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Abstract

In this paper, we prove a general existence theorem for properly embedded mini-
mal surfaces with free boundary in any compact Riemannian 3-manifoldM with
boundary @M . These minimal surfaces are either disjoint from @M or meet @M
orthogonally. The main feature of our result is that there is no assumptions on
the curvature of M or convexity of @M . We prove the boundary regularity of
the minimal surfaces at their free boundaries. Furthermore, we define a topo-
logical invariant, the filling genus, for compact 3-manifolds with boundary and
show that we can bound the genus of the minimal surface constructed above in
terms of the filling genus of the ambient manifold M . Our proof employs a
variant of the min-max construction used by Colding and De Lellis on closed
embedded minimal surfaces, which were first developed by Almgren and Pitts.
© 2015 Wiley Periodicals, Inc.
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1 Background and Motivation
In this paper, we study a general existence problem for embedded minimal sur-

faces with free boundary. All manifolds (with or without boundary) are assumed
to be smooth up to the boundary unless otherwise stated.

Question 1. Given a compact Riemannian 3-manifold .M 3; g/with boundary @M ,
does there exist a properly embedded minimal surface † � M with boundary
@† � @M such that † meets @M orthogonally along @†?

Recall that a surface † � M (with or without boundary) is said to be properly
embedded if the inclusion map i W † ! M is a proper embedding (i.e., a one-to-
one immersion). In other words, we require

(i) † \ @M D @†, and
(ii) † is transversal to @M at any point on @†.

Note that if @† D ¿, this is equivalent to saying that † is contained in the interior
of M .

The orthogonality condition along the boundary @† is a natural condition aris-
ing variationally. Let † � M be a properly embedded surface with boundary
@† � @M . Suppose we have a smooth family of properly embedded surfaces
f†tgt2.��;�/ in M for some � > 0 with †0 D †. If we calculate how the area of
this family of surfaces, denoted by Area.†t ), changes with respect to t at t D 0, a
standard computation (for example, see [34, 36]) gives the first variation formula

(1.1)
d

dt

ˇ̌̌̌
tD0

Area.†t / D �
Z
†

hH;XidaC

Z
@†

hX; �ids;

where h ; i is the metric of the ambient manifold M , � is the outer conormal
vector of @† in † (i.e., the outward unit normal of @† tangent to †), H is the
mean curvature vector of † in M (with the sign convention that H points inward
for the unit sphere in R3), and X is the variation field associated with the one-
parameter family f†tg (i.e., X.x/ D @

@t
jtD0Ft .x/ where F D Ft .x/ D F.t; x/ W

.��; �/ � † ! M is a one-parameter family of proper embeddings such that
Ft .†/ D †t ). Note that since @†t � @M for all t , the variation field X is
tangential to @M along @†. From (1.1), † is a critical point to the variational
problem if and only if † is minimal (i.e., H � 0) and † meets @M orthogonally
along @† (i.e., � ? @M ). In this case, we say that † is a free boundary solution.

The study of free boundary problems for minimal surfaces was initiated by
R. Courant in [7] and H. Lewy in [21] in the 1940s. In the next few decades,
these minimal surfaces with free boundaries were studied extensively by K. Gold-
horn, S. Hildebrandt, W. Jäger,and J. Nitsche (see, for example, [13,16–18,27,28]),
and later by J. Taylor [39], W. Meeks and S.T. Yau [25], and R. Ye [41], among
many others. In their approaches, they applied the direct method in the calculus of
variations to the Dirichlet energy functional and established the existence of min-
imizers with boundary lying on a given supporting surface. Boundary regularity
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results were obtained in a variety of settings. Interested readers are encouraged to
consult the recent treatise [9,10] on boundary value problems of minimal surfaces.

However, this approach cannot be used directly to answer Question 1. The main
reason is that these existence theorems only produce area minimizers; they do not
yield the existence of stationary minimal surfaces that are not area minimizing.
It is not hard to see that for certain supporting surfaces, there are no nontrivial
minimizers. For example, it does not furnish the existence of nontrivial stationary
minimal surfaces within the region bounded by a closed convex surface in R3.
Therefore, the direct method does not work unless the ambient space has some
nontrivial topology.

To deal with the difficulty above, we need to construct unstable critical points to
the area (or energy) functional. Along this direction, M. Struwe [38] and A. Fraser
[11] applied the celebrated perturbed ˛-energy of Sacks and Uhlenbeck [32] to the
free boundary problem for minimal disks. They were able to produce nontrivial
free boundary solutions with controlled Morse index using Ljusternik-Schnirelman
theory. For instance, A. Fraser proved that (see theorem 1 in [11]) ifM is a smooth
compact domain of a complete, homogeneously regular Riemannian 3-manifold
zM , and the relative homotopy group �k. zM; @M/ ¤ 0 for some k � 2, then either

there exists a nonconstant minimal disk D in zM meeting @M orthogonally along
@D, or there exists a nonconstant minimal 2-sphere in zM . Moreover, the Morse
index of such a minimal surface is at most k � 2.

Despite these positive results in the existence theory, it is yet not enough to settle
Question 1 in complete generality due to the following reasons. First, the minimal
disk or sphere may not be embedded (in fact, it may not even be immersed). Sec-
ond, and more importantly, the free boundary solution may not be contained in the
compact region M . The construction does not prevent the minimal surface from
penetrating @M in an unphysical way, and it is impossible to make it contained in
M without imposing (mean) convexity assumptions on @M (see [12,25,26]). This
approach does not work in the nonconvex situation because one does not expectM
to contain a disk-type free boundary solution.

For example, the annular region M D B2 n B1 � R3, where Br denotes the
ball of radius r > 0 centered at the origin, does not contain any properly embedded
minimal diskD with free boundary on @M . If such a minimal diskD were to exist,
the boundary circle @D lies on one of the boundary spheres @B1 or @B2. It cannot
lie on @B1 by the convex hull property (see proposition 1.9 in [6]). Therefore,
@D � @B2, and hence D is a free boundary solution to the ball B2. A uniqueness
theorem of J. Nitsche [29] implies thatD must be a totally geodesic equatorial disk,
which has nonempty intersection with the unit ballB1, contradicting the hypothesis
that D � B2 n B1. On the other hand, the restriction of the equatorial disk to
B2 n B1 gives an example of a free boundary solution that is topologically an
annulus (genus 0 with two boundary components).
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There is a completely different approach, using geometric measure theory, which
has been very successful in constructing embedded minimal surfaces. By minimiz-
ing among all embedded disks with prescribed boundary, F. Almgren and L. Si-
mon [3] showed that any extremal curve � in R3—i.e., � is contained in the
boundary of a strictly convex domain A � R3—bounds an embedded minimal
disk contained in A. Based on Almgren and Simon’s paper, W.-Meeks, L.-Simon
and S.T.-Yau [24] proved, under suitable hypotheses, the existence of an embed-
ded minimal surface that minimizes area in its isotopy class in a Riemannian 3-
manifold. This result has profound applications in 3-manifold topology.

In a remarkable work of F. Almgren [2] and J. Pitts [30], a minimax argument
was used to prove that any closed Riemannian 3-manifold contains a smooth, em-
bedded, closed minimal surface. The proof of interior regularity for such mini-
mal surfaces was based on Schoen, Simon, and Yau’s curvature estimates for sta-
ble minimal surfaces [35]. Using a clever curve-lifting argument, L. Simon and
F. Smith [37] were able to control the topology of the minimal surface. As a corol-
lary, they proved that there exists an embedded minimal 2-sphere in the 3-sphere
with arbitrary Riemannian metric.

Adapting these ideas to the free boundary case, M. Grüter and J. Jost [15] proved
the existence of an embedded minimal disk as a free boundary solution in any
bounded, strictly convex domain in R3. In another paper [20], J. Jost claimed
similar results hold under weaker convexity assumptions on the boundary. Unfor-
tunately, the author was unable to verify some of the arguments in the paper. On the
other hand, a partially free boundary problem was also studied by J. Jost in [19].
All of these results depend on certain curvature assumptions on the boundary of
the ambient manifold.

In this paper, we settle Question 1 in complete generality, without any curvature
assumptions on M or @M .

THEOREM 1.1. For any compact Riemannian 3-manifold .M 3; g/ with boundary
@M , at least one of the following holds:

(i) there exists a properly embedded minimal surface † � M with boundary
@† � @M such that † meets @M orthogonally along @†;

(ii) there is a closed, embedded minimal surface † contained in the interior of
M .

Moreover, if M is assumed to be smooth up to the boundary, then the minimal
surface † is smooth (up to the boundary in case (i)).

The proof of Theorem 1.1 employs a minimax construction similar to the one by
F. Almgren [2] and J. Pitts [30]. Recently T. Colding and C. De Lellis [5] wrote a
detailed account of the minimax construction, and they were able to simplify some
of the proofs significantly. In another recent paper [8], C. De Lellis and F. Pel-
landini obtained a genus bound for minimal surfaces constructed by the minimax
method in [5]. (Their bound is slightly weaker than the one conjectured by J. Pitts
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and H. Rubinstein [31].) We observe that their result can be used to control the
topology of the free boundary solution constructed in Theorem 1.1.

THEOREM 1.2. Let .M 3; g/ be a Riemannian 3-manifold with boundary. Suppose
the filling genus (see Definition 9.3) ofM is equal to h. Then the minimal surface†
in Theorem 1.1 can be chosen such that

(i) if † is orientable, then genus.†/ � h;
(ii) if † is nonorientable, then genus.†/ � 2hC 1.

It is clear from the definition that the filling genus of any compact domain in
R3 is 0. As a consequence, we have the following corollary (note that there is no
closed minimal surface in R3):

COROLLARY 1.3. For any compact domain M � R3, there exists a properly
embedded minimal surface † � M with nonempty free boundary @† � @M such
that either

(i) † is orientable with genus 0 (i.e., a disk with holes), or
(ii) † is a nonorientable surface with genus 1 (i.e., a Möbius strip with holes).

In caseM is diffeomorphic to the unit 3-ball, case (ii) does not happen and† must
be orientable.

The outline of this paper is as follows. In Section 2, we describe an example
that illustrates why the proof in [5] does not directly generalize to cover the free
boundary problem. This example also serves as a model case that motivates many
of the technical arguments in this paper. Sections 3 to 8 comprise of the proof of
our main result, Theorem 1.1. In Section 3, we give some definitions and prelim-
inary results. Moreover, we define two important concepts: freely stationary and
outer almost minimizing property, which will play important roles in this paper. In
Section 4, we describe the min-max construction and give an outline of the proof
of Theorem 1.1. In Sections 5 and 6, we establish the existence of varifolds that are
both freely stationary and outer almost minimizing. In Section 7, we study a min-
imization problem with partially free boundary, which is then used in Section 8 to
prove the boundary regularity of freely stationary varifolds satisfying the outer al-
most minimizing property. In Section 9, the genus bound in Theorem 1.2 is proved
using the result in [8].

2 An Example
In this section, we discuss the main difficulties in the proof of Theorem 1.1. We

also give an example that illustrates the need for some technical arguments in this
paper.

Our proof of Theorem 1.1 is a modified version of the minimax construction
described in [5]. Let us first briefly recall the minimax construction for closed (i.e.,
compact without boundary) manifolds. Consider the standard 3-sphere S3 (with
the round metric, for example) and a continuous sweepout � D f†tgt2Œ0;1� by 2-
spheres that degenerate to a point at t D 0 and 1. Our goal is to minimize the area
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of the maximal slice by deforming the sweepout using ambient isotopies (which
could depend continuously on t ).

Suppose a minimizing sweepout exists; we expect a maximal slice in this sweep-
out to be a minimal surface (see figure 2 in [5]). In practice, the minimum may
not be achieved by any sweepout. Therefore, we have to take a minimizing se-
quence f†nt gn of sweepouts, and a min-max sequence of surfaces f†ntngn which,
after passing to a subsequence, converges in some weak sense (as varifolds) to an
embedded minimal surface (possibly with multiplicity). There are two important
points in this construction. First, we need to ensure that almost maximal slices
are almost stationary [5, fig. 4]). This can be achieved by a “tightening” pro-
cess [5, sec. 4]. Second, we want to choose our min-max sequence carefully so
that it satisfies the almost minimizing property, which enables us to prove regular-
ity for the limiting surface [5, secs. 5–7].

A natural attempt to generalize the above method to the free boundary problem
is to sweep out the compact manifold M by surfaces with boundary lying on @M ,
and we use isotopies that preserve M , but not necessarily pointwise fixing points
on @M , to deform our sweepouts. Then we carry out the same minimax construc-
tion as before and hope that a min-max sequence would converge to an embedded
minimal surface with free boundary on @M . In fact, the limit would be stationary
with respect to isotopies preserving M . Unfortunately, this is insufficient to con-
clude that the limit is a smooth free boundary solution. The main difficulty is that
it may not be properly embedded if we do not have any convexity assumptions on
the boundary @M . Unlike many constructions of minimal surfaces, we do not have
barriers to prevent the interior of our minimal surface from touching the boundary.
Let us further illustrate this point by the following example.

Let Br.a/ � R3 be the closed euclidean 3-ball of radius r centered at a.
Suppose M D B1.0; 0; 0/ n B1=4.0; 0;

1
4
/. Consider the equatorial disk † D

M \ fx3 D 0g; it is minimal and has free boundary on the outer boundary. How-
ever, this is not a legitimate free boundary solution because it is not properly em-
bedded. The origin, which lies in the interior of the equatorial disk, is a point on
the inner boundary of M . This happens since the inner boundary is not mean con-
vex with respect to the inner unit normal (with respect to M ). Nevertheless, the
equatorial disk is a critical point of the area functional with respect to all varia-
tions preserving M . Not only is it stationary, but it is also �-almost minimizing
(see [5, def. 3.2]) on any sufficiently small ball for all � > 0 with respect to these
variations. This example shows that a smooth minimal surface that is stationary
and almost minimizing with respect to the isotopies preserving M may fail to be
properly embedded, and hence need not be a free boundary solution (Figure 2.1).
In the next section, we will discuss how to get around this problem.

