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1 Introduction

Let H be a real Hilbert space with inner product (-, -) and norm || - ||, respectively. Let C be
a nonempty closed convex subset of H and A be a mapping of C into H. Then A is called
monotone if

(Ax — Ay, x —y) >0, Vx,yeC.

A is called a-inverse-strongly monotone (see [4,12]) if there exists a positive constant o such
that

{Ax — Ay, x —y) = @] Ax — Ay|*, Vx,y € C.
A is called k-Lipschitz continuous if there exists a positive constant k£ such that
[Ax — Ayl < kllx — yll, Vx,y € C.

It is clear that if A is a-inverse-strongly monotone, then A is monotone and Lipschitz con-
tinuous.

In this paper, we consider the following variational inequality (for short, VI(A, C)): find
u € C such that

(Au,v—u) >0, YveC.

The set of solutions of the VI(C, A) is denoted by 24. A mapping S : C — C is called
nonexpansive [7] if

[Sx =Syl < llx = yll, Vx,yeC.

We denote by F(S) the set of fixed points of S, i.e., F(S) = {u € C : Su = u}. A more
restrictive class of maps are the contractive maps, i.e. maps S : C — C such that for some
a € (0,1),

[Sx = Syll < aflx = yll, Vx,yeC.

Due to the many applications of the variational inequality problem to several branches
of mathematics, but also to mechanics, economics etc, finding its solutions is a very impor-
tant field of research. In some cases, as for strictly monotone operators A, the solution, if it
exists, is unique. More generally the set of solutions €24 of a continuous monotone mapping
A is a convex subset of C. In such cases one is often interested in finding a solution that
has some desirable properties. For instance, Antipin has investigated methods for finding a
solution of a variational inequality that satisfies some additional inequality constraints [1,2],
in a finite-dimensional space. Takahashi and Toyoda [18] considered the problem of find-
ing a solution of the variational inequality which is also a fixed point of some mapping, in
an infinite-dimensional setting. More precisely, given a nonempty, closed and convex set
C C H, anonexpansive mapping S : C — C and an «-inverse-strongly-monotone mapping
A : C — H, they introduced the following iterative scheme in order to find an element of
F(S)NQa:

[xo:xeC, )

Xp+1 = OpXy + (1 - (xn)SPC(-xn - )“nAxn)

for all n > 0, where {«,} is a sequence in (0, 1), {A,} is a sequence in (0, 2«), and Pc is the
metric projection of H onto C. It is shown in [18] that if F(S) N Q24 # ¢, then the sequence
{x,} generated by Eq. 1 converges weakly to some z € F(S) N 4. Later on, in order to
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achieve strong convergence to an element of F'(§) N 24 under the same assumptions, liduka
and Takahashi [10] modified the iterative scheme by using a hybrid method as follows:

xo=x€C,
Yn = apxp + (1 — ) SPc(xy — Ay Axy),
Co=A{zeC:llyn—zll < lxu —zl}, (2)

On={z2€C:{xp—z,x—x,) >0},
Xnt1 = Pc,nQ, X

foralln > 0, where 0 <o, <c<land0 < a < A, < b < 2«.Itis shown in [10] that if
F(S) N Q4 # @, then the sequence {x,} converges strongly to Pr(s)nq,x-

The restriction of the above methods to the class of of a-inverse strongly monotone map-
pings (i.e., mappings whose inverse is strongly monotone) excludes some important classes
of mappings, as pointed out by Nadezhkina and Takahashi [14]. The so-called extragradient
method, introduced in 1976 by Korpelevich [11] for a finite-dimensional space, provides an
iterative process converging to a solution of VI(A, C) by only assuming that C € R”" is
closed and convex and A : C — R is monotone and k-Lipschitz continuous. The extragra-
dient method was further extended to infinite dimensional spaces by many authors; see for
instance the recent contributions of He, Yang and Yuan [8], Solodov and Svaiter [17], Ceng
and Yao [6,19] etc.

