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Abstract The purpose of this paper is to investigate the problem of finding a common
element of the set of fixed points F(S) of a nonexpansive mapping S and the set of solutions
�A of the variational inequality for a monotone, Lipschitz continuous mapping A. We intro-
duce a hybrid extragradient-like approximation method which is based on the well-known
extragradient method and a hybrid (or outer approximation) method. The method produces
three sequences which are shown to converge strongly to the same common element of
F(S)∩�A. As applications, the method provides an algorithm for finding the common fixed
point of a nonexpansive mapping and a pseudocontractive mapping, or a common zero of a
monotone Lipschitz continuous mapping and a maximal monotone mapping.
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1 Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. Let C be
a nonempty closed convex subset of H and A be a mapping of C into H . Then A is called
monotone if

〈Ax − Ay, x − y〉 ≥ 0, ∀x, y ∈ C.

A is called α-inverse-strongly monotone (see [4,12]) if there exists a positive constant α such
that

〈Ax − Ay, x − y〉 ≥ α‖Ax − Ay‖2, ∀x, y ∈ C.

A is called k-Lipschitz continuous if there exists a positive constant k such that

‖Ax − Ay‖ ≤ k‖x − y‖, ∀x, y ∈ C.

It is clear that if A is α-inverse-strongly monotone, then A is monotone and Lipschitz con-
tinuous.

In this paper, we consider the following variational inequality (for short, VI(A, C)): find
u ∈ C such that

〈Au, v − u〉 ≥ 0, ∀v ∈ C.

The set of solutions of the VI(C, A) is denoted by �A. A mapping S : C → C is called
nonexpansive [7] if

‖Sx − Sy‖ ≤ ‖x − y‖, ∀x, y ∈ C.

We denote by F(S) the set of fixed points of S, i.e., F(S) = {u ∈ C : Su = u}. A more
restrictive class of maps are the contractive maps, i.e. maps S : C → C such that for some
α ∈ (0, 1),

‖Sx − Sy‖ ≤ α‖x − y‖, ∀x, y ∈ C.

Due to the many applications of the variational inequality problem to several branches
of mathematics, but also to mechanics, economics etc, finding its solutions is a very impor-
tant field of research. In some cases, as for strictly monotone operators A, the solution, if it
exists, is unique. More generally the set of solutions �A of a continuous monotone mapping
A is a convex subset of C . In such cases one is often interested in finding a solution that
has some desirable properties. For instance, Antipin has investigated methods for finding a
solution of a variational inequality that satisfies some additional inequality constraints [1,2],
in a finite-dimensional space. Takahashi and Toyoda [18] considered the problem of find-
ing a solution of the variational inequality which is also a fixed point of some mapping, in
an infinite-dimensional setting. More precisely, given a nonempty, closed and convex set
C ⊆ H , a nonexpansive mapping S : C → C and an α-inverse-strongly-monotone mapping
A : C → H , they introduced the following iterative scheme in order to find an element of
F(S) ∩ �A: {

x0 = x ∈ C,

xn+1 = αn xn + (1 − αn)S PC (xn − λn Axn)
(1)

for all n ≥ 0, where {αn} is a sequence in (0, 1), {λn} is a sequence in (0, 2α), and PC is the
metric projection of H onto C . It is shown in [18] that if F(S) ∩ �A �= ∅, then the sequence
{xn} generated by Eq. 1 converges weakly to some z ∈ F(S) ∩ �A. Later on, in order to
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achieve strong convergence to an element of F(S)∩�A under the same assumptions, Iiduka
and Takahashi [10] modified the iterative scheme by using a hybrid method as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x0 = x ∈ C,

yn = αn xn + (1 − αn)S PC (xn − λn Axn),

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},
xn+1 = PCn∩Qn x

(2)

for all n ≥ 0, where 0 ≤ αn ≤ c < 1 and 0 < a ≤ λn ≤ b < 2α. It is shown in [10] that if
F(S) ∩ �A �= ∅, then the sequence {xn} converges strongly to PF(S)∩�A x .

