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In this paper we study the Lp-Minkowski problem for p = −n − 1,
which corresponds to the critical exponent in the Blaschke–Santalo
inequality. We first obtain volume estimates for general solutions,
then establish a priori estimates for rotationally symmetric solu-
tions by using a Kazdan–Warner type obstruction. Finally we give
sufficient conditions for the existence of rotationally symmetric so-
lutions by a blow-up analysis. We also include an existence result
for the Lp-Minkowski problem which corresponds to the super-
critical case of the Blaschke–Santalo inequality.
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1. Introduction

Let f be a positive function on the unit sphere Sn . In this paper we are concerned with the
solvability of the equation

det
(∇2 H + H I

) = f

Hn+2
on Sn, (1.1)

where H is the support function of a bounded convex body K in the Euclidean space R
n+1, I is the

unit matrix, ∇2 H = (∇i j H) is the covariant derivatives of H with respect to an orthonormal frame
on Sn .
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Eq. (1.1) is the L p-Minkowski problem of Lutwak [16] with p = −n − 1. It is called the cen-
troaffine Minkowski problem in [9], and is of particular interest due to its invariance under projective
transformations on Sn . This equation also arises in a number of applications. It describes self-similar
solutions to the anisotropic curve shortening flow [3,10]. The associated parabolic equation also re-
ceived considerable interest in image processing [2]. Eq. (1.1) corresponds to the critical case of the
Blaschke–Santalo inequality [18], and its existence of solution is a rather complicated problem. The
situation is similar, in some aspects, to the Nirenberg problem and the prescribing scalar curvature
problem on the sphere, which involve critical exponents of the Sobolev inequalities and have been
extensively studied [6,8,12,14,15]. For Eq. (1.1), it is known that when f is constant, all ellipsoids
centered at the origin are solutions to (1.1) [5]. So one cannot obtain a priori estimates for solutions
without additional assumptions on f . Similarly to the prescribing scalar curvature problem, there
exist obstructions for the existence of solutions, such as a Kazdan–Warner type one in [9].

Eq. (1.1) has been studied in a number of papers, see [1,7,11,13,20] for the case n = 1, and [9,16,17]
for n > 1. When n = 1, (1.1) is a nonlinear ordinary differential equation, which arises in the inves-
tigation of self-similar solutions to the anisotropic curve shortening flow [3,10]. Sufficient conditions
for the existence of solutions have been found in [1,7,11,13,20] by different methods. In this paper
we study the n-dimensional case of Eq. (1.1) for n � 1, especially when f is a rotationally symmetric
function.

First we have the following volume estimates.

Theorem 1.1. There exist positive constants Cn, C̃n , depending only on n, such that for any solution H to
Eq. (1.1), we have

Cn

√
fmin � |K | � C̃n

√
fmax, (1.2)

where fmin = infSn f , fmax = supSn f , and

|K | = 1

n + 1

∫
Sn

H det
(∇2 H + H I

)

is the volume of the corresponding convex body K .

Next we consider a priori estimates and existence of rotationally symmetric solutions, that is,
solutions which are rotationally symmetric with respect to the xn+1-axis in R

n+1. In the spherical
coordinates, a rotationally symmetric function f on Sn can be regarded as a function on [0,π ], such
that f (θ) = f (x1, . . . , xn+1) with xn+1 = cos θ . In particular f (0) is the value of f at the north pole
and f (π) is the value of f at the south pole. Using the superscript ′ to denote d

dθ
, we introduce the

following two quantities associated with f ,

ni( f ) =
{− f ′′(π

2 ), n � 2,∫ π
0 ( f ′(θ) − f ′(π

2 )) tan θ dθ, n = 1,

and

pi( f ) =
π∫

0

f ′(θ) cot θ dθ.

Note that by the rotational symmetry, we have f ′(0) = f ′(π) = 0.
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Theorem 1.2. Assume that f ∈ C2(Sn) when n �= 2 and f ∈ C6(Sn) when n = 2, that f is positive, rotationally
symmetric, and that f ′( π

2 ) = 0, ni( f ) �= 0 and pi( f ) �= 0. Then there exist positive constants C, C̃ depending
only on n and f , such that for any rotationally symmetric solution H to Eq. (1.1), we have

C � H � C̃ . (1.3)

By the above a priori estimate, we then have the following existence result.

Theorem 1.3. Under assumptions of Theorem 1.2, if ni( f ) < 0 and pi( f ) > 0, then Eq. (1.1) admits a rotation-
ally symmetric solution.

The proof of the a priori estimates (1.3) is inspired by [1,13], which treats the one dimensional
case of the above problem, and by [6], which treats prescribing scalar curvature problem on the
sphere. For this approach, we need the rotational symmetry to conclude the uniqueness of solutions
in a limiting procedure. For the prescribing scalar curvature problem, the corresponding uniqueness
is a consequence of the Liouville theorem.

With the a priori estimates, one can study the existence of solutions by the topological degree
theory, as was in [1,13] for the one dimensional case. In this paper we choose a different approach
to the existence, namely by a blow-up analysis. However, additional conditions are needed in this
approach, just as in the approach by the degree method [1,13]. The blow-up analysis is of some
interest itself, as it may apply to the non-rotationally symmetric case as well. We plan to explore this
approach further in a subsequent work. In this paper we use the Kazdan–Warner type obstruction
to establish the a priori estimates (1.3) and will restrict ourselves to the rotationally symmetric case
only. Note also that even in the case n = 1, our conditions are different from those in [1,13,20].

The paper is organized as follows. In Section 2, we recall an obstruction for the existence of solu-
tions in [9] and prove Theorem 1.1. Then we prove the a priori estimates, Theorem 1.2, in Section 3,
and the existence Theorem 1.3 in Section 4. In Section 5, we prove an existence result for the rotation-
ally symmetric solutions to L p-Minkowski problem, in the super-critical case of the Blaschke–Santalo
inequality.

The first author would like to thank his supervisor, Professor Huaiyu Jian, for many discussions.

2. A necessary condition and volume estimates

In this section we recall a necessary condition introduced in [9] and give an upper and lower
bounds for volume estimates.

Let B be an arbitrarily given (n + 1) × (n + 1) matrix. The matrix generates a projective vector
field ξ , given by

ξ(x) = Bx − (
xT Bx

)
x, x ∈ Sn. (2.1)

It was proved that a solution to Eq. (1.1) must satisfy the following necessary condition.