3 Definitions and Preliminaries
Let .M 3; g/ be a compact Riemannian 3-manifold with nonempty boundary

@M ¤ �. Suppose M is connected (but @M is not necessary connected; i.e., M
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FIGURE 2.1. An example of a smooth minimal surface that is stationary
and almost minimizing with respect to isotopies preserving M , but not
properly embedded.

could have multiple boundary components). Without loss of generality, we assume
that M is isometrically embedded as a compact subset of a closed Riemannian 3-
manifold zM 3.1 All surfaces, with or without boundary, are smoothly embedded in
zM unless otherwise stated. We will use int.M/ D M n @M to denote the interior

of M .

3.1 Isotopies and Vector Fields
We now describe the class of ambient isotopies in zM used in deforming our

surfaces. An isotopy on zM is a smooth one-parameter family f'sgs2Œ0;1� of diffeo-
morphisms of zM where '0 is the identity map of zM . (The smoothness assumption
here means that the map '.s; x/ D 's.x/ W Œ0; 1�� zM ! zM is smooth.) Let Is de-
note the space of all isotopies on zM . Moreover, we say that an isotopy f'sg 2 Is is
supported in an open set U � zM if 's.x/ D x for every s 2 Œ0; 1� and x 2 zM nU .
Define

Isout D ff'sg 2 Is WM � 's.M/ for all s 2 Œ0; 1�g

to be the isotopies in zM that can move points out of the compact set M � zM but
not into M , and Isout.U / to be those in Isout that are supported in some open set
U � zM . Furthermore, we are also interested in situations where the compact set
M is preserved by the isotopy, Similarly, we define

Istan D ff'sg 2 Is WM D 's.M/ for all s 2 Œ0; 1�g:

1 Note that such an isometric embedding always exists. For example, we can smoothly extendM
with the metric across the boundary @M to get a collar neighborhood that can be made cylindrical
near the boundary by a cutoff function; then we take another copy of this collar neighborhood and
glue the two together along the cylindrical necks.
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to be the isotopies preserving the compact setM , and Istan.U / to be those in Istan

supported in some open set U � zM . Notice that Istan.U / � Isout.U / for any
open set U � zM .

One way to generate isotopies is to consider the flow of a vector field. Let �
be the vector space of smooth vector fields on zM . We define two subspaces �out
and �tan of � that correspond to the two classes of isotopies defined above. More
precisely, we let

�out D fX 2 � W X.x/ � �.x/ � 0 for every x 2 @M g

where � is the unit outward normal of @M with respect to M and

�tan D fX 2 � W X.x/ � �.x/ D 0 for every x 2 @M g:

Notice again that �tan � �out. Each X 2 � generates a unique isotopy f'sgs2Œ0;1�
on zM by its flow (since zM is closed, the flow exists for all time). Clearly, if
X 2 �out, then f'sg 2 Isout; if X 2 �tan, then f'sg 2 Istan.

3.2 Varifolds and Restrictions
Varifolds are fundamental in any min-max construction, compared to other gen-

eralized surfaces like currents, because they do not allow for cancellation of mass
(see [30, p. 24]). We will discuss some less standard facts about varifolds. For a
more comprehensive treatment, one can refer to [1, 5, 23, 36].

Let V. zM/ denote the space of 2-varifolds on zM endowed with the weak topol-
ogy (see [36]), and V.M/ � V. zM/ be the subspace of 2-varifolds supported inM .
There is a restriction map

.�/xM W V. zM/! V.M/ � V. zM/

defined by V xM .B/ D V.B \ G.M// for any B � G. zM/, where G.M/ and
G. zM/ denote the 2-Grassmannian over M and zM , respectively. Since M is com-
pact, by 2.6.2 (c) in [1], the restriction map is only upper semicontinuous in the
weak topology in the following sense: if Vi is a sequence in V. zM/ converging
weakly to V , then lim supi!1 kVik.M/ � kV k.M/. The following lemma shows
that if we have equality limi!1 kVik.M/ D kV k.M/, then VixM converges
weakly to V xM .

LEMMA 3.1. Let V 2 V. zM/. Suppose Vi 2 V. zM/ is a sequence of varifolds
converging weakly to V as i ! 1. If the masses kVik.M/ converge to kV k.M/

as i !1, then the restricted varifolds VixM converge weakly to V xM as i !1.

The proof of Lemma 3.1 is rather elementary and will be given in Appendix A
for the sake of completeness.

3.3 Freely Stationary Varifolds
Let V 2 V. zM/. If we take a vector field X 2 �tan and let f'sgs2.��;�/

be the flow generated by X and .'s/]V be the push-forward of V by 's , then
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k.'s/]V k.M/ is a smooth function in s since 's.M/ D M for all s. Differenti-
ating with respect to s at s D 0, the same calculation as that in the standard first
variation formula (see [36] for example) shows that

(3.1) ıMV.X/ D
d

ds

ˇ̌̌̌
sD0

k.'s/]V k.M/ D

Z
.x;S/2G.M/

divS X.x/ dV.x; S/:

Notice that we are only integrating over G.M/ instead of G. zM/ on the right-hand
side of (3.1) since we are only counting area in M .

DEFINITION 3.2. A varifold V 2 V. zM/ is said to be freely stationary in an open
set U � zM if and only if ıMV.X/ D 0 for all vector fields X 2 �tan supported in
U . If U D zM , we simply say that V is freely stationary.

We denote the set of varifolds that are freely stationary in U by V1;U � V. zM/

and the set of freely stationary varifolds by V1.

Remark 3.3. It is obvious that ıMV.X/ D ıMV xM .X/ for any V 2 V. zM/ and
X 2 �tan. Therefore, if V 2 V. zM/ is freely stationary in U , then so is V xM and
vice versa. So we often assume that freely stationary varifolds are supported inM .

Using the compactness of mass bounded varifolds in the weak topology and
(3.1), it is immediate that the set of mass bounded freely stationary varifolds sup-
ported in M is compact in the weak topology.

LEMMA 3.4. For any open set U � zM and any constant C > 0, the set

VC1;U .M/ D fV 2 V1;U .M/ W kV k.M/ � C g

is compact in the weak topology.

PROOF. Let Vi be a sequence of varifolds in VC
1;U .M/. Since Vi are supported

in M , kVik. zM/ D kVik.M/ are uniformly bounded by C . Therefore, a subse-
quence of Vi (after relabeling) converges weakly to V in V. zM/ by compactness
of mass bounded varifolds. Since V.M/ is a closed subset of V. zM/, the limit V
is also supported in M , i.e., V 2 V.M/. Therefore, kV k.M/ D kV k. zM/ D

lim kVik. zM/ D lim kVik.M/ � C . It remains to show that V is freely stationary
in U , but this follows directly from the first variation formula (3.1) and the fact that
Vi and V are supported in M . �

In this paper, we will use some results in [14], where the monotonicity formula
and the Allard regularity for freely stationary varifolds were proved. Their proofs
were given for rectifiable varifolds in RN , but they can be easily generalized to
general varifolds in Riemannian manifolds. As a result, we have the following
monotonicity formula for any freely stationary varifold V in zM : there exists a
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constant R > 0 (depending only on the geometry of M and @M ) and a function
C.r/ � 1 such that for any x 2 @M and 0 � � � � � r � R,

(3.2)
kV k.M \ B� .x//

�2
� C.r/

kV k.M \ B�.x//

�2
:

Note that C.r/ goes to 1 as r ! 0, so the density �.x; V / of the freely stationary
varifold V at x 2 @M is well-defined.

In [15], the well-known Schoen curvature estimates [33] for stable minimal sur-
faces were generalized to the free boundary case. The compactness theorem for
stable minimal surfaces with free boundary follows easily from the curvature esti-
mates.

LEMMA 3.5 (Grüter-Jost[14]). Let U � zM be an open set. Suppose f†ng is a se-
quence of properly embedded stable minimal surfaces inU\M with free boundary
on U \ @M , and their areas are uniformly bounded. Then, for any compact subset
K b U , there is a subsequence of †n converging smoothly (multiplicity allowed)
to a properly embedded stable minimal surface †1 in K \M with free boundary
lying on K \ @M .

3.4 Outer Almost Minimizing Property
In general, a stationary varifold may possess singularity and hence is not a

smooth minimal surface. Even if it is smooth, the example in Section 2 shows
that an embedded smooth minimal surface that is freely stationary may fail to be
properly embedded. In order to achieve regularity and properness of the freely sta-
tionary varifold, we require a stronger condition called the outer almost minimizing
property. Roughly speaking, a surface that is outer almost minimizing means that
if you want to decrease its area in M through an outward isotopy, its area in M
must become large at some time during the deformation. The precise definition is
given below.

DEFINITION 3.6. Given � > 0 and an open set U � zM , a varifold V 2 V. zM/

is �-outer almost minimizing in U if and only if no isotopy f'sgs2Œ0;1� 2 Isout.U /

exists such that

(i) k.'s/]V k.M/ � kV k.M/C �
8

for all s 2 Œ0; 1� and
(ii) k.'1/]V k.M/ � kV k.M/ � �.

A sequence fV ng � V. zM/ is said to be an outer almost minimizing sequence
in U if each V n is �n-outer almost minimizing in U for some sequence �n # 0.
Moreover, if V n converges weakly to some V in U , then we say that V is outer
almost minimizing in U .

Remark 3.7. The definition is almost the same as the one used in [5] except that
we are considering the area in M and outward isotopies only.

It is not hard to see that any outer almost minimizing varifold is freely stationary.
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PROPOSITION 3.8. If V is outer almost minimizing in U , then V is freely station-
ary in U .

PROOF. Since V is outer almost minimizing in U , there exists, by definition, a
sequence �n # 0 for which V n is �n-outer almost minimizing in U . We will prove
the proposition by contradiction.

Suppose, on the contrary, that V is not freely stationary in U . Then there is a
vector field X 2 �tan supported in U such that

ıMV.X/ � �c < 0

for some real constant c > 0. Let f'sgs2R be the flow generated by X . Suppose
Vs and V ns are the push-forwards of the varifolds V and V n, respectively, by the
diffeomorphism 's . Since X 2 �tan, (3.1) implies that ıMVs.X/ is a continuous
function in s (for X fixed). Therefore, we have

(3.3) ıMVs.X/ � �
c

2
< 0

for all s 2 Œ0; s0� for some s0 > 0. We claim that for all sufficiently large n, it
holds true that

(3.4) ıMV
n
s .X/ � �

c

4
< 0

for all s 2 Œ0; s0�.
Let us assume (3.4) for the moment, integrating in s gives

(3.5) kV ns k.M/ � kV nk.M/ �
cs

4

for all s 2 Œ0; s0�. Since V n is �n-outer almost minimizing in U , this implies

(3.6) kV ns0k.M/ � kV nk.M/ � �n

for all n sufficiently large. Combining (3.5) and (3.6), we have �n � cs0
4
> 0 for n

sufficiently large. This is a contradiction since �n # 0.
It remains to verify (3.4). Let fn.s/ D ıMV ns .X/ and f .s/ D ıMVs.X/. From

the definition of push-forward of a varifold and (3.1), ffngn2N is an equicontinu-
ous family of functions on Œ0; s0�. Furthermore,

(3.7) lim sup
n!1

fn.s/ � f .s/

for all s 2 Œ0; s0�. Our goal is to prove that for any � > 0, fn.s/ � f .s/C� for all n
sufficiently large and all s 2 Œ0; s0�. If not, then there exists a sequence nk ! 1
and sk 2 Œ0; s0� such that fnk .sk/ > f .sk/ C �. Without loss of generality, we
can assume sk ! s1 for some s1 2 Œ0; s0�. By equicontinuity, for k sufficiently
large, we have

fnk .s1/C
�

2
� fnk .sk/ > f .sk/C �:

Take k ! 1; we get lim supn!1 fn.s1/ � lim supk!1 fnk .s1/ � f .s1/C
�=2, which contradicts (3.7). Finally, (3.4) follows from (3.3) by taking � D c=4.

�
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The example in Section 2 shows that the converse of Proposition 3.8 is false
(Figure 2.1). The equatorial disk shown in Figure 2.1 is freely stationary and almost
minimizing with respect to isotopies preserving M , but it fails to be outer almost
minimizing. By allowing more deformations, we can rule out such cases as in
Figure 2.1 and obtain a properly embedded free boundary solution from a min-
max construction to be described in Section 4.

4 The Min-Max Construction
In this section, we describe a min-max construction for properly embedded min-

imal surfaces with free boundary in any compact Riemannian 3-manifold with
boundary.

4.1 Sweepouts
First, we define a generalized family of surfaces that allow mild singularities

and changes in topology. We will always parametrize a sweepout by the letter t
over the interval Œ0; 1� unless otherwise stated.

DEFINITION 4.1. A family f†tgt2Œ0;1� of surfaces in zM is said to be a generalized
smooth family of surfaces, or simply a sweepout, if and only if there exists a finite
subset T � Œ0; 1� and a finite set of points P � zM such that

(1) for t … T , †t is a smoothly embedded closed surface (not necessarily
connected) in zM ;

(2) for t 2 T , †t n P is a smoothly embedded surface (not necessarily con-
nected) in zM and †t is compact; and

(3) †t varies smoothly in t (see Remark 4.2 below).
If, in addition to (1)–(3) above,

(4) H2.†t \M/ is a continuous function in t 2 Œ0; 1� (here H2 is the two-
dimensional Hausdorff measure induced by the metric on zM ),

we say that f†tgt2Œ0;1� is a continuous sweepout.

