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Abstract

In this work, we present an upscaled model for mixed dimensional coupled flow problem in frac-

tured porous media. We consider both embedded and discrete fracture models (EFM and DFM) as fine

scale models which contain coupled system of equations. For fine grid discretization, we use a conserva-

tive finite-volume approximation. We construct an upscaled model using the non-local multicontinuum

(NLMC) method for the coupled system. The proposed upscaled model is based on a set of simplified

multiscale basis functions for the auxiliary space and a constraint energy minimization principle for the

construction of multiscale basis functions. Using the constructed NLMC-multiscale basis functions, we

obtain an accurate coarse grid upscaled model. We present numerical results for both fine-grid models

and upscaled coarse-grid models using our NLMC method. We consider model problems with (1) discrete

fracture fine grid model with low and high permeable fractures; (2) embedded fine grid model for two

types of geometries with differnet fracture networks and (3) embedded fracture fine grid model with

heterogeneous permeability. The simulations using the upscaled model provide very accurate solutions

with significant reduction in the dimension of the problem.

Introduction

Mathematical simulation of the flow processes in fractured porous media plays an important role in reservoir

simulation, nuclear waste disposal, CO2 sequestration, unconventional gas production and geothermal energy

production. Fracture networks usually have complex geometries, multiple scales and very small thickness

compared to typical reservoir sizes. Due to high permeability, fractures have a significant impact on the
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flow processes. A common approach to model fracture media is to consider the discrete fractures as lower-

dimensional objects [30, 12, 18, 10, 31]. This results in a coupled mixed dimensional mathematical models,

where we have d - dimensional equation for flow in porous matrix and (d − 1) - dimensional equation for

fracture networks. The cross-flow equilibrium between the flow in fracture and matrix is described by some

specific transfer terms.

Various numerical approaches to model fractured porous media have been developed and can be classified

by the types of meshing techniques used for simulations. One approach, called discrete fracture model (DFM)

is associated with the conforming discretization or explicit meshing of the fracture geometry. In DFM, we

consider flow processes in both the matrix and the fracture media, where the fractures are located at the

interfaces between matrix cells [22, 25, 26, 19]. This requires a conforming meshing of the fractures, which

can lead to large computational demands since a large number of unknowns arise when the problem is

approximated. Nevertheless, DFM is shown to be an accurate tool to describe the flow characteristics of

the models with large-scale fractures. In another approach, called the embedded fracture model (EFM)

[21, 33, 32] the fractures are not resolved by grid but are considered as an overlaying continua. In EFM,

matrix and fracture are viewed as two porosity types co-existing at the same spatial location, thus simple

structured meshes can be used for the domain discretization. The transfer term between matrix and fracture

appears as an additional source or sink and is assumed to exist in entire simulation domain. The concept of

this approach can be classified in the class of dual-continuum or multi-continuum models [3, 35, 11, 20].

In this work, we consider both embedded and discrete fracture models (EFM and DFM) for fine-scale

model. Mathematical models for both approaches are described by the coupled mixed dimensional system.

Finite volume methods are widely used discretization techniques for simulation of flow problems. For fine grid

simulations, we employ the cell-centered finite-volume method with two-point flux approximation (TPFA)

[21, 33, 4, 34, 32]. In the DFM approach, we impose Robin type conditions on the internal boundaries that

represent fractures. This allows us to couple the subdomains by simply discretizing the flux over faces of each

internal boundary. In the EFM approach, a coupling between fracture and matrix subdomains is described

by some transfer term.

Due to the scale disparity, fine grid simulation of the processes in fractured porous media can be very

expensive if one needs to capture various scales of flow features at once. To reduce the dimension of the fine

scale system directly using finite volume approximation of the problem with EFM and DFM approaches,

multiscale methods or upscaling techniques are proposed [23, 16, 13, 29, 24]. In our previous work, the

multiscale model reduction techniques based on the Generalized multiscale finite element method (GMsFEM)

for flow in fractured porous media are presented [2, 7, 17, 1]. The general idea of GMsFEM is to first solve

some local problems to get snapshot spaces, then design suitable spectral problems to obtain important modes

which can be used to construct multiscale basis [14, 15, 6, 5]. The resulting multiscale space contains basis

functions that take into account the microscale heterogeneities, and the multiscale scale solution found in

