
Online Adaptive Local Multiscale Model Reduction for

Heterogeneous Problems in Perforated Domains

Eric T. Chung ∗ 1,2, Yalchin Efendiev †2, Wing Tat Leung4, Maria
Vasilyeva2,5, and Yating Wang 4

1Department of Mathematics, The Chinese University of Hong Kong (CUHK), Hong Kong SAR.
2Department of Mathematics & Institute for Scientific Computation (ISC), Texas A&M University, College Station,

TX 77843-3368, USA.
3Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA.

4Department of Computational Technologies, Institute of Mathematics and Informatics, North-Eastern Federal
University, Yakutsk, 677980, Republic of Sakha (Yakutia), Russia.

April 9, 2018

Abstract

In this paper, we develop and analyze an adaptive multiscale approach for heterogeneous problems
in perforated domains. We consider commonly used model problems including the Laplace equation, the
elasticity equation, and the Stokes system in perforated regions. In many applications, these problems
have a multiscale nature arising because of the perforations, their geometries, the sizes of the perfora-
tions, and configurations. Typical modeling approaches extract average properties in each coarse region,
that encapsulate many perforations, and formulate a coarse-grid problem. In some applications, the
coarse-grid problem can have a different form from the fine-scale problem, e.g., the coarse-grid system
corresponding to a Stokes system in perforated domains leads to Darcy equations on a coarse grid. In
this paper, we present a general offline/online procedure, which can adequately and adaptively represent
the local degrees of freedom and derive appropriate coarse-grid equations. Our approaches start with
the offline procedure (following [18]), which constructs multiscale basis functions in each coarse region
and formulates coarse-grid equations. In [18], we presented the offline simulations without the analysis
and adaptive procedures, which are needed for accurate and efficient simulations. The main contribu-
tions of this paper are (1) the rigorous analysis of the offline approach (2) the development of the online
procedures and their analysis (3) the development of adaptive strategies. We present an online proce-
dure, which allows adaptively incorporating global information and is important for a fast convergence
when combined with the adaptivity. We present online adaptive enrichment algorithms for the three
model problems mentioned above. Our methodology allows adding and guides constructing new online
multiscale basis functions adaptively in appropriate regions. We present the convergence analysis of
the online adaptive enrichment algorithm for the Stokes system. In particular, we show that the online
procedure has a rapid convergence with a rate related to the number of offline basis functions, and one
can obtain fast convergence by a sufficient number of offline basis functions, which are computed in the
offline stage. The convergence theory can also be applied to the Laplace equation and the elasticity
equation. To illustrate the performance of our method, we present numerical results with both small and
large perforations. We see that only a few (1 or 2) online iterations can significantly improve the offline
solution.
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1 Introduction

One important class of multiscale problems consists of problems in perforated domains (see Figure 1 for an
illustration). In these problems, differential equations are formulated in perforated domains. These domains
can be considered the outside of inclusions or connected bodies of various sizes. Due to the variable sizes and
geometries of these perforations, solutions to these problems have multiscale features. One solution approach
involves posing the problem in a domain without perforations but with a very high contrast penalty term
representing the domain heterogeneities ([31, 43, 28, 32]). However, the void space can be a small portion
of the whole domain and, thus, it is computationally expensive to enlarge the domain substantially.

Problems in perforated domains ([42]), as other multiscale problems, require some model reduction tech-
niques to reduce the computational cost. The main computational cost is due to the fine grid, which needs
to resolve the space between the perforations. There have been many homogenization results in perfo-
rated domains and for biphasic problems, where perforations can have distinctly different properties, e.g.,
[1, 36, 34, 40, 24, 41, 3, 5, 26, 38, 27, 25]. Homogenization approaches average microscale processes in
perforations and outside and provide macroscale equations that differ from microscale equations. In the
homogenization procedure, the local cell problems account for the microscale interaction and are solved on a
fine grid. Using the solutions of the local problems, the effective properties can be computed. The resulting
homogenized equations can be solved on the coarse grid with the mesh size independent of the size of the
perforations for different boundary conditions and right hand sides.

To carry out the homogenization, typical assumptions on periodicity or scale separation are needed to for-
mulate the cell problems. Some generalization to problems with random homogeneous pore-space geometries
is introduced in a pioneering work [6], where the authors formulate assumptions, when homogenization can
be done using representative volume element concepts. In these approaches, the cell problems in very large
domains are formulated and the effective properties are computed using the solutions of the local problems.
However, these approaches still assume that the solution space can be approximated by the solutions of
directional cell problems (i.e., 2 cell problems in 2D) and the effective equations contain a limited number
of effective parameters (e.g., symmetric permeability tensor). These assumptions do not hold for general
heterogeneities and the effective properties may be richer (one may need more parameters). To study this,
we use Generalized Multiscale Finite Element Method to identify necessary local cell solutions and obtain
numerical macroscopic equations.

The main difference in developing multiscale methods for problems in perforated domains is the complex-
ity of the domains and that many portions of the domain are excluded in the computational domain. This
poses a challenging task. For typical upscaling and numerical homogenization (e.g., [42, 29]), the macroscopic
equations do not contain perforations and one computes the effective properties. In multiscale methods, the
macroscopic equations are numerically derived by computing multiscale basis functions [35, 7, 18]. Several
multiscale methods have been developed for problems in perforated domains. Our approaches are motivated
by recent works [37, 35, 9, 29, 10, 18]. In this regard, we would like to mention recent works by Le Bris and his
collaborators [35], where accurate multiscale basis functions are constructed. These approaches differ from
numerical homogenization and approaches that use Representative Volume Element (RVE) [20]. However,
these approaches do not contain a systematic way of enriching local multiscale spaces to obtain accurate
macroscale representations of the underlying fine-scale problem.

Our proposed approaches are based on the Generalized Multiscale Finite Element (GMsFEM)
Framewowk[21, 17, 13]. The GMsFEM follows the main concept of MsFEM [23, 33, 12, 2, 4]; however,
it systematically constructs multiscale basis functions for each coarse block. The main idea of the GMsFEM
is to use local snapshot vectors (borrowed from global model reduction) to represent the solution space and
then identify local multiscale spaces by performing appropriate local spectral problem. Using snapshot spaces
is essential in problems with perforations, because the snapshots contain necessary geometry information.
In the snapshot space, we perform local spectral decomposition to identify multiscale basis functions. These
basis functions are derived based on the analysis presented in this paper. The local multiscale basis functions
obtained as a result represent the necessary degrees of freedom to represent the microscale effects. This is
in contrast to homogenization, where one apriori selects the number of cell problems.
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We present the analysis of the proposed method. We focus on analyzing Stokes equations, since similar
techniques can be easily extended to the elliptic and the elasticity equations. We note that in [18], we
present the offline simulations for heterogeneous problems in perforated domains. In [14], the results for
the mixed GMsFEM for the Laplace equation with Neumann boundary conditions are presented. The main
contributions of this paper are (1) the rigorous analysis of the offline approach (2) the development of the
online procedures and their analysis (3) the development of adaptive strategies. We would like to emphasize
that the adaptivity and online basis construction are important for the success of multiscale methods. Indeed,
in many regions, one may need only a few basis functions, while some regions may require more degrees of
freedom for approximating the solution space. The online basis functions allow a fast convergence and takes
into account global effects.

In the GMsFEM, the multiscale basis function construction is local and uses both local snapshot solutions
and local spectral problems. In the paper, we discuss the use of randomized snapshots to reduce the offline
cost associated with the snapshot space computations. One can use local oversampling techniques [22];
however, the global effects are still not used. One can accelerate the convergence by computing multiscale
basis functions using a residual at the online stage [16, 11, 39]. This is done by designing new multiscale
basis functions, which solve local problems using the global residual information. Online basis functions are
computed adaptively and only added in regions with largest residuals. In this paper, we design online basis
functions. It is important that adding online basis function decreases the error substantially and one can
reduce the error in one iteration. For this reason, constructing online basis functions must guarantee that
the error reduction is independent of small scales and contrast.

Constructing online basis functions follows a rigorous analysis. We show that if a sufficient number of
offline multiscale basis functions are chosen, one can substantially reduce the error. This reduction is related
to the eigenvalue that the corresponding eigenvector is not included in the coarse space. Thus, one can
get an estimate of the error reduction apriori, which is important in practical simulations. Our analysis for
the offline procedure starts with the proof of the inf-sup condition, which shows the well-posedness of our
scheme. Then, we derive an a-posteriori error bound for our GMsFEM. This bound shows that the error
of the solution is bounded by a computable residual and an irreducible error. This irreducible error is a
measure of approximating the fine-scale space by the snapshot space. We show that the convergence rate
depends on the number of offline basis functions. We note that in [18], we only present the offline simulation
results without analysis. Based on the analysis, we have modified some of multiscale basis functions for
Stokes’ equations and moreover, introduced adaptive strategies and online basis construction techniques.

In our numerical examples, we consider two different geometries, where one case includes only a few
perforations and the other case includes many perforations. We considered elliptic, elasticity, and Stokes
equations and only report the results for elasticity and Stokes equations. Our results for the offline consist
of adding multiscale basis functions where we observe that the error decreases as we increase the number
of basis functions. However, the errors (especially those involving solution gradients) can still be large. For
this reason, online basis functions are added, which can rapidly reduce the error. We summarize some of our
quantitative results below.

• For elasticity equations without adaptivity, we observe that, with using 4 offline basis functions per
coarse neighborhood, we can achieve 7.4 % error in L2 norm, while the error is 26 % in H1 norm. The
results for the offline computations are similar for two different geometries.

