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ABSTRACT
It is well known that second-order cone (SOC) programming can be
regarded as a special case of positive semidefinite programming using the
arrowmatrix. This paper further studies the relationship between SOCs and
positive semidefinitematrix cones. In particular, we explore the relationship
to expressions regarding distance, projection, tangent cone, normal cone
and the KKT system. Understanding these relationships will help us see
the connection and difference between the SOC and its PSD reformulation
more clearly.
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1. Introduction

The second-order cone (SOC) in IRn, also called the Lorentz cone, is defined as

Kn := {(x1, x2) ∈ IR × IRn−1 | x1 ≥ ‖x2‖
}
, (1)

where ‖ · ‖ denotes the Euclidean norm. If n = 1, Kn is the set of nonnegative reals IR+. The positive
semidefinite matrix cone (PSD cone), denoted by Sn+, is the collection of all symmetric positive
semidefinite matrices in IRn×n, i.e.

Sn+ := {
X ∈ IRn×n |X ∈ Sn and X � O

}
:=

{
X ∈ IRn×n |X = XT and vTXv ≥ 0 ∀v ∈ IRn

}
.

It is well known that SOC and positive semidefinite matrix cone both belong to the category of
symmetric cones,[1] which are unified under Euclidean Jordan algebra.

In [2], for each vector x = (x1, x2) ∈ IR × IRn−1, an arrow-shaped matrix Lx (alternatively called
an arrow matrix and denoted by Arw(x)) is defined as

Lx :=
[
x1 xT2
x2 x1In−1

]
. (2)

It can be verified that there is a close relationship between the SOC and the PSD cone as below:

x ∈ Kn ⇐⇒ Lx :=
[
x1 xT2
x2 x1In−1

]
� O. (3)
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Hence, a second-order cone program (SOCP) can be recast as a special semidefinite program (SDP).
In the light of this, it seems that we just need to focus on SDP. Nevertheless, this reformulation has
some disadvantages. For example, Ref. [3] indicates that

Solving SOCPs via SDP is not a good idea, however. Interior-point methods that solve the SOCP directly have a
much better worst-case complexity than an SDPmethod .... The difference between these numbers is significant
if the dimensions of the second-order constraints are large.

This comment mainly concerns the algorithmic aspects; see [2,3] for more information.
In fact, ‘reformulation’ is usually the main idea behind many approaches to study various opti-

mization problems and it is necessary to discuss the relationship between the primal problem and
the transformed problem. For example, for complementarity problems (or variational inequality
problems), we can reformulate these problems to work on a minimization optimization problem
via merit functions (or gap functions). The properties of merit functions ensure the solution to
complementarity problems is the same as the global optimal solution to the minimization problem.
Nonetheless, finding a global optimal solution is very difficult. Thus, we turn to study the connection
between the solution to complementarity problems and the stationary points of the transformed
optimization problem. Similarly, for mathematical programming with complementarity constraints
(MPCC), the ordinary KKT conditions do not hold because the standard constraint qualification
fails to hold (due to the existence of complementarity constraints). One therefore considers to recast
MPCC to other types of optimization problemswith different approaches. These different approaches
also ensure the solution set of MPCC is the same to that of the transformed optimization problems.
But the KKT conditions for these transformed optimization problems are different, which are the
source of various concepts of stationary points for MPCC, such as S-,M- and C-stationary points.

A similar question arises from SOCP and its SDP reformulation. In view of the above discussions,
it could be interesting to study their relation from theoretical and numerical aspects. As mentioned
above, Ref. [3] mainly deals with the SOCP and its SDP reformulation from the perspective of
algorithm. The study on the relationship between SOCP and its corresponding SDP from theoretical
aspect is rare. Sim and Zhao [4] discuss the relation between SOCP and its SDP counterpart from the
perspective of duality theory. There are already some known relations between the SOC and the PSD
cone; for instance,

(a) x ∈ intKn ⇐⇒ Lx ∈ int Sn+;
(b) x = 0 ⇐⇒ Lx = 0;
(c) x ∈ bdKn \ {0} ⇐⇒ Lx ∈ bd Sn+\ {O}.

Besides the interior, boundary point set, we know that for an optimization problem, some other
topological structures, such as tangent cones, normal cones, projections and KKT systems, play very
important roles. One may wonder whether there exists an analogous relationship between the SOC
and the PSD cone. We will answer it in this paper. In particular, by comparing the expressions of
distance, projection, tangent cone, normal cone and the KKT system between the SOC and the PSD
cone, we will know more about the differences between SOCP and its SDP reformulation.

2. Preliminaries

In this section, we introduce some background materials that will be used in subsequent analysis. In
the space of matrices, if we equip it with the trace inner product and the Frobenius norm

〈X,Y〉F := tr(XTY), ‖X‖F := √〈X,X〉F ,

then, for any X ∈ Sn, its (repeated) eigenvalues λ1, λ2, . . . , λn are real and it admits a spectral
decomposition of the form:

X = P diag[λ1, λ2, . . . , λn] PT (4)
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for some P ∈ O. Here, O denotes the set of orthogonal P ∈ IRn×n, i.e. PT = P−1.
The above factorization (4) is the well-known spectral decomposition (eigenvalue decomposition)

in matrix analysis.[5] There is a similar spectral decomposition associated with Kn. To see this, we
first introduce the so-called Jordan product. For any x = (x1, x2) ∈ IR × IRn−1 and y = (y1, y2) ∈
IR × IRn−1, their Jordan product [1] is defined by

x ◦ y := (〈x, y〉, y1x2 + x1y2
)
.