Remark 4.2. The smoothness condition in (3) means the following: for each t … T ,
for � close enough to t ,†� is a graph over†t (hence diffeomorphic to†t ) and†�
converges smoothly to †t as a graph when � ! t . At t 2 T , for any � > 0 small,
let P� D fx 2 zM W d.x; P / < �g; then †� n P� converges smoothly to †t n P� in
the graphical sense above as � ! t .

Remark 4.3. Note that condition (4) is not redundant since we could have a contin-
uous (or even smooth) family of†t � zM such that H2.†t \M/ is discontinuous.
In general, the function H2.†t \M/ is only upper semicontinuous in t . See Fig-
ure 4.1 for an example of a discontinuous sweepout of a topological annulus by
curves. Here we let M be a disk with a square removed and consider a sweepout
ofM by vertical lines. This example is one dimension lower, but a similar example
in R3 can be constructed easily. In fact, by Lemma 3.1, condition (4) is equivalent
to saying that f†t \M gt2Œ0;1� is a continuous family as varifolds in M .
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FIGURE 4.1. A sweepout that is not continuous. (The dashed lines rep-
resent the part of the line that lies outside M whose length is not
counted.)

4.2 Min-Max Sequences
Given a sweepout f†tg, we can deform the sweepout to get another sweepout

by the following procedure. Let  D  t .x/ D  .t; x/ W Œ0; 1� � zM ! zM be a
smooth map such that for each t 2 Œ0; 1�, there exists isotopies f'tsgs2Œ0;1� 2 Isout

such that 't1 D  t . We define a new family f†0tg by †0t D  t .†t /. It is clear that
f†0tg is a sweepout in the sense of Definition 4.1. A collection ƒ of sweepouts is
saturated if it is closed under these deformations of sweepouts.

Remark 4.4. For technical reasons, we will assume that any saturated collection ƒ
of sweepouts has the additional property that there exists some natural number
N D N.ƒ/ <1 such that for any f†tg 2 ƒ, the set P in Definition 4.1 consists
of at most N points.

We will apply our min-max construction to a saturated collection of sweepouts.
Given any such collection ƒ and any sweepout f†tg 2 ƒ, we denote by F.f†tg/
the area of its maximal slice (with respect to area inM ) and bym0.ƒ/ the infimum
of F over all sweepouts in ƒ; that is,

F.f†tg/ D sup
t2Œ0;1�

H2.†t \M/ and m0.ƒ/ D inf
f†t g2ƒ

F.f†tg/:

Note that we have to take “sup” in the definition of F instead of “max” (as in [5])
because the maximum may not be achieved if the sweepout is not continuous.
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DEFINITION 4.5. Given a saturated collection ƒ of sweepouts, we have the fol-
lowing:

(1) We call a sequence f†nt gn2N of sweepouts in ƒ a minimizing sequence of
sweepouts if

lim
n!1

F.f†nt g/ D m0.ƒ/:

(2) Let f†nt gn2N be a minimizing sequence of sweepouts. Suppose we have a
sequence tn 2 Œ0; 1�. We say that f†ntn \M gn2N is a min-max sequence
of surfaces if

lim
n!1

H2.†ntn \M/ D m0.ƒ/:

Our goal is to show that there exists some min-max sequence †ntn \ M con-
verging (in the varifold sense) to a properly embedded free boundary solution †
(possibly with multiplicities). It is clear that the area of † (counting multiplicities)
is equal to m0.ƒ/. In order to produce something nontrivial, we need m0.ƒ/ > 0.
We first show by an isoperimetric inequality that this can be done by choosing an
initial sweepout to be the level sets of a Morse function.

PROPOSITION 4.6. There exists a saturated collection ƒ of sweepouts for which
m0.ƒ/ > 0.

PROOF. Take any Morse function zf W zM ! Œ0; 1� on the closed 3-manifold zM .
Define †t D zf �1.t/ for t 2 Œ0; 1�. Then f†tgt2Œ0;1� is a sweepout in the sense of
Definition 4.1. Let ƒ be the saturation of f†tg, the smallest collection of sweep-
outs that is saturated and contains f†tg. We will show that for such a collectionƒ,
we have m0.ƒ/ > 0.

Let  D  t .x/ D  .t; x/ W Œ0; 1� � zM ! zM be a smooth map such that for
each t 2 Œ0; 1�, there exists isotopies f'tsgs2Œ0;1� 2 Isout such that 't1 D  t . Define
the new sweepout f�tg 2 ƒ by �t D  t .†t /. We claim that F.f�tg/ � C > 0,
where C is a constant independent of  . This would imply m0.ƒ/ � C > 0.

To prove our claim, let Ut D zf �1.Œ0; t// and U 0t D zM n Ut , and take Vt D
 t .Ut / and V 0t D  t .U

0
t /. The compact subsetM is a disjoint union of Vt\M and

V 0t \M , with @Vt \ int.M/ D @V 0t \ int.M/. Since the function t 7! H3.Vt \M/

is continuous, and H3.V0 \M/ D 0 and H3.V1 \M/ D Vol.M/, there exists
t0 2 .0; 1/ such that H3.Vt0 \M/ D 1

2
Vol.M/.

By the isoperimetric inequality, there exists a constant C D C.M/ > 0 such
that

1

2
Vol.M/ D H3.Vt0 \M/ � C.M/.H2.�t0 \M//

3
2 :

Hence,

F.f�tg/ D sup
t2Œ0;1�

H2.�t \M/ �

�
Vol.M/

2 C.M/

� 2
3

> 0:

This proves our claim and thus the proposition. �
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4.3 Convergence of Min-Max Sequences
We now state the main convergence result, which implies Theorem 1.1.

THEOREM 4.7. Let M be a compact domain of a closed Riemannian 3-mani-
fold zM . Given any saturated collection of sweepouts ƒ, there exists a min-max
sequence of surfaces f†ntn \M gn2N obtained from ƒ that converges in the sense
of varifolds to an integer-rectifiable varifold V in M with kV k.M/ D m0.ƒ/.
Moreover, there exists natural numbers n1; : : : ; nk and smooth, compact, properly
embedded minimal surfaces �1; : : : ; �k such that

V D

kX
iD1

ni�i ;

where each �i is either closed or meets @M orthogonally along the free boundary
@�i .

The proof of Theorem 4.7 can be divided into three parts. The first part is a
tightening argument that is similar to Birkhoff’s curve-shortening process [4]. The
goal is to find a good minimizing sequence of sweepouts such that almost maximal
slices are almost freely stationary. This rules out the existence of almost maximal
bad slices (see [5, fig. 4]) that would not converge to a freely stationary varifold.
The precise statement we will prove is the following:

PROPOSITION 4.8. Given a saturated collection ƒ of sweepouts, there exists a
minimizing sequence of sweepouts f†nt gn2N such that:

(1) f†nt gt2Œ0;1� is a continuous sweepout for each n 2 N.
(2) Every min-max sequence of surfaces f†ntn\M gn2N constructed from such

a minimizing sequence has a subsequence converging weakly to a freely
stationary varifold V 2 V1 supported in M .

The key new ingredient in the proposition above is a perturbation lemma which
says that any sweepout can be approximated by a continuous sweepout.

LEMMA 4.9. Given any sweepout f†tgt2Œ0;1� 2 ƒ and any � > 0, there exists a
continuous sweepout f†0tgt2Œ0;1� 2 ƒ such that

F.f†0tg/ � F.f†tg/C �:

The proof of Lemma 4.9 is rather technical and will be presented in Appendix B.
Using the perturbation lemma, one can assume, without loss of generality, that a
minimizing sequence of sweepouts is continuous. Once we have continuity, the
proof of Proposition 4.8 is a simple modification of the arguments in Section 4
of [5]. We will give the details in Section 5 of this paper.

The second part of the proof of Theorem 4.7 is to establish the existence of a
min-max sequence that is outer almost minimizing on small annuli. Let x 2 zM and
r > 0. Let Ar.x/ be the collection of all annuli centered at x with outer radius less
than r and inner radius greater than 0. We will prove the following existence result
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in Section 6. A key note is that the proof requires continuity of the minimizing
sequence of sweepout, which is given by Proposition 4.8.

PROPOSITION 4.10. Given a saturated collection ƒ, there exists a positive func-
tion r W zM ! R and a min-max sequence of surfaces f†n D †ntn \M gn2N such
that:

(1) f†ngn2N is an outer almost minimizing sequence in any annulus An 2
Ar.x/.x/, where x is any point in zM .

(2) In every such annulus An,†n is a smooth surface (possibly with boundary)
when n is sufficiently large.

(3) The sequence †n converges to a freely stationary varifold V inM as n!
1.

The third part of the proof of Theorem 4.7 is a regularity theorem for outer
almost minimizing varifolds. The idea is that the outer almost minimizing property
enables us to construct replacements (see Definition 8.1) for the freely stationary
varifold V obtained in Proposition 4.10. It turns out that having sufficiently many
replacements implies that a freely stationary varifold is regular.

PROPOSITION 4.11. The freely stationary varifold V in Proposition 4.10 is in-
teger rectifiable and there exist natural numbers n1; : : : ; nk and smooth compact
properly embedded minimal surfaces �1; : : : ; �k such that

V D

kX
iD1

ni�i ;

where each �i is either closed or meets @M orthogonally along the free boundary
@�i .

The construction of replacements involves a minimization problem among all
surfaces that are outward isotopic to a fixed surface. This is a localized version
of Meeks-Simon-Yau’s paper [24] with partially free boundary. In Section 7, we
will treat this minimization problem in detail. In Section 8, we prove the regu-
larity of freely stationary varifolds which can be replaced sufficiently many times.
Combining Propositions 4.8, 4.10, and 4.11, we obtain the main convergence result
(Theorem 4.7).

5 Existence of Freely Stationary Varifolds
In this section, we show that there exists a nice minimizing sequence of sweep-

out such that any min-max sequence of surfaces obtained from such a minimizing
sequence has a subsequence converging to a varifold inM that is freely stationary.
Using the perturbation lemma (Lemma 4.9), we can make the minimizing sequence
continuous. This is essential in the proof of Proposition 4.8 and Proposition 4.10
in the next section.

We restate Proposition 4.8 below.
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PROPOSITION 5.1 (Proposition 4.8). Given a saturated collectionƒ of sweepouts,
there exists a minimizing sequence of sweepouts f†nt gn2N such that:

(1) f†nt gt2Œ0;1� is a continuous sweepout for each n 2 N.
(2) Every min-max sequence of surfaces f†ntn\M gn2N constructed from such

a minimizing sequence has a subsequence converging weakly to a freely
stationary varifold V 2 V1 supported in M .

PROOF. Let f†nt gn2N � ƒ be a minimizing sequence of sweepouts. We can
assume, by Lemma 4.9, that f†nt gt2Œ0;1� is a continuous sweepout for each n. So
(1) is established.

Fix some C > 4m0. By Lemma 3.4, VC1.M/ � VC .M/ is a compact set in the
weak topology. Let d be a metric on VC .M/ whose metric topology agrees with
the weak topology. By restricting ourselves to tangential vector fields in �tan, the
same argument as in section 4 of [5] gives a “tightening” map

‰ W VC .M/! Istan

such that

(a) ‰ is continuous with respect to the weak topology on VC .M/ and the
C 1-norm on Istan.

(b) If V 2 VC1.M/, then ‰.V / is the identity isotopy on zM .
(c) If V … VC1.M/, then

k.‰.V /1/]V k.M/ � kV k.M/ � L.d.V;VC1.M//

for some continuous strictly increasing function L W R ! R for which
L.0/ D 0.

Remark 5.2. In step 1 of section 4 of [5], we should take k�V k1 � 1=k when
k > 0 to make sure that ‰ is continuous. The rest of the argument goes through
because the set of tangential vector fields �tan is a convex subset of the set of all
vector fields � in zM . Hence, the vector field HV defined in step 1 of section 4
of [5] also belongs to �tan.

Since f†nt g are continuous sweepouts, for each n, f†nt \M gt2Œ0;1� is a continu-
ous family in VC .M/. Therefore, ‰.†t \M/ is a continuous family in Istan. By
a smoothing argument (for example, one can take a convolution in the t -variable),
we can make it a smooth family. We use these tangential isotopies to deform the
minimizing sequence f†nt g to another minimizing sequence f�nt g that satisfies

(5.1) H2.�nt \M/ � H2.†nt \M/ �
L.d.†nt \M;VC1.M///

2
:

As f†nt gn is a minimizing sequence of sweepouts, we can assume that

(5.2) F.f†nt g/ � m0 C
1

n
:
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Furthermore, the sweepouts f�nt g are continuous since only tangential vector fields
are used in the deformations.

Next, we claim that for every � > 0, there exist ı > 0 and N 2 N such that
whenever n > N and H2.�ntn \M/ > m0� ı, we have d.�ntn \M;V

C
1.M// < �.

To see this, we argue by contradiction. Note first that the construction of the tight-
ening map yields a continuous and increasing function � W RC ! RC (indepen-
dent of t and n) such that �.0/ D 0 and

(5.3) d.†t \M;VC1.M// � �.d.�nt \M;VC1.M///:

Fix � > 0 and choose ı > 0 and N 2 N such that L.�.�//=2 � ı > 1=N .
We claim that for this choice of ı andN , whenever n > N and H2.�ntn \M/ >

m0 � ı, we have d.�ntn \M;V
C
1.M// < �. Suppose not. Then there are n > N

and tn such that H2.�ntn \M/ > m0 � ı and d.�nt \M;VC1.M// � �. Hence,
from (5.1) and (5.3) we get

H2.†nt \M/ � H2.�nt \M/C
L.�.�//

2

> m0 C
L.�.�//

2
� ı > m0 C

1

N
> m0 C

1

n
:

This contradicts (5.2). This proves our claim and the claim clearly implies (2) in
Proposition 5.1. Therefore, the proof is completed. �

6 Existence of Outer Almost Minimizing Varifolds
In this section, we prove the existence of a min-max sequence that is outer al-

most minimizing on small annuli. The proof is a combinatorial argument first
introduced by F. Almgren in [2]. First we recall the following definition from [5]:

DEFINITION 6.1. Let CO be the set of pairs .U 1; U 2/ of open sets in zM with

d.U 1; U 2/ > 2minfdiam.U 1/; diam.U 2/g:

Given .U 1; U 2/ 2 CO, we say that V 2 V. zM/ is �-outer almost minimizing in
.U 1; U 2/ if it is �-outer almost minimizing in at least one of U 1 or U 2.

