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Abstract We investigate some properties related to the generalized Newton method
for the Fischer-Burmeister (FB) function over second-order cones, which allows us
to reformulate the second-order cone complementarity problem (SOCCP) as a semi-
smooth system of equations. Specifically, we characterize the B-subdifferential of
the FB function at a general point and study the condition for every element of the B-
subdifferential at a solution being nonsingular. In addition, for the induced FB merit
function, we establish its coerciveness and provide a weaker condition than Chen
and Tseng (Math. Program. 104:293–327, 2005) for each stationary point to be a
solution, under suitable Cartesian P -properties of the involved mapping. By this, a
damped Gauss-Newton method is proposed, and the global and superlinear conver-
gence results are obtained. Numerical results are reported for the second-order cone
programs from the DIMACS library, which verify the good theoretical properties of
the method.

Keywords Second-order cones · Complementarity · Fischer-Burmeister function ·
B-subdifferential · Generalized Newton method

S. Pan’s work is partially supported by the Doctoral Starting-up Foundation (B13B6050640) of
GuangDong Province.
J.-S. Chen is member of Mathematics Division, National Center for Theoretical Sciences, Taipei
Office. J.-S. Chen’s work is partially supported by National Science Council of Taiwan.

S. Pan (�)
School of Mathematical Sciences, South China University of Technology, Guangzhou 510640, China
e-mail: shhpan@scut.edu.cn

J.-S. Chen
Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan
e-mail: jschen@math.ntnu.edu.tw

mailto:shhpan@scut.edu.cn
mailto:jschen@math.ntnu.edu.tw


294 Appl Math Optim (2009) 59: 293–318

1 Introduction

Consider the following conic complementarity problem of finding ζ ∈ R
n such that

F(ζ ) ∈ K, G(ζ ) ∈ K, 〈F(ζ ),G(ζ )〉 = 0, (1)

where 〈·, ·〉 represents the Euclidean inner product, F,G : R
n → R

m are the map-
ping assumed to be continuously differentiable throughout this paper, and K is the
Cartesian product of second-order cones (SOCs), or called Lorentz cones. In other
words,

K = Kn1 × Kn2 × · · · × Knq , (2)

where q,n1, . . . , nq ≥ 1, n1 + · · · + nq = m and

Kni := {
x = (x1, x2) ∈ R × R

ni−1 | x1 ≥ ‖x2‖
}

with ‖ · ‖ denoting the Euclidean norm and K1 denoting the set of nonnegative re-
als R+. We will refer to (1)–(2) as the second-order cone complementarity problem
(SOCCP). Corresponding to the Cartesian structure of K, in the rest of this paper, we
always write F = (F1, . . . ,Fq) and G = (G1, . . . ,Gq) with Fi,Gi : R

n → R
ni .

An important special case of the SOCCP corresponds to n = m and G(ζ) = ζ for
all ζ ∈ R

n. Then (1) and (2) reduce to

F(ζ ) ∈ K, ζ ∈ K, 〈F(ζ ), ζ 〉 = 0, (3)

which is a natural extension of the nonlinear complementarity problem (NCP) over
the nonnegative orthant cone R

n+. Another special case corresponds to the Karush-
Kuhn-Tucker (KKT) conditions for the convex second-order cone program (CSOCP):

ming(x)

s.t. Ax = b, x ∈ K,
(4)

where A ∈ R
p×m has full row rank, b ∈ R

p and g : R
m → R is a twice continu-

ously differentiable convex function. From [6], the KKT conditions of (4), which are
sufficient but not necessary for optimality, can be rewritten in the form of (1) with

F(ζ ) := x̂+(I −AT (AAT )−1A)ζ, G(ζ ) := ∇g(F (ζ ))−AT (AAT )−1Aζ, (5)

where x̂ ∈ R
m is any vector satisfying Ax = b. When g is a linear function, (4) re-

duces to the standard second-order cone program which has extensive applications in
engineering design, finance, control, and robust optimization; see [1, 14] and refer-
ences therein.

There have been many methods proposed for solving SOCPs and SOCCPs. They
include the interior-point methods [1, 2, 14, 16, 24, 26], the non-interior smoothing
Newton methods [7, 11], the smoothing-regularization method [13], and the merit
function approach [6]. Among others, the last three kinds of methods are all based
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on an SOC complementarity function. Specifically, a mapping φ : R
l × R

l → R
l is

called an SOC complementarity function associated with the cone Kl (l ≥ 1) if

φ(x, y) = 0 ⇐⇒ x ∈ Kl , y ∈ Kl , 〈x, y〉 = 0. (6)

A popular choice of φ is the vector-valued Fischer-Burmeister (FB) function, de-
fined by

φ(x, y) := (x2 + y2)1/2 − (x + y) ∀x, y ∈ R
l (7)

where x2 = x ◦ x denotes the Jordan product of x and itself, x1/2 denotes a vector
such that (x1/2)2 = x, and x +y means the usual componentwise addition of vectors.
From the next section, we see that φ in (7) is well-defined for all (x, y) ∈ R

l ×R
l . The

function was shown in [11] to satisfy the equivalence (6), and therefore its squared
norm

ψ(x, y) := 1

2
‖φ(x, y)‖2 (8)

is a merit function for the SOCCP, i.e., ψ(x, y) = 0 if and only if x ∈ Kl , y ∈ Kl

and 〈x, y〉 = 0. The functions φ and ψ were studied in the literature [6, 21], where ψ

was shown to be continuously differentiable everywhere by Chen and Tseng [6] and
φ was proved to be strongly semismooth by Sun and Sun [21].

In view of the characterization in (6), clearly, the SOCCP can be reformulated as
the following nonsmooth system of equations:

�(ζ) :=

⎛

⎜⎜⎜⎜
⎜
⎝

φ(F1(ζ ),G1(ζ ))
...

φ(Fi(ζ ),Gi(ζ ))
...

φ(Fq(ζ ),Gq(ζ ))

⎞

⎟⎟⎟⎟
⎟
⎠

= 0 (9)

where φ is defined as in (7) with a suitable dimension l. By Corollary 3.3 of [21], it is
not hard to show that the operator � : R

n → R
m in (9) is semismooth. Furthermore,

from Proposition 2 of [6], its squared norm induces a smooth merit function, given
by

�(ζ) := 1

2
‖�(ζ)‖2 =

q∑

i=1

ψ(Fi(ζ ),Gi(ζ )). (10)

In this paper, we mainly characterize the B-subdifferential of φ at a general point
and present an estimate for the B-subdifferential of �. By this, a condition is given
to guarantee every element of the B-subdifferential of � at a solution to be nonsin-
gular, which plays an important role in the local convergence analysis of nonsmooth
Newton methods for the SOCCP. In addition, two important results are also presented
for the merit function �(ζ). One of them shows that each stationary point of � is a
solution of the SOCCP under a weaker condition than the one used by [6], and the
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other establishes the coerciveness of � for the SOCCP (3) under the uniform Carte-
sian P -property of F . Based on these results, we finally propose a damped Gauss-
Newton method by applying the generalized Newton method [19, 20] for the system
(9), and analyze its global and superlinear (quadratic) convergence. Numerical re-
sults are reported for the SOCPs from the DIMACS library [18], which verify the
good theoretical properties of the method.

Throughout this paper, I represents an identity matrix of suitable dimension, R
n

denotes the space of n-dimensional real column vectors, and R
n1 × · · · × R

nq is
identified with R

n1+···+nq . Thus, (x1, . . . , xq) ∈ R
n1 × · · · × R

nq is viewed as a col-
umn vector in R

n1+···+nq . For any differentiable mapping F : R
n → R

m, the nota-
tion ∇F(x) ∈ R

n×m denotes the transpose of the Jacobian F ′(x). For a symmetric
matrix A, we write A � O (respectively, A � O) if A is positive definite (respec-
tively, positive semidefinite). Given a finite number of square matrices Q1, . . . ,Qq ,
we denote the block diagonal matrix with these matrices as block diagonals by
diag(Q1, . . . ,Qq) or by diag(Qi, i = 1, . . . , q). If J and B are index sets such
that J , B ⊆ {1,2, . . . , q}, we denote by PJ B the block matrix consisting of the sub-
matrices Pjk ∈ R

nj ×nk of P with j ∈ J , k ∈ B, and denote by xB a vector consisting
of sub-vectors xi ∈ R

ni with i ∈ B.

2 Preliminaries

This section recalls some background materials and preliminary results that will be
used in the subsequent sections. We start with the interior and the boundary of Kl

(l > 1). It is known that Kl is a closed convex self-dual cone with nonempty interior
given by

int(Kl ) := {
x = (x1, x2) ∈ R × R

l−1 | x1 > ‖x2‖
}

and the boundary given by

bd(Kl) := {
x = (x1, x2) ∈ R × R

l−1 | x1 = ‖x2‖
}
.

For any x = (x1, x2), y = (y1, y2) ∈ R × R
l−1, we define their Jordan product [9] as

x ◦ y := (〈x, y〉, x1y2 + y1x2
)
.

