X( f 101 , f 182 , f 273 , f 204 , f 125 , f 76 , f 105 , f 56 , f 85 , f 144 , f 193 , f 122 , f 61 , f 102 , f 153 , f 104 , f 45 , f 16 , f 25 , f 64 , f 93 , f 52 , f 21 , e01 ,

f −2
1 , f −5

2 , f −9
3 , f −6

4 , f −2
5 , f −1

6 , f −4
5 , f −10

4 , f −15
3 , f −10

2 , f −6
1 , f −12

2 , f −19
3 , f −14

4 , f −8
5 , f −5

6 , f −10
5 , f −7

6 , f −12
5 ,

f −20
4 , f −27

3 , f −18
2 ),

e2 = X( f 192 , f 283 , f 130 , f 263 , f 194 , f 115 , f 174 , f 95 , f 154 , f 203 , f 90 , f 183 , f 112 , f 163 , f 70 , f 143 , f 94 , f 35 , f 74 , f 103 , f 40 , f 83 , f 42 , f 11 , f 22 , e02 ,

f −2
2 , f −1

1 , f −4
2 , f −8

3 , f −4
0 , f −10

3 , f −7
4 , f −3

5 , f −9
4 , f −14

3 , f −7
0 , f −16

3 , f −11
2 , f −18

3 , f −9
0 , f −20

3 , f −15
4 , f −9

5 , f −17
4 ,

f −11
5 , f −19

4 , f −26
3 , f −13

0 , f −28
3 ),

e3 = X( f 293 , f 214 , f 273 , f 172 , f 253 , f 184 , f 233 , f 164 , f 213 , f 132 , f 193 , f 134 , f 173 , f 114 , f 153 , f 92 , f 133 , f 84 , f 113 , f 62 , f 93 , f 54 , f 73 , f 32 , f 53 ,

f 12 , f 33 , f 14 , f 13 , e03 , f −1
3 , f −1

4 , f −3
3 , f −1

2 , f −5
3 , f −3

2 , f −7
3 , f −5

4 , f−9
3 , f −6

2 , f −11
3 , f −8

4 , f −13
3 , f −9

2 , f −15
3 , f −11

4 ,

f −17
3 , f −13

4 , f −19
3 , f −13

2 , f −21
3 , f −16

4 , f −23
3 , f −18

4 , f −25
3 , f −17

2 , f −27
3 , f −21

4 ),

e4 = X( f 224 , f 135 , f 204 , f 263 , f 120 , f 243 , f 152 , f 223 , f 100 , f 203 , f 144 , f 75 , f 124 , f 55 , f 104 , f 143 , f 60 , f 123 , f 72 , f 31 , f 52 , f 83 ,

f 30 , f 63 , f 34 , f 43 , f 10 , f 23 , e04 , f −2
3 , f −1

0 , f −4
3 , f −3

4 , f −6
3 , f −3

0 , f −8
3 , f −5

2 , f −3
1 , f −7

2 , f −12
3 , f −6

0 , f −14
3 , f −10

4 , f −5
5 ,

f −12
4 , f −7

5 , f −14
4 , f −20

3 , f −10
0 , f −22

3 , f −15
2 , f −24

3 , f −12
0 , f −26

3 , f −20
4 , f −13

5 ),

e5 = X( f 145 , f 86 , f 125 , f 194 , f 253 , f 162 , f 81 , f 142 , f 213 , f 154 , f 85 , f 46 , f 65 , f 26 , f 45 , f 94 , f 133 , f 82 , f 41 , e05 ,

f −4
1 , f −8

2 , f −13
3 , f −9

4 , f −4
5 , f −2

6 , f −6
5 , f −4

6 , f −8
5 , f −15

4 , f −21
3 , f −14

2 , f −8
1 , f −16

2 , f −25
3 , f −19

4 , f −12
5 , f −8

6 ),

e6 = X( f 96 , f 27 , f 66 , f 76 , f 105 , f 115 , f 174 , f 184 , f 233 , f 243 , [ f 110 , f 152 , f 110 ], f 223 , f 233 , f 164 , f 174 , f 95 , f 105 , f 56 , f 66 , f 17 , f 36 , e06 ,

f −3
6 , f −1

7 , f −6
6 , f −5

6 , f −10
5 , f −9

5 , f −17
4 , f −16

4 , f −23
3 , f −22

3 , [ f −11
0 , f −15

2 , f −11
0 ], f −24

3 , f −23
3 , f −18

4 , f −17
4 ,

f −11
5 , f −10

5 , f −7
6 , f −6

6 , f −2
7 ),

e7 = X( f 37 , e07),

e0 = X( f 140 , f 283 , f 182 , f 91 , f 162 , f 243 , f 110 , f 223 , f 142 , f 71 , f 122 , f 183 , f 80 , f 163 , f 102 , f 51 , f 82 , f 123 , f 50 , f 103 , f 64 ,

f 15 , f 44 , f 63 , f 20 , f 43 , f 24 , e00 , f −2
4 , f −4

3 , f −2
0 , f −6

3 , f −4
4 , f −1

5 , f −6
4 , f −10

3 , f −5
0 , f −12

3 , f −8
2 , f −5

1 , f −10
2 ,

f −16
3 , f −8

0 , f −18
3 , f −12

2 , f −7
1 , f −14

2 , f −22
3 , f −11

0 , f −24
3 , f −16

2 , f −9
1 , f −18

2 , f −28
3 ).

Here for the action of e6, the path corresponding to . . . [A, B, A] . . . is split as:

· · · + X ... + X ...,A + X ...,B + X ...,A,B + X ...,A,B,... + · · · .

We see that the path for e6 is special in the sense that it revisits certain nodes twice.
The same phenomenon also appear in type F4 below.

Finally the initial terms are given by

Xe01
= e(−2u21), Xe02

= e(−2u22), Xe03
= e(−2u13), Xe04

= e(−2u23),

Xe05
= e(−2u41), Xe06

= e(−2u36), Xe07
= e(−2u37), Xe00

= e(−2u24).

The E8-quiver is shown in Fig. 10, wherewe have highlighted the different Ei -paths
of the ei generators except e6. For the special case of e6, we highlight it separately in
Fig. 11.
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6.7 Type F4

The explicit expression for type F4 positive representations can be found in [22], where
we choose

i = (3232 12321 432312343213234),

where 1,2 is long, 3,4 is short, corresponding to the embedding of theDynkin diagram:

B2 ⊂ B3 ⊂ F4.

Then the fi variables are expressed as

f1 = X( f −4
1 , . . . , f 31 ),

f2 = X( f −8
2 , . . . , f 72 ),

f3 = X( f −9
3 , . . . , f 83 ),

f4 = X( f −3
4 , . . . , f 24 ),

while the ei variables are expressed as certain paths on the quiver:

e1 = X( f 41 , f 72 , ∗ f 73 , f 62 , ∗ f 53 , f 52 , f 21 , e01, f −2
1 , f −5

2 , ∗ f −5
3 , f −6

2 , ∗ f −7
3 , f −7

2 ),

e2 = X( f 82 , ∗ f 83 , f 72 , f 31 , f 52 , ∗ f 43 , f 42 ,

f 11 , f 22 , e02, f −2
2 , f −1

1 , f −4
2 , ∗ f −4

3 , f −5
2 , f −3

1 , f −7
2 , ∗ f −8

3 ),

e3 = X( f 93 , f 24 , f 63 , f 73 , f 62 , f 53 , f 63 , f 14 , f 33 , f 32 , f 23 , f 12 , f 13 , e03, f −1
3 ,

f −1
2 , f −2

3 , f −3
2 , f −3

3 , f −1
4 , f −6

3 , f −5
3 , f −6

2 ,

f −7
3 , f −6

3 , f −2
4 ),

e4 = X( f 34 , e04),

where we recall from type Cn that X(. . . , a, ∗b, . . .) corresponds to the extra factors
as follows:

· · · + X ... + X ...,a + [2]qs X ...,a,b + X ...,a,b2 + X ...,a,b2,... + · · ·
= · · · + X ... + (X

1
2
...,a + X

1
2
...,a,b2

)2 + X ...,a,b2,... + · · · .

The initial terms are given by

Xe01
= e(−2u21), Xe02

= e(−2u22), Xe03
= e(−2u13), Xe04

= e(−2u34).

The quiver is shown in Fig. 12, where the repeated nodes ∗ are highlighted. We note
that the E1 and E3 paths overlapped a little bit.



Cluster realization ofUq(g) and factorizations of the… 4503

f
− 1

4
f
−

3
1

f
−

2
1

f
−

1
1

f
0 1

f
1 1

f
2 1

f
3 1

f
4 1

f
− 2

8
f
−

7
2

f
−

6
2

f
−

5
2

f
−

4
2

f
−

3
2

f
−

2
2

f
−

1
2

f
0 2

f
1 2

f
2 2

f
3 2

f
4 2

f
5 2

f
6 2

f
7 2

f
8 2

f
− 3

9
f
−

8
3

f
−

7
3

f
−

6
3

f
−

5
3

f
−

4
3

f
−

3
3

f
−

2
3

f
−

1
3

f
0 3

f
1 3

f
2 3

f
3 3

f
4 3

f
5 3

f
6 3

f
7 3

f
8 3

f
9 3

f
− 4

3
f
−

2
4

f
−

1
4

f
0 4

f
1 4

f
2 4

f
3 4

e
0 1

e
0 2

e
0 3

e
0 4

Fi
g.
12

F
4
-q
ui
ve
r,
w
ith

th
e
E
i-
pa
th
s
co
lo
re
d
in

di
ff
er
en
tc
ol
or
s
(c
ol
or

fig
ur
e
on

lin
e)



4504 I. C. H. Ip
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Fig. 13 G2-quiver, with the Ei -paths colored in red (color figure online)

6.8 Type G2

The explicit expression for type G2 positive representations can be found in [22]. We
choose i = (2, 1, 2, 1, 2, 1). Then we have

f1 = X( f −3
1 , . . . , f 21 ),

f2 = X( f −3
2 , . . . , f 22 ),

e1 = X( f 31 , e01),

e2 = X( f 32 , f 21 , ∗ f 22 , f 11 , f 12 , e02, f −1
2 , f −1

1 , ∗ f −2
2 , f −2

1 ),

where again X(. . . , a, ∗b, . . .) corresponds to the extra factors:

· · · + X ... + X ...,a + [2]qs X ...,a,b + X ...,a,b2 + X ...,a,b2,... + · · · .

The inital terms are given by

Xe01
= e(−2u31), Xe02

= e(−2u12).

The quiver is shown in Fig. 13.

7 Quiver mutations for different choice ofw0

Recall from the construction of the positive representations that a change of reduced
expression of w0 corresponds to a unitary transformation � [cf. (4.11)]. This is
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Fig. 14 The si s j si quiver
fk−1
i fk

i fk+1
i

f l−1
j f l

j

si si

sj

expressed in terms of conjugation by quantum dilogarithms, followed by a linear
transformation on the variables uki . As we have seen in Sect. 3, conjugation by the
quantum dilogarithms naturally correspond to mutations of the quiver diagram. In
this section we will describe the corresponding mutation associated to a change of
words. In particular, by extending the mutations below to the full quiver, we obtain
an alternate proof of Theorem 4.10 for the rules of finding the initial term Xe0j

of the
generators e j .

7.1 Quiver mutation in simply-laced case

First we note that if ai j = 0, i.e. si s j = s j si , there is nomutation or change of variables
occurring. That is, swapping the reflections does not affect the quiver diagram at all.

In the simply-laced case, the unitary transformation� corresponding to the change
of words

w0 = . . . si s j si . . . ←→ . . . s j si s j . . .

is expressed in terms of conjugation by a single quantum dilogarithm.
Consider the following amalgamation Q of elementary quivers corresponding to

si s j si , where we exclude the nodes outside the root indices i and j (Fig. 14):
This corresponds to the representation of the fi generators in the full quiver Dg as

fi = · · · + X
... f k−1

i
+ X

... f k−1
i , f ki

+ X
... f k−1

i , f ki , f k+1
i

+ · · ·
f j = · · · + X

... f l−1
j

+ X
... f l−1

j , f lj
+ · · ·

Then the mutation corresponding to the unitary transformation � giving the change
of words si s j si ←→ s j si s j is given by mutation at f ki , followed by a renaming of
variables, where we have defined a new external labeling for the mutated quiver ̂Q by
the rules:

̂f ti := f t+1
i t ≥ k,

̂f tj := f t−1
j t ≥ l + 1,

̂f lj := f ki

and stays the same otherwise (Figs. 15, 16).
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Fig. 15 After mutation at f ki

fk−1
i fk

i fk+1
i

f l−1
j f l

j

Fig. 16 Rearranging and
renaming the quiver

f l−1
j f l

j f l+1
j

fk−1
i fk

i

sj sj

si

In the representation level, a change of words corresponds to a unitary transforma-
tion � by the conjugation of the quantum dilogarithm gb(X f ki

):

Adgb(X f ki
) · fi = · · · + X ··· f k−1

i
+ X ··· f k−1

i , f ki , f k+1
i

+ · · ·
= μ′

f ki
(· · · + X ··· f k−1

i
+ X ··· f k−1

i , f k+1
i

+ · · · )
= μ′

f ki
(· · · + X ···̂f k−1

i
+ X ···̂f k−1

i ,̂f ki
+ · · · ),

Adgb(X f ki
) · f j = · · · + X ··· f l−1

j , f ki
+ X ··· f l−1

j
+ X ··· f l−1

j , f lj
+ · · ·

= μ′
f ki

(· · · + X ··· f l−1
j

+ X ··· f l−1
j , f ki

+ X ··· f l−1
j , f ki , f lj

+ · · · )
= μ′

f ki
(· · · + X ···̂f l−1

j
+ X ···̂f l−1

j ,̂f lj
+ X ···̂f l−1

j ,̂f lj ,
̂f l+1
j

+ · · · ).