• For Stokes equations without adaptivity, we observe that, with using 3 offline basis functions per coarse
block, we can achieve 0.94 % error in L2 norm, while the error is 8.8 % in H1 norm. All errors are for
the velocity field. The results for the offline computations are better for the case with many inclusions.

• For online simulations, we observe that the error decreases rapidly as we add one online basis functions.
The error keeps decreasing fast as we increase the number of online basis functions; however, we are
mostly interested in error decay when one basis function is added. We observe that the error decrease
much faster if we have more than 1 initial offline basis function. For example, the error decreases only
4 times if one basis function is chosen, while the error decreases more than 10 times if 4 initial basis
functions are selected (see Table 5 and 6 for the Stokes case and second geometry).
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• We observe that one can effectively use adaptivity to reduce the computational cost in the online
simulations. Our adaptive results show that we can achieve better accuracy for the same number of
online basis functions.

The paper is organized as follows. In Section 2, we present a general setting for perforated problems, the
coarse and fine grid definitions, and a general idea of the GMsFEM. In Section 3, we discuss constructing
offline and online basis functions. Section 4 is devoted to numerical results. In Section 5, we present the
convergence analysis for the offline and online GMsFEM. The conclusions are presented in Section 6.

2 Preliminaries

2.1 Problem setting

In this section, we present the underlying problem as stated in [18, 14] and the corresponding fine-scale
and coarse-scale discretization. Let Ω ⊂ Rd (d = 2, 3) be a bounded domain covered by inactive cells (for
Stokes flow and Darcy flow) or active cells (for elasticity problem) Bε. In the paper, we will consider d = 2
case, though our results can be extended to d > 2. We use the superscript ε to denote quantities related
to perforated domains. The active cells are where the underlying problem is solved, while inactive cells are
the rest of the region. Suppose the distance between inactive cells (or active cells) is of order ε. Define
Ωε := Ω\Bε, assume it is polygonally bounded. See Figure 1 for an illustration of the perforated domain.
We consider the following problem defined in a perforated domain Ωε

Lε(w) = f, in Ωε, (1)

w = 0 or
∂w

∂n
= 0, on ∂Ωε ∩ ∂Bε, (2)

w = g, on ∂Ω ∩ ∂Ωε, (3)

where Lε denotes a linear differential operator, n is the unit outward normal to the boundary, f and g denote
given functions with sufficient regularity.

Figure 1: Illustration of a perforated domain.

Denote by V (Ωε) the appropriate solution space, and

V0(Ωε) = {v ∈ V (Ωε), v = 0 on ∂Ωε}.

The variational formulation of Problem (1)-(3) is to find w ∈ V (Ωε) such that

〈Lε(w), v〉Ωε = (f, v)Ωε for all v ∈ V0(Ωε),
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where 〈·, ·〉Ωε denotes a specific for the application inner product over Ωε for either scalar functions or vector
functions, and and (f, v)Ωε is the L2 inner product. Some specific examples for the above abstract notations
are given below.

Laplace: For the Laplace operator with homogeneous Dirichlet boundary conditions on ∂Ωε, we have

Lε(u) = −∆u, (4)

and V (Ωε) = H1
0 (Ωε), 〈Lε(u), v〉Ωε = (∇u,∇v)Ωε .

Elasticity: For the elasticity operator with a homogeneous Dirichlet boundary condition on ∂Ωε, we
assume the medium is isotropic. Let u ∈ (H1(Ωε))2 be the displacement field. The strain tensor ε(u) ∈
(L2(Ωε))2×2 is defined by

ε(u) =
1

2
(∇u+∇uT ).

Thus, the stress tensor σ(u) ∈ (L2(Ωε))2×2 relates to the strain tensor ε(u) such that

σ(u) = 2µε + ξ∇ · u I,

where ξ > 0 and µ > 0 are the Lamé coefficients. We have

Lε(u) = −∇ · σ, (5)

where V (Ωε) = (H1
0 (Ωε))2 and 〈Lε(u), v〉Ωε = 2µ(ε(u), ε(v))Ωε + ξ(∇ · u,∇ · v)Ωε .

Stokes: For Stokes equations, we have

Lε(u , p) =

(
∇p−∆u
∇ · u

)
, (6)

where µ is the viscosity, p is the fluid pressure, u represents the velocity, V (Ωε) = (H1
0 (Ωε))2 × L2

0(Ωε), and

〈Lε(u , p), (v , q)〉Ωε =

(
(∇u,∇v)Ωε −(∇ · v, p)Ωε

(∇ · u, q)Ωε 0

)
.

We recall that L2
0(Ωε) contains functions in L2(Ωε) with zero average in Ωε.

In this paper, we will show the results for elasticity and Stokes equations. The results for Laplace have
similar convergence analysis and computational results as those for elasticity equations, so we will omit them
here.

2.2 Coarse and fine grid notations

For the numerical approximation of the above problems, we first introduce the notations of fine and coarse
grids. Let T H be a coarse-grid partition of the domain Ωε with mesh size H. Here, we assume that the
perforations will not split the coarse triangular element, as in this case, the coarse block will have two
disconnected regions. In general, the proposed concept can be applied to this disconnected case; however,
for simplicity, we avoid it and assume that every coarse-grid block is path-connected (i.e., any two points
can be connected within the coarse block). Notice that, the edges of the coarse elements do not necessarily
have straight edges because of the perforations (see Figure 2). By conducting a conforming refinement
of the coarse mesh T H , we can obtain a fine mesh T h of Ωε with mesh size h. Typically, we assume that
0 < h� H < 1, and that the fine-scale mesh T h is sufficiently fine to fully resolve the small-scale information
of the domain, and T H is a coarse mesh containing many fine-scale features. Let Nv and Ne be the number
of nodes and edges in coarse grid respectively. We denote by {xi|1 ≤ i ≤ Nv} the set of coarse nodes, and
{Ej |1 ≤ j ≤ Ne} the set of coarse edges.

For all the three model problems, we define a coarse neighborhood ωεi for each coarse node xi by

ωεi = ∪{Kε
j ∈ T H ; xi ∈ K̄ε

j}, (7)

5



Figure 2: Illustration of coarse elements and coarse neighborhoods.

which is the union of all coarse elements having the node xi. For the Stokes problem, additionally, we define
a coarse neighborhood ωεm for each coarse edge Em by

ωεm = ∪{Kε
j ∈ T H ; Em ∈ K̄ε

j}, (8)

which is the union of all coarse elements having the edge Em. See Figure 2 for an illustration of the coarse
neighborhoods.

On the triangulation T h, we introduce the following finite element spaces

Vh := {v ∈ V (Ωε) : v|K ∈ (P k(K))l for all K ∈ T h},

where, P k denotes the polynomial of degree k( k = 0, 1, 2), and l( l = 1, 2) indicates either a scalar
or a vector. Note that for the Laplace and elasticity operators, we choose k = 1, i.e., piecewise linear
function space as our fine-scale approximation space; for Stokes problem, we use (P 2(K))2 for fine-scale
velocity approximation and P 0(K) for fine-scale pressure approximation. We use Qh to denote the space for
pressure.

We will then obtain the fine-scale solution u ∈ Vh by solving the following variational problem

〈Lε(u), v〉Ωε = (f, v)Ωε , for all v ∈ Vh (9)

for Laplace and elasticity, and obtain the fine-scale solution (u, p) ∈ Vh × Qh by solving the following
variational problem

〈Lε(u, p), (v, q)〉Ωε = ((f, 0), (v, q))Ωε , for all (v, q) ∈ Vh ×Qh (10)

for the Stokes system. These solutions are used as reference solutions to test the performance of our schemes.

2.3 General idea of GMsFEM

Now, we present the general idea of GMsFEM [21, 30, 16]. We divide the computations into offline and
online stages.

Offline stage. The construction of offline space usually contains two steps:

• Construction of a snapshot space that will be used to compute an offline space.

• Construction of a small dimensional offline space by performing a dimension reduction in the snapshot
space.
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From the above process, we will get a set of basis functions {Ψoff
i } such that each Ψoff

i is supported in
some coarse neighborhood wεl . Also, the basis functions satisfy a partition of unity property.

Once the bases are constructed, we define the coarse function space as

Voff := span{Ψoff
i }Mi=1,

where M is the number of coarse basis functions.
In the offline stage of GMsFEM, we seek an approximation ums =

∑M
i=1 ciΨ

off
i in Voff, which satisfies the

coarse-scale offline formulation,

〈Lε(ums), v〉Ωε = (f, v)Ωε , for all v ∈ Voff. (11)

Here, the bilinear forms 〈Lε(ums), v〉Ωε are as defined before, and (f, v)Ωε is the L2 inner product.
Online stage. Now, we will turn our attention to the online computation. At the enrichment level

m, denote by V mms and umms the corresponding GMsFEM space and solution, respectively. The online basis
functions are constructed based on the residuals of the current multiscale solution umms. To be specific, one
can compute the local residual Ri = (f, v)ωεi −〈L

ε(umms), v〉ωεi in each coarse neighborhood ωεi . For the coarse

neighborhoods where the residuals are large, we can add one or more basis functions by solving

Lε(φon
i ) = Ri.

Adding the online basis in the solution space, we will get a new coarse function space V m+1
ms . The new

solution um+1
ms will be found in this approximation space. This iterative process is stopped when some error

tolerance is achieved. The accuracy of the GMsFEM relies on the coarse basis functions. We shall present
the construction of suitable basis functions in both offline and online stages for the differential operators
defined above.

