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Abstract. We construct a new family of high genus examples of free boundary minimal sur-

faces in the Euclidean unit 3-ball by desingularizing the intersection of a coaxial pair of a

critical catenoid and an equatorial disk. The surfaces are constructed by singular perturbation

methods and have three boundary components. They are the free boundary analogue of the

Costa-Hoffman-Meeks surfaces and the surfaces constructed by Kapouleas by desingularizing

coaxial catenoids and planes. It is plausible that the minimal surfaces we constructed here are

the same as the ones obtained recently by Ketover in [37] using min-max method.

1. Introduction

Minimal surfaces have been a central object of study in differential geometry. They are defined
as critical points to the area functional in a Riemannian manifold. These minimal surfaces are
interesting as they reveal important information about the geometry of the underlying spaces.
For example, this idea has led to much success in the study of spaces with positive scalar or
Ricci curvature (for instance, see [42] [50] [51]). On the other hand, the theory of minimal
surfaces is highly non-trivial even when the underlying space is homogeneous (e.g. Rn, Sn and
Hn). The solution to the classical Plateau problem guarantees the existence of (immersed)
minimal disks with any prescribed Jordan curve in R3 as its boundary. For a long time, the
only known embedded complete minimal surfaces of finite total curvature in R3 were the planes
and the catenoids. It was a groundbreaking discovery when Costa [5] found new examples using
Weierstrauss representation which were later proved to be embedded by Hoffman-Meeks [22].
More examples were then found [18] [19] [56] [21], and Hoffman-Meeks effectively recognized
them as desingularizations of a catenoid intersecting a plane through the waist [20]. Finally N.K.
[30] (see also [31] and [32] for a discussion of the approach and further developments), provided
a more general construction for complete embedded minimal surfaces of finite total curvature in
Euclidean 3-space by desingularizing intersecting coaxial catenoids and planes using the singular
perturbation method.

For the case of the round three-sphere S3(1), Lawson [38] constructed embedded closed mini-
mal surfaces of arbitrary genus which were the first examples besides the round equatorial sphere
and the Clifford torus. In retrospect the Lawson surfaces can be recognized as desingularizations
(carried out by non-perturbative methods) of intersecting equatorial spheres symmetrically ar-
ranged around a great circle of intersection. Karcher-Pinkall-Sterling [36] employed Lawson’s
method to construct finitely many closed embedded minimal surfaces which can be interpreted
as doublings of the equatorial S2 in S3(1). More recently further examples of embedded closed
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minimal surfaces in S3(1) have been obtained by Lawson’s method [4] and by singular pertur-
bation methods [35], [33], [55] and [34].

If the ambient space has a boundary it is natural to search for critical points among the
class of immersed surfaces whose boundary lies on the boundary of the ambient space. Such
critical points are called free boundary minimal surfaces and they meet the boundary of the
ambient space orthogonally along their boundary. The simplest example is the equatorial flat
disk D in the Euclidean three-ball B3 or more generally the Euclidean n-ball Bn. D is the unique
(immersed) free boundary minimal disk in B3 by a result of Nitsche [46], and by a surprising
recent result of Fraser-Schoen [10] the unique free boundary minimal disk in Bn for any n ≥ 3.
The next non-trivial example is the so-called critical catenoid K (see [9]), which is a catenoid
in R3 suitably rescaled so that it meets S2(1) orthogonally. As we will later check in this article
(see corollary 3.9) D and K are the only rotationally symmetric free boundary minimal surfaces
in B3. In some sense they are analogous to the equatorial sphere and the Clifford torus in S3(1).

The first study of free boundary minimal surfaces was done by R. Courant [6], and the exis-
tence and regularity theory was subsequently developed by Nitsche [45], Taylor [52], Hildebrant-
Nitsche [17], Grüter-Jost [16] and Jost [23]. A fundamental question is to classify the free bound-
ary minimal surfaces, or at least understand the existence and uniqueness questions, as in the
following:

Question: Given a smooth compact domain Ω in Rn, or more generally a compact Rie-
mannian manifold with boundary, what are the (immersed or embedded) free boundary minimal
surfaces (that is meeting ∂Ω orthogonally along their boundary) contained in Ω?

Some general existence results along this direction have been established in the past decade.
For immersed solutions, the most general existence result was obtained by A. Fraser [12] for
disk type solutions, and later by Chen-Fraser-Pang [3] for incompressible surfaces. For embedded
solutions in compact 3-manifolds, a general existence result using min-max constructions was
obtained by the M.L. [39]. The min-max theory for free boundary minimal hypersurfaces in
the Almgren-Pitts setting is recently developed by the M.L. with X. Zhou [40], completing
Almgren’s program in search for minimal hypersurfaces in Riemannian manifolds with possibly
non-empty boundary (without any convexity assumption!). Free boundary minimal surfaces are
important tools in studying Riemannian manifolds with boundary since their properties are
greatly affected by the ambient geometry. For example, Fraser [14] [13] used index estimates to
study the topology of Euclidean domains with k-convex boundary. Fraser-Li [8] proved a smooth
compactness result for embedded free boundary minimal surfaces when the ambient manifold
has nonnegative Ricci curvature and convex boundary.

In a recent breakthrough, Fraser-Schoen [9] discovered a deep connection between free bound-
ary minimal surfaces in the Euclidean unit ball Bn ⊂ Rn and extremal metrics on compact
surfaces with boundary associated with the Steklov eigenvalue problem. This has led to much
research activity on free boundary minimal surfaces in Bn (especially when n = 3). In a follow-
up article [11] Fraser-Schoen constructed new examples of embedded free boundary minimal
surfaces with genus zero and arbitrary number of boundary components. Recently, more exam-
ples were constructed by Ketover [37] using min-max method. The main result of this article is
Theorem 6.2 which clearly implies the following.

Theorem 1.1. For any g ∈ N sufficiently large, there exists an embedded, orientable, smooth,
compact surface Σg ⊂ B3 which is a free boundary minimal surface in B3 and satisfies:
(i). ∂Σg = Σg ∩ ∂B3 has three connected components.
(ii). Σg has genus g and is symmetric under a dihedral group with 4g + 4 elements .
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(iii). As g → ∞, the sequence {Σg} converges in the Hausdorff sense to D ∪ K. Moreover, the
convergence is smooth away from the circle of intersection D ∩K. Hence,

lim
g→∞

area(Σg) = area(K) + π ≈ 8.37898.

The methodology we follow originates with a gluing construction of R. Schoen for constant
scalar curvature metrics [49] and a gluing construction of N.K. for constant mean curvature
surfaces [26]. The methodology was systematized and refined further in order to carry out a
challenging gluing construction for Wente tori which provided the first genus two counterexam-
ples to a celebrated question of Hopf [28, 29]. (The genus one case had been resolved by Wente
[54] and any genus at least three by N.K. [27]).

More directly related to the construction in this article is the desingularization construction
in [30] of coaxial catenoids and planes. The construction in [30] is based on the methodology
developed in [28, 29] and utilizes the O(2) symmetry of the given configuration of catenoids and
planes. [30] effectively settles desingularization constructions by gluing in the presence of O(2)
symmetry in any setting, except of course for the idiosyncratic aspects related to each setting
(as in this article for example). Note that a desingularization construction for intersecting planes
parallel to a given line carried out indepedently by Traizet [53] is inadequate for our purposes,
because in his case the intersection curves are straight lines, and therefore the main difficulties
of our construction are not present.

Free boundary minimal surfaces in the unit ball appear to be much more rigid than complete
minimal surfaces in Euclidean space. For example in stark constrast to the Euclidean case (see
[30]), there is only one possible rotationally invariant configuration of free boundary minimal
surfaces, because as we have already mentioned the equatorial disk D and the critical catenoid
K are the only rotationally symmetric free boundary minimal surfaces in B3 (see 3.9 for the
proof). The K∪D configuration corresponds in [30] to the special case of a catenoid intersecting
a plane through its waist. The K ∪ D and the catenoid with plane through the waist config-
urations share extra symmetries (compared to the general case in [30]) which can be used to
substantially simplify the construction and proof (see 4.4). This is the case also for some recent
desingularization constructions of self-shrinkers of the Mean Curvature Flow [44] [24] which are
also based on [30].

The article is self-contained and we have carefully simpified the construction and proof in
[30] to take advantage of the extra symmetries available. For the interested reader we remark
also that the proof of the main linear estimate (proposition 5.26) is closer to the one in [33]
rather than the one in [30]. The approach in [30] is more robust because the comparison with
the model standard regions is only at the level of the lower spectrum of the linearized equations.
The approach in [33] is more streanlined and more demanding computationally because it is
based on a more detailed comparison with the model standard regions at the level of actual
solutions. Note also that in section 2 we discuss for future reference the boundary conditions in
more detail and generality than strictly needed in this article.

Finally we mention that in an article under preparation, we construct free boundary minimal
surfaces of arbitrary high genus with connected boundary, and also ones with two boundary
components, by desingularizing two disks intersecting orthogonally along a diameter of the unit
three-ball. The intersecting disks configuration is clearly not rotationally invariant, and the sym-
metry group is small and independent of the genus. These features make that construction much
harder, but we can overcome the difficulties by following the approach in [25] with appropriate
modifications (see also [31] and [32] for a detailed outline of the construction and proof of the
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theorem in [25]). That construction can be extended also to apply to the case of more than two
disks symmetrically arranged around a common diameter by using higher order Karcher-Scherk
towers as models.

Organization of the presentation. In section 2 we study properly immersed hypersurfaces
and their deformations in a Riemannian manifold with boundary. The boundary angle Θ is
defined and we establish a uniform estimate 2.30 on the change of Θ when one of the hypersur-
faces is perturbed to the twisted graph of a small function over it. We also prove a strengthened
version of the corresponding estimate on the mean curvature in 2.39. In section 3 we study in
detail the geometry of the initial configuration K ∪ D and its perturbations. We also check the
uniqueness of the critical catenoid K as the only non-flat rotationally symmetric free boundary
minimal surface in B3 in corollary 3.9. We finally establish the triviality of the rotationally sym-
metric kernels for the linearized equations on the standard pieces. In section 4 we first construct
and study the geometry of the desingularizing surfaces which will be used to replace a neigh-
borhood of the circle of intersection of K and D, and then the one parameter families of initial
surfaces Mθ,m (for each large m). In section 5 we study the linearized free boundary minimal
surface equation on our model surfaces and then apply this information to solve the linearized
equation on the initial surfaces with suitable decay estimates. Finally, in section 6, we estimate
the nonlinear error terms and prove our main theorem 1.1 by the standard Schauder fixed point
argument.

Notations and conventions. Throughout this article, R3 will denote the Euclidean 3-space
with Cartesian coordinates (x, y, z) with standard orientation and orthonormal basis {ex, ey, ez}.
We also have:

Notation 1.2. As in the introduction, we will use Bn to denote the closed unit ball in Rn whose
boundary is the unit sphere Sn−1. We will use Bn(r) ⊂ Rn to denote the Euclidean open n-ball
of radius r centered at the origin. We also define Rn± := {(x1, x2, ..., xn) ∈ Rn : ±xn ≥ 0},
Bn± := Bn ∩ Rn±, Sn−1

± := Sn−1 ∩ Rn±, and Bn
+(r) := Bn(r) ∩ Rn+. Note that Bn

+(r) as a manifold

with boundary has ∂Bn
+(r) = Bn−1(r) = Bn(r)∩ {xn = 0}. We may omit r when r = 1 and we

assume them all equipped with the Euclidean metric which we will denote by g0. (See Figure 1)

Figure 1. The open unit half ball Bn
+ with its boundary Bn−1

Any surface S ⊂ R3 will be equipped with the induced metric g (unless otherwise stated).
We use the word “surfaces” to denote surfaces with or without boundary. We will often identify
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S1 with the quotient group R/2πZ. We always take the mean curvature H of a surface in R3 to
be the sum of its principal curvatures (so that the unit round sphere has mean curvature 2).

Notation 1.3. If (M, g) is a Riemannian manifold (without boundary) and p ∈M we will denote

by expM,g
p the exponential map at p (defined on the largest possible subset of TpM) mapping

to M . We will denote by injp(M, g) the injectivity radius of (M, g) at p. In both cases we may
omit M or g if clear from the context.

Let Σ be a smooth n-dimensional manifold (with or without boundary), and (M, g) be a
Riemannian manifold without boundary. Consider an immersion X : Σ → M , we will use
X∗ and X∗ to denote respectively the pullback of functions or tensors and the pushforward of
vectors by the map X. For our purpose, we always assume that there exists a global unit normal
N : Σ→ TM .

Definition 1.4. Given an immersion X : Σ→M with unit normal N : Σ→ TM as above, and
a “small enough” function ϕ defined on a domain Ω ⊂ Σ. We define then the perturbation of X
by ϕ over Ω (or of Ω by ϕ when X is an inclusion map) to be the map Immer[X,ϕ; Ω] : Ω→M
given by

(1.5) Immer[X,ϕ; Ω](p) := expM,g
X(p)(ϕ(p)N(p)) ∀p ∈ Ω.

We will also call the image of Immer[X,ϕ; Ω] the graph of ϕ over X (or Ω) and we will denote
it by Graph[X,ϕ; Ω] ⊂M . Finally we may omit X when X : Σ→ N is the inclusion map of an
embedded Σ ⊂M .

Remark 1.6. By “small enough” in the previous definition we mean any condition which ensures

that expM,g
X(p)(ϕ(p)N(p)) is well defined, as for example when |ϕ(p)| < injX(p)(M, g) (recall 1.3)

for each p ∈ Ω. If X is an inclusion of an embedded hypersurface Σ ⊂ M , and ϕ is small—
depending on Σ this time—enough, then Immer[X,ϕ; Ω] is the inverse of the nearest point
projection to Ω restricted to Graph[X,ϕ; Ω] .

We will be using extensively cut-off functions. To simplify the notation we introduce the
following definition.

Definition 1.7. We fix a smooth function Ψ : R→ [0, 1] with the following properties:
(i). Ψ is weakly increasing.
(ii). Ψ ≡ 0 on (−∞,−1] and Ψ ≡ 1 on [1,∞).
(iii). Ψ− 1

2 is an odd function.

Given a, b ∈ R with a 6= b, we define the smooth function ψcut[a, b] : R→ [0, 1] by

(1.8) ψcut[a, b] := Ψ ◦ La,b,
where La,b : R → R is the unique linear function satisfying L(a) = −3 and L(b) = 3. Clearly,
the cutoff function ψcut[a, b] satisfies the following properties (see Figure 2):
(i). ψcut[a, b] is weakly monotone.
(ii). ψcut[a, b] = 0 on a neighborhood of a and ψcut[a, b] = 1 on a neighborhood of b.
(iii). ψcut[a, b] + ψcut[b, a] = 1 on R.

Definition 1.9. For each ε > 0, we define the symmetric cutoff function ψεcut : R→ R as

ψεcut := ψcut[ε, 0] · ψcut[−ε, 0].
5



Figure 2. A cutoff function ψcut[b, a] for the case a < b

Let s : Ω → R be a real-valued function defined on some domain Ω. We will denote for any
c ∈ R ∪ {±∞},

(1.10) Ωs≤c := {p ∈ Ω : s(p) ≤ c} and Ωs≥c := {p ∈ Ω : s(p) ≥ c}.

Suppose now we have two sections f0, f1 of some vector bundle over Ω. We define a new
section

(1.11) Ψ[a, b; s](f0, f1) := (ψcut[a, b] ◦ s) f1 + (ψcut[b, a] ◦ s) f0.

Note that Ψ[a, b; s](f0, f1) is a section of the same vector bundle, which is bilinear on the pair
(f0, f1) and transits from f0 on a neighborhood of Ωs≤a to f1 on a neighborhood of Ωs≥b when
a < b. If f0, f1, s are smooth, then Ψ[a, b; s](f0, f1) is also smooth.

When comparing equivalent norms, it is handy to have the following definition.

Definition 1.12. For real numbers (or metric tensors) a, b > 0 and a real number c > 1, we
write a ∼c b to mean that the inequalities a ≤ cb and b ≤ ca simultaneously hold.

In this article we will need the notion of weighted Hölder norms for functions on a domain Ω
of a Riemannian n-manifold (M, g) with possibly ∂Ω 6= ∅.

Definition 1.13 (Weighted Hölder norms). Assuming Ω is a domain (possibly with boundary)

inside a smooth Riemannian manifold (M, g), k ∈ N0, β ∈ [0, 1), u ∈ Ck,βloc (Ω) or more generally

u is a Ck,βloc tensor field (section of a vector bundle) on Ω, f : Ω → (0,∞) is a given function,
and that the injectivity radius of (M, g) is larger than 1/10 at each p ∈ Ω, we define

‖u : Ck,β(Ω, g, f)‖ := sup
p∈Ω

‖u : Ck,β(Ω ∩Bp, g)‖
f(p)

,

where Bp is a geodesic ball centered at p and of radius 1/100 in the metric g. For simplicity we
may omit either β or f when β = 0 or f ≡ 1 respectively. We will also omit the metric g if it
is clear from the context.
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From the definition, one can easily verify a multiplicative, a scaling, and a monotonicity
property as follows:

‖u1u2 : Ck,β(Ω, g, f1f2)‖ ≤ C(k) ‖u1 : Ck,β(Ω, g, f1)‖ ‖u2 : Ck,β(Ω, g, f2)‖,(1.14)

‖u : Ck,β(Ω, λ2g, f)‖ ≤ λ−(k+β)‖u : Ck,β(Ω, g, f)‖ (∀λ ∈ (0, 1) ),(1.15)

‖u : Ck,β(Ω, g, f1)‖ ≤ ‖u : Ck,β(Ω, g, f2)‖ for f2 ≤ f1.(1.16)

Acknowledgments. The authors would like to thank Richard Schoen for his continuous sup-
port and interest in the results of this article. M. L. would like to thank the Croucher Foundation
for the financial support and the Department of Mathematics at Massachusetts Institute of Tech-
nology, where part of the work in this paper was done. M. L. was partially supported by CUHK
Direct Grant for Research C001-4053118 and a grant from the Research Grants Council of the
Hong Kong SAR, China [Project No.: CUHK 24305115]. N. K. was partially supported by NSF
grants DMS-1105371 and DMS-1405537.

2. Deformations of properly immersed hypersurfaces

In this section, we study the geometry of properly immersed hypersurfaces in a Riemannian
manifold with boundary. In particular we describe the deformations of such hypersurfaces and
the corresponding changes of the mean curvature and boundary angle.

Notation 2.1. Throughout this section, k ∈ N and β ∈ [0, 1).

Proper immersion and boundary angle. Let (M, g) be an (n+1)-dimensional Riemannian
manifold with boundary ∂M 6= ∅. Without loss of generality, we can assume that M is contained

in a fixed (n+ 1)-dimensional Riemannian manifold (M̃, g) without boundary 1.