The Jordan product “◦”, unlike scalar or matrix multiplication, is not associative,
which is the main source on complication in the analysis of SOCCP. The identity
element under this product is e := (1,0, . . . ,0)T ∈ R

l . For each x = (x1, x2) ∈ R ×
R

l−1, define the matrix Lx by

Lx :=
[

x1 xT
2

x2 x1I

]
,

which can be viewed as a linear mapping from R
l to R

l with the following properties.
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Property 2.1

(a) Lxy = x ◦ y and Lx+y = Lx + Ly for any x, y ∈ R
l .

(b) x ∈ Kl ⇐⇒ Lx � O and x ∈ int(Kl ) ⇐⇒ Lx � O .
(c) Lx is invertible whenever x ∈ int(Kl ) with the inverse L−1

x given by

L−1
x = 1

det(x)

[
x1 −xT

2

−x2
det(x)

x1
I + x2x

T
2

x1

]
, (11)

where det(x) := x2
1 − ‖x2‖2 denotes the determinant of x.

In the following, we recall from [9, 11] that each x = (x1, x2) ∈ R × R
l−1 admits

a spectral factorization, associated with Kl , of the form

x = λ1(x) · u(1)
x + λ2(x) · u(2)

x ,

where λ1(x), λ2(x) and u
(1)
x , u

(2)
x are the spectral values and the associated spectral

vectors of x, respectively, defined by

λi(x) = x1 + (−1)i‖x2‖, u(i)
x = 1

2
(1, (−1)i x̄2), i = 1,2,

with x̄2 = x2/‖x2‖ if x2 �= 0 and otherwise x̄2 being any vector in R
l−1 satisfying

‖x̄2‖ = 1. If x2 �= 0, the factorization is unique. The spectral factorizations of x, x2

and x1/2 have various interesting properties, and some of them are summarized as
follows.

Property 2.2 For any x = (x1, x2) ∈ R × R
l−1, let λ1(x), λ2(x) and u

(1)
x , u

(2)
x be the

spectral values and the associated spectral vectors. Then, the following results hold.

(a) x ∈ Kl ⇐⇒ 0 ≤ λ1(x) ≤ λ2(x) and x ∈ int(Kl ) ⇐⇒ 0 < λ1(x) ≤ λ2(x).
(b) x2 = [λ1(x)]2u

(1)
x + [λ2(x)]2u

(2)
x ∈ Kl for any x ∈ R

l .
(c) If x ∈ Kl , then x1/2 = √

λ1(x) u
(1)
x + √

λ2(x) u
(2)
x ∈ Kl .

Now we recall the concepts of the B-subdifferential and (strong) semismoothness.
Given a mapping H : R

n → R
m, if H is locally Lipschitz continuous, then the set

∂BH(z) := {
V ∈ R

m×n| ∃{zk} ⊆ DH : zk → z,H ′(zk) → V
}

is nonempty and is called the B-subdifferential of H at z, where DH ⊆ R
n denotes the

set of points at which H is differentiable. The convex hull ∂H(z) := conv∂BH(z) is
the generalized Jacobian of Clarke [4]. Semismoothness was originally introduced by
Mifflin [15] for functionals. Smooth functions, convex functionals, and piecewise lin-
ear functions are examples of semismooth functions. Later, Qi and Sun [20] extended
the definition of semismooth functions to a mapping H : R

n → R
m. H is called semi-

smooth at x if H is directionally differentiable at x and for all V ∈ ∂H(x + h) and
h → 0,

V h − H ′(x;h) = o(‖h‖);
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H is called strongly semismooth at x if H is semismooth at x and for all V ∈
∂H(x + h) and h → 0,

V h − H ′(x;h) = O(‖h‖2);
H is called (strongly) semismooth if it is (strongly) semismooth everywhere. Here,
o(‖h‖) means a function α : R

n → R
m satisfying limh→0 α(h)/‖h‖ = 0, while

O(‖h‖2) denotes a function α : R
n → R

m satisfying ‖α(h)‖ ≤ C‖h‖2 for all ‖h‖ ≤ δ

and some C > 0, δ > 0.
Next, we present the definitions of Cartesian P -properties for a matrix M ∈ R

m×m,
which are special cases of those introduced by Chen and Qi [5] for a linear transfor-
mation.

Definition 2.1 A matrix M ∈ R
m×m is said to have

(a) the Cartesian P -property if for any 0 �= x = (x1, . . . , xq) ∈ R
m with xi ∈ R

ni ,
there exists an index ν ∈ {1,2, . . . , q} such that 〈xν, (Mx)ν〉 > 0;

(b) the Cartesian P0-property if for any 0 �= x = (x1, . . . , xq) ∈ R
m with xi ∈ R

ni ,
there exists an index ν ∈ {1,2, . . . , q} such that xν �= 0 and 〈xν, (Mx)ν〉 ≥ 0.

Some nonlinear generalizations of these concepts in the setting of K are defined
as follows.

Definition 2.2 Given a mapping F = (F1, . . . ,Fq) with Fi : R
n → R

ni , F is said to

(a) have the uniform Cartesian P -property if for any x = (x1, . . . , xq), y = (y1, . . . ,

yq) ∈ R
m, there is an index ν ∈ {1,2, . . . , q} and a positive constant ρ > 0 such

that
〈
xν − yν,Fν(x) − Fν(y)

〉 ≥ ρ‖x − y‖2;
(b) have the Cartesian P0-property if for any x = (x1, . . . , xq), y = (y1, . . . , yq) ∈

R
m and x �= y, there exists an index ν ∈ {1,2, . . . , q} such that

xν �= yν and 〈xν − yν,Fν(x) − Fν(y)〉 ≥ 0.

From the above definitions, if a continuously differentiable mapping F : R
n → R

n

has the uniform Cartesian P -property (Cartesian P0-property), then ∇F(x) at any
x ∈ R

n enjoys the Cartesian P -property (Cartesian P0-property). In addition, we may
see that, when n1 = · · · = nq = 1, the above concepts reduce to the definitions of P -
matrices and P -functions, respectively, for the NCP.

Finally, we introduce some notations which will be used in the rest of this paper.
For any x = (x1, x2), y = (y1, y2) ∈ R × R

l−1, we define w,z : R
l × R

l → R
l by

w = (w1,w2) = (w1(x, y),w2(x, y)) = w(x,y) := x2 + y2,

z = (z1, z2) = (z1(x, y), z2(x, y)) = z(x, y) := (x2 + y2)1/2.
(12)

Clearly, w ∈ Kl with w1 = ‖x‖2 + ‖y‖2 and w2 = 2(x1x2 + y1y2). Let w̄2 =
w2/‖w2‖ if w2 �= 0, and otherwise w̄2 be any vector in R

l−1 satisfying ‖w̄2‖ = 1.
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Then, using Property 2.1(b) and (c), it is not hard to compute that

z =
(√

λ2(w) + √
λ1(w)

2
,

√
λ2(w) − √

λ1(w)

2
w̄2

)
∈ Kl .

3 B-Subdifferential of the FB Function

In this section, we characterize the B-subdifferential of the FB function φ at a general
point (x, y) ∈ R

l ×R
l . For this purpose, we need several important technical lemmas.

The first lemma characterizes the set of the points where z(x, y) is differentiable.
Since the proof is direct by [3, Proposition 4] and formula (11), we here omit it.

Lemma 3.1 The function z(x, y) in (12) is continuously differentiable at a point
(x, y) if and only if x2 +y2∈int(Kl ). Moreover, ∇xz(x, y)=LxL

−1
z and ∇yz(x, y)=

LyL
−1
z , where L−1

z = (1/
√

w1)I if w2 = 0, and otherwise

L−1
z =

(
b cw̄T

2
cw̄2 aI + (b − a)w̄2w̄

T
2

)
(13)

with

a = 2√
λ2(w) +√

λ1(w)
, b = 1

2

(
1√

λ2(w)
+ 1√

λ1(w)

)
,

c = 1

2

(
1√

λ2(w)
− 1√

λ1(w)

)
.

The following two lemmas extend the results of Lemmas 2 and 3 of [6], respec-
tively. Since the proofs are direct by using the same technique as [6], we here omit
them.

Lemma 3.2 For any x = (x1, x2), y = (y1, y2) ∈ R × R
l−1 with w = x2 + y2 ∈

bd(Kl), we have

x2
1 = ‖x2‖2, y2

1 = ‖y2‖2, x1y1 = xT
2 y2, x1y2 = y1x2.

If, in addition, w2 �= 0, then ‖w‖2 = 2w2
1 = 2‖w2‖2 = 4(x2

1 + y2
1) �= 0 and

x1w̄2 = x2, xT
2 w̄2 = x1, y1w̄2 = y2, yT

2 w̄2 = y1.

Lemma 3.3 For any x = (x1, x2), y = (y1, y2) ∈ R × R
l−1 with w2 = 2(x1x2 +

y1y2) �= 0, there holds that

(
x1 + (−1)ixT

2 w̄2
)2 ≤ ‖x2 + (−1)ix1w̄2‖2 ≤ λi(w) for i = 1,2.