The restriction of the above methods to the class of of α-inverse strongly monotone map-
pings (i.e., mappings whose inverse is strongly monotone) excludes some important classes
of mappings, as pointed out by Nadezhkina and Takahashi [14]. The so-called extragradient
method, introduced in 1976 by Korpelevich [11] for a finite-dimensional space, provides an
iterative process converging to a solution of VI(A, C) by only assuming that C ⊆ R

n is
closed and convex and A : C → R

n is monotone and k-Lipschitz continuous. The extragra-
dient method was further extended to infinite dimensional spaces by many authors; see for
instance the recent contributions of He, Yang and Yuan [8], Solodov and Svaiter [17], Ceng
and Yao [6,19] etc.

By modifying the extragradient method, Nadezhkina and Takahashi were able to show the
following weak convergence result, for mappings A that are only supposed to be monotone
and k-Lipschitz:

Theorem 1 [13, Theorem 3.1] Let C be a nonempty closed convex subset of a real
Hilbert space H. Let A : C → H be a monotone and k-Lipschitz continuous mapping
and S : C → C be a nonexpansive mapping such that F(S) ∩ �A �= ∅. Let {xn}, {yn} be the
sequences generated by⎧⎨

⎩
x0 = x ∈ C,

yn = PC (xn − λn Axn),

xn+1 = αn xn + (1 − αn)S PC (xn − λAyn)

for all n ≥ 0, where {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k) and {αn} ⊂ [c, d] for some c, d ∈
(0, 1). Then the sequences {xn}, {yn} converge weakly to the same point z ∈ F(S) ∩ �A

where z = limn→∞ PF(S)∩�A xn.

Further, inspired by Nadezhkina and Takahashi’s extragradient method [13], Ceng and
Yao [5] also introduced and considered an extragradient-like approximation method which
is based on the above extragradient method and the viscosity approximation method, and
proved the following strong convergence result.

Theorem 2 [5, Theorem 3.1] Let C be a nonempty closed convex subset of a real Hilbert
space H. Let f : C → C be a contractive mapping with a contractive constant α ∈ (0, 1),
A : C → H be a monotone, k-Lipschitz continuous mapping and S : C → C be a non-
expansive mapping such that F(S) ∩ �A �= ∅. Let {xn}, {yn} be the sequences generated
by ⎧⎨

⎩
x0 = x ∈ C,

yn = (1 − γn)xn + γn PC (xn − λn Axn),

xn+1 = (1 − αn − βn)xn + αn f (yn) + βn S PC (xn − λAyn),
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for all n ≥ 0, where {λn} is a sequence in (0, 1) with
∑∞

n=0 λn < ∞, and {αn}, {βn}, {γn}
are three sequences in [0, 1] satisfying the conditions:

(i) αn + βn ≤ 1 for all n ≥ 0;
(ii) limn→∞ αn = 0,

∑∞
n=0 αn = ∞;

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Then the sequences {xn}, {yn} converge strongly to the same point q = PF(S)∩�A f (q) if and
only if {Axn} is bounded and lim infn→∞〈Axn, y − xn〉 ≥ 0 for all y ∈ C.

Very recently, by combining a hybrid-type method with an extragradient-type method,
Nadezhkina and Takahashi [14] introduced the following iterative method for finding an
element of F(S) ∩ �A and established the following strong convergence theorem.

Theorem 3 [14, Theorem 3.1] Let C be a nonempty closed convex subset of a real Hilbert
space H. Let A : C → H be a monotone and k-Lipschitz continuous mapping and let
S : C → C be a nonexpansive mapping such that F(S) ∩ �A �= ∅. Let {xn}, {yn}, {zn} be
sequences generated by⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x0 = x ∈ C,

yn = PC (xn − λn Axn),

zn = αn xn + (1 − αn)S PC (xn − λn Ayn),

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},
xn+1 = PCn∩Qn x,

(3)

for all n ≥ 0, where {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k) and {αn} ⊂ [0, c] for some
c ∈ [0, 1). Then the sequences {xn}, {yn}, {zn} converge strongly to the same point q =
PF(S)∩�A x.

