
j. differential geometry

109 (2018) 223-256

A DISCRETE UNIFORMIZATION THEOREM FOR
POLYHEDRAL SURFACES

Xianfeng David Gu, Feng Luo, Jian Sun & Tianqi Wu

Abstract

A discrete conformality for polyhedral metrics on surfaces is
introduced in this paper. It is shown that each polyhedral metric
on a compact surface is discrete conformal to a constant curvature
polyhedral metric which is unique up to scaling. Furthermore, the
constant curvature metric can be found using a finite dimensional
variational principle.

1. Introduction

1.1. Statement of results. The Poincaré–Köbe uniformization theo-
rem for Riemann surfaces is a pillar in the last century mathematics. It
states that given any Riemannian metric on a connected surface, there
exists a complete constant curvature Riemannian metric conformal to
the given one. In particular, any simply connected surface with a Rie-
mannian metric is conformally diffeomorphic to the Riemann sphere S2,
the plane C or the unit disk D. When the Riemann surface is a simply
connected domain in the complex plane, the conformal diffeomorphism
is the Riemann mapping. There are many effective algorithms and soft-
wares for computing the Riemann mapping. See [40], [26], [39], [38],
[20] and others. However, computing the conformal diffeomorphisms, to
be called the uniformization maps, for surfaces not isometric to planar
domains has been a challenging problem. The goal of this paper and its
sequel ([29], [30]) is to give a solution to the problem. This is achieved
in two steps. In the first step, we establish a discrete counterpart of the
uniformization theorem for compact polyhedral surfaces. In the second
step, we show that discrete uniformization maps converge to the uni-
formization map when the triangulations are suitably chosen. The first
step is achieved in this paper. In [29], we prove a convergence theorem.

There have been many research activities on establishing various dis-
crete versions of the uniformization theorem and the Riemann mapping
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theorem for polyhedral metric surfaces or topologically triangulated sur-
faces. See, for instance, [39], [38], [12], [37], [22], [20] and others. A
key step in discretization is to define the concept of discrete confor-
mality. Different approaches depend on different notions of discrete
conformality. The most prominent one is probably Thurston’s circle
packing theory ([39], [38]). However, not all polyhedral metrics are of
circle packing type. In this paper, we introduce a new discrete confor-
mality for all polyhedral metrics and establish a discrete uniformization
theorem for polyhedral metrics (PL metrics) on compact surfaces.

Polyhedral surfaces are ubiquitous in computer graphics and many
fields of sciences due to digitization. Organizing polyhedral surfaces
according to their conformal classes is a very useful and important
principle. Each polyhedral surface carries a natural Riemann surface
structure. However, there are no known algorithms to decide if two
polyhedral surfaces are conformal in the classical (Riemannian) sense
and to compute the uniformization metric. The discrete conformality
introduced in this paper is algorithmic.

Given a closed connected surface S and a finite non-empty set V ⊂ S,
we call (S, V ) a marked surface. The objects of our investigation are
polyhedral metrics (or simply PL metrics) on (S, V ). By definition, a
PL metric on (S, V ) is a flat cone metric on S whose cone points are
contained in V . Geometrically these metrics are obtained by isomet-
ric gluing of Euclidean triangles along their edges. For instance, the
boundary of a tetrahedron in the 3-space is a PL metric on the 2-sphere
with four marked points. The absolute values of holomorphic quadratic
differentials on Riemann surfaces are other examples of PL metrics. The
discrete curvature of a PL metric on (S, V ) is the function on V sending
a vertex v ∈ V to 2π less the cone angle at v. A triangulation T of S
with vertex set V is called a triangulation of (S, V ). Each PL metric d
on (S, V ) has a Delaunay triangulation T (d) of (S, V ) such that each
triangle in T (d) is Euclidean and the sum of two angles facing each edge
is at most π.

Definition 1.1. (Discrete conformality and discrete Riemann sur-
face) Two PL metrics d, d′ on (S, V ) are discrete conformal if there exist
sequences of PL metrics d1 = d, ..., dm = d′ on (S, V ) and triangulations
T1, ..., Tm of (S, V ) satisfying

(a)(Delaunay condition) each Ti is Delaunay in di,
(b)(Vertex scaling condition) if Ti = Ti+1, there exists a function

u : V → R so that if e is an edge in Ti with end points v and v′, then
the lengths ldi+1

(e) and ldi(e) of e in di and di+1 are related by

(1) ldi+1
(e) = ldi(e)e

u(v)+u(v′),

(c) if Ti 6= Ti+1, then (S, di) is isometric to (S, di+1) by an isometry
homotopic to the identity in (S, V ).
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The discrete conformal class of a PL metric is called a discrete Rie-
mann surface.
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Figure 1. Discrete conformal change of PL metrics.