Definition 2.2 (Proper Ck,β-immersion). Let Σ be a smooth n-dimensional manifold with (pos-
sibly empty) boundary ∂Σ. A map X : Σ→M is said to be a proper Ck,β-immersion if it satisfies
both of the following:
(i). X(Σ) ⊂M , X(∂Σ) = X(Σ) ∩ ∂M .

(ii). There exists an extension X : Σ̃→ M̃ of X : Σ→M such that

(a). Σ̃ is a smooth n-dimensional manifold without boundary where Σ ⊂ Σ̃ and the closure of Σ

is a compact subset in Σ̃.

(b). X : Σ̃→ M̃ is a Ck,β-immersion which agrees with X : Σ→M on Σ.

(c). At each p ∈ Σ̃ where X(p) ∈ ∂M , we have X∗(TpΣ̃) + TX(p)∂M = TX(p)M .

Remark 2.3. For X : Σ→M as in 2.2 we will always equip Σ (and Σ̃) with the induced metric

X∗g unless stated otherwise. Moreover when X(Σ̃) is embedded, we will usually take X to be
the inclusion map.

Remark 2.4. Note that X : Σ′ ⊂ Σ̃→ M̃ is also an extension of X : Σ→M for any open subset

Σ′ ⊂ Σ̃ whose closure is compact and contained inside Σ̃. Therefore we can assume w.l.o.g. that

the extension X : Σ̃ → M̃ has further extension satisfying (ii).(a)-(c) in 2.2. We will assume
this from now on.

1We can assume that (M̃, g) is complete by [47]. For the purpose of this article, we just need the case that M

is a compact smooth domain of R3.
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Remark 2.5. Note that the transversality condition in 2.2.ii.c and X(Σ) ⊂ M imply that
X(∂Σ) = X(Σ) ∩ ∂M is equivalent to X(∂Σ) ⊂ ∂M since the immersed hypersurface can-
not be tangent to ∂M at an interior point of Σ (see Figure 3).

Figure 3. A properly immersed hypersurface Σ in M with unit normal ν and
boundary angle Θ = cos θ

Now we proceed to define the angle at which a proper immersion X : Σ → M makes with
∂M along ∂Σ. Recall that an immersion X : Σ → M is 2-sided if there exists a continuous
globally defined unit normal ν : Σ→ TM such that ν(p) ⊥ X∗(TpΣ) for all p ∈ Σ.

Definition 2.6 (Boundary angle). Let X : Σ→M be a 2-sided proper Ck,β-immersion (recall
2.2) with a chosen unit Ck−1,β normal ν : Σ → TM . The boundary angle Θ : ∂Σ → R is
defined by

Θ(p) := g(ν∂M (X(p)), ν(p)),

where ν∂M : ∂M → TM is the outward unit normal vector field of ∂M relative to (M, g).

Note that the above definition makes sense since X(p) ∈ ∂M for all p ∈ ∂Σ. Moreover, Θ is
independent of the extension of X. The following lemma is clear from the definitions.

Lemma 2.7. Let X : Σ → M be a 2-sided proper Ck,β-immersion with a chosen unit normal
ν : Σ → TM . Then, the boundary angle Θ : ∂Σ → R defined in 2.6 is a Ck−1,β-function.
Moreover, Θ ≡ 0 if and only if X : Σ→M is a properly immersed free boundary hypersurface,
i.e. X(Σ) meets ∂M orthogonally along ∂Σ.

Perturbations of proper immersions. Let X : Σ→M be a proper Ck+1,β-immersion. We
are interested in its deformation among the class of proper immersions, i.e. a family Xt : Σ→M
of proper immersions such that X0 = X. We need to use a “twisted exponential map” to deform
a properly immersed hypersurface in M so that it remains properly immersed throughout the
deformation. The basic idea is to modify the unit normal vector field of Σ near its boundary
∂Σ and extend it to a tubular neighborhood of Σ so that the vector field is tangential to ∂M .
Then, we make use of this modified unit normal vector field to generate a flow which plays the
role of the normal exponential map for hypersurfaces without boundary.
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Let X : Σ → M be a proper Ck+1,β-immersion, oriented by the global unit normal ν : Σ →
TM (which is of class Ck,β). Recall that M is a smooth domain of M̃ , which is a Riemannian
manifold without boundary. To keep our discussion less technical, we will just focus on the case

where the extension X : Σ̃ → M̃ in 2.2 is an embedding. This does not put any restriction to

our applications as we are going to discuss local properties. Note that X : Σ̃→ M̃ is no longer
proper (unless ∂Σ = ∅).

Definition 2.8 (Tubular neighborhoods). Let S ⊂ M̃ be a 2-sided embedded Ck+1,β-hypersurface

without boundary and we assume we are given a global unit Ck,β normal νS : S → TM̃ . Fur-

thermore we assume that there is an ε > 0 such that the map E : S × (−ε, ε) → M̃ defined by

E(p, t) := expM̃p (tνS(p)) is (well defined and) a diffeomorphism onto an open subset of M̃ which
we denote by Vε(S) and we call the tubular neighorbood of S of size ε. We denote the compo-
nents of the inverse of E by ΠS and ρS so that ∀q ∈ Vε(S) we have E−1(q) = ( ΠS(q) , ρS(q) ).
Note that ΠS : Vε(S)→ S is the nearest point projection to S which is Ck,β and ρS : Vε(S)→ R
is a (signed) distance function to S which is Ck+1,β by [7]. We finally extend the given νS to

νS : Vε(S)→ TM̃ by

νS(p) := (∇M̃ρS)(p) for all p ∈ Vε(S).

Assumption 2.9. From now on we will denote by ε > 0 a number which is small enough so that

the assumptions in 2.8 hold for both S = ∂M and S = Σ̃ (recall 2.4 for the second case), and

moreover ∀q ∈ Vε(Σ̃) ∩ Vε(∂M) we have ν
Σ̃

(q) 6= ±ν∂M (q).

Definition 2.10. Using the notations as above and assuming 2.9 holds, define the twisted

normal vector field (with parameter ε) as the map ν̃ : Vε(Σ̃)→ TM̃ given by

(2.11) ν̃ :=
νε − g(νε, νε∂M )νε∂M

1− g(νε, νε∂M )2
,

where νε = (ψεcut ◦ ρΣ̃
)ν, ν := ν

Σ̃
, and νε∂M = (ψεcut ◦ ρ∂M )ν∂M (recall 1.9).

Note that g(νε, νε) ≤ 1 and g(νε∂M , ν
ε
∂M ) ≤ 1 everywhere. The denominator in 2.11 does not

vanish by 2.9.

Lemma 2.12. Using the notations in 2.10, ν̃ satisfies the following properties:

(i). ν̃ is Ck,β and supported inside V2ε/3(Σ̃).

(ii). ν̃(p) ∈ Tp∂M for all p ∈ ∂M ∩ Vε(Σ̃).

(iii). ν̃ = ν on Vε/3(Σ̃) \ Vε(∂M).

(iv). g(ν̃, ν) ≡ 1 in Vε/3(Σ̃).

Proof. Property (i) is clear from the definition and that νε = 0 outside V2ε/3(Σ̃) (recall 1.9).
For (ii), note that at any p ∈ ∂M , ν̃ is parallel to νε − g(νε, ν∂M )ν∂M , which is the tangential
component of νε along Tp∂M . Property (iii) is clear since νε∂M = 0 outside Vε(∂M) and νε = ν

in Vε/3(Σ̃). Finally, (iv) follows from the fact that νε = ν and g(ν, ν) ≡ 1 in Vε/3(Σ̃). �

Definition 2.13. Let X : Σ → M be a 2-sided proper Ck+1,β-immersion with a choice of the

unit normal ν : Σ→ TM and an extension X : Σ̃→ M̃ . Suppose we have fixed an ε > 0 small
such that 2.9 holds and ν̃ is well-defined as in 2.10. The twisted normal exponential map along

Σ is the flow {F̃s}s∈R generated by the twisted normal vector field ν̃ in 2.11, i.e. for each p ∈ Σ,
9



s 7→ F̃s(p) is the unique solution to the ODE:

∂

∂s
F̃s(p) = ν̃(F̃s(p)), for all s ∈ (−ε, ε)

with initial value F̃0(p) = p.

Note that for each fixed s ∈ (−ε, ε), the map p 7→ F̃s(p) is a Ck,β-map from Σ to Vε(Σ̃) by
standard results from ODE theory. The following definition is the “twisted” version of 1.4 for
the case with boundary.

Definition 2.14 (Twisted graph). Under the same hypothesis of 2.13, for any ϕ ∈ Ck,β(Ω)
defined on some domain Ω ⊂ Σ with |ϕ(p)| < ε for all p ∈ Ω, we define the twisted perturbation
of X : Σ → M by ϕ over Ω (or of Ω by ϕ when X is an inclusion map) to be the map

Ĩmmer[X, ε;ϕ,Ω] : Ω→M given by

Ĩmmer[X, ε;ϕ,Ω](p) := F̃ϕ(p)(p) ∀p ∈ Ω.

We also call the image of Ĩmmer[X, ε;ϕ,Ω] the twisted graph of ϕ over X (or Ω) and we will

denote it by G̃raph[X, ε;ϕ,Ω] ⊂M .

Definition 2.15. Under the same hypothesis of 2.13, a function ϕ ∈ Ck,β(Σ) is said to be

admissible if (recall 2.13 and 2.14) the map Ĩmmer[X, ε;ϕ,Σ] : Σ → M is a Ck,β proper im-
mersion.

Remark 2.16. Unlike the case of hypersurfaces without boundary, our definitions above depends
not only on the hypersurface Σ but also on the parameter ε. This creates additional difficulties
as we need to give uniform estimates in terms of the parameter ε. In addition, another subtle

issue is that the constructions above in general also depend on the extension X : Σ̃ → M̃ of
the proper immersion X : Σ→M . An important observation however is that the constructions
above are independent of the extension in case ∂M is convex and that X : Σ → M is a free
boundary properly immersed hypersurface. We will return to these issues after we have given a
more precise quantitative description in the next subsection.

Definition 2.17. Given an admissible function ϕ ∈ Ck,β(Σ) as in 2.15, if we let

X̃ϕ := Ĩmmer[X, ε;ϕ,Σ] : Σ→M

be the proper Ck,β-immersion obtained by the twisted perturbation of X : Σ → M by ϕ (recall
2.14), then we define the perturbed boundary angle and perturbed mean curvature respectively

Θϕ : ∂Σ→ R and Hϕ : Σ→ R

to be the boundary angle and mean curvature respectively of the proper Ck,β immersion X̃ϕ :
Σ→M , which is oriented by the unit normal νϕ : Σ→ TM depending continuously on ϕ.

Remark 2.18. The continuity of the normal means that νtϕ → ν as t → 0. When ∂Σ = ∅ and

that X(Σ) ∩ Vε(∂M) = ∅, the map X̃ϕ agrees with the usual normal graph Immer[X,ϕ; Σ] as
defined in 1.4. In this case, the boundary angle Θϕ is not defined and the mean curvature Hϕ

agrees with the standard notion as in [35, Appendix A].
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Figure 4. A twisted perturbation Xϕ of a proper immersion X : Σ→M

Local estimates for the boundary angle. In 2.30 we provide a first order expansion of
the perturbed boundary angle Θϕ (recall 2.17) in terms of ϕ (which we assume sufficiently

small in terms of the geometry of X, M and M̃) and prove uniform estimates for the nonlinear
terms. As in other gluing constructions, these estimates are crucial for the fixed point theorem
argument used to produce exact solutions to the nonlinear PDEs (see [31] and [32] for a general
discussion). Note also that instead of estimating the nonlinear terms in terms of invariant
geometric quantities as for example in [26], it is easier to use local coordinates as for example
in [35, Appendix A]: Given a proper Ck,β immersion X : Σ → M as in 2.2 we express locally
the immersion X : Σ→ M as X = (X1, . . . , Xn+1) in local coordinate charts of Σ and M (see
Figure 5). To make a quantitative statement we need bounds on the geometry as follows.

Definition 2.19 (c1-bounded geometry). Let M̃ = (Bn+1, g) where g is a smooth Riemannian

metric with components gKL in standard coordinates of Bn+1 ⊂ Rn+1. Suppose M ⊂ M̃ is
a smooth domain with a smooth “boundary defining function” ρ : Bn+1 → R such that M =

ρ−1(−∞, 0]. We say that the pair (M,M̃) has c1-bounded geometry if

(2.20) ‖gKL, gKL : C4,β(Bn+1, g0)‖ ≤ c1 and ‖ρ : C5,β(Bn+1, g0)‖ ≤ c1,

where gKL is the inverse of the matrix gKL and g0 is the Euclidean metric on Bn+1.
Suppose X : Σ→M is a proper C5,β immersion as in 2.2, where Σ = Bn or Bn

+ (recall 1.2),

with an extension X : Bn(2)→ M̃ with Σ̃ = Bn(3/2) (recall 2.4). We say that X : Σ̃→ M̃ has

c1-bounded geometry if (M,M̃) has c1-bounded geometry and the following holds:

(2.21) ‖∂X : C4,β(Bn(2), g0)‖ ≤ c1, g0 ≤ c1X
∗g and X(Bn(2)) ⊂ Bn+1(3/4),

where ∂X are the partial derivatives of the coordinate functions of X : Bn(2)→ Rn+1, here g0

is the Euclidean metric; and

(2.22) inf
{
|∇(ρ ◦X)|(x) : x ∈ Bn(2), |ρ(X(x))| < c−1

1

}
≥ c−1

1 ,

where ∇(ρ ◦X) is the Euclidean gradient of the function ρ ◦X : Σ̃→ R.

Note that 2.22 gives a quantitative measure of transversality by ensuring that the part ofX(Σ̃)
which is close to ∂M cannot be approximately parallel to ∂M . Note that 2.20 and 2.21 (but not

11



Figure 5. A local description of a proper Ck,β immersion X : Σ→M

2.22) can be arranged by appropriately magnifying the target (see 6.1 for example). Definition
2.19 also covers the case where the coordinate neighborhood of M under consideration lies
completely in the interior of M (in this case we simply take ρ ≡ −1 and 2.22 would be trivially
satisfied for any c1 > 1).

In order to define our linear operators in 2.25 we first define appropriately the second funda-

mental forms of an immersed hypersurface S (with or without boundary) in M̃ . For simplicity,

we state the definition for an embedded hypersurface S ⊂ M̃ but the case of immersion can be
defined similarly since the definition is local.

Definition 2.23. Let S be a 2-sided embedded Ck,β hypersurface in (M̃, g) with a choice of the

unit normal νS : S → TM . We define the second fundamental form of S in M̃ at p ∈ S as the

symmetric bilinear form AS : TpM̃ × TpM̃ → R defined by

(2.24) AS(u, v) := g(∇M̃ũ νS , ṽ)(p)

where ũ,ṽ are local vector fields in the vicinity of p which are tangential to S and agree at p
with the orthogonal projection (with respect to g) of u, v respectively to TpS.

We define now some linear operators which as we will see later in our main propositions 2.30
and 2.39 are the linearizations of the boundary angle and mean curvature operators (which
are both nonlinear). Note that both operators are independent of the choice of an extension

X : Σ̃→ M̃ .

Definition 2.25. Let X : Σ→M be a 2-sided proper Ck+1,β immersion as in 2.2 with a choice
of the unit normal ν : Σ → TM . We define the linear operators L : C2,β(Σ) → C0,β(Σ) and
B : C2,β(Σ)→ C1,β(∂Σ) by (recall 2.6 and 2.23)

Lϕ := ∆gϕ+
(
|AΣ|2g + Ric(ν, ν)

)
ϕ,
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Bϕ := −
√

1−Θ2
∂ϕ

∂η
+

1

1−Θ2

(
A∂M (ν, ν)−ΘAΣ(ν∂M , ν∂M )

)
ϕ,

where ∆g is the intrinsic Laplacian on Σ; η : ∂Σ → TM is the outward unit conormal of ∂Σ
relative to Σ, |AΣ|2g is its length squared of the second fundamental form of Σ, and Ric is the

Ricci curvature of (M, g). Notice that Θ2 6= 1 everywhere on ∂Σ by 2.2.ii.c.

Before we state the main proposition in this section we observe that the Hölder norms are
uniformly equivalent with respect to different metrics.

Lemma 2.26 (Equivalence of norms on Σ̃). There exists a constant C = C(c1) > 0 such that if

X : Σ̃→ M̃ has c1-bounded geometry as in 2.19, then we have ‖gij , gij : C4,β(Σ̃, g0)‖ ≤ C, where
gij are the components of the induced metric X∗g in the local coordinates x1, · · · , xn. Moreover,
we have a uniform equivalence on the Hölder norms with respect to the induced metric g and
the Euclidean metric g0 (recall 1.12):

(2.27) ‖f : Ck,β(Ω′, g)‖ ∼C ‖f : Ck,β(Ω′, g0)‖ for k = 0, 1, 2, 3,

where (Ω′, g) stands either for (Bn+1, g) or (Bn, X∗g).

Proof. This is an easy consequence of 2.20 and 2.21. �

Because of 2.26, from now on we will often omit the dependence of our Hölder norms on the
metric as they are equivalent up to a uniform constant depending only on c1. We collect some
bounds on the geometry implied by 2.20, 2.21 and 2.22. In the lemma below we will use | · | to
denote the norm of a vector with respect to the Euclidean metric g0.

Lemma 2.28. There exists a constant C = C(c1) > 0 such that if X : Σ̃→ M̃ has c1-bounded
geometry as in 2.19, then we have the following:
(i). injy(B

n+1, g) ≥ C−1 at each y ∈ Bn+1(3/4). The exponential map exp(y, v) = expy(v) for

(Bn+1, g) is a C3-map on (y, v) ∈ Bn+1(3/4)×Bn+1(C−1) and satisfies A.4.

(ii). ‖ν : C4,β(Σ̃)‖ ≤ C and ‖A
Σ̃

: C3,β(Σ̃)‖ ≤ C (recall 2.24).

(iii). ‖ν∂M : C4,β(∂M)‖ ≤ C and ‖A∂M : C3,β(∂M)‖ ≤ C (recall 2.24).
(iv). ‖RicKL : C2,β(Bn+1)‖ ≤ C, where RicKL are the components of the Ricci curvature of
(Bn+1, g) in the local coordinates y1, · · · , yn+1.
(v). ‖Θ : C4,β(∂Σ)‖ ≤ C, where Θ is the boundary angle of the proper immersion X : Σ → M
when Σ = Bn

+.