Based on Lemmas 3.1–3.3, we are now in a position to present the representa-
tion for the elements of the B-subdifferential ∂Bφ(x, y) at a general point (x, y) ∈
R

l × R
l .
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Proposition 3.1 Given a general point (x, y) ∈ R
l × R

l , each element in ∂Bφ(x, y)

is given by [Vx − I Vy − I ] with Vx and Vy having the following representation:

(a) If x2 + y2 ∈ int(Kl ), then Vx = L−1
z Lx and Vy = L−1

z Ly .
(b) If x2 + y2 ∈ bd(Kl ) and (x, y) �= (0,0), then

Vx ∈
{

1

2
√

2w1

(
1 w̄T

2
w̄2 4I − 3w̄2w̄

T
2

)
Lx + 1

2

(
1

−w̄2

)
uT

}

Vy ∈
{

1

2
√

2w1

(
1 w̄T

2
w̄2 4I − 3w̄2w̄

T
2

)
Ly + 1

2

(
1

−w̄2

)
vT

} (14)

for some u = (u1, u2), v = (v1, v2) ∈ R × R
l−1 satisfying |u1| ≤ ‖u2‖ ≤ 1 and

|v1| ≤ ‖v2‖ ≤ 1, where w̄2 = w2/‖w2‖.
(c) If (x, y) = (0,0), then Vx ∈ {Lx̂}, Vy ∈ {Lŷ} for some x̂, ŷ with ‖x̂‖2 +‖ŷ‖2 = 1,

or

Vx ∈
{

1

2

(
1
w̄2

)
ξT + 1

2

(
1

−w̄2

)
uT + 2

(
0 0

(I − w̄2w̄
T
2 )s2 (I − w̄2w̄

T
2 )s1

)}

Vy ∈
{

1

2

(
1
w̄2

)
ηT + 1

2

(
1

−w̄2

)
vT + 2

(
0 0

(I − w̄2w̄
T
2 )ω2 (I − w̄2w̄

T
2 )ω1

)}

(15)

for some u = (u1, u2), v = (v1, v2), ξ = (ξ1, ξ2), η = (η1, η2) ∈ R × R
l−1 such

that |u1| ≤ ‖u2‖ ≤ 1, |v1| ≤ ‖v2‖ ≤ 1, |ξ1| ≤ ‖ξ2‖ ≤ 1, |η1| ≤ ‖η2‖ ≤ 1, w̄2 ∈
R

l−1 satisfying ‖w̄2‖ = 1, and s = (s1, s2),ω = (ω1,ω2) ∈ R × R
l−1 satisfying

‖s‖2 + ‖ω‖2 ≤ 1/2.

Proof Let Dφ denote the set of points where φ is differentiable. Recall that this set is
characterized by Lemma 3.1 since φ(x, y) = z(x, y) − (x + y), and moreover,

φ′
x(x, y) = L−1

z Lx − I, φ′
y(x, y) = L−1

z Ly − I ∀(x, y) ∈ Dφ.

(a) In this case, φ is continuously differentiable at (x, y) by Lemma 3.1. Hence,
∂Bφ(x, y) consists of a single element, i.e. φ′(x, y) = [L−1

z Lx − I L−1
z Ly − I ], and

the result is clear.
(b) Assume that (x, y) �= (0,0) satisfies x2 + y2 ∈ bd(Kl ). Then w ∈ bd(Kl ) and

w1 > 0, which means ‖w2‖ = w1 > 0 and λ2(w) > λ1(w) = 0. Observe that, when
w2 �= 0, the matrix L−1

z in (13) can be decomposed as the sum of

L1(w) := 1

2
√

λ1(w)

(
1 −w̄T

2
−w̄2 w̄2w̄

T
2

)
(16)

and

L2(w) := 1

2
√

λ2(w)

(
1 w̄T

2

w̄2
4
√

λ2(w)√
λ2(w)+√

λ1(w)
(I − w̄2w̄

T
2 ) + w̄2w̄

T
2

)

(17)
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with w̄2 = w2/‖w2‖. Consequently, φ′
x and φ′

y can be rewritten as

φ′
x(x, y) = (L1(w) + L2(w))Lx − I,

φ′
y(x, y) = (L1(w) + L2(w))Ly − I.

(18)

Let {(xk, yk)} ⊆ Dφ be an arbitrary sequence converging to (x, y). Let wk =
(wk

1,wk
2) = w(xk, yk) and zk = z(xk, yk) for each k, where w(x,y) and z(x, y) are

defined by (12). Since w2 �= 0, we without loss of generality assume ‖wk
2‖ �= 0 for

each k. Let w̄k
2 = wk

2/‖wk
2‖ for each k. From (18), it follows that

φ′
x(x

k, yk) = (L1(w
k) + L2(w

k))Lxk − I,

φ′
y(x

k, yk) = (L1(w
k) + L2(w

k))Lyk − I.
(19)

Since limk→∞ λ1(w
k) = 0, limk→∞ λ2(w

k) = 2w1 > 0 and limk→∞ w̄k
2 = w̄2, we

have

lim
k→∞L2(w

k)Lxk = C(w)Lx and lim
k→∞L2(w

k)Lyk = C(w)Ly (20)

where

C(w) = 1

2
√

2w1

(
1 w̄T

2
w̄2 4I − 3w̄2w̄

T
2

)
. (21)

Next we focus on the limit of L1(w
k)Lxk and L1(w

k)Lyk as k → ∞. By computing,

L1(w
k)Lxk = 1

2

(
uk

1 uk
2

−uk
1w̄

k
2 −w̄k

2(u
k
2)

T

)
,

L1(w
k)Lyk = 1

2

(
vk

1 vk
2

−vk
1w̄k

2 −w̄k
2(v

k
2)T

)
,

where

uk
1 = xk

1 − (xk
2 )T w̄k

2√
λ1(wk)

, uk
2 = xk

2 − xk
1 w̄k

2√
λ1(wk)

,

vk
1 = yk

1 − (yk
2 )T w̄k

2√
λ1(wk)

, vk
2 = yk

2 − yk
1 w̄k

2√
λ1(wk)

.

By Lemma 3.3, |uk
1| ≤ ‖uk

2‖ ≤ 1 and |vk
1 | ≤ ‖vk

2‖ ≤ 1. So, taking the limit (possibly
on a subsequence) on L1(w

k)Lxk and L1(w
k)Lyk , respectively, gives

L1(w
k)Lxk → 1

2

(
u1 u2

−u1w̄2 −w̄2u
T
2

)
= 1

2

(
1

−w̄2

)
uT

L1(w
k)Lyk → 1

2

(
v1 v2

−v1w̄2 −w̄2v
T
2

)
= 1

2

(
1

−w̄2

)
vT

(22)
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for some u = (u1, u2), v = (v1, v2) ∈ R×R
l−1 satisfying |u1| ≤ ‖u2‖ ≤ 1 and |v1| ≤

‖v2‖ ≤ 1. In fact, u and v are some accumulation point of the sequences {uk} and
{vk}, respectively. From equations (19)–(22), we immediately obtain

φ′
x(x

k, yk) → C(w)Lx + 1

2

(
1

−w̄2

)
uT − I,

φ′
y(x

k, yk) → C(w)Ly + 1

2

(
1

−w̄2

)
vT − I.

This shows that φ′(xk, yk) → [Vx −I Vy −I ] as k → ∞ with Vx,Vy satisfying (14).
(c) Assume that (x, y) = (0,0). Let {(xk, yk)} ⊆ Dφ be an arbitrary sequence

converging to (x, y). Let wk = (wk
1,w

k
2) = w(xk, yk) and zk = z(xk, yk) for each k.

Since w = 0, we without any loss of generality assume that wk
2 = 0 for all k, or

wk
2 �= 0 for all k.

Case (1): wk
2 = 0 for all k. From Lemma 3.1, it follows that L−1

zk = (1/

√
wk

1)I .
Therefore,

φ′
x(x

k, yk) = 1
√

wk
1

Lxk − I and φ′
y(x

k, yk) = 1
√

wk
1

Lyk − I.

Since wk
1 = ‖xk‖2 +‖yk‖2, every element in φ′

x(x
k, yk) and φ′

y(x
k, yk) is bounded.

