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and the KKT system. Understanding these relationships will help us see projection; tangent cone;
the connection and difference between the SOC and its PSD reformulation normal cone; KKT system
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1. Introduction

The second-order cone (SOC) in IR", also called the Lorentz cone, is defined as
K" :={(x1, %) e Rx R"™ [ x1 > [|x2]|} (1)
where || - || denotes the Euclidean norm. If n = 1, K" is the set of nonnegative reals IR . The positive

semidefinite matrix cone (PSD cone), denoted by S%, is the collection of all symmetric positive
semidefinite matrices in R"*", i.e.

St X e R™"|X € S"and X > O}

{XGIR”X”|X=XT and v Xv > 0 VVEIR”}.

It is well known that SOC and positive semidefinite matrix cone both belong to the category of
symmetric cones,[1] which are unified under Euclidean Jordan algebra.

In [2], for each vector x = (x1,%) € R x R""!, an arrow-shaped matrix L, (alternatively called
an arrow matrix and denoted by Arw(x)) is defined as

T
_|x Xy
L= [xz xIIn—li| ' @
It can be verified that there is a close relationship between the SOC and the PSD cone as below:
X1 xT
xe K" = Ly:= 2 | >0. 3)
X2 X1lp
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Hence, a second-order cone program (SOCP) can be recast as a special semidefinite program (SDP).
In the light of this, it seems that we just need to focus on SDP. Nevertheless, this reformulation has
some disadvantages. For example, Ref. [3] indicates that

Solving SOCPs via SDP is not a good idea, however. Interior-point methods that solve the SOCP directly have a

much better worst-case complexity than an SDP method .... The difference between these numbers is significant
if the dimensions of the second-order constraints are large.

This comment mainly concerns the algorithmic aspects; see [2,3] for more information.

In fact, ‘reformulation’ is usually the main idea behind many approaches to study various opti-
mization problems and it is necessary to discuss the relationship between the primal problem and
the transformed problem. For example, for complementarity problems (or variational inequality
problems), we can reformulate these problems to work on a minimization optimization problem
via merit functions (or gap functions). The properties of merit functions ensure the solution to
complementarity problems is the same as the global optimal solution to the minimization problem.
Nonetheless, finding a global optimal solution is very difficult. Thus, we turn to study the connection
between the solution to complementarity problems and the stationary points of the transformed
optimization problem. Similarly, for mathematical programming with complementarity constraints
(MPCCQ), the ordinary KKT conditions do not hold because the standard constraint qualification
fails to hold (due to the existence of complementarity constraints). One therefore considers to recast
MPCC to other types of optimization problems with different approaches. These different approaches
also ensure the solution set of MPCC is the same to that of the transformed optimization problems.
But the KKT conditions for these transformed optimization problems are different, which are the
source of various concepts of stationary points for MPCC, such as S-, M- and C-stationary points.

A similar question arises from SOCP and its SDP reformulation. In view of the above discussions,
it could be interesting to study their relation from theoretical and numerical aspects. As mentioned
above, Ref. [3] mainly deals with the SOCP and its SDP reformulation from the perspective of
algorithm. The study on the relationship between SOCP and its corresponding SDP from theoretical
aspect is rare. Sim and Zhao [4] discuss the relation between SOCP and its SDP counterpart from the
perspective of duality theory. There are already some known relations between the SOC and the PSD
cone; for instance,

(a) x € int K" <= L, € intS’;
(b)) x =0 < L, =0;
(c) x e bd K"\ {0} <= Ly € bd ST\ {O}.

Besides the interior, boundary point set, we know that for an optimization problem, some other
topological structures, such as tangent cones, normal cones, projections and KKT systems, play very
important roles. One may wonder whether there exists an analogous relationship between the SOC
and the PSD cone. We will answer it in this paper. In particular, by comparing the expressions of
distance, projection, tangent cone, normal cone and the KKT system between the SOC and the PSD
cone, we will know more about the differences between SOCP and its SDP reformulation.

2. Preliminaries

In this section, we introduce some background materials that will be used in subsequent analysis. In
the space of matrices, if we equip it with the trace inner product and the Frobenius norm

(X, V)p = tXTY), IXlIr = VX X)p

then, for any X € S", its (repeated) eigenvalues Ay, Xs,...,A, are real and it admits a spectral
decomposition of the form:

X = Pdiag[A, Az, .., An] PT (4)
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for some P € O. Here, O denotes the set of orthogonal P € R"*", i.e. pT = p—1,

The above factorization (4) is the well-known spectral decomposition (eigenvalue decomposition)
in matrix analysis.[5] There is a similar spectral decomposition associated with /C". To see this, we
first introduce the so-called Jordan product. For any x = (x1,x2) € R X R and y = (y1,)2) €
R x R"!, their Jordan product [1] is defined by

Xoy:= ((x,y),y1x2 + x1yz) .