Hence using μ
q
k = Adg∗

b (X j ) ◦ μ′
k , we have

fi = · · · + ̂X ···̂f k−1
i

+ ̂X ···̂f k−1
i ,̂f ki

+ · · · ,

f j = · · · + ̂X ···̂f l−1
j

+ ̂X ···̂f l−1
j ,̂f lj

+ ̂X ···̂f l−1
j ,̂f lj ,

̂f l+1
j

+ · · · ,

where we denote the mutated cluster variables by ̂X j := μ
q
f ki

(X j ) associated to the

mutated quiver ̂Q, and we see that the representation of the fi generators are invariant
under the quiver mutation.

When we take into account the whole quiver Dg, we see that the nodes precisely
come in pair. Hence we have

Corollary 7.1 The cluster embedding ι : Dg −→ Dg corresponding to i = (. . . i j i . . .)
and i′ = (. . . j i j . . .) is related by quiver mutations at the pair of nodes { f ki , f −k

i }
(the order does not matter).
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fk−1
i fk

i fk+1
i

f l−1
j f l

j f l+1
j

si si

sj sj

Fig. 17 The si s j si s j quiver

fk−1
i fk

i fk+1
i

f l−1
j f l

j f l+1
j

Fig. 18 After mutation at f lj

fk−1
i fk

i fk+1
i

f l−1
j f l

j f l+1
j

Fig. 19 After mutation at f ki

7.2 Quiver mutation in doubly-laced case

Following the notation above, we consider the following amalgamation of quiver
corresponding to si s j si s j where the root i is long and j is short. All the arrows are
thick except the two corresponding to s j (Fig. 17).

The unitary transformation � of the positive representations corresponding to the
change of words

si s j si s j ←→ s j si s j si

is expressed as 3 pairs of quantum dilogarithm transformations [21]. The mutation
corresponding to � is then given by mutation at f lj , f ki , f lj , with the weights di of
each nodes taken into account (Figs. 18, 19, 20).

No renaming of the variables is necessary after the last step, and again we have
expressed the generators fi in terms of the mutated cluster variables ̂X j associated to
the mutated quiver. Similarly as before, for the full quiver we have
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fk−1
i fk

i fk+1
i

f l−1
j f l

j f l+1
j

si si

sj sj

Fig. 20 After second mutation at f lj

f0
1 f1

1 f2
1 f3

1

f0
2 f1

2 f2
2 f3

2

s1 s1 s1

s2 s2 s2

Fig. 21 The s2s1s2s1s2s1 quiver

f0
1 f1

1 f2
1 f3

1

f0
2 f1

2 f2
2 f3

2

Fig. 22 After mutation at f 21 , f 11 , f 22 , f 21

Corollary 7.2 The cluster embedding ι : Dg −→ Dg corresponding to i =
(. . . i j i j . . .) and i′ = (. . . j i j i . . .) is related by quiver mutations at the pairs of
nodes { f lj , f −l

j }, { f ki , f −k
i } and { f lj , f −l

j }.

7.3 Quiver mutation in type G2

We consider the following amalgamation of quiver corresponding to s2s1s2s1s2s1
where the root 1 is long and 2 is short. All the arrows are thick except the three
corresponding to s2 (Fig. 21).

In [21], we found that the unitary transformation � changing the words

s2s1s2s1s2s1 ←→ s1s2s1s2s1s2

is given by conjugations by 11 quantum dilogarithms. This corresponds to the follow-
ing sequence of mutations (starting from the left) (Figs. 22, 23, 24, 25):

f 21 , f 11 , f 22 , f 21 , f 22 , f 12 , f 22 , f 21 , f 11 , f 22 , f 21
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f0
1 f1

1 f2
1 f3

1

f0
2 f1

2 f2
2 f3

2

Fig. 23 After mutation at f 22 , f 12 , f 22

f0
1 f1

1 f2
1 f3

1

f0
2 f1

2 f2
2 f3

2

Fig. 24 After mutation again at f 21 , f 11 , f 22 , f 21

f0
1 f1

1 f2
1 f3

1

f0
2 f2

2 f1
2 f3

2

s1 s1 s1

s2 s2 s2

Fig. 25 Rearranging the quiver

We see that we have to permute the index:

̂f 12 := f 22 , ̂f 22 := f 12

at the end. Similarly as before, this expresses the generators fi in terms of the mutated
cluster variables ̂X j , and for the full quiver we have

Corollary 7.3 The cluster embedding ι : Dg −→ Dg corresponding to i =
(2, 1, 2, 1, 2, 1) and i′ = (1, 2, 1, 2, 1, 2) is related by quiver mutations at the pair of
nodes

{ f 21 , f −2
1 }, { f 11 , f −1

1 }, { f 22 , f −2
2 }, { f 21 , f −2

1 }, { f 22 , f −2
2 }, { f 12 , f −1

2 }
{ f 22 , f −2

2 }, { f 21 , f −2
1 }, { f 11 , f −1

1 }, { f 22 , f −2
2 }, { f 21 , f −2

1 }.

Remark 7.4 In [34], it is also found that the above change of words can be realized by
12 mutations coming from a more natural geometric consideration:

( f 11 , f 21 , f 22 , f 21 ), ( f 22 , f 12 , f 11 , f 22 ), ( f 11 , f 21 , f 22 , f 21 ),
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A

B

C

e0n

e01

f−n1
1

f−nn
n

f0
n

f0
1

· · ·

· · ·
Q

B

A

C

fnn
n

fn1
1

e01

e0n

f0
1

f0
n

· · ·

· · ·
Q

Fig. 26 Amalgamating the quivers Q and ˜Q in standard form

where the groups correspond to the permutations (12)(23)(12) of the vertices of the
triangle where the quiver is attached in the framed G-local system. The end result
differs from the above quiver by an additional permutation of f 11 and f 21 , but such
differencewill not play a role in this paper.A similar sequencewith 11 quivermutations
has also appeared previously in [12].

8 Basic quivers

In Sect. 6, we obtain explicitly the Dg-quiver corresponding to the embedding of
the quantum group Uq(g) associated to the reduced word i = (i1, . . . , iN ). By their
symmetric presentations, we observe that the Dg-quiver is given by amalgamation of
some quivers Q and ˜Q where ˜Q is obtained by a mirror image of Q along the vertical
axis together with flipping all the arrows.

More precisely, let us arrange the quiver Q so that its frozenvertices {e0i , f 0i , f nii }i∈I
are fixed on a triangle ABC as shown in Fig. 26. Let ˜Q be the mirror image of Q with
frozen vertices {e0i , f 0i , f −ni

i }i∈I fixed on a triangle A′B ′C ′, but such that all arrows
are flipped (i.e. with the same indexing, it has the exchange matrix −B instead). Then
the Dg-quiver is obtained by amalgamating Q and ˜Q along the frozen vertices at

{e0i , f 0i }i∈I . We will call such external labeling of the basic quivers Q and ˜Q the
standard form.

We note that there are some freedom of choices of the quivers Q, namely, we can
choose arbitrary arrows among the nodes e0i and f 0i . In order to fix the ambiguity, we
first note that such amalgamation of two triangles give a triangulation of the disk with
one puncture and two marked points (Fig. 27):

Therefore in order to realize the embedding naturally as associated to triangulations
of such surface, the quiver Q associated to the triangle ABC , should be mutation
equivalent to the quiver ˜Q associated to triangle B ′A′C ′ in this clockwise order.
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Fig. 27 Triangulation of a disk
with one puncture and two
marked points

Let M be the mutation sequence reversing the reduced word (i1, . . . , iN ) −→
(iN , . . . , i1). If Q′ is the subquiver of Q with nodes { f ki }, then M(Q′) is naturally
given by a mirror image of Q′ with all the arrows flipped, or in terms of Fig. 26, the
triangle is flipped from ABC to B ′A′C ′. It turns out that we have to identify the frozen
nodes with its Dynkin involution

θ : I −→ I ,

where by definition, the longest element acts on simple roots as

w0 · αi = −αθ(i). (8.1)

Hence if we let Mθ be the mutation sequence changing the reduced word

Mθ : (i1, . . . , iN ) −→ (θ(i1), . . . , θ(iN )),

then we naturally also want to identify Q withMθ (Q).
With these observations, we made the following definition.

Definition 8.1 A basic quiver Q for Dg corresponding to the word i = (i1, . . . , iN )

is a quiver associated to the triangle ABC such that

• the amalgamation of Q and ˜Q along {e0i , f 0i } gives the Dg-quiver,
• M(Q) is identical to the quiver ˜Q, where the frozen nodes { f 0i , f nii , e0i } ofM(Q)

is identified with the frozen nodes { f −ni
i , f 0i , e0θ(i)} of ˜Q.

• Q is identical to the quiverMθ (Q), where the frozen nodes { f 0i , f nii , e0i } of Q is
identified with the frozen nodes { f 0θ(i), f niθ(i), e

0
θ(i)} of Mθ (Q).

Note that when θ = id, the third condition is trivial.

Theorem 8.2 For each g of simple Lie type, there exists a unique basic quiver Q.

Proof Let us spell out the required relations among the nodes {e0i , f 0i } forced by the
definition of a basic quiver. First of all, by the construction of the elementary quivers
in Sect. 5.2, we can naturally determine the arrows between { f 0i } already by reading
w0 from the left.

Furthermore, Theorem 4.10 implies that any quiver mutations preserve the relations
below whenever the initial term Xe0i

= e(−2uaj ) for a > 1 in the quantum group
embedding:
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e0i

f a−1
j

f aj

Hence for the basic quiver, we see that in order forM(Q) to be identical to ˜Q, we
must also have the above subquiver for a = 1, and this establishes the arrows between
{e0i } and { f 0i }. Therefore it remains to determine the arrows among the nodes {e0i }.

Since quiver mutation is a bijection, it suffices to construct the basic quiver for
some reduced word i ∈ R. Hence throughout the proof, we will use the same reduced
word for i in Sect. 6 for each type of g in the construction of the Dg-quiver.

Let Q+ denote the subquiver of Dg containing the nodes { f ni }n≥0,i∈I and {e0i }i∈I .
The mutation sequencesM andMθ are obtained by recursively bringing the required
index to the right of i using the swapping si s j = s j si , or the Coxeter moves.

Type An This is a very special case as the change of words

i = (121321 . . . n, (n − 1), . . . 1) ←→ (123 . . . n, 123 . . . (n − 1), . . . 123121)

does not require any Coxeter moves, but only swapping between commuting reflec-
tions. ThereforeM = id, and the definition of basic quiver requires that Q associated
to ABC is the same as ˜Q associated to B ′A′C ′, where the order of {e0i } is reversed.
In particular it says that the sides

−→
AC and

−→
BC of Q is the same as the sides

−−→
B ′C ′

and
−−→
A′C ′ of ˜Q, which by definition is just the sides

−→
CB and

−→
CA of Q. This uniquely

determines the arrows among the nodes { f 0i }, and between the nodes {e0i } and { f 0i }.
The Dynkin involution is given by

θ(i) := n + 1 − i . (8.2)

By considering the mutation Mθ of the Dynkin involution

(121321 . . . n, (n − 1), . . . 1) −→ (n, (n − 1), n, (n − 2), (n − 1), n, . . . .123 . . . n)

which in a sense is just flipping the diagram upside-down, we observe that the
arrows between consecutive {e0i } are mutated once whenever there is a change of
word (. . . 121 . . .) ←→ (. . . 212 . . .). The arrows among {e0i } are chosen such that
Q = Mθ (Q). The end result forces Q to have amagicalZ3 symmetry, and we recover
the well-known basic quiver for type An associated to n-triangulation first studied by
[10].