Proof. All these statements follow easily from 2.20, 2.21, 2.6, 2.26 and Appendix A. �

The lemma below says that the parameter ε > 0 used to construct deformations of properly

immersed hypersurfaces can be uniformly controlled (depending only on c1) for X : Σ̃ → M̃
with c1-bounded geometry.

Lemma 2.29. There exists ε = ε(c1) > 0 such that if X : Σ̃→ M̃ has c1-bounded geometry as
in 2.19, then 2.9 holds.

Proof. By 2.28.i, ii and iii (recall 2.4), such an ε > 0 (depending only on c1) exists for S = Σ̃ and
∂M ∩Bn+1(3/4) satisfying all the hypotheses in 2.8. Furthermore, by 2.22, there exists an ε > 0

(depending only on c1) such that ν
Σ̃

(q) 6= ±ν∂M (q) at every q ∈ Vε(Σ̃)∩Vε(∂M∩Bn+1(3/4)). �

We can now state the main proposition in this section which gives a local uniform estimate
on the nonlinear terms in the expansion of the perturbed boundary angle Θϕ (recall 2.17) in
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terms of ϕ. Note that in the proof we use the coordinates of Rn+1 ⊃ M̃ to interpret TM̃ -valued
vector fields or maps to M as Rn+1-valued maps, as for example in 2.33 and 2.34:

Proposition 2.30 (Linear and nonlinear parts of the boundary angle). There exists a small

constant εΘ(c1) > 0 such that if X : Σ̃→ M̃ has c1-bounded geometry as in 2.19 with Σ = Bn
+,

and ϕ : Σ→ R is a C2,β function satisfying

‖ϕ : C2,β(Σ, g)‖ < εΘ(c1),

then ϕ is admissible (recall 2.15) and we have the uniform estimate (recall 2.17 and 2.25) for
some constant C = C(c1) > 0,

(2.31) ‖Θϕ −Θ− Bϕ : C1,β(∂Σ, g)‖ ≤ C‖ϕ : C2,β(Σ, g)‖2,
where g can be either the induced metric X∗g or g0 in accordance with 2.26.

Proof. Recall Σ = Bn
+. Let X : Σ→M be a proper C5,β-immersion with an extension X : Σ̃→

Bn+1 and a choice of the unit normal ν : Σ̃ → Rn+1 such that X : Σ̃ → M̃ has c1-bounded
geometry as in 2.19. We fix once and for all an ε > 0 given by 2.29, which depends only on c1.
From now on we will use C > 0 to denote any constant depending only on c1.

Suppose ϕ : Bn
+ → R is a C2,β-function satisfying ‖ϕ : C2,β(Bn

+, g)‖ < εΘ. First, we show
that ϕ is admissible in the sense of 2.15 when εΘ is sufficiently small (depending only on c1).

In other words, we have to prove that Ĩmmer[X, ε;ϕ,Σ] : Σ → M is a proper C2,β immersion
(recall 2.14). First of all, we prove the following uniform bound on the twisted normal vector ν̃
defined in 2.10

(2.32) ‖ν̃ : C4,β(Vε/3(Σ̃), g)‖ ≤ C.

To establish 2.32, first observe that νε = ν inside Vε/3(Σ̃) and thus

ν̃ =
ν − g(ν, νε∂M )νε∂M

1− g(ν, νε∂M )2
in Vε/3(Σ̃).

By 2.22, we have the uniform estimate 1− g(ν, νε∂M )2 ≥ C−1 on Vε/3(Σ̃) for ε sufficiently small

depending only on c1. Moreover, by 2.28.ii and iii and that ‖ψεcut‖Ck ≤ C(k)/εk for all k ∈ N,
we have

(2.33) ‖ν : C4,β(Vε/3(Σ̃), g)‖ ≤ C and ‖νε∂M : C4,β(Vε/3(Σ̃), g)‖ ≤ C.
All of these estimates together yield 2.32.

Now, denote X̃ϕ = Ĩmmer[X, ε;ϕ,Σ] as in 2.17. By 2.12.iv, the twisted normal exponential

map {F̃s} generated by ν̃ (recall 2.13) satisfies F̃t(p) ∈ Vε/3(Σ̃) for all t ∈ (−ε/3, ε/3), p ∈ Σ.
Using this and 2.32, we have for all t ∈ (−ε/3, ε/3),

‖F̃t −X − tν̃ : C2,β(Σ, g)‖ ≤ Ct2.
Using 1.14, it is easy to see that the estimate above implies

(2.34) ‖X̃ϕ −X − ϕν̃ : C2,β(Σ, g)‖ ≤ C‖ϕ : C2,β(Σ, g)‖2.
By 2.21 and 2.32, we can conclude from 2.34 that when εΘ is sufficiently small (but depending

only on c1), X̃ϕ : Σ → M is a C2,β-immersion (recall 2.14). Hence, we have proved that ϕ is
admissible when εΘ is sufficiently small (depending only on c1).
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It remains to prove the uniform estimate 2.31. First of all, from definitions 2.17 and 2.25, the
function Θϕ−Θ−Bϕ : ∂Σ→ R depends only on the values of ϕ in an arbitrarily small tubular
neighborhood of ∂Σ in Σ. Note that we have

ν̃ =
ν − g(ν, ν∂M )ν∂M

1− g(ν, ν∂M )2
in Vε/3(Σ̃) ∩ Vε/3(∂M).

In particular, we have

(2.35) ν̃ =
ν −Θν∂M

1−Θ2
along ∂Σ,

where Θ : ∂Σ→ R is the boundary angle (recall 2.6) for the proper immersion X : Σ→M . Let

νϕ : Σ→ TM be the unit normal of the proper immersion X̃ϕ : Σ→M (recall 2.17). Then, the
perturbed boundary angle Θϕ : ∂Σ→ R is given by

(2.36) Θϕ(p) = g
(
νϕ(p) , ν∂M

∣∣∣
X̃ϕ(p)

)
.

From 2.34 and 2.32, we have the following estimate on the unit normals:

(2.37) ‖νϕ − ν − ϕ∇ν̃||ν +X∗(∇ϕ) : C1,β(Σ, g)‖ ≤ C‖ϕ : C2,β(Σ, g)‖2,
where ν̃|| = X∗(ν̃ − ν) is the tangential (to Σ) component of ν̃, ∇ is the pullback connection by

X : Σ→ M̃ . On the other hand, by 2.34, 2.28.iii and 2.12.ii, we have

(2.38) ‖ν∂M ◦ X̃ϕ − ν∂M ◦X − ϕ(∇ν̃ν∂M ) ◦X : C2,β(∂Σ, g)‖ ≤ C‖ϕ : C2,β(Σ, g)‖2.
Finally, the estimate 2.31 follows directly from 2.36, 2.37, 2.38, 2.35, 2.6, 2.23 and 2.25. �

Local estimates for mean curvature. At the end of this section, we prove a uniform local
estimate on the perturbed mean curvature Hϕ defined in 2.17. Recall that the mean curvature
is defined to be the sum of the principal curvatures. Note that all the norms on Σ in the next
proposition can be taken with respect to either g or g0, according to 2.26.

Proposition 2.39 (Linear and nonlinear parts of the mean curvature). There exists a small

constant εH = εH(c1) > 0 such that if X : Σ̃ → M̃ has c1-bounded geometry as in 2.19 with
Σ = Bn

+ or Bn, and ϕ : Σ→ R is a C2,β function satisfying

(2.40) ‖ϕ : C2,β(Σ, g)‖ < εH(c1),

then ϕ is admissible (recall 2.15) and we have the uniform estimate for some constant C =
C(c1) > 0 (recall 2.25 and 2.17),

(2.41) ‖Hϕ −H − Lϕ− ν̃||(H)ϕ : C0,β(Σ, g)‖ ≤ C‖ϕ : C2,β(Σ, g)‖2,
where ν̃||(H) is the directional derivative of H along the tangent vector ν̃|| := X∗(ν̃ − ν).

Moreover, if X ′ : Σ̃ → M̃ is the extension of another proper immersion X ′ : Σ → M such

that X ′ : Σ̃→ M̃ has c1-bounded geometry and that X and X ′ agree up to first order at 0 (that
is X(0) = X ′(0) and ∂X(0) = ∂X ′(0)), and the same parameter ε as in 2.29 is chosen for both
pairs, then we have the following estimates

‖∂X̃ ′ϕ − ∂X̃ϕ : C1,β(Σ)‖ ≤C ‖∂2X ′ − ∂2X : C1,β(Σ)‖,(2.42)

‖ν ′ϕ − νϕ : C1,β(Σ)‖ ≤C ‖∂2X ′ − ∂2X : C1,β(Σ)‖,(2.43)

‖QX′,ϕ −QX,ϕ : C0,β(Σ)‖ ≤C ‖∂2X ′ − ∂2X : C1,β(Σ)‖ ‖ϕ : C2,β(Σ)‖2,(2.44)
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where X̃ϕ = Ĩmmer[X, ε;ϕ,Σ] : Σ → M is the immersion defined in 2.14 with unit normal
νϕ : Σ→ TM and QX,ϕ := Hϕ −H −Lϕ− ν̃||(H)ϕ is the error term in 2.41, and similarly for
X ′.

Proof. For simplicity we will just present the proof for M̃ = Rn+1 with the Euclidean metric g0.
Note that 2.34 and 2.37 holds for both cases Σ = Bn

+ and Σ = Bn, from which the admissibility
of ϕ follows. The perturbed mean curvature (recall 2.17) can be expressed (with g = g0 denoted
by 〈·, ·〉) by the formula

(2.45) Hϕ =

n∑
i,j=1

gijϕ 〈νϕ, ∂i∂jX̃ϕ〉,

where gijϕ is the inverse of the induced metric from X̃ϕ : Σ→ Bn+1 which satisfies the estimate:

(2.46) ‖gijϕ − gij + 2gikgj`〈∂`X, ν̃〉∂kϕ+ 2gikgj`〈∂kX, ∂`ν̃〉ϕ : C2,β(Σ)‖ ≤ C‖ϕ : C2,β(Σ)‖2.

Using the estimates 2.34, 2.37 and 2.46 in 2.45, we obtain the uniform estimate 2.41. Note that
we have the extra zeroth order term ν̃||(H)ϕ in the linearization because ν̃ is not normal to Σ
(see for example [30, Lemma B.2]). For the second part, under the assumption that X and X ′

agree up to first order at 0, we have the following simple estimates:

(2.47)

‖∂X ′ − ∂X : C2,β(Σ)‖ ≤C ‖∂2X ′ − ∂2X : C1,β(Σ)‖,
‖g′ − g : C2,β(Σ)‖ ≤C ‖∂2X ′ − ∂2X : C1,β(Σ)‖,
‖ν ′ − ν : C2,β(Σ)‖ ≤C ‖∂2X ′ − ∂2X : C1,β(Σ)‖,

where g and g′ are the induced metric on Σ by the immersions X : Σ → M and X ′ : Σ → M
respectively, whose unit normals are given by ν and ν ′. The estimates 2.47 and 2.32 then imply
2.42, from which 2.43 follows. Finally, 2.44 follows from the expression of mean curvature 2.45
together with the estimates 2.42 and 2.43, and 1.14. �

Remark 2.48. Note that there are two special cases of 2.39 that are particularly interesting. If
X : Σ → M is a minimal immersion (i.e. H ≡ 0), then the linearized operator is the same as
the standard Jacobi operator. The same happens if ν̃ = ν everywhere on Σ (for example, if
X(Σ) ∩ Vε(∂M) = ∅). In this article, we will have either one of the scenarios so the linearized
problem reduced to the standard one. Note that in case ν̃ = ν everywhere on Σ, we have

Ĩmmer[X, ε;ϕ,Σ] = Immer[X,ϕ; Σ] (recall 1.4).

3. Rotationally symmetric free boundary minimal surfaces

In this section we study free boundary minimal surfaces in B3 with rotational symmetry. For
convenience and without loss of generality (see 3.9) we will assume that the axis of symmetry
is the z-axis:

Definition 3.1. We define G∞ to be the subgroup of isometries of B3 generated by O(2) acting
as usual on the xy-plane and trivially on the z-axis and by the reflection about the xy-plane
defined by (x, y, z) 7→ (x, y,−z).

In [9], Fraser-Schoen discovered a rotationally invariant example of a free boundary minimal
surface in B3 other than the equatorial disk, which they called the critical catenoid:
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Figure 6. The critical catenoid K and its Gauss map νK

Lemma 3.2 ([9]). There is a compact embedded free boundary minimal surface in B3 called the
critical catenoid, denoted by K (see Figure 6) which satisfies the following:
(i). K meets S2 orthogonally along two circles of radius Rcrit lying on the planes {z = ±zcrit}
where Rcrit ≈ 0.834 is the unique positive solution to the equation R−1

crit = cothR−1
crit and zcrit :=√

1−R2
crit ≈ 0.552.

(ii) K meets the unit disc D := {(x, y, z) ∈ B3 : z = 0} orthogonally along a circle of radius
rcrit = zcritRcrit ≈ 0.460.
(iii). K is invariant under G∞ and is the portion inside B3 of the catenoid obtained by rotating
the graph of x = rcrit cosh(z/rcrit).

Proof. By defining K as in (iii) for any rcrit ∈ (0, 1) we obtain clearly a surface with the
desired properties except that we have to arrange that (i) and (ii) are satisfied. This amounts
to satisfying the equations

Rcrit
rcrit

= cosh
zcrit
rcrit

,
Rcrit
zcrit

= sinh
zcrit
rcrit

, R2
crit + z2

crit = 1,

where the first equation follows from the equation in (iii), the second equation amounts to the
orthogonality to S2 at the boundary and is obtained by differentiating the equation in (iii), and
the third equation ensures that the circles are the intersections of the catenoid with S2. By
dividing the third equation by z2

crit and using the second we obtain z−2
crit = cosh2(zcrit/rcrit). By

using the first equation we conclude then that rcrit = zcritRcrit. We complete then the proof by
dividing the first equation by the second. �

We adopt now some notation from [33] which we will find useful: We will use the spherical
coordinates (x, y) on S2 \ {(0, 0,±1)} defined by

(3.3) ΘS2(x, y) := (cos x cos y, cos x sin y, sin x), x ∈
(
−π

2
,
π

2

)
, y ∈ R.

Note that x and y are the geometric latitude and longitude on S2. The equator S1
eq ⊂ S2 is thus

identified with {x = 0}. Note that we orient S2 by the outward unit normal so the map ΘS2
defined above is orientation-reversing. We also have
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Definition 3.4 ([33, Definition 2.18 and lemma 2.19]). We define smooth rotationally invariant
functions φodd on S2 and φeven on S2 punctured at the poles by

φodd = sin x, φeven = 1− sin x log
1 + sin x

cos x
= 1 + sin x log

1− sin x

cos x
.

Moreover φeven as a function of x has a unique root on (0, π/2) which in this article we will
denote by xcrit (in [33] it was denoted by xroot).

Lemma 3.5. The Gauss map νK : K → S2 chosen to point away from the z-axis is an anti-
conformal diffeomorphism onto the spherical domain Ωcrit := {ΘS2(x, y) : x ∈ [−xcrit, xcrit], y ∈
R} ⊂ S2. Moreover we have
(i). νK · ez = φodd ◦ νK and νK ·XK = φeven ◦ νK where XK : K→ B3 ⊂ R3 is the inclusion map.
Therefore, φodd ◦ νK and φeven ◦ νK are Jacobi fields induced by the translation along the z-axis
and by scaling respectively.
(ii). Rcrit = sin xcrit, zcrit = cos xcrit, rcrit = 1

2 sin(2xcrit), and xcrit ≈ 0.986 > π/4.

Proof. (i) follows by straightforward calculation as in [33]. By 2.7 we have Θ ≡ 0 on ∂K and then
by 2.6 we conclude XK · νK = 0 which by (i) implies φeven ◦ νK = 0. By 3.2.i and the definition
of xcrit in 3.4 we have then (zcrit,−Rcrit) = (cos xcrit,− sin xcrit). This and 3.2.ii imply the
result. �

Catenoidal annuli orthogonal to S2
+. We proceed now to classify the O(2)-invariant, im-

mersed in the upper half ball B3
+ (recall 1.2) minimal surfaces, which meet the upper hemisphere

S2
+ orthogonally. Any such minimal surface is contained in a complete catenoid (or plane) K

whose axis is the z-axis, so we lose no generality if we classify the catenoids (and planes) with
these properties. If K is a plane it has to be the xy-plane, so we concentrate on the case where
K is a catenoid. Each such catenoid K is a translation along the z-axis of a scaling of the
standard complete catenoid. Such a catenoid K can at most intersect the upper hemisphere S2

+

orthogonally once, as the intersection must happen above the waist of the catenoid, where K
can be written as the graph of a monotonically increasing radial function over the exterior of
some disk (with center at the origin) in the xy-plane. K clearly has to intersect the xy-plane
exactly once. Therefore K either does not intersect the interior of the upper half ball B3

+ at
all, or its intersection with B3

+ is an annulus with one boundary circle on S2
+ and the other on

D. The intersection along the first circle K ∩ S2 is orthogonal by assumption. We define θ by
requiring that the angle between the outward normal of K and ez along the latter circle K ∩ D
is θ + π/2 ∈ (0, π). As we will see there is at most one K for each θ, so there is no ambiguity
if we denote the radius of K ∩ D by rθ. Note that for the critical catenoid we have θ = 0 and
r0 = rcrit. A positive θ implies that K∩D lies above the waist of K and a negative θ that it lies
below the waist, θ = π/2 corresponds to the xy-plane.

Lemma 3.6. There exists some θmin ∈ (−π/2, 0) such that the following hold:
(i). There is no K as above with θ < θmin.
(ii). For each θ ∈ [θmin,

π
2 ) there is exactly one K as above, which we will denote by Kθ. Kθ can

be obtained by rotating the graph of x = fθ(z) around the z-axis where fθ : R→ R+ is given by

fθ(z) := rθ cosh
z

rθ cos θ
+ rθ sin θ sinh

z

rθ cos θ
,

where rθ > 0 is a constant depending smoothly on θ. Moreover, rθ is a decreasing function of θ
with rθmin = 1 and rθ → e−1 as θ → π

2−. See Figure 7.
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Figure 7. The generating curves of the catenoids Kθ inside B3
+ with θ− < 0 < θ+

Proof. Given h ∈ (0, 1) there is clearly a unique catenoid K̂h whose axis is the z-axis and which

intersects S2
+ orthogonally along a circle which contains the points (±

√
1− h2, 0, h). It is well

known that K̂h can be obtained by rotating the graph of x = f(z) around the z-axis where f is
given by

(3.7) f(z) = r̃ cosh
z − z̃
r̃

,

for some r̃ > 0, z̃ ∈ R which depend on h. K̂h interects then the xy-plane along a circle of some

radius r̂ > 0 with angle θ in the sense that the angle between the outward normal of K̂h and ez
is θ + π/2. We have then

(3.8) − sinh
z̃

r̃
= tan θ, sinh

h− z̃
r̃

=

√
1− h2

h
, r̃ cosh

h− z̃
r̃

=
√

1− h2,

where the first equation amounts to f ′(0) = tan θ (by the definition of θ), the third equation

amounts to that (±
√

1− h2, 0, h) is contained in K̂h, and the second equation amounts to

f ′(h) =
√

1−h2
h (the orthogonality of K̂h to S2

+ along the circle containing (±
√

1− h2, 0, h).
To complete the proof it is enough to check that dθ/dh < 0 and dr̂/dh > 0, so that dr̂/dθ < 0

would follow. We solve the last two equations in 3.8 for r̃ and z̃ to get

r̃ = h
√

1− h2, z̃ = h− r̃ arcsinh

√
1− h2

h
.