Taking limit (possibly on a subsequence) on φ′
x(x

k, yk) and φ′
y(x

k, yk), we obtain

φ′
x(x

k, yk) → Lx̂ − I and φ′
y(x

k, yk) → Lŷ − I

for some vectors x̂, ŷ ∈ R
l satisfying ‖x̂‖2 + ‖ŷ‖2 = 1, where x̂ and ŷ are some

accumulation point of the sequences { xk
√

wk
1

} and { yk
√

wk
1

}, respectively. Thus, we prove

that φ′(xk, yk) → [Vx − I Vy − I ] as k → ∞ with Vx ∈ {Lx̂} and Vy ∈ {Lŷ}.
Case (2): wk

2 �= 0 for all k. Now φ′
x(x

k, yk) and φ′
y(x

k, yk) are given as in (19). Using

the same arguments as part (b) and noting the boundedness of {w̄k
2}, we have

L1(w
k)Lxk → 1

2

(
1

−w̄2

)
uT , L1(w

k)Lyk → 1

2

(
1

−w̄2

)
vT (23)

for some u = (u1, u2), v = (v1, v2) ∈ R × R
l−1 satisfying |u1| ≤ ‖u2‖ ≤ 1 and

|v1| ≤ ‖v2‖ ≤ 1, and w̄2 ∈ R
l−1 satisfying ‖w̄2‖ = 1. We next compute the limit

of L2(w
k)Lxk and L2(w

k)Lyk as k → ∞. By the definition of L2(w) in (17),

L2(w
k)Lxk = 1

2

(
ξk

1 (ξk
2 )T

ξk
1 w̄k

2 + 4(I − w̄k
2(w̄k

2)
T )sk

2 w̄k
2(ξ

k
2 )T + 4(I − w̄k

2(w̄
k
2)T )sk

1

)
,

L2(w
k)Lyk = 1

2

(
ηk

1 (ηk
2)

T

ηk
1w̄

k
2 + 4(I − w̄k

2(w̄
k
2)

T )ωk
2 w̄k

2(η
k
2)

T + 4(I − w̄k
2(w̄k

2)
T )ωk

1

)
,
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where

ξk
1 = xk

1 + (xk
2 )T w̄k

2√
λ2(wk)

, ξk
2 = xk

2 + xk
1 w̄k

2√
λ2(wk)

,

ηk
1 = yk

1 + (yk
2 )T w̄k

2√
λ2(wk)

, ηk
2 = yk

2 + yk
1 w̄k

2√
λ2(wk)

,

(24)

and

sk
1 = xk

1√
λ2(wk) + √

λ1(wk)
, sk

2 = xk
2√

λ2(wk) + √
λ1(wk)

,

ωk
1 = yk

1√
λ2(wk) + √

λ1(wk)
, ωk

2 = yk
2√

λ2(wk) + √
λ1(wk)

.

(25)

By Lemma 3.3, |ξk
1 | ≤ ‖ξk

2 ‖ ≤ 1 and |ηk
1| ≤ ‖ηk

2‖ ≤ 1. In addition,

‖sk‖2 + ‖ωk‖2 = ‖xk‖2 + ‖yk‖2

2(‖xk‖2 + ‖yk‖2) + 2
√

λ1(wk)
√

λ2(wk)
≤ 1

2
.

Hence, taking limit (possibly on a subsequence) on L2(w
k)Lxk and L2(w

k)Lyk

yields

L2(w
k)Lxk → 1

2

(
ξ1 ξT

2
ξ1w̄2 + 4(I − w̄2w̄

T
2 )s2 w̄2ξ

T
2 + 4(I − w̄2w̄

T
2 )s1

)

= 1

2

(
1

w̄2

)
ξT + 2

(
0 0

(I − w̄2w̄
T
2 )s2 (I − w̄2w̄

T
2 )s1

)
,

(26)

L2(w
k)Lyk → 1

2

(
η1 ηT

2
η1w̄2 + 4(I − w̄2w̄

T
2 )ω2 w̄2η

T
2 + 4(I − w̄2w̄

T
2 )ω1

)

= 1

2

(
1

w̄2

)
ηT + 2

(
0 0

(I − w̄2w̄
T
2 )ω2 (I − w̄2w̄

T
2 )ω1

)

for some vectors ξ = (ξ1, ξ2), η = (η1, η2) ∈ R × R
l−1 satisfying |ξ1| ≤ ‖ξ2‖ ≤

1 and |η1| ≤ ‖η2‖ ≤ 1, w̄2 ∈ R
l−1 satisfying ‖w̄2‖ = 1, and s = (s1, s2),ω =

(ω1,ω2) ∈ R × R
l−1 satisfying ‖s‖2 + ‖ω‖2 ≤ 1/2. Among others, ξ and η are

some accumulation point of the sequences {ξk} and {ηk}, respectively; and s and
ω are some accumulation point of the sequences {sk} and {ωk}, respectively. From
(19), (23) and (26), we obtain

φ′
x(x

k, yk) → 1

2

(
1

w̄2

)
ξT + 1

2

(
1

−w̄2

)
uT

+ 2

(
0 0

(I − w̄2w̄
T
2 )s2 (I − w̄2w̄

T
2 )s1

)
− I,
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φ′
y(x

k, yk) → 1

2

(
1

w̄2

)
ηT + 1

2

(
1

−w̄2

)
vT

+ 2

(
0 0

(I − w̄2w̄
T
2 )ω2 (I − w̄2w̄

T
2 )ω1

)
− I.

This implies that as k → ∞, φ′(xk, yk) → [Vx − I Vy − I ] with Vx and Vy satis-
fying (15).

Combining with Case (1) then yields the desired result. �

Remark 3.1 When x2 + y2 ∈ bd(Kl ) with (x, y) �= (0,0), using Lemma 3.2, we can
also characterize Vx and Vy in Proposition 3.1(b) by

Vx ∈
{

1√
2w1

(
x1 xT

2

x2 2x1I − w2x
T
2

w1

)
+ 1

2

(
1

−w2‖w2‖

)
uT

}

Vy ∈
{

1√
2w1

(
y1 yT

2

y2 2y1I − w2y
T
2

w1

)
+ 1

2

(
1

−w2‖w2‖

)
vT

}

for some u = (u1, u2), v = (v1, v2) ∈ R×R
l−1 satisfying |u1| ≤ ‖u2‖ ≤ 1 and |v1| ≤

‖v2‖ ≤ 1.

4 Properties of the Operator �

In this section, we study some properties of � related to the generalized Newton
method. In particular, we shall present an estimate for the B-subdifferential of � and
a sufficient condition for all elements of the B-subdifferential of � at a solution being
nonsingular. For convenience, throughout this section, for any i ∈ {1,2, . . . , q} and
ζ ∈ R

n, we let

Fi(ζ ) = (Fi1(ζ ),Fi2(ζ )), Gi(ζ ) = (Gi1(ζ ),Gi2(ζ )) ∈ R × R
ni−1,

wi(ζ ) = (wi1(ζ ),wi2(ζ )) = w(Fi(ζ ),Gi(ζ )),

zi(ζ ) = (zi1(ζ ), zi2(ζ )) = z(Fi(ζ ),Gi(ζ ))

where w(x,y) and z(x, y) are the functions defined as in (12).
First, since � is (strongly) semismooth if and only if all component functions are

(strongly) semismooth, and since the composite of (strongly) semismooth functions
is (strongly) semismooth by [8, Theorem 19], we have the following proposition as
an immediate consequence of Corollary 3.3 of [21].

Proposition 4.1 The operator � : R
n → R

m defined by (9) is semismooth. Further-
more, it is strongly semismooth if F ′ and G′ are locally Lipschitz continuous.

Let �i denote the i-th component of the function �. Notice that, for any ζ ∈ R
n,

∂B�(ζ )T ⊆ ∂B�1(ζ )T × ∂B�2(ζ )T × · · · × ∂B�q(ζ )T (27)
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where the latter denotes the set of all matrices whose (ni−1 + 1) to ni -th columns
belong to ∂B�i(ζ )T for i = 1,2, . . . , q and n0 = 0. From Proposition 3.1 and Remark
3.1, we immediately obtain the following estimate for ∂B�(ζ )T .

Proposition 4.2 Let � : R
n → R

m be defined by (9). Then, for any ζ ∈ R
n,

∂B�(ζ )T ⊆ ∇F(ζ )(A(ζ ) − I ) + ∇G(ζ)(B(ζ ) − I ), (28)

where A(ζ ) and B(ζ ) are possibly multivalued m×m block diagonal matrices whose
ith blocks Ai(ζ ) and Bi(ζ ) for i = 1,2, . . . , q have the following representation:

(a) If Fi(ζ )2 + Gi(ζ )2 ∈ int(Kni ), then Ai(ζ ) = LFi(ζ )L
−1
zi (ζ ) and Bi(ζ ) =

LGi(ζ )L
−1
zi (ζ ).

(b) If Fi(ζ )2 + Gi(ζ )2 ∈ bd(Kni ) and (Fi(ζ ),Gi(ζ )) �= (0,0), then

Ai(ζ ) ∈
{

1√
2wi1(ζ )

(
Fi1(ζ ) Fi2(ζ )T

Fi2(ζ ) 2Fi1(ζ )I − Fi2(ζ )wi2(ζ )T

wi1(ζ )

)

+1

2
ui(1,−w̄i2(ζ )T )

}

Bi(ζ ) ∈
{

1√
2wi1(ζ )

(
Gi1(ζ ) Gi2(ζ )T

Gi2(ζ ) 2Gi1(ζ )I − Gi2(ζ )wi2(ζ )T

wi1(ζ )

)

+1

2
vi(1,−w̄i2(ζ )T )

}

for some ui = (ui1, ui2), vi = (vi1, vi2) ∈ R×R
ni−1 satisfying |ui1| ≤ ‖ui2‖ ≤ 1

and |vi1| ≤ ‖vi2‖ ≤ 1, where w̄i2(ζ ) = wi2(ζ )/‖wi2(ζ )‖.
(c) If Fi(ζ ) = Gi(ζ ) = 0, then

Ai(ζ ) ∈ {Lûi
} ∪

{
1

2
ξi(1, w̄T

i2) + 1

2
ui(1,−w̄T

i2) +
(

0 2sT
i2(I − w̄i2w̄

T
i2)

0 2si1(I − w̄i2w̄
T
i2)

)}

Bi(ζ ) ∈ {Lv̂i
} ∪

{
1

2
ηi(1, w̄T

i2) + 1

2
vi(1,−w̄T

i2) +
(

0 2ωT
i2(I − w̄i2w̄

T
i2)

0 2ωi1(I − w̄i2w̄
T
i2)

)}

for some ûi , v̂i ∈ R
ni satisfying ‖ûi‖2 + ‖v̂i‖2 = 1, ui = (ui1, ui2), vi =

(vi1, vi2), ξi = (ξi1, ξi2), ηi = (ηi1, ηi2) ∈ R × R
ni−1 satisfying |ui1| ≤ ‖ui2‖ ≤

1, |vi1| ≤ ‖vi2‖ ≤ 1, |ξi1| ≤ ‖ξi2‖ ≤ 1 and |ηi1| ≤ ‖ηi2‖ ≤ 1, w̄i2 ∈ R
ni−1 sat-

isfying ‖w̄i2‖ = 1, and si = (si1, si2),ωi = (ωi1,ωi2) ∈ R × R
ni−1 such that

‖si‖2 + ‖ωi‖2 ≤ 1/2.