In this paper, we introduce a hybrid extragradient-like approximation method which is
based on the above extragradient method and the hybrid (or outer approximation) method,
i.e., ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C,

yn = (1 − γn)xn + γn PC (xn − λn Axn),

zn = (1 − αn − βn)xn + αn yn + βn S PC (xn − λn Ayn),

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 + (3 − 3γn + αn)b2 ‖Axn‖2},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn x0

for all n ≥ 0, where {λn} is a sequence in [a, b] with a > 0 and b < 1
2k , and {αn}, {βn}, {γn}

are three sequences in [0, 1] satisfying the conditions:

(i) αn + βn ≤ 1 for all n ≥ 0;
(ii) limn→∞ αn = 0;

(iii) lim infn→∞ βn > 0
(iv) limn γn = 1 and γn > 3/4 for all n ≥ 0.

It is shown that the sequences {xn}, {yn}, {zn} generated by the above hybrid extragradient-
like approximation method are well-defined and converge strongly to the same point q =
PF(S)∩�A x . Using this theorem, we construct an iterative process for finding a common fixed
point of two mappings, one of which is nonexpansive and the other taken from the more
general class of Lipschitz pseudocontractive mappings.
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In the next section we will recall some basic notions and results. In Sect. 3 we present and
prove our main theorem. The last section is devoted to some applications.

2 Preliminaries

Given a nonempty, closed and convex subset C of a Hilbert space H , for any x ∈ H there
exists a unique element PC x ∈ C which is nearest to x , i.e. for all y ∈ C ,

‖x − PC x‖ ≤ ‖x − y‖ . (4)

The projection operator PC : H → C is nonexpansive on H : For every x, y ∈ H ,

‖PC x − PC y‖ ≤ ‖x − y‖ .

In addition, it has the following properties: For every x ∈ H and y ∈ C ,

‖x − y‖2 ≥ ‖x − PC x‖2 + ‖y − PC x‖2 ; (5)

also,

〈x − PC x, y − PC x〉 ≤ 0. (6)

Assume that A is monotone and continuous. Then the solutions of the variational inequality
VI(A, C) can be characterized as solutions of the so-called Minty variational inequality:

x∗ ∈ �A ⇔ 〈
Ax, x − x∗〉 ≥ 0, ∀x ∈ C. (7)

We will also make use of Browder’s demiclosedness principle, cf. for instance [16]. Let
us denote by I the identity operator in H .

Proposition 4 Let C ⊆ H be closed and convex. Assume that S : C → H is nonexpansive.
If S has a fixed point, then I − S is demiclosed; that is, whenever {xn} is a sequence in C
converging weakly to some x ∈ C and the sequence {(I − S)xn} converges strongly to some
y ∈ H, it follows that (I − S)x = y.

A mapping T : C → C is called pseudocontractive if and only if for all x, y ∈ C ,

〈T x − T y, x − y〉 ≤ ‖x − y‖2 .

It is clear that any contractive mapping is pseudocontractive. Also, it is easy to see that T
is pseudocontractive if and only if the mapping A = I − T is monotone [3].

A multivalued mapping B : H → 2H is called monotone if for all x, y ∈ H , x∗ ∈ T x
and y∗ ∈ T y one has 〈y∗ − x∗, y − x〉 ≥ 0. Such a mapping is called maximal monotone if
it has no proper monotone extension, i.e., if B1 : H → 2H is monotone and Bx ⊆ B1x for
all x ∈ H , then B = B1. If B is maximal monotone, then for each r > 0 and x ∈ H there
exists a unique element z ∈ H such that (I + r B)z = x . This element is denoted by J B

r x .
The mapping J B

r thus defined is called the resolvent of B [9].