By modifying the extragradient method, Nadezhkina and Takahashi were able to show the
following weak convergence result, for mappings A that are only supposed to be monotone
and k-Lipschitz:

Theorem 1 [13, Theorem 3.1] Let C be a nonempty closed convex subset of a real
Hilbert space H. Let A : C — H be a monotone and k-Lipschitz continuous mapping
and S : C — C be a nonexpansive mapping such that F(S) N Q4 # 0. Let {x,,}, {y»} be the
sequences generated by

xo=x €C,
yn = Pc(xy — Ay Axy),
Xpt1 = dpXp + (1 —ap)SPe(xy — AAyy)

foralln > 0, where {A,} C la, b] for somea, b € (0, 1/k) and {a,} C [c, d] for somec,d €
(0, 1). Then the sequences {x,}, {yn} converge weakly to the same point z € F(S) N Q4
where z = lim,_, o0 Pr(s)nQ,Xn-

Further, inspired by Nadezhkina and Takahashi’s extragradient method [13], Ceng and
Yao [5] also introduced and considered an extragradient-like approximation method which
is based on the above extragradient method and the viscosity approximation method, and
proved the following strong convergence result.

Theorem 2 [5, Theorem 3.1] Let C be a nonempty closed convex subset of a real Hilbert
space H. Let f : C — C be a contractive mapping with a contractive constant « € (0, 1),
A : C — H be a monotone, k-Lipschitz continuous mapping and S : C — C be a non-
expansive mapping such that F(S) N Q4 # @. Let {x,}, {yn} be the sequences generated
by

xo=x€C,
yn = (I = yu)xXn + yu Pc(xn — AnAxy),
Xpp1 = (I — oy — Bu)xn + oy f(yn) + BuSPc(xy — AAyp),
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forall n > 0, where {)\,} is a sequence in (0, 1) with ZZ‘;O An < 00, and {an}, {Bn}, {¥n}
are three sequences in [0, 1] satisfying the conditions:

(i) an+ By <1foralln > 0;
(i) lim,ocan =0, D20, = 00;
(iii) 0 < liminf, . B, < limsup,_, ., B, < L.

Then the sequences {x,}, {yn} converge strongly to the same point g = Prs)no, f(q) if and
only if {Ax,} is bounded and lim inf,,_, 5o (Ax,, y — x,) > O forall y € C.

Very recently, by combining a hybrid-type method with an extragradient-type method,
Nadezhkina and Takahashi [14] introduced the following iterative method for finding an
element of F(S) N 4 and established the following strong convergence theorem.

Theorem 3 [14, Theorem 3.1] Let C be a nonempty closed convex subset of a real Hilbert
space H. Let A : C — H be a monotone and k-Lipschitz continuous mapping and let
S : C — C be a nonexpansive mapping such that F(S) N Qy # @. Let {x,,}, {yn}, {zn} be
sequences generated by

xo=x €C,
Yn = Pc(xp — AnAxy),
Zn = ApXy + (1 —ap)SPc(xy — AnAyn),
Ch={zeC:llzp—zll < llxn —zll},
On=1{z€C:{xy—z,x —x,) =20},
Xnt1 = Pc,no,x,
for all n > 0, where {\,} C la, b] for some a,b € (0,1/k) and {a,} C [0, c] for some
¢ € [0, 1). Then the sequences {x,}, {yn}, {zn} converge strongly to the same point q =
Pps)na,X-

3

In this paper, we introduce a hybrid extragradient-like approximation method which is
based on the above extragradient method and the hybrid (or outer approximation) method,
ie.,

xo € C,

Yn = (1= ¥Yu)xn + vu Pc(xn — AnAxp),

Zn = (1 —an — B)xn + onyn + BuSPc(xn — AnAyn),

Co={z € Ctllzn —2l® < ln — 2l + 3 = 3y + )b | Axa1?},
On={z2€C:{(xy—2z,x0—x,) =0},

Xn+1 = Pc,ng,Xo0

forall n > 0, where {},} is a sequence in [a, b] witha > O and b < ﬁ, and {o}, {Bn}, {va}
are three sequences in [0, 1] satisfying the conditions:

(i) op+pp <lforaln>0;
(i) lim, o0y =0;
(iii) liminf, s B, >0
(iv) lim,y, =1and y, > 3/4 foralln > 0.