Remark 6.2. The significance of CO is that for any .U 1; U 2/ and .V 1; V 2/ 2 CO,
there are some i; j D 1; 2 with d.U i ; V j / > 0; hence U i \ V j D ¿.

The key lemma in this section is the following:

LEMMA 6.3. Let f†nt g be a minimizing sequence as given in Proposition 5.1. Then
there is a min-max sequence f†LgL2N D f†

n.L/
tn.L/
gL2N such that

each †L is
1

L
-outer almost minimizing in every .U 1; U 2/ 2 CO:
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PROOF. We will argue by contradiction. First of all, we fix a minimizing se-
quence f†nt gn2N � ƒ satisfying Proposition 5.1 and such that

(6.1) F.f†nt g/ < m0 C
1

n
:

Fix L 2 N. To prove the lemma, we make the following claim.

Claim 1. There exists n > L and tn 2 Œ0; 1� such that †n D †ntn satisfies

(a) †n is 1
L

-outer almost minimizing in every .U 1; U 2/ 2 CO.
(b) H2.†n \M/ � m0 �

1
L

.

PROOF. We define the sets of “big slices” for each n > L by

Kn D

�
t 2 Œ0; 1� W H2.†nt \M/ � m0 �

1

L

�
:

Note that Kn is compact since f†nt g is a continuous sweepout (by (4) in Defini-
tion 4.1). If Claim 1 is false, then for every t 2 Kn, there exists a pair of open sets
.U 1;t ; U 2;t / 2 CO such that †nt is not 1

L
-outer almost minimizing in any one of

them. So for every t 2 Kn, there exists isotopies f'1;ts gs2Œ0;1� 2 Isout.U
1;t / and

f'
2;t
s gs2Œ0;1� 2 Isout.U

2;t / such that for i D 1; 2:

(1) H2.'
i;t
s .†

n
t / \M/ � H2.†nt \M/C 1

8L
for every s 2 Œ0; 1�.

(2) H2.'
i;t
1 .†

n
t / \M/ � H2.†nt \M/ � 1

L
.

Next, we want to establish the following claim:

Claim 2. For each t 2 Kn, there exists ı D ı.t/ > 0 such that if j� � t j < ı, then
for i D 1; 2,

(10) H2.'
i;t
s .†

n
� / \M/ � H2.†n� \M/C 1

4L
for every s 2 Œ0; 1�.

(20) H2.'
i;t
1 .†

n
� / \M/ � H2.†n� \M/ � 1

2L
.

PROOF. To see why (10) is true, we argue by contradiction. Suppose no such ı
exists; then there exists a sequence �j ! t and sj 2 Œ0; 1� such that for all j ,

H2.'i;tsj .†
n
�j
/ \M/ > H2.†n�j \M/C

1

4L
:

After passing to a subsequence, we can assume that sj ! s0 for some s0 2 Œ0; 1�.
Observe that 'i;tsj .†

n
�j
/ converges weakly as varifolds to 'i;ts0 .†

n
t / as j ! 1. By

(2.6.2(c)) in [1] and the fact that the sweepouts f†nt g are continuous, we have

H2.'i;ts0 .†
n
t / \M/ � lim sup

j!1

H2.'i;tsj .†
n
�j
/ \M/

� lim
j!1

H2.†n�j \M/C
1

4L

D H2.†nt \M/C
1

4L
:
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This contradicts (1) above. So we can choose ı > 0 such that (10) holds.
The proof of (20) is similar. Again, if no such ı > 0 exists, then there exists a

sequence �j ! t such that for all j ,

H2.'
i;t
1 .†

n
�j
/ \M/ > H2.†n�j \M/ �

1

2L
:

Since 'i;t1 .†
n
�j
/ converges weakly to 'i;t1 .†

n
t / in zM as j !1, we have

H2.'
i;t
1 .†

n
t / \M/ � lim sup

j!1

H2.'
i;t
1 .†

n
�j
/ \M/

� lim
j!1

H2.†n�j \M/ �
1

2L

D H2.†nt \M/ �
1

2L
:

This contradicts (2) above. Therefore, (20) holds for some ı > 0. Thus, Claim 2 is
established. �

The rest of the proof is exactly the same as in section 5.2 of [5], replacing H2

by H2. � \M/ and (20) (30) in [5] by our (10) and (20) in Claim 2 above. Note that
there is a typo in the last line of the equation in that section. It should read

H2.�nt / � H2.†nt / �
1

2L
C

1

4L
� F.f†nt g/ �

1

4L
:

The proof of Claim 1 is completed and so is the proof of Lemma 6.3. �

For any x 2 zM , 0 < s < t , let An.x; s; t/ denote the open annulus centered at x
with inner radius s and outer radius t . Let r > 0; we set Ar.x/ as the collection
of open annuli An.x; s; t/ such that 0 < s < t < r . By the same argument as
in proposition 5.1 of Colding–De Lellis [5], we obtain Proposition 4.10, which we
restate below.

PROPOSITION 6.4 (Proposition 4.10). Given a saturated collection ƒ, there exists
a positive function r W zM ! R and a min-max sequence of surfaces f†n D
†ntn \M gn2N such that:

(1) f†ngn2N is an outer almost minimizing sequence in any annulus An 2
Ar.x/.x/ where x is any point in zM .

(2) In every such annulus An,†n is a smooth surface (possibly with boundary)
when n is sufficiently large.

(3) The sequence †n converges to a freely stationary varifold V inM as n!
1.

7 A Minimization Problem with Partially Free Boundary
In this section, we prove a result about minimizing area in M among isotopic

surfaces similar to the ones obtained by F. Almgren and L. Simon [3], W. Meeks,
L. Simon, and S.T. Yau [24], M. Grüter and J. Jost [14], and J. Jost [19]. Since
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we are restricting to the class of outward isotopies, we need to modify some of the
arguments used in the papers above.

First, we define the concept of admissible open sets.

DEFINITION 7.1. An open set U � zM is said to be admissible if it satisfies all the
following properties:

(i) U is smooth, i.e., U is an open set with smooth boundary @U ;
(ii) U is uniformly convex in the sense that all the principal curvatures with

respect to the inward normal is positive along @U ;
(iii) the closure U is diffeomorphic to the closed unit 3-ball in R3;
(iv) @U intersects @M transversally and U \@M is topologically an open disk;
(v) the angle between @U and @M is always less than �=2 when measured

in U \M , i.e., if �U and �M are the outward unit normal of U and M
respectively, then �U � �M < 0 along @U \ @M .

Given a surface† in zM , we want to minimize area (inM ) among all the surfaces
that are outward isotopic to † and are identical to † outside an admissible open
set U .

DEFINITION 7.2. Let U � zM be an admissible open set. Let † � zM be an
embedded closed surface (not necessarily connected) intersecting @U transversally.
Consider the minimization problem .†; Isout.U //:

˛ D inf
f'sg2Isout.U /

H2.'1.†/ \M/

if a sequence f'ks gk2N 2 Isout.U / satisfies

lim
k!1

H2.'k1 .†/ \M/ D ˛;

we say that †k D 'k1 .†/ is a minimizing sequence for the minimization problem
.†; Isout.U //.

Note that if two surfaces †1 and †2 agree inM , i.e., †1 \M D †2 \M , then
the minimization problems .†1; Isout.U // and .†2; Isout.U // are equivalent since
we only count area in M and '1.†1/ \M D '1.†2/ \M for any f'sgs2Œ0;1� 2
Isout.

By a small perturbation by outward isotopies, we can always obtain a minimiz-
ing sequence†k so that†k intersects @M transversally for every k. The key result
of this section is the following theorem:

THEOREM 7.3. LetU � zM be an admissible open set; suppose f†kg is a minimiz-
ing sequence for the minimization problem .†; Isout.U // defined in Definition 7.2
so that †k intersects @M transversally for each k, and †k \M converge weakly
to a varifold V 2 V.M/.

Then, the following hold:
(a) V D � for some compact embedded minimal surface � � U \M with

smooth boundary (except possibly at @U \ @M ) contained in @.U \M/.
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(b) The fixed boundary of � is the same as † \ .@U \M/.
(c) � meets @M \ U orthogonally along the free boundary of @� .
(d) � is stable with respect to Istan.U /.

Remark 7.4. It is clear that V is freely stationary. The only thing we have to prove
is regularity. Interior regularity follows from a localized version of [24] given in
proposition 3.3 of [8]. The regularity at the fixed boundary @U \ int.M/ is also
discussed in [8]. Therefore, the only case left is the regularity at the free boundary
@M \ U . Hence, Theorem 7.3 says that the limit varifold V is equal to a stable,
smooth, properly embedded minimal surface � (possibly disconnected).

The proof of Theorem 7.3 goes as follows. We first apply a version of local

 -reduction (see [8, 24]) to reduce the minimization problem to the case of genus
zero surfaces. Then we use a result from [19] to conclude that such minimizers are
smooth.

7.1 Local 
-Reductions
Following [8, 24], replacing area by area in M , we modify some of their defi-

nitions and propositions for our purpose. First of all, we fix ı > 0 such that the
following lemma holds (see lemma 4.2 of [19]).

LEMMA 7.5. There exists r0 > 0 and ı 2 .0; 1/, depending only on zM and M ,
with the property that if † is a surface in int.M/ with @† � @M and

H2.† \ Br0.x// < ı
2r20 for each x 2 zM;

then there exists a unique compact set K �M such that:
(a) @K \ int.M/ D † (i.e., K is bounded by † modulo @M );
(b) H3.K \ Br0.x// � ı

2r30 for each x 2 zM ; and
(c) H3.K/ � c0H2.†/3=2, where c0 depends only on zM and M .

By rescaling the metric of zM if necessary, we can assume that r0 D 1 in
Lemma 7.5. From now on, we will assume that ı > 0 satisfies Lemma 7.5 with
r0 D 1. We will generalize the notion of 
 -reductions to allow boundary reductions
as well. Suppose 0 < 
 < ı2=9.

DEFINITION 7.6. Let †1 and †2 be closed (possibly disconnected) embedded
surfaces in zM . We say that †2 is a .
; U /-reduction of †1 and write

†2
.
;U /
� †1

if the following conditions are satisfied:
(1) †2 is obtained from †1 through a surgery in U , that is:

(i) †1 n†2 \M D A � U is diffeomorphic to either a closed annulus
A D f.x1; x2/ 2 R2 j 1 � x21 C x

2
2 � 2g or a closed half-annulus

AC D f.x1; x2/ 2 A j x2 � 0g.
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(ii) †2 n†1\M D D1[D2 � U with eachDi diffeomorphic to either
the closed unit disk D D f.x1; x2/ 2 R2 j x21Cx

2
2 � 1g or the closed

unit half-disk DC D f.x1; x2/ 2 D j x2 � 0g.
(iii) There exists a compact set K embedded in U , homeomorphic to the

closed unit 3-ball with @K D A [ D1 [ D2 modulo @M (i.e., there
exists a compact set Y � @M such that @K D A[D1[D2[Y ) and
.K n @K/ \ .†1 [†2/ D ¿.

(2) H2.A/CH2.D1/CH2.D2/ < 2
 .
(3) If � is a connected component of †1 \ U \M containing A, and � n A

is disconnected, then for each component of � n A we have one of the
following possibilities:
(a) either it is a genus zero surface contained in U \M with area� ı2=2,

or
(b) it is not a genus zero surface.

We say that † is .
; U /-irreducible if there does not exist z† such that z†
.
;U /
� †.

A immediate consequence of the above definition is the following:

Remark 7.7. † is .
; U /-irreducible if and only if whenever � � U \ M is a
closed disc or half-disk with @� n @M D � \ † and H2.�/ < 
 , then there is
a closed genus zero surface D � † \ U \M with @� n @M D @D n @M and
H2.D/ < ı2=2.

Similar to [24], we define strong .
; U /-reduction as follows:

DEFINITION 7.8. Let †1 and †2 be closed (possibly disconnected) embedded
surfaces in zM . We say that †2 is a strong .
; U /-reduction of †1 and write

†2
.
;U /
< †1

if there exists an isotopy f sgs2Œ0;1� 2 Isout.U / such that

(1) †2
.
;U /
�  1.†1/,

(2) †2 \ . zM n U/ D †1 \ . zM n U/, and
(3) H2.. 1.†1/�†1/ \M/ < 
 .

We say that † is strongly .
; U /-irreducible if there is no z† such that z†
.
;U /
< †.

Following the same arguments in remark 3.1 of [24], we have the following
proposition:

PROPOSITION 7.9. Given any closed embedded surface † (not necessarily con-
nected), there exists a sequence† D †1; †2; : : : ; †k of closed embedded surfaces
(not necessarily connected) such that

†k
.
;U /
< †k�1

.
;U /
< � � �

.
;U /
< †1 D †



MINIMAL SURFACES WITH FREE BOUNDARY 309

where †k is strongly .
; U /-irreducible. Furthermore, there exists a constant c >
0 that depends only on genus.† \M/ and H2.† \M/=ı2 so that k � c, and

H2..†�†k/ \M/ � 3c
:

PROOF. The proof is the same as the proof of remark 3.1 in [24]. �

The following theorem gives our main result for strongly .
; U /-irreducible sur-
faces †. For any closed surface †, we denote

E.†/ D H2.† \M/ � inf
†02JU .†/

H2.†0 \M/;

where JU .†/ D f'1.†/ W f'sgs2Œ0;1� 2 Isout.U /g denotes the set of all surfaces
that are outward isotopic to † in U . Let †0 denote the union of all components
ƒ � † \ U \M such that there exists some Kƒ � U diffeomorphic to the unit
3-ball such that ƒ � Kƒ and @Kƒ \† \M D ¿.