this space provide an accurate approximation. Recently, the authors in [8] proposed a new GMsFEM method

with constraint energy minimization (CEM-GMsFEM). In CEM-GMsFEM, one constructs multiscale basis

functions which can capture long channelized effects and can be localized in an oversampling domain. The

construction of the multiscale space starts with an auxiliary space, which consists of eigenfunctions of local
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spectral problems. Using the auxiliary space, one can obtain the required multiscale spaces by solving a

constraint energy minimization problem. Using the multiscale basis functions, we recently presented a non-

local multi-continuum (NLMC) method [9] for problems in heterogeneous fractured media. We remark that

since the local solutions are computed in an oversampled domain, the mass transfers between fractures and

matrix become non-local, and the resulting upscaled model contains more effective properties of the flow

problem.

In this paper, we construct the multicontinuum upscaled models based on NLMC. We construct multiscale

basis functions in each local domain for both fractures and matrix. Upscaled model have only one additional

coarse degree of freedom (DOF) for each fracture network. Numerical results show that the coupled NLMC

method for the fractured porous media provide accurate and efficient upscaled model on the coarse grid.

The implementation is based on the open-source library FEniCS, where we use geometry objects and the

FEniCS interface to the linear solvers [27, 28].

This paper is organized as follows. In Section 1, we consider mathematical model. Next in Section 2, we

present finite volume fine grid approximation for the EFM and DFM approaches. In Section 3, we propose

an upscaled coarse-grid model for flow in fractured porous media. After that, we present some numerical

examples for various model problems, and we show that proposed method can achieve a good accuracy with

a very few degrees of freedom and discuss the details in Sections 4-6. A conclusion is drawn in Section 7.

1 Problem formulation

In this paper, we consider a mixed dimensional mathematical model for the fractured porous medium. This

coupled problem describes fluid flow in a domain Ω ∈ Rd (d = 2,3), where the thickness of the fractures are

small and can be represented by a reduced dimensional object γ ∈ Rd−1. The resulting model reads

∂(ρφm)

∂t
+∇ · (ρqm) + ρrmf = ρfm, x ∈ Ω

qm = −km
µ
∇pm, x ∈ Ω,

∂(ρb)

∂t
+∇ · (ρqf ) + ρrfm = ρff , x ∈ γ

qf = −bkf
µ
∇pf , x ∈ γ,

(1)

where qm is the velocity in the porous matrix Ω, qf is the velocity in the fractures γ, µ is the fluid viscosity,

cα, kα are the compressibility and permeability (kf = kf (b)), fα is the source term with α = f,m.

For the coupling term between the fractures and matrix, we have

rmf = ηmσ(pm − pf ), rfm = ηfσ(pf − pm),

where σ = k∗/b, b is the fracture thickness and k∗ is the harmonic average between km and kf . Coefficients

ηm and ηf depends on mesh parameters. This term expresses the conservation of mass between the two

continua.
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Let ρ = const, then we have following mixed dimensional coupled system of equation

am
∂pm
∂t
−∇ · (bm∇pm) + ηmσ(pm − pf ) = fm, x ∈ Ωm,

af
∂pf
∂t
−∇ · (bf∇pf )− ηfσ(pm − pf ) = ff . x ∈ γ,

(2)

where pm is the pressure in the porous matrix Ω, pf is the pressure in the fractures γ, am = cm, af = cf ,

bm = km/µ, bf = bkf/µ are constants for simplicity.

2 Fine-grid finite volume approximation

Next, we consider fine-grid approximation of the mixed dimensional coupled problem on unstructured grids

using cell centered finite volume method.

Figure 1: Computational grids for EFM (left) and DFM (right).