Proposition 2.1. Let H be a C3-solution to Eq. (1.1). Then for the projective vector field ξ given by (2.1), we
have

∫
Sn

∇ξ f

Hn+1
= 0. (2.2)

This proposition was proved in [9] using the gnomonic projection. Here we prove it by the moving
frame method. The idea of the proof is essentially the same. First we prove the following integral
identities on Sn .
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Lemma 2.2. For any C3-function u on Sn, and any tangent vector field ξ of form (2.1), we have

∫
Sn

u det
(∇2u + uI

)
div ξ = (n + 1)

∫
Sn

det
(∇2u + uI

)∇ξ u, (2.3)

∫
Sn

u∇ξ det
(∇2u + uI

) = −(n + 2)

∫
Sn

det
(∇2u + uI

)∇ξ u. (2.4)

Proposition 2.1 follows readily from this lemma. Indeed, if H is a solution to Eq. (1.1), then

∫
Sn

∇ξ f

Hn+1
=

∫
Sn

∇ξ (Hn+2 det(∇2 H + H I))

Hn+1

=
∫
Sn

(n + 2)det
(∇2 H + H I

)∇ξ H + H∇ξ det
(∇2 H + H I

)

= 0.

In the following we will denote by u,i = ∇iu and u,i j = ∇ jiu the covariant derivatives of u, in an
orthonormal frame on Sn . We also denote as usual that δi j = 1 if i = j and δi j = 0 if i �= j.

Proof of Lemma 2.2. For simplicity we denote (u,i j + uδi j) by (Aij), and by Aij the cofactor of Aij .

One easily sees that Aij,k is a symmetric tensor and Aij
, j = 0. Hence the following integration by parts

holds for any smooth functions ϕ,ψ on Sn ,

∫
Aijϕ,i jψ = −

∫
Aijϕ,iψ, j =

∫
Aijϕψ,i j. (2.5)

All integrals in the proof of Lemma 2.2 is over the unit sphere Sn .
Write ξ = ξkek , then ξk = xT

,k Bx. Calculating its covariant derivatives, we get

ξk
,i = xT

,k Bx,i − xT Bxδki = (
xT Bx,i

)
,k, (2.6)

ξk
,i j = −ξkδi j − ξ jδki − xT Bx,iδ jk − xT Bx, jδki . (2.7)

Hence

n

∫
det(Aij)∇ξ u =

∫
Aij(∇2u + uI

)
ξku,k

=
∫

Aiju
(
ξku,k

)
,i j + Aijuδi jξ

ku,k

=
∫

u Aij(ξk
,i ju,k + ξk

,iu,kj + ξk
, ju,ki + ξku,ki j

) + u Aijδi jξ
ku,k

=
∫

u Aiju,k
(
ξk
,i j + ξkδi j

) + 2u Aijξk
,iu,kj + u Aijξk(Aki, j − u, jδki).
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Taking into account of (2.7) and the symmetry of Aij,k , the above equality reads

n

∫
det(Aij)∇ξ u =

∫
−u Aiju,k

(
ξ jδki + xT Bx,iδ jk + xT Bx, jδki

)

+
∫

2u Aijξk
,iu,kj + u Aijξk Aij,k − u Aiju, jξ

i

=
∫

−2u Aiju, jξ
i − 2u Aiju, jx

T Bx,i + 2u Aijξk
,iu,kj + uξk(det Aij),k

=
∫

−Aij(u2)
, j

(
ξ i + xT Bx,i

) + 2u Aijξk
,iu,kj +

∫
u∇ξ det(Aij). (2.8)

By virtue of (2.5) and (2.6), the first integral can be simplified as follows,

∫
u2 Aij(ξ i + xT Bx,i

)
, j + 2u Aijξk

,iu,kj =
∫

u2 Aij(ξ i
, j + ξ

j
,i

) + 2u Aijξk
,iu,kj

=
∫

2u Aij(uξ
j
,i + ξk

,iu,kj
)

=
∫

2u Aijξk
,i Akj

=
∫

2u det(Aij)δ
i
kξ

k
,i

= 2
∫

u det(Aij)div ξ.

Hence (2.8) becomes

n

∫
det(Aij)∇ξ u = 2

∫
u det(Aij)div ξ +

∫
u∇ξ det(Aij). (2.9)

On the other hand, the divergence theorem gives

∫
det(Aij)∇ξ u +

∫
u∇ξ det(Aij) +

∫
u det(Aij)div ξ = 0. (2.10)

Now the lemma follows immediately from (2.9) and (2.10). �
An important property of Eq. (1.1) is its invariance under the projective transformation group

SL(n + 1). More precisely, let H be a solution to this equation and K the associated convex body
in R

n+1. Then after making a unimodular linear transformation AT ∈ SL(n + 1), the convex body K is
changed to K A with support function H A . We have

H A(x) = |Ax| · H

(
Ax

|Ax|
)

, x ∈ Sn. (2.11)
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Indeed, by the definition of support function,

H A(x) = sup
p A∈K A

pT
A x

= sup
p∈K

(
AT p

)T
x

= sup
p∈K

pT Ax

= |Ax| · H

(
Ax

|Ax|
)

.

One can also verify, see [9], that H A solves the equation

det
(∇2 H A + H A I

) = f A

Hn+2
A

, f A(x) = f

(
Ax

|Ax|
)

. (2.12)

To understand formula (2.11), it is helpful to consider the corresponding convex body. The support
function is the distance from the origin to the tangent plane, and (2.11) is the formula which tells
how the distance changes under linear transformation.

It is known that for any non-degenerate convex body K , there is a unique ellipsoid E which attains
the minimum volume among all ellipsoids containing K [19]. This ellipsoid E is called the minimum
ellipsoid of K [19], which satisfies

1

n + 1
E ⊂ K ⊂ E, (2.13)

where αE = {α(x − x0) + x0 | x ∈ E} and x0 is the center of E . We say K is normalized if E is a ball.
Next we consider the volume estimate for the solution H . Let K be the convex body with support

function H . Recall that the volume of K is given by

|K | = 1

n + 1

∫
Sn

H det
(∇2 H + H I

)

= 1

n + 1

∫
Sn

f

Hn+1
.