Particularly, for the block matrices A(ζ ) and B(ζ ), we have the following proper-
ties.

Lemma 4.1 For any ζ ∈ R
n, let A(ζ ) and B(ζ ) be given as in Proposition 4.2. Then,
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(a) for all i ∈ {1,2, . . . , q} such that Fi(ζ )2 + Gi(ζ )2 ∈ int(Kni ), there holds that

〈(Ai(ζ ) − I )vi, (Bi(ζ ) − I )vi〉 ≥ 0 for any vi ∈ R
ni ;

(b) for all i ∈ {1,2, . . . , q}, we have 〈(Ai(ζ )− I )�i(ζ ), (Bi(ζ )− I )�i(ζ )〉 ≥ 0, and
the inequality holds with equality if and only if �i(ζ ) = 0.

Proof (a) The proof is similar to that of [6, Lemma 6]. For completeness, we here
include it. From Proposition 4.2(a), it follows that for any υi ∈ R

ni ,

〈(Ai − I )vi, (Bi − I )vi〉 = 〈(LFi
L−1

zi
− I )vi, (LGi

L−1
zi

− I )vi〉
= 〈(LFi

− Lzi
)L−1

zi
vi, (LGi

− Lzi
)L−1

zi
vi〉

= 〈(LGi
− Lzi

)(LFi
− Lzi

)L−1
zi

vi, L−1
zi

vi〉 (29)

where, for convenience, we omit the notation ζ in functions. Let Si be the symmetric
part of (LGi

− Lzi
)(LFi

− Lzi
). Then, by computing, we have

Si = 1

2
[(LGi

− Lzi
)(LFi

− Lzi
) + (LFi

− Lzi
)(LGi

− Lzi
)]

= 1

2
(Lzi

− LFi
− LGi

)2 + 1

2
(L2

zi
− L2

Fi
− L2

Gi
).

Notice that zi = (F 2
i + G2

i )
1/2 ∈ int(Kni ) and z2

i − F 2
i − G2

i = 0 ∈ Kni , and hence
we have L2

zi
− L2

Fi
− L2

Gi
� O by [11, Proposition 3.4]. From (29), it then follows

that

〈(Ai − I )υi, (Bi − I )υi〉 = 〈SiL
−1
zi

υi,L
−1
zi

υi〉

≥ 1

2
〈(Lzi

− LFi
− LGi

)2L−1
zi

υi, L−1
zi

υi〉

= 1

2
‖(Lzi

− LFi
− LGi

)L−1
zi

υi‖2 ≥ 0

for any υi ∈ R
ni , where the first inequality is due to the fact that L2

zi
−L2

Fi
−L2

Gi
� O .

(b) From Theorem 2.6.6 of [4] and the smoothness of ψ(x, y) (see [6]), we have

∇ψ(x, y) = ∂Bφ(x, y)T φ(x, y) ∀x, y ∈ R
l ,

which, together with Propositions 3.1 and 4.2, implies that for i = 1,2, . . . , q ,

∇xψ(Fi(ζ ),Gi(ζ )) = (Ai(ζ ) − I )�i(ζ ),

∇yψ(Fi(ζ ),Gi(ζ )) = (Bi(ζ ) − I )�i(ζ ).
(30)

Using Lemma 6(b) of [6], we immediately obtain the desired result. �

In what follows, we study under what conditions all elements of the B-sub-
differential ∂B�(ζ ) at a solution are nonsingular. Given a solution ζ ∗ of the SOCCP,
we call it non-degeneracy if Fi(ζ

∗) + Gi(ζ
∗) ∈ int(Kni ) for all i ∈ {1,2, . . . , q}.
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Remark 4.1 Let ζ ∗ be a solution of the SOCCP. From [1], we know that precisely
one of the following six cases holds for each block pair (Fi(ζ ),Gi(ζ )):

Fi(ζ
∗) Gi(ζ

∗) SC

Fi(ζ
∗) ∈ int(Kni ) Gi(ζ

∗) = 0 Yes
Fi(ζ

∗) = 0 Gi(ζ
∗) ∈ int(Kni ) Yes

Fi(ζ
∗) ∈ bd+(Kni ) Gi(ζ

∗) ∈ bd+(Kni ) Yes

Fi(ζ
∗) ∈ bd+(Kni ) Gi(ζ

∗) = 0 No
Fi(ζ

∗) = 0 Gi(ζ
∗) ∈ bd+(Kni ) No

Fi(ζ
∗) = 0 Gi(ζ

∗) = 0 No

where bd+(Kni ) = bd(Kni ) \ {0}, and the last column indicates whether the strict
complementarity, i.e. Fi(ζ

∗) + Gi(ζ
∗) ∈ int(Kni ), holds or not. Particularly, when

the i-th block pair satisfies the strict complementarity, Ai(ζ
∗) and Bi(ζ

∗) have an
explicit expression as shown by Lemma 4.2 below.

Lemma 4.2 Let ζ ∗ be a solution to the SOCCP. For any i ∈ {1,2, . . . , q}, we have

(a) Ai(ζ
∗) = 0 and Bi(ζ

∗) = I if Fi(ζ
∗) = 0 and Gi(ζ

∗) ∈ int(Kni );
(b) Ai(ζ

∗) = I and Bi(ζ
∗) = 0 if Fi(ζ

∗) ∈ int(Kni ) and Gi(ζ
∗) = 0;

(c) Ai(ζ
∗) = LFi(ζ

∗)L
−1
zi (ζ

∗) and Bi(ζ
∗) = LGi(ζ

∗)L
−1
zi (ζ

∗) if Fi(ζ
∗),Gi(ζ

∗) ∈
bd+(Kni ).

Proof (a) Since Fi(ζ
∗)2 + Gi(ζ

∗)2 = Gi(ζ
∗)2 ∈ int(Kni ), by Proposition 4.2(a),

Ai(ζ
∗) = LFi(ζ

∗)L
−1
zi (ζ

∗) = 0 and Bi(ζ
∗) = LGi(ζ

∗)L
−1
zi (ζ

∗) = LGi(ζ
∗)L

−1
Gi(ζ

∗) = I.

Similarly, we can prove that part (b) holds. Next we consider part (c). We claim that
Fi(ζ

∗)2 + Gi(ζ
∗)2 ∈ int(Kni ). Suppose not, then Fi(ζ

∗)2 + Gi(ζ
∗)2 ∈ bd+(Kni ),

which by Lemma 3.3 implies that Fi1(ζ
∗)Gi1(ζ

∗) = Fi2(ζ
∗)T Gi2(ζ

∗). On the other
hand, since Fi(ζ

∗) ∈ bd+(Kni ) and Gi(ζ
∗) ∈ bd+(Kni ), we have that

Fi1(ζ
∗) = ‖Fi2(ζ

∗)‖, Gi1(ζ
∗) = ‖Gi2(ζ

∗)‖. (31)

Combining the two sides then yields that ‖Fi2(ζ
∗)‖ · ‖Gi2(ζ

∗)‖ = Fi2(ζ
∗)T Gi2(ζ

∗).
This implies that Fi2(ζ

∗) = αGi2(ζ
∗) for some α > 0. Combining with (31) then

yields Fi1(ζ
∗) = αGi1(ζ

∗). Therefore, Fi(ζ
∗) = αGi(ζ

∗). Noting that
Fi(ζ

∗)T Gi(ζ
∗) = 0 since ζ ∗ is a solution of the SOCCP, we have

Fi(ζ
∗) = Gi(ζ

∗) = 0. This clearly contradicts the given assumption. Using Propo-
sition 4.2(a), we then obtain the desired result. �

By Remark 4.1, if ζ ∗ is a nondegenerate solution of the SOCCP, then the index
sets

I := {
i ∈ {1,2, . . . , q} | Fi(ζ

∗) = 0, Gi(ζ
∗) ∈ int(Kni )

}
,

B := {
i ∈ {1,2, . . . , q} | Fi(ζ

∗) ∈ bd+(Kni ), Gi(ζ
∗) ∈ bd+(Kni )

}
, (32)

J := {
i ∈ {1,2, . . . , q} | Fi(ζ

∗) ∈ int(Kni ), Gi(ζ
∗) = 0

}
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form a partition of {1,2, . . . , q}. Thus, if n = m, by supposing that ∇G(ζ ∗) is invert-
ible and rearranging the matrices appropriately, P(ζ ∗) = ∇G(ζ ∗)−1∇F(ζ ∗) can be
rewritten as

P(ζ ∗) =
(

P(ζ ∗)I I P(ζ ∗)I B P(ζ ∗)I J
P(ζ ∗)B I P(ζ ∗)B B P(ζ ∗)B J
P(ζ ∗)J I P(ζ ∗)J B P(ζ ∗)J J

)

.