Since the Jordan product, unlike scalar or matrix multiplication, is not associative, this is a main
source on complication in the analysis of second-order cone complementarity problem (SOCCP).
The identity element under this product is e := (1,0,...,0)” € R". It can be verified that the arrow
matrix L is a linear mapping from IR” to IR” given by L,y = xoy. Foreach x = (x1,x,) € RxR""!,
x admits a spectral decomposition [1,6-8] associated with " in the form of

X = Al(x)u)(cl) + A (x)u)(cz), (5)

where A1 (x), A2(x) and u,(cl), u}(cz) are the spectral values and the corresponding spectral vectors of x,

respectively, given by

, ; 1 1
A(x) = —_ 1) 0 ._ ) -
)"l(-x) =X+ ( 1) ”-xZH and ux - ) <( _ 1)1)_62) y 1 1) 2) (6)
with X, = x,/||x2]| if x2 # 0, and otherwise X, being any vector in R"~! with ||X,]| = 1. When

Xy # 0, the spectral decomposition is unique. The following lemma states the relation between the
spectral decomposition of x and the eigenvalue decomposition of L.

Lemma 2.1: Letx = (x1,x2) € R x R"™! have the spectral decomposition given as in (5)—(6). Then,
Ly has the eigenvalue decomposition:

Ly = Pdiag [A1(x), 22(x), X1, ..., x1] pT

where
P= [«/Eu;“ «/Eu,(cz) u® u,(cn)] € R™"
is an orthogonal matrix, and u? fori = 3,...,n have the form of (0,u;) with us, ..., u, being any
unit vectors in R"~! that span the linear subspace orthogonal to x;.
Proof: Please refer to [7-9]. O

From Lemma 2.1, it is not hard to calculate the inverse of L, whenever it exists:

. 1 X1 d —sz
= et (x 1 7
* det (x) | —x2 ( )I + —xx] )
X1 X1

where det (x) := xf — ||x2]|? denotes the determinant of x.

Throughout the whole paper, we use I1¢( - ) to denote the projection mapping onto a closed and
convex set C. In addition, for ¢ € R, («)+ := max{x,0} and (@) := min{«, 0}. Given a nonempty
subset A in R”, we define AAT := {uuT|u € Ayand Ly := {Ly| u € A}, respectively. We denote A"
the set of all arrow-shaped matrices and A’} the set of all positive semidefinite arrow matrices, i.e.

A":={L, e R"™"|y e R"} and A’} :={L, > O|y e R"}.
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Lemma 2.2: Letx = (x1,x;) € R x R""! have the spectral decomposition given as in (5)-(6). Then,
the following hold:

(@) () = (1 — lxalDrul) + G+ llxlhiul?,

(1 = llx2lD+ 0 0
(b) Msn(Ly) = P 0 (x1 4 %21+ 0 PT where P is an orthogonal
0 0 (x1)+In—2
matrix of Ly.
Proof: Please see [9,10] for a proof. O

3. Relation on distance and projection

In this section, we show the relation on distance and projection associated with the SOC and the PSD
cone. We begin with some explanation for why we need to do so. First, let us consider the projection
of x over K. In the light of the relationship (3) between the SOC and the PSD cone, one may ask ‘Can
we obtain the expression of projection ITxr (x) by using [1s (Ly), the projection of Ly over S} ?". In
other words,

Is Tyn(x) = L~} (Hsi(Lx)) or Mgy (Ly) = L (Micn(x)) right ? (8)
Here, the operator L, defined as L(x) := Ly, is a single-point mapping between R” and §", and L™}

is the inverse mapping of L, which can be achieved as in (7). To see this, take x = (1,2,0) € R; then,
applying Lemma 2.1 yields

119 1 _1 9
NS Uaollf e
Ly = _x/_i TE 0 030 «/_E TE 0
0 0 001f]l o 01
Hence, by Lemma 2.2, we have
L L Lo L 303
TR [N LR N B
Neld=| -7 5 0 030 5 HZO0|=|330]
0 0 1 001 0 0 1 001

which is not a form of the arrow matrix as shown in (2) because the diagonal entries are not equal.
This means that we cannot seek a vector y such that L, = T1 s (Ly). Note that

[« I[N

]
1

Min(x) =(1+2)= | 1] =
2 \o

which gives

L (Mg (x)) =

(@R N][SV N[OV
Nw O O

3

2

3

2

0
Hence, Tjcn(x) # L7 (IMgn (Lx)) and Tgn (Ly) #
dist(Ly, 83_) are also different since

L(ITxn(x)). The distances dist(x, ") and

S

dist(x, K" = ||x — [icn ()] = |l %
0
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and
dist(Ly, SY) = [[Ly — Mgz (L) |l =
The failure of the above approach comes from the fact that the PSD cone is much larger, i.e. there
exists a positive semidefinite matrix that is not arrow shaped. Consequently, we may ask whether (8)

holds if we restrict the positive semidefinite matrices to arrow-shaped matrices. Still for x = (1, 2,0),
by the expression given as in Theorem 3.1 below, we know that

May (L) =

[«RGIEN SN
[«RGIEN STEN]
aN O O

which implies L~ (TT ar(Ly) = (£,1,0). To sum up, My (x) # L™H(TT An (L)) and Tan (Ly) #
L(Ixn(x)). All the above observations and discussions lead us to further explore some relationship,
other than (3), between the SOC and the PSD cone.