From these we see that
d

dh

(
z̃

r̃

)
=

1

h(1− h2)3/2
> 0.

By the first equation in 3.8 this implies dθ/dh < 0.
Clearly now r̂ = f(0) = r̃ cosh z̃

r̃ . Hence by differentiating with respect to h we obtain

dr̂

dh
=

h

1− h2

(
(3− 2h2) sinh

1√
1− h2

− 2
√

1− h2 cosh
1√

1− h2

)
.

Using the elementary inequality

3− 2h2

2
√

1− h2
≥
√

2 > coth(1) > coth
1√

1− h2
for h ∈ (0, 1),
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we conclude that dr̂/dh > 0 and the proof is complete. �

From the proposition and our discussion above, we have the following uniqueness theorem
(see also [9], [10] and [41] for similar uniqueness theorems). Note that in our uniqueness theorem
there is no apriori assumption on the topology of the surface or rotational invariance requirement
in the interior.

Corollary 3.9. The only embedded free boundary minimal surfaces in B3 with at least one
rotationally invariant (about the z-axis) boundary component on S2 are the equatorial disk D
and the critical catenoid K.

Proof. By Björling’s uniqueness theorem [2], the minimal surface is rotationally invariant in
a neighborhood of the rotationally invariant boundary component. By unique continuation of
minimal surfaces, the entire surface is a piece of either a complete catenoid or the equatorial
plane. In the first case, applying 3.6 to the upper and lower half of this complete catenoid we
get rθ = r−θ, where θ + π

2 is the angle at which the catenoid intersects the equatorial plane.
By monotonicity of rθ with respect to θ, we have θ = 0, which implies that the free boundary
minimal surface is the critical catenoid K. �

Definition 3.10. For θ ∈ (θmin, π/2) we define K+
θ := Kθ ∩ R3

+ and K+
θ := Kθ ∩ B3

+. We also

define K−θ ⊂ R3
− and K−θ ⊂ B3

− to be the mirror images under reflection with respect to the

xy-plane of K+
θ and K+

θ respectively. For future reference we define

(3.11) Wθ := K+
θ ∪K−θ ∪ D, Wθ := K+

θ ∪K−θ ∪ {z = 0} ⊃ Wθ, Cθ := K±θ ∩ D.

By 3.6 each K+
θ meets S2

+ orthogonally and D at an angle θ+ π
2 along Cθ which is the circle of

radius rθ on the plane {z = 0}. Note that K±0 = K∩B3
± and Wθ is a perturbartion of our initial

configuration W0 = K∪D. Clearly Wθ and its complete extension Wθ contain the circle Cθ and
Wθ \ Cθ is smooth and embedded. Wθ and Wθ are symmetric under reflections with respect to
the xy-plane and lines on the xy-plane through the origin. We parametrize now K±θ by a fixed
cylinder independent of θ:

Definition 3.12. For each θ ∈ (θmin,
π
2 ) we define a diffeomorphism XK+

θ
(or XK−θ

) from the

cylinder [0, zcrit]× S1 (recall that S1 = R/2πZ) onto K+
θ (or K−θ ) by

XK±θ
(s, y) := (fθ(z) cos y, fθ(z) sin y,±z), with z =

zθ
zcrit

s

where zcrit is as in 3.2.i, fθ as in 3.6, and {z = zθ} is the plane containing the circle ∂K+
θ ∩S2

+.

We also define two families of diffeomorphisms FK±θ
:= XK±θ

◦X−1

K±0
: K±0 → K±θ .

Definition 3.13. For each θ ∈ (θmin,
π
2 ), we define the annulus Aθ and the disk Dθ contained

in the equatorial disk D by

Aθ := {(x, y, z) ∈ D : x2 + y2 ≥ r2
θ}, Dθ := {(x, y, z) ∈ D : x2 + y2 ≤ r2

θ},
where rθ is defined as in 3.6, and they are oriented by the unit normals νAθ = −ez and νDθ = ez
respectively. Moreover, we define the family of diffeomorphisms FAθ : A0 → Aθ and FDθ : D0 →
Dθ by

FAθ(x, y, z) :=

(
rθ +

1− rθ
1− rcrit

(
√
x2 + y2 − rcrit)

)
(x, y, z),

FDθ(x, y, z) :=

(
rθ
rcrit

√
x2 + y2

)
(x, y, z).
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Lemma 3.14 (Norm comparison). For ε > 0 and |θ| sufficiently small in terms of ε, and for
any function u : Ω→ R defined on a domain Ω ⊂ S where S is any of K+

0 , K−0 , A0, or D0, we
have (recall 1.12)

‖u ◦ F−1
Sθ

: Ck,β(FSθ(Ω) )‖ ∼1+ε ‖u : Ck,β(Ω)‖,
where Sθ is the corresponding K+

θ , K−θ , Aθ, or Dθ, and the norms are taken with respect to the
induced metric on Sθ ⊂ B3. The same estimate holds if Ω is assumed to be a (one-dimensional)
domain in the circle S ∩ S2.

Proof. It follows directly from the smooth dependence on θ of F∗Sθg0 on S. �

We have now the following so that we can identify different Wθ’s:

Definition 3.15. For each θ ∈ (θmin,
π
2 ) we define a bijection FWθ

: W0 → Wθ by requiring

FWθ
|S0

= FSθ , where Sθ is any of K+
θ , K−θ , Aθ, or Dθ (recall 3.12 and 3.13). Note that the

restriction of FWθ
to W0 \ C0 is a smooth diffeomorphism onto Wθ \ Cθ.

Kernels of the Standard Pieces. In this subsection, we study the kernels of the linearized
equations on the four standard pieces K+

0 , K−0 , A0, and D0. Note that these standard pieces are
subsets of the equatorial disk D or the critical catenoid K, which are minimal (recall 2.48), with
D = A0 ∪ D0 and K = K+

0 ∪K−0 . We will show that there is no rotationally invariant solutions
to the linearized equations on each of these standard pieces.

Lemma 3.16. There is no non-trivial harmonic function on D0 with homogeneous Dirichlet
boundary data.

Proof. This follows directly from the maximum principle for harmonic functions. �

Lemma 3.17. There is no non-trivial solution to the following boundary value problem on A0:
∆f = 0 on A0,
f = 0 along ∂A0 \ S2,

−∂f
∂η + f = 0 along ∂A0 ∩ S2.

Proof. Let (r, θ) be the polar coordinate system on the xy-plane. If f = f(r, θ) is a solution to
the boundary value problem, then

∂2f
∂r2

+ 1
r
∂f
∂r + 1

r2
∂2f
∂θ2

= 0
f(rcrit, θ) = 0

−∂f
∂r (1, θ) + f(1, θ) = 0

.

By separation of variables, write f(r, θ) =
∑∞

m=0Rm(r)Θm(θ), the angular component Θm(θ)
is a linear combinations of sin(mθ) and cos(mθ), m = 0, 1, 2, 3, . . ., and the radial component
Rm(r) satisfies the following ODE:

r2R′′m(r) + rR′m(r)−m2Rm(r) = 0
Rm(rcrit) = 0
R′m(1) = Rm(1)

.

The general solutions to the ODE is R0(r) = A+B log r when m = 0, and Rm(r) = Arm+Br−m

when m = 1, 2, 3, . . .. For m > 0, the boundary conditions imply{
Armcrit +Br−mcrit = 0

(m− 1)A− (m+ 1)B = 0
,
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which has no nontrivial solutions. When m = 0, the boundary conditions imply{
A+B log rcrit = 0

A−B = 0
,

which has no nontrivial solution since rcrit > e−1. This proves the lemma. �

Lemma 3.18. Let S = K+
0 or K−0 . Then there is no non-trivial rotationally symmetric solution

to the following boundary value problem on S:
∆Sf + |AS |2f = 0 on S,

f = 0 along ∂S \ S2 = K ∩ D,
−∂f
∂η + f = 0 along ∂S ∩ S2.

Proof. Using 3.2, 3.3, and 3.5, we can write the equations in spherical coordinates (x, y) as
(assuming the solution is independent of y) :

f ′′(x)− (tan x)f ′(x) + 2f(x) = 0 for x ∈ (0, xcrit)
f(0) = 0

−(cot xcrit) f
′(xcrit) + f(xcrit) = 0.

By 3.5 a solution of the ODE is a linear combination of φeven and φodd. Since φeven(0) = 1 and
φodd(0) = 0 the space of the ODE solutions which satisfy the Dirichlet boundary condition is
spanned by φodd. The Robin condition for fodd amounts to cot xcrit cos xcrit = sin xcrit which is
equivalent to xcrit = π/4. This is not true by 3.5.ii and the proof is complete.

Alternatively we can consider the space of ODE solutions which satisfy the Robin condition.
φeven does not satisfy the Robin condition because it vanishes at xcrit and if its derivative also
vanished it would vanish identically. An easy calculation shows that

(3.19) φRobin := (cos 2xcrit)φeven − (cos xcrit)φ
′
even(xcrit)φodd

spans this space. Clearly φRobin(0) 6= 0 and the lemma follows. �

Remark 3.20. Note that clearly φ′Robin(0) 6= 0 also, and therefore 3.18 holds as well with a

Neumann condition along K∩D instead of Dirichlet. This implies the existence of K±θ for small
θ independently of 3.6.

4. The initial surfaces

In this section we first construct and study the desingularizing surfaces, and then we use them
to replace a neighborhood of Cθ in Wθ (recall 3.11) so that we obtain the initial surfaces which
are smooth and embedded. As in [30] for example, the desingularizing surfaces are modeled in
general on the classical singly periodic Scherk surfaces [48] which form a one-parameter family
of embedded minimal surfaces parametrized by α ∈ (0, π/2) where 2α is the angle between two
of their four asymptotic half-planes (see [32] for example). Because of the extra symmetries
in our construction, we only need to use the Scherk surface (unique up to rigid motions and
scaling) with α = π/4 whose asymptotic planes are perpendicular.

The singly periodic Scherk surface.

Definition 4.1. We denote S to be the Scherk surface defined by

S := {(x, y, z) ∈ R3 : sinhx sinh z = cos y},
oriented by the unit normal νS such that νS · ez < 0 on S ∩ {x > 0}.
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Figure 8. S with its
planes of symmetry

Figure 9. S with its lines
of symmetry

Note that S is also the most symmetric surface in the one-parameter family of Scherk surfaces.
Some of the extra symmetries it possesses can be imposed in our constructions (see 4.4). The
Scherk surface S is singly periodic along the y-axis with period 2π. Moreover, away from the
y-axis, S is asymptotic to the planes {z = 0} and {x = 0} near infinity. The symmetries of S
are summarized in the lemma below (see also Figures 8 and 9).

Lemma 4.2. The Scherk surface S is a singly periodic complete embedded minimal surface with
period 2π along the y-axis and it is invariant under reflections about
(i). the planes {y = nπ} (n ∈ Z), {x = z} and {x = −z};
(ii). the lines {x = z = 0}, {y = (n+ 1

2)π, z = 0} and {x = 0, y = (n+ 1
2)π} (n ∈ Z).

The group G′S generated by these reflections is the group of symmetries of S.

Proof. This can be checked directly using the defining equation for S in 4.1. �

Note that the lines of symmetry {y = (n+ 1
2)π, z = 0} and {x = 0, y = (n+ 1

2)π} lie on the
surface S (see Figure 9). We now pick some of the symmetries which we would like to preserve
in our constructions:

Definition 4.3. Let Y, Yπ, and Ŷ π
2

, be the reflections about the planes {y = 0}, {y = π} and

the line {y = π/2, z = 0}, respectively, or equivalently given by

Y(x, y, z) := (x,−y, z), Yπ(x, y, z) := (x, 2π − y, z), Ŷ π
2
(x, y, z) = (x, π − y,−z).

Note that all the reflections defined above are orientation-reversing diffeomorphisms on S. We
define subgroups of symmetries G0

S ⊂ GS ⊂ G′S as the subgroups generated by Y and Yπ, and by

Y, Yπ, and Ŷ π
2

respectively.

Remark 4.4. The symmetries in GS will be imposed on our constructions. Because of the extra
symmetries corresponding to reflections with respect to lines contained in the surfaces one can
reduce the dimension of the extended substitute kernel (and therefore the number of parameters
for the family of initial surfaces also) from six (per circle of intersection) as in [30] to one, thus
greatly simplifying the construction. In particular there is no need to dislocate the wings relative
to the core, and so the ϕ parameters of [30] are not needed.
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Score

S−hwing
S+hwing

S+vwing

S−vwing

νS

νS

νS

νS

Figure 10. A core-wings decomposition of S with its unit normal νS

The model Scherk surface S can be divided roughly into five regions: a central core, two
wings asymptotic to the horizontal plane {z = 0} and two wings asymptotic to the vertical
plane {x = 0}. (see Figure 10). The core is within a finite distance from the y-axis and contains
all the topology of the surface. Each wing is simply connected and can be expressed as the
graph of a small function over its asymptotic plane near infinity. The location of the transition
from the core to the wings is not important as long as it is far enough from the axis to ensure
that the wings are sufficiently close to the asymptotic planes in order to get good uniform
estimates. Lemma 4.6 below tells us that the wings decay exponentially fast to their asymptotic
planes near infinity. Notice that it suffices to give the description of one wing since the others
can be similarly described by reflecting across the planes {x = z} and {x = −z}. Recall that
R2

+ := {(y, s) : s ≥ 0} is the half-space equipped with the standard orientation and flat metric
g0.

Definition 4.5 (Core-wings decomposition). We assume given a > 2. We define the immer-
sions X±hor, X

±
ver : R2

+ → R3 by

X±hor(y, s) := (±(a+ s), y, 0), X±ver(y, s) := (0,−y,±(a+ s)),

of the horizontal and vertical asymptotic half-planes of S. Moreover, we define a function ϕwing :
R2

+ → R by

ϕwing(y, s) := − log

(
cos y

sinh(a+ s)
+

√
1 +

cos2 y

sinh2(a+ s)

)
,

and the immersions X±hwing, X
±
vwing : R2

+ → R3 of the horizontal and vertical wings (recall 1.4)

and their images by

X±hwing := Immer[X±hor, ϕwing;R
2
+], X±vwing := Immer[X±ver, ϕwing;R2

+],

S±hwing := Graph[X±hor, ϕwing;R
2
+], S±vwing := Graph[X±ver, ϕwing;R2

+].

Note that S±hwing and S±vwing are disjoint subsets of S and we define the core of the Scherk surface
as

Score := S \ (S±hwing ∪ S±vwing).
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We also define a smooth function s : S → R to be equal to the coordinate s induced on S±hwing ∪
S±vwing by the immersions X±hwing, X

±
vwing : R2

+ → R3 and equal to any smooth negative function

on Score which is symmetric with respect to GS .

Therefore (depending on a > 2) we have the following core-wings decomposition of S:

S = Score ∪ S±hwing ∪ S±vwing,

with Ss<0 = Score and Ss≥0 = S±hwing ∪ S±vwing (recall 1.10). The fact that the wings approach

their asymptotic half planes exponentially fast is given by the lemma below.

Lemma 4.6. ‖ϕwing : C5(R2
+, g0, e

−s)‖ < C e−a for some absolute constant C.

Proof. This follows from the exact expression for ϕwing in 4.5. �

Lemma 4.7. (i) ϕwing satisfies the following symmetries:

ϕwing(−y, s) = ϕwing(y, s), ϕwing(2π − y, s) = ϕwing(y, s),

ϕwing(π − y, s) = −ϕwing(y, s).
(ii) X±hor satisfies the following symmetries (recall 4.3):

X±hor(−y, s) = Y ◦X±hor(y, s), X±hor(2π − y, s) = Yπ ◦X±hor(y, s),

X±hor(π − y, s) = Ŷ π
2
◦X±hor(y, s).

(iii) X±ver satisfies the following symmetries (recall 4.3):

X±ver(−y, s) = Y ◦X±ver(y, s), X±ver(2π − y, s) = Yπ ◦X±ver(y, s),

X±ver(π − y, s) = Ŷ π
2
◦X∓ver(y, s).

The desingularizing surfaces. In this subsection we perturb the model Scherk surface S to a
family of surfaces Sθ,τ depending smoothly on two small continuous parameters τ and θ. These
surfaces will be constructed as the images of a smooth family of immersions Zθ,τ : S → R3 such
that Z0,0 is the identity map on S and Zθ,τ converges locally uniformly to Z0,0 as τ, θ → 0.
This allows us to study the geometric and analytic properties of Sθ,τ from the corresponding
properties of S by a perturbation argument (additional care needs to be taken as these surfaces
are non-compact). In the next subsection, we will use these surfaces, after suitably translated
and rescaled, to desingularize the singularity circle Cθ in the initial configuration Wθ (recall
3.11) to obtain a family of smooth initial surfaces. We first have the following.

Convention 4.8. We will assume that the parameters τ and θ satisfy

|τ | < δτ and |θ| < δθ,

for some small constants δτ , δθ > 0. For future use we fix constants β, γ ∈ (0, 1), for example
β = γ = 3/4, and also a small constant δs > 0. We will always assume that a is as large as
needed in absolute terms, δθ and δs are as small as needed in terms of a, and δτ is as small as
needed in terms of a, δθ, δs, β, γ. Finally the initial surfaces Mθ,m we will construct in 4.26 will
depend on parameters θ and m, where θ ∈ [−δθ, δθ] as above, m ∈ N ∩ (1/δτ ,∞), and when m
is chosen we have τ = m−1. �
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We discuss now the geometric meaning of the parameters: The parameter θ measures the
amount of unbalancing which must be introduced due to the existence of a one-dimensional
kernel (modulo the symmetry group GS) to the linearized equation on S (see 5.8). The parameter
τ will describe the bending needed to wrap the axis (y-axis) of the Scherk surface into a circle
of radius τ−1, which will later be rescaled and translated to fit the circle of singularity Cθ in the
initial configuration Wθ. We start by defining the family of maps Ξθ which create unbalancing.