The vertex scaling condition (1), first introduced in [33] and [27], is
a reflection of the following fact from Riemannian geometry (see [29]).
Suppose (Σ, g) is a closed surface with a Riemannian metric g whose
Riemannian distance is dg and λ : Σ→ R>0 is a smooth function. Then
there exists a constant C such that for all points v, v′ ∈ Σ,

|dλ4g(v, v′)− λ(v)λ(v′)dg(v, v
′)| ≤ Cd3

g(v, v
′).
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Figure 2. Discrete conformality in terms of hyperbolic geometry.

Theorem 1.2. Suppose (S, V ) is a closed connected marked surface
and d is a PL metric on (S, V ). Then for any K∗ : V → (−∞, 2π) with∑

v∈V K
∗(v) = 2πχ(S), there exists a PL metric d′, unique up to scaling

and isometry homotopic to the identity on (S, V ), such that d′ is discrete
conformal to d and the discrete curvature of d′ is K∗. Furthermore, the
metric d′ can be found using a finite dimensional (convex) variational
principle.

In the special case of S being the torus S1×S1 and K∗ = 0, the above
result was first proved by Fillastre [16] in a different content. Fillastre
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proved an existence and uniqueness of isometric embedding of cusped
hyperbolic tori into hyperbolic 3-manifolds in [16]. See also the work of
Schlenker [36]. The equivalent of these two results is proved in [29].

For the constant function K∗ = 2πχ(S)/|V | in Theorem 1.2, we ob-
tain a constant curvature PL metric d′, unique up to scaling, discrete
conformal to d. This is a discrete version of the uniformization theo-
rem. Theorem 1.2 also holds for compact marked surfaces with non-
empty boundary. In that case, we double the surface to obtain a closed
surface. We omit the details.

1.2. Discrete conformality, hyperbolic geometry, and the
Ptolemy identity. The relationship between PL metrics and hyper-
bolic geometry was first discovered in an important paper by Bobenko–
Pinkall–Springborn [6]. Using their work and the Delaunay condition,
one sees that the discrete conformality introduced in Definition 1.1 is
closely related to convex hull geometry in hyperbolic spaces. Indeed,
the following is equivalent to Definition 1.1. Given a PL metric d on
(S, V ), let T be a Delaunay triangulation of (S, V, d). For each Eu-
clidean triangle τ = ∆ABC in T , replace τ by the ideal hyperbolic
triangle τ∗ in the hyperbolic 3-space H3 such that τ∗ and τ have the
same set of vertices {A,B,C} in C. Here we consider C to be in the
sphere at infinity of the hyperbolic 3-space H3 = C × R>0. If τ and σ
are two Euclidean triangles in T glued along their common edge by a
Euclidean isometry f , then one glues τ∗ and σ∗ along their correspond-
ing edges by the same isometry f , considered as a rigid motion of H3.
In this way, one produces a complete finite area hyperbolic metric d∗ on
S − V . From the definition of Delaunay triangulation, one sees that d∗

is independent of the choices of the Delaunay triangulation T . It will
be shown (Corollary 4.8) that two PL metrics d1 and d2 on (S, V ) are
discrete conformal if and only if d∗1 is isometric to d∗2 by an isometry
isotopic to the identity in (S, V ).

There are many directions which one can generalize Theorem 1.2. For
instance, we can define discrete conformality for spherical, hyperbolic
polyhedral surfaces and even polyhedral surfaces obtained by isometric
gluing of triangles in the Minkowski plane, or de Sitter space. These
will be addressed in our future work.

Our guiding principle for defining discrete conformality is the Delau-
nay condition and the Ptolemy identity. The Delaunay condition selects
the correct class of triangulations and the Ptolemy identity defines the
appropriate “vertex scaling” deformation of the metrics.

Let a, b, a′, b′ be the edge lengths of a quadrilateral Q labelled cycli-
cally and c, c′ be the lengths of the diagonals so that Q is inscribed to
a circle. When Q is in the Euclidean plane, then these lengths satisfy
the Ptolemy identity

aa′ + bb′ = cc′.
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Ptolemy’s theorem for spherical and hyperbolic quadrilaterals were
proved by Darboux, Frobenius and Kubota over one hundred years ago.
The results still take the same form AA′ + BB′ = CC ′ as the Ptolemy
identity. Namely, for Q in the 2-sphere,

sin(
a

2
) sin(

a′

2
) + sin(

b

2
) sin(

b′

2
) = sin(

c

2
) sin(

c′

2
),

and Q in the hyperbolic plane,

sinh(
a

2
) sinh(

a′

2
) + sinh(

b

2
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2
) = sinh(

c

2
) sinh(

c′

2
).