Lemma 3.1:  The problem of finding the projection of Ly onto A} :

min ||Ly — Ly”F

st. Lye Al ©)
is equivalent to the following optimization problem:
min ”LX—)/”F (10)

st. yeKm

Precisely, Ly is an optimal solution to (9) if and only if y is an optimal solution to (10).
Proof: The result follows from the facts that Ly — L, = Ly_yand L, € A’} <= y e K" O

The result of Lemma 3.1 will help us find the expressions of the distance and projection of x onto
K", Ly to S% and A’}. In particular, the distance of x onto K" and Ly to S¥ can be obtained using
their expression of the projection given in Lemma 2.2.

Theorem 3.1: Let x = (x1,x2) € R x R""! have the spectral decomposition given as in (5)—(6).
Then, the following holds:

(@) diste k" = /10 — Il + 3G + el
(b) dist(Ly,SY) = \/(Xl — 2D + (1 + lIx20D + (n — 2)(x1)%;

Ly if x1 > [lxll,
O it x1 < —=2|x,
© Myao=1 0 o tasTilel
1 2 2 | i 2
2z (31 + 2lIx21) [9—62 In—li| it =2l <x < [xl,

. 2 2
(@) dist(Le, AT) = /25 (51— Ixall) + 225 (61 + 2lal) -

Proof: (a) From Lemma 2.2, we know that x = (x; — ||x2||)u§c1) + (x1 + ||x2||)u§2) and IMxn(x) =
G — a4 ul? + G + xal)+u?). Thus, it is clear to see that

dist(x, ™) [l — Tycn () ||

H 1 — I lD—ul + (e + ol —ul®

|

1 , 1 5
= 53— 2D + S+ x>
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where the last step is derived from || uP | = 2/2fori=1,2and (", u?) = 0.

(b) By Lemma 2.1 and Lemma 2.2(b),

x1 — |2l 0 0
L,=P 0 x14|xl o |PT
0 0 Xlp—2
and
(1 = Ilx2lD+ 0 0 .
Hgn(Ly) =P 0 (x1 + llx2D+ 0 P
0 0 (x1)+In—2
Combining the above yields
(1 = [le2ll) - 0 0
dist(Ly, S}) = 0 (a1 + lx2lD) - 0
0 0 (x1)~In—2

Jer =i + G+ Ixl? + (- 26

(c) Tofind IT At (Lx), we need to solve the optimization problem (9). From Lemma 3.1, it is equivalent
to look into problem (10). Thus, we first compute

“foy”F

= \/(xl —y1— %2 = »20D? + x1 — y1 + %2 — y2D? + (n — 2)(x1 — y1)?

= JnGe =y + 2% -yl

2
= ﬁ\/(x1 —yn)?+ ;sz - »nl?

[2 [2
=% =1/ =¥
n n

2

=Jn | (x1—y)?+

Now, we denote

2 2
y = ()’b\/;}’z) = (yy) =Ty where y:= \/;andl“ = [(1) VOI]

Then, y; > |[ly2|l if and only if y; > %Hy;”; that is, y € K" if and only if y' € Lg with cotd =

1

y b
where Lo 1= {x = (x1,%) € R x R" x| > |lx2]| cot 8}; see [11]. We therefore conclude that the
problem (10) is indeed equivalent to the following optimization problem:

min \/(xl -y + H\/%xz -y

s.t. y’ € Ly.

2

(11)
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The optimal solution to the problem (11) is [Tz, (x'), the projection of x” := (x1, yx2) = I'x onto
Lg, which according to [11, Theorems 3.1 and 3.2] is expressed by

Mg, (x)
1 , , 1 1 , , 1
= m(xl — [Ix; |l cot 0) <—5c§ cot@) + m(xl + [lx; [l tan 6) 4 <5c£ tan@)
v 1 1 1
=11y — ¢ ||x2||)+< % >+ Tty S+ 2+ (Vﬁ_@)'

Hence, the optimal solution to (10) is

y=I"1 = r—lnﬁﬂ (x)=T"lg,(I'x)

1+y2 (1 = %2 lD+ + 552G + 2%z 0D+

1+y

hr G = Il + TG+ V2l ) %

X it x> ||x2,
0 if x1 < —Z|xl|,

1 (12)
l+y 7 (%1 4+ ¥l ) ( 2) if —2lxll <x < [xll.

By Lemma 3.1, the optimal solution to (9) is L, i.e.