Now we are able to prove the following nonsingularity result under the assumption
that the given solution is nondegenerate.

Theorem 4.1 Let ζ ∗ be a nondegenerate solution of the SOCCP. Suppose that n = m

and ∇G(ζ ∗) is invertible. Let P(ζ ∗) = ∇G(ζ ∗)−1∇F(ζ ∗). If P(ζ ∗)I I is nonsingu-
lar and its Schur-complement, denoted by P̂ (ζ ∗)I I , in the matrix

(
P(ζ ∗)I I P(ζ ∗)I B
P(ζ ∗)B I P(ζ ∗)B B

)

has the Cartesian P -property, then all W ∈ ∂B�(ζ ∗) are nonsingular.

Proof Using (28) and noting that ∇G(ζ ∗) is invertible, it suffices to show that any
matrix C belonging to ∇G(ζ ∗)−1∇F(ζ ∗)(A(ζ ∗) − I ) + (B(ζ ∗) − I ) is invertible.
By Lemma 4.2 and Proposition 4.2(a), C can be written in the following partitioned
form

C =
( −PI I PI B(AB − IB) 0I J

−PB I PB B(AB − IB) + (BB − IB) 0B J
−PJ I PJ B(AB − IB) −IJ

)

,

where IB = diag(Ii, i ∈ B) with Ii being an ni × ni identity matrix, AB =
diag(Ai, i ∈ B) and BB = diag(Bi, i ∈ B). For simplicity, we here omit the nota-
tion ζ ∗ in the functions. It is not hard to see that these C are nonsingular if and only
if

Cr =
(−PI I PI B(AB − IB)

−PB I PB B(AB − IB) + (BB − IB)

)

is nonsingular. Showing that the matrix Cr is nonsingular is equivalent to showing
that the only solution of the following system

−Cry = −Cr

(
yI
yB

)
= 0

is the zero vector. This system can be rewritten as
{

PI I yI + PI B(IB − AB)yB = 0,

PB I yI + PB B(IB − AB)yB = −(IB − BB)yB.

Recalling that PI I is nonsingular, we obtain from the last system that
{

yI = −P −1
I I PI B(IB − AB)yB,

(PB B − PB I P −1
I I PI B)(IB − AB)yB = −(IB − BB)yB.

(33)
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Thus, showing the nonsingularity of Cr is equivalent to showing the unique solution
of the second equation is a zero vector. We proceed by contradiction. Suppose that
yB �= 0, and consider the following two cases.

Case (1): (IB − AB)yB = 0. Define JB := {i ∈ B : (yB)i �= 0}. Then JB �= ∅. More-
over,

(I − Ai(ζ
∗))(yB)i = 0 and (I − Bi(ζ

∗))(yB)i = 0 for all i ∈ JB,

where the second equality is from the second equation of (33). This means that

[(I − Ai(ζ
∗)) + (I − Bi(ζ

∗))](yB)i = 0, ∀i ∈ JB.

Note that (yB)i �= 0 for all i ∈ JB , and hence the last equation implies that the matrix

[2I − Ai(ζ
∗) − Bi(ζ

∗)] ∀i ∈ JB (34)

is singular. On the other hand, from Lemma 4.2(c), it follows that

2I − Ai(ζ
∗) − Bi(ζ

∗) = 2I − LFi(ζ
∗)L

−1
zi (ζ

∗) − LGi(ζ
∗)L

−1
zi (ζ

∗)

= [2Lzi(ζ
∗) − LFi(ζ

∗) − LGi(ζ
∗)]L−1

zi (ζ
∗)

= [L2zi (ζ
∗) − LFi(ζ

∗)+Gi(ζ
∗)]L−1

zi (ζ
∗), ∀i ∈ B. (35)

Notice that wi(ζ
∗), zi(ζ

∗) ∈ int(Kni ) for each i ∈ B, and furthermore,

4zi(ζ
∗)2 − [Fi(ζ

∗) + Gi(ζ
∗)]2 = 2wi(ζ

∗) + [Fi(ζ
∗) − Gi(ζ

∗)]2 ∈ int(Kni ).

Using Proposition 3.4 of [11] then yields that [2zi(ζ
∗) − (Fi(ζ

∗) + Gi(ζ
∗))] ∈

int(Kni ), which implies that L2zi (ζ
∗) − LFi(ζ

∗)+Gi(ζ
∗) � O . Combining with (35),

we obtain that 2I − Ai(ζ
∗) − Bi(ζ

∗) for each i ∈ J B is nonsingular. This leads to a
contradiction.

Case (2): (IB −AB)yB �= 0. Notice that Fi(ζ
∗)2 +Gi(ζ

∗)2 ∈ int(Kni ) for each i ∈ B
by Lemma 4.2(c), and hence applying Lemma 4.1(a) yields that

〈[(IB − AB)yB]i , [(BB − IB)yB]i〉 ≤ 0 for ∀i ∈ B.

This together with the second equation in (33) means that

〈[(IB − AB)yB]i , [(PB B − PB I P −1
I I PI B)(IB − AB)yB]i〉 ≤ 0, ∀i ∈ B.

Since PB B − PB I P −1
I I PI B is exactly P̂I I , using the Cartesian P -property of P̂I I ,

this is only possible if (IB − AB)yB = 0, and again we obtain a contradiction. �

From Theorem 4.1 and [19, Lemma 2.6], we readily obtain the following result.

Corollary 4.1 Suppose that ζ ∗ is a nondegenerate solution of the SOCCP with m = n

and the mappings F and G at ζ ∗ satisfy the conditions of Theorem 4.1. Then, there
exist a neighborhood N (ζ ∗) of ζ ∗ and a constant C1 > 0 such that for any ζ ∈ N (ζ ∗)
and any W ∈ ∂B�(ζ ), W is nonsingular and satisfies ‖W−1‖ ≤ C1.
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5 Properties of the Merit Function �

This section is mainly concerned with the stationary point property and the coercive-
ness of the function � . Specifically, we shall provide a weaker condition than the one
used by [6, Proposition 3] to guarantee that every stationary point of � is a solution
of the SOCCP, and show that the function � for the SOCCP (3) is coercive under
the uniform Cartesian P -property of F . For the first result, we need the following
technical lemma.

Lemma 5.1 Let ψ : R
l × R

l → R+ be given by (8). Then, for any x, y ∈ R
l ,

φ(x, y) �= 0 ⇐⇒ ∇xψ(x, y) �= 0, ∇yψ(x, y) �= 0.

Proof The equivalence is direct by Proposition 1 and Lemma 6(b) of [6]. �

Proposition 5.1 Let � : R
n → R+ be given by (10). Suppose that n = m and ∇G

is invertible. If ∇G(ζ)−1∇F(ζ ) at any ζ ∈ R
n has the Cartesian P0-property, then

every stationary point of � is a solution to the SOCCP.

Proof Since � is continuously differentiable by Proposition 2 of [6] and � is locally
Lipschitz continuous, we have by Clarke [4] that for any ζ ∈ R

n and any V ∈ ∂�(ζ )T

∇�(ζ) = V �(ζ ). (36)

Let ζ be an arbitrary stationary point of � and V be an element of ∂B�(ζ )T (⊆
∂�(ζ )T ). From (27), it follows that there exist matrices Vi ∈ ∂B�i(ζ )T such that

V = V1 × V2 × · · · × Vq.

In addition, for each Vi ∈ R
n×ni , by Proposition 3.1 there exist matrices Ai(ζ ) ∈

R
ni×ni and Bi(ζ ) ∈ R

ni×ni , as characterized by Proposition 4.2, such that

Vi = ∇Fi(ζ )(Ai(ζ ) − I ) + ∇Gi(ζ )(Bi(ζ ) − I ), i = 1,2, . . . , q.

Let A(ζ ) = diag(A1(ζ ), . . . ,Aq(ζ )) and B(ζ ) = diag(B1(ζ ), . . . ,Bq(ζ )). Combin-
ing the last three equations, it then follows that

[∇F(ζ )(A(ζ ) − I ) + ∇G(ζ)(B(ζ ) − I )]�(ζ) = 0,

which, by the invertibility of ∇G, is equivalent to
[∇G(ζ)−1∇F(ζ )(A(ζ ) − I ) + (B(ζ ) − I )

]
�(ζ) = 0. (37)

We next prove that �(ζ) = 0. Suppose not, then there is an index ν ∈ {1,2, . . . , q}
such that �ν(ζ ) = φ(Fν(ζ ),Gν(ζ )) �= 0. From Propositions 3.1 and 4.2, we notice
that

(∇xψ(Fν(ζ ),Gν(ζ ))

∇yψ(Fν(ζ ),Gν(ζ ))

)
=

(
(Aν(ζ ) − I )�ν(ζ )

(Bν(ζ ) − I )�ν(ζ )

)
.
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Therefore, applying Lemma 5.1 yields that

(Aν(ζ ) − I )�ν(ζ ) �= 0 and (Bν(ζ ) − I )�ν(ζ ) �= 0. (38)

In addition, from (37) it follows that
[∇G(ζ)−1∇F(ζ )(A(ζ ) − I )�(ζ )

]
ν
+ (Bν(ζ ) − I )�ν(ζ ) = 0.