Since the Jordan product, unlike scalar or matrix multiplication, is not associative, this is a main
source on complication in the analysis of second-order cone complementarity problem (SOCCP).
The identity element under this product is e := (1, 0, . . . , 0)T ∈ IRn. It can be verified that the arrow
matrix Lx is a linearmapping from IRn to IRn given by Lxy = x◦y. For each x = (x1, x2) ∈ IR×IRn−1,
x admits a spectral decomposition [1,6–8] associated with Kn in the form of

x = λ1(x)u(1)
x + λ2(x)u(2)

x , (5)

where λ1(x), λ2(x) and u(1)
x , u(2)

x are the spectral values and the corresponding spectral vectors of x,
respectively, given by

λi(x) := x1 + ( − 1)i‖x2‖ and u(i)
x := 1

2

(
1

( − 1)i x̄2

)
, i = 1, 2, (6)

with x̄2 = x2/‖x2‖ if x2 �= 0, and otherwise x̄2 being any vector in IRn−1 with ‖x̄2‖ = 1. When
x2 �= 0, the spectral decomposition is unique. The following lemma states the relation between the
spectral decomposition of x and the eigenvalue decomposition of Lx .
Lemma 2.1: Let x = (x1, x2) ∈ IR× IRn−1 have the spectral decomposition given as in (5)–(6). Then,
Lx has the eigenvalue decomposition:

Lx = P diag
[
λ1(x), λ2(x), x1, . . . , x1

]
PT

where
P =

[√
2u(1)

x
√
2u(2)

x u(3)
x . . . u(n)

x

]
∈ IRn×n

is an orthogonal matrix, and u(i)
x for i = 3, . . . , n have the form of (0, ūi) with ū3, . . . , ūn being any

unit vectors in IRn−1 that span the linear subspace orthogonal to x2.
Proof: Please refer to [7–9]. �

From Lemma 2.1, it is not hard to calculate the inverse of Lx whenever it exists:

L−1
x = 1

det (x)

⎡⎣ x1 −xT2
−x2

det (x)
x1

I + 1
x1

x2xT2

⎤⎦ (7)

where det (x) := x21 − ‖x2‖2 denotes the determinant of x.
Throughout the whole paper, we use �C( · ) to denote the projection mapping onto a closed and

convex set C. In addition, for α ∈ IR, (α)+ := max{α, 0} and (α)− := min{α, 0}. Given a nonempty
subset A in IRn, we define AAT := {uuT | u ∈ A} and LA := {Lu| u ∈ A}, respectively. We denote �n

the set of all arrow-shaped matrices and �n+ the set of all positive semidefinite arrow matrices, i.e.

�n := {Ly ∈ IRn×n | y ∈ IRn} and �n+ := {Ly � O | y ∈ IRn}.
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Lemma 2.2: Let x = (x1, x2) ∈ IR× IRn−1 have the spectral decomposition given as in (5)–(6). Then,
the following hold:

(a) �Kn(x) = (x1 − ‖x2‖)+u(1)
x + (x1 + ‖x2‖)+u(2)

x ,

(b) �Sn+(Lx) = P

⎡⎣ (x1 − ‖x2‖)+ 0 0
0 (x1 + ‖x2‖)+ 0
0 0 (x1)+In−2

⎤⎦ PT where P is an orthogonal

matrix of Lx.

Proof: Please see [9,10] for a proof. �

3. Relation on distance and projection

In this section, we show the relation on distance and projection associated with the SOC and the PSD
cone. We begin with some explanation for why we need to do so. First, let us consider the projection
of x overKn. In the light of the relationship (3) between the SOC and the PSD cone, onemay ask ‘Can
we obtain the expression of projection �Kn(x) by using �Sn+(Lx), the projection of Lx over Sn+?’. In
other words,

Is �Kn(x) = L−1
(
�Sn+(Lx)

)
or �Sn+(Lx) = L

(
�Kn(x)

)
right ? (8)

Here, the operator L, defined as L(x) := Lx , is a single-point mapping between IRn and Sn, and L−1

is the inverse mapping of L, which can be achieved as in (7). To see this, take x = (1, 2, 0) ∈ IR3; then,
applying Lemma 2.1 yields

Lx =
⎡⎢⎣

1√
2

1√
2

0
− 1√

2
1√
2

0
0 0 1

⎤⎥⎦
⎡⎣ −1 0 0

0 3 0
0 0 1

⎤⎦
⎡⎢⎣

1√
2

− 1√
2

0
1√
2

1√
2

0
0 0 1

⎤⎥⎦ .

Hence, by Lemma 2.2, we have

�S3+(Lx) =
⎡⎢⎣

1√
2

1√
2

0
− 1√

2
1√
2

0
0 0 1

⎤⎥⎦
⎡⎣ 0 0 0

0 3 0
0 0 1

⎤⎦
⎡⎢⎣

1√
2

− 1√
2

0
1√
2

1√
2

0
0 0 1

⎤⎥⎦ =
⎡⎣ 3

2
3
2 0

3
2

3
2 0

0 0 1

⎤⎦ ,

which is not a form of the arrow matrix as shown in (2) because the diagonal entries are not equal.
This means that we cannot seek a vector y such that Ly = �Sn+(Lx). Note that

�Kn(x) = (1 + 2)
1
2

⎛⎝11
0

⎞⎠ =
⎛⎝ 3

2
3
2
0

⎞⎠
which gives

L
(
�Kn(x)

) =
⎡⎣ 3

2
3
2 0

3
2

3
2 0

0 0 3
2

⎤⎦ .

Hence, �Kn(x) �= L−1(�Sn+(Lx)) and �Sn+(Lx) �= L(�Kn(x)). The distances dist(x,Kn) and
dist(Lx ,S3+) are also different since

dist(x,Kn) = ‖x − �Kn(x)‖ =
∥∥∥∥∥∥
⎛⎝− 1

2
1
2
0

⎞⎠∥∥∥∥∥∥ =
√
2
2
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and

dist(Lx ,Sn+) = ‖Lx − �Sn+(Lx)‖ =
∥∥∥∥∥∥
⎡⎣− 1

2
1
2 0

1
2 − 1

2 0
0 0 0

⎤⎦∥∥∥∥∥∥ = 1.

The failure of the above approach comes from the fact that the PSD cone is much larger, i.e. there
exists a positive semidefinite matrix that is not arrow shaped. Consequently, we may ask whether (8)
holds if we restrict the positive semidefinite matrices to arrow-shaped matrices. Still for x = (1, 2, 0),
by the expression given as in Theorem 3.1 below, we know that

��n+(Lx) =
⎡⎣ 7

5
7
5 0

7
5

7
5 0

0 0 7
5

⎤⎦
which implies L−1(��n+(Lx)) = ( 75 ,

7
5 , 0). To sum up, �Kn(x) �= L−1(��n+(Lx)) and ��n+(Lx) �=

L(�Kn(x)). All the above observations and discussions lead us to further explore some relationship,
other than (3), between the SOC and the PSD cone.
Lemma 3.1: The problem of finding the projection of Lx onto �n+:

min ‖Lx − Ly‖F
s.t. Ly ∈ �n+

(9)

is equivalent to the following optimization problem:

min ‖Lx−y‖F
s.t. y ∈ Kn.