Lx if X1

lle2 >
0] if X1
1 =T

—2xa,
X

2 . 2
x X _ if —Z|x| < x1 < ||x2].
1+ > (x1 4 2llx2l) |:x2 In—li| Sl < x1 < [[x2l

IN 1V

Ly = HA’}r (Ly) =

(d) In view of the expression (12), we can compute the distance dist(Ly, A" ) as follows.
p p T

dist(Ly, A:l_) = lLx = Lyllr = [ILx—yllF

— 2 2
4 1 2
=(n|x — - - +
( g yz(x1 b2l = % (x1+v ||xz||)+}

1
2

1 1 5 2
+2ﬂnn+1+ygm—nmm+—l+ygm+ynmm+])
=2 = Pols — —"— (st 2pot) |

= \n|xy — X1 — || X — X — || X
T 2D+ =275 n2+

ol "o — o — " (st 2pat) 1)
X X1 — || X — X — || X
Il + s 2D+ = o Ll N

[ 2 2 2
=(n_n+2(x1 lx2l)— + +2(x1+glllel>j

+2|-

1
(1 = llxe2lD- +

i ) TY
X — || X
nt2 nt2 Ut
2 ) 4= (ot 2l )
= X1 — ||X X —[|X N
n—+2 ! 2l - n-+2 ! n 2 _
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where the third equation comes from the facts that

2 n 2
x) = (1 — [x%2) + X1+ ;IIXzII

n-+2 n-+2
and
N " — ol + —— (x1 + il
X = — X1 — || X X — || X .
2 n+2 1 2 n+2 1 n 2

Theorem 3.2: Forany x = (x1,x2) € R x R"L,
dist(x, ") < dist(Ly, SY) < dist(Ly, A).

In particular, for n = 2,

NG

2
dist(x, £?) = - dist(Ly, S7) and dist(Ly, S3) = dist(Ly, AZ).

Proof: The first inequality follows from the formula of distance given as in Theorem 3.1; the second
inequality comes from the fact that A"} is a subset of S, i.e. AT, C S¥.
For n = 2, by part(d) of Theorem 3.1, we have

dist(Le, A2) = /(1 — 2l + Ge1 + 22

Combining this and Theorem 3.1(a)-(b) yields dist(x, K?) = 4 dist(Lx,Si) and dist(Lx,Si) =
dist(Ly, A%). O
Note that A7 is strictly included in 8%, i.e. A7 G 87, because in the arrow matrix, the diagonal
element is the same, but positive semidefinite matrix does not impose this requirement. Thus,
dist(Ly, Aﬁ_) < dist(Ly, Si). In Theorem 3.2, we further show that the equality holds.
In view of Theorem 3.2, a natural question arises here: Are these distances equivalent? Recall that
for two functions g, h : R” — IR, we say that they are equivalent if there exist 71, 72 > 0 such that

11¢(x) < h(x) < 1og(x), Vx e R"

For instance, 1-norm and 2-norm are equivalent in this sense. To answer this question, we need the
following lemma.

Lemma 3.2: Fora,b € R, the following inequality holds:

a+b\’ 1., o,
( ) )Sz(d_—i‘b_).

Proof: We assume without loss of generality that a < b. Then, we consider the following four cases
to proceed the proof.
Case 1: Fora > 0 and b > 0, we have

a+b\’ _ 1., o,
( > )_O_E(a_—i-b_).
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Case 2: Fora < 0and b < 0, we have

a+b\? a+b\* a2+ 1,
= < - - b2 .
(2)_ (2)‘ 2 y (4= +0)

Case 3: Fora < 0,b > 0 and a < —b, there implies (a + b)/2 < 0. Then, we have

b\’ b\’ a+b*+2ab _al+b 1, 1
a+ _ a+ =a+ +a§a+ §—a2=—(a2_+b2_),
2 2 4 4 2 2
where the first inequality comes from the fact that ab < 0 and the second inequality follows from the
fact that > > b2 duetoa < —b < 0.
Case 4:Fora < 0,b > 0and a > —b, we have

a+b)? Lo 1o 12
=0<_-a" =< bZ).
( 2 ) =@ =5l T

|
Theorem 3.3:  The distances dist(x, "), dist(Ly, SY) and dist(Ly, A"} ) are all equivalent in the sense

of

dist(x, ") < dist(Ly, SY) < Jndist(x, K" (13)
and
2
dist(Ly, S") < dist(Ly, A") </ J:z dist(Ly, ). (14)
n

Proof: (i) The key part to prove inequality (13) is to look into dist?(Ly, S"), which are computed
as below:

dist*(Ly, S%)
= (x1 — [x2D2 + Ga + %D + (n = 2)(x1)%

(1 — llxall) + (x1 + ||xz||)>2
2 _

= (a = 2D + @ + xl? + (1= 2) (
-2
< (a1 = D2 + G+ )2 + == (6 = a2 + G + Ix)?)

= (L0 — 1D + e + lal)?
=n| & =D + 6+ lIxbh

= ndist?(x, "),
where the inequality is due to Lemma 3.2. Hence, we achieve
dist(x, ") < dist(Ly,ST) < Vndist(x, ),

which indicates that the distance between x to K" and Ly to S is equivalent.
(ii) It remains to show the equivalence between dist(Ly, S) and dist(Ly, A"}). To proceed, we need
to consider the following cases.

Case 1: For x1 > ||lx2]|, dist(Ly, ST) = 0 = dist(Lx, A}).
Case 2: For x; < —||x2||, dist(Ly, A"}) = ,/nx% + 2||x2[1? = dist(Ly, S).