Discrete fracture model approximation. Let Th = ∪iςi be the fine mesh of the domain Ω containing

triangular or tetrahedral elements that are conforming with fractures, and let Eh be all fine-scale facets of

the mesh Th. Denote by Eγ = ∪lιl the fracture facets, where Eγ ⊂ Eh(see right of Figure 1). For discrete

fracture model, we have the following discrete problem using two-point flux approximation

am
pm,i − p̌m,i

τ
|ςi|+

∑
Eij⊂∂Ki/Eγ

Tij(pm,i − pm,j) + σil(pm,i − pf,l) = fm|ςi|, ∀i = 1, Nm
f

af
pf,l − p̌f,l

τ
|ιl|+

∑
n

Wln(pf,l − pf,n)− σil(pm,i − pf,l) = ff |ιl|, ∀l = 1, Nf
f

(3)

where Tij = bm|Eij |/dij (|Eij | is the length of facet between cells ςi and ςj , dij is the distance between

midpoint of cells ςi and ςj), Wln = bf/dln (dln is the distance between points l and n), Nm
f is the number of

cells in Th, Nf
f is the number of cell related to fracture mesh Eγ , σil = σ if Eγ ∩ ∂ςi = ιl and zero else. Here,

we take ηm = 1/|ςi|, ηf = 1/|ιl| and use implicit scheme for time discretization and (p̌m, p̌f ) is the solution

from previous time step and τ is the given time step.

Note that, the discrete fracture approximation can be used for fluid flow simulation in a fractured porous

medium with both high and low permeable fractures.
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Embedded fracture model approximation. Let Th = ∪iςi be the structured fine grid with triangular

or tetrahedral cells of the domain Ω, we note that in this approach the mesh does not need to be conforming

with the fracture lines. The additional fracture mesh denoted by Eγ = ∪lιl is only performed on the fractures

(see left of Figure 1). For embedded fracture model, we have

am
pm,i − p̌m,i

τ
|ςi|+

∑
Eij∈∂Ki

Tij(pm,i − pm,j) + σil(pm,i − pf,l) = fm|ςi|, ∀i = 1, Nm
f

af
pf,l − p̌f,l

τ
|ιl|+

∑
n

Wln(pf,l − pf,n)− σil(pm,i − pf,l) = ff |ιl|, ∀l = 1, Nf
f

(4)

where σil = σ if ιl ⊂ ςi and zero else.

Matrix form. Therefore, we have the following system of equations for p = (pm, pf )T presented in the

matrix form

M
p− p̌
τ

+Ap = F, (5)

M =

(
Mm 0

0 Mf

)
, A =

(
Am +Q −Q
−Q Af +Q

)
, F =

(
Fm

Ff

)
,

and

Mm = {mm
ij}, mm

ij =

{
am|ςi|/τ i = j,

0 i 6= j
, Mf = {mf

ln}, mf
ln =

{
af |ιl|/τ l = n,

0 l 6= n
,

Q = {qil}, qil =

{
σ i = l,

0 i 6= l
,

where Am = {Tij}, Af = {Wln}, Fm = {fmi }, fmi = fm|ςi|, Ff = {ffl }, f
f
l = ff |ιl| and size of fine-grid

system is Nf = Nm
f +Nf

f .

3 Coarse-grid upscaled method

Next, we describe the construction of the upscaled model on coarse grid using Non-local multi-continuum

(NLMC) approach. In this method, the multiscale basis functions are constructed by solving local problems

in the oversampled local region. The basis functions satisfy the constraint that it vanishes in all other

continuum except for the target continuum which it is formulated for. Construction of basis is similar for

both discrete and embedded fine-grid fracture models.

In NLMC [9], we apply simplified basis for fractured media to form the auxiliary space, which will be

used together with an energy minimization principle for form the required basis functions. The resulting

multiscale basis functions have spatial decay property in local domains and separate background medium

and fractures. Finally, the basis functions are used in the construction of the upscaled model.

Let K+
i be an oversampled region for the coarse cell Ki (see Figure 2) obtained by enlarging Ki by several

coarse cell layers. We will construct a set of basis functions, whose supports are K+
i . Each of these basis

functions is related to the matrix component in Ki as well as each fracture network within Ki. For fractures,

we denote γ = ∪Ll=1γ
(l), where γ(l) denotes the l-th fracture network and L is the total number of fracture
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Figure 2: Multiscale basis functions on mesh 20 × 20 for local domain K2 for DFM and EFM fine-grid

approximations

networks. We also write γ
(l)
j = Kj ∩γ(l) is the fracture inside coarse cell Kj and Lj is the number of fracture

networks in Kj . For each Ki, we will therefore obtain Lj + 1 basis functions: one for Ki and one for each

γ
(l)
i . Following the framework of [9] and [8], the auxiliary space V aux(Ki) for the coarse cell Ki contains

functions that are supported in Ki and are piecewise constant functions such that they are constant on Ki

and on each γ
(l)
i .