Making the inner product with (Aν(ζ ) − I )�ν(ζ ) on both sides, we obtain
〈
(Aν(ζ ) − I )�ν(ζ ),

[∇G(ζ)−1∇F(ζ )(A(ζ ) − I )�(ζ )
]
ν

〉

+
〈
(Aν(ζ ) − I )�ν(ζ ), (Bν(ζ ) − I )�ν(ζ )

〉
= 0.

Notice that the first term on the left hand side is nonnegative by (38) and the Cartesian
P0-property of ∇G(ζ)−1∇F(ζ ), and the second term is positive by Lemma 4.1(b)
since �ν(ζ ) �= 0. This leads to a contradiction. The proof is thus completed. �

When ∇G is invertible, we know from [6] that the column monotonicity of
∇F(ζ ) and −∇G(ζ) is equivalent to ∇G(ζ)−1∇F(ζ ) � O , which clearly implies
that ∇G(ζ)−1∇F(ζ ) has the Cartesian P0-property. Thus, the stationary point con-
dition in Proposition 5.1 is weaker than the one used by [6, Proposition 3]. In addition,
for the SOCCP (3), the condition is equivalent to saying that F has the Cartesian P0-
property, which, for the NCP, will reduce to the common stationary point condition
that F is a P0-function.

The following lemma generalizes the result of [6, Lemma 9(a)], which plays a
crucial role in establishing the coerciveness of the merit function � .

Lemma 5.2 Let ψ be defined as in (8). For any sequence {(xk, yk)} ⊆ R
l × R

l , let
λk

1 ≤ λk
2 and μk

1 ≤ μk
2 denote the spectral values of xk and yk , respectively.

(a) If λk
1 → −∞ or μk

1 → −∞ as k → ∞, then ψ(xk, yk) → +∞.

(b) If {λk
1} and {μk

1} are bounded below, but λk
2 → +∞, μk

2 → +∞, and xk

‖xk‖ ◦
yk

‖yk‖ � 0 as k → ∞, then ψ(xk, yk) → +∞.

Proof Part (a) is direct by [6, Lemma 9 (a)]. We next prove part (b). Suppose that
{φ(xk, yk)} is bounded. Let zk = [(xk)2 + (yk)2]1/2 for each k. From the definition
of φ,

xk + yk = zk − φ(xk, yk), ∀ k.

Squaring two sides of the last equality then yields that

2xk ◦ yk = −2zk ◦ φ(xk, yk) + φ(xk, yk)2, ∀k. (39)

Since ‖xk‖ → +∞ and ‖yk‖ → +∞ by the given conditions, we have

lim
k→∞

zk

‖xk‖‖yk‖ = lim
k→∞

[
(xk)2

‖xk‖2‖yk‖2
+ (yk)2

‖xk‖2‖yk‖2

]1/2

= 0,
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which, together with the boundedness of {φ(xk, yk)}, implies that

lim
k→∞

−2zk ◦ φ(xk, yk) + φ(xk, yk)2

‖xk‖‖yk‖ = 0.

Using the equality (39), we obtain limk→∞ xk

‖xk‖ ◦ yk

‖yk‖ = 0, which clearly contradicts
the given assumption. Consequently, the conclusion follows. �

It should be pointed out that in Lemma 5.2(b), the condition xk

‖xk‖ ◦ yk

‖yk‖ � 0 as
k → ∞ is necessary, which can be illustrated by the following counterexample.

Example 5.1 Consider the sequences {xk} and {yk} given as follows:

xk =
(

k

−(k + 1)

0

)

and yk =
(

k

k − 1
0

)

for each k.

It is easy to verify that λk
1 = −1, μk

1 = 1 for each k, and λk
2 → +∞, μk

2 → +∞, but

xk

‖xk‖ →
( 1/

√
2

−1/
√

2
0

)

,
yk

‖yk‖ →
(1/

√
2

1/
√

2
0

)

, and
xk

‖xk‖ ◦ yk

‖yk‖ → 0.

That is, the sequences {xk} and {yk} do not satisfy the assumption xk

‖xk‖ ◦ yk

‖yk‖ � 0.
For such sequences, by a simple computation, we have

φ(xk, yk) = 1

2

⎛

⎝

√
4k2 + 2 + 4k + √

4k2 + 2 − 4k − 4k

4 − (
√

4k2 + 2 + 4k − √
4k2 + 2 − 4k)

0

⎞

⎠ .

Since

lim
k→∞

√
4k2 + 2 + 4k +

√
4k2 + 2 − 4k − 4k = 0,

lim
k→∞ 4 − (

√
4k2 + 2 + 4k −

√
4k2 + 2 − 4k) = 2,

we have limk→∞ ‖φ(xk, yk)‖ = 1, i.e. the conclusion of Lemma 5.2(b) does not hold.

We are now in a position to establish the coerciveness of � for the SOCCP (3)
under the uniform Cartesian P -property of F and the following condition.

Condition A For any sequence {ζ k} ⊆ R
n satisfying ‖ζ k‖ → +∞, if there exists an

index i ∈ {1,2, . . . , q} such that {λ1(ζ
k
i )} and {λ1(Fi(ζ

k))} are bounded below, and
λ2(ζ

k
i ), λ2(Fi(ζ

k)) → +∞, then

lim sup
k→∞

〈
ζ k
i

‖ζ k
i ‖ ,

Fi(ζ
k)

‖Fi(ζ k)‖
〉
> 0.
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Proposition 5.2 For the SOCCP (3), suppose that the mapping F has the uniform
Cartesian P -property and satisfies Condition A. Then, the merit function � is coer-
cive.

Proof We shall prove that lim‖ζ k‖→+∞ �(ζ k) = +∞. Let {ζ k} ⊆ R
n be a sequence

such that ‖ζ k‖ → +∞, where ζ k = (ζ k
1 , . . . , ζ k

q ) with ζ k
i ∈ R

ni . Define the index set

J := {
i ∈ {1,2, . . . , q} | {ζ k

i } is unbounded
}
.

Since {ζ k} is unbounded, J �= ∅. Let {ξk} be a bounded sequence with ξk =
(ξk

1 , . . . , ξ k
q ) and ξk

i ∈ R
ni for each k, where ξk

i is defined as follows:

ξk
i =

{
0 if i ∈ J ,
ζ k
i otherwise, i = 1,2, . . . , q.

By the uniform Cartesian P -property of F , there is a constant ρ > 0 such that

ρ‖ζ k − ξk‖2 ≤ max
i=1,...,m

〈
ζ k
i − ξk

i ,Fi(ζ
k) − Fi(ξ

k)
〉

= 〈
ζ k
ν ,Fν(ζ

k) − Fν(ξ
k)
〉

≤ ‖ζ k
ν ‖‖Fν(ζ

k) − Fν(ξ
k)‖ for each k, (40)

where ν is an index from {1,2, . . . , q} for which the maximum is attained and we
have, without loss of generality, assumed to be independent of k. Clearly, ν ∈ J ,
which means that {ζ k

ν } is unbounded. Consequently, there exists a subsequence, as-
sumed to be {ζ k

ν } without loss of generality, such that ‖ζ k
ν ‖ → +∞. Notice that

‖ζ k − ξk‖2 ≥ ‖ζ k
ν − ξk

ν ‖2 = ‖ζ k
ν ‖2, for each k.

Dividing the both sides of (40) by ‖ζ k
ν ‖ then yields that

ρ‖ζ k
ν ‖ ≤ ‖Fν(ζ

k) − Fν(ξ
k)‖ ≤ ‖Fν(ζ

k)‖ + ‖Fν(ξ
k)‖,

which implies ‖Fν(ζ
k)‖ → +∞ since ‖ζ k

ν ‖ → +∞ and {Fν(ξ
k)} is bounded. Thus,

‖ζ k
ν ‖ → +∞ and ‖Fν(ζ

k)‖ → +∞. (41)

If either λ1(ζ
k
ν ) → −∞ or λ1(Fν(ζ

k)) → −∞, then using Lemma 5.2(a) readily
yields that ψ(ζ k

ν ,Fν(ζ
k)) → +∞, and consequently, �(ζ k) → +∞. Otherwise, (41)

implies that {λ1(ζ
k
ν )} and {λ1(Fν(ζ

k))} are bounded below, but λ2(ζ
k
ν ) → +∞ and

λ2(Fν(ζ
k)) → +∞. Using Condition A, it then follows that

lim sup
k→∞

〈
ζ k
ν

‖ζ k
ν ‖ ,

Fν(ζ
k)

‖Fν(ζ k)‖
〉
> 0,

which in turn implies that

lim sup
k→∞

λ2

[
ζ k
ν

‖ζ k
ν ‖ ◦ Fν(ζ

k)

‖Fν(ζ k)‖
]

> 0.
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From this, we have ζ k
ν

‖ζ k
ν ‖ ◦ Fν(ζ k)

‖Fν(ζ k)‖ � 0. This shows that the sequences {ζ k
ν } and

{Fν(ζ
k)} satisfy the conditions of Lemma 5.2(b), and therefore �(ζ k) → +∞. �

When n1 = · · · = nq = 1, Condition A automatically holds and the uniform Carte-
sian P -property of F is equivalent to F being a uniform P -function. Thus, Propo-
sition 5.2 recovers the result of the FB merit function for the NCP; see [12, Theo-
rem 4.2].