Case 3: For 0 < xy < [lxall, dist(Ly, A) = /25 |y — 2 l| and dist(Le, ST) = x1 — [lx2]ll.
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Case 4: For —%||x2|| < x; < 0,dist?(Ly, AY) = nz_fz(xl — |lx21)? and diStz(Lx,S.rf_) = (x1— Ix2lD*+
(n— 2)x%. Then,

2n
n+2

2n

2 .2
) (n —2)xy > dist™(Ly, A}).

(1 — Ixal))® +

2n
dist?(Ly, S") =
ist”(Ly +) nt2

Case 5: For — ||| < x1 < =%,

dist*(Ly, A") = nxi + 2|lx2]|* and dist*(Ly, ST) = (x1 — IIx2])* + (n — 2)x7.

. n 2n . n
dist(Ly, A7) <,/ 12 dist(Ly, SY)

2 2 2n 2 2
= nx] +2lx2ll” < —— | (x1 — llx2D)” + (n — 2)x7

Note that

n—+2
& Al|x|[nx1 + lIxall] < n(n — )x7.

Since x1 < —% |22 ||, it implies that

—4

2 n
4flxzll[nxr + llx2]l] < —4llx2]|® < 4 "

2 2 ? 2
w2l = e —4) (= lxall ) < n(n— ),

where the second inequality is due to the fact %‘ > —1forall n > 2. Hence,

. [ 2n
dist(Ly, AT}) < S dist(Lx, S),

which is the desired result. (]

The following example demonstrates that the inequalities (13) and (14) in Theorem 3.3 may be
strict.

Example 3.1: Consider x = (— 1,2,0,...,0) with n > 4. Then,
N —’
n—2

dist(x, ") < dist(Ly, SY) < J/ndist(x, ™)

and
2
dist(Ly, S") < dist(Ly, A") < ,/% dist(Ly, ™).
n

To see this, from Theorem 3.1, we know that

9
dist(x, ") = \/;, dist(Ly,SY) = v/n+7, dist(Ly, A")) = v/n+8. (15)

9 9
Gem7ey%

[ 2
Vn+7<a/n+8< %«/ﬂ—i—%
n

Note that for n > 4, we have

and
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which says
dist(x, K") < dist(Ly, ST) < +/ndist(x, "),

and

2
dist(Ly, S") < dist(Ly, A") < —:2 dist(Ly, S™).
n

From this example, we see that the distance related to SOC is independent of #; nonetheless, if we
treat it as semidefinite matrix, the distance is dependent on #; see (15).

4. Relation on tangent cone

As shown earlier, all the distances introduced in Section 2 are equivalent. This allows us to study the
relation on tangent cone because the tangent cone can be achieved by distance function.[12] More
specifically, for a convex set C, there is

Te(x) = {h|dist(x + th,C) = o(t), t > 0}.

In the light of this, this section is devoted to exploring the relation on tangent cones.
Theorem 4.1:  Let x = (x1,x2) € R x R""! belong to K", i.e. x € K". Then,

K" if x=0,
(a) Txn(x) =4 R” if x € int ",
{(d1,dy) € R"|d]x; — x;dy <0} if x € bdK"\{0}.
St if x=0,
(b) Tsn(Ly =1 " if x eintK",
+

{H e 8" " THu®D > o} if x €bdK™\{0).

() Tar(Ly) = Lyl h € Tin(0)} = Ty (L) N A",

Proof: The formulae of Txn(x) and Ts, (Ly) follow from the results given in [13,14]. To verify
part(c), we know that

Tan (Ly) = {H € 8" | Lx + t,Hy € Al ty — ot,H, — H}.
Due to t,H, € A"l — Ly, Hy, is also an arrow matrix. This means H,, = Ly, for some h, € R". In
addition, H, — H implies H = Ly, for some h with h, — h. Thus, we obtain that L, + t,H, =
Lyit,n, € A’} which is equivalent to saying x + t,h, € K", i.e. h € Tyn(x). Moreover, since
At = 8T N A" and 8, A" cannot be separated, it yields
Tan (L) = Ty (L) N Tan(Ly) = Ty (L) N A"

by [15, Theorem 6.42], where the last step comes from the fact that A" is a subspace. O
The relation between Ticn (x) and Tsn (Lx) can be also characterized using their expression.
Theorem 4.2: Letx = (x1,%) € R x R""! belong to K", i.e. x € K". Then,

Lryn(x) = Tsn (Lx) N A™. (16)

Proof: We proceed the proof by discussing the following three cases.
Case 1: For x € intK", we have Ly € intS’. Thus, Txcn(x) = R" and Tsn(Ly) = S™. This implies

L1jnx) = Lrn = A"=8"NA" = TSi(Lx) N A"
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Case 2: For x = 0, we have Txn(x) = K" and Tsn(Ly) = S%.Since y € K" ifand onlyif L, € SY,
Lrynxy = Ln = Ai = S_"l_ NA" = Ts_r'l_ (Ly) N A"

Case 3: For x € bd K"\{0}, take d € Ticn(x). Then,

1 r\[d 4] (1 1 <
W =1 (=) [ 2] (%) = 5@ - =0

-x) 2
where the inequality comes from d € Ticn(x). Hence, Ly € TSi (Lx) by Theorem 4.1, i.e. LT, (x) C

TS_T_ (Lx) N A". The converse inclusion can be proved by a similar argument.