It is shown that the sequences {x,}, {y,}, {z,} generated by the above hybrid extragradient-
like approximation method are well-defined and converge strongly to the same point g =
Pr(s)nq,X. Using this theorem, we construct an iterative process for finding a common fixed
point of two mappings, one of which is nonexpansive and the other taken from the more
general class of Lipschitz pseudocontractive mappings.
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In the next section we will recall some basic notions and results. In Sect. 3 we present and
prove our main theorem. The last section is devoted to some applications.

2 Preliminaries

Given a nonempty, closed and convex subset C of a Hilbert space H, for any x € H there
exists a unique element Pcx € C which is nearest to x, i.e. forall y € C,
lx — Pex|l < llx — yll. “
The projection operator Pc : H — C is nonexpansive on H: For every x,y € H,
[ Pcx — Peyll < llx — yll.
In addition, it has the following properties: For every x € H and y € C,
e = Y17 = llx = Pexll> + Iy = Pex|)*: ®)
also,
(x = Pcx,y — Pcx) < 0. (6)

Assume that A is monotone and continuous. Then the solutions of the variational inequality
VI(A, C) can be characterized as solutions of the so-called Minty variational inequality:

x*EQAﬁ(Ax,x—x*)ZO, Vx € C. @)

We will also make use of Browder’s demiclosedness principle, cf. for instance [16]. Let
us denote by [ the identity operator in H.

Proposition 4 Let C C H be closed and convex. Assume that S : C — H is nonexpansive.
If S has a fixed point, then I — S is demiclosed; that is, whenever {x,} is a sequence in C
converging weakly to some x € C and the sequence {(I — S)x,} converges strongly to some
y € H, it follows that (I — S)x = y.

A mapping T : C — C is called pseudocontractive if and only if forall x, y € C,
(Tx =Ty, x —y) < |x = yl*.

It is clear that any contractive mapping is pseudocontractive. Also, it is easy to see that T
is pseudocontractive if and only if the mapping A = I — T is monotone [3].

A multivalued mapping B : H — 2% is called monotone if for all x, y € H, x* € Tx
and y* € Ty one has (y* — x*, y — x) > 0. Such a mapping is called maximal monotone if
it has no proper monotone extension, i.e., if By : H — 2 is monotone and Bx C Bjx for
all x € H, then B = Bj. If B is maximal monotone, then for each » > 0 and x € H there
exists a unique element z € H such that (/ 4+ r B)z = x. This element is denoted by J,B X.
The mapping J,? thus defined is called the resolvent of B [9].

3 The main convergence result

In this section we define an iterative process and prove its convergence to a member of
F(S) N 24, where S is nonexpansive and A is monotone and k-Lipschitz continuous.
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Theorem 5 Let C be anonempty closed convex subset of a real Hilbert space H, A : C — H
be a monotone, k-Lipschitz continuous mapping and let S : C — C be a nonexpansive map-
ping such that F(S) N Qa # (. We define inductively the sequences {x,}, {yn}, {zn} by

X0 € C,
Yn = (I = yu)Xn + yn Pc(xn — A Axy),
Zn = (I —ay — Bu)xn + anyu + BuSPc(xn — Ay Ayn),
Co=1{z€C:llzn—zl* < llxn — zlI* + B = 3yn + ca)b | AxsI*},
On=1{z€C:{x, —2z,x0 —xp) >0},

Xn+1 = Pc,np, %o

foralln > 0, where {)\,,} is a sequence in [a, bl witha > 0 and b < i, and {an}, {Bn}, {vn}
are three sequences in [0, 1] satisfying the conditions:

(i) on+ By <1 foralln>0;
(i) lim, o0, =0;
(iii) liminf, .~ B, > 0
(iv) lim, y, = 1 and y, > 3/4 foralln > 0.

Then the sequences {x,}, {yn}, {zn} are well-defined and converge strongly to the same
point ¢ = Pp(s)ng,X0-

Proof We divide the proof into several steps.