(10)

Precisely, Ly is an optimal solution to (9) if and only if y is an optimal solution to (10).
Proof: The result follows from the facts that Lx − Ly = Lx−y and Ly ∈ �n+ ⇐⇒ y ∈ Kn. �

The result of Lemma 3.1 will help us find the expressions of the distance and projection of x onto
Kn, Lx to Sn+ and �n+. In particular, the distance of x onto Kn and Lx to Sn+ can be obtained using
their expression of the projection given in Lemma 2.2.
Theorem 3.1: Let x = (x1, x2) ∈ IR × IRn−1 have the spectral decomposition given as in (5)–(6).
Then, the following holds:

(a) dist(x,Kn) =
√

1
2 (x1 − ‖x2‖)2− + 1

2 (x1 + ‖x2‖)2−;
(b) dist(Lx ,Sn+) =

√
(x1 − ‖x2‖)2− + (x1 + ‖x2‖)2− + (n − 2)(x1)2−;

(c) ��n+(Lx) =

⎧⎪⎪⎨⎪⎪⎩
Lx if x1 ≥ ‖x2‖,
O if x1 ≤ − 2

n‖x2‖,
1

1+ 2
n

(
x1 + 2

n‖x2‖
) [ 1 x̄T2

x̄2 In−1

]
if − 2

n‖x2‖ < x1 < ‖x2‖,
(d) dist(Lx ,�n+) =

√
2n
n+2

(
x1 − ‖x2‖

)2
− + n2

n+2
(
x1 + 2

n‖x2‖
)2
−.

Proof: (a) From Lemma 2.2, we know that x = (x1 − ‖x2‖)u(1)
x + (x1 + ‖x2‖)u(2)

x and �Kn(x) =
(x1 − ‖x2‖)+u(1)

x + (x1 + ‖x2‖)+u(2)
x . Thus, it is clear to see that

dist(x,Kn) = ‖x − �Kn(x)‖
=
∥∥∥(x1 − ‖x2‖)−u(1)

x + (x1 + ‖x2‖)−u(2)
x

∥∥∥
=
√
1
2
(x1 − ‖x2‖)2− + 1

2
(x1 + ‖x2‖)2−
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where the last step is derived from ‖u(i)
x ‖ = √

2/2 for i = 1, 2 and 〈u(1)
x , u(2)

x 〉 = 0.
(b) By Lemma 2.1 and Lemma 2.2(b),

Lx = P

⎡⎣x1 − ‖x2‖ 0 0
0 x1 + ‖x2‖ 0
0 0 x1In−2

⎤⎦PT

and

�Sn+(Lx) = P

⎡⎣(x1 − ‖x2‖)+ 0 0
0 (x1 + ‖x2‖)+ 0
0 0 (x1)+In−2

⎤⎦PT .

Combining the above yields

dist(Lx ,Sn+) =
∥∥∥∥∥∥
⎡⎣(x1 − ‖x2‖)− 0 0

0 (x1 + ‖x2‖)− 0
0 0 (x1)−In−2

⎤⎦∥∥∥∥∥∥
=
√

(x1 − ‖x2‖)2− + (x1 + ‖x2‖)2− + (n − 2)(x1)2−.

(c) To find��n+(Lx), we need to solve the optimization problem (9). FromLemma 3.1, it is equivalent
to look into problem (10). Thus, we first compute

‖Lx−y‖F
=
√

(x1 − y1 − ‖x2 − y2‖)2 + (x1 − y1 + ‖x2 − y2‖)2 + (n − 2)(x1 − y1)2

=
√
n(x1 − y1)2 + 2‖x2 − y2‖2

= √
n
√

(x1 − y1)2 + 2
n
‖x2 − y2‖2

= √
n

√√√√
(x1 − y1)2 +

∥∥∥∥∥
√
2
n
x2 −

√
2
n
y2

∥∥∥∥∥
2

.

Now, we denote

y′ :=
(
y1,
√
2
n
y2

)
= (y1, γ y2) = �y where γ :=

√
2
n
and � :=

[
1 0
0 γ I

]
.

Then, y1 ≥ ‖y2‖ if and only if y′
1 ≥ 1

γ
‖y′

2‖; that is, y ∈ Kn if and only if y′ ∈ Lθ with cot θ = 1
γ
,

where Lθ := {x = (x1, x2) ∈ IR × IRn−1|x1 ≥ ‖x2‖ cot θ}; see [11]. We therefore conclude that the
problem (10) is indeed equivalent to the following optimization problem:

min

√
(x1 − y′

1)
2 +

∥∥∥∥√ 2
nx2 − y′

2

∥∥∥∥2
s.t. y′ ∈ Lθ .

(11)
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The optimal solution to the problem (11) is �Lθ
(x′), the projection of x′ := (x1, γ x2) = �x onto

Lθ , which according to [11, Theorems 3.1 and 3.2] is expressed by

�Lθ
(x′)

= 1
1 + cot2 θ

(x′
1 − ‖x′

2‖ cot θ)+
(

1
−x̄′

2 cot θ

)
+ 1

1 + tan2 θ
(x′

1 + ‖x′
2‖ tan θ)+

(
1

x̄′
2 tan θ

)
= γ 2

1 + γ 2 (x1 − ‖x2‖)+
(

1
− 1

γ
x̄2

)
+ 1

1 + γ 2 (x1 + γ 2‖x2‖)+
(

1
γ x̄2

)
.

Hence, the optimal solution to (10) is

y = �−1y′ = �−1�Lθ
(x′) = �−1�Lθ

(�x)

=
⎡⎣ γ 2

1+γ 2 (x1 − ‖x2‖)+ + 1
1+γ 2 (x1 + γ 2‖x2‖)+(

− 1
1+γ 2 (x1 − ‖x2‖)+ + 1

1+γ 2 (x1 + γ 2‖x2‖)+
)
x̄2

⎤⎦

=

⎧⎪⎪⎨⎪⎪⎩
x if x1 ≥ ‖x2‖,
0 if x1 ≤ − 2

n‖x2‖,
1

1+γ 2

(
x1 + γ 2‖x2‖

) ( 1
x̄2

)
if − 2

n‖x2‖ < x1 < ‖x2‖.
(12)

By Lemma 3.1, the optimal solution to (9) is Ly , i.e.

Ly = ��n+(Lx) =

⎧⎪⎪⎨⎪⎪⎩
Lx if x1 ≥ ‖x2‖,
O if x1 ≤ − 2

n‖x2‖,
1

1+ 2
n

(
x1 + 2

n‖x2‖
) [ 1 x̄T2

x̄2 In−1

]
if − 2

n‖x2‖ < x1 < ‖x2‖.