The restriction to A" in (16) is required, which is illustrated by the following example. Taking
x = (1,1) € R?, we have

T2 (x) = {d = (d1,d2) € R*| —d; +dp < 0}
and
Ts: (Ly) = {H e S* | M HU® > o} = {H € 8? |Hyy — 2H, + Hy, > 0}.

Hence, L1, (x) does not equal Tsjtr (Ly).

5. Relation on normal cone

In this section, we continue to explore the relation on normal cone between the SOC and its PSD
reformulation. To this end, we first write out the expressions of Njcn(x), Nsi (Ly), and N At (Ly),
respectively.

Theorem 5.1:  Let x = (x1,x2) € R x R""! belong to K", i.e. x € K". Then,
—K" if x=0,

(@) Nin(x) = {0} if xeintk",
Ry(—x1,x) if x € bdK"\{0}.
—8% if x=0,
{0} if x €intK",

(b) Ngn(Ly) = 1 3T
{(x|: - _2Ti| oth} if x € bd £"\{0}.
—X2 xez

(©)  Nay(Ly) = Nsy (Ly) + (A", where

(At ={HeS"[tr(H) =0, H,;=0,i=2,...,n}.

Proof: Parts (a) and (b) follow from [13] and [14]. For Part (c), since A", = S N A", it follows
from [15, Theorem 6.42] that

NAz_(Lx) = NS_’]_ (Lx) + Nan(Ly).
Because A" is a subspace, we know that Nan(Ly) = (A™)*, where
(At ={HeS"|(H,L)=0,Vye R"} = {HeS"|tr(H) =0, H; =0,i=2,...,n}.

O

The relation between N, A (Lx) and N, sn(Ly) is already described in Theorem 5.1. Next, we further
describe the relation between Njcn (x) and Ngn (Ly).



OPTIMIZATION (&) 2127

Theorem 5.2: Let x = (x1,x2) € R x R"™! belong to K", i.e. x € K". Then, for x € int K" and
x € bd K™\{0},

N1 (Lg) = =N ()Nien ()"

Proof: Case 1: For x € int K", Nxn(x) = {0} and Ngn(Ly) = {O}. The desired result holds in this
case.
Case 2: For x € bd K"\{0}, it follows from Theorem 5.1 that

NSi (Ly) =

|
e e,

Q

|
—

[\})(I
Al J
Gl
I

I
e e,
Q

|
==
38
—
—
Ma
|
=1
N
N—

o< o} . a7
Since Nxcn(x) = {y| y = Bx, B < 0} with x := (x1, —x2),

~Nicn ()N (0 = {=p*337| g < 0} = {—(ﬂxl)z (_1,-62> (1, —%)) ‘ﬂ < 0}. (18)

Comparing with (17) and (18) yields the desired result. [l
From Theorem 5.1(c), we know that NAn+ (Lx) D Nsn (Ly) since O € (A™)+. Forx = 0, Nicn(x) =
—K" and Ngn (Lx) = —S&'. In this case, Nsn (Ly) and —Njycn (x)Nicn (x)T do not coincide, i.e.

Theorem 5.2 fails when x = 0. Below, we give the algebraic expressions for N an (Lx) and Nsn (L) as
n = 2, from which we can see the difference between them more clearly.

Theorem 5.3:  For n = 2, the explicit expressions osti (Ly) and NAz+ (Ly) are as below:

|:Z l:”afo,cfo,aczbz} if x=0,
if xeintk?,
Nsi(Lx)z O[|:_11 _11} CYSO} if xebdKz\{O}, x2>0,
11 . )
@l a<0 if x € bd*\{0}, x; < 0.
and o
a b a+c§—2|b|} if x=0,
_b C_
_a b_ . . 2
boc a+c=0,b=0 if x €int K=,
NAi(Lx)Z : :
Z i’ a+c+2b=0,b20} if x ebd2\{0}, x» >0,
_a b_ . 2
b ¢ a+c—2b=0,b=<0¢ if xebd\{0}, x, <O.

Proof: First, we claim that

=[]

a+c< —ZIbI}.



2128 J.ZHOU ET AL.

In fact

ab 2 a b| [x1 x
[b C:|e(A+) = <[b C],[xz xlDSO, Vxr = [xal,

& (@+ox +2bx2 <0, Vx; > |xal. (19)
If we plug in x; = |x3| 4+ v with T > 0, then (19) can be rewritten as
(a+0)|xy| +2bxy +(a+¢c)t <0, ¥x, € R and 7 > 0,
ie.