Step 1. Assuming that x, is a well-defined element of C for some n € N, we show that
F(S)NQy CC,.
Since x,, is defined, y,, z,, are obviously well-defined elements of C. Let x* € F(S)NQa
be arbitrary. Set t, = Pc(x, — Ay Ayy) for all n > 0. Taking x = x,, — A, Ay, and y = x*
in (5), we obtain
lltn = X* 1> < I — AnAyn — x*[1> = 1xn = An Ayn — a1
= llxn — X* 117 + 2An (Ayn, X* = Yu) + 220 (AVn, Yo — tn) — X0 — tull*.

Since by relation (7) we have (Ay,, y, — x*) > 0, we deduce

1w — x* 1% < llxn — x* 1% = 20 — tall® + 200 (AYn, Yo — tn)
= |10 — X* 1% = 10 = Yu) + O — t)II* + 200 (AYns Y0 — 1)
= [lxn — X1 = %0 — Yull® = llyn — tall* + 20 — 2nAVn — Yn tw — Yn)-

3
We estimate the last term, using y, = (1 — y,)x, + vu Pc(xn — AnAxy):
(Xn — A AYn — Yu, th — Yn)
= {xp — A Axp — Yn, tn — Yu) + Ay (Axpy — Ay, ty — Yu)
< (xn — AMAxy — (1 = y)xn — YuPc (X — My Axy), th — Yn)
+An 1Axn — Ayl 12w — yull
< VYu {xn — A Axy — Pc(xp — Ay AXp), th — Yn)
—(1 = y)An (Axp, ty — yn) + Auk |Xn — Yull 16 — Yull - 9
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In addition, using properties Egs. (4) and (6) of the projection Pc (x, — A, Ax,) we obtain
(Xn — AnAxy — Po(Xn — AnAXp), ty — Yu)
= (xn — A Axy — Pc(xn — Ay Axn), tn — (1 — yn)Xn — Yu Pc(xn — AnAxn))
= (1 = yn) (xn — A Axp — Pc(xn — AnAxpn), ty — Xn)
+ Y (Xn — Ay Axpy — Po(Xn — Ay Axy), tn — Pc(xn — Ay Axp))
< (L= v) X0 — A Axy — Pc(xn — Ay Axp) || 1ty — Xl
< (1= va) A 1A N (lltn = Yull + 1y — xa D) - (10)
Gathering (8), (9), (10) and using y, < 1 and X, < b we find
ltn = x*1% < 1w = x* 12 = btw = yull* = Ilyn — tall®
+2yn (1 = yu) b 1AX |l (Ul — Yol + 1y — X0 )
+2(1 — YD |Axnl it — yull + 2Dk [|xn — yull 1tn — yall
< o = X517 = o = Yl = llyn — tall®
+ (1= y) (2 Ax I + N1t = yull* + llyn — xall?)
+ (1= y) (0 1A% > + N1t = yull) + bk (10 = yul* + 1w — yall?)
= Ilxw — x*[1* = llxa — yull* (v — bk)
—llyn = tall* @y — 1= BK) + 3(1 — y)b? | Axy 1% (11)
Using our assumptions b < ﬁ and y;,, > 3/4, we obtain that for all n € N,

ltn — x* 1% < llxn — ¥ + 3(1 — y)b? | Ax, |12 . (12)

Also, using again relation (7) and properties of Pc, we obtain

[y = 27 = 10 = 7)o = %) + v (PeGon = dnAxy) — %) |17
< (= y)llxn = x* |7 + vl Pe (xn — AnAxy) — Pex™||?
< (1= y)llxn = x*I7 + vallxn — x* = Ap Ay |12
= (1= y)llxn — X1 + i [0 — X117 = 220 (A%, X0 — x*) + Ap [ Axa |1%]
< [lxa — x* 1> + b*[| Ax, |12 (13)
Since S is nonexpansive and x* € F(S) we have ||St, — x*|| < ||#, — x*|. Thus, rela-
tions (12) and (13) imply that
lzn = x*1% = (1 = atw — Bu)Xn + @ yn + BuSta — x*||?
< (U —an = B) 1xn — x* 12 + anllyn — X7 + BullSta — x*I> (14)
< (L—an — B)llxa — x*[1> + e [l — x| + b7 [ Axy 1]
B0 [llxn — x* 117 + 301 = y)b? | Ax, 1]
= llxn — X*I* + B = 3y + a)b? [ Axy |1 (15)
Consequently, x* € C,. Hence F(S) N Q4 C Cy.
Step 2. We show that the sequence {x,} is well-defined and F(S) N Q4 C C,, N Q,, for all
n>0.