Definition 4.9. We define a family of smooth maps Ξθ : R3 → R3 by

Ξθ := ψ IdR3 +(1− ψ)Rθ,

where ψ := ψcut[2, 1](z) : R3 → R (recall 1.8), IdR3 is the identity map on R3, and Rθ : R3 → R3

is a map that acts on {±z > 1} by rotation around the y-axis with angle ∓θ.

The following properties of Ξθ are easy to verify from the definitions.

Lemma 4.10. (i). Ξθ depends smoothly on the parameter θ for |θ| < δθ and Ξ0 = IdR3.
(ii). For |θ| sufficiently small, Ξθ(S) is an embedded surface and Ξθ restricts to a diffeomorphism
from S to Ξθ(S). Moreover Ξθ rotates the vertical wings S±vwing about the y-axis by an angle ∓θ,

and keeps the horizontal wings S±hwing pointwise fixed (recall 4.5).

(iii). Ξθ is GS-equivariant, that is it commutes with all the symmetries in GS (recall 4.3).

Next, we define the family of maps Bτ which introduce the bending wrapping the y-axis
around a circle of radius τ−1. In order to get an embedded surface, we are mainly interested in
the values of τ such that τ−1 = m ∈ N, where m is large. To facilitate the presentation we first
define a discrete subgroup Gm of the continuous group G∞ of symmetries defined in 3.1:

Definition 4.11. For any m ∈ N, m ≥ 3, we define Gm to be the group of isometries of R3

generated by

Y′(x, y, z) := (x,−y, z), Y′π
m

(x, y, z) := (x cos
2π

m
+ y sin

2π

m
, x sin

2π

m
− y cos

2π

m
, z),

Ŷ
′
π
2m

(x, y, z) := (x cos
π

m
+ y sin

π

m
, x sin

π

m
− y cos

π

m
,−z),

which are respectively the reflections about the planes {y = 0}, {y = x tan π
m} and the line

{y = x tan π
2m , z = 0}.

Definition 4.12. We define the family of smooth maps Bτ : R3 → R3 by taking B0 = IdR3 and
for τ 6= 0,

Bτ (x, y, z) := (−τ−1, 0, 0) + ((τ−1 + x) cos τy, (τ−1 + x) sin τy, z).

Lemma 4.13. (i). Bτ depends smoothly on the parameter τ ∈ R and Bτ (0) = 0.
(ii). When τ 6= 0, Bτ wraps the y-axis isometrically onto the circle in the plane {z = 0} centered
at (−τ−1, 0, 0) through the origin. Moreover, it restricts to an isometry on each vertical plane
{y = c}, c ∈ R, onto its image.
(iii). When τ−1 = m ∈ Z, the maps B′τ (x, y, z) := Bτ (x, y, z) + (τ−1, 0, 0) are equivariant with
respect to GS and Gm:

B′τ ◦ Y = Y′ ◦B′τ , B′τ ◦ Yπ = Y′π
m
◦B′τ , B′τ ◦ Ŷ π

2
= Ŷ

′
π
2m
◦B′τ .

Roughly speaking, we will first apply the unbalancing map Ξθ to the Scherk surface S and
then apply the bending map Bτ to wrap the axis around a circle. However, the resulting surface
would not be approximately minimal since the vertical asymptotic half planes of S would be bent
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into cones, which are not minimal surfaces. Therefore, the resulting surface will be asymptotic
to these non-minimal cones near the vertical ends, whose error in the mean curvature would
be too large to be corrected by a fixed point argument. To remedy this situation, we need to
introduce a further bending so that the vertical asymptotic half planes become half catenoids,
which are minimal. We will then build the wings of our desingularizing surface as the graph of
ϕwing (recall 4.5) over such bent catenoids. Since ϕwing is a function defined on R2

+, we need to
give a parametrization (X±ver)θ,τ : R2

+ → R3 of the bent catenoids. The formula in our definition
is motivated by 4.15.ii. Note that the definitions 4.14 and 4.16 are consistent with Definition
3.7 and 3.8 in [30].

Definition 4.14. We define the smooth maps (X±ver)θ,τ : R2
+ → R3 by taking (X±ver)θ,0 =

Ξθ ◦X±ver (recall 4.5 and 4.9) and for τ 6= 0,

(X±ver)θ,τ (y, s) := (−τ−1, 0, 0) + τ−1( ρ̃θ,τ (s) cos τy, ρ̃θ,τ (s) sin τy,±τ(a+ s) cos θ),

where ρ̃θ,τ (s) := ρθ(τ(a+ s)) and ρθ(t) := cosh t+ sin θ sinh t.

Using 3.6 it is clear that the function ρθ actually generates a catenoid which meets the plane
{z = 0} at an angle π/2 + θ.

Lemma 4.15. (i). (X±ver)θ,τ depends smoothly on the parameters τ ∈ R and θ ∈ (−π/2, π/2).
(ii). For τ 6= 0, (X±ver)θ,τ is a conformal minimal immersion into a subset of the complete
catenoid which meets the plane {z = 0} with angle π/2 + θ along the circle Bτ ({x = z = 0})
through the origin centered at (−τ−1, 0, 0) and the conformal factor is ρ̃2

θ,τ .

(iii). Assuming 4.8 we have the following uniform estimates where A and g are the second
fundamental form (recall 2.23) and the induced metric of the immersion (X±ver)θ,τ respectively
and ∂ denotes the partial derivatives with respect to the standard coordinates of R2

+ (recall 1.10
and 1.13 and note that g0 can be replaced by g):

(a) ‖ρ̃2
θ,τ − 1 : C3((R2

+)s≤5δs|τ |−1 , g0, a+ s)‖ ≤ C|τ |,
(b) ‖∂2 (X±ver)θ,τ : C3( (R2

+)s≤5δs|τ |−1 , g0)‖ ≤ C|τ |,
(c) ‖|A|2g : C3( (R2

+)s≤5δs|τ |−1 , g0)‖ ≤ Cτ2,

(d) ‖g − g0 : C3( (R2
+)s≤5δs|τ |−1 , g0)‖ ≤ Cδs.

(iv). When τ−1 = m ∈ N, the maps (X±ver)
′
θ,τ (y, s) := (X±ver)θ,τ (y, s) + (τ−1, 0, 0) satisfy the

symmetries (recall 4.11):

(X±ver)
′
θ,τ (s,−y) = Y′ ◦ (X±ver)

′
θ,τ (y, s), (X±ver)

′
θ,τ (s, 2π − y) = Y′π

m
◦ (X±ver)

′
θ,τ (y, s),

(X±ver)
′
θ,τ (s, π − y) = Ŷ

′
π
2m
◦ (X∓ver)

′
θ,τ (y, s).

Proof. (i) and (ii) follow easily by calculations. To prove the estimates in (iii), first of all we note
that if δs > 0 is sufficiently small in absolute terms, then we have | cosh t| < C and | sinh t| < C|t|
for all t ∈ (−10δs, 10δs), which imply that

‖ρ2
θ − 1 : C3((−10δs, 10δs), dt

2, |t|)‖ ≤ C.

If |τ | is small enough in terms of a and δs, then we have |τa| < 5δs. Therefore, |τ(a+ s)| < 10δs
when s ≤ 5δs|τ−1| and (a) follows by the definition of ρ̃θ,τ and scaling. (d) follows from (a) and
(ii). For (b-c), again we observe that if |θ| is small in absolute terms, then these are valid if we
substitute τ = 1. By scaling we conclude their proof. (iv) follows from the definitions. �
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The situation for the horizontal wings is simpler since the horizontal asymptotic half planes
are fixed pointwise by the map Ξθ and remain planar after the action of Bτ . However the
parametrization does get distorted during the process. Therefore, the graph of ϕwing over the
perturbed immersion still loses minimality. For this reason, we have to understand the pertur-
bation on the immersions of the horizontal asymptotic half planes as well.

Definition 4.16. We define the smooth maps (X±hor)τ : R2
+ → R3 by taking (X±hor)0 = X±hor

(recall 4.5) and for τ 6= 0,

(X±hor)τ (y, s) := (−τ−1, 0, 0) + τ−1ρ̃±(s) (cos τy, sin τy, 0),

where ρ̃±τ (s) := ρ±(τ(a+ s)) = e±τ(a+s). and ρ±(t) := e±t.

Lemma 4.17. (i). (X±hor)τ depends smoothly on the parameter τ ∈ R.

(ii). For τ 6= 0, (X+
hor)τ ((X−hor)τ ) is a conformal minimal immersion onto the exterior (punc-

tured at the origin interior) of the circle of radius τ−1 centered at (−τ−1, 0, 0) in the plane
{z = 0}. The conformal factor is (ρ̃±τ )2.
(iii). Assuming 4.8 we have the following uniform estimates where g is the induced metric of the
immersion (X±hor)τ and ∂ denotes the partial derivatives with respect to the standard coordinates
of R2

+ (recall 1.10 and 1.13 and note that g0 can be replaced by g):
(a). ‖(ρ̃±τ )2 − 1 : C3((R2

+)s≤5δs|τ |−1 , g0, a+ s)‖ ≤ C|τ |,
(b). ‖g − g0 : C3((R2

+)s≤5δs|τ |−1 , g0)‖ ≤ Cδs,
(c). ‖∂2 (X±hor)τ : C3( (R2

+)s≤5δs|τ |−1 , g0)‖ ≤ C|τ |.
(iv). When τ−1 = m ∈ N, the maps (X±hor)

′
τ (y, s) := (X±hor)τ (y, s) + (τ−1, 0, 0) satisfy the

symmetries (recall 4.11):

(X±hor)
′
τ (s,−y) = Y′ ◦ (X±hor)

′
τ (y, s), (X±hor)

′
τ (s, 2π − y) = Y′π

m
◦ (X±hor)

′
τ (y, s),

(X±hor)
′
τ (s, π − y) = Ŷ

′
π
2m
◦ (X±hor)

′
τ (y, s).

Proof. The proofs are similar to the ones in 4.15. �

We are ready to define now the family of desingularizing surfaces (recall 1.11, 1.4 and 4.5).
Note that we truncate the function ϕwing before we use it to build the graphs over the perturbed
immersions defined in 4.14 and 4.16. This is necessary so that the desingularizing surface (after
translating and rescaling to fit the singularity circle Cθ in Wθ) glues back to the rest of Wθ to
form a smooth surface.

Definition 4.18 (Desingularizing surfaces). We define Sθ,τ := Zθ,τ (Ss≤5δs|τ |−1 ) , where the

map Zθ,τ : S → R3 is defined by

Zθ,τ :=


Bτ ◦ Ξθ on Score,

Ψ[0, 1; s](Bτ ◦ Ξθ, Immer[(X±hor)τ , ψtrunϕwing;R
2
+] ◦ (X±hor)

−1) on S±hwing,
Ψ[0, 1; s](Bτ ◦ Ξθ, Immer[(X±ver)θ,τ , ψtrunϕwing;R2

+] ◦ (X±ver)
−1) on S±vwing,

where ψtrun : R2
+ → [0, 1] is defined by ψtrun := ψcut[4δs|τ |−1, 3δs|τ |−1](s) when τ 6= 0 and

simply by ψtrun ≡ 1 when τ = 0.

Lemma 4.19. Zθ,τ is a family of smooth immersions depending smoothly on the parameters
τ ∈ R and θ ∈ (−π/2, π/2) with Zθ,0 = Ξθ|S . Moreover (assuming 4.8) we have the uniform

28



estimates

(4.20)
‖Z∗θ,τg − gS : C4(Ss≤5δs|τ |−1 , gS ) ‖ ≤C ( δθ + δs),

‖ |A|2 ◦ Zθ,τ − |A|2S : C3(Ss≤5δs|τ |−1 , gS ) ‖ ≤C ( δθ + δs),

where Z∗θ,τg and |A|2 ◦Zθ,τ are the pullbacks by Zθ,τ of the induced metric and the squared length

of the second fundamental form of Sθ,τ , and gS and |A|2S are the induced metric and the squared
length of the second fundamental form of S.

Proof. The first part of the lemma follows easily from 4.10.i, 4.13.i, 4.15.i and 4.17.i. The esti-
mates on Ss≤5 follow by smooth dependence on a fixed compact set with C (|τ |+ |θ|) ≤ C δθ in
the right hand side (recall 4.8). The estimates on the remaining region follow from 4.15.iii and
4.17.iii using 4.6, 2.42 and 2.43. �

Mean curvature of desingularizing surfaces. In this subsection we estimate the mean
curvature of the (immersed) desingularizing surface Sθ,τ . Each of the maps Ξθ and Bτ introduces
some mean curvature and there are also some non-zero mean curvature in the transition regions
connecting different regions. We first consider the mean curvature caused by the unbalancing
map Ξθ, which will also serve the purpose of our (extended) substitute kernel later:

Definition 4.21 (Substitute kernel). Let Hθ be the mean curvature of the immersed surface
Ξθ(S) pulled back to a function on S. We define w : S → R to be

w :=
d

dθ

∣∣∣∣
θ=0

Hθ.

The function w above gives the linearization of the mean curvature of Sθ,τ in the θ-direction
at θ = τ = 0. By smooth dependence of parameters, it is easy to get uniform estimates in
a fixed compact subset (modulo symmetries). To get uniform estimates on the wings, which
converge to an unbounded set, we use the exponential decay provided by 4.6. To accommodate
the truncation error created by the cutoff function ψtrun (recall 4.18) we only establish slower
decay like e−γs.

Proposition 4.22. Let Hθ,τ be the mean curvature of the (immersed) desingularizing surface
Sθ,τ defined in 4.18 pulled back as a function on S. Assuming 4.8 we have the following uniform
estimates:

‖Hθ,τ − θw : C0,β(Ss≤5δs|τ |−1 , gS , e
−γs)‖ ≤ C(|τ |+ |θ|2),

where gS is the induced metric on S as a surface in R3.

Proof. Since the quotient Ss≤5/G
0
S is a fixed compact subset (recall 4.3), by 4.19 we have the

required estimate on Ss≤5 by Taylor expansion near τ = θ = 0. It remains to prove the estimate
on the wings of S. By 4.10.ii and 4.21, w is supported inside Score, so it suffices to prove the
estimate without the w-term on the wings S±hwing and S±vwing (recall 4.5).

First we note that the complete Scherk surface S has injectivity radius greater than 1/10.
Let Bp be the geodesic ball with radius 1/100 in (S, gS) centered at some p ∈ S1≤s≤5δs|τ |−1 . By
1.13 it suffices to prove the following estimate

eγs‖Hθ,τ : C0,β(Bp, gS)‖ ≤ C(|τ |+ |θ|2).

Recall that by 4.18 the wings of Sθ,τ can be expressed as the graph of the function ψtrunϕwing
over its asymptotic catenoids or planes given by the minimal immersions (X±ver)θ,τ and (X±hor)τ
(recall 4.15 and 4.17). We will divide the proof into three cases: s ∈ [0, 3δs|τ |−1], s ∈ [3δs|τ |−1, 4δs|τ |−1]
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and s ∈ [4δs|τ |−1, 5δs|τ |−1]. Note that if τ = 0, then Hθ,0 is supported in Score by 4.10.ii so the
estimate holds trivially in this case. We will assume from now on that τ 6= 0.

By 4.18, Sθ,τ is the graph of ψtrunϕwing over the minimal immersions (X±ver)θ,τ and (X±hor)τ .
Hence it is minimal on s ∈ [4δs|τ |−1, 5δs|τ |−1] (recall 4.15.ii and 4.17.ii). Let X : B2(2)→ R3 be
the restriction of (X±ver)θ,τ or (X±hor)τ to any diskB2(2) of radius 2 contained in ((R2

+)s≤6δs|τ |−1 , g0).
By 4.15.iii.c and 4.17.iii.b, X satisfies 2.21 for some universal constant c1 > 0. On the other
hand, by 1.14 and 4.6

‖ψtrunϕwing : C2,β(R2
+, g0, e

−s)‖ ≤ Ce−a.
Thus the function ψtrunϕwing would have C2,β-norm less than εH(c1) in 2.39 if a is chosen
sufficiently large in absolute terms. Then 2.39 gives (also using that the various metrics are
uniformly equivalent by 4.15.iii.d and 4.17.iii.b)

eγs‖Hθ,τ : C0,β(Bp, gS)‖ ≤ Ce−(1−γ)s ≤ Ce−3(1−γ)δs|τ |−1 ≤ C|τ |,
as long as τ is sufficiently small in terms of δs and γ (recall 4.8).

It remains the case where s ∈ [0, 3δs|τ |−1]. We will need to use the strengthened estimate
in 2.39. Let X ′ : B2(2) → R3 be the affine linear map which is the linearization of (X±ver)θ,0
or X±hor at the center of B2(2). Obviously X ′ also satisfies 2.21 for the same c1 > 0 and that
X ′ agrees with X up to first order at the center of D. By taking a in 4.6 sufficiently large in
terms of εH(c1), 2.39 can be applied to the graphs of ϕwing over X and X ′. By 4.18 the graph
of ϕwing over X lies inside Sθ,m whose mean curvature can be given as in 2.39 by 2.25, 2.23,
4.15.ii, 4.17.ii

Hθ,τ = ρ−2∆g0ϕwing + |A|2ϕwing +QX,ϕwing ,

where Hθ,τ is the mean curvature of Sθ,τ pulled back to a function on B2(2), ρ = ρ̃θ,τ or ρ̃±τ as
in 4.15.ii and 4.17.ii, and |A|2 is the norm-squared second fundamental form of X as defined in
2.23 and 2.25. On the other hand, the graph of ϕwing over X ′ lies inside S (up to a translation
and rescaling in R3) and hence is minimal. Therefore, by 2.39 we have similarly

0 = ρ−2(p0)∆g0ϕwing +QX′,ϕwing ,

where p0 is the center of the disk B2(2). Combining these two expressions and using 4.15.iii,
4.17.iii, 2.44 and 4.6

es‖Hθ,τ : C0,β(Bp, gS)‖ ≤ C|τ |,
where we have used that ‖∂2X−∂2X ′ : C1,β(B2(2), g0)‖ ≤ C|τ |. This proves the proposition. �

The initial surfaces. In this subsection, we construct for each large m ∈ N and small θ as
in 4.8, an initial surface Mθ,m which depends smoothly on θ. In the proof of the main theorem
6.2 we will show that for each m sufficiently large, we can use a fixed point argument to find
θ∗ (depending on m) such that there exists a function ϕ∗ whose twisted graph over the initial
surface Mθ∗,m is a minimal surface which intersects S2 orthogonally.
Mθ,m is constructed by desingularizing Wθ using surfaces Σθ,m obtained by shrinking and

translating the desingularizing surfaces Sθ,1/m defined in 4.18. The scaling and translation have
to be chosen carefully so that the “axis” of Σθ,m matches the circle of singularity Cθ in the initial
configuration Wθ (recall 3.11):

Definition 4.23 (Scaled desingularizing surfaces). We define (recall 4.18)

Σθ,m := Hθ,m(Sθ,1/m) = Zθ,m (Ss≤5δsm ) ,
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where θ,m are as in 4.8, Zθ,m := Hθ,m ◦ Zθ,1/m : S → R3, and Hθ,m : R3 → R3 is the affine
homothety defined by

(4.24) Hθ,m(x, y, z) := λ (x+m, y, z), where λ := m−1rθ.