Lemma 2.3. There exists a positive constant Cn depending only on n, such that for any solution H to Eq. (1.1)
we have

Hmin · Hn
max · |K | � Cn fmin. (2.14)

Proof. By extending H to R
n+1 such that it is homogeneous of degree one and by the convexity of H ,

one sees that |∇H| � Hmax := supSn H . Hence for any fixed point x0 ∈ Sn , we have

H(x) � H(x0) + Hmax|x − x0| ∀x ∈ Sn, (2.15)

where | · | means the standard metric in R
n+1.
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Direct computation shows

∫
Sn

1

Hn+1
�

∫
Sn

1

(H(x0) + Hmax|x − x0|)n+1

=
π∫

0

σn sinn−1 θ

(H(x0) + Hmax2 sin θ
2 )n+1

dθ

�

π
2∫

0

Cnθ
n−1

(H(x0) + Hmaxθ)n+1
dθ

� Cn

H(x0)Hn
max

π
2∫

0

tn−1

(1 + t)n+1
dt, (2.16)

where the spherical coordinate system with respect to x0 is used and σn is the area of unit sphere
in R

n . Thus we have

H(x0)Hn
max

∫
Sn

1

Hn+1
� Cn

for a different constant Cn . Since x0 is any given point, we obtain

Hmin · Hn
max

∫
Sn

1

Hn+1
� Cn. (2.17)

Therefore

Hmin · Hn
max · |K | = Hmin · Hn

max · 1

n + 1

∫
Sn

f

Hn+1
� Cn fmin. �

Proof of Theorem 1.1. As the estimates (1.2) are invariant under unimodular linear transformation, we
only need to prove it for normalized H . Let R be the radius of the minimum ellipsoid of H (actually
a ball), then

ωn+1

(
R

n + 1

)n+1

� |K | � ωn+1 Rn+1, (2.18)

where ωn+1 is the volume of unit ball in R
n+1.

Noting that

Hmin · Hn
max � Hn+1

max � (2R)n+1 � (2n + 2)n+1

ωn+1
|K |,

by virtue of Lemma 2.3, one immediately gets the first inequality.
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On the other hand,

|K | = 1

n + 1

∫
Sn

H det
(∇2 H + H I

)

� 1

n + 1

(∫
Sn

Hn+2 det
(∇2 H + H I

)) 1
n+2

(∫
Sn

det
(∇2 H + H I

)) n+1
n+2

= 1

n + 1

(∫
Sn

f

) 1
n+2

(∫
Sn

det
(∇2 H + H I

)) n+1
n+2

.

The last integral is equal to the area of the convex hypersurface ∂ K with support function H , namely

(∫
Sn

det
(∇2 H + H I

)) n+1
n+2

= area(H)
n+1
n+2 �

(
σn+1 Rn) n+1

n+2 .

Hence we obtain

|K | � Cn( fmax)
1

n+2
(

Rn) n+1
n+2 .

Namely

R � Cn f
1

2n+2
max ,

which together with (2.18) leads to the second inequality of (1.2). �
We note that when n = 1, similar volume estimates were obtained in [1] for centro-symmetric

solutions. For normalized solution we then have

Corollary 2.4. There exist positive constants Cn, C̃n depending only on n, such that for any normalized solu-
tion H to Eq. (1.1),

Cn fmin f
− 2n+1

2n+2
max � H � C̃n f

1
2n+2

max .

3. A priori estimates

From now on we only consider rotationally symmetric solutions to Eq. (1.1). In this case, f must
also be rotationally symmetric, and the obstruction (2.2) can be written as

Proposition 3.1. Let H be a rotationally symmetric C3-solution to Eq. (1.1). Then

π∫
0

f ′(θ) sinn θ cos θ

Hn+1(θ)
dθ = 0. (3.1)
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Proof. When n = 1, (3.1) can be proved directly by integration by parts [1,13].
Let ξ be the vector field given by (2.1) with B = (bαβ). Then

∇ξ f = f ′(θ)xT
,θ Bx = f ′(θ)

(
cot θxT − v(θ)

)
Bx,

where v(θ) = (0, . . . ,0, csc θ). Therefore

∫
Sn

∇ξ f

Hn+1
=

π∫
0

f ′(θ)dθ

Hn+1(θ)

∫
Sθ

xT
,θ Bx,

where Sθ = {x ∈ Sn: xn+1 = cos θ}. Direct computation shows

∫
Sθ

xT
,θ Bx = cot θ

∫
Sθ

xT Bx − v(θ)B

∫
Sθ

x

= cot θ
∑
α

bαα

∫
Sθ

xαxαdσ − bn+1,n+1 cot θ

∫
Sθ

dσ

=
(∑n

α=1 bαα

n
− bn+1,n+1

)
cot θ sin2 θ

∫
Sθ

dσ

= tr B − (n + 1)bn+1,n+1

n
· σn sinn θ cos θ.

Hence

∫
Sn

∇ξ f

Hn+1
= tr B − (n + 1)bn+1,n+1

n
· σn

π∫
0

f ′(θ) sinn θ cos θ

Hn+1(θ)
dθ.

Thus (3.1) holds. �
For a rotationally symmetric solution H to (1.1), one can choose matrix

A = diag
(
a

1
n+1 , . . . ,a

1
n+1 ,a− n

n+1
)

(3.2)

such that H A is normalized, where a > 0, and H A , f A are defined in (2.11) and (2.12). To prove
Theorem 1.2, we have two cases to consider, that is either a → ∞ or a → 0+ .

From (2.12), we can write f A as

f A(θ) = f
(
γa(θ)

)
, (3.3)

where

γa(θ) = arccos

(
cos θ

ia(θ)

)
,

ia(θ) =
√

a2 sin2 θ + cos2 θ. (3.4)
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In fact,

Ax = (
a

1
n+1 x1, . . . ,a

1
n+1 xn,a− n

n+1 xn+1
)T

,

|Ax| = a− n
n+1

√
a2

(
(x1)2 + · · · + (xn)2

) + (xn+1)2. (3.5)

Therefore in the spherical coordinates we have

Ax

|Ax| =
(

· , cos θ

ia(θ)

)T

,

which implies

f A(θ) = f

(
· , cos θ

ia(θ)

)
= f

(
γa(θ)

)
.

First we prove two auxiliary lemmas.