3 The main convergence result

In this section we define an iterative process and prove its convergence to a member of
F(S) ∩ �A, where S is nonexpansive and A is monotone and k-Lipschitz continuous.
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Theorem 5 Let C be a nonempty closed convex subset of a real Hilbert space H, A : C → H
be a monotone, k-Lipschitz continuous mapping and let S : C → C be a nonexpansive map-
ping such that F(S) ∩ �A �= ∅. We define inductively the sequences {xn}, {yn}, {zn} by

x0 ∈ C,

yn = (1 − γn)xn + γn PC (xn − λn Axn),

zn = (1 − αn − βn)xn + αn yn + βn S PC (xn − λn Ayn),

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 + (3 − 3γn + αn)b2 ‖Axn‖2},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qn x0

for all n ≥ 0, where {λn} is a sequence in [a, b] with a > 0 and b < 1
2k , and {αn}, {βn}, {γn}

are three sequences in [0, 1] satisfying the conditions:

(i) αn + βn ≤ 1 for all n ≥ 0;
(ii) limn→∞ αn = 0 ;

(iii) lim infn→∞ βn > 0
(iv) limn γn = 1 and γn > 3/4 for all n ≥ 0.

Then the sequences {xn}, {yn}, {zn} are well-defined and converge strongly to the same
point q = PF(S)∩�A x0.

Proof We divide the proof into several steps.

Step 1. Assuming that xn is a well-defined element of C for some n ∈ N, we show that
F(S) ∩ �A ⊂ Cn .

Since xn is defined, yn , zn are obviously well-defined elements of C . Let x∗ ∈ F(S)∩�A

be arbitrary. Set tn = PC (xn − λn Ayn) for all n ≥ 0. Taking x = xn − λn Ayn and y = x∗
in (5), we obtain

‖tn − x∗‖2 ≤ ‖xn − λn Ayn − x∗‖2 − ‖xn − λn Ayn − tn‖2

= ‖xn − x∗‖2 + 2λn〈Ayn, x∗ − yn〉 + 2λn〈Ayn, yn − tn〉 − ‖xn − tn‖2.

Since by relation (7) we have 〈Ayn, yn − x∗〉 ≥ 0, we deduce

‖tn − x∗‖2 ≤ ‖xn − x∗‖2 − ‖xn − tn‖2 + 2λn〈Ayn, yn − tn〉
= ‖xn − x∗‖2 − ‖(xn − yn) + (yn − tn)‖2 + 2λn〈Ayn, yn − tn〉
= ‖xn − x∗‖2 − ‖xn − yn‖2 − ‖yn − tn‖2 + 2〈xn − λn Ayn − yn, tn − yn〉.

(8)

We estimate the last term, using yn = (1 − γn)xn + γn PC (xn − λn Axn):

〈xn − λn Ayn − yn, tn − yn〉
= 〈xn − λn Axn − yn, tn − yn〉 + λn 〈Axn − Ayn, tn − yn〉
≤ 〈xn − λn Axn − (1 − γn)xn − γn PC (xn − λn Axn), tn − yn〉

+λn ‖Axn − Ayn‖ ‖tn − yn‖
≤ γn 〈xn − λn Axn − PC (xn − λn Axn), tn − yn〉

−(1 − γn)λn 〈Axn, tn − yn〉 + λnk ‖xn − yn‖ ‖tn − yn‖ . (9)
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In addition, using properties Eqs. (4) and (6) of the projection PC (xn −λn Axn) we obtain

〈xn − λn Axn − PC (xn − λn Axn), tn − yn〉
= 〈xn − λn Axn − PC (xn − λn Axn), tn − (1 − γn)xn − γn PC (xn − λn Axn〉)
= (1 − γn) 〈xn − λn Axn − PC (xn − λn Axn), tn − xn〉

+ γn 〈xn − λn Axn − PC (xn − λn Axn), tn − PC (xn − λn Axn)〉
≤ (1 − γn) ‖xn − λn Axn − PC (xn − λn Axn)‖ ‖tn − xn‖
≤ (1 − γn) λn ‖Axn‖ (‖tn − yn‖ + ‖yn − xn‖) . (10)

Gathering (8), (9), (10) and using γn ≤ 1 and λn ≤ b we find

‖tn − x∗‖2 ≤ ‖xn − x∗‖2 − ‖xn − yn‖2 − ‖yn − tn‖2

+ 2γn (1 − γn) b ‖Axn‖ (‖tn − yn‖ + ‖yn − xn‖)
+ 2(1 − γn)b ‖Axn‖ ‖tn − yn‖ + 2bk ‖xn − yn‖ ‖tn − yn‖