We show this assertion by mathematical induction. For n = 0 we have Q¢ = C. Hence by
Step 1 we obtain F(S)NQy C CoN Qo. Assume that x; is defined and F(S)NQ24 C CrN QO
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for some k > 0. Then yy, z; are well-defined elements of C. Note that Cy, is a closed convex
subset of C since

Ce=1{z€C: llzk — xill? + 2 {2k — %, 3k — 2) < B = 3yx + a)b® [ Axe %)

Also, it is obvious that Qy is closed and convex. Thus, Cy N Qy is a closed convex sub-
set, which is nonempty since by assumption it contains F'(S) N Q4. Consequently, x4 =
Pc,ng,Xo is well-defined.

The definition of x4 and of Q1 imply that Cx N Qr € Qx+1. Hence, F(S) N Q4 <
Qi+1- Using Step 1 we infer that F(S) N Q4 € Ciy1 N Qk41-

Step 3. We show that the following statements hold:

(1) {x,} is bounded, lim,_, » ||x, — X0l exists, and lim,_, oo (Xp+1 — Xp) = 0;
(2) limy—oo(zp —x,) =0.

Indeed, take any x* € F(S)NQ 4. Using x,41 = Pc,ng,Xo andx* € F(S)NQy C C,NQ,,
we obtain

X041 = xoll < Ix* = xoll, ¥n =0. (16)

Therefore, {x,} is bounded and so is {Ax,} due to the Lipschitz continuity of A. From the
definition of Q, it is clear that x,, = Pg, xo. Since x,41 € C, N Q, C Oy, we have

2 2 2
IXn1 = Xn I < llxn41 = x0lI" = llXn — x0l© Vn = 0. a7

In particular, ||x,4+1 —xol|l > ||x, —xo|| hence lim,_, ~ || x, —x0|| exists. Then relation (17)
implies that

lim (xXy41 — x) = 0. (18)
n—0o0
Since x,4+1 € C,, we have
Izn — Xns1 1 < X0 — X1 12 4+ B = 3y + an)b* || Axy||* .

Since {Ax,} is bounded and lim,_ =1, lim,, o, =0, we deduce that
limy,— 0 (z2n — Xp41) = 0. Combining with Eq. 18 we infer that lim,,_, 5o (z, — x,,) = 0.

Step 4. We show that the following statements hold:

(1) limy— 00 (x4 — yu) = 05
(2) limy— 00 (Sxy — x,) = 0.

Indeed, from inequalities 14 and 15 we infer
2 2
lzn = x*|" = 0 = x|~ < (ot = B)llxn — x* 12 + anllyn — x*I* + Bull Sty — x*||?
< (3= 3yn +an)b? | Ax,|* . (19)
Since o, — 0, y,, — 1, and {x,}, {Ax,}, {y,} are bounded, we deduce from (19) that
lim B (|Sty — x*|* = xy —x*|%) = 0.
n——+00
Using lim inf,— 400 B > 0 we get lim,— oo (ISts — x*[|12 — llxn — x*[|*) = 0. Then
Eq. 12 implies
m (ISt — x* 1% = oy — x* 1) < limy—s oo (It — %12 = xy — x*|1%)
n——+00

< 1limy— 400 3(1 — )2 |Axn > =0
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thus, lim,,— 40 (1tn — x*|1% — |lx, — x*||?) = 0. Now we rewrite inequality (11) as

22 — Yull*(vn — bE) + llyn — tall* 2y — 1 — bk)
<l — X1 = [ty — x* |2+ 3(1 — y)b* [ Ax,||*

‘We deduce that

im_ [l1x, — yull* (v — BK) + Ilyn — ta1?Qyn — 1 — bk)] = 0.
n—-+o0o

Our assumptions on X, and y,, imply that y,, —bk > 1/4 and 2y, — 1 — bk > % —bk > 0.
Consequently, limy,— 4 oo (X, —yn) = limy,— 400 (Yn—1,) = 0. Hence, limy,— 400 (X —1,) = 0.
Using that S is nonexpansive, we get lim;,_, 40 (Sx, — St;) = 0.