More precisely, the basic quiver Q is obtained by attaching to Q+ the additional
arrows (Figs. 28, 29):

Type Bn and Cn The change of words M for

i = (1212 32123 . . . n(n − 1) . . . 1 . . . (n − 1)n)
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e01 e02 e03 e04 e0n

f0
n f0

4 f0
3 f0

2 f0
1· · ·

· · ·

Fig. 28 Additional arrows attaching to Q+ to give Q in type An

A

B

C

e0n

e03

e02

e01

f0
1

fn
1

f0
2

fn−1
2

f0
3

fn−2
3

f0
n

f1
n

· · ·
··

·

· · ·
· · ·

··
·

Fig. 29 Basic quiver in type An with Z3 symmetry

consists of 2
3n(n − 1)(n − 2) simply-laced mutations, and 1

2n(n − 1) doubly-laced
mutations. Recall from Sect. 7.2 that each doubly-laced mutation corresponds to 3
quiver mutations. Hence the change of words M corresponds to

2

3
n(n − 1)(n − 2) + 3

2
n(n − 1) = 1

6
n(n − 1)(4n + 1)

quiver mutations.
By comparingM(Q)with ˜Q, we found that the basic quiver is obtained by adjoin-

ing Q+ the following arrows in type Bn (Fig. 30):
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e01 e02 e03 e04 e0n

f0
1 f0

2 f0
3 f0

4 f0
n· · ·

· · ·

Fig. 30 Additional arrows attaching to Q+ to give Q in type Bn

e01 e02 e03 e04 e0n

f0
1 f0

2 f0
3 f0

4 f0
n· · ·

· · ·

Fig. 31 Additional arrows attaching to Q+ to give Q in type Cn

and the following arrows in type Cn (Fig. 31):

Type Dn . The change of words M for

i = (012012 320123 . . . (n − 1) . . . 2012 . . . (n − 1))

consists of 2
3n(n − 1)(n − 2) mutations. When n is even, we have θ = id, and

the condition M(Q) = ˜Q uniquely determines the arrows among the frozen nodes.
Otherwise when n is odd, the condition M(Q) = ˜Q uniquely determines the arrows
among the frozen nodes except e00 and e01. In this case the Dynkin involution is given
by

θ(i) =
{

1 − i i = 0, 1,
i otherwise,

(8.3)

hence we see that from our choice of w0, Mθ is trivial. This means that we cannot
have arrows between e00 and e01.

The resulting basic quiver Q is then obtained by taking Q+ and adjoining the
following arrows (Fig. 32):

Type E6. The change of words M for

i = (3 43 034 230432 12340321 5432103243054321)
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e00

e01

e02 e03 e04 e0n

f0
0

f0
1

f0
2 f0

3 f0
4 f0

n

· · ·

· · ·
Fig. 32 Additional arrows attaching to Q+ to give Q in type Dn

e00

e01 e02 e03 e04 e05

f0
0

f0
1 f0

2 f0
3 f0

4 f0
5

Fig. 33 Additional arrows attaching to Q+ to give Q in type E6

consists of 78 mutations. The Dynkin involution is given by

θ(i) =
{

6 − i i > 0,
0 i = 0,

(8.4)

whence the change of wordsMθ consists of 42mutations. After comparing the quiver,
we found that the basic quiver Q is obtained by taking Q+ and adjoining the following
arrows (Fig. 33):

Type E7. The change of words M for

i = (3 43 034 230432 12340321 5432103243054321 654320345612345034230123456)

consists of 336 mutations. By comparing M(Q) and ˜Q, the basic quiver Q is found
to be obtained by taking Q+ and adjoining the following arrows (Fig. 34):

Type E8. The change of words M for

i = (3 43 034 230432 12340321 5432103243054321 654320345612345034230123456

765432103243546503423012345676543203456123450342301234567)
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e00

e01 e02 e03 e04 e05 e06

f0
0

f0
1 f0

2 f0
3 f0

4 f0
5 f0

6

Fig. 34 Additional arrows attaching to Q+ to give Q in type E7

e00

e01 e02 e03 e04 e05 e06 e07

f0
0

f0
1 f0

2 f0
3 f0

4 f0
5 f0

6 f0
7

Fig. 35 Additional arrows attaching to Q+ to give Q in type E8

Fig. 36 Additional arrows
attaching to Q+ to give Q in
type F4

e01 e02 e03 e04

f0
1 f0

2 f0
3 f0

4

consists of 1120 mutations. By comparingM(Q) and ˜Q, the basic quiver Q is found
to be obtained by taking Q+ and adjoining the following arrows (Fig. 35):

Type F4. The change of words M for

i = (3232 12321 432312343213234)

consists of 32 simply-laced mutations and 18 doubly-laced mutations, hence it corre-
sponds to 32 + 3 × 18 = 86 quiver mutations. The resulting basic quiver is obtained
by adjoining to Q+ the following arrows (Fig. 36):
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f0
1 f1

1 f2
1 f3

1

f0
2 f1

2 f2
2 f3

2

e01

e02

Fig. 37 Basic quiver Q for w0 = s2s1s2s1s2s1

f0
2 f1

2 f2
2 f3

2

f0
1 f1

1 f2
1 f3

1

e02

e01

Fig. 38 Basic quiver for w0 = s1s2s1s2s1s2, i.e. M(Q)

Type G2. Finally, the change of words M for

i = (2, 1, 2, 1, 2, 1) −→ (1, 2, 1, 2, 1, 2)

is described in Sect. 7.3, which consists of 11 or 12 quiver mutations (Fig. 37). The
basic quiver Q can be presented as follows for the two cases in Fig. 38. This is identical
to the G2 quiver found in [34]. In particular, it demonstrates the Langland’s duality of
the change of short and long roots as a change of weights of the quivers in the diagram.
Also as mentioned before, M(Q) is a mirror image of Q with all arrows flipped as
desired.

This completes the proof of the Theorem. ��
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Corollary 8.3 The basic quiver is mutation equivalent to the Conf3AG quiver for G
of type An, Bn,Cn, Dn,G2 described in [34,35].

Proof The Conf3AG quivers described in [34,35] correspond to the words w0 = w
h
2
c

where wc is the Coxeter element and h the Coxeter number. Hence one can check
directly the mutation sequence from the change of words of w0 and compare the
quivers. ��

Remark 8.4 Aswe can see, the arrows joining the nodes {e0i } and the arrows joining the
nodes { f 0θ(i)} turns out to be opposite to each other. This should reflect some internal
symmetries of the moduli spaces Conf3AG of the configurations of triples of principal
flags, and one should be able to find a more conceptual way to fix the basic quiver.
We believe that this uniqueness theorem can be used to solve the series of conjectures
regarding the uniqueness of the cluster structure proposed in Section 3 of [34].

The mutation M corresponds to the transposition interchanging the sides AC and
BC of the triangle where { f 0i } and { f nii } are attached respectively (cf. Fig. 26). On the
other hand, in order to realize S3 symmetry, we also want a mutation sequence cor-
responding to transposition of sides AB and AC , where {e0θ(i)} and { f 0i } are attached
respectively. Also note that f nii =: e−mi

i in the quantum group embedding. Hence
such mutation should correspond to the longest Lusztig’s transformation (see Defini-
tion 9.1):

Ti1Ti2 . . . TiN (ei ) = qi fθ(i)K
−1
θ(i)

Ti1Ti2 . . . TiN (fi ) = qiei Ki

In [23], we showed that these transformations Ti are represented by certain unitary
transformation given by conjugation of the Weyl elements. Hence we conjecture that

Conjecture 8.5 The Lusztig’s isomorphisms Ti are represented by a sequence of quiver
mutations.

This will also give a representation theoretic meaning of the mutation sequences found
explicitly for type An, Bn,Cn, Dn [35] and G2 [34], as well as proving the conjecture
of S3 symmetry regarding type En and F4 proposed in [34].

Remark 8.6 In the product formula of R described in the next section, the transforma-
tions Ti generate the split-real version of the so-called quantumWeyl group introduced
in [36], which is a byproduct of the representation theory of the quantized algebra of
functions on G, and is based on a choice of “good generators” for certain repre-
sentations of the quantized enveloping algebra. Through this conjecture, it will be
interesting to recast the concept of quantum Weyl group into the language of cluster
transformations. We thank Yan Soibelman for the remarks.
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9 Factorization of the R-matrix

In this section, we will prove a factorization formula for the universal R matrix such
that it is expressed in terms of products of quantum dilogarithms, with the arguments
given bymonomials of the quantumcluster variables. This generalizes the factorization
in type An found in [41], which in turn is a generalization of the factorization given
in [6] for Uq(sl2), where it has been used to construct new continuous braided tensor
category of representations of Uq(sl(2, R)) [3,38,39].

9.1 Positive Lusztig’s isomorphism

First we recall the positive version of Lusztig’s isomorphism giving the expression of
non-simple root generators:

Definition 9.1 [23] We define the “positive version” of Lusztig’s isomorphism on the
simple generators by:

Ti (K j ) := K j K
−ai j
i ,

Ti (ei ) := qi fi K
−1
i ,

Ti (e j ) := (−1)ai j

⎡

⎣

[

ei , . . . [ei , e j ]
q

ai j
2

i

]

q

ai j+2
2

i

. . .

⎤

⎦

q

−ai j−2
2

i

−ai j
∏

k=1

(qki − q−k
i )−1,

Ti (fi ) := qiei Ki ,

Ti (f j ) := (−1)ai j

⎡

⎣

[

fi , . . . [fi , f j ]
q

ai j
2

i

]

q

ai j+2
2

i

. . .

⎤

⎦

q

−ai j−2
2

i

−ai j
∏

k=1

(qki − q−k
i )−1,

where

[X ,Y ]q := qXY − q−1Y X .

Proposition 9.2 [23] Let i = (i1, . . . , iN ) ∈ R be a reduced word. Let

eαk := Ti1Ti2 . . . Tik−1(eik )

and similarly for fαk . Then eαk and fαk are positive self-adjoint operators under the
positive representation Pλ for every k = 1, . . . , N.

9.2 Coproduct ofDg and theZg-quiver

The coalgebra structure ofUq(g) can naturally be represented by amalgamation of two
Dg quivers, associated to triangulations of a disk with two punctures and two marked
points on the boundary (Fig. 39):
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Fig. 39 Triangulation of a disk
with two punctures and two
marked points

Definition 9.3 TheZg quiver is obtained by amalgamating twoDg-quivers, where the
frozen nodes f nii of the first quiver is identifiedwith f −ni

i of the second quiver. For sim-

plicity, we will denote the vertices of the secondDg-quiver by { f ′−ni
i . . . f ′ni

i , e′0
i }i∈I

such that f nii = f ′−ni
i in Zg. We will also denote by Zg the corresponding quantum

torus algebra.

Then one can easily observe the following

Proposition 9.4 We have an embedding

(ι ⊗ ι) ◦ � : Dg −→ Zg ⊂ Dg ⊗ Dg (9.1)

where the coproduct �(ei ) (resp. �(fi )) can be represented in the Zg-quiver by con-
catenating the Ei -path (resp. Fi -path) of the two Dg quivers and ignoring the last
vertex. The coproduct �(Ki ) (resp. �(K ′

i )) is given by the product of the monomials
along the Ei -paths of �(ei ) (resp. Fi -paths of �(fi )).

The iterated coproduct �n(X), X ∈ Dg can be obtained by amalgamating n + 1
copies of Dg in the same way.

Proof We will consider �(fi ), where the other statements are similar. Recall that

�(fi ) = fi ⊗ 1 + K ′
i ⊗ fi .

Then the first half of the Fi -path in Zg is the Fi -path in the first Dg quiver, which
gives the polynomial fi ⊗ 1. On the other hand, the second half of the Fi -path in Zg is
obtained by multiplying the Fi -path in the second copy of Dg quiver, and the product
of the first half of the Fi -path, which by definition represents K ′

i . Hence combining it
gives K ′

i ⊗ fi , and hence the concatenation of the Fi -path represents �(fi ) as desired.
��

9.3 Standard description of the universal R-matrix

Recall that the universal R-matrix of the quantum group Uq(g) is an element in certain
completion of the tensor square

R ∈ Uq(g)̂⊗Uq(g) (9.2)
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and it gives the braiding relation:

R�(X) = �op(X)R, X ∈ Uq(g) (9.3)

In [23], a natural expression of R in the split real case is constructed. Given a reduced
word i = (i1, . . . , iN ) ∈ R, We have the well-known decomposition

R = KR (9.4)

Here the Cartan part is given by

K =
∏

i j

q
(A−1)i j Hi⊗Hj
i (9.5)

where A is the Cartanmatrix, and formally wewrite Ki =: qHi
i . The reduced R-matrix

is given by

R =
N
∏

k=1

opgbik (eαk ⊗ fαk ) (9.6)

where eαk = Ti1Ti2 . . . Tik−1eik and similarly for fαk . The product �op is taken with
k = 1 from the right.