≤ ‖xn − x∗‖2 − ‖xn − yn‖2 − ‖yn − tn‖2

+ (1 − γn)
(
2b2 ‖Axn‖2 + ‖tn − yn‖2 + ‖yn − xn‖2)

+ (1 − γn)
(
b2 ‖Axn‖2 + ‖tn − yn‖2) + bk

(‖xn − yn‖2 + ‖tn − yn‖2)
= ‖xn − x∗‖2 − ‖xn − yn‖2(γn − bk)

−‖yn − tn‖2(2γn − 1 − bk) + 3(1 − γn)b2 ‖Axn‖2 . (11)

Using our assumptions b < 1
2k and γn > 3/4, we obtain that for all n ∈ N,

‖tn − x∗‖2 ≤ ‖xn − x∗‖2 + 3(1 − γn)b2 ‖Axn‖2 . (12)

Also, using again relation (7) and properties of PC , we obtain
∥∥yn − x∗∥∥2 = ‖(1 − γn)(xn − x∗) + γn

(
PC (xn − λn Axn) − x∗) ‖2

≤ (1 − γn)‖xn − x∗‖2 + γn‖PC (xn − λn Axn) − PC x∗‖2

≤ (1 − γn)‖xn − x∗‖2 + γn‖xn − x∗ − λn Axn‖2

= (1 − γn)‖xn − x∗‖2 + γn
[‖xn − x∗‖2 − 2λn〈Axn, xn − x∗〉 + λ2

n‖Axn‖2]
≤ ‖xn − x∗‖2 + b2‖Axn‖2 (13)

Since S is nonexpansive and x∗ ∈ F(S) we have ‖Stn − x∗‖ ≤ ‖tn − x∗‖. Thus, rela-
tions (12) and (13) imply that

‖zn − x∗‖2 = ‖(1 − αn − βn)xn + αn yn + βn Stn − x∗‖2

≤ (1 − αn − βn) ‖xn − x∗‖2 + αn‖yn − x∗‖2 + βn‖Stn − x∗‖2 (14)

≤ (1 − αn − βn)‖xn − x∗‖2 + αn
[‖xn − x∗‖2 + b2‖Axn‖2]

+βn
[‖xn − x∗‖2 + 3(1 − γn)b2 ‖Axn‖2]

= ‖xn − x∗‖2 + (3 − 3γn + αn)b2 ‖Axn‖2 . (15)

Consequently, x∗ ∈ Cn . Hence F(S) ∩ �A ⊂ Cn .

Step 2. We show that the sequence {xn} is well-defined and F(S) ∩ �A ⊂ Cn ∩ Qn for all
n ≥ 0.

We show this assertion by mathematical induction. For n = 0 we have Q0 = C . Hence by
Step 1 we obtain F(S)∩�A ⊂ C0∩Q0. Assume that xk is defined and F(S)∩�A ⊂ Ck ∩Qk
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for some k ≥ 0. Then yk, zk are well-defined elements of C . Note that Ck is a closed convex
subset of C since

Ck = {z ∈ C : ‖zk − xk‖2 + 2 〈zk − xk, xk − z〉 ≤ (3 − 3γk + αk)b
2 ‖Axk‖2}.

Also, it is obvious that Qk is closed and convex. Thus, Ck ∩ Qk is a closed convex sub-
set, which is nonempty since by assumption it contains F(S) ∩ �A. Consequently, xk+1 =
PCk∩Qk x0 is well-defined.

The definition of xk+1 and of Qk+1 imply that Ck ∩ Qk ⊆ Qk+1. Hence, F(S) ∩ �A ⊆
Qk+1. Using Step 1 we infer that F(S) ∩ �A ⊆ Ck+1 ∩ Qk+1.

Step 3. We show that the following statements hold:

(1) {xn} is bounded, limn→∞ ‖xn − x0‖ exists, and limn→∞(xn+1 − xn) = 0;
(2) limn→∞(zn − xn) = 0.