Lemma 3.2. Let ϕa ∈ C[0,π ] be a sequence of uniformly bounded functions. If ϕa converges to a constant
ϕ∞ > 0 locally uniformly in (0,π) as a → +∞, then

π∫
0

ϕa(θ)
(

f ′(γa(θ)
) − f ′(π/2)

)a3 sinn θ cos θ

i2
a(θ)

dθ

=
⎧⎨
⎩

Cnϕ∞(ni( f ) + o(1)), n � 3,

ϕ∞ log a2(ni( f ) + o(1)), n = 2,

ϕ∞a(ni( f ) + o(1)), n = 1,

(3.6)

where Cn = ∫ π
0 sinn−3 θ cos2 θ dθ .

Proof. Let Λa denote the integral on the left hand side of (3.6).
If n � 3, we write Λa as

Λa =
π∫

0

ϕa(θ) · ( f ′(γa(θ)
) − f ′(π/2)

)
a tan θ · a2 sinn−1 θ cos2 θ

i2
a(θ)

dθ.

When a → +∞, one easily verifies that

∣∣( f ′(γa(θ)
) − f ′(π/2)

)
a tan θ

∣∣ � sup
[0,π ]

∣∣ f ′′∣∣,
(

f ′(γa(θ)
) − f ′(π/2)

)
a tan θ → − f ′′(π/2),

where the convergence is uniform on any closed interval of (0,π). By the bounded convergence
theorem, we obtain

lim
a→+∞Λa =

π∫
ϕ∞ · (− f ′′(π/2)

) · sinn−3 θ cos2 θ dθ = −Cnϕ∞ f ′′(π/2).
0
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Namely

Λa = Cnϕ∞ · (− f ′′(π/2) + o(1)
)
.

If n = 2, we shall use Taylor expansion to evaluate Λa . Denote f̃ (t) = f (arccos t). Then f̃ ∈
C3[−1,1] if f ∈ C6(S2)1 and

f ′(γa(θ)
) = − f̃ ′

(
cos θ

ia(θ)

)
· a sin θ

ia(θ)

= −
(

f̃ ′(0) + f̃ ′′(0)
cos θ

ia(θ)
+ O (1)

cos2 θ

i2
a(θ)

)
· a sin θ

ia(θ)
.

Hence

Λa = −
π∫

0

ϕa(θ) f̃ ′′(0)
a4 sin3 θ cos2 θ

i4
a(θ)

dθ −
π∫

0

O (1)
a4 sin3 θ cos3 θ

i5
a(θ)

dθ

−
π∫

0

ϕa(θ)

(
f̃ ′(0)

a sin θ

ia(θ)
+ f ′(π/2)

)
a3 sin2 θ cos θ

i2
a(θ)

dθ.

Noting f̃ ′(0) = − f ′( π
2 ) and f̃ ′′(0) = f ′′( π

2 ), one sees that, as a → +∞,

Λa = −(
ϕ∞ + o(1)

)
f ′′(π/2)

(
1 + o(1)

)
log a2 + O (1)

−
π∫

0

ϕa(θ) f ′(π/2)

(
1 − a sin θ

ia(θ)

)
a3 sin2 θ cos θ

i2
a(θ)

dθ

= ϕ∞ · (− f ′′(π/2) + o(1)
)

log a2 − a

π∫
0

O (1)

(
1 − a sin θ

ia(θ)

)
cos θdθ

= ϕ∞ · (− f ′′(π/2) + o(1)
)

log a2 + O (1)

= ϕ∞ · (− f ′′(π/2) + o(1)
)

log a2.

1 We note that f̃ ∈ C2 is not sufficient. For example, let f̃ ′(t) = 1 + t − (1 − t2)3/2. Then f̃ is C2 but not C3. Observing that

f̃ ′(0) = 0 and f̃ ′′(0) = 1, one can compute

π
2∫

0

f̃ ′
(

cos θ

ia(θ)

)
a cos θ

ia(θ)
= π + 1 + 2 log 2

2
+ o(1),

but

π
2∫

0

(
f̃ ′(0) + f̃ ′′(0)

cos θ

ia(θ)
+ o(1)

cos θ

ia(θ)

)
a cos θ

ia(θ)
= π

2
+ o(1).

They are not equal. The reason is that the o(1) above is not really small near θ = 0.
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If n = 1, applying the variable substitution θ = γa−1 (t) (more details of this substitution is given
below), we find that

Λa =
π∫

0

ϕa
(
γa−1(t)

)(
f ′(t) − f ′(π/2)

) a3 sin t cos t

sin2 t + a2 cos2 t
dt

= a

π∫
0

ϕa
(
γa−1(t)

)(
f ′(t) − f ′(π/2)

)
tan t · a2 cos2 t

sin2 t + a2 cos2 t
dt.

Noting that

∣∣( f ′(t) − f ′(π/2)
)

tan t
∣∣ � sup

[0,π ]
∣∣ f ′′∣∣,

we have

lim
a→+∞a−1Λa =

π∫
0

ϕ∞ · ( f ′(t) − f ′(π/2)
)

tan t dt.

Hence

Λa = ϕ∞ a ·
( π∫

0

(
f ′(t) − f ′(π/2)

)
tan t dt + o(1)

)
.

This lemma is proved. �
Lemma 3.3. Let ϕa be a sequence of continuous, uniformly bounded functions on [0,π ]. Assume that ϕa

converges a.e. to a function ϕ0 > 0 as a → 0+ . Then

π∫
0

ϕa(θ) f ′(γa(θ)
) sinn θ cos θ

i2
a(θ)

dθ = ϕ0(π/2) · (pi( f ) + o(1)
)
. (3.7)

Proof. Let Λa denote the integral on the left hand side of (3.7). Consider the variable substitution

θ = γa−1(t) = arccos

(
a cos t

ja(t)

)
,

where

ja(t) =
√

sin2 t + a2 cos2 t. (3.8)

Direct computation shows

cos θ = a cos t
,

ja(t)
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sin θ = sin t

ja(t)
,

ia(θ) = a

ja(t)
,

dθ = a

j2
a(t)

dt.

Then we find that

Λa =
π∫

0

ϕa
(
γa−1(t)

)
f ′(t)

(
sin t

ja(t)

)n

· a cos t

ja(t)
·
(

ja(t)

a

)2

· a

j2
a(t)

dt

=
π∫

0

ϕa
(
γa−1(t)

)
f ′(t) sinn t cos t

jn+1
a (t)

dt

=
π∫

0

ϕa
(
γa−1(t)

) · f ′(t) cot t · sinn+1 t

jn+1
a (t)

dt.