We next define the constraints that will be used for multiscale basis construction. For each Kj ⊂ K+
i :

(1) background medium (ψi0) : ∫
Kj

ψi0 dx = δi,j ,

∫
γ
(l)
j

ψi0 ds = 0, l = 1, Lj .

(2) l-th fracture network in Ki (ψil):∫
Kj

ψil dx = 0,

∫
γ
(l)
j

ψil ds = δi,jδm,l, l = 1, Lj .

We first discuss the constraint for background medium in (1). We note that it is a set of constraints so that

the resulting function has mean value one on the coarse cell Ki, and has mean value zero on all other coarse

cells within K+
i . In addition, the resulting function has mean value on all fracture networks within K+

i . We

next discuss the constraint for the fracture network (2). We note that it is a set of constraints so that the

resulting function has mean value zero on all coarse cells within K+
i . Moreover, the resulting function has
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mean value one on the target fracture network γ
(l)
i and has mean value zero on all fracture networks within

K+
i . To sum up, the above constraints will give Li + 1 functions.

Together with the above constraints, we will construct the basis functions as follows. Following the

framework of [9] and [8], we will find the multiscale basis functions using the energy minimizing constraint

property. As a result, we will solve the following local problems in the oversampled region K+
i using a

fine-grid approximation for the system of flow in fractured porous media presented in the previous Section.

In particular, we solve following coupled system in K+
i :

Am +Q −Q BTm 0

−Q Af +Q 0 BTf

Bm 0 0 0

0 Bf 0 0



ψm

ψf

µm

µf

 =


0

0

Fm

Ff

 (6)

with zero Dirichlet boundary conditions on ∂K+
i for ψm and ψf . We remark that (ψm, ψf ) denotes each of

the basis functions that satisfy the above constraints. Note that we used Lagrange multipliers µm and µf

to impose the constraints in the multiscale basis construction.

To construct multiscale basis function with respect to porous matrix ψ0 = (ψ0
m, ψ

0
f ), we set Fm = δi,j

and Ff = 0. For multiscale basis function with respect to the l-th fracture network, we set Fm = 0 and

Ff = δi,jδm,l. In Figure 2, we depict a multiscale basis functions for oversampled region K+
i = K2

i (two

oversampling coarse cell layers) in a 20 × 20 coarse mesh. Combining these multiscale basis functions, we

obtain the following multiscale space

Vms = span{(ψi,lm , ψ
i,l
f ), i = 1, Nc, l = 0, Li}

and the projection matrix

R =

(
Rmm Rmf

Rfm Rff

)
,

RTmm =
[
ψ0,0
m , ψ1,0

m . . . ψNc,0m

]
, RTff =

[
ψ0,1
f . . . ψ0,L0

f , ψ1,1
f . . . ψ1,L1

f , . . . , ψNc,1f . . . ψ
Nc,LNc
f

]
,

RTmf =
[
ψ0,0
f , ψ1,0

f . . . ψNc,0f

]
, RTfm =

[
ψ0,1
m . . . ψ0,L0

m , ψ1,1
m . . . ψ1,L1

m , . . . , ψNc,1m . . . ψ
Nc,LNc
m

]
,

Therefore, the resulting upscaled coarse grid model reads

M̄
p̄n+1 − p̄n

τ
+ Āp̄n+1 = F̄ , (7)

where Ā = RART , F̄ = RF and p̄ = (p̄m, p̄f ). We remark that p̄m and p̄f are the average cell solution on

coarse grid element for background matrix and for fracture media. That is, each component of p̄m corresponds

to the mean value of the solution on each coarse cell. Moreover, each component of p̄f corresponds to the

mean value of the solution on each fracture network with a coarse cell.

As an approximation, we can use diagonal mass matrix directly calculated on the coarse grid

M̄ =

(
M̄m 0

0 M̄f

)
, Q̄ =

(
Q̃ −Q̃
−Q̃ Q̃

)
, F̄ =

(
F̄m

F̄f

)
,
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where M̄m = diag{am|Ki|}, M̄f = diag{af |γi|}, Q̃ = diag{σ|γi|} and for the right-hand side vector F̄m =

{fm|Ki|}, F̄f = {ff |γi|}. We remark that the matrix A is non-local and provide good approximation due to

the basis construction.