(d) In view of the expression (12), we can compute the distance dist(Lx ,�n+) as follows.

dist(Lx ,�n+) = ‖Lx − Ly‖F = ‖Lx−y‖F
=
(
n
[
x1 − γ 2

1 + γ 2 (x1 − ‖x2‖)+ − 1
1 + γ 2

(
x1 + γ 2‖x2‖

)
+

]2
+ 2

[
‖x2‖ + 1

1 + γ 2 (x1 − ‖x2‖)+ − 1
1 + γ 2

(
x1 + γ 2‖x2‖

)
+

]2 ) 1
2

=
(
n
[
x1 − 2

n + 2
(x1 − ‖x2‖)+ − n

n + 2

(
x1 + 2

n
‖x2‖

)
+

]2
+ 2

[
‖x2‖ + n

n + 2
(x1 − ‖x2‖)+ − n

n + 2

(
x1 + 2

n
‖x2‖

)
+

]2 ) 1
2

=
(
n
[

2
n + 2

(x1 − ‖x2‖)− + n
n + 2

(
x1 + 2

n
‖x2‖

)
−

]2
+ 2

[
− n
n + 2

(x1 − ‖x2‖)− + n
n + 2

(
x1 + 2

n
‖x2‖

)
−

]2 ) 1
2

=
√

2n
n + 2

(
x1 − ‖x2‖

)2
− + n2

n + 2

(
x1 + 2

n
‖x2‖

)2

−
,
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where the third equation comes from the facts that

x1 = 2
n + 2

(x1 − ‖x2‖) + n
n + 2

(
x1 + 2

n
‖x2‖

)
and

‖x2‖ = − n
n + 2

(x1 − ‖x2‖) + n
n + 2

(
x1 + 2

n
‖x2‖

)
.

�

Theorem 3.2: For any x = (x1, x2) ∈ IR × IRn−1,

dist(x,Kn) ≤ dist(Lx ,Sn+) ≤ dist(Lx ,�n+).

In particular, for n = 2,

dist(x,K2) =
√
2
2

dist(Lx ,S2+) and dist(Lx ,S2+) = dist(Lx ,�2+).

Proof: The first inequality follows from the formula of distance given as in Theorem 3.1; the second
inequality comes from the fact that �n+ is a subset of Sn+, i.e. �n+ ⊂ Sn+.

For n = 2, by part(d) of Theorem 3.1, we have

dist(Lx ,�2+) =
√

(x1 − ‖x2‖)2− + (x1 + ‖x2‖)2−.

Combining this and Theorem 3.1(a)–(b) yields dist(x,K2) =
√
2
2 dist(Lx ,S2+) and dist(Lx ,S2+) =

dist(Lx ,�2+). �
Note that �2+ is strictly included in S2+, i.e. �2+ � S2+, because in the arrow matrix, the diagonal

element is the same, but positive semidefinite matrix does not impose this requirement. Thus,
dist(Lx ,�2+) ≤ dist(Lx ,S2+). In Theorem 3.2, we further show that the equality holds.

In view of Theorem 3.2, a natural question arises here: Are these distances equivalent? Recall that
for two functions g , h : IRn → IR, we say that they are equivalent if there exist τ1, τ2 > 0 such that

τ1g(x) ≤ h(x) ≤ τ2g(x), ∀x ∈ IRn.

For instance, 1-norm and 2-norm are equivalent in this sense. To answer this question, we need the
following lemma.
Lemma 3.2: For a, b ∈ IR, the following inequality holds:(

a + b
2

)2

−
≤ 1

2
(
a2− + b2−

)
.

Proof: We assume without loss of generality that a ≤ b. Then, we consider the following four cases
to proceed the proof.
Case 1: For a ≥ 0 and b ≥ 0, we have(

a + b
2

)2

−
= 0 = 1

2
(
a2− + b2−

)
.
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Case 2: For a ≤ 0 and b ≤ 0, we have(
a + b
2

)2

−
=
(
a + b
2

)2
≤ a2 + b2

2
= 1

2
(
a2− + b2−

)
.

Case 3: For a ≤ 0, b ≥ 0 and a ≤ −b, there implies (a + b)/2 ≤ 0. Then, we have(
a + b
2

)2

−
=
(
a + b
2

)2
= a2 + b2 + 2ab

4
≤ a2 + b2

4
≤ 1

2
a2 = 1

2
(
a2− + b2−

)
,

where the first inequality comes from the fact that ab ≤ 0 and the second inequality follows from the
fact that a2 ≥ b2 due to a ≤ −b ≤ 0.
Case 4: For a ≤ 0, b ≥ 0 and a ≥ −b, we have(

a + b
2

)2

−
= 0 ≤ 1

2
a2 = 1

2
(
a2− + b2−

)
.

�
Theorem 3.3: The distances dist(x,Kn), dist(Lx ,Sn+) and dist(Lx ,�n+) are all equivalent in the sense
of

dist(x,Kn) ≤ dist(Lx ,Sn+) ≤ √
n dist(x,Kn) (13)

and

dist(Lx ,Sn+) ≤ dist(Lx ,�n+) ≤
√

2n
n + 2

dist(Lx ,Sn+). (14)

Proof: (i) The key part to prove inequality (13) is to look into dist2(Lx ,Sn+), which are computed
as below:

dist2(Lx ,Sn+)

= (x1 − ‖x2‖)2− + (x1 + ‖x2‖)2− + (n − 2)(x1)2−

= (x1 − ‖x2‖)2− + (x1 + ‖x2‖)2− + (n − 2)
(

(x1 − ‖x2‖) + (x1 + ‖x2‖)
2

)2

−
≤ (x1 − ‖x2‖)2− + (x1 + ‖x2‖)2− + n − 2

2

(
(x1 − ‖x2‖)2− + (x1 + ‖x2‖)2−

)
= n

(
1
2
(x1 − ‖x2‖)2− + 1

2
(x1 + ‖x2‖)2−

)
= n dist2(x,Kn),

where the inequality is due to Lemma 3.2. Hence, we achieve

dist(x,Kn) ≤ dist(Lx ,Sn+) ≤ √
n dist(x,Kn),

which indicates that the distance between x to Kn and Lx to Sn+ is equivalent.
(ii) It remains to show the equivalence between dist(Lx ,Sn+) and dist(Lx ,�n+). To proceed, we need
to consider the following cases.
Case 1: For x1 ≥ ‖x2‖, dist(Lx ,Sn+) = 0 = dist(Lx ,�n+).
Case 2: For x1 ≤ −‖x2‖, dist(Lx ,�n+) =

√
nx21 + 2‖x2‖2 = dist(Lx ,Sn+).