THEOREM 7.10. Let U � zM be an admissible open set, and A � U be a compact
subset diffeomorphic to the unit 3-ball. Assume @M intersects both @U and @A
transversally.

Suppose† � zM is a smooth, closed, embedded surface (possibly disconnected)
such that:

(i) † intersects both @M and @A transversally.
(ii) E.†/ � 
=4 and is strongly .
; U /-irreducible.

(iii) For each component � of †\ @A\M , let F� be the component in .@A\
M/ n � such that @F� n @M D � and

H2.F�/ D minfH2.F�/;H2..@A \M/ n F�/g:

Furthermore, suppose that
Pq
jD1H

2.Fj / � 
=8, where Fj D F�j and
�1; : : : ; �q denote the components of † \ @A \M . Note that each � is
either a closed Jordan curve in M or a Jordan arc with endpoints on @M ,
and each F� is either a disk, a half-disk, or an annulus in M .

Then H2.†0/ � E.†/ and there exists pairwise disjoint, connected, closed genus
zero surfaces D1; : : : ;Dp with Di � .† n †0/ \ U \M , @Di n @M � @A, and
.
Sp
iD1Di / \ A \M D .† n†0/ \ A \M . Moreover,

pX
iD1

H2.Di / �

qX
jD1

H2.Fj /CE.†/:

Furthermore, for any given ˛ > 0, we have

H2
�� p[
iD1

.'1.Di / n @Di /
�
\M n .A n @A/

�
< ˛

for some isotopy f'sgs2Œ0;1� 2 Isout.U / (depending on ˛) that is identity on some
open neighborhood of .† n†0/ n

Sp
iD1.Di n @Di /.
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Although all sufficiently small disks with the same boundary are isotopic to each
other, which is a crucial point in the proof of theorem 2 in [24], not all of them are
outward isotopic to each other. Therefore, we need to establish the lemma below,
which says that all small disks are almost outward isotopic, modulo arbitrarily
small area.

LEMMA 7.11. Let U and A be as in Theorem 7.10. Let � be a Jordan curve in
@A \ int.M/ that is either closed or having endpoints on @M . Let F � @A be a
connected component of .@A\M/ n � that is diffeomorphic to a disk, a half-disk,
or an annulus. Let D � U \M be a genus zero surface transversal to @M with
@D n@M D @F \n@M D � , andD\F D ¿. In addition, we assume that F [D
bounds a unique compact set K �M modulo @M , i.e., @K \ int.M/ D F [D.

Then, for any ˛ > 0, there exists an isotopy f'sgs2Œ0;1� 2 Isout.U / supported
on a small neighborhood ofK such that 's.x/ D x for all x 2 � and all s 2 Œ0; 1�;
moreover,

H2..'1.D/ \M/�F / < ˛:

In other words, we can outward isotope D to approximate F as close as we want.

PROOF. We divide the situation into two cases according to whether the bound-
ary curve � is closed or not.

Case 1. � is a simple closed curve.
In this case, F is either a closed disk or a closed annulus in @A \M . In the

latter case, we will show that we can even find an isotopy f'sg supported on a
neighborhood of K, leaving � fixed, and '1.D/ \M D F .

After a change of coordinate, we can assume that
� U is the open ball of radius 2 in R3 centered at origin,
� A � U is the closed unit 3-ball centered at origin,
� M \ U D U \ fx3 � 0g is the upper half-ball, and
� � D f.x1; x2; x3/ 2 R3 W x3 D

1
2
; x21 C x

2
2 D

3
4
g.

First, we look at the case that F is a closed disk, i.e., F D f.x1; x2; x3/ 2 R3 W
x3 �

1
2
g. Let D be the genus zero surface as given in the hypothesis. Note that

D meets @M at a finite number of simple closed curves �i , i D 1; : : : ; N , each of
which bounds a closed disk Di in @M \ U . Since D is a genus zero surface with
boundary, it is clear thatD[F [ .D1[� � �[DN / is homeomorphic to a 2-sphere,
and thus the compact set K bounded by F [D modulo @M is homeomorphic to
the unit 3-ball in R3.

Observe that if D \ @M D ¿, then it is trivial that we can isotope D to F ,
holding @M fixed. If D \ @M ¤ ¿, we then use a tangential isotopy to deform it
so that it approximates a disk disjoint from @M with boundary � , which in turn is
isotopic to F . To see this, perturb each closed disk Di into the interior of M such
that the boundary of the disk stays onD. Call yDi the perturbed disk. Then there is
a closed annulus Ai � D such that @Ai D @Di [ @ yDi and Ai [Di [ yDi bounds
a ball in K. Using a tangential isotopy, we can deform D such that it agrees with
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.DnAi /[ yDi with an error in area as small as we want (one simply shrinks the size
of the neck in K). Repeating the whole procedure for each Di , one can deform D

such that is arbitrarily close to a disk disjoint from @M , and we are done.
In the case that F is a closed annulus, again let �i be the set of simple closed

curves where D meets @M . Note that all except possibly one �i bounds a disk
in K. For those which bound a disk, we can repeat the “neck shrinking” argu-
ment as in the previous case to eliminate them. Therefore, we can assume that �i
together with �0 D @F \ @M bounds a connected genus zero surface ƒ in @M .
After a further change of coordinate, we can assume that K D ƒ � Œ0; 1

2
�, where

we think of ƒ as a subset of @M � R2.
Next consider the outward isotopy given by the vertical translations 's.x1;

x2; x3/ D .x1; x2; x3 � s/ (with some cutoff near @U so that it is supported in
U ). Take a smooth function � on R2 such that � D 0 along �0, � D 1 outside a
small neighborhood V of �0 disjoint from all �i and 0 < � < 1 elsewhere. By
choosing the neighborhood V of �0 smaller and smaller, we see that the outward
isotopy f�'sg given by the vertical translations with cutoff would deform D to
approximate F as close as we want. This implies our desired conclusion.

Case 2. � is an arc with endpoints on @M .
Assume the standard setting as before after a change of coordinate. Suppose for

our convenience that � D f.x1; x2; x3/ 2 @A W x1 D 0g and F D f.x1; x2; x3/ 2
@A W x1 � 0g. Note that D intersects @M at a Jordan arc �1 with the same
endpoints as � and a (possibly empty) finite collection of disjoint simple closed
curves �i , i D 2; : : : ; N . Let �0 D F \ @M . By assumption, there is a compact
set K � M \ U such that @K D D [ F [ƒ where ƒ is a genus zero surface in
@M with @ƒ D

SN
iD0 �i . For all those �i , i D 2; : : : ; N , which bound a disk in

ƒ, we can shrink down the neck as in Case 1. So we can assume without loss of
generality that ƒ is connected.

There are two further subcases: either �0[�1 is the outermost boundary ofƒ or
it is not. In the first case, similar to the second part of Case 1 above, we can assume
(up to a change of coordinate) that F D f.x1; x2; x3/ 2 R3 W x1 D 0; x3 � 0; x22C

x23 � 1g, ƒ D f.x1; x2; x3/ 2 R3 W x3 D 0; x1 � 0; x
2
1 C x

2
2 � 1g n

SN
iD2Di

where Di is the disk in @M bounded by the simple closed curve �i , and D is the
union of a graph overƒ and n�1 cylinders contained in �i � Œ0; 1�. Using a cutoff
function � as before that is zero on �0 D F \ @M and the vertical translations, we
can deform D to approximate F as close as we want.

Now we are left with the case that �0[�1 is not the outermost boundary ofƒ. In
this case, we can takeƒ D f.x1; x2; x3/ 2 R3 W x3 D 0; x21Cx

2
2 �

9
16
gn
SN
iD2Di

where Di is the disk in @M bounded by the simple closed curve �i , and D is the
union of a graph overƒ and n�1 cylinders contained in �i � Œ0; 1�. Then a similar
translation with cutoff will deform D to approximate F and we are done. �

Now we are ready to give a proof of Theorem 7.10.
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PROOF OF THEOREM 7.10. The proof is almost the same as that in [24] except
that we have to use Lemma 7.11 because not all small disks are outward isotopic
to each other.

As in Meeks-Simon-Yau [24], we can assume that †0 D ¿. We proceed by
induction on q. Denote the following:
.H/q †0 D ¿,

Pq
jD1H

2.Fj / � 
=8,E.†/ � 
=2�2
Pq
jD1H

2.Fj /, and† is
strongly .y
; U /-irreducible, where y
 D 
=4C 4

Pq
jD1H

2.Fj /CE.†/.
.C /q the conclusion of Theorem 7.10 is true.

We will show that the statement “.H/q ) .C /q” is true for all q. Assume it is
true for q � 1. We want to show by induction that it is true for q also.

Relabeling if necessary, we can assume that Fq is innermost, i.e., Fq \ �j D
¿ for all j ¤ q. Since † is strongly .y
; U /-irreducible and H2.Fq/ < y
 , by
Remark 7.7, there exists a connected genus zero surface D � † \ U \M such
that @D n @M D �q and H2.D/ < ı2=2. Since Fq is innermost, D \Fq D ¿. As
the areas of Fq andD are small, we can apply Lemma 7.5. Hence there is a unique
compact setK �M that is bounded by Fq[D modulo @M . Moreover, since F [
D is a genus zero surface, it is easy to see that there exists a small neighborhood of
K that is diffeomorphic to the unit 3-ball whose boundary is disjoint from †\M .
Because we assume that†0 D ¿, we know that the whole neighborhood is disjoint
from .† \M/ nD.

Replace D by Fq and write †� D .† n D/ [ Fq (which is only a Lipschitz
surface) and Fq;� D fx 2 zM W d.x; Fq/ < �g for each � > 0; we can select a
continuous tangential isotopy f'sgs2Œ0;1� 2 Istan.U / such that 's.Fq;�/ � Fq;�,
's.x/ D x for x … Fq;�. Furthermore,

H2..†� \ Fq;�/ \M/ � H2.'1.†� \ Fq;�/ \M/

� H2..†� \ Fq;�/ \M/C �
(7.1)

and

(7.2) '1.†� \ Fq;�/ \ @A D ¿:
In other words, we deform †� to detach Fq from @A.

Let y†� D '1.†�/ (smooth by suitably choosing '1) for � small enough; we
have

(i) y†� \ @A D
Sq�1
jD1 �j ,

(ii) H2..y†��†/ \M/ < H2.D/CH2.Fq/C �, and
(iii) H2.y†� \M/ < H2.† \M/CH2.Fq/ �H2.D/C �.

Notice (iii) implies
(iii0) E.y†�/ < E.†/CH2.Fq/ �H2.D/C �

because Lemma 7.11 implies that

(7.3) inf
†02JU .†/

H2.†0 \M/ � inf
†02JU .y†�/

H2.†0 \M/:
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Taking � < H2.Fq/ and following the same arguments in [24], we see that y†�
satisfies .H/q�1; hence .C /q�1 holds by the induction hypothesis. There must
be pairwise disjoint connected genus zero surfaces z�1; : : : ; z�p contained in y†� \
U \M with @z�j n @M � @A, .

Sp
iD1
z�i /\ .A n @A/ D y†� \ .A n @A/\M , and

(7.4)
pX
iD1

H2.z�i / �

q�1X
jD1

H2.Fj /CE.y†�/:

Furthermore, for any ˛ > 0,

(7.5) H2
� p[
iD1

.z‰1.z�i / n @z�i / \M n .A n @A/
�
<
˛

2

for some isotopy f z‰sgs2Œ0;1� 2 Isout.U / that fixes a neighborhood of .y†� \M/ nSp
iD1.
z�i n@z�i /. Reversing the isotopy ' used in (7.4) and (7.5), there are pairwise

disjoint connected genus zero surfaces�1; : : : ; �p � †�\M D ..†\M/nD/[

Fq with .
Sp
iD1�i / \ .A n @A/ D †� \ .A n @A/ \M , @�i n @M D @z�i n @M ,

and

(7.6)
pX
iD1

H2.�i / �

q�1X
jD1

H2.Fj /CE.†/CH2.Fq/ �H2.D/:

Furthermore,

(7.7) H2
� p[
iD1

.‰1.�i / n @�i / \M n .A n @A/
�
<
3˛

4

for some isotopy f‰sgs2Œ0;1� 2 Isout.U / that fixes a neighborhood of .†� \M/ n

.
Sp
iD1.�i n @�i / [ Fq;�/.
Recall that K is the unique compact set in U \M bounded by D [ Fq , as in

Lemma 7.11, hence there exists a continuous isotopy fˇsg 2 Isout.U / supported
on a neighborhood of K fixing �q D @D n @M and

(7.8) H2..ˇ1.D/�Fq/ \M/ <
˛

8
:

Moreover, we know that .† n D/ \ K D ¿ because †0 D ¿. Consider the
following two cases: (i) Fq �

Sp
iD1�i and (ii) Fq 6�

Sp
iD1�i .

In case (i), Fq �
Sp
iD1�i , by taking Dj0 D .�j0 n Fq/ [D for the unique j0

such that Fq � �j0 , we can select Dj D �j for all j ¤ j0. Also, we define a
continuous outward isotopy y' D fy'sg by y' D ‰ � ˇ; by smoothing y' we obtain
an outward isotopy ' satisfying the required conditions. Here ‰ � ˇ is defined by
‰ � ˇs.x/ D ˇ2s.x/ if 0 � s � 1

2
and ‰ � ˇs.x/ D ‰2s�1.ˇ1.x// if 1

2
< s � 1.