3 The construction of offline and online basis functions

In this section, we describe the construction of offline and online basis for elasticity problem and Stokes
problem.

In the offline computation, we first construct a snapshot space V isnap for each coarse neighborhood ωεi .
Construction of the snapshot space involves solving the local problems for various choices of input parameters.
The offline space Voff is then constructed via a dimension reduction in the snapshot space using an auxiliary
spectral decomposition. The main objective is to seek a subspace of the snapshot space such that it can
approximate any element of the snapshot space in an appropriate sense defined via auxiliary bilinear forms.
Based on the residual of the current solution, we enrich the solution space by adding some online functions
to enhance the accuracy of the solution. The precise construction of offline and online basis will be presented
for different applications.

3.1 Elasticity Problem

In this section, we will consider the elasticity problem (5) with a homogeneous Dirichlet boundary condition.

3.1.1 Snapshot Space

The snapshot space for elasticity problem consists of extensions of the fine-grid functions δhk in ωεi . Here
δhk = 1 at the fine node xk ∈ ∂ωεi\∂Bε, δhk = 0 at other fine nodes xj ∈ ∂ωεi\∂Bε, and δhk = 0 in ∂Bε. Let V ih
be the restriction of the fine grid space Vh in ωεi and V ih,0 ⊂ V ih be the set of functions that vanish on ∂ωεi .

We will find uik ∈ V ih with supp(uik) ⊂ ωεi by solving the following problems on a fine grid∫
ωεi

(
2µε(uik) : ε(v) + ξ∇ · uik∇ · v

)
dx = 0, ∀v ∈ V ih,0, (12)
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with boundary conditions

uik = 0 on ∂ωεi ∩ ∂Bε, uik = (δij , 0) or (0, δij) on ∂ωεi .

We will collect the solutions of the above local problems to generate the snapshot space. Let ψi,snap
k := uik

and define the snapshot space by

Vsnap = span{ψi,snap
k : 1 ≤ k ≤ Ji, 1 ≤ i ≤ Nv},

where Ji is the number of snapshot basis in ωεi , and Nv is the number of nodes. To simplify notations, let

Msnap =
∑N
i=1 Ji and write

Vsnap = span{ψsnap
i : 1 ≤ i ≤Msnap}.

3.1.2 Offline space

This section is devoted to the construction of the offline space via a spectral decomposition. We will consider
the following eigenvalue problems in the space of snapshots:

Ai,offΨi,off
k = λi,off

k Si,offΨi,off
k , (13)

where

Ai,off = ai(ψ
i,snap
m , ψi,snap

n ) =

∫
ωεi

(
2µε(ψi,snap

m ) : ε(ψi,snap
n ) + ξ∇ · ψi,snap

m ∇ · ψi,snap
n

)
,

Si,off = si(ψ
i,snap
m , ψi,snap

n ) =

∫
ωεi

(ξ + 2µ)ψi,snap
m · ψi,snap

n .

(14)

We assume that the eigenvalues are arranged in the increasing order. To simplify notations, we write
λik = λi,off

k .
To generate the offline space, we choose the smallest Mi eigenvalues from Equation (13) and form the

corresponding eigenfunctions in the respective snapshot spaces by setting Φi,off
k =

∑
j Ψi,off

kj ψi,snap
j , for k =

1, . . . ,Mi, where Ψi,off
kj are the coordinates of the vector Ψi,off

k . The offline space is defined as the span of

χiΦ
i,off
k , namely,

Voff = span{χiΦi,off
l : 1 ≤ l ≤ li, 1 ≤ i ≤ Nv},

where li is the number of snapshot basis in ωεi , and {χi} is a set of partition of unity functions for the coarse
grid. One can take {χi} as the standard hat functions or standard multiscale basis functions. To simplify

notations further, let M =
∑N
i=1 li and write

Voff = span{χiΦoff
i : 1 ≤ i ≤M}.

3.1.3 Online adaptive method

By the offline computation, we construct multiscale basis functions that can be used for any input parameters
to solve the problem on the coarse grid. In the earlier works [15, 16], the online method for the diffusion
equation with heterogeneous coefficients has been proposed. In this section, we consider the construction of
the online basis functions for elasticity problem in perforated domains and present an adaptive enrichment
algorithm. We use the index m ≥ 1 to represent the enrichment level. The online basis functions are
computed based on some local residuals for the current multiscale solution umms ∈ V mms, where we use V mms to
denote the corresponding space that can contain both offline and online basis functions.
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Let V m+1
ms = V mms + span{φon} be the new approximate space that constructed by adding online basis

φon ∈ V ih,0 on the i-th coarse neighborhood ωεi . For each coarse grid neighborhood ωεi , we define the residual

Ri as a linear functional on V ih,0 such that

Ri(v) =

∫
ωεi

fvdx−
∫
ωεi

(
2µε(umms) : ε(v) + ξ∇ · umms∇ · v

)
dx, ∀v ∈ V ih,0.

The norm of Ri is defined as

||Ri||(V ih)∗ = sup
v∈V ih,0

|Ri(v)|
ai(v, v)

1
2

,

where ai(v, v) =
∫
ωεi

(
2µε(v) : ε(v) + ξ∇ · v∇ · v

)
dx.

For the computation of this norm, according to the Riesz representation theorem, we can first compute
φon as the solution of following problem∫

ωεi

(
2µε(φon) : ε(v)+ξ∇·φon∇·v

)
dx =

∫
ωεi

fv dx−
∫
ωεi

(
2µε(umms) : ε(v)+ξ∇·umms∇·v

)
dx, ∀v ∈ V ih,0 (15)

and take ||Ri||(V ih)∗ = ai(φ
on, φon)

1
2 .

For the construction of the adaptive online basis functions, we use the following error indicators to access
the quality of the solution. In those non-overlapping coarse grid neighborhoods ωεi with large residuals, we
enrich the space by finding online basis φon ∈ V ih,0 using equation (15).

• Indicator 1. The error indicator based on local residual

ηi = ||Ri||2(V ih)∗ (16)

• Indicator 2. The error indicator based on local residual and eigenvalue

ηi =
(
λωili+1

)−1 ||Ri||2(V ih)∗ (17)

Now we present the adaptive online algorithm. We start with enrichment iteration number m = 0 and
choose θ ∈ (0, 1). Suppose the initial number of offline basis functions is lmi (m = 1) for each coarse grid
neighborhood ωεi , and the multiscale space is V mms(m = 1). For m = 1, 2, ...

• Step 1. Find umms in V mms such that∫
ωεi

(
2µε(umms) : ε(v) + ξ∇ · umms∇ · v

)
dx =

∫
ωεi

fv, ∀v ∈ V mms.

• Step 2. Compute error indicators (ηi) for every coarse grid neighborhoods ωεi and sort them in de-
creasing order η1 ≥ η2 ≥ ... ≥ ηN .

• Step 3. Select coarse grid neighborhoods ωεi , where enrichment is needed. We take smallest k such
that

θ

Nv∑
i=1

ηi ≤
k∑
i=1

ηi.

• Step 4. Enrich the space by adding online basis functions. For each ωεi , where i = 1, 2, ..., k, we find
φon ∈ V ih,0 by solving (15). The resulting space is denoted by V m+1

ms .

We repeat the above procedure until the global error indicator is small or we have certain number of
basis functions.
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3.2 Stokes problem

In the above section, we presented the online procedure for the elasticity equations. In this section, we
present the constructions of snapshot, offline and online basis functions for the Stokes problem.

3.2.1 Snapshot space

Snapshot space is a space which contains an extensive set of basis functions that are solutions of local
problems with all possible boundary conditions up to fine-grid resolution. To get snapshot functions, we
solve the following problem on the coarse neighborhood ωεi : find (uil, p

i
l) (on a fine grid) such that∫

ωεi

∇uil : ∇vdx−
∫
ωεi

pil div(v)dx = 0, ∀v ∈ V ih,0,∫
ωεi

q div(uil)dx =

∫
ωεi

cqdx, ∀q ∈ Qih,
(18)

with boundary conditions

uil = (0, 0), on ∂Bε, uil = (δil , 0) or (0, δil ), on ∂ωεi\∂Bε,

where function δil is a piecewise constant function such that it has value 1 on el and value 0 on other fine-grid

edges. Notice that ωεi\∂Bε = ∪Sil=1el, where el are the fine-grid edges and Si is the number of these fine
grid edges on ωεi\∂Bε. In (18), we define V ih and Qih as the restrictions of the fine grid space in ωεi and
V ih,0 ⊂ V ih be functions that vanish on ∂ωεi . Notice that uil and pil are supported in ωεi . We remark that the

constant c in (18) is chosen by compatibility condition, c = 1
|ωεi |

∫
∂ωεi\∂Bε

uil · ni ds. We emphasize that, for

the Stokes problem, we will solve (18) in both node-based coarse neighborhoods (7) and edge-based coarse
neighborhoods (8).

The collection of the solutions of above local problems generates the snapshot space, ψi,snap
l = uil in ωεi :

Vsnap = {ψi,snap
l : 1 ≤ l ≤ 2Si, 1 ≤ i ≤ (Ne +Nv)},

where we recall that Ne is the number of coarse-grid edges and Nv is the number of coarse-grid nodes.

3.2.2 Offline Space

We perform a space reduction in the snapshot space through the use of a local spectral problem in ωεi . The
purpose of this is to determine the dominant modes in the snapshot space and to obtain a small dimension
space for the approximation the solution.