Case 3: For 0 ≤ x1 ≤ ‖x2‖, dist(Lx ,�n+) =
√

2n
n+2 |x1 − ‖x2‖| and dist(Lx ,Sn+) = |x1 − ‖x2‖|.
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Case 4: For− 2
n‖x2‖ ≤ x1 ≤ 0, dist2(Lx ,�n+) = 2n

n+2 (x1−‖x2‖)2 and dist2(Lx ,Sn+) = (x1−‖x2‖)2+
(n − 2)x21. Then,

2n
n + 2

dist2(Lx ,Sn+) = 2n
n + 2

(
x1 − ‖x2‖

)2 + 2n
n + 2

(n − 2)x21 ≥ dist2(Lx ,�n+).

Case 5: For −‖x2‖ ≤ x1 ≤ − 2
n‖x2‖,

dist2(Lx ,�n+) = nx21 + 2‖x2‖2 and dist2(Lx ,Sn+) = (x1 − ‖x2‖)2 + (n − 2)x21 .

Note that

dist(Lx ,�n+) ≤
√

2n
n + 2

dist(Lx ,Sn+)

⇐⇒ nx21 + 2‖x2‖2 ≤ 2n
n + 2

[
(x1 − ‖x2‖)2 + (n − 2)x21

]
⇐⇒ 4‖x2‖

[
nx1 + ‖x2‖

] ≤ n(n − 4)x21 .

Since x1 ≤ − 2
n‖x2‖, it implies that

4‖x2‖
[
nx1 + ‖x2‖

] ≤ −4‖x2‖2 ≤ 4
n − 4
n

‖x2‖2 = n(n − 4)
(

− 2
n
‖x2‖

)2
≤ n(n − 4)x21,

where the second inequality is due to the fact n−4
n ≥ −1 for all n ≥ 2. Hence,

dist(Lx ,�n+) ≤
√

2n
n + 2

dist(Lx ,Sn+),

which is the desired result. �
The following example demonstrates that the inequalities (13) and (14) in Theorem 3.3 may be

strict.
Example 3.1: Consider x = ( − 1, 2, 0, . . . , 0︸ ︷︷ ︸

n−2

) with n ≥ 4. Then,

dist(x,Kn) < dist(Lx ,Sn+) <
√
n dist(x,Kn)

and

dist(Lx ,Sn+) < dist(Lx ,�n+) <
√

2n
n + 2

dist(Lx ,Sn+).

To see this, from Theorem 3.1, we know that

dist(x,Kn) =
√
9
2
, dist(Lx ,Sn+) = √

n + 7, dist(Lx ,�n+) = √
n + 8. (15)

Note that for n ≥ 4, we have √
9
2
<

√
n + 7 <

√
9n
2
,

and √
n + 7 <

√
n + 8 <

√
2n

n + 2
√
n + 7,
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which says
dist(x,Kn) < dist(Lx ,Sn+) <

√
n dist(x,Kn),

and

dist(Lx ,Sn+) < dist(Lx ,�n+) <
√

2n
n + 2

dist(Lx ,Sn+).

From this example, we see that the distance related to SOC is independent of n; nonetheless, if we
treat it as semidefinite matrix, the distance is dependent on n; see (15).

4. Relation on tangent cone

As shown earlier, all the distances introduced in Section 2 are equivalent. This allows us to study the
relation on tangent cone because the tangent cone can be achieved by distance function.[12] More
specifically, for a convex set C, there is

TC(x) := {h | dist(x + th,C) = o(t), t ≥ 0}.

In the light of this, this section is devoted to exploring the relation on tangent cones.
Theorem 4.1: Let x = (x1, x2) ∈ IR × IRn−1 belong to Kn, i.e. x ∈ Kn. Then,

(a) TKn(x) =
⎧⎨⎩

Kn if x = 0,
IRn if x ∈ intKn,{
(d1, d2) ∈ IRn

∣∣ dT2 x2 − x1d1 ≤ 0
}

if x ∈ bdKn\{0}.

(b) TSn+(Lx) =

⎧⎪⎨⎪⎩
Sn+ if x = 0,
Sn if x ∈ intKn,{
H ∈ Sn | (u(1)

x )THu(1)
x ≥ 0

}
if x ∈ bdKn\{0}.

(c) T�n+(Lx) = {Lh | h ∈ TKn(x)} = TSn+(Lx) ∩ �n.

Proof: The formulae of TKn(x) and TS+(Lx) follow from the results given in [13,14]. To verify
part(c), we know that

T�n+(Lx) = {H ∈ Sn | Lx + tnHn ∈ �n+, tn → 0+,Hn → H
}
.

Due to tnHn ∈ �n+ − Lx , Hn is also an arrow matrix. This means Hn = Lhn for some hn ∈ IRn. In
addition, Hn → H implies H = Lh for some h with hn → h. Thus, we obtain that Lx + tnHn =
Lx+tnhn ∈ �n+ which is equivalent to saying x + tnhn ∈ Kn, i.e. h ∈ TKn(x). Moreover, since
�n+ = Sn+ ∩ �n and Sn+, �n cannot be separated, it yields

T�n+(Lx) = TSn+(Lx) ∩ T�n(Lx) = TSn+(Lx) ∩ �n

by [15, Theorem 6.42], where the last step comes from the fact that �n is a subspace. �
The relation between TKn(x) and TSn+(Lx) can be also characterized using their expression.

Theorem 4.2: Let x = (x1, x2) ∈ IR × IRn−1 belong to Kn, i.e. x ∈ Kn. Then,

LTKn (x) = TSn+(Lx) ∩ �n. (16)

Proof: We proceed the proof by discussing the following three cases.
Case 1: For x ∈ intKn, we have Lx ∈ intSn+. Thus, TKn(x) = IRn and TSn+(Lx) = Sn. This implies

LTKn (x) = LIRn = �n = Sn ∩ �n = TSn+(Lx) ∩ �n.
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Case 2: For x = 0, we have TKn(x) = Kn and TSn+(Lx) = Sn+. Since y ∈ Kn if and only if Ly ∈ Sn+,

LTKn (x) = LKn = �n+ = Sn+ ∩ �n = TSn+(Lx) ∩ �n.