(a+c+2b)x;+(a+c)t <0, Vx>0 and 7 >0 (20)

and
(—a—c+2bx;+(@@+c)t <0, Vx <0 and 7 > 0. (21)

With the arbitrariness of T > 0, we have a + ¢ < 0. Likewise, we have a + ¢ + 2b < 0 by (20) and
—a —c+2b > 0by (21). Thus,a + ¢ < —2band a + ¢ < 2b. In other words, we conclude that the
inequality (19) implies

a4+ ¢ < min{—2b,2b} = —2|b|.

Conversely, if a, b, ¢ satisfies a + ¢ < —2|b], then for x;

IV

|x2], we have

(a+co)x1 + 2bxy < —2|b|x; + 2bx;

IA

—2|bl|x2| + 2bx, < 0.

Consequently, the inequality (19) holds.
Case 1: For x = 0, we have

w05 [1 ]

afO,ch,achz}

Nyz (0) = (A})° = { [Z ﬂ ates —2|b|}.

Case 2: For x € int K2, we claim that

Naz (L) = { [Z IZ]

In fact, since Ai isacone, H € N A2 (Ly) is equivalent to saying that H € (Ai)o and
bl == 0)
b c|’|x x

0= (a+c)x; + 2bxy, < —2|b|x1 + 2bxy < —2|b|x1 + 2|b||x2| < —2|b|x1 + 2|b|x1 = 0.

a—}—c:O,b:O}.

ie. (a+ ¢)x; + 2bx, = 0. Note that

Due to x1 > |x3|, we obtain b = 0and a + ¢ = 0.
Case 3: For x € bd K2\{0}, i.e. x; = |x2| # O, by a similar argument, we obtain the following

expression. If x, > 0, then
ab
NAi(Lx) = { |:b C]

a+c+2h:0,b20}.
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If x5 < 0, then

NAi(Lx)z”:Z IC’] a+c—2b=o,bgo}.
O

By adopting the above expressions of N 52 (Ly) and N A2 (Ly) , we can see the decomposition in

Theorem 5.1(c) more clearly. For example, take [z lz:| eN A2 (Ly).

If x = 0, then

IR

= y A

be)TLh e T[0 e
atc , a—c -
where 127 atc | € =87 sincea + ¢ < —2[b| by Theorem 5.3 and (2) c—a | € (A
2 2

If x; = |x;| and x; > 0, then

a bl _[-b b n a+b 0
bc|l | b —=b 0 c+0b|’
a+b 0

-b b
where 0 c+b

b —b
by Theorem 5.3.
If x; = |x;| and x, < 0, then

€ —Si and[ i| € (AYLsinceb > 0anda+b+c+b=a+c+2b=0

P R |

b b a—b 0
where |:b b} € —Si and |: 0 B b:| e (AHL.

If x; > |x;], then |:Z lc)i| e (AT by Theorem 5.3.

Theorem 5.4: Letx = (x1,x;) € RxR"! belongto K", i.e. x € K. Then, the following statements
hold:

(@) Ifx=0orxeintK" theny € Nin(x) <= Ly € Ngn (Ly).
(b) Ifx,y € bd K"\{0}, then y € Nicn(x) <= Ly € Nsn (L) if and only if n = 2.

Proof: Part (a). Notice that

y € Nxn(x) <= x € K", —y e K", {x,—y) =0, (22)
and
Ly € Ns1(Ly) < Ly€ SY, —L, e S, (Ly,—L,)) =0
— LeS L ,e8, (L,L,) =0, (23)
where the second equivalence is due to the fact L, = —L,.

It is easy to see that these two systems (22) and (23) are equivalent for the case of x = 0 and
x € int K", which corresponds to Ly = 0 and Ly € int S¥.
Part (b). For x € bd K"\ {0} or L, € bd S¥\{O}, note that

(6y) =xiy1 +x3y2, (Lo Loy) = —nxiyr — 2x] ya.
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For y # 0, this implies (x,y) = 0 <= (Ly,L_,) = 0 if and only if n = 2. This completes the proof.
O

We point out that the relationship between Ly (x) and Tsn (Lx) has been described in Theorem
4.2. Although the normal cone is the polar cone of the tangent cone for a given convex set, it fails to
achieve the relationship between Ly, (x) and N&«r (Lyx) by taking polar on both sides of (16) because
the operator L is not invariant under polar operator. More precisely, for x, y,

(xy) =0 # (L, Ly) <0.
In fact, if (x, y) < 0,i.e.x1y1 +x2Ty2 < 0, whereas (Ly, Ly) = nxy; +2x2Ty2. It is clear that for n > 3,
X1)1 +x2Ty2 <0+ nx1y; + Zx;‘ryz <0.

For example, taking x = (2,1,1) and y = (2, —3, —2) gives (x,y) = —1 < 0 and (Lx,Ly> =2>0.Al
the above explain why we need a different approach to prove Theorem 5.4.