We consider the following local eigenvalue problem in the snapshot space

Ai,offΨk = λi,off
k Si,offΨi,off

k , (19)

where
Ai,off = ai(ψ

i,snap
m , ψi,snap

n )

Si,off = si(ψ
i,snap
m , ψi,snap

n )

and

ai(u, v) =

∫
ωεi

∇u : ∇vdx, and si(u, v) =

∫
ωεi

|∇χi|2u · v dx

and χi will be specified later. Note that the above spectral problem is solved in the local snapshot space
corresponding to the neighborhood domain ωεi . We arrange the eigenvalues in the increasing order, and

choose the first Mi eigenvalues and take the corresponding eigenvectors Ψi,off
k , for k = 1, 2, ...,Mi, to form

10



the basis functions, i.e., Φ̃i,off
k =

∑
j Ψi,off

kj ψi,snap
j , where Ψi,off

kj are the coordinates of the vector Ψi,off
k . We

define
Ṽ ioff = span{Φ̃i,off

k , k = 1, 2, ..., 2Si}. (20)

For construction of conforming offline space, we need to multiply the functions Φ̃i,off
k = (Φ̃i,off

x1,k
, Φ̃i,off

x2,k
) by a

partition of unity function χi. We remark that the partition of unity functions {χi} are defined with respect
to the coarse nodes and the mid-points of coarse edges. One can choose {χi} as the standard multiscale
finite element basis. However, upon multiplying by partition of unity functions, the resulting basis functions
do not have constant divergence any more, which affects the stability of the scheme. To resolve this problem,
we solve two local optimization problems in every coarse element Ki

j ⊂ ωεi :

min
∥∥∥∇Φi,off

x1,k

∥∥∥
L2(Ki

j)
such that div(Φi,off

x1,k
) =

1

|Ki
j |

∫
∂Ki

j

(χiΦ̃
i,off
x1,k

, 0) · ni ds, in Ki
j (21)

with Φi,off
x1,k

= (χiΦ̃
i,off
x1,k

, 0), on ∂Ki
j , and

min
∥∥∥∇Φi,off

x2,k

∥∥∥
L2(Ki

j)
such that div(Φi,off

x2,k
) =

1

|Ki
j |

∫
∂Ki

j

(0, χiΦ̃
i,off
x2,k

) · ni ds in Ki
j , (22)

with Φi,off
x2,k

= (0, χiΦ̃
i,off
x2,k

), on ∂Ki
j . We write that Φi,off

x1,k
= H(χiΦ̃

i,off
x1,k

) and Φi,off
x2,k

= H(χiΦ̃
i,off
x2,k

), where H(v)
is the Stokes extension of the function v.

Combining them, we obtain the global offline space:

Voff = span{Φi,off
x1,k

and Φi,off
x2,k

: 1 ≤ i ≤ (Ne +Nv) and 1 ≤ k ≤Mi}.

Using a single index notation, we can write

Voff = span{Φoff
i }

Nu
i=1,

where Nu =
∑Ne+Nv
i=1 Mi. This space will be used as the approximation space for the velocity. For coarse

approximation of pressure, we will take Qoff to be the space of piecewise constant functions on the coarse
mesh.

3.2.3 Online Adaptive Method

Similar to Section 3.1.3, we will define the online velocity basis for Stokes problem. For each coarse grid
neighborhood ωεi , we define the residual Ri as a linear functional on V i such that

Ri(v) =

∫
ωεi

f · v dx−
∫
ωεi

∇umms : ∇vdx+

∫
ωεi

pmms div(v)dx, ∀v ∈ V i (23)

where (umms, p
m
ms) is the multiscale solution at the enrichment level m, and V i = (H1

0 (ωεi ))
2. The norm of Ri

is defined as

||Ri||(V i)∗ = sup
v∈V i

|Ri(v)|
‖v‖H1(ωεi )

. (24)

We will then use indicators (16) and (17) for our adaptive enrichment method. For the computation of online
basis φon

i ∈ V ih,0, we solve the following problem∫
ωεi

∇φon
i : ∇vdx−

∫
ωεi

pon div(v)dx = Ri(v), ∀v ∈ V ih,0,∫
ωεi

div(φon
i ) q dx = 0, ∀q ∈ Qoff.

(25)

The adaptivity procedure follows the one presented in Section 3.1.3.
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3.3 Randomized snapshots

In the above construction, the local problems are solved for every bounday node. This procedure is expensive
and may not be practical. However, one can use the idea of randomized snapshots (as in [8]) and reduce the
cost substantially. In randomized snapshots, one computes a few more snapshots compared to the required
number of multiscale basis functions. E.g., we compute n+ 4 snapshots for n multiscale basis functions.

To be more specific, we first generate inexpensive snapshots using random boundary conditions. Instead
of solving the local problem (12) and (18) for each fine boundary degree of freedom, we solve a small number
of local problems with boundary conditions:

u+,i
k = (ril , 0) or (0, ril) on ∂ω+,ε

i \∂B
ε,

u+,i
k = (0, 0) on ∂Bε.

Here ril are independent identically distributed (i.i.d.) standard Gaussian random vectors defined on the

fine degree freedom of the boundary. Notice that we will solve for u+,i
k in a larger domain, the oversampling

domian ω+,ε
i . The oversampling technique is used avoid the effects of randomized boundaries. After removing

dependence, we finally get our snapshot basis by taking the restriction of u+,i
k in ωεi , i.e, uik = u+,i

k |ωεi .
In Section 4, we will take the Stokes problem as an example and show the numerical results for randomized

sanpshots.

4 Numerical results

In this section, we show simulation results using the framework of online adaptive GMsFEM presented in
Section 2.3 for elasticity equations and Stokes equations. We set Ω = [0, 1] × [0, 1] and use two types of
perforated domains as illustrated in Figure 3, where the perforated regions Bε are circular. We have also
used perforated regions of other shapes instead and obtained similar results. The computational domain is
discretized coarsely using uniform triangulation, where the coarse mesh size H = 1

10 for elasticity problem
and H = 1

5 for Stokes problem. Furthermore, nonuniform triangulation is used inside each coarse triangular
element to obtain a finer discretization. Examples of this triangulation are displayed also in Figure 3.

First we will choose a fixed number of offline basis (initial basis) for every coarse neighborhood, and
obtain corresponding offline space Voff, which is also denoted by V 1

ms. Then, we perform the online iterations
on non-overlapping coarse neighborhoods to obtain enriched space V mms, m ≥ 1. We will add online basis both
with adaptivity and without adaptivity and compare the results. All the errors are in percentage. We note
that our approaches are designed to explore the sparsity and the adaptivity in the solution space and our
main emphasis is on the construction of coarse spaces. Our numerical results will show the approximation
of the fine-scale solution for different dimensional coarse spaces.

4.1 Elasticity equations in perforated domain

We consider the elasticity operator (5). We use zero displacements u = 0 on the inclusions, u1 = 0, σ2 = 0
on the left boundary, σ1 = 0, u2 = 0 on the bottom boundary and σ1 = 0, σ2 = 0 on the right and top
boundaries. Here, u = (u1, u2) and σ = (σ1, σ2). The source term is defined by f = (107, 107), the elastic
modulus is given by E = 109, Poisson’s ratio is ν = 0.22, where

µ =
E

2(1 + ν)
, ξ =

Eν

(1 + ν)(1− 2ν)
.

We use the following error quantities to measure the performance of the online adaptive GMsFEM

||e||L2 = ‖eu‖L2(Ωε) =
‖(ξ + 2µ)(u− ums)‖L2(Ωε)

‖(ξ + 2µ)u‖L2(Ωε)

, ||e||H1 = ‖eu‖H1(Ωε) =

√
〈Lε(u− ums), u− ums〉Ωε

〈Lε(u), u〉Ωε
,

12



Figure 3: Two heterogeneous perforated medium used in the simulations.

where u and ums are the fine and coarse solutions, respectively, and 〈Lε(u), v〉Ωε = 2µ〈ε(u), ε(v)〉Ωε +
ξ〈∇ · u,∇ · v〉Ωε . Note that the reference solution u needs a full fine scale computation. The fine grid DOF is
13262 for the domain with small perforations(left in Figure 3) and 21986 for the domain with big perforations
(right in Figure 3).

The fine-scale solution and coarse-scale solution corresponding to the two different perforated domains
in Figure 3 are presented in Figures 4 and 5. Fine solutions are shown on the left of the figure, coarse
offline solutions are in the middle and online solutions are on the right. In Tables 1 and 2, we present
the convergence history when the problem is solved in two different perforated domain with one, two and
four initial bases in the left, middle and right column, respectively. Each column shows the error behavior
when the online method is applied without adaptivity, with adaptivity using Indicator 1 (see (16)) and with
adaptivity using Indicator 2 (see (17)).