In case (ii), if Fq 6�
Sp
iD1�i , we define the set of pairwise disjoint con-

nected genus zero surfaces D1; : : : ;DpC1 by setting Dj D �j , j D 1; : : : ; p,
and DpC1 D D. In this case, we define a continuous isotopy y' by setting y' D
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y̌ � .‰ �ˇ/, where y̌ D f y̌sg is a smooth outward isotopy such that y̌s.x/ D x for
all x 2 .†\M/nD and s 2 Œ0; 1�, and such that y̌1.Fq/\M is a genus zero surface
yD � A\M with @ yDn@M D @Dn@M , yD\@A D @D\@A, and yD\‰s.†�/ D �q

for all s 2 Œ0; 1�. Such a y̌ exists once we show the claim that in case (ii), there is a
neighborhood W of �q D @D n @M such that W \D � A. Otherwise, we would
have W with �q � W and W \ .† n D/ \M � A n @A, and this would imply
that Fq �

Sp
iD1�i since .

Sp
iD1�i / \ .A n @A/ D †� \ .A n @A/ \M (see the

statement above (7.6)), thus contradicting we are in case (ii). By smoothing y' we
then again obtain the required outward isotopy '.

In each of the above cases, we have, by (7.6), that
pX
iD1

H2.�i / �

q�1X
jD1

H2.Fj /CE.†/CH2.Fq/ �H2.D/;

and hence
pX
iD1

H2.Di / �

q�1X
jD1

H2.Fj /CE.†/CH2.Fq/ �H2.D/CH2.D/

D

qX
jD1

H2.Fj /CE.†/:

This proves that statement .C /q and the proof is finished by induction.
�

We will need a replacement lemma about finite collections of genus zero sur-
faces with disjoint boundaries (cf. lemma 2 in [24]).

LEMMA 7.12. Let A � zM be a closed subset that is diffeomorphic to the unit
3-ball such that A\ @M is diffeomorphic to the closed unit disk. SupposeD1; : : : ;
DR are connected genus zero surfaces in A \M with Di n @Di � A n @A and
@Di � @A\M . Also, assume that .@Di n @M/\ .@Dj n @M/ D ¿ and that either
Di \Dj D ¿ or Di intersects Dj transversally for all i ¤ j .

Then there exists pairwise disjoint connected genus zero surfaces zD1; : : : ; zDR
inA\M with zDi n@ zDi � An@A, @ zDi \@A D @Di \@A, and H2. zDi / � H2.Di /

for i D 1; : : : ; R.

PROOF. Assume that R � 2 and that D1; : : : ;DR�1 are already pairwise dis-
joint. If we can prove the required result in this case, then the general case follows
by induction on R.

Let �1; : : : ; �q be pairwise disjoint Jordan curves (either closed or have bound-
aries on @M ), not necessarily connected, such that

(7.9) DR \
�R�1[
iD1

Di

�
D

q[
jD1

�j I
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also, for each j D 1; : : : ; R, �j divides each Di that contains �j into two genus
zero surfaces (maybe disconnected) Di n �j D D0i [D

00
i with @D0i n @M D �j D

@D00i n @M (since @Di \M are pairwise disjoint by assumption, either D0i or D00i
is disjoint from @Di n @M ). As an inductive hypothesis, assume the lemma is
true whenever (7.9) holds with q replaced by q � 1 on the right-hand side (with
D1; : : : ;DR�1 still being assumed pairwise disjoint).

For each j D 1; : : : ; q, let Ej be the part ofDR n�j that is disjoint from @DR n

@M . Hence @Ej n @M D �j . Let Fj be the corresponding part in
SR�1
iD1 Di n �j

that is disjoint from
Sq�1
iD1 @Di n @M . Hence @Fj n @M D �j . Let K �

SR
iD1Di

be a genus zero surface with @K n @M D �j0 for some j0 such that

H2.K/ � min
jD1;:::;q

fH2.Ej /;H2.Fj /g:

Let J ¤ K be the other genus zero surface in
SR
iD1Di such that @J n @M D

@K n @M D �j0 . Evidently we must have

(7.10) .K n @K/ \
�[
i¤i0

Di

�
D ¿;

where i0 is such that K � Di0 . Let i1 ¤ i0 be such that J � Di1 (note that
then one of i0; i1 is equal to R), and define yDj D Dj if j ¤ j1 and yDi1 D
.Di1 nJ /[K. By (7.10) we have that each yDj is an embedded genus zero surface,
and clearly @ yDj n@M D @Dj n@M , H2. yDj / � H2.Dj /, yD1; : : : ; yDR are pairwise
disjoint, and

(7.11) yDR \
�R�1[
iD1

yDi

�
D K [

� [
j¤j0

�j

�
:

By smoothing yDi1 near �j0 and making a slight perturbation near K, we then
obtain genus zero surfaces yD�1 ; : : : ; yD

�
R with @ yD�j n @M D @Dj n @M , H2. yD�j / �

H2.Dj /, yD�1 ; : : : ; yD
�
R�1 pairwise disjoint, and (using (7.11)),

yD�R \
�R�1[
jD1

yD�j

�
D

[
j¤j0

�j :

Hence, we can apply the inductive hypothesis to the collection f yD�j g, thus obtain-

ing the required collection zD1; : : : ; zDR. �

7.2 Minimizing Sequence of Genus Zero Surfaces
In this section, we recall a result by J. Jost [19] on the regularity for minimizers

of the minimization problem for genus zero surfaces with partially free boundary.
Let A � zM be an admissible open set. Let � � @A \ M be an embedded

smooth curve in M that either meets @M at the two endpoints transversally or is
disjoint from @M . Let M D M.0; �/ be the set of all genus zero surfaces D
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contained in M with � as boundary modulo @M , i.e., @D n @M D � , and that
meets @M transversally. We say that Dk is a minimizing sequence for M if

H2.Dk/ � inf
D2M

H2.D/C �k

for some positive real numbers �k ! 0 as k !1.

THEOREM 7.13 ([19]). Using the notation above, let Dk 2 M be a minimizing
sequence for M, and suppose Dk converges to V in the sense of varifolds in M .
Then for each point x0 2 supp kV k\@M , there are n 2 N, � > 0 (both depending
on x0) and an embedded minimal surface � in M meeting @M orthogonally with

V xB�.x0/D nv.�/

where v.�/ is the varifold represented by � with multiplicity 1.

7.3 Convergence of the Minimizing Sequence
In this section, we prove the main regularity result (Theorem 7.3).

PROOF OF THEOREM 7.3. Let f†kg be a minimizing sequence for the mini-
mization problem .†; Isout.U // with †k \M converging weakly to a varifold V
in M and †k intersects @M transversally for each k. Using the same argument as
in [24], we can assume that .†k/0 D ¿ for all k (see the paragraph above Theo-
rem 7.10 for the definition of .†k/0) and †k is strongly .
; U /-irreducible for all
sufficiently large k for some fixed 0 < 
 < ı2=9. Furthermore, we have

(7.12) H2.†k \M/ � inf
†2JU .†k/

H2.† \M/C �k

where �k ! 0 as k !1.
As noted before, interior regularity and regularity at a fixed boundary have been

discussed in [8, 24], so we only have to prove regularity at the free boundary.
Let x0 2 supp.kV k/ \ U \ @M and �0 be the outward unit normal at x0 2

@M . Define x1 � expx0.��0/ to be a point outside M that is very close to x0
(by choosing � very small). Let �0 > 0 be chosen small so that all the geodesic
balls B�.x1/ in zM are admissible open sets in the sense of Definition 7.1 for all
0 < � � �0. Note that we have to move the center of the balls from x0 to x1 in
order for .v/ of Definition 7.1 to hold.

First of all, we want to show that V is freely stationary in U . Let X 2 �tan be
supported in U , and f'sgs2.��;�/ be the isotopy generated by X . By (7.12),

(7.13) H2.†k \M/ � H2.'s.†k/ \M/C �k

for all k. Note that 's.†k/ \M D 's.†k \M/ since f'sg 2 Istan.U /; taking
k !1 in (7.13), we get

(7.14) kV k.M/ � k.'s/]V k.M/

for all s 2 .��; �/. This shows that V is stable with respect to Istan, so V is freely
stationary. Therefore, the monotonicity formula in [14] can be applied to V .
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By the coarea formula, we haveZ �

���

H1.†k \ @Bs.x1/ \M/ds � H2.†k \ .B�.x1/ n B��� .x1// \M/

for almost every � 2 .0; �0/ and every � 2 .0; �/, where Bs.x1/ is the closed
geodesic ball in zM of radius s centered at x1. Taking � D �=2, the monotonicity
formula in [14] givesZ �

�=2

H1.†k \ @Bs.x1/ \M/ds � c�2

for all sufficiently large k, where c depends only onM and zM and any upper bound
for ��20 .kV k.B�0.x1//CkV k.

zB�0.x1/// (recall that zB is the reflection ofB across
@M ; see [14] for the definition). Hence we can find a sequence f�kg � .3�=4; �/
such that †k intersects @B�k .x1/ transversally and such that

(7.15) H1.†k \ @B�k .x1/ \M/ � c� � c��0

for all sufficiently large k provided � � ��0, where for the moment � 2 .0; 1/ is
arbitrary. If � is sufficiently small, we see from that Theorem 7.10 is applicable.
Hence, there are connected genus zero surfaces D.1/

k
; : : : ;D

.qk/

k
� †k \M and

for any ˛ > 0, isotopies f'.k/t gt2Œ0;1� 2 Isout.B�0.x1// such that

@D
.j /

k
n @M � @B�k .x1/;

†k \ B�k .x1/ \M D
� qk[
jD1

D
.j /

k

�
\ B�k .x1/;

(7.16)

H2
� qk[
jD1

.'
.k/
1 .D

.j /

k
/ n @D

.j /

k
/ \M n .B�k .x1/ n @B�k .x1//

�
< ˛;(7.17)

and
qkX
jD1

H2.D
.j /

k
/ � c�2 � c�2�20;

where c is independent of k, �, and �. Since H2.D
.j /

k
/ � c�2�20, we know that for

� sufficiently small, by the modified replacement lemma with free boundary (see
lemma 4.4 in [19]), there are connected genus zero surfaces zD.j /

k
contained in M

with

(7.18) @ zD
.j /

k
n @M D @D

.j /

k
n @M; zD

.j /

k
n @ zD

.j /

k
� B�k .x1/

and

(7.19) H2. zD
.j /

k
/ � H2.D

.j /

k
/:

Combining (7.12) and (7.19) and using Lemma 7.12, (7.16), (7.17), and (7.18),
D
.j /

k
is a minimizing sequence among all genus zero surfaces with fixed boundary



318 M. LI

@D
.j /

k
with any number of free boundaries on @M . By Theorem 7.13, we know

that for each x0 2 supp.V / \ @M , there exist n 2 N and � > 0 and an embedded
minimal surface † meeting @M orthongonally with V D n† on B�.x0/. This
finishes the proof of Theorem 7.3. �

8 Regularity of Outer Almost Minimizing Varifolds
In this section, we define the notion of good replacement property for freely

stationary varifolds and prove that if there exists sufficiently many replacements,
then the varifold must be a smooth minimal surface with free boundary. In the
second half, we will describe how to construct these replacements for outer almost
minimizing varifolds.

DEFINITION 8.1. Let V 2 V.M/ be a freely stationary varifold and U � zM be
an open subset. We say that V 0 2 V.M/ is a replacement for V in U if and only if
the following hold:

(1) V 0 is freely stationary.
(2) V 0 D V on G.M n U/ and kV 0k.M/ D kV k.M/.
(3) V 0x.U\M/ is (an integer multiple of) a smooth, stable, properly embedded

(not necessarily connected) minimal surface † � M meeting @M orthog-
onally. Here “† is stable” means that the second variation is nonnegative
with respect to isotopies f'tgt2.��;�/ supported in U and 't .M/ DM for
all t .

DEFINITION 8.2. Let V 2 V.M/ be freely stationary and U � zM be an open
subset. We say that V has the good replacement property in U if and only if all the
following hold:

(a) There is a positive function r1 W U ! R such that for every annulus
An1 2 Ar1.x/.x/, there is a replacement V 0 for V in An1 such that (b)
holds.

(b) There is another positive function r2 W U ! R such that
(i) V 0 has a replacement V 00 in any An2 2 Ar1.x/.x/ for the same x and
r1 as in (a), and V 00 satisfies (c) below.

(ii) V 0 has a replacement in any An 2 Ar2.y/.y/ for any y 2 U .
(c) There is yet another positive function r3 W U ! R such that V 00 has a

replacement in any An 2 Ar3.´/.´/ for any ´ 2 U .

The key result in this section is the following regularity theorem.

THEOREM 8.3. If V has the good replacement property in an open set U � zM ,
then V is a smooth embedded minimal surface in U \ int.M/ with smooth free
boundary on U \ @M .

The proof of interior regularity can be found in [5]. Therefore, we will only
prove regularity at the free boundary. To prove Theorem 8.3, we first state a gener-
alization of two lemmas from [5] adapted to the free boundary setting.
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LEMMA 8.4. Let U be an open set of zM and x 2 @M \U . Then there exists some
R > 0 such that BR.x/ \ @U D ¿ and there does not exist any W 2 V.M/ with
support contained in BR.x/ and freely stationary in U .

PROOF. We prove the lemma in the case U D B1.0/ � R3 and M \ U D
B1.0/ \ f´ � 0g. The proof for the general case is similar. Fix x 2 @M \ U ,
and let R > 0 be small enough (smaller than the convexity radius of x in the
general case) such that BR.x/ b B1.0/. If the lemma is false, then there exists
a freely stationary varifold W in U \ M that is supported in BR.x/. Choose
r > 0 to be the smallest radius such that Br.x/ contains the support of W ; then
the support of W either touches @Br.x/ \M at a point y in the interior of M or
on the boundary @M . Either case cannot happen by the maximum principle (see
lemma B.1 of [5] or theorem 1 of [40]). Note that in the general case, we have to
perturb by a projection (see [14]) the variation field to make it tangent to @M , but
the perturbation would be small if we choose R > 0 small enough, so we would
still arrive at a contradiction. �

Given a varifold V and a point y 2 zM , we let T .y; V / be the set of varifold
tangents of V at y (see section 42 of [36]).