Observing that

∣∣ f ′(t) cot t
∣∣ � sup

[0,π ]
∣∣ f ′′∣∣,

ϕa
(
γa−1(t)

) → ϕ0(π/2) a.e.,

we obtain by the bounded convergence theorem that

lim
a→0+ Λa =

π∫
0

ϕ0(π/2) · f ′(t) cot t dt.

Hence

Λa = ϕ0(π/2) ·
( π∫

0

f ′(t) cot t dt + o(1)

)
. �

Now we use Lemmas 3.2 and 3.3 to obtain the a priori estimates (1.3).

Proof of Theorem 1.2. By Theorem 1.1, we only need to obtain a uniform positive lower bound for
rotationally symmetric solutions. Suppose to the contrary that there exists a sequence of rotationally
symmetric solutions Hk to Eq. (1.1) such that minSn Hk → 0+ as k → ∞. For each k, there exists a
matrix

Ak = diag
(
a

1
n+1
k , . . . ,a

1
n+1
k ,a

− n
n+1

k

)
, (3.9)

such that H Ak , given by (2.11), is a normalized rotationally symmetric solution to (2.12). We have
either ak → ∞ or ak → 0+ .
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By virtue of (3.1), we have the following equalities

0 =
π∫

0

f ′
Ak

(θ) sinn θ cos θ

Hn+1
Ak

(θ)
dθ

=
π∫

0

f ′(γak (θ))

Hn+1
Ak

(θ)
· ak sinn θ cos θ

i2
ak

(θ)
dθ. (3.10)

By Blaschke’s selection theorem, we may assume that H Ak converges uniformly to some support
function H A∞ on Sn , which is also normalized and rotationally symmetric. By the weak convergence
of the Monge–Ampère equation, H A∞ is a generalized solution to

det
(∇2 H + H I

) = f A∞
Hn+2

on Sn, (3.11)

where

f A∞ =
{

f (π/2) if ak → ∞,

f (0)χ{xn+1>0} + f (π)χ{xn+1<0} if ak → 0+,
(3.12)

where χ is the characteristic function.
In the case of ak → +∞, f A∞ ≡ f (π/2) is a constant. In this case, a solution to (3.11) is an elliptic

affine sphere. Hence it must be an ellipsoid [5]. But the solution is normalized, so it must be a sphere.

Hence H A∞ ≡ f (π/2)
1

2n+2 . Applying Lemma 3.2 to (3.10) and recalling our assumption that f ′( π
2 ) = 0,

we have ni( f ) = 0.
In the case ak → 0+ , f A∞ is equal to two different constants on the north and south hemispheres.

In this case, the solution H A∞ to (3.11) is strictly convex and C1 smooth[4]. Applying Lemma 3.3
to (3.10), we see pi( f ) = 0. In both cases we reach a contradiction with our assumptions on f . Thus
the theorem is proved. �
Remark. From the above proof, one sees that estimates (1.3) holds uniformly for ε ∈ (0,1] for rota-
tionally symmetric solutions to the following equation

det
(∇2 H + H I

) = 1 + ε f

Hn+2
on Sn, (3.13)

provided f satisfies the conditions in Theorem 1.2.

4. Existence of solutions

In this section we prove the existence of solutions to Eq. (1.1). First we recall the existence of
solutions to the equation

det
(∇2 H + H I

) = λ f

H p
on Sn, (4.1)

where p ∈ (0,n + 2) is a constant, f is a bounded, measurable function satisfying 0 < fmin � f �
fmax < ∞, and λ is the Lagrange multiplier. This is the p-Minkowski problem introduced by Lut-
wak [16]. When p < n + 2, Eq. (4.1) corresponds to the sub-critical case of the Blaschke–Santalo
inequality, and the existence of solutions to (4.1) for p ∈ (0,n + 2) was established in [9]. It was
proved that for any given δ := n + 2 − p ∈ (0,n + 2), there exists a solution Hδ to (4.1) with volume
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|Kδ| = 1

n + 1

∫
Sn

Hδ det
(∇2 Hδ + Hδ I

) = 1, (4.2)

and

λ = λδ = (n + 1)

[∫
Sn

f

(Hδ)p−1

]−1

. (4.3)

where Kδ is the convex body associated with Hδ . The solution Hδ is a maximizer of

sup
|K |=1

inf
ξ∈K

J (H − ξ · x), (4.4)

where the supremum is taken among all convex bodies K with volume 1, the infimum is taken among
all points ξ ∈ K , and H is the support function of K . The functional J is given by

J (H) = 1

p − 1

∫
f

H p−1
if p �= 1;

and

J (H) = −
∫

f log H if p = 1.

The above existence was proved in [9] for general function f . If f is rotationally symmetric, then
one may restrict to rotationally symmetric convex bodies such that the solution obtained in [9] is
also rotationally symmetric. In the following we assume that f is rotationally symmetric and consider
rotationally symmetric solutions only.

We want to prove that as δ → 0+ , Hδ converges to a solution H0 of (1.1). Making a unimodular
linear transform AT

δ such that Kδ := AT
δ (Kδ) is normalized, let hδ denote the support function of Kδ .

Then by (2.12), hδ satisfies,

det
(∇2h + hI

) = λδ fδ(Ĥδ)
δ

hn+2
on Sn, (4.5)

where fδ(x) = f ( Aδx
|Aδx| ) and Ĥδ(x) = Hδ(

Aδx
|Aδx| ).

Lemma 4.1. There exists a constant c0 > 0, depending only on n, fmin , and fmax , such that

λδ � c0. (4.6)

Proof. The upper bound for λδ follows from its definition (4.3) and the fact that the solution Hδ is a
maximizer of (4.4). �
Lemma 4.2. There exists a constant c1 > 0, depending only on n, fmin , and fmax , such that as δ → 0+ ,

λδ � c1. (4.7)



998 J. Lu, X.-J. Wang / J. Differential Equations 254 (2013) 983–1005
Proof. One can prove (4.7) easily if Hδ is uniformly bounded. Indeed, if λδ → 0 as δ → 0, then the
right hand side of (4.1) vanishes on the part {x ∈ Sn | Hδ(x) > 0}. It implies

∫
Hδ>0 det(∇2 Hδ + Hδ I),

that is the area measure of ∂ Kδ ∩ {Hδ > 0}, vanishes. But this is impossible by the volume restric-
tion (4.2).