Indeed, take any x∗ ∈ F(S)∩�A. Using xn+1 = PCn∩Qn x0 and x∗ ∈ F(S)∩�A ⊂ Cn ∩Qn ,
we obtain

‖xn+1 − x0‖ ≤ ‖x∗ − x0‖, ∀n ≥ 0. (16)

Therefore, {xn} is bounded and so is {Axn} due to the Lipschitz continuity of A. From the
definition of Qn it is clear that xn = PQn x0. Since xn+1 ∈ Cn ∩ Qn ⊂ Qn , we have

‖xn+1 − xn‖2 ≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2 ∀n ≥ 0. (17)

In particular, ‖xn+1−x0‖ ≥ ‖xn −x0‖ hence limn→∞ ‖xn −x0‖ exists. Then relation (17)
implies that

lim
n→∞(xn+1 − xn) = 0. (18)

Since xn+1 ∈ Cn , we have

‖zn − xn+1‖2 ≤ ‖xn − xn+1‖2 + (3 − 3γn + αn)b2 ‖Axn‖2 .

Since {Axn} is bounded and limn→∞ γn = 1, limn→∞ αn = 0, we deduce that
limn→∞(zn − xn+1) = 0. Combining with Eq. 18 we infer that limn→∞(zn − xn) = 0.

Step 4. We show that the following statements hold:

(1) limn→∞(xn − yn) = 0;
(2) limn→∞(Sxn − xn) = 0.

Indeed, from inequalities 14 and 15 we infer∥∥zn − x∗∥∥2 − ∥∥xn − x∗∥∥2 ≤ (−αn − βn)‖xn − x∗‖2 + αn‖yn − x∗‖2 + βn‖Stn − x∗‖2

≤ (3 − 3γn + αn)b2 ‖Axn‖2 . (19)

Since αn → 0, γn → 1, and {xn}, {Axn}, {yn} are bounded, we deduce from (19) that

lim
n→+∞ βn(‖Stn − x∗‖2 − ‖xn − x∗‖2) = 0.

Using lim infn→+∞ βn > 0 we get limn→+∞(‖Stn − x∗‖2 − ‖xn − x∗‖2) = 0. Then
Eq. 12 implies

lim
n→+∞(‖Stn − x∗‖2 − ‖xn − x∗‖2) ≤ limn→+∞(‖tn − x∗‖2 − ‖xn − x∗‖2)

≤ limn→+∞ 3(1 − γn)b2 ‖Axn‖2 = 0
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thus, limn→+∞(‖tn − x∗‖2 − ‖xn − x∗‖2) = 0. Now we rewrite inequality (11) as

‖xn − yn‖2(γn − bk) + ‖yn − tn‖2(2γn − 1 − bk)

≤ ‖xn − x∗‖2 − ‖tn − x∗‖2 + 3(1 − γn)b2 ‖Axn‖2 .

We deduce that

lim
n→+∞

[‖xn − yn‖2(γn − bk) + ‖yn − tn‖2(2γn − 1 − bk)
] = 0.

Our assumptions on λn and γn imply that γn −bk > 1/4 and 2γn −1−bk > 1
2 −bk > 0.

Consequently, limn→+∞(xn−yn) = limn→+∞(yn−tn) = 0. Hence, limn→+∞(xn−tn) = 0.
Using that S is nonexpansive, we get limn→+∞(Sxn − Stn) = 0.

We rewrite the definition of zn as

zn − xn = −αn xn + αn yn + βn(Stn − xn).

From limn→+∞(zn − xn)= 0, limn→+∞ αn = 0, the boundedness of xn, yn and
lim infn→+∞ βn > 0 we infer that limn→+∞(Stn − xn) = 0. Thus finally limn→+∞(Sxn −
xn) = 0.

Step 5. We claim that ωw(xn) ⊂ F(S) ∩ �A, where ωw(xn) denotes the weak ω-limit set
of {xn}, i.e.,

ωw(xn) = {u ∈ H : {xn j } converges weakly to u for some subsequence {n j } of {n}}.
Indeed, since {xn} is bounded, it has a subsequence which converges weakly to some point

in C and hence ωw(xn) �= ∅. Let u ∈ ωw(xn) be arbitrary. Then there exists a subsequence
{xn j } ⊂ {xn} which converges weakly to u. Since we also have lim j→∞(xn j − Sxn j ) = 0,
from the demiclosedness principle it follows that (I − S)u = 0. Thus u ∈ F(S). We now
show that u ∈ �A.