LEMMA 8.5. Let x 2 zM and V 2 V.M/ be a freely stationary integer rectifiable
varifold. Assume T is the subset of supp.kV k/ defined by

T D fy 2 supp.kV k/ W T .y; V / consists of a plane transversal to @Bd.x;y/.x/g:

If � is less than the injectivity radius inj. zM/ of zM , then T is dense in supp.kV k/\
B�.x/ n @M .

PROOF. The proof is similar to the proof of lemma B.2 in [5]. �

The next proposition tells us what we can say about the freely stationary varifold
if there exists one replacement.

PROPOSITION 8.6. Let U � zM be open and V 2 V.M/ be a freely stationary
varifold in U . If there exists a positive function r W U ! R such that V has a
replacement in any annulus An 2 Ar.x/.x/, then V is integer rectifiable in U \M .
Moreover, if x 2 supp.kV k/ \ .int.M/ \ U/, then �.x; V / � 1 and any tangent
cone to V at x is an integer multiple of a plane; if x 2 supp.V /\ .@M \U/, then
�.x; V / � 1

2
and any tangent cone to V at x is an integer multiple of a half-plane

orthogonal to Tx@M .

PROOF. Fix an x 2 supp.kV k/ \ .@M \ U/. Since V is freely stationary,
the monotonicity formula (3.2) from [14] gives R > 0 and a constant C > 0

(depending only on M and zM ) such that for all y in some neighborhood of @M
in M and 0 < � < � < R,

kV k.B� .y//

�2
� C
kV k.B�.y//

�2
:
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We can assume that R is small enough so that Lemma 8.4 is satisfied. Choose
� < r.x/=2 so that 4� < R is smaller than the convexity radius of zM . Since
2� < r.x/, there is a replacement V 0 2 V.M/ for V in the annulus An.x; �; 2�/.
First of all, V 0 ¤ 0 on An.x; �; 2�/. Otherwise, since V D V 0 in B�.x/, we have
x 2 supp.kV 0k/ and there would be a � � � such that V 0 touches @B� .x/ from
the interior, i.e., � D maxy2supp.kV 0k/ d.y; x/. This would contradict Lemma 8.4.
Therefore V 0 is a nonempty smooth surface in An.x; �; 2�/ that meets @M orthog-
onally, and so there is some y 2An.x; �; 2�/ n @M with �.V 0; y/ � 1. By the
monotonicity formula and since y … @M ,

kV k.B4�.x//

16�2
D
kV 0k.B4�.x//

16�2
�
kV 0k.B2�.y//

16�2
�

�

4C
:

For x 2 supp.kV k/\ int.M/\U , the usual monotonicity formula for a stationary
varifold gives a similar lower bound. Hence, �.x; V / is bounded uniformly from
below on supp.kV k/. Applying the rectifiability theorem, we conclude that V is
rectifiable.

The interior case was handled in [5], and we know that V is integer recti-
fiable. So it remains to prove the free boundary case in the proposition. Fix
x 2 supp.kV k/ \ .@M \ U/ and a sequence �n # 0 such that V x�n converges
weakly to a tangent cone C 2 T V.x; V / that is stationary with respect to all vari-
ations tangential to Tx@M . By a change of coordinate, we can assume that Tx@M
has an inward-pointing normal .0; 0; 1/. We will show that C is an integer multiple
of a half-plane H . Since C is freely stationary, H must be orthogonal to Tx@M
and hence contain .0; 0; 1/.

First, we place V by V 0n in the annulus An.x; �n=4; 3�n=4/ and set W 0n D
.T x�n/]V

0
n. After possibly passing to a subsequence, we can assume that W 0n ! C 0

weakly, where C 0 is a stationary varifold with respect to tangential variations. By
the definition of replacements, we have

C 0 D C in B1=4 [ An.0; 3
4
; 1/;

and

(8.1) kC 0k.B�/ D kCk.B�/ for � 2 .0; 1
4
/ [ .3

4
; 1/;

where Bs is the ball with radius s in R3 centered at the origin. Since C is a cone,
using (8.1), we have

kC 0k.B� /
�2

D
kC 0k.B�/

�2
for all �; � 2 .0; 1

4
/ [ .3

4
; 1/:

Hence the stationarity of C 0 and the monotonicity formula imply that C 0 is also
a cone. By Lemma 3.5, W 0n converges to a stable, properly embedded minimal
surface in An.x; 1=4; 3=4/ with respect to variation fields in �tan. This means that
C 0xAn.x; 1=4; 3=4/ is an embedded minimal cone in the classical sense and hence
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is supported on a half-disk containing the origin. The minimal cone is not the xy-
plane since eachW 0n meets @M orthogonally. This forces C 0 and C to coincide and
be an integer multiple of the same half-plane perpendicular to Tx@M . �

We now give the proof of the main result (Theorem 8.3) in this section.

PROOF OF THEOREM 8.3. Again, the interior regularity is covered in section 6
of [5], so we only prove the free boundary regularity. Fix x 2 supp.kV k/\@M\U .
Choose � small such that � < r.x/=2 and 2� is less thanR given in Lemma 8.4 and
the convexity radius of zM , by the good replacement property (a) in Definition 8.2,
we can find a replacement V 0 for V in the annulus An.x; �; 2�/. Let †0 be the
stable minimal surface given by V 0 in An.x; �; 2�/. For any t 2 .�; 2�/ and s 2
.0; �/; by the good replacement property (b)(i) in Definition 8.2, we can find a
replacement V 00 of V 0 in An.x; s; t/. Let †00 be the stable minimal surface given
by V 00 in An.x; s; t/.

First, we choose some t 2 .�; 2�/ such that †0 intersects @Bt .x/ transversally.
Such a t exists because †0 is a smooth surface in the annulus An.x; �; 2�/. Next,
we show that †0\An.x; t; 2�/ can be glued to †00 �An.x; s; t/ smoothly. It has
already been shown that they glue together smoothly in the interior in [5], so it
suffices to show that they also glue together smoothly along the free boundary.

Fix a point y 2 †0 \ @Bt .x/ \ @M and a sufficiently small radius r so that
†0 \ Br.y/ is a half-disk orthogonal to @M and 
 D †0 \ @Bt .x/ \ Br.y/ is
a smooth arc perpendicular to @M . As in [5], we can assume, without loss of
generality, that Br.y/ is the unit ball B in R3 centered at origin, @M \ Br.y/ D
f´2 D 0g \B, M \Br.y/ D f´2 � 0g \B. Moreover, @Bt .x/\Br.y/ D f´1 D
0g \ B. Suppose †0 \ Br.y/ is the graph of a smooth function g.´1; ´2/ defined
on f´2 � 0; ´3 D 0g \ B. Hence, 
 D f.0; ´2; g.0; ´2/ W ´2 � 0g.

The replacement V 00 consists of†00[.†0nBt .x// inBr.y/. By Proposition 8.6,
using the fact that V 00 satisfies (c) in Definition 8.2, T .y; V 00/ consists of a family
of (integer multiples) of half-planes orthogonal to f´1 D 0g \ B (in other words,
they contain the vector .0; 1; 0/). Since †0 is regular and transversal to f´1 D 0g,
each half-plane P 2 T .y; V 00/ coincides with the half-plane Ty†0 in f´1 < 0g.
Therefore, T .y; V 00/ D fTy†0g. Now, following the argument in [5], we obtain a
function g00.´1; ´2/ 2 C 1.f´1 � 0; ´2 � 0g/ such that

†00 \ Br.y/ D f.´1; ´2; g
00.´1; ´2// W ´1 > 0; ´2 � 0g;

g00.0; ´2/ D g
0.0; ´2/ and rg00.0; ´2/ D rg0.0; ´2/ for all ´2 � 0:

Since †0 and †00 meet @M orthogonally, we have the free boundary condition
rg0.´1; 0/ D .0; 0/ for all ´1 � 0 and rg00.´1; 0/ D .0; 0/ for all ´1 > 0. By
the reflection principle, one obtains a continuous function G defined on the unit
disk D D f´3 D 0g \ B such that G is smooth and satisfies the minimal surface
equation on the punctured disk D n 0. Hence by standard interior regularity for
second-order uniformly elliptic PDEs, G is smooth across the origin.
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By the maximum principle Lemma 8.4, we have shown that for any s < �, †0

can be extended to a surface †s in An.x; s; 2�/ such that if s1 < s2 < �, then
†s1 D †s2 in An.x; s2; 2�/. Thus, † D

S
0<s<�†s is a stable minimal surface

with free boundary on @M and † n† � @B2�.x/ [ @M [ fxg.
Next, we show that V coincides with † in B�.x/ n fxg. Recall that V D V 0 in

B�.x/. Fix any y 2 supp.kV k/\B�.x/ n fxg and set s D d.x; y/. Since † meets
@M orthogonally, H2.† \ @M/ D 0, so we can assume y 2 int.M/ and T .y; V /
consists of a multiple of a plane � transversal to @Bs.x/ (by Lemma 8.5), then we
know that y 2 † as in [5]. Therefore, (2) in the definition of replacement implies
that V D † on B�.x/.

It remains to show that x is a removable singularity for †. By Proposition 8.6,
every C 2 T .x; V / is a multiple of a half-plane orthogonal to Tx@M . Following
[5], for � sufficiently small, there exists natural numbers N.�/ andmi .�/ such that

† \ An.x; �=2; �/ D
N.�/[
iD1

mi .�/†
i
�

where each †i� is a Lipschitz graph over a planar half-annulus, with the Lipschitz
constants uniformly bounded independently of �. Hence we get N minimal punc-
tured half-disks †i with

† \ B�.x/ n fxg D

N[
iD1

mi†
i :

By Allard regularity for stationary varifolds with free boundary [14], we see that x
is a removable singularity for each †i . Finally, by the Hopf boundary lemma for
uniformly elliptic second order PDE, N must be 1. This completes the proof of
Theorem 8.3. �

To finish the proof of Proposition 4.11, it remains to construct replacements for
limits of outer almost minimizing min-max sequences. Let V be as in Proposi-
tion 4.10 and fix an annulus An 2 Ar.x/.x/. Set

Isj .; An/ D

�
f'sg 2 Isout.An/ W H2.'s.†

j / \M/ �

H2.†j \M/C
1

8j
8s 2 Œ0; 1�

�
:

LEMMA 8.7. For each j , suppose we have a minimizing sequence f†j;kgk2N for
the problem .†j ; Isj .An// that converges weakly to a varifold V j .

Then Vj is a stable minimal surface in An with free boundary on @M . Moreover,
any V � that is the limit of a subsequence of fV j g is a replacement for V (in the
sense of Definition 8.1).

PROOF. The proof of the second assertion is exactly like that in proposition 7.5
in [5], so we only prove the first assertion here. Without loss of generality, we
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assume that j D 1, and we write V 0, †k , and † in place of V j , †j;k , and †j ,
respectively. Clearly V 0 is stationary and stable in An by its minimizing property.
Thus, we only need to prove regularity. The proof follows exactly as in [5] except
that we are using Lemma 3.5, Theorem 7.3, and the following result (see lemma 7.6
in [5]), which can be proved by a rescaling argument as in [5]:

Fact: Let x 2 An, and assume that f†kg is minimizing for the problem .†;

Is1.An//. Then, there exists � > 0 such that for k sufficiently large, the following
holds:

(Cl) For any f'sg 2 Isout.B�.x// with H2.'1.†
k/ \ M/ � H2.†k \ M/,

there exists another isotopy f�sg 2 Isout.B�.x// such that '1 D �1 and

H2.�s.†
k/ \M/ � H2.†k \M/C

1

8
for all s 2 Œ0; 1�:

Moreover, � can be chosen so that (Cl) holds for any sequence fz†kg that is mini-
mizing for the problem .†; Is1.An// and with †j D z†j on zM n B�.x/. �

We end this section with a proof of Proposition 4.11.

PROOF OF PROPOSITION 4.11. We will apply Theorem 8.3. From Lemma 8.7
above, we know that in every annulus An 2 Ar.x/.x/ there is a replacement V �

for V . We need to show that V satisfies (a), (b), and (c) in Definition 8.2 with
r D r1. �

9 Genus Bound
In this section, we observe that a result in De Lellis–Pellandini [8] which con-

trols the topological type of the minimal surface constructed by min-max argu-
ments continue to hold in the case of free boundary. (We will assume that all
surfaces in a sweepout is orientable as in De Lellis–Pellandini [8].) The proof
is exactly the same as in De Lellis–Pellandini [8]. One only has to note that
a compact smooth surface � has genus g if and only if the image of the map
r W H1.�IZ/ ! H1.�; @�IZ/ is Z2g when � is orientable, or the image is
Zg�1 �Z2 if � is nonorientable. The lifting lemma (proposition 2.1 in De Lellis–
Pellandini [8]) is still valid and hence the proof goes through.

THEOREM 9.1. Let †j D †
j
tj
\M be a sequence that is almost minimizing in

sufficiently small annuli that intersect @M transversally for all j , and let V be the
varifold limit of †j as j ! 1. Write V D

PN
iD1 ni�

i where � i are connected
components of †, counted without multiplicity, and ni are positive. Let O be the
set of those � i that are orientable and N be those that are nonorientable. Then

(9.1)
X
�i2O

g.� i /C
1

2

X
�i2N

.g.� i / � 1/ � g0 D lim inf
j"1

lim inf
�!tj

g.†j� /;

where g.�/ denotes the genus of a smooth compact surface � (possibly with bound-
ary).
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On the other hand, we note that it is impossible to get a similar bound on the
connectivity (i.e., number of free boundary components) of the minimal surface.
Corollary 1.3 is then a direct consequence of Theorem 1.1 and Theorem 9.1. Note
that there is no closed minimal surface in R3.