Note that (see Remark 3.7) if we write gb(x) = Expq−2(− x
q−q−1 ), then (9.6)

coincides with the well-known formula [31,32,36,37]. Also R naturally extends to

Dg by replacing Hi ⊗ Hj in K with −Hi ⊗ H ′
j instead, where K ′

j =: qH ′
j

j .
The action of the Cartan part onDg is easy to describe (see Sect. 11). In particular,

it describes a monomial transformation on the quantum torus algebraXi, where X f
−ni
i

and X f
ni
i

on both Dg components of the Zg-quiver is modified, and this does not

change the underlying quiver. Hence we will focus on studying the reduced R-matrix,
which corresponds to certain quiver mutations.

9.4 First factorization of the reduced R-matrix

Now we can state our second main result of the paper. Under the embedding ι ⊗ ι :
Dg⊗Dg −→ Dg⊗Dg, we have the following factorization of the reduced R-matrix,
which generalizes the case of Uq(sl2) first described by Faddeev [6], as well as the
type An case by [41].

Theorem 9.5 Let i = (i1, . . . , iN ) ∈ R be a reduced word. Let us rewrite the embed-
ding of fi from Proposition 4.11 as

fi = Fni ,−
i + . . . + F1,−

i + F1,+
i + . . . Fni ,+

i
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=
∑

1≤k≤N
ik=i

X−
k +

∑

1≤k≤N
ik=i

X+
k ,

where the new monomials are defined as

X±
v(i,k) := Fk,±

i . (9.7)

Then under the embedding ι ⊗ ι, the reduced R matrix factorization is given by

R = gbiN (eiN ⊗ X+
N ) . . . gbi2 (ei2 ⊗ X+

2 )gbi1 (ei1 ⊗ X+
1 )

· gbi1 (ei1 ⊗ X−
1 )gbi2 (ei2 ⊗ X−

2 ) . . . gbiN (eiN ⊗ X−
N ). (9.8)

We will prove the Theorem in Sect. 11.
Since ei = �[u]e(−2p)�∗ for some unitary transformation by (4.11), and

[u]e(−2p) = eπbi (u−2p) + eπbi (−u−2p),

each ei can also be split into

ei = e−
i + e+

i

such that

e−
i e

+
i = q−2

i e+
i e

−
i ,

where

e±
i := �eπbi (∓u−2p)�∗.

Then we have

Corollary 9.6 Under the embedding ι⊗ ι, the reduced R matrix can also be factorized
as

R = R4 · R3 · R2 · R1 (9.9)

where

R4 = gbiN (e+
iN

⊗ X+
N ) . . . gbi2 (e

+
i2

⊗ X+
2 )gbi1 (e

+
i1

⊗ X+
1 ),

R3 = gbiN (e−
iN

⊗ X+
N ) . . . gbi2 (e

−
i2

⊗ X+
2 )gbi1 (e

−
i1

⊗ X+
1 ),

R2 = gbi1 (e
+
i1

⊗ X−
1 )gbi2 (e

+
i2

⊗ X−
2 ) . . . gbiN (e+

iN
⊗ X−

N ),

R1 = gbi1 (e
−
i1

⊗ X−
1 )gbi2 (e

−
i2

⊗ X−
2 ) . . . gbiN (e−

iN
⊗ X−

N ).
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Proof Note that from the remark above,

gbin (ein ⊗ Xn) = gbin (e
+
in

⊗ Xn)gbin (e
−
in

⊗ Xn).

Hence it suffices to show that we can arrange all the e+
i to the left hand side of e−

j in
R1 and R2 (similarly for R3 and R4 to the right). This is equivalent to the statement:

[

e−
in

⊗ X−
n , e+

im
⊗ X+

m

]

= 0, n > m.

This follows from Lemma 5.2 and

e+
i e

−
j = q

ai j
i e−

j e
+
i

by conjugating it to the rank 2 case. ��
This simplies the proof of [41, Theorem 7.4] as well as generalizing it to arbitrary
type.

9.5 Full factorization of the reduced Rmatrix

In order to realize the R matrix factorization as certain quiver mutation sequences, we
have to decompose the terms gbi (e

±
i ⊗ X±

N ) in the decomposition in Corollary 9.6.
In other words, we have to decompose gbi (ei ). Then for the monomial terms that we
obtain after the decomposition, we compare it with Lemma 3.8 in order to obtain the
mutation sequence.

Proposition 9.7 For every generators ei ∈ Uq(g), consider the explicit embedding
given in Sect. 6 for the chosen reduced word i. Then we can decompose gbi (e

±
i ) into

products of the form

gbi (e
±
i ) =

∏

gb(X ...), (9.10)

(in type G2 we also need g∗
b) where each argument is given by certain cluster mono-

mials X ....

Proof It suffices to consider gbi (e
−
i ), while the decomposition for gbi (e

+
i ) is just a

reflection. For the generators

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ei An, Bn, Dn, En,

ei , i �= 1 Cn,

e4 F4,

e2 G2,

let us write the embedding of the generators of e−
i as a sum of monomials in the form

e−
i = e0i + e1i + · · · + emi

i ,



4524 I. C. H. Ip

where e0i = X f
ni
i

and ends before the next term emi+1
i = X f

ni
i ,...,e0i

.

Note that e−
4 in type F4 and e

−
2 in type G2 is just a monomial, hence the statement

is trivial.
For all generators except e1 in type Bn and e6 in type E8, we have eki e

l
i = q2elie

k
i

for k > l, hence we can apply (A.8) to obtain

gbi (e
−
i ) = gbi (e

mi
i ) . . . gbi (e

1
i )gbi (e

0
i ). (9.11)

For e1 in type Bn , since e
2n+1
1 e2n1 = q2e2n1 e2n+1

1 , using (A.12) we obtain

gbs (e
−
1 ) = gbs (e

mi
i ) . . . gbs (e

3
i )gb(qe

2
i e

3
i )gbs (e

2
i )gbs (e

1
i )gb(qe

0
i e

1
i )gbs (e

0
i ).

For e6 in type E8, the path comes in blocks as follows

e−
6 = X f 96

+ (X f 96 , f 27
+ X f 96 , f 27 , f 66

) + · · · (X ... f 184
+ X ... f 233

)

+ (X ... f 243
+ X ..., f 243 , f 110

) + (X ..., f 243 , f 152
+ X ..., f 243 , f 152 , f 110

)

+ (X ... f 223
+ X ... f 233

) + · · · + (X ... f 56
+ X ... f 66

) + X ... f 17
+ X ... f 36

.

One can check that each block q−2-commutes with all the blocks to the right of it,
and within each block the two terms also q−2-commute with each other. Hence apply
repeatedly (A.8) we arrive at the decomposition of the same form as others.

For the long generators

{

e1 Cn,

e1, e2 F4,

let us write the embedding of the generators e−
i as

e−
i = e0i + e1i + · · · + eki + [2]qs (q2eki ek+1

i )
1
2 + ek+1

i + · · ·
= e0i + e1i + · · · + ((eki )

1/2 + (ek+1
i )1/2)2 + · · ·

whenever we have the double term (. . . a, ∗b, . . .) appear in the Ei path such that

eki := X ...,a, (qeki e
k+1
i )1/2 = X ...a,b, ek+1

i := X ...,a,b2 .

Then each block q−2-commutes with the terms on the right, and since ek+1
i eki =

q4eki e
k+1
i , by (A.12), we have

gb(e
−
i ) = . . . gb(e

k+1
i )gbs ((qe

k
i e

k+1
i )

1
2 )gb(eki ) . . . gb(e1i )gb(e

0
i )

whenever the double term appears in the Ei -path.



Cluster realization ofUq(g) and factorizations of the… 4525

The remaining two special cases are as follows: the generator e3 in type F4 is given
by:

e−
3 = X f 93

+ (X f 93 , f 24
+ X f 93 , f 24 , f 63

) + (X ... f 73
+ X ... f 62

)

+ (X ... f 53
+ X ... f 63

) + ((X ... f 14
+ X ... f 33

)) + ((X ... f 32
+ X ... f 23

)) + X ... f 12
+ X ... f 13

,

where each blocks q−2
s commute with all the blocks to the right of it. Within each

block, the terms inside the single brackets q−2
s commute, while the terms inside double

brackets q−2 commute. Hence by (A.8) and (A.12) we can decompose gbs (e
−
3 ).

For the generator e2 in type G2, we have to involve conjugations, which gives

gbs (e
−
2 )

= gbs (X f 22 , f 21 ,( f 22 )2, f 11 , f 12
+ X f 22 , f 21 ,( f 22 )2, f 11

+ X f 32 , f 21 ,( f 22 )2
+[2]qs X f 32 , f 21 , f 22

+X f 32 , f 21
+ X f 32

)

= gbs (X f 22 , f 21 ,( f 22 )2, f 11 , f 12
)gbs (X f 22 , f 21 ,( f 22 )2, f 11

+X f 32 , f 21 ,( f 22 )2
+[2]qs X f 32 , f 21 , f 22

+X f 32 , f 21
+X f 32

)

= gbs (X f 22 , f 21 ,( f 22 )2, f 11 , f 12
)g∗

b (X f 11
)gbs (X f 32 , f 21 ,( f 22 )2

+ [2]qs X f 32 , f 21 , f 22
+ X f 32 , f 21

+ X f 32 , f 21 , f 11

+ X f 32
)gb(X f 11

)

= gbs (X f 22 , f 21 ,( f 22 )2, f 11 , f 12
)g∗

b (X f 11
)g∗

b (X f 11 , f 21
)gbs (X f 32 , f 21 ,( f 22 )2

+ [2]qs X f 32 , f 21 , f 22
+ X f 32 , f 21

+ X f 32
)gb(X f 11 , f 21

)gb(X f 11
)

= gbs (X f 22 , f 21 ,( f 22 )2, f 11 , f 12
)g∗

b (X f 11
)g∗

b (X f 11 , f 21
)g∗

bs
(X f 22

)gbs (X f 32 , f 21
+ X f 32

+ X f 32 , f 22
)

gbs (X f 22
)gb(X f 11 , f 21

)gb(X f 11
)

= gbs (X f 22 , f 21 ,( f 22 )2, f 11 , f 12
)g∗

b (X f 11
)g∗

b (X f 11 , f 21
)g∗

bs
(X f 22

)g∗
b (X f 21

)gbs (X f 32
+ X f 32 , f 22

)

gb(X f 21
)gbs (X f 22

)gb(X f 11 , f 21
)gb(X f 11

)

= gbs (X f 22 , f 21 ,( f 22 )2, f 11 , f 12
)g∗

b (X f 11
)g∗

b (X f 11 , f 21
)g∗

bs
(X f 22

)g∗
b (X f 21

)gbs (X f 32
)gbs (X f 32 , f 22

)gb(X f 21
)

gbs (X f 22
)gb(X f 11 , f 21

)gb(X f 11
).

��

10 Universal R-matrix as half-Dehn twist

Finally we state the final main result of the paper. Consider the Zg-quiver associated
to the triangulation of the disk with two marked points A,C and two punctures B, D
as before, where the basic quiver Q and its mirror image ˜Q are put onto the triangles
according to Sect. 8, and we label the nodes using the standard form. Let P be the
permutation

P(X ⊗ Y ) := Y ⊗ X . (10.1)

Note that P ◦ AdR acts as identity on the coalgebra structure, hence it naturally
corresponds to an automorphism of seed i −→ i.
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R1 R2 R3 R4

A

B

C

D

Fig. 40 Half-Dehn twist

Theorem 10.1 We have

P ◦ AdR = (μ
q
i1

. . . μ
q
iT

◦ σ ∗)−1 = (σ ∗)−1 ◦ μ
q
iT

. . . μ
q
i1

(10.2)

for some mutation sequence μiT . . . μi1 : i −→ i′ realizing the half-Dehn twist, and
σ : i′ 
 i is a permutation of the quiver returning to the original seed. In the second
equality we have used the relation (μ

q
k )

2 = Id.
More precisely, recall from Lemma 3.8 that

μ
q
i1

. . . μ
q
iT

= �T ◦ MT .

Then we have

AdR = �−1
T , (10.3)

P ◦ AdK = (σ ∗)−1 ◦ M−1
T . (10.4)

The factors R1, R2, R3, R4 in (9.9) correspond to the sequences of quiver mutations
realizing the 4 flips of triangulations giving the half-Dehn twist as follows (Fig. 40):

Remark 10.2 We note that the mutation sequence is not unique, for example, using
(A.7) one can replace 2 gb’s with 3 gb’s, thus giving the same mutation (with different
permutation index at the end) but with a longer sequence.