6. Relation on KKT systems

In this section, we turn our attention to the relation on KKT systems. First, we know that the following
second-order cone programming problem (SOCP)

min f(x)

st. gx) e K" (24)
can be rewritten as a positive semidefinite programming problem (SDP)

min f(x) 25)

s.t. Lg(x) e S,

where g : R" — IR" is expressed as ¢ = (g1,£2, - - - gn)- The KKT systems of the above SOCP (24)
and SDP (25) are, respectively, denoted by K (x) and K(Ly), which are expressed as

K(x) = {Ae]R”

0=Vf(x)+ ZAngi(x), A € Nicn (g(x))} )

i=1

K(Ly) := {FGIR”X"

0= Vf(x)+ (Z Fii) Vgi(x) + 22 IiVgi(x), T' € Nsn (Lg(x) ¢ -

i=1 i=2

In order to describe the relation between K (x) and K(Ly), we define the following two mappings:
given x € IR” and X € §", we define

M(X) := (Zxﬁ 2X15 ... len) (26)

i=1
and

M(x) = {F eS8

- 1
Zriile, F1i=§xi,i=2,...,n}. (27)
i=1

Then, the relation between KKT system of the above two problems is given as below.

Theorem 6.1:  Let x = (x1,x2) € R X R"! belong to K", i.e. x € K". Suppose that the mappings
M and M are defined as in (26) and (27), respectively. Then, the following statements hold:
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(a) M(Nic"(x)) = Ng1 (Ly) and M(Nsz (Lx)) = Nicn (x);
(b) M(K(x)) = K(Lx) and M(K(Ly)) = K(x).

Proof: (a) We first show
M(Nicr (%)) € Nz (Ly) and M(Ng (Ly)) € Nicn (x). (28)

Let y € Nin(x). Take I' € ]\~4(y). Then, I' € S” satisfies Y . ;i = y; and I'y; = %yi for
i=2,...,n. Hence,

n n n
x) = lerii + szirli = in)’i = xT)’ =0,
i=1 i=2 i=1

where the last step is due to y € Nycn(x). This says I' € Nggr (Ly), i.e. ]VI(NK;n (x)) C Nsn (Ly).
For the other part, taking I" € Nsn (Lx), then —I" € S%, which implies —M(I") = M(—T) € K"
by [4, Theorem 1],1.e. M(I") € —K". Note that

(M(T), x) ZFl,xl—i—ZleFll = (I, L) =0,

where the last step is obtained by I' € Ngn (Ly). In summary, we have M(I") € Nin(x). This shows
M(Ngn (Lx)) € Ngn (x).
Conversely, LetI" € Ng» (Ly). Then, I € S". It follows from (28) that M(I") € Ny (x); hence,
I e M(MT")) C M(N;Cn (x)). For y € Nxn(x), we see M(y) € Ngn(Lx) by (28). Thus, y =
M(M(y)) € M(Ngx (Ly)).
(b) It follows from part(a) immediately. O
Clearly, M is a singleton mapping, whereas M is a set-valued mapping. In particular, in the proof
of Theorem 6.1, we need to choose an element in M. Below, we present a way to pick an element in
M.
Theorem 6.2: Forx € K" and y € Nxcn(x), let

1.7
ayr - 3 .
~ o if 0,
T = [%yz ﬂy%yzyﬂ y#E
@) if y=0,

1 2 1 2
LY P ||)’22|| and = (15 1 ||)’22|| 2.
2 " 2 Vi

Then, T € IVI()/).

Proof: Note first that o, 8 > 0 due to y € —K". Since the case in which y = 0 is trivial, it suffices
to prove the case where y # 0. Consider the following two subcases.
Case 1: For y, # 0, by a simple calculation, we can reach

where

and B =(1—a)i.

el
aff = 1

Using this, we have

n
~ B ~ 1 .
Zf‘ii:ayl—i——:yl and Fliziyi,Vz:Z,Z»,...,n.
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Then, it remains to verify T < 0O, ie.
=~ (u
wvHT <v> <0 V@uvh)eR"

This can be seen by verifying the following:
Y1 32 u 1 T. \2
(uv ) < ) = ayu’ +ylvu+ ¥y v)
{y ﬂmm} il yivt B0

2
1
= (a4 yfw (-t
y il

- i)

2l
< 0.

T ayi 0
L0 ﬁ_)’Z)’z

where @ = 0 and 8 = y? or = 1 and B = 0. Then, it is clear to see

Case 2: For y; = 0, we have

1
ay1 +B— =y,
Y1

which indicates

no R 1 .
ZI‘iizyl and F1i=0=5y,-, i=2,3...,n
Moreover, in this case, we also have T =< O because

o (U T\ [ 0 u
(””F(V) (“)[0 ﬁ—m]o

ayiu’ + ﬁy_l (5’va>2
0,

where the last step follows from «, § > 0 and y; < 0. O

7. Conclusion

In this paper, we have explored the relation between the SOC and its PSD counterpart in terms of
distances, projections, tangent cones, normal cones and the KKT systems. It is known that SOCP
and SDP are closely related; for example, SOCP can be regarded as a special case of SDP, and SOCP
relaxation provides a nice approach to SDP as mentioned in [16]. The results obtained in this paper
help us understand the differences between the SOC and its PSD reformulation better.
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