Case 3: For x ∈ bdKn\{0}, take d ∈ TKn(x). Then,

(u(1)
x )TLd u(1)

x = 1
4

(
1 − x̄T2

) [d1 dT2
d2 d1I

](
1

−x̄2

)
= 1

2
(d1 − dT2 x̄2) ≥ 0,

where the inequality comes from d ∈ TKn(x). Hence, Ld ∈ TSn+(Lx) by Theorem 4.1, i.e. LTKn (x) ⊂
TSn+(Lx) ∩ �n. The converse inclusion can be proved by a similar argument. �

The restriction to �n in (16) is required, which is illustrated by the following example. Taking
x = (1, 1) ∈ IR2, we have

TK2(x) = {d = (d1, d2) ∈ IR2 | − d1 + d2 ≤ 0}

and
TS2+(Lx) =

{
H ∈ S2 | (u(1)

x )THu(1)
x ≥ 0

}
= {H ∈ S2 |H11 − 2H12 + H22 ≥ 0

}
.

Hence, LTKn (x) does not equal TSn+(Lx).

5. Relation on normal cone

In this section, we continue to explore the relation on normal cone between the SOC and its PSD
reformulation. To this end, we first write out the expressions of NKn(x), NSn+(Lx), and N�n+(Lx),
respectively.
Theorem 5.1: Let x = (x1, x2) ∈ IR × IRn−1 belong to Kn, i.e. x ∈ Kn. Then,

(a) NKn(x) =
⎧⎨⎩

−Kn if x = 0,
{0} if x ∈ intKn,

IR+( − x1, x2) if x ∈ bdKn\{0}.

(b) NSn+(Lx) =

⎧⎪⎪⎨⎪⎪⎩
−Sn+ if x = 0,
{O} if x ∈ intKn,{

α

[
1 −x̄T2

−x̄2 x̄2x̄T2

] ∣∣∣∣ α ≤ 0
}

if x ∈ bdKn\{0}.
(c) N�n+(Lx) = NSn+(Lx) + (�n)⊥, where

(�n)⊥ = {H ∈ Sn | tr(H) = 0, H1,i = 0, i = 2, . . . , n
}
.

Proof: Parts (a) and (b) follow from [13] and [14]. For Part (c), since �n+ = Sn+ ∩ �n, it follows
from [15, Theorem 6.42] that

N�n+(Lx) = NSn+(Lx) + N�n(Lx).

Because �n is a subspace, we know that N�n(Lx) = (�n)⊥, where

(�n)⊥ = {H ∈ Sn | 〈H , Ly〉 = 0, ∀y ∈ IRn} = {H ∈ Sn | tr(H) = 0, H1,i = 0, i = 2, . . . , n
}
.

�
The relation betweenN�n+(Lx) andNSn+(Lx) is already described in Theorem 5.1. Next, we further

describe the relation between NKn(x) and NSn+(Lx).
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Theorem 5.2: Let x = (x1, x2) ∈ IR × IRn−1 belong to Kn, i.e. x ∈ Kn. Then, for x ∈ intKn and
x ∈ bdKn\{0},

NSn+(Lx) = −NKn(x)NKn(x)T .

Proof: Case 1: For x ∈ intKn, NKn(x) = {0} and NSn+(Lx) = {O}. The desired result holds in this
case.
Case 2: For x ∈ bdKn\{0}, it follows from Theorem 5.1 that

NSn+(Lx) =
{
α

[
1 −x̄T2

−x̄2 x̄2x̄T2

] ∣∣∣∣α ≤ 0
}

=
{
α

(
1

−x̄2

) (
1,−x̄T2

) ∣∣∣∣α ≤ 0
}

. (17)

Since NKn(x) = {y| y = βx̂,β ≤ 0} with x̂ := (x1,−x2),

−NKn(x)NKn(x)T = {−β2x̂x̂T | β ≤ 0} =
{
−(βx1)2

(
1

−x̄2

) (
1,−x̄T2

) ∣∣∣∣β ≤ 0
}

. (18)

Comparing with (17) and (18) yields the desired result. �
FromTheorem 5.1(c), we know thatN�n+(Lx) ⊃ NSn+(Lx) sinceO ∈ (�n)⊥. For x = 0,NKn(x) =

−Kn and NSn+(Lx) = −Sn+. In this case, NSn+(Lx) and −NKn(x)NKn(x)T do not coincide, i.e.
Theorem 5.2 fails when x = 0. Below, we give the algebraic expressions forN�n+(Lx) andNSn+(Lx) as
n = 2, from which we can see the difference between them more clearly.
Theorem 5.3: For n = 2, the explicit expressions of NS2+(Lx) and N�2+(Lx) are as below:

NS2+(Lx) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{[
a b
b c

] ∣∣∣∣ a ≤ 0, c ≤ 0, ac ≥ b2
}

if x = 0,

{O} if x ∈ intK2,{
α

[
1 −1

−1 1

] ∣∣∣∣ α ≤ 0
}

if x ∈ bdK2\{0}, x2 > 0,

{
α

[
1 1
1 1

] ∣∣∣∣ α ≤ 0
}

if x ∈ bdK2\{0}, x2 < 0.

and

N�2+(Lx) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{[
a b
b c

] ∣∣∣∣ a + c ≤ −2|b|
}

if x = 0,

{[
a b
b c

] ∣∣∣∣ a + c = 0, b = 0
}

if x ∈ intK2,

{[
a b
b c

] ∣∣∣∣ a + c + 2b = 0, b ≥ 0
}

if x ∈ bdK2\{0}, x2 > 0,

{[
a b
b c

] ∣∣∣∣ a + c − 2b = 0, b ≤ 0
}

if x ∈ bdK2\{0}, x2 < 0.

Proof: First, we claim that

(�2+)◦ =
{[

a b
b c

]∣∣∣∣ a + c ≤ −2|b|
}

.
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In fact [
a b
b c

]
∈ (�2+)◦ ⇐⇒

〈[
a b
b c

]
,
[
x1 x2
x2 x1

]〉
≤ 0, ∀x1 ≥ |x2|,

⇐⇒ (a + c)x1 + 2bx2 ≤ 0, ∀x1 ≥ |x2|. (19)

If we plug in x1 = |x2| + τ with τ ≥ 0, then (19) can be rewritten as

(a + c)|x2| + 2bx2 + (a + c)τ ≤ 0, ∀x2 ∈ IR and τ ≥ 0,

i.e.
(a + c + 2b)x2 + (a + c)τ ≤ 0, ∀x2 ≥ 0 and τ ≥ 0 (20)

and
( − a − c + 2b)x2 + (a + c)τ ≤ 0, ∀x2 ≤ 0 and τ ≥ 0. (21)

With the arbitrariness of τ ≥ 0, we have a + c ≤ 0. Likewise, we have a + c + 2b ≤ 0 by (20) and
−a − c + 2b ≥ 0 by (21). Thus, a + c ≤ −2b and a + c ≤ 2b. In other words, we conclude that the
inequality (19) implies

a + c ≤ min{−2b, 2b} = −2|b|.
Conversely, if a, b, c satisfies a + c ≤ −2|b|, then for x1 ≥ |x2|, we have

(a + c)x1 + 2bx2 ≤ −2|b|x1 + 2bx2 ≤ −2|b||x2| + 2bx2 ≤ 0.