In the following we consider the case when Hδ is not uniformly bounded. Since the solution is
rotationally symmetric, as before we express Hδ as a function of θ ∈ [0,π ], such that Hδ(0) is the
value of Hδ at the north pole and Hδ(π) the value at the south pole. Then there are two possibilities:
Hδ(

π
2 ) → 0 and Hδ(

π
2 ) → ∞.

Denote

β+ = Hδ(0), β− = −Hδ(π), β = β+ − β−, and r = Hδ

(
π

2

)
;

and

α+ = hδ(0), α− = −hδ(π), α = α+ − α−, and R = hδ

(
π

2

)
.

Then the convex body Kδ is contained in the cylinder

Cδ =
{

(x1, . . . , xn+1) ∈R
n+1

∣∣∣ β− � xn+1 � β+,

n∑
i=1

x2
i < r2

}
;

and the normalized convex body Kδ is contained in the cylinder

Cδ =
{

(x1, . . . , xn+1) ∈R
n+1

∣∣∣ α− � xn+1 � α+,

n∑
i=1

x2
i < R2

}
.

Since Kδ is normalized, we have C1 � α, R � C2 for some positive constants C1, C2 depending only
on n.

Case I. Hδ(
π
2 ) → 0. In this case, for any given t > 0, and any point z ∈ Λ1,t := ∂ K ∩{β− + tβ � xn+1 �

β+ − tβ}, by the rotational symmetry and the convexity of Kδ , one easily verifies that

t Hδ(γz) � Hδ

(
π

2

)
� t−1 Hδ(γz), (4.8)

where γz ∈ Sn is the unit outer normal of Kδ at z. Denote

Γ1,t := ∂Kδ ∩ {
α− + tα � xn+1 � α+ − tα

}
,

which corresponds to Λ1,t before the normalization. Then hδ(γz) � C > 0 on Γ1,t , here we also use γz

to denote the unit outer normal of ∂Kδ at z. Hence if λδ → 0, the right hand side of (4.5) converges
uniformly to zero on {γz ∈ Sn | z ∈ Γ1,t} =: Γ ∗

1,t . It means by Eq. (4.5) that the area measure

|Γ1,t | =
∫

Γ ∗
1,t

det
(∇2h + hI

) → 0.

This is impossible as Kδ is normalized.
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Case II. Hδ(
π
2 ) → ∞. In this case, both Hδ(0) and Hδ(π) converge to 0. Without loss of generality we

assume that Hδ(0) � Hδ(π). Denote by Sn,+ and Sn,− the north and south hemispheres, respectively.
For any given t > 0, and any point z ∈ Λ+

2,t := {x ∈ ∂ Kδ | ∑n
i=1 x2

i � (1 − t)2r2, γz ∈ Sn,+}, similarly to
(4.8) we have

t Hδ(γz) � Hδ(0) � t−1 Hδ(γz). (4.9)

Hence (Hδ(γz))
δ is uniformly bounded. Denote

Γ ±
2,t :=

{
z ∈ ∂Kδ

∣∣∣ n∑
i=1

z2
i � (1 − t)2 R2, γz ∈ Sn,±

}
.

By the volume constraint (4.2) and recall that Hδ(0) � Hδ(π), we have

hδ(γz) � C > 0 ∀z ∈ Γ +
2,t . (4.10)

Hence if λδ → 0, the right hand side of (4.5) converges to zero uniformly on {γz ∈ Sn | z ∈ Γ +
2,t}. It

means by Eq. (4.5) that the area measure of Γ +
2,t converges to zero, which is a contradiction as Kδ is

normalized. �
Lemma 4.3. Suppose p ∈ [n,n + 2). If Hδ � C on Sn for some positive constant C > 0, then Hδ � C ′ > 0,
where C ′ depends only on n, C , c0 , c1 , fmin and fmax .

Proof. By (2.15), one sees that if p ∈ [n,n + 2) and if infSn Hδ is small, then
∫

Sn
λδ f
H p

δ

is very large. But

on the other hand

∫
Sn

λδ f

H p
δ

=
∫
Sn

det
(∇2 Hδ + Hδ I

)

is equal to the area of ∂ Kδ , which is uniformly bounded. �
Lemma 4.4. There exist two positive constants c2 , c3 such that for δ ∈ (0,2],

c2 � (Ĥδ)
δ � c3 on Sn. (4.11)

Proof. If the solution Hδ is uniformly bounded, by Lemma 4.3, we have (Hδ)
δ → 1 uniformly on Sn

and (4.11) holds. Therefore it suffices to consider the case when Hδ is not uniformly bounded. As in
the proof of Lemma 4.2, we express Hδ as a function on [0,π ], and consider the two separate cases,
namely Hδ(

π
2 ) → 0 and Hδ(

π
2 ) → ∞.

By the volume constraint (4.2), we have

sup
Sn

Hδ � Cn

[
inf
Sn

Hδ

]−n
.

Hence the second inequality of (4.11) follows from the first one.
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We prove the first inequality of (4.11) by contradiction. In the first case, namely when Ĥδ(
π
2 ) → 0,2

note that by (4.8), (Ĥδ(γz))
δ converges to the same limit uniformly for all z ∈ Γ1,t . If the limit is zero,

the right hand side of (4.5) converges to zero uniformly on Γ1,t . Hence the area measure of Γ1,t
converges to zero, which is a contradiction.

In the second case, namely when Ĥδ(
π
2 ) → ∞, we see that by (4.9), (Ĥδ(γz))

δ converges to
the same limit uniformly for all z ∈ Γ +

2,t . If the limit is zero, by (4.10), the right hand side of (4.5)

converges to zero uniformly on Γ +
2,t . Hence the area measure of Γ +

2,t converges to zero, also a contra-

diction. Therefore (Ĥδ(γz))
δ converges to a positive constant on Γ +

2,t .

The above proof also applies to Γ −
2,t provided (4.10) holds on Γ −

2,t . In the following we prove

(4.10) on Γ −
2,t . By (2.11), hδ(x0) = |Aδ(x0)|Ĥδ(x0), where x0 is the north pole of Sn . By (4.10) and

since Kδ is normalized, there is a positive upper and lower bound for hδ(x0) = hδ(θ)|θ=0. Hence
limδ→0 |Aδ(x0)|δ = limδ→0 |Ĥδ(x0)|δ , which is positive by the last paragraph. In the rotationally sym-
metric case, the matrix Aδ has the form

Aδ = diag
(
a

1
n+1
δ , . . . ,a

1
n+1
δ ,a

− n
n+1

δ

)
.