4 Numerical results for high and low permeable fractures with

DFM

In this section, we consider low and high permeable fractures (see Figure 3 for illustration). We construct an

accurate approximation of the pressure equation using NLMC approach. The ideas to construct the basis are

similar for low and high permeable fracture cases, where only the underlying fine grid models are different.

In Figure 2, we depict multiscale basis functions in an oversampled local domain K2 on a 20 × 20 coarse

mesh.

Figure 3: Discrete fracture model with low and high permeable fractures. Blue: fine grid. Black: high

permeable fractures. Red: low permeable fractures.

We consider the computational domain Ω = [0, 1] × [0, 1] with 30 fractures. In Figure 5, we show the

coarse and fine grids. For fine-grid models, we use DFM, thus the fractures are resolved by the fine grid.

The coarse grids are uniformly partitioned into 20× 20 and 40× 40 coarse blocks.

We consider three test cases:

• Test 1 (high permeable fractures). km = 10−6, kf = 1.0 for all fractures.
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Multiscale basis functions for high permeable fracture

Multiscale basis functions for low permeable fracture

Figure 4: Multiscale basis functions on a 20 × 20 mesh for local domain K2. First row: multiscale basis

functions for matrix and high permeable fracture. Second row: multiscale basis functions for matrix and

low permeable fracture. Left column: multiscale basis functions for matrix. Right column: multiscale basis

functions for fracture.

Figure 5: Computational grids. Coarse grids with 400 and 1600 cells. Fine grid with 47520 elements (matrix)

and 1042 elements (fractures).

• Test 2 (low permeable fractures). km = 10−4, kf = 10−10 for all fractures.

• Test 3 (hybrid fractures). km = 10−6, kf = 1.0 for 24 fractures and kf = 10−12 for 6 fractures.
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Figure 6: Fine-scale solutions for Tests 1,2 and 3 (from top to bottom) for different time steps t5 = 0.025

(first column), t10 = 0.05 (second column), t15 = 0.075 (third column) and t20 = 0.1 (fourth column).

DOFf = 48562.

The other model parameters are chosen as follows: cm = 10−5, cf = 10−6 with σ = 2.0
k−1
m +k−1

f

.

We set a source q = 10−3 on the fractures in the two coarse cells,

• Test 1 and 3. cell: 0.1 < x < 0.15, 0.05 < y < 0.1 and cell: 0.6 < x < 0.65, 0.9 < y < 0.95.

• Test 2. cell: 0.05 < x < 0.1, 0.05 < y < 0.1 and cell: 0.65 < x < 0.7, 0.9 < y < 0.95.

As for initial pressure, we set p0 = 1. Our total simulation time is tmax = 0.1, and we take 20 time steps for

upscaled and fine-scale solvers.

To compare the results, we investigate the relative L2 error between coarse cell average of the fine-scale

solution p̄f and upscaled coarse grid solutions p̄

eL2 = ||p̄f − p̄||L2 , ||p̄f − p̄||2L2 =

∑
K(p̄Kf − p̄K)2 dx∑

K(p̄Kf )2 dx
, p̄Kf =

1

|K|

∫
K

pf dx. (8)
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Figure 7: Upscaled coarse grid solutions on mesh 40 × 40 with K3 for different time steps t5 = 0.025 (first

column), t10 = 0.05 (second column), t15 = 0.075 (third column) and t20 = 0.1 (fourth column). Tests 1,2

and 3 (from top to bottom). DOFc = 1965.

The fine-scale system has dimension DOFf = 47520+1042. The upscaled model has dimension DOFc =

593 for coarse mesh with 400 cells (20× 20, and DOFc = 1965 for coarse mesh with 1600 cells (40× 40). In

Figure 6, we present the fine scale solution for all test cases at different time steps t5 = 0.025, t10 = 0.05,

t15 = 0.075 and t20 = 0.1 . The first row present solutions for Test 1, where we have highly conductive

fractures. The second row show the solutions for the low permeable fractures. Finally, in the third row we

depict solutions where the fractures have both high and low permeability.