Consequently, the inequality (19) holds.
Case 1: For x = 0, we have

NS2+(O) = −S2+ =
{[

a b
b c

]∣∣∣∣ a ≤ 0, c ≤ 0, ac ≥ b2
}

N�2+(O) = (�2+)◦ =
{[

a b
b c

] ∣∣∣∣ a + c ≤ −2|b|
}

.

Case 2: For x ∈ intK2, we claim that

N�2+(Lx) =
{[

a b
b c

]∣∣∣∣ a + c = 0, b = 0
}

.

In fact, since �2+ is a cone, H ∈ N�2+(Lx) is equivalent to saying that H ∈ (�2+)◦ and〈[
a b
b c

]
,
[
x1 x2
x2 x1

]〉
= 0,

i.e. (a + c)x1 + 2bx2 = 0. Note that

0 = (a + c)x1 + 2bx2 ≤ −2|b|x1 + 2bx2 ≤ −2|b|x1 + 2|b||x2| ≤ −2|b|x1 + 2|b|x1 = 0.

Due to x1 > |x2|, we obtain b = 0 and a + c = 0.
Case 3: For x ∈ bdK2\{0}, i.e. x1 = |x2| �= 0, by a similar argument, we obtain the following
expression. If x2 > 0, then

N�2+(Lx) =
{[

a b
b c

] ∣∣∣∣ a + c + 2b = 0, b ≥ 0
}

.
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If x2 < 0, then

N�2+(Lx) =
{[

a b
b c

] ∣∣∣∣ a + c − 2b = 0, b ≤ 0
}

.

�
By adopting the above expressions of NS2+(Lx) and N�2+(Lx) , we can see the decomposition in

Theorem 5.1(c) more clearly. For example, take
[
a b
b c

]
∈ N�2+(Lx).

If x = 0, then [
a b
b c

]
=
[ a+c

2 b
b a+c

2

]
+
[ a−c

2 0
0 c−a

2

]
,

where
[ a+c

2 b
b a+c

2

]
∈ −S2+ since a + c ≤ −2|b| by Theorem 5.3 and

[ a−c
2 0
0 c−a

2

]
∈ (�2)⊥.

If x1 = |x2| and x2 > 0, then[
a b
b c

]
=
[−b b
b −b

]
+
[
a + b 0
0 c + b

]
,

where
[−b b
b −b

]
∈ −S2+ and

[
a + b 0
0 c + b

]
∈ (�2)⊥ since b ≥ 0 and a+b+c+b = a+c+2b = 0

by Theorem 5.3.
If x1 = |x2| and x2 < 0, then[

a b
b c

]
=
[
b b
b b

]
+
[
a − b 0
0 c − b

]
,

where
[
b b
b b

]
∈ −S2+ and

[
a − b 0
0 c − b

]
∈ (�2)⊥.

If x1 > |x2|, then
[
a b
b c

]
∈ (�2)⊥ by Theorem 5.3.

Theorem 5.4: Let x = (x1, x2) ∈ IR×IRn−1 belong toKn, i.e. x ∈ Kn. Then, the following statements
hold:

(a) If x = 0 or x ∈ intKn, then y ∈ NKn(x) ⇐⇒ Ly ∈ NSn+(Lx).
(b) If x, y ∈ bdKn\{0}, then y ∈ NKn(x) ⇐⇒ Ly ∈ NSn+(Lx) if and only if n = 2.

Proof: Part (a). Notice that

y ∈ NKn(x) ⇐⇒ x ∈ Kn, −y ∈ Kn, 〈x,−y〉 = 0, (22)

and

Ly ∈ NSn+(Lx) ⇐⇒ Lx ∈ Sn+, −Ly ∈ Sn+, 〈Lx ,−Ly〉 = 0
⇐⇒ Lx ∈ Sn+, L−y ∈ Sn+, 〈Lx , L−y〉 = 0, (23)

where the second equivalence is due to the fact L−y = −Ly .
It is easy to see that these two systems (22) and (23) are equivalent for the case of x = 0 and

x ∈ intKn, which corresponds to Lx = 0 and Lx ∈ int Sn+.
Part (b). For x ∈ bdKn\{0} or Lx ∈ bd Sn+\{O}, note that

〈x, y〉 = x1y1 + xT2 y2,
〈
Lx , L−y

〉 = −nx1y1 − 2xT2 y2.
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For y �= 0, this implies 〈x, y〉 = 0 ⇐⇒ 〈
Lx , L−y

〉 = 0 if and only if n = 2. This completes the proof.
�

We point out that the relationship between LTn
K(x) and TSn+(Lx) has been described in Theorem

4.2. Although the normal cone is the polar cone of the tangent cone for a given convex set, it fails to
achieve the relationship between LNKn (x) andNSn+(Lx) by taking polar on both sides of (16) because
the operator L is not invariant under polar operator. More precisely, for x, y,

〈x, y〉 ≤ 0 � 〈Lx , Ly〉 ≤ 0.

In fact, if 〈x, y〉 ≤ 0, i.e. x1y1 + xT2 y2 ≤ 0, whereas 〈Lx , Ly〉 = nx1y1 + 2xT2 y2. It is clear that for n ≥ 3,

x1y1 + xT2 y2 ≤ 0 � nx1y1 + 2xT2 y2 ≤ 0.

For example, taking x = (2, 1, 1) and y = (2,−3,−2) gives 〈x, y〉 = −1 < 0 and
〈
Lx , Ly

〉 = 2 > 0. All
the above explain why we need a different approach to prove Theorem 5.4.