Numerical results for the first perforated domain are displayed in Figure 4. We observe that the offline
solution is close to the fine-scale solution; however, there are some missing features in the offline solution.
For example, the low values of the solution for a connected regions around circular inclusions, while this is
not the case for the fine-scale solution. Also, we observe that the offline solution does not capture the low
values of the solution near the inclusions. On the other hand, the solution using the online procedure with
approximately the same number of degrees of freedom as the offline solution has very good accuracy. From
Table 1, we observe that when using one initial basis, the L2 and energy error reduce to 1.3% and 5.82%
respectively after one online iteration in the case without adaptivity. However, if we select two initial bases,
the the L2 and energy error can be reduced to 0.567% and 2.92% respectively after one online iteration, which
is almost half of the errors for one initial basis situation. When the number of basis is fixed, it shows that
adding online basis can reduce the error more effectively than adding offline basis. For example, when we
use two offline basis and two online basis, the energy error is 0.369%; while when we select four offline basis,
the energy error is 26.703%. Comparison of the error behavior between solving with and without adaptivity
in this table shows that, error is smaller under the similar DOF when adaptive online method is applied.
For example, if we start with one initial basis, the energy error is 5.482% with DOF 500 when online method
is applied without adaptivity, but the energy error becomes 2.589% with DOF 536 when online adaptive
method is applied. When we solve with the adaptivity, we observe that the first indicator (see (16)) is more
effective when one initial basis is selected. However, if we start with two or four initial bases, the second
indicator (see (17)) gives us slightly better results. The smallest eigenvalues are Λmin = 31.4, 79.9, 204.8
when one, two and four initial basis are used.

In Figure 5, we test with a different perforated domain where the circular inclusions are larger compared
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to the domain in Figure 4 and extremely small inclusions are set around some big ones. Comparing the
offline and fine solution, we notice that some features of solution in the interior of the domain are missing,
and the errors around the boundary are large. However, the online solution fix these problems well and show
much better accuracy. Looking at Table 2, we observe that as we select more initial basis, the error decreases
faster after one online iteration. For example, when one online iteration is applied without adaptivity, the
H1 error reduces 8.5 times if we use one initial basis, yet it reduces around 12 times if we use two initial
basis. Considering the convergence behavior of online method with adaptivity against the online method
without adaptivity, we see that the adaptivity is important. For instance, in a similar DOF of 1300 in the
case of four initial basis used, the H1 error 10−5 without adaptivity, while it is only 10−6 with adaptivity.

DOF ||e||L2 ||e||H1
(# iter)

without adaptivity
338 29.269 53.691

500 (1) 1.300 5.482
662 (2) 0.082 0.450
824 (3) 0.010 0.069
986 (4) 0.0009 0.007
with adaptivity, η2

i = r2
i

338 29.269 53.691
510 (3) 0.567 3.115
654 (6) 0.042 0.306
852 (10) 0.001 0.013
1014 (13) 0.0001 0.0008

with adaptivity, η2
i = r2

i λ
−1
i+1

338 29.269 53.691
536 (4) 0.474 2.589
684 (7) 0.039 0.285
846 (10) 0.003 0.023
1002 (13) 0.0002 0.001

DOF ||e||L2 ||e||H1
(# iter)

without adaptivity
412 10.652 32.862

574 (1) 0.567 2.921
736 (2) 0.049 0.369
898 (3) 0.005 0.047
1060 (4) 0.0005 0.004

with adaptivity, η2
i = r2

i

412 10.652 32.862
584 (3) 0.416 2.285
740 (6) 0.029 0.236
932 (10) 0.001 0.009
1190 (15) 1.685e-05 0.0001

with adaptivity, η2
i = r2

i λ
−1
i+1

412 10.652 32.862
570 (3) 0.437 2.519
730 (6) 0.031 0.252
924 (10) 0.001 0.009
1072 (13) 8.772e-05 0.0006

DOF ||e||L2 ||e||H1
(# iter)

without adaptivity
648 7.414 26.703

810 (1) 0.479 2.509
972 (2) 0.046 0.368
1134 (3) 0.004 0.043
1296 (4) 0.0005 0.004

with adaptivity, η2
i = r2

i

648 7.414 26.703
808 (3) 0.303 1.977
980 (6) 0.022 0.192
1144 (9) 0.001 0.016
1302 (12) 0.0001 0.001

with adaptivity, η2
i = r2

i λ
−1
i+1

648 7.414 26.703
808 (3) 0.300 1.776
976 (6) 0.019 0.173

1174 (10) 0.0006 0.005
1338 (13) 3.492e-05 0.0002

Table 1: Elasticity problem in the perforated domain with small inclusions (Figure 3, left). One (Left), Two
(Middle) and Four (Right) offline basis functions (θ = 0.7).
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Figure 4: Elasticity problem in the perforated domain with small inclusions (Figure 3, left). Comparison of
solutions in: Fine scale (left) DOF = 13262, Coarse-scale offline, DOF = 412 (middle), Coarse-scale online
without adaptivity, DOF = 574 (right). Top: u1. Bottom: u2.

4.2 Stokes equations in perforated domain

In our final example, we consider the Stokes operator (6) with zero velocity u = (0, 0) on ∂Ωε ∩ ∂Bε and
∂u
∂n = (0, 0) on ∂Ω, and source term f = (1, 1) ∈ Ωε. For the fine-scale approximation of the Stokes problem,
we use P2 elements for velocity and piecewise constants for pressure. To improve the accuracy of multiscale
solutions, we have enriched velocity spaces by adding online velocity basis.

The errors will be measured in relative L2 and H1norms for velocity and L2 norm for pressure

||eu||L2 = ‖eu‖L2(Ωε) =
‖u− ums‖L2(Ωε)

‖u‖L2(Ωε)

, ||eu||H1 = ‖eu‖H1(Ωε) =
‖u− ums‖H1(Ωε)

‖u‖H1(Ωε)

,

||ep||L2(Ωε) =
‖p̄− pms‖L2(Ωε)

‖p̄‖L2(Ωε)

,

where (u, p) and (ums, pms) are fine-scale and coarse-scale solutions, respectively for velocity and pressure,
and p̄ is the cell average of the fine scale pressure, that is, p̄ = 1

|Kε
i |
∫
Kε
i
p for all Kε

i ∈ T H . Notice that we

solve the reference solution (u, p) on a full fine grid. The fine grid DOF is 77524 for the domain with small
perforations(left in Figure 3) and 101386 for the domain with big perforations (right in Figure 3).

4.2.1 Randomized snapshots

As mentioned in Section 3.3, we will show the numerical results of Stokes problem for the offline GMsFEM
using randomized snapshots. The convergence behaviors are shown in Tables 3 and 4 for perforated domain
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DOF ||e||L2 ||e||H1
(# iter)

without adaptivity
278 38.074 61.168

440 (1) 2.098 7.181
602 (2) 0.167 0.670
764 (3) 0.021 0.114
926 (4) 0.001 0.010

with adaptivity, η2
i = r2

i

278 38.074 61.168
436 (3) 1.058 4.493
628 (7) 0.029 0.175
760 (10) 0.002 0.014
950 (14) 5.339e-05 0.0003

with adaptivity, η2
i = r2

i λ
−1
i+1

278 38.074 61.168
436 (3) 1.733 7.005
614 (7) 0.074 0.399
748 (10) 0.005 0.037
940 (14) 0.0002 0.001

DOF ||e||L2 ||e||H1
(# iter)

without adaptivity
382 15.585 38.387

544 (1) 0.794 3.239
706 (2) 0.071 0.397
868 (3) 0.008 0.054
1030 (4) 0.0006 0.003

with adaptivity, η2
i = r2

i

382 15.585 38.387
556 (3) 0.477 2.116
704 (6) 0.033 0.211
892 (10) 0.001 0.007
1038 (13) 8.760e-05 0.0005

with adaptivity, η2
i = r2

i λ
−1
i+1

382 15.585 38.387
548 (3) 0.528 2.377
740 (7) 0.019 0.124
878 (10) 0.001 0.010
1064 (14) 4.710e-05 0.0003

DOF ||e||L2 ||e||H1
(# iter)

without adaptivity
648 8.870 27.343

810 (1) 0.611 2.390
972 (2) 0.063 0.376
1134 (3) 0.006 0.042
1296 (4) 0.0005 0.003

with adaptivity, η2
i = r2

i

648 8.870 27.343
820 (3) 0.301 1.400
972 (6) 0.021 0.140

1154 (10) 0.0006 0.004
1300 (13) 3.784e-05 0.0002

with adaptivity, η2
i = r2

i λ
−1
i+1

648 8.870 27.343
810 (3) 0.309 1.500
996 (7) 0.008 0.067

1138 (10) 0.0006 0.005
1314 (14) 1.659e-05 0.0001

Table 2: Elasticity problem in the perforated domain with big inclusions (Figure 3, right). One (Left), Two
(Middle) and Four (Right) offline basis functions (θ = 0.7).

with small inclusions (Figure 3, left) and big inclusions (Figure 3, right), respectively, where the notation
ω+,ε = ωε + 4 means that the oversampled region ω+,ε is obtained by enlarging the region ωε by 4 fine grid
cells. From these tables, we observe that the approach using randomized snapshots is more efficient since
much fewer snapshot functions are used to achieve comparable accuracy. In particular, we get similar errors
when the number of randomized snapshots is only around 20% of the number of standard snapshots. Notice
that in the randomized snapshot construction, we need to add the constant basis, i.e, the constant function in
each ω+,ε. Note that, we do not have the constant basis in domain with inclusions when calculating snapshot
basis in the standard way. This additional constant basis function makes the errors smaller for low degrees
of freedom. For example, in the domain with small inclusions, when DOF = 534, the velocity L2 error is
12.49% when we use standard snapshots, while the error is only 4.54% when the dimension of the randomized
snapshots is 24.1% of the dimension of the whole snapshot space (see Table 3). However, when the DOF
becomes larger, the errors for randomized snapshots are similar to that for standard snapshots. For instance,
the velocity L2 error is 0.07% when DOF = 1986 in domain with big inclusions for both standard snapshots
and randomized snapshots (see Table 4), where the dimension of the randomized snapshot is 13.8% of the
dimension of the whole snapshots. We remark that, by balancing the computational cost and accuracy, we
find the results are satisfactory when 24.1% randomized snapshots for domain with small inclusions(Figure
3, left) and 20.7% randomized snapshots for domain with big inclusions(Figure 3, right) are used.