Hence if |Aδ(x0)|δ converges to a positive constant, then |Aδ(x)|δ converges to positive constants for
all x ∈ Sn .

By (2.11) we can write Eq. (4.5) in the form

det
(∇2h + hI

) = λδ fδ|Aδx|δ
hp

, x ∈ Sn. (4.12)

We have shown that |Aδx|δ converges uniformly to a positive constant. As Kδ is normalized, hδ is
uniformly bounded. Hence by the argument of Lemma 4.3, hδ > C on Sn , namely (4.10) holds on
Γ −

2,t . �
We can strengthen Lemma 4.4 to the following

Lemma 4.5. There exists a positive constant c4 > 0 such that for any x ∈ Sn, not on the equator,

(
Ĥδ(x)

)δ → c4 as δ → 0. (4.13)

Proof. In the proof of Lemma 4.4, we have shown that hδ is uniformly bounded and strictly positive,
and |Ax|δ converges to a positive constant. Hence (Ĥδ(γz))

δ converges to the same positive constant
on Γ +

2,t and Γ −
2,t . Since the right hand side of (4.5) is uniformly bounded and strictly positive, the

hypersurface ∂Kδ is strictly convex and C1 smooth [4]. Hence (4.13) holds as the constant t > 0 is
arbitrarily chosen. �
Remark. Lemma 4.5 can be strengthened to

(
Ĥδ(x)

)δ → 1 as δ → 0, (4.13a)

uniformly on the whole sphere Sn . Indeed, one can prove that the sup of (4.4) is continuous for
p ∈ (0,n + 2], up to p = n + 2. Therefore λδ is continuous as δ → 0. From the proof of Lemma 4.4, we
have c4 � 1. If c4 < 1, namely if (4.13a) is not true, from Eq. (4.5) one can show that sup of (4.4) is
not continuous at p = n + 2.

2 Recall the relation Ĥδ(x) = Hδ(
Aδ x

|Aδ x| ). For points on Λ1,t and Λ2,t , the corresponding function is Hδ , and for points on Γ1,t

and Γ2,t , the corresponding function is Ĥδ , where Λ1,t , Γ1,t etc. are the notation introduced in the proof of Lemma 4.2.
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We are in position to prove the existence of solutions to (1.1) (Theorem 1.3). It suffices to prove
the following

Lemma 4.6. Under assumptions of Theorem 1.3, the sequence of solutions Hδ is uniformly bounded as δ → 0.

Proof. Write Eq. (4.1) as

det
(∇2 H + H I

) = λ f Hδ

Hn+2
on Sn. (4.14)

Let Hδ be the solution of (4.14) and regard it as a function of θ ∈ [0,π ]. Suppose there is a sequence
δ → 0 such that supSn Hδ → ∞. Denote aδ ≈ [Hδ(π/2)]−n−1 and make the linear transform

Aδ = diag
(
a

1
n+1
δ , . . . ,a

1
n+1
δ ,a

− n
n+1

δ

)
such that Kδ = AT

δ (Kδ) is normalized. Then hδ , the support function of Kδ , satisfies the equation

det
(∇2h + hI

) = λ fδ(Ĥδ)
δ

hn+2
on Sn, (4.15)

where by (2.11) and (2.12),

fδ(x) = f

(
Aδx

|Aδx|
)

, hδ(x) = |Aδx|Ĥδ(x), Ĥδ(x) = Hδ

(
Aδx

|Aδx|
)

.

For simplicity we will drop the subscript δ if no confusion arises. In the spherical coordinates, by (3.3)
and (3.5), we see

fδ(θ) = f
(
γa(θ)

)
, h = Ea Ĥδ, Ea = a− n

n+1 ia.

Denote

f̂ = fδ E−δ
a ,

then

fδ(Ĥδ)
δ = f̂ hδ.

Applying the necessary condition (3.1) to Eq. (4.15), we get

0 =
π∫

0

(hδ f̂ )′ sinn θ cos θ

hn+1(θ)
dθ

=
π∫

f̂ ′ sinn θ cos θ

hp−1
dθ +

π∫
(hδ)′ f̂ sinn θ cos θ

hn+1
dθ. (4.16)
0 0
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Note that

(hδ)′

hn+1
= δ

1 − p

(
h1−p)′

,

and use integration by part, we see that the second integral of (4.16) becomes

δ

1 − p

π∫
0

(
h1−p)′

f̂ sinn θ cos θ dθ

= δ

p − 1

( π∫
0

f̂ ′ sinn θ cos θ

hp−1
dθ +

π∫
0

f̂ (sinn θ cos θ)′

hp−1
dθ

)
.

Substituting it into (4.16), and multiplying both sides by p − 1, we have

0 = (n + 1)

π∫
0

f̂ ′ sinn θ cos θ

hp−1
dθ + δ

π∫
0

f̂ (sinn θ cos θ)′

hp−1
dθ. (4.17)

Using that

f̂ ′ = E−δ
a f ′

δ − δ fδ E−δ−1
a E ′

a

= E−δ
a f ′(γa(θ)

)
a i−2

a − δ fδ E−δ−1
a E ′

a,

we can write (4.17) as

(n + 1)

π∫
0

E−δ
a

hp−1
· f ′(γa(θ)

)a sinn θ cos θ

i2
a(θ)

dθ

= δ

π∫
0

E−δ
a fδ

hp−1

[
(n + 1)E−1

a E ′
a sinn θ cos θ − (

sinn θ cos θ
)′]

dθ. (4.18)

Let Iδ denote the integral on the right hand side of (4.18), then we see

Iδ =
π∫

0

E−δ
a fδ

hp−1
· a2 sin2 θ − n cos2 θ

a2 sin2 θ + cos2 θ
sinn−1 θ dθ. (4.19)

On the other hand, by Blaschke’s selection theorem, we may assume that hδ converges uniformly
to some support function h0 on Sn , which is also normalized and rotationally symmetric. By the weak
convergence of the Monge–Ampère equation, h0 is a generalized solution to

det
(∇2h + hI

) = c4λ0 f0

hn+2
on Sn, (4.20)

where
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f0 =
{

f (π/2) if aδ → ∞,

f (0)χ{xn+1>0} + f (π)χ{xn+1<0} if aδ → 0+.