We rewrite the definition of z,, as

Zn — Xn = —0pXy + A yn + Bu(Sty — Xxp).

From lim, 100(zn — x,)=0, lim,_ o o, =0, the boundedness of x,,y, and
liminf,_, 4~ Br, > 0 we infer that lim,,_, 4 5 (St;, — x,,) = 0. Thus finally lim,—, {5 (Sx,, —
Xp) = 0.

Step 5. We claim that wy, (x,,) C F(S) N Q4, where wy,(x,) denotes the weak w-limit set
of {x,}, 1.e.,

wyxy) ={ueH: {x,,j} converges weakly to u for some subsequence {n;} of {n}}.

Indeed, since {x, } is bounded, it has a subsequence which converges weakly to some point
in C and hence wy,(x,) # ?. Let u € w,,(x,) be arbitrary. Then there exists a subsequence
{xn,;} C {xn} which converges weakly to u. Since we also have limj_, oo (xn; — Sx»;) =0,
from the demiclosedness principle it follows that (I — S)u = 0. Thus u € F(S). We now
show that u € Q4.

Since t, = Pc(x, — AnAyy), for every x € C we have

(Xn — ApAyn —ty, tp —x) >0

hence
Xy — 1,
(x_tnsA)’n>2<x_tny ? ">-
An

Combining with monotonicity of A we obtain

(x = tn, Ax) = (x — tn, Aty)
= (x —ty, Aty — Ayn) + (x — 1, Ayp)

Xp — 1
(x —ty, Atn_AYn>+<x_tna z n>.
An

v

Since lim,,— 400 (X, — 1) = lim,— 400(yy — 1) = 0, A is Lipschitz continuous and
An > a > 0 we deduce that

(x —u,Ax) = lim (x—1,,,Ax)>0, VxeC.

nj~>+oo

Then relation (7) entails that u € F(S) N Q4.
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Step 6. We show that {x,}, {y.}, {z,} converge strongly to the same point ¢ = Pr(s)nq,X0-

Assume that {x,} does not converge strongly to g. Then there exists ¢ > 0 and a subse-
quence {x,,;} C {x,} such that Hxn_/. —q H > ¢ for all j. Without loss of generality we may
assume that {x,,} converges weakly to some point u. By Step 5, u € F(S) N Q4. Using

q = Pr(synq, X0, the weak lower semicontinuity of || - ||, and relation (16) for x* = ¢, we
obtain
lg —xoll = llu —xoll <liminf|lx,; —xoll = lim |lx, —xoll < llg —xoll. (20)
j—00 n—+0o0o
Itfollows that ||g —xo|| = |lu—xo]|,hence u = g since g is the unique elementin F (S)N2 4

that minimizes the distance from x¢. Also, relation (20) implies lim;_, o x5 ;= xol =
lg —xoll. Since {x,; — xo} converges weakly to g — xo, this shows that {x,; —xo} converges
strongly to g — xo, and hence {x,,} converges strongly to g, a contradiction.

Thus, {x,} converges strongly to ¢. It is easy to see that {y,}, {z,} converge strongly to
the same point g. O

4 Applications

If one takes o, = 0, B, = 1 and y,, = 1 for all n € N in Theorem 5, then one finds the
following simpler theorem:

Theorem 6 Let C be a nonempty closed convex subset of areal Hilbert space H, A : C — H
be a monotone, k-Lipschitz continuous mapping and let S : C — C be a nonexpansive map-
ping such that F(S) N Q4 # (. We define inductively the sequences {x,}, {yn}, {zn} by

xg € C,

yn = Pc(xn — AnAxn),

Zn = SPc(xp — ApAyn),

Co =1z €C:llza—2l* < Ixu — 2IP),

On

Xn+1 = Pc,no, X0

{z € C:{xy —z,x0 — xs) =0},

foralln > 0, where {A,} is a sequence in [a, b] witha > 0 and b < 2]7 Then the sequences
{x2}, {yn}, {20} are well-defined and converge strongly to the same point ¢ = Pr(s)nq,Xo-

However, relations like (15) suggest that, as is often the case, taking more general se-
quences {a,}, {8, } and {y, } might improve the rate of convergence to a solution.