4.2.2 Adaptive online results

In this section, we present adaptive online results for Stokes problem for two perforated domains depicted
in Figure 3. The solutions are shown in Figure 6 and Figure 7. In these figures, the x1-component and
x2-component of the velocity solution are shown in the first and second rows, and the pressure solution is
presented in the third row. The three columns contain the fine-scale, coarse-scale offline and coarse-scale
online solutions. In both cases, we observe that the offline velocity solution is not able to capture the low
values at the corners of the domain. Some features between inclusions also do not appear correctly in the
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Figure 5: Elasticity problem in the perforated domain with big inclusions (Figure 3, right). Comparison of
solutions in: Fine scale (left) DOF = 21986, Coarse scale offline, DOF = 382 (middle), Coarse scale online
without adaptivity, DOF = 544 (right). Top: u1. Bottom: u2.

DOF ||εu||L2(Ω)(%) ||εu||H1(Ω)(%) ||εp̄||L2(Ω)(%)
Standard snapshot (100%)

534 12.49 36.91 21.46
1018 0.28 4.67 0.86
1986 0.031 1.64 0.0029

Randomized snapshot: ω+,ε = ωε + 4, 18.1%
534 4.99 23.95 13.4
1018 0.54 7.05 0.53
1986 0.04 1.77 0.02

Randomized snapshot: ω+,ε = ωε + 4, 24.1%
534 4.54 22.69 8.28
1018 0.47 6.6 0.52
1986 0.036 1.72 0.009

Table 3: Perforated domain with small inclusions (Figure 3, left) for the Stokes problem using standard
snapshots and randomized snapshots.

offline solution. For example, in Figure 6, the low values in the upper left and lower right corner of the domain
are missing in the offline velocity solution. However, it was recovered very well in the online solution. Also,
compared to the fine-scale solution, the features between the first hole on the left and the other inclusions
are not captured in the offline solution. However, the online solutions get these features well and outputs
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DOF ||εu||L2(Ω)(%) ||εu||H1(Ω)(%) ||εp̄||L2(Ω)(%)
Whole snapshot (100%)

534 11.34 34.49 16.18
1018 0.17 3.62 1.09
1986 0.07 2.44 0.006

Randomized snapshot: ω+,ε = ωε + 4, 13.8%
534 6.04 24.84 9.37
1018 0.66 7.27 0.95
1986 0.07 2.53 0.02

Randomized snapshot: ω+,ε = ωε + 4, 20.7%
534 5.3 23.39 14.95
1018 0.56 6.87 0.73
1986 0.07 2.51 0.015

Table 4: Perforated domain with big inclusions (Figure 3, right) for the Stokes problem using standard
snapshots and randomized snapshots.

almost same profiles as the fine solution. In Figure 7, for the domain has big inclusions with some extremely
small inclusions around, we see even worse behavior of the offline solution compared to that in Figure 6,
where the domain has several small inclusions. The low values of the velocity solution in the x2-component
along the right boundary are almost missing in the offline solution. The offline velocity solutions in both
components around inclusions are still very poor. These observations highlights the advantage of the online
method. We performed other tests for different perforated domains, and the results also suggest that online
method is quite necessary.

Now, we turn our attention to velocity L2(Ωε), H1(Ωε) errors and pressure L2(Ωε) error presented in
Table 5 and Table 6. We consider different numbers of initial basis on each coarse neighborhood. For the
perforated domain with small inclusions in Figure 6, we observe from Table 5 that both the velocity and
pressure error decrease faster as we choose more initial bases. For example, the velocity has large H1 error
66.28% using one initial basis. After adding one online basis, it reduces to 22.3%. When two initial bases are
selected, the velocity H1 error reduces from 23.4% to 3.2% after one step enrichment. Fixing the number
of initial basis, we can compare the error behavior for the online method with or without adaptivity. It
appears that online adaptive method reduces the errors more effectively. For instance, when one initial basis
is selected, the velocity H1 error is 22.302% for DOF 488 using non-adaptive online algorithm, while it is
only 3.067% for a similar DOF 499 using adaptive online method with indicator 1 (see (16)). Comparing
two error indicators for adaptive online method, we see that the indicator 1 is preferred when choosing one
initial basis. Since the velocity error is 8.758% for DOF 504 using indicator 2 (see (17)), which is much larger
than 3.067%. Also, the pressure error is 16.559% in this case when using indicator 2, which is almost 5 times
larger compared with 3.575% when using indicator 1. However, both indicator works well when selecting
more initial bases. We see very similar errors for both velocity and pressure fields using different indicators
when the number of initial basis is two or three.

For the second example in Figure 7, results are shown in Table 6. In this case, we observe that the online
approach works better if we start with more initial basis. For example, the velocity H1 error is 71.823% with
one initial velocity basis, and reduces to 24.460% after adding one online basis. However it’s only 20.430%
with two initial basis without online enrichment. This implies that it is better to start with two or more
initial basis in order to see that the more the online basis are used, the smaller the errors become. Similarly
as before, the online approach with the adaptivity reduces the errors faster. Compared the two indicators,
we see that the first error indicator (see (16)) for the adaptive online method gives slightly better results for
any number of initial basis. One can also find that the pressure error also reduces significantly when we only
enrich the velocity space.
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Figure 6: Stokes problem. Fine-scale and multiscale solutions for velocity and pressure (u1 (Top), u2 (Middle)
and p (Bottom)) in perforated domain with small inclusions(Figure 3, left). Left: fine-scale solution, DOF =
77524. Middle: multiscale solutions using 1 multiscale basis function for velocity, DOF = 452, velocity L2

error is 42.439 %. Right: multiscale solutions after 2 online iteration without adaptivity, DOF = 524,
velocity L2 error is 1.688 %.

5 Convergence Analysis

The result in [16] has shown the convergence for online adaptive method applied to elliptic problems, and the
same results can be applied for elasticity problem. In this section, we will prove the convergence of adaptive
online GMsFEM for Stokes problem.

First, we will prove the following inf-sup condition for the approximation of Stokes problem using offline
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DOF ||eu||L2(%) ||eu||H1(%) ||ep̄||L2(%)
(# iter)

452 42.439 66.276 81.954
without adaptivity

488 (1) 6.300 22.302 41.776
524 (2) 1.688 7.191 10.376
596 (4) 0.111 0.692 0.809
740 (8) 0.042 0.514 0.036

with adaptivity, η2
i = r2

i

499 (4) 0.627 3.067 3.575
532 (6) 0.074 0.772 0.329
596 (10) 0.042 0.515 0.038
723 (20) 0.033 0.411 0.146

with adaptivity, η2
i = r2

i λ
−1
i+1

504 (3) 1.397 8.758 16.559
546 (5) 0.411 2.617 3.594
611 (8) 0.089 0.709 0.482
750 (15) 0.042 0.517 0.036

DOF ||eu||L2(%) ||eu||H1(%) ||ep̄||L2(%)
(# iter)

694 5.467 23.329 13.775
without adaptivity

730 (1) 0.400 3.212 1.187
766 (2) 0.066 1.137 0.135
838 (4) 0.033 0.614 0.053
982 (8) 0.011 0.216 0.016

with adaptivity, η2
i = r2

i

732 (3) 0.093 1.335 0.227
781 (6) 0.041 0.742 0.079
844 (10) 0.019 0.367 0.021
992 (20) 0.004 0.104 0.003

with adaptivity, η2
i = r2

i λ
−1
i+1

745 (2) 0.088 1.362 0.310
769 (3) 0.057 0.982 0.110
841 (6) 0.030 0.562 0.026
988 (12) 0.011 0.216 0.022

DOF ||eu||L2(%) ||eu||H1(%) ||ep̄||L2(%)
(# iter)

936 0.936 8.795 8.515
without adaptivity

972 (1) 0.032 0.782 0.118
1008 (2) 0.013 0.445 0.018
1080 (4) 0.007 0.261 0.005
1224 (8) 0.003 0.106 0.001

with adaptivity, η2
i = r2

i

975 (3) 0.016 0.493 0.026
1011 (6) 0.009 0.311 0.007
1082 (10) 0.005 0.167 0.003
1227 (20) 0.002 0.078 0.001

with adaptivity, η2
i = r2

i λ
−1
i+1

1003 (2) 0.013 0.449 0.018
1037 (3) 0.010 0.343 0.007
1105 (5) 0.006 0.218 0.004
1241 (9) 0.002 0.094 0.001

Table 5: Stokes problem for perforated domain with small inclusions(Figure 3, left). One (Upper left), Two
(Upper right) and Three e(Bottom) offline basis functions (θ = 0.7).

GMsFEM. This ensures that the method, with both offline and online basis functions, is well-posed. We will
assume the continuous inf-sup condition holds. In particular, there is a constant Ccont > 0 such that for any
p ∈ L2(Ωε) with zero mean, we have

sup
v∈(H1

0 (Ωε))2

∫
Ωε

div(v)p

‖v‖H1(Ωε)
≥ Ccont ‖p‖L2(Ωε) . (26)

Equivalently, there exists v ∈ (H1
0 (Ωε))2 such that div v = p and ‖v‖H1(Ωε) ≤ C−1

cont‖p‖L2(Ωε). Let N0
e be

the number of interior coarse edges. We remark that, for each interior coarse edge Ei, there exists a basis
function Φoff

i such that
∫
Ei

Φoff
i · ni 6= 0.
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Figure 7: Stokes problem. Fine-scale and multiscale solutions for velocity and pressure (u1 (Top), u2 (Middle)
and p (Bottom)) in perforated domain with big inclusions(Figure 3, right). Left: fine-scale solution, DOF =
101386. Middle: multiscale solutions using 1 multiscale basis function for velocity, DOF = 452, velocity
L2 error is 47.943 %. Right: multiscale solutions after 2 online iteration without adaptivity, DOF = 524,
velocity L2 error is 2.266 %.