In Figure 7, we present the upscaled solutions for coarse grid 40 × 40 for Test 1, 2 and 3. For basis

calculations, we use oversampled domain K+ with 3 coarse cells layers oversampling. We observe good

accuracy of the proposed method with less than one percent of error for all test cases.

In Table 1, we present relative errors for two coarse grids and for different numbers of oversampling

layers Ks with s = 1, 2 and 3. We notice a huge reduction of the system dimension and very small errors for

11



Ks t5 t10 t15 t20

Test 1. 20× 20

s = 1 0.569 1.147 1.740 2.307

s = 2 0.233 0.246 0.263 0.283

s = 3 0.229 0.236 0.254 0.272

Test 2. 20× 20

s = 2 0.862 2.780 6.183 11.990

s = 3 0.095 0.151 0.191 0.224

Test 3. 20× 20

s = 1 0.793 1.891 3.108 4.319

s = 2 0.323 0.395 0.432 0.451

s = 3 0.311 0.382 0.427 0.446

Ks t5 t10 t15 t20

Test 1. 40× 40

s = 1 0.600 1.164 1.695 2.175

s = 2 0.162 0.255 0.326 0.383

s = 3 0.151 0.202 0.231 0.248

Test 2. 40× 40

s = 2 0.429 1.118 2.068 3.271

s = 3 0.072 0.122 0.162 0.195

Test 3. 40× 40

s = 1 0.839 1.751 2.699 3.610

s = 2 0.215 0.348 0.442 0.523

s = 3 0.207 0.331 0.419 0.476

Table 1: Relative errors of the mean solution on a coarse mesh 20× 20 (Left) and 40× 40 (Right). Test 1,

2 and 3

unsteady mixed dimensional coupled system.

5 Numerical results with EFM

In this section, we present numerical results for upscaled model for embedded and discrete fine-grid fracture

models. We consider highly permeable fractures for two types of geometries. As for Geometry 1, we consider

30 fracture lines in the domain (Test 1 from the previous section) with injection and production wells (Figure

5). Geometry 2 is the computational domain Ω = [0, 2]× [0, 1] with 50 fractures (Figure 8).

We set a source term on the fractures inside following cells:

• Geometry 1. Cell 0.1 < x < 0.15, 0.05 < y < 0.1 (injection) and cell 0.6 < x < 0.65, 0.9 < y < 0.95

(production) with q = ±10−3.

• Geometry 2. Cells 0.1 < x < 0.15, 0.05 < y < 0.1 and 1.6 < x < 1.65, 0.9 < y < 0.95 for injection with

q = 10−3.

The total simulation time is tmax = 0.1, and is discretized into 20 time steps for both upscaled and fine-scale

solvers.

We first consider Geometry 1. For DFM model, the unstructured fine grid contains 47520 fine-scale

elements for porous matrix and 1042 fine-scale elements for fractures. For EFM model, we use the structured

fine grid containing 20000 fine-scale elements (matrix) and 1042 fine-scale elements (fractures). We consider

uniformly structured coarse grid with 400 coarse-scale elements(20 × 20). Fine-grid solutions using DFM

and EFM models are presented in Figure 9. We notice similar solutions for both models for sufficient fine

grids.
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Figure 8: Computational grids. Coarse grid with 800 cells. Fine grid with 98398 cells (matrix) and 2170

cells (fractures) (DFM). Geometry 2

Figure 9: EFM and DFM fine-scale solutions. Geometry 1 for different time steps t5 = 0.025 (first column),

t10 = 0.05 (second column), t15 = 0.075 (third column) and t20 = 0.1 (fourth column). First row: DFM

fine-scale solution. Second row: EFM fine-scale solution

In Table 2, we show relative errors for different number of oversampling layers Ks with s = 1, 2 and 3,

using DFM and EFM fine grid approximations. For coarse mesh with 400 cells, when we take 2 oversampling

layers, we have 0.398% of error at final time. The fine-scale systems have DOFf = 47520 + 1042 for DFM

and DOFf = 20000 + 1042 for EFM. While the upscaled model only has DOFc = 593 for coarse mesh with

400 cells (20× 20). We note that our proposed method provide with huge reduction of the system size and

very accurate approximations.