Taking S = I, oy = 0 and B, = 1 in Theorem 5, one finds the following theorem
providing an algorithm to find the solution of a variational inequality:

Theorem 7 Let C be anonempty closed convex subset of a real Hilbert space H, A : C — H
be a monotone, k-Lipschitz continuous mapping such that Q2 # (. We define inductively the
sequences {x,}, {yn}, {zn} by

X0 € C,

Yo = = yu)xn + v Pc(xp — Ay Axy),

Zn = Pc(xn — AnAyn),

Co =1z €C:llzn—zI” < llxn — 2l* + G = 3y)b” 1 Axall?),

On=1{z€C:{xy—2z,x0—x,) >0},

Xn+1 = Pc,np, X0
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for all n > 0, where {)\,} is a sequence in [a,b] witha > 0 and b < 2]7’ and {y,} is a
sequence in [0, 1] such that lim,, y, = 1 and y, > 3/4 for alln > 0.

Then the sequences {xn}, {yn}, {zn} are well-defined and converge strongly to the same
point g = Pg , x.

Taking ¥, = 1 and o, = 0 in Theorem 5, one recovers the main result of [14]. If in
addition one puts A = 0, one recovers the main result of [15] on an algorithm to find the
fixed point of a nonexpansive mapping.

Another consequence of Theorem 5 is the following.

Theorem 8 Let H be a real Hilbert space, A : H — H be monotone and k-Lipschitz, and
S : H — H be nonexpansive, such that F(S) N A~'{0} # @. Define the sequences {x,},
{yn} and {z,} by

xo € H

Yn = Xp — AnAxy,

2n = (1= B)xn — nhn Axy + BuS(xn — 22 Ay,)
Co=1{z€C:llzn—2zl* < llxn — 21* + B = 3yu + an)b? || Ax, ||*}
On={z€C:{xp—2z,x0 —x,) >0},

Xn+1 = Pc,no,Xo

for all n > 0, where {A,} is a sequence in [a,b] with a > 0 and b < ﬁ, and

{an}, {Bn}, {yn} are three sequences in [0, 1] satisfying the conditions:

(i) on+ By <1foralln>0;
(ii) limysoa, =0
(iii) liminf,~ B, > 0
(iv) limy, y, = 1and y,, > 3/4 foralln > 0.

Then the sequences {x,}, {yn} and {z,} are well-defined and converge strongly to the same
point g = Pp5)na-1{0}X0-

Proof We set A, = A, /yy. Thena < i), < %An <2b < %k. Thus we can apply Theorem
5 for this sequence, and for C = H. We have Py = I and 4 = A~'{0}. Then Theorem 5
guarantees that the sequences {x,}, {y,} and {z,} converge to ¢ = Pp(5)n4-1{0;X0, Where

Yn = Xn — VYnhyAXn = X5 — hyAxp,
Zn = (I — oy — Bu)xn + onyu + BnS(xn — A;Ayn)

A
= (1 — Bp) xn — aprnAxy + B S(xy — lAyn)-
Vn [}

Because of the relations that exist between monotone operators and nonexpansive mappings,
Theorem 5 can also be applied for finding the common zeros of two monotone mappings,
or the common fixed points of two mappings. For example, suppose that A : H — H is a
monotone, Lipschitz continuous mapping and B : H — H is a maximal monotone map-
ping. Assume that the set of common zeros A~!(0) N B~!(0) is nonempty. Theorem 5 can
be applied to find an element of A~1(0) N B~1(0) as follows. It is known that for anyr > 0
the resolvent J,B of B is nonexpansive [9]; also, if we set C = H then F(JrB) = B~ L0)
while Q4 = A~!(0). Thus, by applying Theorem 5 to the mappings A and J# we can find
an element of Q24 N F(JrB) = A_I(O) N B_I(O).
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Likewise, assume that C € H is nonempty, closed convex, T : C — C is pseudocon-
tractive and Lipschitz, and S : C — C is nonexpansive, such that F(T) N F(S) # . We
can find an element of F (7)) N F(S) as follows. If we set A = I — T then it is known that A
is monotone and Lipschitz [3]. Also, it is easy to see that 24 = F(T). Indeed, if u € F(T)
then Au = 0 so that u € Q4. Conversely, if u € Q24 then

(u—Tu,y—u)>0, VyeC.