In the case of aδ → +∞, f0 is a constant. In this case, a solution to (4.20) is an elliptic affine
sphere. Hence it must be an ellipsoid [5]. But the solution is normalized, so it must be a sphere.

Therefore h0 ≡ (c4λ0 f (π/2))
1

2n+2 . Recalling that E−δ
a → c4, by the bounded convergence theorem we

obtain from (4.19) that

lim
δ→0

Iδ =
√

c4λ
−1
0 f (π/2)

π∫
0

sinn−1 θ dθ =: C0.

By our assumption that f ′(π/2) = 0 and applying Lemma 3.2 to the left hand side of (4.18), we see
that (4.18) becomes into

(
C1 + o(1)

)
δ =

⎧⎪⎪⎨
⎪⎪⎩

(ni( f ) + o(1)) 1
a2 , n � 3,

(ni( f ) + o(1))
log a2

a2 , n = 2,

(ni( f ) + o(1)) 1
a , n = 1,

(4.21)

where C1 is a positive constant depending only on n, c4, λ0 and f (π/2).
In the case aδ → 0+ , f0 is equal to two different constants on the north and south hemispheres. In

this case, the solution h0 to (4.20) is strictly convex and C1 smooth [4]. By the bounded convergence
theorem, we obtain from (4.19) that

lim
δ→0

Iδ = −n

π∫
0

c4 f0(θ)

hn+1
0 (θ)

sinn−1 θ dθ =: −C0.

Applying Lemma 3.3 to the left hand side of (4.18), we see that (4.18) becomes into

(−C1 + o(1)
)
δ = (

pi( f ) + o(1)
)
a, (4.22)

where C1 is a positive constant depending only on n, c4, λ0, f (0) and f (π).
By our assumption, ni( f ) < 0 and pi( f ) > 0. Hence neither (4.21) nor (4.22) holds. In both cases

we reach a contradiction. Thus the lemma is proved. �
Remark. Using the topological degree argument [1,13], one may also prove the existence when
ni( f ) > 0 and pi( f ) < 0. In the high dimensions the degree argument is more complicated than
that in [13] as one needs to work out the kernel of the linearized operator of (4.1). Here we choose
the above blow-up argument and we plan to explore this approach further in a subsequent work for
the case when f is not rotationally symmetric, using the fact that Hδ is a maximizer of (4.4).

5. Rotationally symmetric solutions in the super-critical case

In this section we consider the existence of rotationally symmetric maximizers of

sup
|K |=1

inf
ξ∈K

J (H − ξ · x), (5.1)

where as in Section 4, the supremum is taken among all convex bodies K with volume 1, the infimum
is taken among all points ξ ∈ K , H is the support function of K , and the functional J is given by
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J (H) = 1

p − 1

∫
f

H p−1
, p > n + 2,

where p > n + 2 corresponds to the supercritical case of the Blaschke–Santalo inequality.
When p > n + 2, the supremum is usually equal to infinity. But in the special case when convex

bodies K are rotationally symmetric and f vanishes at θ = 0, π
2 , and π , we show that the supremum

can be attained by a convex body. From the argument in [9], the associated support function satisfies
the Euler equation (4.1) with the Lagrange multiple λ given by (4.3), if f vanishes only at finitely
many points. If f vanishes in an open set, the solution must be understood in a generalized sense.

Theorem 5.1. Let f ∈ C[0,π ] be a bounded, nonnegative function satisfying f (0) = f ( π
2 ) = f (π) = 0 and

f �≡ 0 elsewhere. Suppose

f (θ) � Cθα near θ = 0,

f (θ) � C |π − θ |α near θ = π,

f (θ) � C |θ − π/2|α near θ = π/2, (5.2)

where α > n
n+1 (p − n − 2). Then there is a maximizer of (5.1).

Proof. We denote infξ∈K J (H − ξ · x) by MK . Let K j be a maximizing sequence of (5.1), and E j be
an ellipsoid such that E j ⊂ K j ⊂ (n + 1)E j , see (2.13). One easily sees that MK j � ME j . To show that
K j is uniformly bounded, it suffices to show that E j is uniformly bounded. Since K j is rotationally
symmetric, E j is also rotationally symmetric and so it can be given by

E j =
{
(x1, . . . , xn+1) ∈R

n+1
∣∣∣ x2

1 + · · · + x2
n

a2
j

+ x2
n+1

b2
j

< 1

}
.

Since the supremum is invariant by a translation of the convex body, we assume that the origin is the
center of E j . Let

C j = {
(x1, . . . , xn+1) ∈R

n+1
∣∣ (

x2
1 + · · · + x2

n

)1/2
< a j, |xn+1| < b j

}
be a cylinder. We show that if max(a j,b j) → ∞, then MC j → 0. It implies that ME j � MC j/2 → 0 (by
the homogeneity of the functional J ). But since f � 0 and f �≡ 0, the supremum of (5.1) is positive.
This contradiction implies that K j is uniformly bounded.

First we consider the case a j → ∞. Denote H j the support function of C j . Then

H j(θ) = b j cos θ + a j sin θ, θ ∈ [0,π/4],
H j(θ) � a j/2, θ ∈ [π/4,π/2].

Note that by the homogeneity of the functional J , we may assume that an
j b j = 1. Note that for θ ∈

[π/2,π ], the computation is the same. Hence we have

MC j � J (H j)

� Ca1−p
j + C

π/4∫
θα+n−1

(b j + a jθ)p−1
0
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= Ca1−p
j + C

π/4∫
0

θα+n−1

(a−n
j + a jθ)p−1

� Ca1−p
j + C

π/4∫
0

θα+n−1

a−n(p−1)

j (1 + an+1
j θ)p−1

.

By direct computation, we then obtain

MC j �

⎧⎪⎪⎨
⎪⎪⎩

Ca1−p
j if α > p − n − 1,

Caα(n+1)−n(p−n−2)

j log a j if α = p − n − 1,

Caα(n+1)−n(p−n−2)

j if α < p − n − 1

→ 0 as a j → ∞.

Next we consider the case b j → ∞. In this case, we have

H j(θ) = a j sin θ + b j cos θ, θ ∈ [π/4,π/2],
H j(θ) � b j/2, θ ∈ [0,π/4].

Making the change φ = π/2 − θ , we obtain by the above computation that MC j → 0 as b j → ∞. This
completes the proof. �
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