Since tn = PC (xn − λn Ayn), for every x ∈ C we have

〈xn − λn Ayn − tn, tn − x〉 ≥ 0

hence

〈x − tn, Ayn〉 ≥
〈
x − tn,

xn − tn
λn

〉
.

Combining with monotonicity of A we obtain

〈x − tn, Ax〉 ≥ 〈x − tn, Atn〉
= 〈x − tn, Atn − Ayn〉 + 〈x − tn, Ayn〉
≥ 〈x − tn, Atn − Ayn〉 +

〈
x − tn,

xn − tn
λn

〉
.

Since limn→+∞(xn − tn) = limn→+∞(yn − tn) = 0, A is Lipschitz continuous and
λn > a > 0 we deduce that

〈x − u, Ax〉 = lim
n j →+∞

〈
x − tn j , Ax

〉 ≥ 0, ∀x ∈ C.

Then relation (7) entails that u ∈ F(S) ∩ �A.
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Step 6. We show that {xn}, {yn}, {zn} converge strongly to the same point q = PF(S)∩�A x0.
Assume that {xn} does not converge strongly to q . Then there exists ε > 0 and a subse-

quence {xn j } ⊂ {xn} such that
∥∥xn j − q

∥∥ > ε for all j . Without loss of generality we may
assume that {xn j } converges weakly to some point u. By Step 5, u ∈ F(S) ∩ �A. Using
q = PF(S)∩�A x0, the weak lower semicontinuity of ‖ · ‖, and relation (16) for x∗ = q , we
obtain

‖q − x0‖ ≤ ‖u − x0‖ ≤ lim inf
j→∞ ‖xn j − x0‖ = lim

n→+∞ ‖xn − x0‖ ≤ ‖q − x0‖. (20)

It follows that‖q−x0‖ = ‖u−x0‖, hence u = q since q is the unique element in F(S)∩�A

that minimizes the distance from x0. Also, relation (20) implies lim j→∞ ‖xn j − x0‖ =
‖q − x0‖. Since {xn j − x0} converges weakly to q − x0, this shows that {xn j − x0} converges
strongly to q − x0, and hence {xn j } converges strongly to q , a contradiction.

Thus, {xn} converges strongly to q . It is easy to see that {yn}, {zn} converge strongly to
the same point q . ��

4 Applications

If one takes αn = 0, βn = 1 and γn = 1 for all n ∈ N in Theorem 5, then one finds the
following simpler theorem:

Theorem 6 Let C be a nonempty closed convex subset of a real Hilbert space H, A : C → H
be a monotone, k-Lipschitz continuous mapping and let S : C → C be a nonexpansive map-
ping such that F(S) ∩ �A �= ∅. We define inductively the sequences {xn}, {yn}, {zn} by

x0 ∈ C,

yn = PC (xn − λn Axn),

zn = S PC (xn − λn Ayn),

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qn x0

for all n ≥ 0, where {λn} is a sequence in [a, b] with a > 0 and b < 1
2k . Then the sequences

{xn}, {yn}, {zn} are well-defined and converge strongly to the same point q = PF(S)∩�A x0.

However, relations like (15) suggest that, as is often the case, taking more general se-
quences {αn}, {βn} and {γn} might improve the rate of convergence to a solution.

Taking S = I , αn = 0 and βn = 1 in Theorem 5, one finds the following theorem
providing an algorithm to find the solution of a variational inequality:

Theorem 7 Let C be a nonempty closed convex subset of a real Hilbert space H, A : C → H
be a monotone, k-Lipschitz continuous mapping such that �A �= ∅. We define inductively the
sequences {xn}, {yn}, {zn} by

x0 ∈ C,

yn = (1 − γn)xn + γn PC (xn − λn Axn),

zn = PC (xn − λn Ayn),

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 + (3 − 3γn)b2 ‖Axn‖2},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qn x0
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for all n ≥ 0, where {λn} is a sequence in [a, b] with a > 0 and b < 1
2k , and {γn} is a

sequence in [0, 1] such that limn γn = 1 and γn > 3/4 for all n ≥ 0.
Then the sequences {xn}, {yn}, {zn} are well-defined and converge strongly to the same

point q = P�A x0.