6. Relation on KKT systems

In this section, we turn our attention to the relation onKKT systems. First, we know that the following
second-order cone programming problem (SOCP)

min f (x)
s.t. g(x) ∈ Kn (24)

can be rewritten as a positive semidefinite programming problem (SDP)

min f (x)
s.t. Lg(x) ∈ Sn+,

(25)

where g : IRn → IRn is expressed as g = (g1, g2, . . . gn). The KKT systems of the above SOCP (24)
and SDP (25) are, respectively, denoted by K(x) and K(Lx), which are expressed as

K(x) :=
{

λ ∈ IRn
∣∣∣∣ 0 = ∇f (x) +

n∑
i=1

λi∇gi(x), λ ∈ NKn(g(x))

}
,

K(Lx) :=
{

� ∈ IRn×n
∣∣∣∣ 0 = ∇f (x) +

( n∑
i=1

�ii

)
∇g1(x) + 2

n∑
i=2

�1i∇gi(x), � ∈ NSn+(Lg(x))

}
.

In order to describe the relation between K(x) and K(Lx), we define the following two mappings:
given x ∈ IRn and X ∈ Sn, we define

M(X) :=
( n∑

i=1

Xii 2X12 . . . 2X1n

)
(26)

and

M̃(x) :=
{

� ∈ Sn−
∣∣∣∣ n∑

i=1

�ii = x1, �1i = 1
2
xi, i = 2, . . . , n

}
. (27)

Then, the relation between KKT system of the above two problems is given as below.
Theorem 6.1: Let x = (x1, x2) ∈ IR × IRn−1 belong to Kn, i.e. x ∈ Kn. Suppose that the mappings
M and M̃ are defined as in (26) and (27), respectively. Then, the following statements hold:
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(a) M̃(NKn(x)) = NSn+(Lx) and M(NSn+(Lx)) = NKn(x);
(b) M̃(K(x)) = K(Lx) and M(K(Lx)) = K(x).

Proof: (a) We first show

M̃(NKn(x)) ⊆ NSn+(Lx) and M(NSn+(Lx)) ⊆ NKn(x). (28)

Let y ∈ NKn(x). Take � ∈ M̃(y). Then, � ∈ Sn− satisfies
∑n

i=1 �ii = y1 and �1i = 1
2yi for

i = 2, . . . , n. Hence,

〈�, Lx〉 =
n∑

i=1

x1�ii + 2
n∑

i=2

xi�1i =
n∑

i=1

xiyi = xTy = 0,

where the last step is due to y ∈ NKn(x). This says � ∈ NSn+(Lx), i.e. M̃(NKn(x)) ⊆ NSn+(Lx).
For the other part, taking � ∈ NSn+(Lx), then −� ∈ Sn+, which implies −M(�) = M( − �) ∈ Kn

by [4, Theorem 1], i.e.M(�) ∈ −Kn. Note that

〈M(�), x〉 =
n∑

i=1

�iix1 +
n∑

i=2

2xi�1i = 〈�, Lx〉 = 0,

where the last step is obtained by � ∈ NSn+(Lx). In summary, we haveM(�) ∈ NKn(x). This shows
M(NSn+(Lx)) ⊆ NKn(x).

Conversely, Let � ∈ NSn+(Lx). Then, � ∈ Sn−. It follows from (28) that M(�) ∈ NKn(x); hence,
� ∈ M̃(M(�)) ⊆ M̃(NKn(x)). For y ∈ NKn(x), we see M̃(y) ∈ NSn+(Lx) by (28). Thus, y =
M(M̃(y)) ⊆ M(NSn+(Lx)).
(b) It follows from part(a) immediately. �

Clearly,M is a singleton mapping, whereas M̃ is a set-valued mapping. In particular, in the proof
of Theorem 6.1, we need to choose an element in M̃. Below, we present a way to pick an element in
M̃.
Theorem 6.2: For x ∈ Kn and y ∈ NKn(x), let

�̂ :=

⎧⎪⎨⎪⎩
[
αy1 1

2y
T
2

1
2y2 β 1

y1 ȳ2ȳ
T
2

]
if y �= 0,

O if y = 0,

where

α = 1
2

(
1 ±

√
1 − ‖y2‖2

y21

)
and β = 1

2

(
1 ∓

√
1 − ‖y2‖2

y21

)
y21 .

Then, �̂ ∈ M̃(y).
Proof: Note first that α,β ≥ 0 due to y ∈ −Kn. Since the case in which y = 0 is trivial, it suffices
to prove the case where y �= 0. Consider the following two subcases.
Case 1: For y2 �= 0, by a simple calculation, we can reach

αβ = ‖y2‖2
4

and β = (1 − α)y21 .

Using this, we have

n∑
i=1

�̂ii = αy1 + β

y1
= y1 and �̂1i = 1

2
yi, ∀i = 2, 3, . . . , n.
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Then, it remains to verify �̂ � O, i.e.

(u vT ) �̂

(
u
v

)
≤ 0 ∀ (u vT ) ∈ IRn.

This can be seen by verifying the following:

(u vT )

[
αy1 1

2y
T
2

1
2y2 β 1

y1 ȳ2ȳ
T
2

](
u
v

)
= αy1u2 + yT2 vu + β

1
y1‖y2‖2 (yT2 v)

2

= −(
√−αy1u)2 + yT2 vu −

(√
− β

y1
1

‖y2‖y
T
2 v

)2

= −
(√−αy1u −

√
− β

y1
1

‖y2‖y
T
2 v

)2

≤ 0.

Case 2: For y2 = 0, we have

�̂ =
[
αy1 0
0 β 1

y1 ȳ2ȳ
T
2

]
where α = 0 and β = y21 or α = 1 and β = 0. Then, it is clear to see

αy1 + β
1
y1

= y1,

which indicates n∑
i=1

�̂ii = y1 and �̂1i = 0 = 1
2
yi, i = 2, 3, . . . , n.

Moreover, in this case, we also have �̂ � O because

(u vT ) �̂

(
u
v

)
= (u vT )

[
αy1 0
0 β 1

y1 ȳ2ȳ
T
2

](
u
v

)
= αy1u2 + β

1
y1

(
ȳT2 v
)2

≤ 0,

where the last step follows from α,β ≥ 0 and y1 < 0. �

7. Conclusion

In this paper, we have explored the relation between the SOC and its PSD counterpart in terms of
distances, projections, tangent cones, normal cones and the KKT systems. It is known that SOCP
and SDP are closely related; for example, SOCP can be regarded as a special case of SDP, and SOCP
relaxation provides a nice approach to SDP as mentioned in [16]. The results obtained in this paper
help us understand the differences between the SOC and its PSD reformulation better.
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