In terms of the quiver associated to the triangulations, the 4 flips are realized as
follows. Let us write μRi for the sequence of quiver mutations (starting from a stan-
dard form) corresponding to Ri , and σi the permutation bringing the labeling of the
basic quivers back to the standard form. Then we have the following configurations
(Figs. 41, 42, 43, 44):

After the 4 flips, the quiver comes back to the original configurationwith B ←→ D,
Q ←→ Q′, ˜Q ←→ ˜Q′, and we have (Fig. 45)

σ = σ4 ◦ σ3 ◦ σ2 ◦ σ1. (10.5)

We observe that for each flip, one can think of the quiver mutation as rotating both
basic quivers (viewed as lying on equilateral triangles) clockwise by 30 degree, and
then stack the right quiver on top of the left one. In the next subsection, we will show
how to obtain such mutation sequences.
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Fig. 42 Flip of triangulations corresponding to R2
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Fig. 43 Flip of triangulations corresponding to R3

10.1 Explicit mutation sequence for the half-Dehn twist

By the symmetry of the decomposition (9.9) as well as the mutation configurations,
we can see that R2 and R3 commute, and the mutation sequence corresponding to R4
and R3 in some sense are just “mirror images” to those of R1 and R2 respectively.
Using the explicit decomposition from Proposition 9.7, we arrive at the following
more precise description of the quiver mutation giving the half-Dehn twist:
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Fig. 44 Flip of triangulations corresponding to R4
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Fig. 45 Half-Dehn twist of the quiver Zg

Proposition 10.3 The mutation sequence is a mirrored palindrome:

μR4 = (ρσ1)∗(μ−1
R1

), σ4 = ρ∗(σ−1
1 ),

μR3 = (ρσ2)∗(μ−1
R2

), σ3 = ρ∗(σ−1
2 ),

where ρ is the permutation given by the reflection f ki ←→ f −k
i :

ρ : { f ki , e0i , f ′k
i , e

′0
i } ←→ { f −k

i , e0i , f ′−k
i , e′0

i }, (10.6)

and for a permutation π we denote by π∗(X) := π ◦ X ◦ π−1.

Hence below we will only study the mutation sequences corresponding to R1 and
R2.

To describe the mutation sequences, let us define the following notation:

Definition 10.4 Let S = (s0, . . . , sn), T = (t0, . . . , tm) be two sequences (of the
nodes of some quiver). If sn and t1 denote the same node in the quiver, then we define
a new sequence of length n + m + 1:
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〈S − T 〉 := (s0, . . . , sn = t0, . . . , tm)

to be the concatenation of the two sequences, and it is indexed from −n to m such
that

〈S − T 〉0 = sn = t0.

If P is a sequence constructed in this way, then we define its flip to be

F(P) := 〈T − S〉

whenever tm = s0 in some other quiver in which this sequence is indexing.

Definition 10.5 If

μT := μ jM . . . μ j1

is a mutation sequence, we alternatively write it as

μT =: { j1 −→ j2 −→ . . . −→ jM }.

Then given a sequence P , we denote the k-shifted mutation subsequence of length m
by

P[k,m] := {P1−k −→ P2−k −→ . . . −→ Pm−k}.

Definition 10.6 We define the sequences

PQ
Ei

:= ( f nii , . . . , e0i ),

P ˜Q
Ei

:= (e0i , . . . , f −ni
i ),

PQ
Fi

:= ( f nii , . . . , f 0i ),

P ˜Q
Fi

:= ( f 0i , . . . , f −ni
i )

to be the Ei and (reverse of) Fi paths of the quiver Q and ˜Q respectively. Similarly
we use ′ to denote the corresponding paths in the second quiver 1 ⊗ Dg ⊂ Zg.

Finally, given a reduced word i, we denote by i′ the reversed word, and recall that
(cf. Definition 4.6)

v′(i, k) = m (10.7)

if im is the k-th appearance of the root index i from the left of i′, i.e. right of i.
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Fig. 46 ZA2 -quiver

10.1.1 Toy example: type A2

To demonstrate the procedure, let us first look at the toy example in type A2 in detail
using the notation of our paper. This has also been worked out in detail in [41] with
slightly different notations (Fig. 46).

Recall the embedding of type A2 from Sect. 6.1. First of all, the gb(ei ) can be easily
decomposed using (A.8) with gb(ei ) = gb(e

+
i )gb(e

−
i ) as

gb(e
+
1 ) = gb(X f 21 ,e01

),

gb(e
−
1 ) = gb(X f 21

),

gb(e
+
2 ) = gb(X f 12 , f 11 ,e02, f

−1
1

)gb(X f 12 , f 11 ,e02
),

gb(e
−
2 ) = gb(X f 12 , f 11

)gb(X f 12
).

Hence by Corollary 9.6, the reduced R matrix decomposed as:

R4 = gb(X f 21 ,e01
⊗ X f −2

1 , f −1
1 , f 01 , f 21

)gb(X f 12 , f 21 ,e02, f
−1
1

⊗ X f −1
2 , f 02

)

gb(X f 12 , f 21 ,e02
⊗ X f −1

2 , f 02
)gb(X f 21 ,e01

⊗ X f −2
1 , f −1

1 , f 01
).

R3 = gb(X f 21
⊗ X f −2

1 , f −1
1

)gb(X f 12 , f 11
⊗ X f −1

2
)gb(X f 12

⊗ X f −1
2

)gb(X f 21
⊗ X f −2

1
).

R2 = gb(X f 21 ,e01
⊗ X f −2

1 , f −1
1

)gb(X f 12 , f 21 ,e02, f
−1
1

⊗ X f −1
2

)gb(X f 12 , f 21 ,e02
⊗

X f −1
2

)gb(X f 21 ,e01
⊗ X f −2

1
).

R1 = gb(X f 21
⊗ X f −2

1 , f −1
1

)gb(X f 12 , f 11
⊗ X f −1

2
)gb(X f 12

⊗ X f −1
2

)gb(X f 21
⊗ X f −2

1
).
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Fig. 47 The flipping of triangle μR1 of the basic quivers, before changing the index back to standard form

Then we calculate term by term the corresponding mutation sequence (recall that f nii

is glued to f ′−ni
i ):

X f 21
⊗ X f −2

1
∼ μ f 21

X f 12
⊗ X f −1

2
= μ′

f 21
(Xμ

f 12
⊗ Xμ

f −1
2

)) ∼ μ f 12

X f 12 , f 11
⊗ X f −1

2
= μ′

f 21
μ′

f21
(Xμ2

f 11
⊗ 1) ∼ μ f 11

X f 21
⊗ X f −2

1 , f −1
1

= μ′
f 21

μ′
f 12

μ′
f 11

(1 ⊗ Xμ3

f −1
1

) ∼ μ f ′−1
1

· · · ∼ · · ·

and so on, where we denoted by Xμn
the corresponding mutated quantum cluster

variables after nmutations (but we do not change the labels). Then we obtain (Fig. 47):

μR1 = μ f ′−1
1

μ f 11
μ f ′−1

2
μ f ′−2

1
, σ1 = ( f ′0

2, f ′−1
2 , f 11 , e02)(e

0
1, f ′−2

1 , f ′−1
1 , f ′0

1),

μR2 = μ f ′−1
1

μ f −1
1

μ f ′−1
2

μ f ′−2
1

, σ2=( f ′0
2, f ′−1

2 , f −1
1 , f −1

2 )( f −2
1 , f ′−2

1 , f ′−1
1 , f ′0

1),

μR3 = μ f ′1
1
μ f 11

μ f ′0
2
μ f ′0

1
, σ3 = ( f ′1

2, f ′0
2, f 11 , e02)(e

0
1, f ′0

1, f ′1
1, f ′2

1),

μR4 = μ f ′1
1
μ f −1

1
μ f ′0

2
μ f ′0

1
, σ4 = ( f ′1

2, f ′0
2, f −1

1 , f −1
2 )( f −2

1 , f ′0
1, f ′1

1, f ′2
1).

Note that σi are given by shifting along the concatenation of the Fi path in the right
quiver and Ei path in the left quiver, and that the mutation corresponding to R3 and
R4 are the mirror reflections of R2 and R1 satisfying Proposition 10.3. We display the
configurations in Fig. 48, omitting R3 and R4. Also recall that Q = ˜Q in type An due
to the S3 symmetry, hence in fact under this identification all 4 flips are identical.
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Fig. 48 The flipping of triangle μR2 of the basic quivers, before changing the index back to standard form

10.1.2 Type An

Let i = (1213214321 . . . n . . . 1) be the usual reduced word. To study R1 and R2, let

PQ˜Q′
i := 〈P ˜Q′

Fi
− PQ

Ei
〉, P ˜Q˜Q′

i := 〈P ˜Q′
Fi

− P ˜Q
Ei

〉 (10.8)

be the concatenation of the Fi , Ei path of the right and left quiver respectively. Then
the mutation sequences μR j , j = 1, 2, are given by

μR j := {P j
1 −→ P j

2 −→ . . .P j
N }

where for v′(i, k) = m, P j
m are the k-shifted subsequences

P1
m = PQ˜Q′

i [k, i], P2
m = P ˜Q˜Q′

i [k, i].

Let

P
˜Q′
Q
i := F(PQ˜Q′

i ) = 〈PQ
Ei

− P ˜Q′
Fi

〉, P
˜Q′
˜Q
i := F(P ˜Q˜Q′

i ) = 〈P ˜Q
Ei

− P ˜Q′
Fi

〉 (10.9)

be the concatenation of the Ei , Fi path of the bottom and top quiver respectively after
the flip of triangulation. The permutations σ1, σ2 are then defined by renaming the
corresponding sequence:

σ1 : PQ˜Q′
i �→ P

˜Q′
Q
i , σ2 : P ˜Q˜Q′

i �→ P
˜Q′
˜Q
i
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For example, in type A3, we have i = (1, 2, 1, 3, 2, 1) and

PQ˜Q′
1 : ( f ′0

1, f ′−1
1 , f ′−2

1 , f ′−3
1 = f 31 , e01),

PQ˜Q′
2 : ( f ′0

2, f ′−1
2 , f ′−2

2 = f 22 , f 21 , e02),

PQ˜Q′
3 : ( f ′0

3, f ′−1
3 = f 13 , f 12 , f 11 , e01),

and hence the mutation sequence giving the first flip of triangulations is

μR1 = { f 31 −→ f 21 −→ f 22 −→ f 11 −→ f 12 −→ f 13

−→ f ′−2
1 −→ f ′−1

2 −→ f 22 −→ f ′−1
1 }.

10.1.3 Type Bn and Cn

Let the reducedword i be as in (6.1). It turns out that type Bn and typeCn have identical
mutation sequences. Define the sequence

S : = ( f n1 , f n−1
1 , f n−2

1 , . . . , f 11 , e01),

S ′ : = (e01, f 11 , f 21 , . . . , f n1 ),

and let

PQ˜Q′
i :=

⎧

⎨

⎩

〈P ˜Q′
Fi

− PQ
Ei

〉 i �= 1,

(P ˜Q′
F1

− S〉 i = 1,

P ˜Q˜Q′
i :=

⎧

⎨

⎩

〈P ˜Q′
Fi

− P ˜Q
Ei

〉 i �= 1,

〈P ˜Q′
F1

− S ′〉 i = 1.

Then the mutation sequences μR j , j = 1, 2, are given by

μR j := {P j
1 −→ P j

2 −→ . . .P j
N }

For i �= 1 and v′(i, k) = m, P j
m are the k-shifted subsequences

P1
m = PQ˜Q′

i [k,mi ], P2
m = P ˜Q˜Q′

i [k,mi ],

where mi = 2(n − i) + 1 is the length of the Ei path.
For i = 1 and v′(1, k) = m, let

f n1 −→ f 2n−3
2 −→ f n−1

1 −→ f 2n−5
2 −→ f n−2

1 −→ . . . −→ f 21 −→ f 12 −→ f 11
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be the Ei path of e1 in Q (ignore the double count in type Cn). Then

P1
m = PQ˜Q′

1 (1 − k) −→ f 2n−3
2 −→ PQ˜Q′

1 (1 − k) −→ PQ˜Q′
1 (2 − k)

−→ f 2n−5
2 −→ PQ˜Q′

1 (2 − k)

. . . −→ PQ˜Q′
1 (n − k − 1) −→ f 12 −→ PQ˜Q′

1 (n − k − 1) −→ PQ˜Q′
1 (n − k).