Note that by 3.6 mλ = rθ < 1 is uniformly bounded away from 0 and by 4.3, 4.11, 4.10.iii,
4.13.iii, 4.7, 4.15.iv and 4.17.iv,

(4.25) Zθ,m ◦ Y = Y′ ◦ Zθ,m, Zθ,m ◦ Yπ = Y′π
m
◦ Zθ,m, Zθ,m ◦ Ŷ π

2
= Ŷ

′
π
2m
◦ Zθ,m,

and therefore Zθ,m is equivariant with respect to GS and Gm. Moreover Zθ,m maps the axis
{x = z = 0} of the Scherk to Cθ (recall 3.11). This then implies that the four connected
components of ∂Σθ,m have neighborhoods in Σθ,m which are actually contained in Wθ (recall
4.15.ii, 4.17.ii, 4.18, 3.11, and 4.8). We conclude that Wθ \ ∂Σθ,m consists of five connected
components four of which are disjoint from the interior of Σθ,m and can be used to smoothly
extend Σθ,m:

Definition 4.26 (Initial surfaces). We define M θ,m to be the union of Σθ,m and the four
connected components of Wθ \ ∂Σθ,m which are disjoint from the interior of Σθ,m. We define
then the initial surfaces Mθ,m as

Mθ,m := M θ,m ∩ B3 ⊂M θ,m.

Note that for simplicity in subscripts we may write M instead of Mθ,m. For future reference we
fix a continuous function s on M θ,m which is Gm-invariant (in the sense of 5.1) and agrees with
the pushforward by Hθ,m of s on Ss≤5δsm and takes values in (5δsm, 6δsm] on M θ,m \ Σθ,m.

Lemma 4.27. For m large enough the initial surfaces Mθ,m are smooth, embedded, Gm-invariant,
compact oriented surfaces in B3, with genus m−1. They meet S2 orthogonally along their bound-
ary which consists of three connected components and satisfies ∂Mθ,m = S2 ∩Mθ,m. Moreover,
as m → ∞, the surfaces Mθ,m converge in the Hausdorff sense to Wθ and the convergence is
smooth away from Cθ.
Proof. This follows from 4.25, that the function ψtrun is independent of y, and the preceding
discussion. �

5. Solving the linearized equations

In Section 4, we have constructed our initial surfaces Mθ,m which are free boundary surfaces
but not minimal. In the next section we will estimate the nonlinear terms and then prove the
main theorem.

The linearized free boundary minimal surface equation. We first discuss how the sym-
metries imposed apply to the functions we use to appropriately correct the initial surfaces.

Definition 5.1. Let f : Ω→ R be a function defined on a GS-invariant subset Ω ⊂ S. We say
that f is GS-invariant if it satisfies (recall 4.3)

f ◦ Y = f, f ◦ Yπ = f, f ◦ Ŷ π
2

= f.

We say that f is GS-symmetric if it satisfies

f ◦ Y = f, f ◦ Yπ = f, f ◦ Ŷ π
2

= −f.
We define similarly for the group Gm (recall 4.11) if f : Ω′ → R is a function defined on a

Gm-invariant subset Ω′ ⊂ R3 with Y, Yπ and Ŷ π
2

replaced by Y′, Y′π
m

and Ŷ
′
π
2m

respectively.
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Notation 5.2. We use the subscript “sym” for subspaces of function spaces which are GS-
symmetric or Gm-symmetric. �

Lemma 5.3. (i). The graph of a GS-symmetric (or Gm-symmetric) function over S (or Mθ,m)
is GS-invariant (or Gm-invariant).
(ii). The mean curvature of a graph as in (i) is GS-symmetric (or Gm-symmetric).
(iii). The product of a symmetric function with an invariant function is symmetric.
(iv). The function w defined in 4.21 is GS-symmetric and supported inside Score.
Proof. (i) and (ii) follow from the observation that the Gauss map satisfies

ν ◦ Y = Y ◦ ν, ν ◦ Yπ = Yπ ◦ ν, ν ◦ Ŷ π
2

= −Ŷ π
2
◦ ν

and similarly for the other three isometries. (Equivalently all isometries in consideration reserve
the orientation of the surface involved but only the first two of each group reverse the orientation
of the ambient R3.) (iii) follows from the definitions and (iv) follows from 4.10. �

The linearized operators to the free boundary minimal surface equation H = 0 and Θ = 0 is
given below (recall 2.30, 2.39 and 2.48).

Definition 5.4 (Jacobi operators). Let S ⊂ B3 be a smooth surface with each of its boundary
components either contained in S2 or completely disjoint from S2, and let ∆ denote the intrinsic
Laplace operator, |A|2 the norm-squared of the second fundamental form with respect to the
induced metric on S ⊂ R3, and η the outward unit conormal of ∂S with respect to S. We
define the Jacobi operator L = LS : C2,β(S) → C0,β(S) and the boundary Jacobi operator
B : C2,β(S)→ C1,β(∂S ∩ S2) by

Lv := ∆v + |A|2v and Bv := −∂v
∂η

+ v.

Given inhomogeneous data (E,E∂) ∈ C2,β(S)×C1,β(∂S ∩ S2) (with S as in 5.4), we need to
solve on S the linearized free boundary minimal surface equation

(5.5) Lv = E on S, Bv = E∂ along ∂S ∩ S2, v = 0 along ∂S \ S2.

Solving the linearized equation on Wθ. The main proposition 5.26 of this section shows
that, modulo a one-dimensional cokernel (and suitable choice of parameters), the linearized
equation 5.5 is solvable with estimates when S = Mθ,m defined as in 4.26. (Note that ∂S ⊂ S2

in this case.) This is achieved by combining approximate semi-local solutions on regions M̃θ,m[0]

and M̃θ,m[1] insideM and then iterating. The various regions will be defined in 5.12 and the semi-
local solutions are obtained by solving on the model surfaces S and Wθ and then transferring
to the corresponding regions of M by using ΠS and ΠWθ

which will be defined in 5.15. Recall
now from 3.11 that the initial configuration Wθ is the union of K+

θ , K−θ , Aθ and Dθ. In the
following lemma 5.7 we show that we can always solve the linearized equation 5.5 on Wθ due
to the non-existence of kernels on each of the four pieces.

Definition 5.6 (Hölder norms on Wθ). Let Ck,β(Wθ) be the space of functions u′ on Wθ which
have restrictions u′|S ∈ Ck,β(S) for each S = K+

θ ,K
−
θ ,Aθ,Dθ. (Note that specifying such a

function is equivalent to specifying functions on K+
θ , K−θ , Aθ and Dθ which agree on Cθ.) For

u′ ∈ Ck,β(Wθ) we define its norm ‖u′ : Ck,β(Wθ)‖ := maxS=K+
θ ,K

−
θ ,Aθ,Dθ

∥∥u′|S : Ck,β(S)
∥∥ . For

u′ ∈ C2,β(Wθ) such that the restriction of LS (u′|S) to Cθ is independent of S = K+
θ ,K

−
θ ,Aθ,Dθ,

we define LWθ
u′ ∈ C0,β(Wθ) by (LWθ

u′)|S := LS (u′|S) for each S = K+
θ ,K

−
θ ,Aθ,Dθ.
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Lemma 5.7 (Linear estimates onWθ). If m is sufficiently large in absolute terms, then there is a

bounded linear map RWθ
: C0,β

sym(Wθ)×C1,β
sym(∂Wθ)→ C2,β

sym(Wθ), such that given inhomogeneous

data E′ ∈ C0,β
sym(Wθ) and E′∂ ∈ C1,β

sym(∂Wθ), u
′ = RWθ

(E′, E′∂) restricts to the unique solution
of the linearized equation 5.5 on each S = K+

θ ,K
−
θ ,Aθ,Dθ, so that in the sense of 5.6 we have

LWθ
u′ = E′ on Wθ, Bu′ = E′

∂
on Wθ ∩ S2, u′ = 0 on Cθ.

Moreover, there is a universal constant C > 0 such that

‖u′ : C2,β(Wθ)‖ ≤ C( ‖E′ : C0,β(Wθ)‖+ ‖E′∂ : C1,β(Wθ ∩ S2)‖ ).

Proof. Because of the smooth dependence on θ and the smallness of θ by 4.8 we can consider the
Jacobi operators on Wθ as small perturbations of the ones on W0 (use 3.14 for the equivalence
of the norms), and therefore it is enough to prove the lemma in the case θ = 0. By assuming m
sufficiently large and separating variables we can easily ensure that any kernel for L with Robin
and Dirichlet boundary conditions as usual will have to be rotationally invariant. Using 3.16,
3.17 and 3.18, we conclude that such kernel is trivial. Standard elliptic estimates from [1] (see
Theorem 7.3, and Remark 2 on p.669) imply then the lemma. �

Solving the linearized equation on S. We now solve the linearized equation 5.5 on the model
Scherk surface S which is complete with no boundary, hence instead of boundary conditions we
impose exponential decay along the wings.

It is a standard fact that the Gauss map νS of the Scherk surface restricts to an anti-conformal
diffeomorphism from a fundamental region S ∩ {0 ≤ y ≤ π} (with respect to the group G0

S -
recall 4.3) onto the hemisphere minus four points S2 ∩ {y ≤ 0} \ {(±1, 0, 0)∪ (0, 0,±1)}. Hence,
the Gauss map pulls back the metric gS2 to a conformally equivalent metric h with its associated
linear operator defined as:

h :=
1

2
|A|2gS and Lh := ∆h + 2,

where A is the second fundamental form of S ⊂ R3 and ∆h is the intrinsic Laplacian with
respect to the conformal metric h. By conformal invariance of the Laplacian in dimension two,
Lh = 2|A|−2LS and hence the operators Lh and LS have the same kernel.

It is well known that any ambient Killing vector field restricts to a Jacobi field on the minimal
surface. Using the translations in R3, for any unit vector e, the function e ·νS lies in the kernel of
LS , and thus in the kernel of Lh. (Note that there are other Jacobi fields arising from rotations
and scalings in R3. However, they are either unbounded or not GS-symmetric in the sense of 5.1).
The following lemma below says that modulo the symmetries GS , there is only a one-dimensional
kernel.

Lemma 5.8. The kernel of Lh on S which is GS-symmetric and bounded is spanned by the
function ex · νS .

Proof. Since S has asymptotically planar ends, its Gauss map can be extended to a non-constant
holomorphic map from a compact Riemann surface S∗ with all the branching values, (±1, 0, 0)
and (0, 0,±1), lying on an equator of S2. Therefore, we can apply Theorem 20 in [43] to conclude
that the multiplicity of the eigenvalue 2 for the operator Lh on S∗ is exactly equal to 3, which
are generated by ex · νS , ey · νS and ez · νS , where ex, ey, ez are the standard coordinate basis in
R3. Among these, only ex · νS is GS-symmetric. �
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Because of the existence of the one-dimensional kernel in 5.8, we can at best solve the lin-
earized equation 5.5 modulo a one-dimensional co-kernel. The next lemma shows that the func-
tion w we defined in 4.21 serves the purpose of a (extended) substitute kernel.

Lemma 5.9. Let L2(S/G0
S , h) be the Hilbert space of L2-integrable functions with respect to the

metric h. Then, the functions 2|A|−2w and ex ·νS belong to L2(S/G0
S , h) and are not orthogonal

to each other. Therefore, for any Ê ∈ C0,β
sym(S, gS , e−γs), there exists µ ∈ R such that |µ| ≤

C‖2|A|−2Ê : L2(S/G0
S , h)‖ and 2|A|−2(Ê − µw) is orthogonal to ex · νS in L2(S/G0

S , h).

Proof. Since |A|2 is GS-invariant and by 5.3.iv w is GS-symmetric with compact support (modulo
G0
S), 2|A|−2w ∈ L2(S/G0

S , h). From 5.8 and that S/G0
S has finite h-area, we have ex · νS ∈

L2(S/G0
S , h) as well. Recall that w is supported on the core Score. Using the balancing formula

for the Killing field ex, the L2(S/G0
S , h) product of the two functions is∫

Score/G0
S

ex · wνS dA =
d

dθ

∣∣∣∣
θ=0

∫
(Sθ,0/G0

S)s≤0

Hθ · ex dA =
d

dθ

∣∣∣∣
θ=0

∫
∂(Sθ,0/G0

S)s≤0

ηθ · ex ds,

where dA and ds are with respect to the original Scherk metric gS . This is non-zero as d
dθ

∣∣
θ=0

ηθ ≈
ex on the vertical wings of S and vanishes on the horizontal wings. Here Hθ is the mean curvature
vector of Sθ,0 and ηθ is the outward unit conormal of ∂(Sθ,0)s≤0 relative to (Sθ,0)s≤0. �

We now solve the linearized equation on S with appropriate decay. Note that we only solve
modulo a one-dimensional space which corresponds to the (approximate) kernel of the operator:

Lemma 5.10 (Linear estimates on S). For any Ê ∈ C0,β
sym(S, gS , e−γs), there exists unique

û ∈ C2,β
sym(S, gS , e−γs) and µ ∈ R such that

LS û = Ê + µw on S,
where w is the function defined in 4.21 and gS is the induced metric of S ⊂ R3 with Jacobi
operator LS (recall 5.4). Moreover, we have

‖û : C2,β(S, gS , e−γs)‖+ |µ| ≤ C‖Ê : C0,β(S, gS , e−γs)‖
for some universal constant C > 0.

Proof. The uniqueness part follows 5.9 that if Ê = 0 then we must have µ = 0 and hence
û = 0 if it is decaying at the rate e−γs since the kernel ex · νS does not decay along the
vertical wings. By an argument of [30, Lemma 7.2], we can assume without loss of generality

that the inhomogeneous term E is supported in Ss≤2. Let Ê ∈ C0,β
sym(S, gS , e−γs) be given and

supported in Ss≤2. By 5.9, there exists µ ∈ R such that 2|A|−2(Ê − µw) is orthogonal to ex · νS
in L2(S/G0

S , h) and

(5.11) |µ| ≤ C‖2|A|−2Ê : L2(S/G0
S , h)‖ ≤ C‖Ê : C0,β(S, gS , e−γs)‖,

since |A|2 is uniformly bounded away from zero on Ss≤2 and the area grows linearly and hence
dominated by the exponential decay. Using 5.8, there exists a unique û ∈ L2(S/G0

S , h) which is
orthogonal to ex · νS and

Lhû = 2|A|−2(Ê − µw),

with ‖û : L2(S/G0
S , h)‖ ≤ C‖Ê : C0,β(S, gS , e−γs)‖. Therefore û solves the desired linearized

equation

LS û = Ê − µw.
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Note that for any c ∈ R, û+ c(ex · νS) is also a solution to the same equation. Therefore, to get
the required estimate, it suffices to prove that there exists some c ∈ R such that

‖û+ c(ex · νS) : C2,β(S, gS , e−γs)‖ ≤ C‖Ê : C0,β(S, gS , e−γs)‖.
We now prove the existence of such a constant c. Since Ss≤2 has bounded geometry, by de-

Giorgi-Nash-Moser theory and Schauder estimates in standard linear PDE theory and 5.11, we
have

‖û : C2,β(Ss≤3, gS)‖ ≤ C‖Ê : C0,β(S, gS , e−γs)‖.
In particular, ‖û : C0(∂Ss≤2)‖ ≤ C‖Ê : C0,β(S, gS , e−γs)‖. Since both û and ex · νS are GS-
symmetric functions, there exists a unique c ∈ R such that−c(ex·νS) matches the first harmonics
of û on Ss≥2 and hence û+ c(ex ·νS) would have the required decay. The required estimate then

follows from ‖û : C0(∂Ss≤2)‖ ≤ C‖Ê : C0,β(S, gS , e−γs)‖. �

Solving the linearized equation on Mθ,m. In this subsection we state and prove Proposition
5.26 where we solve with estimates the linearized equation 5.5 on an initial surface Mθ,m defined
as in 4.26. We first define various domains of the initial surfaces Mθ,m, projections to the
standard models, some cutoff functions, and the global norms we will need:

Definition 5.12. Assuming 4.8 so that a := log λ−7 < 5δsm − 1 (recall 4.24), we define the
following regions of Mθ,m:

Mθ,m[0] := Mθ,m ∩ {s ≤ 5δsm− 1}, M̃θ,m[0] := Mθ,m ∩ {s ≤ 5δsm} = Σθ,m,

Mθ,m[1] := Mθ,m ∩ {s ≥ a+ 1}, M̃θ,m[1] := Mθ,m ∩ {s ≥ a}.

By 4.25 Zθ,m is an infinite covering map onto its image. The group of deck transformations
is generated by the translation Tm : R3 → R3 defined by

(5.13) Tm(x, y, z) := (x, y + 2πm, z).

Hence Zθ,m : S → R3 factors through an embedding (diffeomorphism onto its image)

(5.14) Ẑθ,m : Ŝm → R3, where Ŝm := S / Tm
is the quotient surface under the identifications induced by the group generated by Tm, and the
embeddedness follows from 4.27 and 4.17.iv. Note that in the following definition ΠS involves

scaling, M̃θ,m[1] is the graph of the function λψtrunϕwing transplanted to a subset of Wθ \ Cθ,
and ΠWθ

is the identity map on a neighborhood of ∂Mθ,m:

Definition 5.15. We define a smooth map (diffeomorphism onto its image) ΠS : M̃θ,m[0]→ Ŝm
as the restriction to M̃θ,m[0] of the inverse of Ẑθ,m, considered as a diffeomorphism from Ŝm
onto its image and defined as in 5.14.

We also define a smooth map (diffeomorphism onto its image) ΠWθ
: M̃θ,m[1] → Wθ \ Cθ to

be the nearest point projection from M̃θ,m[1] to Wθ \ Cθ (recall 1.6).

Definition 5.16. We define the cutoff functions ψ̂, ψ′ ∈ C∞(Mθ,m) by (recall 1.8)

ψ̂ = ψcut[`, `− 1] ◦ s, ψ′ = ψcut[a, a+ 1] ◦ s,
where s is the function on Mθ,m as defined in 4.26.
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Lemma 5.17. (i). ψ̂ is supported on M̃θ,m[0] with ψ̂ ≡ 1 on Mθ,m[0] ⊂ M̃θ,m[0].