Next, we consider Geometry 2. For DFM model, we use unstructured fine grid containing 98398 fine cells

(matrix) and 2170 fine cells (fractures). For EFM mode, we employ structured fine grid containing 25600
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Figure 10: Multiscale solutions on mesh 40 × 20 with K2 using EFM fine-scale solver. Geometry 2 for

different time steps t5 = 0.025, t10 = 0.05, t15 = 0.075 and t20 = 0.1 (from top to bottom). First column:

fine scale solution. Second column: cell average for fine grid solution. Third column: upscaled coarse grid

solution

Ks t5 t10 t15 t20

Geometry 1 with DFM. 20× 20

s = 1 0.433 0.955 1.623 2.404

s = 2 0.233 0.314 0.396 0.476

s = 3 0.201 0.305 0.378 0.455

Geometry 2 with DFM. 40× 20

s = 2 0.138 0.170 0.192 0.211

Ks t5 t10 t15 t20

Geometry 1 with EFM. 20× 20

s = 1 0.380 0.724 1.127 1.578

s = 2 0.264 0.390 0.499 0.598

s = 3 0.259 0.388 0.483 0.579

Geometry 2 with EFM. 40× 20

s = 2 0.098 0.133 0.158 0.180

Table 2: Relative errors of the average cell solution on a coarse mesh. Right: DFM. Left: EFM. Geometry

1 and 2.
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fine cells (matrix) and 2170 fine cells (fractures). In this test, we consider uniform structured coarse grids

40× 20 (800 cells). The fine-scale systems have DOFf = 98398 + 2170 for DFM and DOFf = 25600 + 2170

for EFM. The upscaled model has DOFc = 1179 for coarse mesh with 800 cells (40× 20). In Figure 10, we

present results using the upscaled model, where we obtain very accurate simulation results with very small

DOF in the upscaled model. For local domain K2, relative error for porous matrix are less than one percent.

In Table 2, we present relative errors between the solutions of EFM and DFM fine-grid models and the

upscaled model, where we only use two oversampling layers K2 for basis construction. From the numerical

results, we observe a good convergence when we take sufficient number of oversampled layers.

6 Numerical results for heterogeneous permeability

Finally, we consider a test case with heterogeneous permeability (Figure 11) for Geometry 1 with same

parameters as in the previous section. As for fine grid approximation, we use EFM. The simulation time is

tmax = 0.1 with 100 time steps.

Figure 11: Heterogeneous pore matrix permeability for Geometry 1

In this test, we consider uniform structured coarse grids 40 × 40 (1600 cells). In Figure 12, we present

results using the upscaled model, where relative error are less than one percent. In Table 3, we present

relative errors between the fine grid and the upscaled coarse grid solutions. The fine-scale systems have size

DOFf = 27384 with solution time 57 seconds. The upscaled model has DOFc = 1165 with solution time

5.9 seconds. The computational time is reduced 10 times due to the reduction in the size of the system. The

proposed method is shown to be very efficient and provides good accuracy.
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Figure 12: Multiscale solutions on mesh 40 × 40 with K2 using EFM fine-scale solver. Geometry 1 for

different time steps t5, t25, t50 and t100 (from left to right). First row: fine scale solution. Second row: cell

average for fine grid solution. Third row: upscaled coarse grid solution

Ks t5 t25 t50 t100

Geometry 1. 40× 40

s = 1 0.137 0.434 0.581 0.785

s = 2 0.078 0.182 0.230 0.306

s = 3 0.078 0.178 0.200 0.186

s = 4 0.078 0.176 0.198 0.183

Table 3: Relative errors of the average cell solution on a coarse mesh. Geometry 1 with heterogeneous

permeability.
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7 Conclusion

We consider mixed dimensional coupled problem for flow simulation in fractured porous media for EFM and

DFM with finite volume approximation on the fine grid. We presented an upscaling method for coupled

problems in fractured domains. In this work, we construct multiscale basis function for background medium

and additional multiscale basis for fractures.

We presented numerical results for model problems: (1) discrete fracture fine grid model with low and

high permeable fractures; (2) embedded fine grid model for two geometries with different number of fracture

lines and (3) embedded fracture fine grid model with heterogeneous permeability. Our proposed upscaling

method provides good accuracy and give a significant reduction in the size of the problem system. The

resulting upscaled model has minimal size and the solution obtained has physical meaning on the coarse

grid.
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