Let

e01 −→ f −1
1 −→ f −1

2 −→ f −2
1 −→ . . . −→ f −(n−1)

1 −→ f −(2n−3)
2 −→ f −n

1

be the Ei path of e1 in ˜Q. Then

P2
m = P ˜Q˜Q′

1 (1 − k) −→ P ˜Q˜Q′
1 (2 − k) −→ f −1

2 −→ P ˜Q˜Q′
1 (2 − k)

−→ P ˜Q˜Q′
1 (3 − k) −→ f −3

2 −→ P ˜Q˜Q′
1 (3 − k) −→

. . . −→ P ˜Q˜Q′
1 (n − k) −→ f −(2n−3)

2 −→ P ˜Q˜Q′
1 (n − k).

Let

P
˜Q′
Q
i := F(PQ˜Q′

i ), P
˜Q′
˜Q
i := F(P ˜Q˜Q′

i )

Then the permutations σ1, σ2 are again defined by renaming the corresponding
sequence:

σ1 : PQ˜Q′
i �→ P

˜Q′
Q
i , σ2 : P ˜Q˜Q′

i �→ P
˜Q′
˜Q
i

For example, in type B3, we have i = (1, 2, 1, 2, 3, 2, 1, 2, 3) and

PQ˜Q′
1 : ( f ′0

1, f ′−1
1 , f ′−2

1 , f ′−3
1 = f 31 , f 21 , f 11 , e01),

PQ˜Q′
2 : ( f ′0

2, f ′−1
2 , f ′−2

2 , f ′−3
2 , f ′−4

2 = f 42 , f 13 , f 22 , e02),

PQ˜Q′
3 : ( f ′0

3, f ′−1
3 , f ′−2

3 = f 23 , e03),

and hence the mutation sequence giving the first flip of triangulations is (spacing
according to i′):

μR1 = { f 23 −→
f 42 −→ f 13 −→ f 22 −→
f 31 −→ f 32 −→ f 31 −→ f 21 −→ f 12 −→ f 21 −→ f 11 −→
f ′−3
2 −→ f 42 −→ f 13 −→

f ′−1
3 −→
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f ′−2
2 −→ f ′−3

2 −→ f 42 −→
f ′−2
1 −→ f 32 −→ f ′−2

1 −→ f 31 −→ f 12 −→ f 31 −→ f 21 −→
f ′−1
2 −→ f ′−2

2 −→ f ′−3
2 −→

f ′−1
1 −→ f 32 −→ f ′−1

1 −→ f ′−2
1 −→ f 12 −→ f ′−2

1 −→ f ′−3
1 }.

10.1.4 Type Dn

The description of the Dn mutation sequences is a lot more complicated. Let the
reduced word i be as in (6.3). For i �= 0, 1, define as before

PQ˜Q′
i = 〈P ˜Q′

Fi
− PQ

Ei
〉.

Let

n := n (mod 3) ∈ {0, 1, 2}

and define the following sequences, which are constructed by repeating in blocks of
4:

S1 = (X1, . . . , f ′−3k+n−2
0 , f ′−3k−n−1

0 , f ′−3k−n−1
1 , f ′−3k−n

1 , . . . , f ′−n+1
1 ),

S2 = (X2, . . . , f ′−3k−n−1
0 , f ′−3k−n

0 , f ′−3k−n
1 , f ′−3k−n+1

1 , . . . , f ′−n+1
0 ),

S0 = (X0, . . . , f ′−3k−n
0 , f ′−3k−n+1

0 , f ′−3k−n+1
1 , f ′−3k−n+2

1 , . . . , f ′−n+1
0 ),

where the starting terms are given by

Xi =
{

f ′0
1 n = i,

f ′0
0 otherwise.

Let

T0 = ( f n−1
0 , f n−1

1 , f n−2
1 , f n−2

0 , f n−3
0 , f n−3

1 , . . . , f 1ε , f 11−ε, e
0
1)

where ε := n (mod 2) ∈ {0, 1}. Let T1 = PQ
E#
1
denote the E1 path in Q, but with the

last term e01 replaced by e00, and let T2 = PQ
E0
.

Finally, we define

U j := 〈S j − T j 〉, j = 0, 1, 2.

Then the mutation sequence for R1 is given by

μR1 := {P1 −→ P2 −→ . . . −→ PN }.
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For i �= 0, 1 and v′(i, k) = m, we have as before

Pm = PQ˜Q′
i [k,mi ]

where mi = 2(n − i) − 1 is the length of the Ei path.
For i = 0, 1 and v′(i, k) = m, we have

Pm = Uk−1+i [Ki
k, 2n − 3]

where

K 0
k := 4�k − 2

3
� + k − 2 + 2, K 1

k := 4�k − 1

3
� + k − 1

i.e. K 0 = (0, 2, 3, 4, 6, 7, 8, 10, 11, 12 . . .) and K 1 = (0, 1, 2, 4, 5, 6, 8, 9, 10 . . .).
Then the permutation is given by

σ1 : PQ˜Q′
i �→ P

˜Q′
Q
i , i �= 0, 1

and

σ1 : U j �→ 〈T j+1−n − S j+1〉, j = 0, 1, 2.

The second flip R2 is described similarly, where all the sequences T j are reversed
and the root indexes 0 ←→ 1 interchanged, and S j are replaced by S j−1.

For example, in type D4, we have i = (0, 1, 2, 0, 1, 2, 3, 2, 0, 1, 2, 3), and

PQ˜Q′
2 = ( f ′0

2, f ′−1
2 , f ′−2

2 , f ′−3
2 , f ′−4

2 = f 42 , f 13 , f 22 , e02),

PQ˜Q′
3 = ( f ′0

3, f ′−1
3 , f ′−2

3 = f 23 , e03),

U1 = ( f ′0
1, f ′−1

0 , f ′−2
0 , f ′−2

1 , f ′−3
1 = f 31 , f 32 , f 20 , f 12 , f 11 , e00),

U2 = ( f ′0
0, f ′−1

0 , f ′−1
1 , f ′−2

1 , f ′−3
0 = f 30 , f 32 , f 21 , f 12 , f 10 , e00),

U0 = ( f ′0
0, f ′0

1, f ′−1
1 , f ′−2

0 , f ′−3
0 = f 30 , f 31 , f 21 , f 20 , f 10 , f 11 , e01),

and hence the mutation sequence giving the first flip of triangulations is (spacing
according to i′):

μR1 = { f 23 −→
f 42 −→ f 13 −→ f 22 −→
f 31 −→ f 32 −→ f 20 −→ f 12 −→ f 11 −→
f 30 −→ f 31 −→ f 21 −→ f 20 −→ f 10 −→
f ′−3
2 −→ f 42 −→ f 13 −→
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f ′−1
3 −→

f ′−2
2 −→ f ′−3

2 −→ f 42 −→
f ′−2
1 −→ f 30 −→ f 32 −→ f 21 −→ f 12 −→

f ′−2
0 −→ f ′−2

1 −→ f 31 −→ f 32 −→ f 20 −→
f ′−1
2 −→ f ′−2

2 −→ f ′−3
2 −→

f ′−1
1 −→ f ′−2

0 −→ f 30 −→ f 31 −→ f 21 −→
f ′−1
0 −→ f ′−1

1 −→ f ′−2
1 −→ f 30 −→ f 32 }.

10.1.5 Exceptional types

The mutation sequences can be worked out in the exception type, but there are no
apparent patterns, so we will not present here. We know that the reduced R matrix
corresponds to

T = 4
n
∏

i=1

niEi

mutations, where Ei is the number of factors in the gb(ei ) decomposition as in Propo-
sition 9.7. One check explicitly that indeed the mutation sequences give the half-Dehn
twist. Combining with the classical types, we have

Proposition 10.7 The half-Dehn twist can be represented by T quiver mutations,
where

T =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

2
3n(n + 1)(n + 2) Type An
4
3n(4n2 − 1) Type Bnand Cn
4
3n(n − 1)(4n − 5) Type Dn

1196 Type E6

3464 Type E7

12064 Type E8

976 Type F4
144 Type G2

and each flip of triangulations are given by T
4 quiver mutations.

In type G2, from the factorization of gbs (e2), we see that it involves the factor
g∗
bs

(X ...). We use the fact that

μ
q
k = Adg∗

b (Xk ) ◦ μ′
k,

= Adgb(X−1
k )

◦ μ′′
k ,



4538 I. C. H. Ip

f0
1

f1
1 f2

1

f3
1

f0
2

f1
2 f2

2

f3
2

e01

e02

Fig. 49 Basic quiver in type G2 attached to a triangle

where μ′′
k is the same as μk but with bi j −→ b ji inverted in the formula. With slight

modification of Lemma 3.8, we obtain a mutation sequence μR1 of length 36 given
by

μR1
=
{

f ′−3
1 −→ f 11 −→ f 21 −→ f 22 −→ f 11 −→ f ′−3

2 −→ f 22 −→ f 11 −→ f 32 −→ f 21 −→ f 11 −→ f 12 −→

f ′−2
1 −→ f 11 −→ f 21 −→ f 32 −→ f 11 −→ f ′−2

2 −→ f 32 −→ f 11 −→ f ′−2
2 −→ f 21 −→ f 11 −→ f 22 −→

f ′−1
1 −→ f 11 −→ f 21 −→ f ′22 −→ f 11 −→ f ′−1

2 −→ f ′−2
2 −→ f 11 −→ f ′−1

2 −→ f 21 −→ f 11 −→ f 32

}

,

where f nii and f ′−ni
i are identified.

The basic quiver (cf. Fig. 37) can be attached to a triangle as in Fig. 49. Then the
mutation μR1 appears as in Fig. 50, and we can determine σ1 to be:

σ1 : 〈Si − Ti 〉 �→ 〈Ti − Si 〉, i = 1, 2,

where

S1 = P ˜Q′
F1

= ( f ′0
1, f ′−1

1 , f ′−2
1 , f ′−3

1 ), T1 = ( f 31 , e01),

S2 = P ˜Q′
F2

= ( f ′0
2, f ′−1

2 , f ′−2
2 , f ′−3

2 ), T2 = ( f 32 , f 22 , f 12 , e02).
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Fig. 50 The flipping of triangle μR1 of the basic quivers in type G2, before changing the index back to
standard form. The basic quivers are stacked according to Fig. 41

Similarly, the description for μR2 is given by

μR2
=
{

f ′−3
1 −→ f ′−3

2 −→ f −2
1 −→ f −1

1 −→ f −2
2 −→ f −2

1 −→ f −1
2 −→ f −2

2 −→ f −2
1 −→ f −1

2 −→ f −1
1 −→ f −2

1 −→

f ′−2
1 −→ f ′−2

2 −→ f −2
1 −→ f −1

1 −→ f −1
2 −→ f −2

1 −→ e02 −→ f −1
2 −→ f −2

1 −→ e02 −→ f −1
1 −→ f −2

1 −→

f ′−1
1 −→ f ′−1

2 −→ f −2
1 −→ f −1

1 −→ e02 −→ f −2
1 −→ f ′−2

2 −→ e02 −→ f −2
1 −→ f ′−2

2 −→ f −1
1 −→ f −2

1

}

,

where e0i and f ′−ni
i are identified. The permutation is then given by

σ2 : 〈Si − T ′
i 〉 �→ 〈T ′

i − Si 〉, i = 1, 2,

where Si is the same as before, while (Fig. 51)

T ′
1 = (e01, f −3

1 ), T ′
2 = (e02, f −1

2 , f −2
2 , f −3

2 ).

10.2 Alternative factorization of the reduced Rmatrix

FromRemark 4.17, one can use the Cartan involution and replace the first factor ei ⊗1
in the reduced Rmatrixwith the embedding by the Fi paths. Then the embedding ιw⊗ι

induces a very simple factorization of the reduced R matrix, where

gb(e
−
i ) = gb(f

1,−
i ) . . . gb(f

ni ,−
i ),

gb(e
+
i ) = gb(f

ni ,+
i ) . . . gb(f

1,+
i ),

and hence by Corollary 9.6,
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Fig. 51 The flipping of triangle μR2 of the basic quivers in type G2, before changing the index back to
standard form. The basic quivers are stacked according to Fig. 42

Corollary 10.8 Under the embedding ιw ⊗ ι, the reduced R matrix factorizes as

R = R4 · R3 · R2 · R1,

where

R1 =
N
∏

k=1

op

nik
∏

j=1

opgb(F
j,+
ik

⊗ X+
k ),

R2 =
N
∏

k=1

op

nik
∏

j=1

gb(F
j,−
ik

⊗ X+
k ),

R3 =
N
∏

k=1

nik
∏

j=1

opgb(F
j,+
ik

⊗ X−
k ),

R4 =
N
∏

k=1

nik
∏

j=1

gb(F
j,−
ik

⊗ X−
k ).

and recall that �op means multiplying from the right.