(ii). ψ′ is supported on M̃θ,m[1] with ψ′ ≡ 1 on Mθ,m[1] ⊂ M̃θ,m[1].

(iii). ψ̂, ψ′ are Gm-invariant functions on Mθ,m (recall 5.1).

(iv). ‖ψ̂ ◦ Zθ,m : C3(S, gS)‖ ≤ C (recall 4.23) and ‖ψ′ : C3(Mθ,m, λ
−2g)‖ ≤ C.

Proof. (i) and (ii) follow from 1.8 and 5.12, while (iii) holds since s is a Gm-invariant function
on Mθ,m by 4.26. (iv) follows from the definitions. �

Definition 5.18 (Global weighted norms). For Ω a Gm-invariant domain in Mθ,m ⊂ M θ,m

(defined as in 4.26), k = 0, 2, and u ∈ Ck,βsym(Ω), we define

‖u‖k,β,γ;Ω := λ−k+1 ‖u : Ck,β( Ω , λ−2g , fk ) ‖,

where fk := max(e−γs, bk), b0 := e−5γδsm, b2 := λ−6b0, λ is as in 4.23, and the weighted norm

is as in 1.13. For (E,E∂) ∈ C0,β
sym(Ω)× C1,β

sym(∂Mθ,m ∩ Ω) we also define

‖ (E,E∂) ‖0,β,γ;Ω := max
(
‖E‖0,β,γ;Ω , b

−1
0 ‖E∂ : C1,β(∂Mθ,m ∩ Ω , λ−2g)‖

)
.

Lemma 5.19 (Norms and operators comparison). With the assumptions and the notation of
5.18 and 4.8, we have the following:

(i). If Ω ⊂ M̃θ,m[0] and û ∈ Ck,βsym( ΠS(Ω) ), then we have with ε = C (δs + δθ):

(a). ‖û ◦ΠS‖k,β,γ;Ω ≤ λ−k+1 ‖û ◦ΠS : Ck,β( Ω , λ−2g , e−γs ) ‖
∼(1+ε) λ−k+1 ‖û : Ck,β( ΠS(Ω) , gS , e

−γs ) ‖ .
(b). ‖ψ̂{L(û ◦ΠS)−λ−2(LS û) ◦ΠS}‖0,β,γ;Ω ≤ ε λ−1 ‖û : C2,β( ΠS(Ω) , gS , e

−γs ) ‖ (k = 2).

(ii). If Ω ⊂ M̃θ,m[1] and u′ ∈ Ck,βsym( ΠWθ
(Ω) ), then we have

(a). ‖u′ ◦ΠWθ
: Ck,β( Ω , λ−2g ) ‖ ∼(1+Cλ7) ‖u′ : Ck,β( ΠWθ

(Ω) , λ−2g ) ‖.
(b). ‖ψ′{L(u′ ◦ΠWθ

)− (LWθ
u′) ◦ΠWθ

}‖0,β,γ;Ω ≤ Cλ7‖u′ ◦ΠWθ
‖2,β,γ;Ω (k = 2).

(c). B(u′ ◦ΠWθ
) = (Bu′) ◦ΠWθ

on Ω ∩ ∂Mθ,m (k = 2).

Proof. (i) follows from 5.18, 1.16, 4.19 and 5.17.iv. (ii) (a) follows from the fact that that M̃θ,m[1]
is the graph of the function λψtrunϕwing over a subset ofWθ \Cθ, and by using the definition of a
(so that e−a = λ7) and 4.6 to estimate. (ii) (b) follows from the same observation together with
5.17.iv. Note that there is a scaling factor of λ2 which is offset by the difference of the powers of
λ in ‖ · ‖k,β,γ;Ω for k = 0, 2 in 5.18. (ii) (c) follows from the observation that Mθ,m agrees with
Wθ in a neighborhood of ∂Mθ,m (so the Jacobi operators B for Mθ,m and Wθ coincide). �

We consider now the linearized equation 5.5 with S = Mθ,m. We define the “extended substi-

tute kernel” on Mθ,m to be the span of w ◦ ΠS . Given (E,E∂) ∈ C0,β
sym(Mθ,m) × C1,β

sym(∂Mθ,m),
we construct an approximate solution u1 modulo w ◦ΠS , by combining semi-local approximate

solutions as follows: Note that by 5.3.iii and 5.17.i and iii, ψ̂E ∈ C0,β
sym(Mθ,m) is supported inside

M̃θ,m[0]. Recall from 5.15 that ΠS is a diffeomorphism from M̃θ,m[0] onto its image in Ŝm. We

define uniquely Ê ∈ C2,β
sym(Ŝm, gS , e−γs) supported in Ŝm ∩ {s ≤ 5δsm} by

(5.20) Ê ◦ΠS = λ2ψ̂E on M̃θ,m[0].

By 5.10 then, there exist unique û ∈ C2,β
sym(Ŝm, gS , e−γs) and µ1 ∈ R such that

(5.21) LS û = Ê + µ1w on Ŝm.
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Note that w descends to a function on Ŝm by 5.3.iv and that ∂Mθ,m = Mθ,m ∩ S2 = Wθ ∩ S2

by the definitions. We define uniquely E′ ∈ C0,β
sym(Wθ) supported on ΠWθ

(M̃θ,m[1]), and E′∂ ∈
C1,β(∂Mθ,m), by requesting

(5.22) E′ ◦ΠWθ
= (1− ψ̂2)E − [L, ψ̂](û ◦ΠS) on M̃θ,m[1], E′∂ ◦ΠWθ

= E′ along ∂Mθ,m.

Note that by 5.17.i, (1− ψ̂2)E is supported on Mθ,m \Mθ,m[0] ⊂ M̃θ,m[1] and [L, ψ̂](û ◦ΠS) is

supported on M̃θ,m[0] \Mθ,m[0] ⊂ M̃θ,m[0] ∩ M̃θ,m[1], and therefore E′ is in fact supported on

ΠW(M̃θ,m[1] \Mθ,m[0]). Finally by appealing to 5.7 we define

(5.23) u′ := RWθ
(E′, E′∂) and u1 := ψ̂(û ◦ΠS) + ψ′(u′ ◦ΠWθ

).

Note that by 5.17.i-ii ψ̂(û ◦ΠS) and ψ′(u′ ◦ΠW) are supported in M̃θ,m[0] and M̃θ,m[1] respec-
tively.

Definition 5.24. We define a linear map RM,appr : C0,β
sym(Mθ,m)×C1,β

sym(∂Mθ,m)→ C2,β
sym(Mθ,m)×

R×C0,β
sym(Mθ,m)×C1,β

sym(∂Mθ,m) by taking RM,appr(E,E
∂) = (u1, µ1, E1, E

∂
1 ), where µ1 was de-

fined in 5.21, u1 in 5.23, and

(5.25) E1 := Lu1 − E − µ1λ
−2(w ◦ΠS), E∂1 := Bu1 − E∂ ,

where L and B are the Jacobi operators for the initial surface Mθ,m as in 5.4.

Proposition 5.26 (Linear estimates on Mθ,m). Assuming 4.8 a linear map RM : C0,β
sym(Mθ,m)×

C1,β
sym(∂Mθ,m)→ C2,β

sym(Mθ,m)× R can be defined by

RM (E,E∂) := (u, µ) :=

∞∑
n=1

(un, λ
−1µn) ∈ C2,β

sym(Mθ,m)× R

for (E,E∂) ∈ C0,β
sym(Mθ,m)×C1,β

sym(∂Mθ,m), where the sequence {(un, µn, En, E∂n)}n∈N is defined
inductively for n ∈ N by

(un, µn, En, E
∂
n) := −RM,appr(En−1, E

∂
n−1), (E0, E

∂
0 ) = −(E,E∂).

Moreover the following hold.
(i). Lu = E + µλ−1w ◦ΠS on Mθ,m, Bu = E∂ along ∂Mθ,m.

(ii). ‖u‖2,β,γ;M + |µ| ≤ C‖ (E,E∂) ‖0,β,γ;M .
(iii). RM depends continuously on the parameter θ.

Proof. By 5.17.i and iv, 1.14, 4.20, and 5.18, we have ‖ψ̂E‖0,β,γ;M ≤ C‖E‖0,β,γ;M . By 5.10 and
4.20, we have the following estimate for û and µ1:

(5.27) ‖û : C2,β(Ŝm, gS , e−γs)‖+ |µ1| ≤ ‖Ê : C0,β(Ŝm, gS , e−γs)‖ ≤ Cλ‖E‖0,β,γ;M .

By 5.22, 5.17.iv, 5.19.i, and 5.27, we have that ‖E′◦ΠWθ
‖0,β,γ;M ≤ C‖E‖0,β,γ;M . By 5.19.ii, 1.15,

1.16, and since f0 ≤ Cb0 on the support of E′ ◦ΠWθ
(which is contained in M̃θ,m[1] \Mθ,m[0]),

we have

‖E′ : C0,β(Wθ, g ) ‖ ≤ Cλ−β‖E′ : C0,β(Wθ, λ
−2g ) ‖ ≤ Cλ−1−βb0‖E‖0,β,γ;M .

Estimating similarly E∂ and applying 5.7, we obtain the estimate

(5.28) ‖u′ : C2,β(Wθ, λ
−2g)‖ ≤ ‖u′ : C2,β(Wθ, g)‖ ≤ Cλ−2b0‖ (E,E∂) ‖0,β,γ;M .

By 5.19.ii.a, 1.16, and since f2 ≥ λ−6b0 (recall 1.16) we conclude that

(5.29) ‖u′ ◦ΠWθ
‖2,β,γ;M ≤ Cλ4‖ (E,E∂) ‖0,β,γ;M .
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Combining with 5.23, 5.17.iv, 5.19.i.a, and 5.27 we have the estimate

(5.30) ‖u1‖2,β,γ;M ≤ C ‖ (E,E∂) ‖0,β,γ;M .

Using now 5.23 and 5.25 we obtain

E1 = L{ψ̂(û ◦ΠS)}+ L{ψ′(u′ ◦ΠWθ
)} − E − λ−2µ1(w ◦ΠS)

= [L, ψ̂](û ◦ΠS) + ψ̂L(û ◦ΠS) + [L, ψ′](u′ ◦ΠWθ
) + ψ′L(u′ ◦ΠWθ

)

−E − λ−2µ1(w ◦ΠS)

= E1,I + E1,II + E1,III

+λ−2ψ̂(LS û) ◦ΠS + ψ′(LWθ
u′) ◦ΠWθ

− E − λ−2µ1(w ◦ΠS) + [L, ψ̂](û ◦ΠS)

where E1,I , E1,II , E1,III ∈ C0,β
sym(Mθ,m) are supported respectively on M̃θ,m[1]\Mθ,m[1], M̃θ,m[0]

and M̃θ,m[1] by 5.17.i and ii, and where they are defined by

(5.31)

E1,I := [L, ψ′](u′ ◦ΠWθ
),

E1,II := ψ̂{L(û ◦ΠS)− λ−2(LS û) ◦ΠS},
E1,III := ψ′{L(u′ ◦ΠWθ

)− (LWθ
u′) ◦ΠWθ

}.
Using 5.21, 5.23, 5.3.iv, 5.17 and that E′ ◦ΠWθ

is supported on M̃θ,m[1] \Mθ,m[0], the leftover
terms on the right hand side above all cancel and we have the decomposition

(5.32) E1 = E1,I + E1,II + E1,III ,

where the terms on the right hand side are defined in 5.31.

By 5.31, 5.17.iv, 5.28, and (min f0)−1 = eγ(a+1) ≤ Cλ−7/γ on M̃θ,m[1] \Mθ,m[1] (where E1,I

is supported), we have

‖E1,I‖0,β,γ;M ≤ Cλ1−7/γ‖u′ : C2,β(W0, λ
−2g ) ‖ ≤ Cλ−1−7/γb0‖ (E,E∂) ‖0,β,γ;M .

By 5.31, 5.19.i, and 5.27, we have

‖E1,II‖0,β,γ;M ≤ C (δs + δθ)λ
−1‖û : C2,β(Ŝm, gS , e−γs)‖ ≤ C (δs + δθ) ‖E‖0,β,γ;M .

By 5.31, 5.19.ii and 5.29,

‖E1,III‖0,β,γ;M ≤ C λ11 ‖ (E,E∂) ‖0,β,γ;M .

Combining these estimates and by the decomposition 5.32, we conclude

‖E1‖0,β,γ;M ≤ C (λ−1−7/γb0 + δs + δθ + λ11) ‖ (E,E∂) ‖0,β,γ;M ≤
1

2
‖ (E,E∂) ‖0,β,γ;M ,

where for the last inequality we assumed that δs and δθ are small enough in absolute terms
and also that m is large enough in accordance with 4.8. By 5.19.ii.c, 5.25, 5.23, 5.22, we have
E∂1 = 0. Arguing inductively we conclude that ∀n ∈ N we have E∂n = 0 and

‖En‖0,β,γ;M ≤ 2−n‖ (E,E∂) ‖0,β,γ;M .

The proof is then completed by using the earlier estimates. �

6. Nonlinear terms and the fixed point argument

In this section, we will give uniform estimates on the nonlinear terms of the mean curvature
and the intersection function for the twisted graph of a function ϕ over an initial surface M =
Mθ,m (recall 2.14). Then, we combine the results from all previous sections to prove the main
theorem 6.2, which implies 1.1 in the introduction.
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The nonlinear terms. We now prove a global version of the uniform estimates (2.30 and 2.39)
for the mean curvature and the intersection function for twisted graphs of a function over our
initial surfaces when the function is small with respect to the global weighted norms defined in

5.18. Note that if ϕ ∈ C2,β
sym(M) with ϕ sufficiently small so that (recall 2.14) the twisted graph

G̃raph[ε0, ϕ;M ] ⊂ R3 is well-defined, then G̃raph[ε0, ϕ;M ] is Gm-invariant by 5.3.i. The ε0 > 0
can be chosen to be a sufficiently small universal constant since all our initial surfaces Mθ,m are
free boundary minimal surfaces near ∂B3 with uniformly bounded geometry.

Proposition 6.1. There exists a universal constant ε0 > 0 such that if M = Mθ,m is as in

4.26 and ϕ ∈ C2,β(M) satisfies ‖ϕ‖2,β,γ;M ≤ ε0, then ϕ is admissible on M (recall 2.15),

G̃raph[ε0, ϕ;M ] is well defined and properly embedded. Moreover, if Hϕ is the mean curvature

of G̃raph[ε0, ϕ;M ] pulled back to M by Ĩmmer[ε0, ϕ;M ], H is the mean curvature of M , and Θϕ

is the perturbed intersection function as a function on ∂M as in 2.17 for the proper immersion

Ĩmmer[ε0, ϕ;M ], then we have (recall 5.4)

‖ (Hϕ −H − Lϕ , Θϕ − Bϕ ) ‖0,β,γ;M ≤ C ‖ϕ‖22,β,γ;M .

Proof. The complete surface M θ,m has injectivity radius larger than 1/10 with respect to the

metric λ−2g. Notice that each initial surface Mθ,m is a free boundary minimal surface in a
neighborhood of ∂B3 (recall 2.48). Let Bp be the geodesic ball of radius 1/100 in (M θ,m, λ

−2g)

where p ∈ M . It is clear that we can define an immersion X : B2(2) → (Bp, λ
−2g) such that

it satisfies 2.21 for some universal constant c1 > 0. Therefore, 2.39 and scaling implies that if
‖λ−1ϕ : C2,β(Bp, λ

−2g)‖ < εH(c1), then

‖Hϕ −H − Lϕ : C0,β(Bp, λ
−2g)‖ ≤ Cλ−4‖ϕ : C2,β(Bp, λ

−2g)‖2.
The estimate for the mean curvature then follows from 5.18 and that λ−1f0(p)−1f2(p)2 ≤
λ−7b2 ≤ C. To estimate the intersection function, take Bp to be centered at p ∈ ∂M and
one can define similarly an immersion X : B2

+ → (Bp ∩ M,λ−2g) which has an extension
X : B2(2) → (Bp, λ

−2g) with c1-bounded geometry as in 2.19 for some universal constant

c1 > 0. Thus, 2.30 and scaling implies that if ‖λ−1ϕ : C2,β(Bp ∩M,λ−2g)‖ < εΘ(c1), then

‖Θϕ − Bϕ : C1,β(Bp ∩ ∂M, λ−2g)‖ ≤ Cλ−2‖ϕ : C2,β(Bp ∩M,λ−2g)‖2.
The estimate for the intersection function then follows from 5.18 and that b−1

0 f2(p)2 ≤ C. By

our construction it is clear that the twisted graph G̃raph[ε0, ϕ;M ] is globally embedded. This
finishes the proof of the proposition. �

The main theorem.

Theorem 6.2. There is an absolute constants ε0 > 0 and C > 0 such that if m is suffi-

ciently large depending on C, then there exists θ with |θ| ≤ Cm−1 and ϕ ∈ C2,β
sym(M) with

‖ϕ‖2,β,γ;M ≤ 2Cm−1, where M = Mθ,m is as in 4.26 and ‖ · ‖2,β,γ;M is as in 5.18, such that

Σm−1 := G̃raph[ε0, ϕ;M ] (recall 2.14) is a properly embedded free boundary minimal surface in
B3 satisfying 1.1.

Proof. As usual [26, 29, 30, 35, 33] the proof uses Schauder’s fixed point theorem [15, Theorem
11.1]. This theorem asserts that any continuous mapping (not necessarily linear) from a compact
convex set in a Banach space into itself must have a fixed point. The elemensts of the Banach
space in our case are functions defined on the initial surfaces together with the unbalancing
parameter θ.
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Let C > 0 be a constant to be chosen sufficiently large in absolute terms later. Let m be a
fixed positive interger which is sufficiently large in terms of C as in 4.8. We assume |θ| ≤ Cm−1

and write Mθ = Mθ,m throughout the proof.
Step 1: Identifying the function spaces: In order to define a continuous function on a fixed

Banach space (independent of θ), we have to first identify functions defined on different initial

surfaces. Using the diffeomorphisms FWθ
and Ẑθ,m defined in 3.15 and 5.14 respectively, we can

construct a family of smooth Gm-equivariant diffeomorphisms Fθ : M0 → Mθ such that if m is

sufficiently large in terms of C, for any ϕ ∈ C2,β
sym(Mθ),

(6.3) ‖ϕ‖2,β,γ;Mθ
∼2 ‖ϕ ◦ Fθ‖2,β,γ;M0 ,

where ‖ϕ‖2,β,γ;Mθ
denotes the weighted global norm defined on Mθ in 5.18.

Step 2: The compact convex set K: Consider the set

(6.4) K := {(ϕ, θ) ∈ C2,β
sym(M0)× R : ‖ϕ‖2,β,γ;M0 ≤ Cm−1, |θ| ≤ Cm−1}.