Taking γn = 1 and αn = 0 in Theorem 5, one recovers the main result of [14]. If in
addition one puts A = 0, one recovers the main result of [15] on an algorithm to find the
fixed point of a nonexpansive mapping.

Another consequence of Theorem 5 is the following.

Theorem 8 Let H be a real Hilbert space, A : H → H be monotone and k-Lipschitz, and
S : H → H be nonexpansive, such that F(S) ∩ A−1{0} �= ∅. Define the sequences {xn},
{yn} and {zn} by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x0 ∈ H
yn = xn − λn Axn

zn = (1 − βn)xn − αnλn Axn + βn S(xn − λn
γn

Ayn)

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 + (3 − 3γn + αn)b2 ‖Axn‖2}
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn x0

for all n ≥ 0, where {λn} is a sequence in [a, b] with a > 0 and b < 1
4k , and

{αn}, {βn}, {γn} are three sequences in [0, 1] satisfying the conditions:

(i) αn + βn ≤ 1 for all n ≥ 0;
(ii) limn→∞ αn = 0 ;

(iii) lim infn→∞ βn > 0
(iv) limn γn = 1 and γn > 3/4 for all n ≥ 0.

Then the sequences {xn}, {yn} and {zn} are well-defined and converge strongly to the same
point q = PF(S)∩A−1{0}x0.

Proof We set λ′
n = λn/γn . Then a ≤ λ′

n < 4
3λn < 2b < 1

2 k. Thus we can apply Theorem
5 for this sequence, and for C = H . We have PH = I and �A = A−1{0}. Then Theorem 5
guarantees that the sequences {xn}, {yn} and {zn} converge to q = PF(S)∩A−1{0}x0, where

yn = xn − γnλ′
n Axn = xn − λn Axn,

zn = (1 − αn − βn)xn + αn yn + βn S(xn − λ′
n Ayn)

= (1 − βn) xn − αnλn Axn + βn S(xn − λn

γn
Ayn). ��

Because of the relations that exist between monotone operators and nonexpansive mappings,
Theorem 5 can also be applied for finding the common zeros of two monotone mappings,
or the common fixed points of two mappings. For example, suppose that A : H → H is a
monotone, Lipschitz continuous mapping and B : H → H is a maximal monotone map-
ping. Assume that the set of common zeros A−1(0) ∩ B−1(0) is nonempty. Theorem 5 can
be applied to find an element of A−1(0) ∩ B−1(0) as follows. It is known that for any r > 0
the resolvent J B

r of B is nonexpansive [9]; also, if we set C = H then F(J B
r ) = B−1(0)

while �A = A−1(0). Thus, by applying Theorem 5 to the mappings A and J B
r we can find

an element of �A ∩ F(J B
r ) = A−1(0) ∩ B−1(0).
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Likewise, assume that C ⊆ H is nonempty, closed convex, T : C → C is pseudocon-
tractive and Lipschitz, and S : C → C is nonexpansive, such that F(T ) ∩ F(S) �= ∅. We
can find an element of F(T ) ∩ F(S) as follows. If we set A = I − T then it is known that A
is monotone and Lipschitz [3]. Also, it is easy to see that �A = F(T ). Indeed, if u ∈ F(T )

then Au = 0 so that u ∈ �A. Conversely, if u ∈ �A then

〈u − T u, y − u〉 ≥ 0, ∀y ∈ C.

Setting y = T u we get 〈u − T u, u − T u〉 ≤ 0, i.e., u ∈ F(T ). Consequently, Theorem 5
can be applied to the mappings A and S to produce sequences converging to an element of
�A ∩ F(S) = F(T ) ∩ F(S).
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