COROLLARY 9.2. Any smooth compact domain in R3 contains a nontrivial prop-
erly embedded minimal surface† with nonempty boundary that is a free boundary
solution and such that

(i) either † is an orientable genus zero surface, i.e., a disk with holes, or
(ii) † is a nonorientable genus one surface, i.e., a Möbius band with holes.

This follows from the observation that any such domain can be swept out by
surfaces with genus zero. In fact, we can generalize the result to an arbitrary 3-
manifold. Recall that for any orientable closed 3-manifoldM , the Heegaard genus
of M is the smallest integer g such that M D †1 [ †2, where †1 \ †2 is an
orientable surface of genus g and each †i , i D 1; 2, is a handlebody of genus g.
For manifolds with boundary, we make the following definition:

DEFINITION 9.3. Let M be a compact 3-manifold with boundary. We define the
filling genus of M to be the smallest integer g such that there exists a smooth
embedding of M into a closed orientable 3-manifold zM with Heegaard genus g.

Since any closed 3-manifold with Heegaard genus g has a nontrivial sweepout
by surfaces with genus at most g. The min-max construction on the saturation of
such a sweepout together with the genus bound (Theorem 9.1) above give Theo-
rem 1.2 as a corollary.

COROLLARY 9.4 (Theorem 1.2). Any smooth compact orientable 3-manifold M
with boundary @M with filling genus g contains a nonempty, properly embedded
smooth minimal surface † with free boundary, and the genus of † is at most g if it
is orientable and at most 2g C 1 if it is not orientable.

Appendix A Proof of Lemma 3.1
We now present a proof of Lemma 3.1.

PROOF. Since Vi is a weakly convergent sequence, kVik. zM/ is bounded. Hence
kVixMk. zM/ is also bounded. After passing to a subsequence (we use the same in-
dex i for our convenience), VixM converges weakly to some W 2 V. zM/. Since
V.M/ is closed in V. zM/, we have W 2 V.M/. We will show that W D V xM .
This clearly proves our lemma, since any subsequence of VixM has another subse-
quence converging weakly to V xM .

First, we claim that W � V xM , i.e., W.f / � V xM .f / for any nonnegative
continuous function f on G. zM/. Since G.M/ is a closed subset of G. zM/, there
exists a decreasing sequence of continuous functions �k on G. zM/ with 0 � �k
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� 1, �k D 1 on G.M/, and �k converges pointwise to the characteristic function
�G.M/ of G.M/. As Vi converges weakly to V in zM , we have for each k,

(A.1) lim
i!1

Z
G. zM/

�kf dVi D

Z
G. zM/

�kf dV:

Since �k and f are nonnegative, for each i and k,

(A.2)
Z

G. zM/

�kf dVixM�
Z

G. zM/

�kf dVi :

Holding k fixed and taking i !1 in (A.2), by (A.1), we haveZ
G. zM/

�kf dW �

Z
G. zM/

�kf dV:

Since W is supported in M and �k D 1 on M for each k, we get

W.f / D

Z
G.M/

f dW D

Z
G. zM/

�kf dW �

Z
G. zM/

�kf dV:

Now, since �kf converges pointwise to �G.M/f monotonically, by the monotone
convergence theorem

lim
k!1

Z
G. zM/

�kf dV D

Z
G. zM/

�Mf dV D

Z
G.M/

f dV D V xM .f /:

This proves our claim that W � V xM .
Now, we want to show that W D V xM . Since we already have the inequality

W � V xM , it suffices to show that kW k.M/ D kV xMk.M/. It follows from the
assumption that kVik.M/ converges to kV k.M/ as i !1 that

kW k.M/ D lim
i!1

kVixMk.M/ D lim
i!1

kVik.M/ D kV k.M/ D kV xMk.M/:

Therefore, the proof of Lemma 3.1 is complete. �

Appendix B The Perturbation Lemma
We prove the technical perturbation lemma (Lemma 4.9) in this appendix. First,

we prove a lemma which says that if we use a “small” isotopy to deform a surface,
its area would not increase by too much.

LEMMA B.1. Let V 2 V. zM/ be a varifold in zM . Suppose we have a smooth
vector field X 2 �out, and let f'sgs2Œ0;1� be the outward isotopy in Isout generated
by X . Then

k.'1/]V k.M/ � kV k.M/ ekXkC1 :
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Here kXkC1 denotes the C 1-norm of the vector field X as a smooth map X W
zM ! T zM .

PROOF. By the first variation formula of area in zM ,

jıV .X/j �

ˇ̌̌̌ Z
G. zM/

div� X.x/dV.x; �/
ˇ̌̌̌
� kV k. zM/kXkC1 :

Hence, if we let f .s/ D k.'s/]V k. zM/, then the inequality above is equivalent to

jf 0.s/j � f .s/kXkC1 :

Integrating s from 0 to 1, we get f .1/ � f .0/ ekXkC1 . In other words,

k.'1/]V k. zM/ � kV k. zM/ ekXkC1 :

Now, using this and the assumption that X is an outward vector field,

k.'1/]V k.M/ � k.'1/].V xM /k. zM/ � kV xMk. zM/ekXkC1

D kV k.M/ ekXkC1 ;

where the first inequality holds because k.'1/]V k.M/ D k.'1/].V xM /k.M/.
This proves Lemma B.1. �

We are now ready to prove the perturbation lemma.

LEMMA B.2. Given any sweepout f†tgt2Œ0;1� 2 ƒ and any � > 0, there exists a
continuous sweepout f†0tgt2Œ0;1� 2 ƒ such that

F.f†0tg/ � F.f†tg/C �:

PROOF. By 2.6.2(d) of Allard [1] and Lemma 3.1 in this paper, it suffices to
construct f†0tg such that

(B.1) H2.†0t \ @M/ D 0

for all t 2 Œ0; 1�. This would imply that f†0tg is a continuous sweepout. One might
hope to perturb†t using an outward isotopy so that it is transversal to @M for all t .
However, it is impossible, in general, to find a smooth family of outward isotopies
such that all the perturbed surfaces are transversal to @M . On the other hand, we
could find one so that all but finitely many †t are transversal to the boundary @M
after perturbation, and for those finitely many exceptions, there are only finitely
many points at which the perturbed †t meets the boundary @M nontransversally.
This would certainly imply (B.1).

For � > 0 sufficiently small (to be chosen later), the signed distance function
d D d. � ; @M/ is a smooth function on the open tubular neighborhood U� .@M/ D

fx 2 zM W jd.x; @M/j < �g of @M . (We take d to be nonnegative for points inM .)
Let � be the inward-pointing unit normal to @M with respect toM (this is globally
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defined on @M even when M is not orientable). For � > 0 small enough, we have
a diffeomorphism

g.x; s/ D expx.s�.x// W @M � .��; �/! U� .@M/:

We will need the following parametric Morse theorem: If ft W N ! R is a
one-parameter family of smooth functions on a compact (possibly with boundary)
manifold N with t 2 Œ0; 1�, and f0; f1 are Morse functions, then there exists a
smooth one-parameter family Ft W N ! R such that F0 D f0, F1 D f1, and F
is uniformly close to f in the C k-topology on functions N � Œ0; 1�! R. Further-
more, Ft is Morse at all but finitely many t ; at a non-Morse time, the function has
only one degenerate critical point, corresponding to the birth/death transition.

The relationship between Morse functions and transversality can be seen as fol-
lows. Let † be a closed surface in zM . Consider the function d restricted on
†\ U� .@M/. If d W †\ U� .@M/! R is a Morse function, then † intersects the
level sets fx 2 M W d D cg transversally except possibly at the critical points of
d , which comprise only a finite set. In particular, we have H2.† \ @M/ D 0. If
d is not a Morse function, we approximate it by a Morse function d� in the C k-
norm in †\U� .@M/. Without loss of generality, we can also assume that d� � d
everywhere.

Let � � 0 be a smooth extension of the function d� � d to U� .@M/ (by Whit-
ney’s extension theorem) in such a way that k�kCk is very small. Then, if we
consider the outward vector field

X.x/ D �.x/�.x/rd.x/

where 0 � � � 1 is a smooth cutoff function on zM such that � D 1 on U�=2.@M/,
� D 0 outside U� .@M/, and jr�j � 4=� . Let f'sgs2Œ0;1� be the outward isotopy
generated by X . Then it is clear that H2.'1.†/ \ @M/ D 0 according to the
discussion above.

The perturbation can be carried out for each †t in the sweepout. Hence we
want to choose �t � 0 on U� .@M/ that are small in the C k-norm such that, after
perturbation, †t intersects the boundary @M at a set of H2-measure zero. The
only complication is that we have to choose �t that depends smoothly on t . This is
where we need the parametric Morse theorem.

By Lemma B.1, for every C > 0 and � > 0, there exists ı D ı.C; �/ >

0 sufficiently small (for example, take ı < ln.1 C �=2C /) such that whenever
kXkC1 < ı,

(B.2) k.'1/]V k.M/ � kV k.M/C
�

2

for all V 2 V. zM/ with kV k.M/ � C .
Fix a sweepout f†tgt2Œ0;1� 2 ƒ and � > 0 as in the hypothesis, since f†tg is

a continuous family of varifolds in zM ; there exists a constant C > 0 such that
H2.†t \M/ � H2.†t / � C for all t 2 Œ0; 1�. For this � and C , choose ı > 0 so
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that (B.2) holds. Moreover, assume � > 0 is always sufficiently small so that d is
a smooth function on U� .@M/ and g is a diffeomorphism.

Now, we would like to apply the parametric Morse theorem to the family of
smooth functions dt W †t \ U � .@M/ ! R. However, there is a little technical
difficulty because†t\U � .@M/ are not all diffeomorphic to each other. Recall that
in the definition of a sweepout, we have two finite sets, T � Œ0; 1� and P � zM , at
which singularities occur. First of all, we argue that we can assumeP\U � .@M/ D

¿.
Suppose P \ @M ¤ ¿. Since P is just a finite set, there exists 0 < � < �=2

such that @M� \ P D ¿. Define an outward vector field X 2 C1out.
zM;T zM/ by

X.x/ D ���.x/rd.x/;

where 0 � � � 1 is a smooth cutoff function on zM such that � D 1 on U�.@M/,
� D 0 outside U� .@M/, and jr�j � 4=� . LetK > 0 be a constant (independent of
� ) so that jr2d j � K on U � .@M/. Hence, for � > 0 sufficiently small (depending
on � and K), we can make kXkC1 < ı. Let f'sgs2Œ0;1� be the isotopy generated
by X ; then by (B.2),

H2.'1.†t / \M/ � H2.†t \M/C
�

2
:

Moreover, '1.@M�/ D @M . Therefore, replacing f†tg by f'1.†t /g if necessary,
we can assume that P \ @M D ¿.

As P is a finite set, we can further assume that � is small enough so that P \
U � .@M/ D ¿. By the definition of a sweepout, there exists a partition 0 D t0 <

t1 < � � � < tk D 1 of the interval Œ0; 1� such that on each subinterval Œti�1; ti �,
i D 1; : : : ; k, there exists an open neighborhood Ui of @M contained in U� .@M/

such that †t \ Ui are all diffeomorphic for t 2 Œti�1; ti �.
Now, for any ı0 > 0 (to be specified later), since Morse functions are dense in the

C k-topology, for each i D 0; 1; : : : ; k, we can approximate the smooth function
dti W †ti \ Ui ! R by a Morse function ydti W †ti \ Ui ! R, with ydti � dti and
kdti �

ydtikC1 < ı
0. Let �ti � 0 be a smooth extension of ydti � dti to Ui such that

k�tikC1 � ı
0 for all i . Using the parametric Morse theorem, we can construct a

smooth family of smooth functions �t � 0 on Ui , t 2 Œti�1; ti �, such that dt C �t
is a Morse function on †t \ Ui except for finitely many t ’s where there is only
one degenerate critical point. We can also assume that �t is uniformly small in the
C 1-norm on U� .@M/.

Putting these intervals together, we have a piecewise smooth one-parameter fam-
ily of smooth functions �t , defined on U for some neighborhood U of @M , such
that dt C �t are Morse except at finitely many times. Since Morse functions form
an open set in the space of all smooth functions in the C1-topology and the family
is Morse at each ti , we can smooth out the family, keeping it Morse except finitely
many times away from the ti ’s.
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Assume � is chosen small enough such that U� .@M/ � U . In summary, we
have a smooth one-parameter family of smooth nonpositive functions f�tg on U
such that k�tkC1 < ı0. For each t 2 Œ0; 1�, let f't .s/gs2Œ0;1� be the outward
isotopy generated by the outward vector field Xt 2 C1out.

zM;T zM/ defined as

Xt .x/ D �t .x/�.x/rd.x/;

where 0 � � � 1 is a smooth cutoff function on zM so that � D 1 on U�=2.@M/,
� D 0 outside U� .@M/, and jr�j � 2=� . Let f't .s/gs2Œ0;1� be the isotopy in Isout

generated by Xt . Take †0t D 't .1/.†t /; then f†0tg 2 ƒ. We claim that f†0tg is
the competitor we want.

First of all, by choosing ı0 > 0 sufficiently small, we can make kXtkC1 < ı for
all t 2 Œ0; 1�. Hence, we have from (B.2) that

H2.†0t \M/ � H2.†t \M/C
�

2
:

Moreover, since d W †0t \ U� .@M/! R agrees with dt C �t for all t 2 Œ0; 1�, by
our construction, we have that †0t \ @M consists of at most finitely many points
for all t 2 Œ0; 1�. Therefore, we have

H2.†0t \ @M/ D 0:

This completes the proof of Lemma B.2. �
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