Lemma 5.1. For all p ∈ Qoff, there is a constant Cinfsup > 0 such that

sup
u∈Voff

∫
Ωε

div(u)p

‖u‖H1(Ωε)
≥ Cinfsup ‖p‖L2(Ωε) . (27)

Proof. Let p ∈ Qoff with zero mean. Using the continuous inf-sup condition (26), there exists v ∈ H1
0 (Ωε)

such that div v = p and ‖v‖H1(Ωε) ≤ C−1
cont‖p‖L2(Ωε). Since, for each interior coarse edge Ei, there exists a
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DOF ||eu||L2(%) ||eu||H1(%) ||ep̄||L2(%)
(# iter)

452 47.943 71.823 88.414
without adaptivity

488 (1) 8.039 24.460 21.206
524 (2) 2.266 12.286 11.107
596 (4) 0.419 2.477 1.433
740 (8) 0.050 0.733 0.038

with adaptivity, η2
i = r2

i

492 (3) 2.444 13.528 11.355
534 (6) 0.546 4.315 3.168
593 (10) 0.087 0.870 0.282
718 (20) 0.041 0.501 0.025

with adaptivity, η2
i = r2

i λ
−1
i+1

511 (2) 2.346 12.396 10.890
543 (3) 1.302 7.944 3.784
605 (5) 0.175 1.157 0.443
768 (11) 0.043 0.507 0.068

DOF ||eu||L2(%) ||eu||H1(%) ||ep̄||L2(%)
(# iter)

694 4.117 20.430 13.635
without adaptivity

730 (1) 0.260 2.293 1.443
766 (2) 0.075 0.982 0.057
838 (4) 0.030 0.469 0.030
982 (8) 0.008 0.169 0.005

with adaptivity, η2
i = r2

i

735 (3) 0.085 1.100 0.070
766 (5) 0.049 0.678 0.031
842 (10) 0.016 0.254 0.023
981 (20) 0.006 0.133 0.002

with adaptivity, η2
i = r2

i λ
−1
i+1

762 (2) 0.075 0.982 0.057
796 (3) 0.055 0.776 0.056
864 (5) 0.024 0.388 0.014
1000 (9) 0.007 0.149 0.004

DOF ||eu||L2(%) ||eu||H1(%) ||ep̄||L2(%)
(# iter)

936 0.407 5.627 2.091
without adaptivity

972 (1) 0.030 0.720 0.058
1008 (2) 0.019 0.490 0.014
1080 (4) 0.007 0.197 0.004
1224 (8) 0.004 0.119 0.002

with adaptivity, η2
i = r2

i

977 (3) 0.022 0.564 0.027
1023 (6) 0.010 0.275 0.011
1085 (10) 0.006 0.167 0.003
1226 (19) 0.003 0.089 0.001

with adaptivity, η2
i = r2

i λ
−1
i+1

972 (1) 0.030 0.720 0.058
1040 (3) 0.012 0.303 0.009
1108 (5) 0.006 0.161 0.003
1244 (9) 0.003 0.092 0.002

Table 6: Stokes problem for perforated domain with big inclusions(Figure 3, right). One (Upper left), Two
(Upper right) and Three (Bottom) offline basis functions (θ = 0.7).

basis function Φoff
i such that

∫
Ei

Φoff
i · ni 6= 0. We can then define u ∈ Voff by the following

u =

N0
e∑

i=1

ciΦ
off
i , ci =

∫
Ei

v · ni

where we assume that the basis function are normalized so that
∫
Ei

Φoff
i ·ni = 1. So, by the Green’s identity,

we have ∫
Ωε
p2 =

∫
Ωε

div (v)p =

N0
e∑

i=1

∫
Ei

(v · ni)[p] =

N0
e∑

i=1

∫
Ei

ci(Φ
off
i · ni)[p] =

∫
Ωε

div (u)p
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where [p] is the jump of p. We will next show that there is a constant Cinfsup > 0 such that ‖u‖H1(Ωε) ≤
C−1

infsup‖p‖L2(Ωε).

Since c2i ≤ H
∫
Ei

(v · ni)2, we have

‖∇u‖2L2(Ωε) ≤
N0
e∑

i=1

∫
ωεi

c2i ∇Φoff
i : ∇Φoff

i ≤ CmaxH
∑

K∈T H

∫
∂K

(v · n)2

where Cmax = max1≤i≤N0
e
Ci and Ci = min

∫
ωεi
∇Φoff

i : ∇Φoff
i with the minimum taken over all basis functions

Φoff
i such that

∫
Ei

Φoff
i · ni 6= 0. Notice that the constant Ci are independent of the mesh size. Using the

trace theorem on the coarse element K, we have H
∫
∂K

(v · n)2 � ‖v‖2H1(K). So, by the continuous inf-sup
condition, we obtain ∑

K∈T H
H

∫
∂K

(v · n)2 � ‖v‖H1(Ωε) � ‖p‖2L2(Ωε).

This completes the proof.

Now, we will show the convergence of our online adaptive enrichment scheme for the Stokes problem.
First, we define a reference solution by (u, p) ∈ (H1

0 (Ωε))2 ×Qoff which solves

〈Lε(u, p), (v, q)〉Ωε = ((f, 0), (v, q))Ωε , for all (v, q) ∈ H1
0 (Ωε)2 ×Qoff. (28)

Notice that the solution of (28) and the solution of (10) have a difference proportional to the coarse mesh
size H. We also define a snapshot solution by (û, p̂) ∈ Vsnap ×Qoff which solves

〈Lε(û, p̂), (v, q)〉Ωε = ((f, 0), (v, q))Ωε , for all (v, q) ∈ Vsnap ×Qoff. (29)

We notice that the difference ‖u − û‖H1(Ωε) represents an irreducible error. Furthermore, standard finite
element analysis shows that

‖u− ums‖H1(Ωε) ≤ ‖u− ũms‖H1(Ωε) (30)

for any ũms ∈ Voff. Next, we prove the following a-posteriori error bound for the offline GMsFEM (11). The
notation a � b means that there is a generic constant C > 0 such that a ≤ Cb.

Theorem 5.2. Let u be the reference solution defined in (28), û be the snapshot solution defined in (29)
and ums be the multiscale solution satisfying (11). Then, we have

‖û− ums‖2H1(Ωε) ≤ Cs

Nu∑
i=1

(
1 +

1

λi,off
li+1

)
‖Ri‖2V ∗ (31)

where li is the number of offline basis functions used for the coarse neighborhood ωεi , and λi,off
j is the j-th

eigenvalue for the coarse neighborhood ωεi . The constant Cs is the maximum number of coarse neighborhoods
corresponding to coarse blocks. Moreover, we have

‖u− ums‖2H1(Ωε) ≤ 2Cs

Nu∑
i=1

(
1 +

1

λi,off
li+1

)
‖Ri‖2V ∗ + 2 ‖u− û‖2H1(Ωε) . (32)

Proof. For any φ ∈ Vsnap such that
∫
Kε
i

div φ = 0 and φ = H(φ), we have∫
Ωε
∇(û− ums) : ∇φ =

∫
Ωε
∇(û− ums) : ∇φ−

∫
Ωε

(p̂− pms) div φ (33)

23



where we use the fact that
∫
Kε
i
(p̂− pms) div φ = 0 since p̂− pms is constant in Kε

i . We can write (33) as∫
Ωε
∇(û− ums) : ∇φ = R(φ) (34)

where R(φ) is the global residual defined by R(φ) =
∫

Ωε
∇(u− ums) : ∇φ−

∫
Ωε

(p− pms) div φ for all φ. Let

φoff be an arbitrary function in the space Voff. We can write φoff =
∑Nu
i=1 φ

off
i where φoff

i is the component of
φoff in the local offline space corresponding to the coarse neighborhood ωεi . Using the facts that Voff ⊂ Vsnap

and R(φoff) = 0, we can write R(φ) as

R(φ) = R(H(φ)− φoff) = R
( Nu∑
i=1

(H(χiφ)− φoff
i )
)

=

Nu∑
i=1

Ri

(
H(χiφ)− φoff

i

)
(35)

where Ri is the local residual defined in (23). We will define φoff as follows. Notice that H(χiφ) belongs to
the local snapshot space V isnap. We can take φoff

i as the component of H(χiφ) in the offline space V ioff. We

write φoff
i = H(χiφi).

Then from (35), we have

R(φ) ≤
Nu∑
i=1

‖Ri‖(V i)∗ ‖H(χiφ)−H(χiφi)‖H1(ωεi )
.

Using the minimum energy property, we have

R(φ) ≤
Nu∑
i=1

‖Ri‖(V i)∗ ‖χi(φ− φi)‖H1(ωεi )
.