The embedding ιw ⊗ ι corresponds to a new quiver ˜Zg, which is another amalga-
mation of the two quivers Dg, where the nodes { f nii } of the first quiver are glued to
{ f ′ni

i } of the second quiver instead (see Fig. 52). Then one can describe for every type
of g the mutation sequence giving the flip of triangulations on ˜Zg easily:
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A

B

C

D

Q Q Q Q

A

D

C

B

Q Q Q Q

Fig. 52 Half-Dehn twist of the quiver ˜Zg

Proposition 10.9 Let

P ˜Q˜Q′
i := 〈P ˜Q′

Fi
− P ˜Q

Fi
〉

be the concatenation of the Fi -paths in the corresponding subquivers of ˜Zg. Then the
mutation sequence giving the flip of triangulation is

μR1 = {P1 −→ P2 −→ . . .PN },

where as before if im is the k-th appearance of the root index i from the right of i, then

Pm = P ˜Q˜Q′
i [k, ni ].

When i corresponds to the Coxeter element of the Weyl group, w0 = w
h/2
c , this

coincides with the mutation sequence of the flip of triangulations (where two quivers
mirrored to each other are glued) described in [35] in the classical type. Hence this
construction generalizes those of [35], and at the same time provides a representation
theoretic meaning of the sequences giving the flip of triangulations described there.

Although the description of the R matrix factorization is very nice, we see that
after 4 flips it does not return to the original quiver, but rather a mirror image with all
the arrows flipped. A full Dehn twist, however, return us to the original configuration.
If Conjecture 8.5 is true, which gives a quiver mutation equivalence between ι and
ιw (with Dynkin involution), this will relate such nice presentation of the R matrix
factorization to the canonical one found in the main theorem.

11 Proof of Theorem 9.5

Let ˜R denote the right hand side of (9.8). The strategy is to show that K˜R also gives
the braiding relations (9.3) as well. First of all, we have
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AdK(1 ⊗ ei + ei ⊗ K ′
i ) = Ki ⊗ ei + ei ⊗ 1, (11.1)

AdK(fi ⊗ 1 + Ki ⊗ fi ) = fi ⊗ K ′
i + 1 ⊗ fi , (11.2)

AdK�(Ki ) = Ki ⊗ Ki . (11.3)

Hence in order to prove the braiding relations, it suffices to show

˜R�(ei ) = (1 ⊗ ei + ei ⊗ K ′
i ), (11.4)

˜R�(fi ) = (fi ⊗ 1 + Ki ⊗ fi ), (11.5)

˜R�(Ki ) = Ki ⊗ Ki , (11.6)

where the last one is trivial. We begin with several Lemmas:

Lemma 11.1 For any sl2 triple (e, f, K , K ′), and any self-adjoint element X, we have

Adgb(e⊗X)(f ⊗ 1 + K ′ ⊗ X) = f ⊗ 1 + K ⊗ X . (11.7)

Proof This is a well-known result by considering the formal power series expansion
of gb (recall that we restrict ourselves to the compact case, but it holds for the non-
compact case as well). Recall

gb(u) = Expq−2

(

− u

q − q−1

)

=
∑

n≥0

(−1)nq
1
2 n(n−1)un

(qn − q−n) . . . (q − q−1)
,

and that we have

enf − fen = (qn − q−n)(qn−1K ′ − q1−nK )en−1.

Hence we can work out

gb(e ⊗ X)(f ⊗ 1 + K ′ ⊗ X) − (f ⊗ 1 + K ⊗ X)gb(e ⊗ X)

=
⎛

⎝

∑

n≥0

(−1)nq
1
2 n(n−1)en

(qn − q−n) . . . (q − q−1)
⊗ Xn

⎞

⎠ (f ⊗ 1 + K ′ ⊗ X)

− (f ⊗ 1 + K ⊗ X)
∑

n≥0

(−1)nq
1
2 n(n−1)en

(qn − q−n) . . . (q − q−1)
⊗ Xn

= (f ⊗ 1)
∑

n≥0

(−1)nq
1
2 n(n−1)en

(qn − q−n) . . . (q − q−1)
⊗ Xn
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+ (K ′ ⊗ X)
∑

n≥0

(−1)nq
1
2 n(3+n)en

(qn − q−n) . . . (q − q−1)
⊗ Xn

−
∑

n≥0

(qnK ′ − q−nK )
(−1)nq

1
2 n(n+1)en

(qn − q−n) . . . (q − q−1)
⊗ Xn+1

− (f ⊗ 1 + K ⊗ X)
∑

n≥0

(−1)nq
1
2 n(n−1)en

(qn − q−n) . . . (q − q−1)
⊗ Xn

= 0.

��
For simplicity, let us define

Y k
i :=

{

fni+1−k,−
i k ≤ ni ,

fk−ni ,+
i k > ni ,

(11.8)

such that fi = Y 1
i + Y 2

i + . . . + Y 2ni
i .

Lemma 11.2 We have for 1 ≤ k ≤ 2ni ,

Adgb(ei⊗Y k
i )

(

fi ⊗ 1 + Ki ⊗
k−1
∑

l=1

Y l
i + K ′

i ⊗
2ni
∑

l=k

Y l
i

)

= fi ⊗ 1 + Ki ⊗
k
∑

l=1

Y l
i + K ′

i ⊗
2ni
∑

l=k+1

Y l
i

and invariant under Adgb(e j⊗Y l
j )
for j �= i if Y l

j comes after Y
k−1
i and before Y k

i in

the decomposition (9.8).

Proof We observe that by Lemma 5.2,

Adgb(ei⊗Y k
i )(Ki ⊗ Y l

i ) = Ki ⊗ Y l
i l < k,

Adgb(ei⊗Y k
i )(K

′
i ⊗ Y l

i ) = K ′
i ⊗ Y l

i l > k.

Hence we only care about the term (fi ⊗ 1 + K ′
i ⊗ Y k

i ). By Lemma 11.1

Adgb(ei⊗Y k
i )(fi ⊗ 1 + K ′

i ⊗ Y k
i ) = fi ⊗ 1 + Ki ⊗ Y k

i

and we are done.
Finally, again by Lemma 5.2 it is easy to check that e j ⊗ Y l

j commute with

Ki ⊗
k
∑

l=1

Y l
i + K ′

i ⊗
2ni
∑

l=k+1

Y l
i
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whenever Y l
j comes after Y k−1

i and before Y k
i in the decomposition (9.8). ��

Lemma 11.3 For the reduced word i = (i1, . . . , iN ) ∈ R, if iN = i , then

K˜R�(ei ) = �op(ei )K˜R.

Proof Note that if iN = i , then X±
N = X

f
±ni
i

, ei = X f
ni
i

+ X f
ni
i ,e0i

and Ki =
X

f
ni
i ,e0i , f

−ni
i

. We have

X
f
−ni
i

Xe0i
= q2i Xe0i

X
f
−ni
i

Hence

Adgb(ei⊗X−
N )(1 ⊗ ei + ei ⊗ Ki )

= Adgb(ei⊗X
f
−ni
i

)(1 ⊗ X f
ni
i

+ 1 ⊗ X f
ni
i ,e0i

+ ei ⊗ Ki )

= 1 ⊗ X f
ni
i

+ (1 ⊗ X f
ni
i ,e0i

+ ei ⊗ Ki )(1 + qiei ⊗ X
f
−ni
i

Xe0i
)−1

= 1 ⊗ X f
ni
i

+ 1 ⊗ X f
ni
i ,e0i

(1 + qi eβi ⊗ X
f
−ni
i

)(1 + qiei ⊗ X
f
−ni
i

Xe0i
)−1

= 1 ⊗ ei .

One then check directly that 1 ⊗ ei commutes with all the factors e j ⊗ X±
k for every

j, k, except the last term ei ⊗ X+
N , where we have the reverse of the above:

Adgb(ei⊗X+
N )(1 ⊗ ei ) = 1 ⊗ ei + ei ⊗ K ′

i ,

and hence

K˜R�(ei ) = K(1 ⊗ ei + ei ⊗ K ′
i )
˜R = �op(ei )K˜R

as required. ��
In general, we use the fact that the decomposition of ˜R is invariant under the change

ofwordsM. Let fi := ∑

̂f k,±i denote the representation of fi using themutated cluster
variableŝXi := M(Xi ) under the change of words M (cf. Sect. 7)

Lemma 11.4 We have the following identities:

(1) For the change of words M : (. . . i j i . . .) ←→ (. . . j i j . . .) we have

gb(e1 ⊗ f k+1,±
1 )gb(e2 ⊗ f l,±2 )gb(e1 ⊗ f k,±1 ) = gb(e2 ⊗̂f l+1,±

2 )

gb(e1 ⊗̂f k,±1 )gb(e2 ⊗̂f l,±2 )

for v(i, k) < v( j, l) < v(i, k + 1).
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(2) For the change of words M : (. . . i j i j . . .) ←→ (. . . j i j i . . .) where i is short
and j is long, we have

gbs (ei ⊗ f k+1,±
i )gb(e j ⊗ f l+1,±

j )gbs (ei ⊗ f k,±i )gb(e j ⊗ f l,±j )

= gb(e j ⊗̂f l+1,±
j )gbs (ei ⊗̂f k+1,±

i )gb(e j ⊗̂f l,±j )gbs (ei ⊗ f k,±i )

for v( j, l) < v(i, k) < v( j, l + 1) < v(i, k + 1).

Proof We will prove the + case, while the − case is similar.

Proof of (1) In the simply-laced case, recall that we have

fk+1,+
i f k,+i = q2f k,+i f k+1,+

i ,

f k,+i f l,+j = q−1f l,+j f k,+i .

Hence

[e j ⊗ f l,+j , ei ⊗ f k,+i ]
q − q−1 = e jei ⊗ f l,+j f k,+i − eie j ⊗ f k,+i f l,+j

= e jei ⊗ −q−1e jei
q − q−1 ⊗ f l,+j f k,+i

= ei j ⊗ q−1/2f l,+j f k,+i

where ei j = Ti (e j ) is given by the Lusztig’s isomorphism.
Hence using (A.9), we have

gb(ei ⊗ fk+1,+
i )gb(e j ⊗ f l,+j )gb(ei ⊗ f k,+i )

= gb(ei ⊗ fk+1,+
i )gb(ei ⊗ f k,+i )gb(ei j ⊗ q−1/2f l,+j f k,+i )gb(e j ⊗ f l,+j )

= gb(ei ⊗ (fk+1,+
i + f k,+i ))gb(ei j ⊗ q−1/2f l,+j f k,+i )gb(e j ⊗ f l,+j ).

Similarly, we have

gb(e j ⊗̂f l+1,+
j )gb(ei ⊗̂f k,+i )gb(e j ⊗̂f l,+j )

= gb(ei ⊗̂f k,+i )gb(ei j ⊗ q−1/2̂f l+1,+
j

̂f k,+i )gb(e j ⊗̂f l+1,+
j )gb(e j ⊗̂f l,+j )

= gb(ei ⊗̂f k,+i )gb(ei j ⊗ q−1/2̂f l+1,+
j

̂f k,+i )gb(e j ⊗ (̂f l+1,+
j +̂f l,+j )).

If we write down the quantum cluster variables as

fki = X1, fk+1
i = X1,2, f lj = X3,

̂fki = ̂X1, ̂f j
l = ̂X3, ̂f j

l+1 = X̂3,4,



4546 I. C. H. Ip

then we have

̂X1 = X1(1 + qX2),

̂X3 = X3(1 + qX−1
2 )−1,

̂X4 = X−1
2 ,

and one can see that

fk+1,+
i + f k,+i =̂f k,+i ,

f l,+j f k,+i =̂f l+1,+
j

̂f k,+i ,

f l,+j =̂f l+1,+
j +̂f l,+j

as required.