We claim that K is a compact convex subset of the Banach space C2,β′
sym(M0)× R for any fixed

β′ ∈ (0, β). Convexity is obvious since ‖ · ‖2,β,γ is a norm. Compactness follows from Arzela-
Ascoli’s theorem since M0 is compact.

Step 3: Defining the map J : We define a nonlinear map

J : K → C2,β′
sym(M0)× R

as follows: Given (ϕ, θ) ∈ K, let ϕθ ∈ C2,β
sym(Mθ) be defined by

(6.5) ϕθ := ϕ ◦ F−1
θ − ϕH ,

where (ϕH , θH) := RM (H − θλ−1w ◦ΠS , 0) with RM be the linear map defined in 5.26 and H
is the mean curvature of Mθ. Therefore, we have

(6.6) LϕH = H + (θH − θ)λ−1w ◦ΠS on Mθ, BϕH = 0 along ∂Mθ.

Let us assume first that ‖ϕθ‖2,β,γ;Mθ
< ε0 where ε0 is the constant in 6.1, then the graph

Graph[ϕθ,Mθ] is well-defined. Let Hϕθ and Θϕθ be the mean curvature and intersection function
of Graph[ϕθ,Mθ] pulled back to functions on Mθ and ∂Mθ respectively as in 6.1. Next, we define

(6.7) (ϕ̃, θ̃) := RM (Hϕθ −H − Lϕθ,Θϕθ − Bϕθ),
which by 5.26 satisfies

(6.8) Lϕ̃ = Hϕθ −H − Lϕθ + θ̃λ−1w ◦ΠS on Mθ, Bϕ̃ = Θϕθ − Bϕθ along ∂Mθ.

Finally, we define J (ϕ, θ) := (−ϕ̃ ◦ Fθ, θH + θ̃).
Step 4: J is a well-defined contraction map: We show now that if C is sufficiently large in

absolute terms and m is sufficiently large in terms of C, then the map J in step 2 is well-defined
and is a contraction map on K, that is J (K) ⊂ K.

The first thing to check is that ‖ϕθ‖2,β,γ;Mθ
< ε0 so that 6.1 can be applied. Recall from the

construction that M \Σθ,m ⊂ Wθ is minimal so H−θλ−1w◦ΠS is supported on Σθ,m = M̃θ,m[0].
Using 5.18 and 5.19.i.a, we can rewrite the estimate in 4.22 as

(6.9) ‖H − θλ−1w ◦ΠS‖0,β,γ;Mθ
≤ C(m−1 + |θ|2).

Since |θ| ≤ Cm−1, by 5.26 we have |θH | + ‖ϕH‖0,β,γ;Mθ
≤ C(m−1 + C2m−2). Therefore, using

6.3, 6.5 and that (ϕ, θ) ∈ K as in 6.4, we get

(6.10) ‖ϕθ‖2,β,γ;Mθ
≤ C‖ϕ‖2,β,γ;M0 + ‖ϕH‖2,β,γ;Mθ

≤ CC2m−1.
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From the estimate above, we see that if m is sufficiently large in terms of C, then we would
have ‖ϕθ‖2,β,γ;Mθ

< ε0 in 6.1 and hence Graph[ε0, ϕθ;Mθ] is a well-defined embedding and we
have the quadratic estimate

(6.11) ‖ (Hϕθ −H − Lϕθ , Θϕθ − Bϕθ ) ‖0,β;∂Mθ
≤ C‖ϕθ‖22,β,γ;Mθ

.

Now, combining 6.6, 6.8, and 6.5, we have

(6.12) Hϕθ = L(ϕ̃+ ϕ ◦ F−1
θ ) + (θ − θH − θ̃)λ−1w ◦ΠS on Mθ,

(6.13) Θϕθ = B(ϕ̃+ ϕ ◦ F−1
θ ) along ∂Mθ.

Recall that J (ϕ, θ) := (−ϕ̃ ◦Fθ, θH + θ̃). By 6.7, 5.26, 6.3, 6.10, and 6.11, we have the estimate

|θ̃|+ ‖ϕ̃ ◦ Fθ‖2,β,γ;M0 ≤ C‖ϕθ‖22,β,γ;Mθ
≤ CC4m−2.

Using this, 5.26 and 6.9, we have |θH + θ̃| ≤ Cm−1 + CC4m−2. Therefore, if we first choose
C sufficiently large in absolute terms and then choose m large enough in terms of C, we can
arrange that J (K) ⊂ K.

Step 5: The fixed point argument: From step 4 we have a well-defined contraction map J :
K → K where K is a compact convex subset of a Banach space by step 2. Continuity of J follows
from the definitions and the continuity of the linear maps RM in θ and the diffeomophisms Fθ.
Therefore, we can apply Schauder’s fixed point theorem to obtain a fixed point (ϕ∗, θ∗) ∈ K
of J . The proof is finished once we show that the graph of ϕ∗ over the initial surface Mθ∗ is
a minimal surface intersecting S2 orthogonally. In other words, we have to show that Hϕ∗ ≡ 0
and Θϕ∗ ≡ 0.

Since (ϕ∗, θ∗) is a fixed point of J , which means ϕ∗ = −ϕ̃ ◦ Fθ and θ∗ = θH + θ̃. Hence, we

have ϕ̃+ ϕ∗ ◦ F−1
θ = 0 and θ − θH − θ̃ = 0. By 6.12 and 6.13 respectively, we get Hϕ∗ ≡ 0 and

Θϕ∗ ≡ 0 and the proof is complete. �

Appendix A. Local exponential map estimates

Proposition A.1. Let g be a Riemannian metric on Bn with coordinates x1, · · · , xn. Let gij :=

g(∂xi , ∂xj ) be the metric components in this coordinate system, gij be the inverse and Γkij be the
Christoffel symbols. Suppose that

(A.2) ‖gij : C4(Bn, g0)‖ ≤ c1, and c−1
1 g0 ≤ g

for some constant c1 > 1, then there exists a constant C depending on c1 (and n) such that

(A.3) ‖gij : C4(Bn, g0)‖ ≤ C, ‖Γkij : C3(Bn, g0)‖ ≤ C,
and that the exponential map exp : Bn

1−2C−1 × Bn
C−1 → Bn with respect to g is a well defined

C3 map such that for any multi-indices I, J with |I|+ |J | ≤ 3, we have the pointwise estimates

(A.4) |∂|I|
xI
∂
|J |
vJ

(exp(x, v)− x− v)| ≤ C |v|max(2−|J |,0),

where | · | denotes the norm of a vector with respect to the Euclidean metric g0.

Proof. The inverse of a matrix A is given by A−1 = (detA)−1adj(A) where adj(A) is the adjoint
matrix of A. From A.2 we get the estimate A.3 and that the metrics g ∼c1 g0 are uniformly
equivalent (recall 1.12). From the definition of exponential map:

exp(x, v) := γx,v(1),
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where γx,v(t) : [0, 1]→ Bn is the unique geodesic (relative to g) starting at x with initial velocity
v, that is γx,v(0) = x and γ′x,v(0) = v. In other words, γx,v is the unique solution to the geodesic

equation with such initial conditions (here γ = (γ1, · · · , γn) are the coordinate expression of γ):

(A.5)

{
(γk)′′(t) = Γkij(γ(t))(γi)′(t)(γj)′(t), k = 1, 2, · · · , n

γ(0) = x, γ′(0) = v.

By standard ODE theory and A.3, the exponential map exp is well defined for (x, v) ∈ Bn
1−2C−1×

Bn
C−1 for some constant C depending on c1.
It remains to prove A.4. The smoothness of the exponential map is a direct consequence of

the smooth dependence on initial conditions (x, v) for the solutions to the ODE system A.5. We
will show how to get C1-bounds here. The proof for higher derivatives are similar.

Let | · | and ‖ · ‖ be the norm of a vector with respect to g0 and g respectively. Since γ is a
geodesic, ‖γ′(t)‖ ≡ ‖γ′(0)‖ = ‖v‖. Using A.2 and g0 ∼c1 g, we have |γ′(t)| ≤ C|v|. By Taylor’s
theorem, g0 ∼c1 g, A.3 and A.5, we have the C0-estimate:

| exp(x, v)− x− v| = |γ(1)− γ(0)− γ′(0)| ≤ max
t∈[0,1]

|1
2
γ′′(t)| ≤ C max

t∈[0,1]
|γ′(t)|2 ≤ C|v|2.

For estimates on the derivatives, we differentiate the system A.5. For example, differentiating
with respect to some xa:

(A.6)

{
(∂xaγ

k)′′ = (γi)′(γj)′(∇Γkij · ∂xaγ) + 2Γkij(γ
i)′(∂xaγ

j)′,

∂xaγ
k(0) = δka , ∂xa(γk)′(0) = 0.

Recall Kato’s inequality that |α(t)|′ ≤ |α′(t)| for any curve α(t) in Rn, using A.6 and A.3, we
have |∂xaγ′|′ ≤ |∂xaγ′′| ≤ C|v|2|∂xaγ|+ C|v||∂xaγ′|. If we define the function G : [0, 1]→ R by

G(t) := max
s∈[0,t]

|∂xaγ′(s)|,

then G is a non-negative monotone increasing function hence differentiable a.e. and from A.6,
we have the differential inequality

G′(t) ≤ C|v|2(1 +G(t)) + C|v|G(t) ≤ C|v|2 + C|v|G(t)

with G(0) = 0. Integrating the differential inequality gives

G(t) ≤ |v|(eC|v|t − 1) ≤ C|v|2,
provided |v| is sufficiently small (but depending only on c1). From this we have the pointwise
estimate

|∂xa(exp(x, v)− x− v)| ≤ C|v|2.
The estimate on the derivatives with respect to v can be obtained similarly. We differentiate

A.5 with respect to some va

(A.7)

{
(∂vaγ

k)′′ = (γi)′(γj)′(∇Γkij · ∂vaγ) + 2Γkij(γ
i)′(∂vaγ

j)′,

∂vaγ
k(0) = 0, ∂va(γk)′(0) = δka .

Define G(t) := maxs∈[0,t] |∂vaγ′(s)|, we argue as before to obtain the differential inequality
G′ ≤ C|v|G with initial condition G(0) = 1, which implies that G(t) ≤ 1 + C|v| provided that
|v| is sufficiently small (depending only on c1). This implies the estimate

|∂va(exp(x, v)− x− v)| ≤ C|v|.
Higher order derivative estimates can be obtained in a similar manner. �
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As a corollary of the above exponential map estimates, one can prove the following lower
bound on the injectivity radius.

Corollary A.8. Under the same assumption as in A.1, then for all x ∈ Bn
1−2C−1,

injx(Bn, g) ≥ C−1.

Proof. Since Dv exp(x, 0) = id for all x, using the estimates in A.1, Dv exp(x, v) is a non-singular
matrix for all |v| ≤ C−1. From this the assertion follows since we are looking at a local coordinate
patch. �
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Linéaire 3 (1986), no. 5, 345–390.

17. S. Hildebrandt and J. C. C. Nitsche, Minimal surfaces with free boundaries, Acta Math. 143 (1979), no. 3-4,

251–272.

18. D. Hoffman and W. H. Meeks, III, A variational approach to the existence of complete embedded minimal

surfaces, Duke Math. J. 57 (1988), no. 3, 877–893.

19. David Hoffman and William H. Meeks, III, Embedded minimal surfaces of finite topology, Ann. of Math. (2)

131 (1990), no. 1, 1–34.

20. , Limits of minimal surfaces and Scherk’s fifth surface, Arch. Rational Mech. Anal. 111 (1990), no. 2,

181–195.

21. , Minimal surfaces based on the catenoid, Amer. Math. Monthly 97 (1990), no. 8, 702–730.

22. David A. Hoffman and William Meeks, III, A complete embedded minimal surface in R3 with genus one and

three ends, J. Differential Geom. 21 (1985), no. 1, 109–127.

43



23. Jürgen Jost, Existence results for embedded minimal surfaces of controlled topological type. I, Ann. Scuola

Norm. Sup. Pisa Cl. Sci. (4) 13 (1986), no. 1, 15–50.

24. N. Kapouleas, S. J. Kleene, and N. M. Moller, Mean curvature self-shrinkers of high genus: non-compact

examples, J. Reine Angew. Math. (2015), https://doi.org/10.1515/crelle-2015-0050.

25. Nikolaos Kapouleas, A general desingularization theorem for minimal surfaces in the compact case, In prepa-

ration.

26. , Complete constant mean curvature surfaces in Euclidean three-space, Ann. of Math. (2) 131 (1990),

no. 2, 239–330.

27. , Compact constant mean curvature surfaces in Euclidean three-space, J. Differential Geom. 33 (1991),

no. 3, 683–715.

28. , Constant mean curvature surfaces constructed by fusing Wente tori, Proc. Nat. Acad. Sci. U.S.A. 89

(1992), no. 12, 5695–5698.

29. , Constant mean curvature surfaces constructed by fusing Wente tori, Invent. Math. 119 (1995), no. 3,

443–518.

30. , Complete embedded minimal surfaces of finite total curvature, J. Differential Geom. 47 (1997), no. 1,

95–169.

31. , Constructions of minimal surfaces by gluing minimal immersions, Global theory of minimal surfaces,

Clay Math. Proc., vol. 2, Amer. Math. Soc., Providence, RI, 2005, pp. 489–524. MR 2167274 (2006e:53017)

32. , Doubling and desingularization constructions for minimal surfaces, Surveys in geometric analysis

and relativity, Adv. Lect. Math. (ALM), vol. 20, Int. Press, Somerville, MA, 2011, pp. 281–325. MR 2906930

33. , Minimal Surfaces in the Round Three-sphere by Doubling the Equatorial Two-sphere, I, J. Differential

Geom. 106 (2017), 393–449.

34. Nikolaos Kapouleas and David Wiygul, Minimal surfaces in the 3-sphere by desingulariziang intersecting

Clifford tori, arXiv:1701.05658.

35. Nikolaos Kapouleas and Seong-Deog Yang, Minimal surfaces in the three-sphere by doubling the Clifford torus,

Amer. J. Math. 132 (2010), no. 2, 257–295.

36. H. Karcher, U. Pinkall, and I. Sterling, New minimal surfaces in S3, J. Differential Geom. 28 (1988), no. 2,

169–185.

37. Daniel Ketover, Free boundary minimal surfaces of unbounded genus, arXiv:1612.08691.

38. H. Blaine Lawson, Jr., Complete minimal surfaces in S3, Ann. of Math. (2) 92 (1970), 335–374.

39. Martin Man-chun Li, A general existence theorem for embedded minimal surfaces with free boundary, Comm.

Pure Appl. Math. 68 (2015), no. 2, 286–331.

40. Martin Man-chun Li and Xin Zhou, Min-max theory for free boundary minimal hypersurfaces I: regularity

theory, arXiv: 1611.02612.

41. Davi Maximo, Ivaldo Nunes, and Graham Smith, Free boundary minimal annuli in convex three-manifolds,

arXiv:1312.5392, to appear in J. Differential Geom.

42. William Meeks, III, Leon Simon, and Shing Tung Yau, Embedded minimal surfaces, exotic spheres, and

manifolds with positive Ricci curvature, Ann. of Math. (2) 116 (1982), no. 3, 621–659.

43. Sebastián Montiel and Antonio Ros, Schrödinger operators associated to a holomorphic map, Global differ-

ential geometry and global analysis (Berlin, 1990), Lecture Notes in Math., vol. 1481, Springer, Berlin, 1991,

pp. 147–174.

44. Xuan Hien Nguyen, Construction of complete embedded self-similar surfaces under mean curvature flow, Part

III, Duke Math. J. 163 (2014), no. 11, 2023–2056.

45. Johannes C. C. Nitsche, The regularity of the trace for minimal surfaces, Ann. Scuola Norm. Sup. Pisa Cl.

Sci. (4) 3 (1976), no. 1, 139–155.

46. , Stationary partitioning of convex bodies, Arch. Rational Mech. Anal. 89 (1985), no. 1, 1–19.

47. Stefano Pigola and Giona Veronelli, The smooth Riemannian extension problem, arXiv:1606.08320.

48. H. F. Scherk, Bemerkungen über die kleinste fläche innerhalb gegebener grenzen, J. Reine Angew. Math. 13

(1835), 185–208.

49. R. Schoen, The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar

equation, Comm. Pure Appl. Math. 41 (1988), no. 3, 317–392.

50. R. Schoen and Shing Tung Yau, Existence of incompressible minimal surfaces and the topology of three-

dimensional manifolds with nonnegative scalar curvature, Ann. of Math. (2) 110 (1979), no. 1, 127–142.

44



51. Richard Schoen and Shing Tung Yau, Complete three-dimensional manifolds with positive Ricci curvature and

scalar curvature, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press,

Princeton, N.J., 1982, pp. 209–228. MR 645740 (83k:53060)

52. Jean E. Taylor, Boundary regularity for solutions to various capillarity and free boundary problems, Comm.

Partial Differential Equations 2 (1977), no. 4, 323–357.

53. Martin Traizet, Construction de surfaces minimales en recollant des surfaces de Scherk, Ann. Inst. Fourier

(Grenoble) 46 (1996), no. 5, 1385–1442.

54. H. C. Wente, Counterexample to a conjecture of H. Hopf, Pacific Jour. of Math. 121 (1986), 193–243.

55. David Wiygul, Minimal surfaces in the 3-sphere by stacking Clifford tori, arXiv:1502.07420.

56. Meinhard Wohlgemuth, Higher genus minimal surfaces by growing handles out of a catenoid, Manuscripta

Math. 70 (1991), no. 4, 397–428.

Department of Mathematics, Brown University, Providence, RI 02912, USA

E-mail address: nicos@math.brown.edu

Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong

E-mail address: martinli@math.cuhk.edu.hk

45


	1. Introduction
	Organization of the presentation
	Notations and conventions
	Acknowledgments

	2. Deformations of properly immersed hypersurfaces
	Proper immersion and boundary angle
	Perturbations of proper immersions
	Local estimates for the boundary angle
	Local estimates for mean curvature

	3. Rotationally symmetric free boundary minimal surfaces
	Catenoidal annuli orthogonal to S2+
	Kernels of the Standard Pieces

	4. The initial surfaces
	The singly periodic Scherk surface
	The desingularizing surfaces
	Mean curvature of desingularizing surfaces
	The initial surfaces

	5. Solving the linearized equations
	The linearized free boundary minimal surface equation
	Solving the linearized equation on W
	Solving the linearized equation on S
	Solving the linearized equation on M,m

	6. Nonlinear terms and the fixed point argument
	The nonlinear terms
	The main theorem

	Appendix A. Local exponential map estimates
	References