6 A Damped Gauss-Newton Method

Based on the previous discussions, we in this section describe a damped Gauss-
Newton method for the SOCCP by applying the generalized Newton method for the
semismooth system (9). The algorithm is similar to the one proposed by Sun and
Womersley [22] for box constrained variational inequality problem.

Algorithm 6.1

Step 0. Choose ζ 0 ∈ R
n, ρ ∈ (0,1), σ ∈ (0,1/2) and p1,p2 > 0. Set k := 0.

Step 1. If ‖∇�(ζ k)‖ = 0, then stop.
Step 2. Select an element Wk ∈ ∂B�(ζ k). Let dk be the solution of the linear system

(
WT

k Wk + p1‖�(ζ k)‖p2I
)
d = −∇�(ζ k). (42)

Step 3. Let lk be the smallest nonnegative integer l such that

�(ζ k + ρldk) ≤ �(ζ k) + σρl∇�(ζ k)T dk. (43)

Step 4. Set ζ k+1 := ζ k + ρlkdk , k := k + 1 and go to Step 1.

Note that WT
k Wk + p1‖�(ζ k)‖p2I is positive definite if ζ k is not a solution of the

SOCCP, and hence ∇�(ζ k)T dk < 0. This means that Algorithm 6.1 is well defined
at the kth iteration. In addition, if n = m and Wk is nonsingular, then WT

k Wk � O

and the solution of (42) with p1 = 0 yields a generalized Newton direction dk =
−W−1

k �(ζ k).
For the above damped Gauss-Newton method, along the lines of the proof of [10,

Theorem 15], we can obtain the following global convergence result.

Theorem 6.1 Suppose that {ζ k} is a sequence generated by Algorithm 6.1. Then,
each accumulation point ζ ∗ of {ζ k} is a stationary point of � .

Using Proposition 4.1 and Corollary 4.1 and the proof of [22, Theorem 7.2], we
can prove the following superlinear (quadratic) convergence result.

Theorem 6.2 Suppose that {ζ k} is a sequence generated by Algorithm 6.1 and ζ ∗ is
an accumulation point of {ζ k}. If ζ ∗ is nondegenerate and F and G at ζ ∗ satisfy the
conditions of Theorem 4.1, then the sequence {ζ k} converges to ζ ∗ Q-superlinearly.
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Furthermore, if F ′ and G′ are Lipschitz continuous at ζ ∗ and p2 ≥ 1, then the con-
vergence is Q-quadratic.

Corollary 6.1 For the SOCCP (3), if F has the uniform Cartesian P -property and
satisfies Condition A, then the sequence {ζ k} given by Algorithm 6.1 converges to the
unique solution ζ ∗. If, in addition, ζ ∗ is nondegenerate, ∇F(ζ ∗)I I is nonsingular
and

(∇F(ζ ∗)I I ∇F(ζ ∗)I B
∇F(ζ ∗)B I ∇F(ζ ∗)B B

)
(44)

has the Cartesian P -property, then {ζ k} converges to ζ ∗ superlinearly. If F ′ is also
locally Lipschitz continuous around ζ ∗ and p2 ≥ 1, then the convergence is Q-
quadratic.

Proof We first show that the SOCCP (3) has the unique solution ζ ∗. If not, let ξ∗ �= ζ ∗
be another solution of the SOCCP (3). From the uniform Cartesian P -property of F ,
there is a positive constant ρ such that

〈F(ζ ∗) − F(ξ∗), ζ ∗ − ξ∗〉 ≥ ρ‖ζ ∗ − ξ∗‖2 > 0.

On the other hand, since F(ζ ∗)T ζ ∗ = 0, F(ξ∗)T ξ∗ = 0 and ζ ∗, ξ∗ ∈ K, it follows
that

〈F(ζ ∗) − F(ξ∗), ζ ∗ − ξ∗〉 = −F(ζ ∗)T ξ∗ − F(ξ∗)T ζ ∗ ≤ 0.

This gives a contradiction. Consequently, the SOCCP (3) has the unique solution
ζ ∗. Since ζ k ⊆ {ζ ∈ R

n | �(ζ) ≤ �(ζ 0)}, by Proposition 5.2, the sequence {ζ k} is
bounded. Using Theorem 6.1, we can prove that the sequence {ζ k} converges to ζ ∗.

By Sect. 2 of [17], if ∇F has the Cartesian P -property, then its principal block
matrix in (44) also has the Cartesian P -property. If, in addition, ∇F(ζ ∗)I I is nonsin-
gular, then its Schur-complement in the matrix of (44) has the Cartesian P -property
by Proposition 2.1 of [17]. Thus, the conditions of Theorem 4.1 are satisfied, and the
second part of the conclusion is direct by Theorem 6.2. �

7 Numerical Results

In this section, we report the numerical results with Algorithm 6.1 solving the linear
SOCP, i.e. the SOCP (4) with g(x) = cT x for c ∈ R

m. We used Algorithm 6.1 to solve
the KKT system of (4), which is equivalent to the SOCCP with F and G given by (5).
The vector x̂ in F was computed as a solution of minx ‖Ax − b‖ by Matlab’s least
square solver, and F and G were evaluated via the Cholesky factorization of AAT .

All experiments were done with a PC of 2.8 GHz CPU and 512MB memory. The
computer codes were all written in Matlab 6.5. We replaced the monotone line search
of Algorithm 6.1 with a nonmonotone version as described by Zhang and Hager [25],
i.e., we computed the smallest nonnegative integer l such that

�(ζ k + ρldk) ≤ Wk + σρl∇�(ζ k)T dk
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Table 1 Numerical results with Algorithm 6.1 and SeDuMi for the SOCPs

Problem Dimension Gauss Newton method SeDuMi

p m �(ζk) Iter NF cT xk Iter cT xk

nb 123 2383 8.42e–7 34 71 −5.070410e–2 21 −5.070310e–2

nb_L1 915 3176 5.70e–7 109 122 −1.301227e+1 18 −1.301227e+1

nb_L2_bessel 123 2641 2.04e–10 9 14 −1.025697e–1 16 −1.025695e–1

where

Wk = (ηk−1Qk−1 Wk−1 + �(ζ k))/Qk

with Qk = ηk−1Qk−1 + 1. During the tests, we used W0 = �(ζ 0), Q0 = 1 and
ηk ≡ 0.85 for the line search, and ρ = 0.5 and σ = 1.0e − 4 for Algorithm 6.1.
In addition, we adopted a pure Gauss-Newton direction dk = −W−1

k �(ζ k), which
is in fact a generalized Newton direction. We started the algorithm with ζ 0 = 0 and
solved the linear system involved in the algorithm by Matlab’s linear equation solver.
The algorithm was stopped whenever one of the following conditions was satisfied:
(1) max{�(ζ k), |F(ζ k)T G(ζ k)|} ≤ 10−6; (2) the steplength is less than 10−15; (3) the
number of iteration is over than 150.

We have solved several SOCPs from the DIMACS library [18] and compared the
numerical performance of Algorithm 6.1 with SeDuMi [23], a successful interior
point method software for the SOCP and the semidefinite programming. Numerical
results are listed in Table 1, where Iter records the number of iterations, NF repre-
sents the number of function evaluations required by the algorithm for solving each
problem, �(ζ k) and cT xk denote the value of �(ζ) and cT x at the final iteration,
respectively.

From Table 1, we see that Algorithm 6.1 yielded a solution with favorable accuracy
for all test problems within 110 iterations, and needed less iterations for the problem
“nb_L2_bessel”. For the more difficult problems “nb” and “nb_L1”, Algorithm 6.1 is
now not comparable with the sophisticated software SeDuMi in terms of the number
of iterations. We observe that the two problems do not satisfy the nondegenerate
condition at the optimal solution. It should be pointed out that our code is crude and
does not exploit any preprocessing strategy on the problems.

8 Conclusions

The FB function φ(x, y) is an important SOC complementarity function, by which
the SOCCP can be reformulated as a semismooth system involving the operator �.
In this paper, we have characterized the B-subdifferential of φ at a general point and
presented an estimate for the B-subdifferential of � at any point. A condition was
also given to guarantee every element of the B-subdifferential of � at a solution to
be nonsingular. Although the condition is a little stringent, this is the first article,
to our best knowledge, to discover the B-subdifferential of FB function associated
with SOCs. In addition, we have established the coerciveness of the merit function
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� and provided a weaker condition than [6] for each stationary point of � to be
a solution of the SOCCP. With these results, a damped Gauss-Newton method was
proposed and the global and local convergence results were obtained under some
suitable conditions.
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