Proof of (2) We have f k,+i f l,+j = q−1f l,+j f k,+i whenever v( j, l) < v(i, k). Let

v = ei ⊗ f k,+i ,

u = e j ⊗ f l,+j ,

c

[2]qs
= [u, v]

q − q−1 = q1/2e jei − q−1/2eie j
q − q−1 ⊗ q−1/2f l,+j f k,+i = eY ⊗ q−1/2f l,+j f k,+i ,

d = q−1
s cv − qsvc

q − q−1 = eY ei − eieY
qs − q−1

s
⊗ q−1f l,+j (f k,+i )2 = eX ⊗ q−1f l,+j (f k,+i )2,

where eX := Ti (e j ) and eY := Ti Tj (ei ) are given by the Lusztig’s isomorphism. We
have

eY eX = qeXeY ,

eXei = qeieX ,

e jeY = qeY e j ,
[e j , eX ]
q − q−1 = e2Y ,

and hence u, c, d, v satisfies the condition for (A.10). Applying (A.10) repeatedly and
rearranging, we have (we underline the terms to be transformed):

gbs (ei ⊗ fk+1,+
i )gb(e j ⊗ f l+1,+

j ) gbs (ei ⊗ f k,+i )gb(e j ⊗ f l,+j )

= (A.10)gb(e j ⊗ f l+1,+
j )gbs (eY ⊗ q−1/2f l+1,+

j fk+1,+
i )gb(eX ⊗ q−1f l+1,+

j (fk+1,+
i )2)

× gbs (ei ⊗ fk+1,+
i )

gb(e j ⊗ f l,+j )gbs (eY ⊗ q−1/2f l,+j f k,+i )gb(eX ⊗ q−1f l,+j (f k,+i )2)gbs (ei ⊗ f k,+i )

= (A.10)gb(e j ⊗ f l+1,+
j )gbs (eY ⊗ q−1/2f l+1,+

j fk+1,+
i )
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× gb(eX ⊗ q−1f l+1,+
j (fk+1,+

i )2)gb(e j ⊗ f l,+j )

gbs (eY ⊗ q−1/2f l,+j fk+1,+
i )gb(eX ⊗ q−1f l,+j (fk+1,+

i )2)

gbs (ei ⊗ fk+1,+
i )gbs (eY ⊗ q−1/2f l,+j f k,+i )gb(eX ⊗ q−1f l,+j (f k,+i )2)gbs (ei ⊗ f k,+i )

= (A.7)gb(e j ⊗ f l+1,+
j )gbs (eY ⊗ q−1/2f l+1,+

j fk+1,+
i )gb(e j ⊗ f l,+j )

× gb(e2Y ⊗ f l+1,+
j f l,+j (fk+1,+

i )2)

gb(eX ⊗ q−1f l+1,+
j (fk+1,+

i )2)gbs (eY ⊗ q−1/2f l,+j fk+1,+
i )gb(eX ⊗ q−1f l,+j (fk+1,+

i )2)

gbs (eY ⊗ q−1/2f l,+j f k,+i )gbs (eX ⊗ f l,+j f k,+i fk+1,+
i )

gbs (ei ⊗ fk+1,+
i )gb(eX ⊗ q−1f l,+j (f k,+i )2)gbs (ei ⊗ f k,+i )

= (A.8)gb(e j ⊗ (f l+1,+
j + f l,+j ))

gbs (eY ⊗ q−1/2f l+1,+
j fk+1,+

i )gb(e2Y ⊗ f l+1,+
j f l,+j (fk+1,+

i )2)gbs (eY ⊗ q−1/2f l,+j fk+1,+
i )

gbs (eY ⊗ q−1/2f l,+j f k,+i )gb(eX ⊗ q−1f l+1,+
j (fk+1,+

i )2)

gb(eX ⊗ q−1f l,+j (fk+1,+
i )2)gbs (eX ⊗ f l,+j f k,+i fk+1,+

i )gb(eX ⊗ q−1f l,+j (f k,+i )2)

gbs (ei ⊗ (fk+1,+
i + f k,+i ))

= (A.12)gb(e j ⊗ (f l+1,+
j + f l,+j ))

× gbs (eY ⊗ q−1/2(f l+1,+
j + f l,+j )fk+1,+

i )gbs (eY ⊗ q−1/2f l,+j f k,+i )

gb(eX ⊗ q−1f l+1,+
j (fk+1,+

i )2)gb(eX ⊗ q−1f l,+j (fk+1,+
i + f k,+i )2)gbs (ei ⊗ (fk+1,+

i + f k,+i ))

= (A.8)gb(e j ⊗ (f l+1,+
j + f l,+j ))gbs (eY ⊗ q−1/2(f l+1,+

j + f l,+j )fk+1,+
i + q−1/2f l,+j f k,+i )

gb(eX ⊗ q−1f l+1,+
j (fk+1,+

i )2 + q−1f l,+j (fk+1,+
i + f k,+i )2)gbs (ei ⊗ (fk+1,+

i + f k,+i )),

where in the last line, we observe that the terms q2 commute, hence we can apply
(A.12).

On the other hand, by applying (A.10) once, we have

gb(e j ⊗̂f l+1,+
2 )gbs (ei ⊗̂f k+1,+

1 )gb(e j ⊗̂f l,+2 )gbs (ei ⊗̂f k,+1 )

= gb(e j ⊗ (̂f l+1,+
2 +̂f l,+2 ))gbs (eY ⊗ q−1/2̂f l,+2

̂f k+1,+
1 )

gb(eX ⊗ q−1̂f l,+2 (̂f k+1,+
1 )2)gbs (ei ⊗ (̂f k+1,+

1 +̂f k,+1 )).

To compare, again we write out the quantum cluster variables as

f k,+i = X1, fk+1,+
i = X1,2, f l,+j = X3, f l+1,+

j = X3,4,

̂f k,+i = ̂X1, ̂f k+1,+
i = ̂X1,2, ̂f l,+j = ̂X3, ̂f l+1,+

j = ̂X3,4.

Recall that we need to do mutation three times according to Sect. 7.2, which gives at
the end

̂X1 = D−1
2 X1,2,4,
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̂X2 = X−1
2,4D1,

̂X3 = D−1
1 X3D3,

̂X4 = D−1
3 X4,

where

D1 = (1 + qs X2)(1 + q3s X2) + qX22,4,

D2 = (1 + qs X2 + qs X2,4),

D3 = (1 + qs X2 + qs X2,4)(1 + q3s X2 + q3s X2,4).

Now we can check directly that

f l+1,+
j + f l,+j =̂f l+1,+

2 +̂f l,+2 ,

f l+1,+
j + f l,+j )fk+1,+

i + q−1/2f l,+j f k,+i =̂f l,+2
̂f k+1,+
1 ,

f l+1,+
j (fk+1,+

i )2 + f l,+j (fk+1,+
i + f k,+i )2 =̂f l,+2 (̂f k+1,+

1 )2,

fk+1,+
i + f k,+i =̂f k+1,+

1 +̂f k,+1

and this completes the proof. ��
Remark 11.5 In type G2, using the mutation sequence that gives the half-Dehn twist
from Sect. 10.1.5, one can conjugate the representation of �(e2) by (9.8) and check
the braiding relation directly. Using the fact that the standard form of the universal
R matrix is invariant under the change of words, we conclude that the analogue of
Lemma 11.4 also holds in type G2.

Proof of Theorem 9.5 First it is obvious that K and ˜R commute with both �(Ki ) and
�(K ′

i ) by direct calculation.
As a consequence of Lemma 11.2, we have

K˜R�(fi ) = K(fi ⊗ 1 + K ′ ⊗ fi )˜R = �op(fi )K˜R (11.9)

as required.
As a consequence of Lemma 11.4, we can choose freely the reduced word i with

any choice of index on the right of i, and by Lemma 11.3, we obtain

K˜R�(ei ) = �op(ei )K˜R

for every root index i , thus completing the proof of the braiding relations.
Finally, recall that by the construction of the positive representations Pλ, one can

choose appropriate discrete parameters λ and restrict it to give any irreducible highest
weight finite dimensional representations ofUq(g) [21]. ThenK˜R satisfies the braiding
(9.3) on every finite dimensional representations ofUq(g), and as a formal power series
it has constant term equals 1, hencewe conclude thatK˜R equals the universal Rmatrix.
��
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AQuantum dilogarithm identities

The compact quantum dilogarithm function is defined to be the infinite product

�q(x) =
∞
∏

r=0

(1 + q2r+1x)−1, (A.1)

which is well defined for 0 < q < 1. In the split real case, where q = eπ ib2 with
0 < b < 1, the infinite product is not so well-behaved. To treat this case, the non-
compact quantumdilogarithm gb(x) is composed of two commuting copies, associated
to the so-calledFaddeev’smodular double, of the compact quantumdilogarithm�q (x)
[6,8]. It is a meromorphic function that can be represented as an integral expression:

gb(x) := exp

(

1

4

∫

R+i0

x
t
ib

sinh(πbt) sinh(πb−1t)

dt

t

)

, (A.2)

such that by functional calculus, it is a unitary operator when x is positive self-adjoint,
and there is a b-duality:

gb(x) = gb−1(x
1
b2 ). (A.3)

In this paper however, we are only interested in the formal algebraic calculation,
hence one may consider only the compact part and think about the correspondence in
terms of formal power series

gb(x) ∼ �q(x)−1 =
∞
∏

r=0

(1 + q2r+1x) = Expq−2

(

− u

q − q−1

)

, (A.4)

where

Expq(x) :=
∑

k≥0

xk

(k)q ! , (A.5)

(k)q := 1 − qk

1 − q
. (A.6)

In particular, we can rewrite the identities of Expq(x) derived in [31] for the
quantum dilogarithm function gb(x) that are needed in this paper. In particular, by
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writing in this way, the argument of gb(x) are all manifestly positive self-adjoint so
that the identities are well-defined in the split real setting.

We will be interested in two types of identities: the pentagon equation (PE) and the
quantum exponential relation (QE), together with their generalizations.

Simply-laced case Let u, v be self-adjoint variables. If uv = q2vu, then we have the
pentagon equation and the quantum exponential relation:

(PE) : gb(v)gb(u) = gb(u)gb(q
−1uv)gb(v), (A.7)

(QE) : gb(u + v) = gb(u)gb(v). (A.8)

Let again u, v be self-adjoint and

c := [u, v]
q − q−1 ,

such that

uc = q2cu, cv = q2vc.

Then we have the generalized pentagon equation:

(PE) : gb(v)gb(u) = gb(u)gb(c)gb(v). (A.9)

in which (A.7) is a special case.

Doubly-laced case In the doubly-laced casewehaveqs = q1/2. Letu, v be self-adjoint
variables, and let

c := [u, v]
qs − q−1

s
, d := q−1

s cv − qsvc

q − q−1 ,

such that

uc = q2cu, cd = q2dc, dv = q2vd,
q−1ud − qdu

q − q−1 = c2

[2]2qs
.

We have

(PE) : gbs (v)gb(u) = gb(u)gbs

(

c

[2]qs

)

gb(d)gbs (v), (A.10)

(QE) : gbs (c + v) = gbs (c)gb([2]qs d)gbs (v). (A.11)

In particular if uv = q2vu and substitute u �→ quv−1/[2]qs , we have:

gbs (u + v) = gbs (u)gb(q
−1uv)gbs (v), (A.12)
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gb((u + v)2) = gb(u
2)gbs (q

−1/2uv)gb(v
2). (A.13)

These two relations are related by the b-duality (A.3).

Triply-laced case For completeness we also translate the type G2 identity of [31] to
gb(x), which becomes more natural looking.

Let qs = q1/3, and let u, v be self-adjoint. Define

c := q−1
s uv − qsvu

q2s − q−2
s

,

d := q−2
s cv − q2s vc

qs − q−1
s

,

d ′ := q−2
s uc − q2s cu

qs − q−1
s

,

such that these relations are satisfied:

ud ′ = q2d ′u, d ′c = q2cd ′, cd = q2dc, dv = q2vd,

c2 = q−1ud − qdu

q − q−1 , c2 = q−1d ′v − qvd ′

q − q−1 , c3 = q−2d ′d − q2dd ′

q − q−1 .

Then we have

(QE) : gbs (u + v) = gbs (u)gb(d
′)gbs (c)gb(d)gbs (v). (A.14)

In particular if uv = q2vu = q6s vu, we have

gbs (u + v) = gbs (u)gb(q
−2u2v)gbs (q

−1uv)gb(q
−2uv2)gbs (v), (A.15)

gb((u + v)3) = gb(u
3)gbs (q

−2u2v)gb(q
−3u3v3)gbs (q

−2uv2)gb(v
3), (A.16)

which are related by the b-duality (A.3).
On the other hand, let e1, e2 be the generators of Uq(gG2)with e1 long and e2 short,

and let ζ1, ζ2 be positive variables satisfying ζ1ζ2 = q−1ζ2ζ1. Let the non-simple root
generators be

eW := T1(e2) =
[e2, e1]q3/2s

q3s − q−3
s

,

eX := T1T2(e1) =
[eY , eW ]

q−1/2
s

qs − q−1
s

,

eY := T1T2T1(e2) =
[e2, eW ]

q1/2s

q2s − q−2
s

,

eZ := T1T2T1T2(e1) =
[e2, eY ]

q−1/2
s

qs − q−1
s

.
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Then we have (PE):

gbs (e2 ⊗ ζ2)gb(e1 ⊗ ζ1)

= gb(e1 ⊗ ζ1)gbs (eW ⊗ q1/2ζ1ζ2)gb(eX ⊗ q3ζ 2
1 ζ 3

2 )gbs

(eY ⊗ qζ1ζ
2
2 )gb(eZ ⊗ q3/2ζ1ζ

3
2 )gbs (e2 ⊗ ζ2). (A.17)
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