By the spectral problem (19), we obtain

R(φ) ≤
Nu∑
i=1

(
1 +

1

λi,off
li+1

) 1
2 ‖Ri‖(V i)∗ ‖φ− φi‖H1(ωεi )

≤
Nu∑
i=1

(
1 +

1

λi,off
li+1

) 1
2 ‖Ri‖(V i)∗ ‖φ‖H1(ωεi )

(36)

where we used the orthogonality of eigenfunctions from the spectral problem (19). Finally, we take φ =
û− ums. Notice that, by (29) and (11), we have∫

Kε
i

div(û− ums) = 0.

In addition, for this choice of φ, we have φ = H(φ) since û, ums ∈ Vsnap. Hence (34) and (36) imply that

‖û− ums‖2H1(Ωε) ≤
Nu∑
i=1

(
1 +

1

λi,off
li+1

) 1
2 ‖Ri‖(V i)∗ ‖û− ums‖H1(ωεi )

,

which shows (31). The proof for (32) follows from ‖u− ums‖H1(Ωε) ≤ ‖u− û‖H1(Ωε) + ‖û− ums‖H1(Ωε).

We recall that the norm of the local residual Ri is defined in (24). We define a modified norm as

||Ri||(V i0 )∗ = sup
v∈V i0

|Ri(v)|
‖v‖H1(ωεi )

(37)

where V i0 ⊂ V i and the vectors v ∈ V i0 satisfies
∫

Ωε
div(v) q = 0 for all q ∈ Qoff. It is easy to show

that ||Ri||(V i0 )∗ ≤ ||Ri||(V i)∗ . In the next theorem, we will show the convergence of the online adaptive
GMsFEM for the Stokes problem. The theorem states that our method is convergent up to an irreducible
error ‖u− û‖H1(Ωε) with enough number of offline basis functions.
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Theorem 5.3. Let u be the reference solution defined in (28), û be the snapshot solution defined in (29)
and umms be the multiscale solution of (11) in the enrichment level m. Assume that li offline basis functions
for the coarse neighborhood ωεi are used as initial basis in the online procedure. Suppose that one online basis
is added to a single coarse neighborhood ωεi . Then, there is a constant D such that

‖u− um+1
ms ‖2H1(Ωε) ≤ (1 + δ3)(1 + δ2)

(
1 + δ1 − θC−1

s

λi,off
li+1

λi,off
li+1 + 1

)
‖û− umms‖2H1(Ωε) +D‖u− û‖2H1(Ωε) (38)

where δ1, δ2, δ3 > 0 are arbitrary and D depends only on δi, i = 1, 2, 3. In addition, θ is the relative residual
defined by

θ = ||Ri||2(V i0 )∗

/ Nu∑
i=1

‖Ri‖2(V i)∗ .

Proof. We will first consider the addition of only one online basis function φon
i to the space V moff . For any

function ũms ∈ V m+1
off , by (30), we have

‖u− um+1
ms ‖H1(Ωε) ≤ ‖u− ũms‖H1(Ωε) ≤ ‖û− ũms‖H1(Ωε) + ‖u− û‖H1(Ωε). (39)

We will derive an estimate for ‖û − ũms‖H1(Ωε). We take ũms = umms + αφon
i where α is a scalar to be

determined. Then we have

‖û− ũms‖2H1(Ωε) = ‖û− umms‖2H1(Ωε) − 2α

∫
ωεi

∇(û− umms) : ∇φon
i + α2‖φon

i ‖2H1(Ωε).

Using the definition of the residual Ri and the fact that
∫
ωεi

div(φon
i ) q = 0 for all q ∈ Qoff, we have

‖û− ũms‖2H1(Ωε) = ‖û− umms‖2H1(Ωε) − 2αRi(φ
on
i ) + α2‖φon

i ‖2H1(Ωε) + 2α

∫
ωεi

∇(u− û) : ∇φon
i .

Taking α = Ri(φ
on
i )/‖φon

i ‖2H1(ωεi )
, we have

‖û− ũms‖2H1(Ωε) = ‖û− umms‖2H1(Ωε) −
Ri(φ

on
i )2

‖φon
i ‖2H1(ωεi )

+ 2α

∫
ωεi

∇(u− û) : ∇φon
i . (40)

Using (25), we have

Ri(v) =

∫
ωεi

∇φon
i : ∇v, ∀v ∈ V i0 . (41)

By (37) and (41), we have ||Ri||(V i0 )∗ ≤ ‖φon
i ‖H1(ωεi )

. Taking v = φon
i in (41), we have Ri(φ

on
i ) = ‖φon

i ‖2H1(ωεi )
.

Thus, (40) becomes

‖û− ũms‖2H1(Ωε) = ‖û− umms‖2H1(Ωε) − ||Ri||
2
(V i0 )∗ + 2α

∫
ωεi

∇(u− û) : ∇φon
i . (42)

Using the definition of θ and (31), we have

‖û− ũms‖2H1(Ωε) ≤
(

1− θC−1
s

λi,off
li+1

λi,off
li+1 + 1

)
‖û− umms‖2H1(Ωε) + 2α

∫
ωεi

∇(u− û) : ∇φon
i . (43)

The last term in (43) can be estimated as

2α

∫
ωεi

∇(u− û) : ∇φon
i ≤ 2‖u− û‖H1(Ωε)

Ri(φ
on
i )

‖φon
i ‖H1(ωεi )
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Using the definition of Ri, we have Ri(φ
on
i ) =

∫
ωεi
∇(u− umms) : ∇φon

i . So,

2α

∫
ωεi

∇(u− û) : ∇φon
i ≤ 2‖u− û‖H1(Ωε) ‖u− umms‖H1(Ωε).

Notice that 2‖u−û‖H1(Ωε) ‖û−umms‖H1(Ωε) ≤ δ−1
1 ‖u−û‖2H1(Ωε)+δ1‖û−umms‖2H1(Ωε) for any δ1 > 0. Therefore,

(43) becomes

‖û− ũms‖2H1(Ωε) ≤
(

1 + δ1 − θC−1
s

λi,off
li+1

λi,off
li+1 + 1

)
‖û− umms‖2H1(Ωε) + (2 + δ−1

1 )‖u− û‖2H1(Ωε). (44)

Finally, combining (39) and (44), we have

‖u−um+1
ms ‖2H1(Ωε) ≤ (1 + δ2)

(
1 + δ1− θC−1

s

λi,off
li+1

λi,off
li+1 + 1

)
‖û−umms‖2H1(Ωε) + (3 + δ−1

1 + δ−1
2 )‖u− û‖2H1(Ωε). (45)

We obtain the desired result by noting that

‖û− umms‖2H1(Ωε) ≤ (1 + δ3)‖u− umms‖2H1(Ωε) + (1 + δ−1
3 )‖u− û‖2H1(Ωε)

for any δ3 > 0.

We remark that, in order to obtain rapid convergence, one needs to choose li large enough so that λi,off
li+1

is large. In this case, the quantity λi,off
li+1/(λ

i,off
li+1 + 1) is close to one. Then, (38) shows that the resulting

online adaptive enrichment procedure has a rapid convergence.
Theorem 5.3 gives the convergence of our online adaptive enrichment procedure when one online basis is

added at a time. One can also add online basis in non-overlapping coarse neighborhoods. Using the same
proof as Theorem 5.3, we obtain the following result.

Theorem 5.4. Let u be the reference solution defined in (28), û be the snapshot solution defined in (29)
and umms be the multiscale solution of (11) in the enrichment level m. Assume that li offline basis functions
for the coarse neighborhood ωεi are used as initial basis in the online procedure. Let S be the index set for
the non-overlapping coarse neighborhoods where online basis functions are added. Then, there is a constant
D such that

‖u− um+1
ms ‖2H1(Ωε) ≤ (1 + δ3)(1 + δ2)

(
1 + δ1− θC−1

s min
j∈S

λi,off
lj+1

λi,off
lj+1 + 1

)
‖û− umms‖2H1(Ωε) +D‖u− û‖2H1(Ωε) (46)

where δ1, δ2, δ3 > 0 are arbitrary and D depends only on δi, i = 1, 2, 3. In addition, θ is the relative residual
defined by

θ =
∑
i∈S
||Ri||2(V i0 )∗

/ Nu∑
i=1

‖Ri‖2(V i)∗ .

The above result suggests that adding more online basis functions at each iteration will speed up the
convergence. Lastly, we remark that the convergence for the pressure can be obtained using the inf-sup
condition (27).
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6 Conclusion

We present an efficient multiscale procedure for solving PDEs in perforated domains. We consider elliptic,
elastic, and Stokes systems. In our previous work [18], we presented a first step in constructing the offline
multiscale basis functions (without analysis) for solving PDEs in perforated domains. It is known that the
convergence of multiscale methods can be significantly accelerated if appropriate online basis functions are
constructed and appropriate number of offline basis functions are used. The construction of online basis
functions relies on analysis and the choice of the offline basis functions. In this paper, we (1) develop
analysis for GMsFEM for perforated domains (2) design procedures for constructing online multiscale basis
functions (3) present analysis of online multiscale procedures (4) develop adaptive procedures (5) present
numerical results. By using a computable error indicator, we locate regions, where enrichment is necessary,
and construct new online basis functions in order to improve the accuracy. Our numerical results for the
elasticity equation and the Stokes system show that the method has an excellent performance and rapid
convergence. In particular, only a few online basis functions in some selected regions improve the accuracy
of the solution. Our analysis shows that the convergence rate depends on the number of offline basis functions,
and one can obtain a fast convergence by including enough offline basis functions. This convergence theory
can also be applied to the Laplace equation and the elasticity equation. One possible future direction is the
goal-oriented adaptivity [19], in which basis functions are added in order to reduce the goal error.
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