Setting y = Tu we get (u — Tu,u — Tu) <0,1i.e,u € F(T). Consequently, Theorem 5
can be applied to the mappings A and S to produce sequences converging to an element of
QANF(S)=F(T)NF(S).

References

1. Antipin, A.S.: Methods for solving variational inequalities with related constraints. Comput. Math. Math.
Phys. 40, 1239-1254 (2000)
2. Antipin, A.S., Vasiliev, F.P.: Regularized prediction method for solving variational inequalities with an
inexactly given set. Comput. Math. Math. Phys. 44, 750-758 (2004)
3. Browder, FE.: Existence of periodic solutions for nonlinear equations of evolution. Proc. Nat. Acad. Sc.
USA 55, 1100-1103 (1965)
4. Browder, EE., Petryshyn, W.V.: Construction of fixed points of nonlinear mappings in Hilbert space.
J. Math. Anal. Appl. 20, 197-228 (1967)
5. Ceng, L.C., Yao, J.C.: An extragradient-like approximation method for variational inequality problems
and fixed point problems. Appl. Math. Comput. 190, 205-215 (2007)
6. Ceng, L.C., Yao, J.C.: On the convergence analysis of inexact hybrid extragradient proximal point algo-
rithms for maximal monotone operators. J. Comput. Appl. Math. 217, 326-338 (2007)
7. Geobel, K., Kirk, W.A.: Topics on Metric Fixed-point Theory. Cambridge University Press, Cambridge,
England (1990)
8. He, B.-S., Yang, Z.-H., Yuan, X.-M.: An approximate proximal-extragradient type method for monotone
variational inequalities. J. Math. Anal. Appl. 300, 362-374 (2004)
9. Hu, S., Papageorgiou, N.S.: Handbook of multivalued analysis, vol. I: theory. Kluwer Academic Publish-
ers, Dordrecht (1997)
10. Iiduka, H., Takahashi, W.: Strong convergence theorem by a hybrid method for nonlinear mappings of
nonexpansive and monotone type and applications. Adv. Nonlinear Var. Inequal. 9, 1-10 (2006)
11. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems.
Matecon 12, 747-756 (1976)
12. Liu, F, Nashed, M.Z.: Regularization of nonlinear ill-posed variational inequalities and convergence
rates. Set-Valued Anal. 6, 313-344 (1998)
13. Nadezhkina, N., Takahashi, W.: Weak convergence theorem by an extragradient method for nonexpansive
mappings and monotone mappings. J. Optim. Theory Appl. 128, 191-201 (2006)
14. Nadezhkina, N., Takahashi, W.: Strong convergence theorem by a hybrid method for nonexpansive map-
pings and Lipschitz-continuous monotone mappings. SIAM J. Optim. 16, 1230-1241 (2006)
15. Nakajo, K., Takahashi, W.: Strong convergence theorems for nonexpansive mappings and nonexpansive
semigroups. J. Math. Anal. Appl. 279, 372-379 (2003)
16. Opial, Z.: Weak convergence of the sequence of successive approximations for nonlinear mappings. Bull.
Amer. Math. Soc. 73, 591-597 (1967)
17. Solodov, M.V., Svaiter, B.F.: An inexact hybrid generalized proximal point algorithm and some new
results on the theory of Bregman functions. Math. Oper. Res. 25, 214-230 (2000)
18. Takahashi, W., Toyoda, M.: Weak convergence theorems for nonexpansive mappings and monotone
mappings. J. Optim. Theory Appl. 118, 417-428 (2003)
19. Zeng, L.C., Yao, J.C.: Strong convergence theorem by an extragradient method for fixed point problems
and variational inequality problems. Taiwan J. Math. 10, 1293-1303 (2006)

@ Springer



	Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems
	Abstract
	1 Introduction
	2 Preliminaries
	3 The main convergence result
	4 Applications
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