The above two equations suggest, similar to (1), the correct “vertex
scaling” for spherical and hyperbolic polyhedral metrics should be

(2) sin(
ldi+1

(e)

2
) = sin(

ldi(e)

2
)eu(v)+u(v′),

and

(3) sinh(
ldi+1

(e)

2
) = sinh(

ldi(e)

2
)eu(v)+u(v′).

These two definitions of vertex scaling operation were first introduced
in the work of Bobenko–Pinkall–Springborn [6].

Since the Ptolemy identity still holds for quadrilaterals inscribed to
a curve of constant curvature in both the Minkowski plane and the de
Sitter space, we can define the similar discrete conformality for polyhe-
dral metrics with the Minkowski plane and the de Sitter space as the
underlying geometry.

Furthermore, Ptolemy theorem’s has been generalized by John Casey
in 1866 to the case of four disjoint disks tangent to a circle from one side.
Let a, a′, b, b′, c, c′ be the lengths of the exterior common tangent lines
between pairs of disks. Then Casey’s theorem says that the Ptolemy
identity aa′ + bb′ = cc′ still holds. Casey’s theorem was generalized
by Darboux and Frobenius to the spherical geometry in 1880’s and by
Kubota [25] to the hyperbolic geometry in 1912. Our recent work [14]
shows that Casey’s theorem still holds in the Minkowski plane and the
de Sitter space. All of the formulas take the same form as the Ptolemy
identity AA′+BB′ = CC ′. Therefore, we can define the similar discrete
conformality using the Delaunay condition and the “vertex scaling” de-
formation governed by the Ptolemy identity aa′+bb′ = cc′ for polyhedral
metrics produced in Casey’s situation.

1.3. Discrete conformality in spherical and hyperbolic geome-
tries. The counterpart of Theorem 1.2 for hyperbolic polyhedral metrics
on (S, V ) has been proved in [21] which is a sequel to the current paper.
In this case, two hyperbolic polyhedral metrics d, d′ on (S, V ) are dis-
crete conformal if there exist sequences of hyperbolic polyhedral metrics



228 X. D. GU, F. LUO, J. SUN & T. WU

d1 = d, ..., dm = d′ on (S, V ) and triangulations T1, ..., Tm of (S, V ) sat-
isfying (a) each Ti is Delaunay in di, and (b) if Ti = Ti+1, there exists a
function u : V → R so that if e is an edge in Ti with end points v and
v′, then the lengths ldi+1

(e) and ldi(e) of e in di and di+1 are related
by (3), and (c) if Ti 6= Ti+1, then (S, di) is isometric to (S, di+1) by an
isometry homotopic to the identity in (S, V ).

Theorem 1.3 ([21]). Suppose d is a hyperbolic polyhedral metric on
a closed connected marked surface (S, V ). Then for any K∗ : V →
(−∞, 2π) with

∑
v∈V K

∗(v) > 2πχ(S), there exists a unique hyperbolic
polyhedral metric d′ on (S, V ) so that d′ is discrete conformal to d and
the discrete curvature of d′ is K∗. Furthermore, the metric d′ can be
found using a finite dimensional (convex) variational principle. In par-
ticular, if χ(S) < 0 and K∗ = 0, each hyperbolic polyhedral metric on
(S, V ) is discrete conformal to a unique hyperbolic metric on S.

We remark that the special case ofK∗ = 0 in Theorem 1.3 was a result
of Fillastre [16]. See also [36]. Fillastre proved his theorem in a different
content on the isometric embedding of punctured hyperbolic surfaces as
the boundaries of convex hulls in Fuchsian hyperbolic 3-manifolds. We
thank a referee for pointing out the equivalence of Fillastre’s theorem
and Theorem 1.3 for K∗ = 0. See [29] and [21] for more details.

Theorem 1.4 ([21]). Suppose d and d′ are two Euclidean (or hy-
perbolic or spherical) polyhedral metrics given as isometric gluing of
geometric triangles on a closed marked surface (S, V ). There exists an
algorithm to decide if d and d′ are discrete conformal.

1.4. Convergence of discrete uniformization maps. The conver-
gence theorem that we prove in [29] is the following. It is motivated by
Thurston’s conjecture on the convergence of circle packing maps to the
Riemann mapping. Thurston’s conjecture was solved by B. Rodin and
D. Sullivan in [34].

Given a simply connected polygonal disk with a PL metric (D,V, d)
and three boundary vertices p, q, r ∈ V , let the metric double of (D,V, d)
along the boundary be the polyhedral 2-sphere (S2, V ′, d′). Using The-
orem 1.2, one produces a new polyhedral surface (S2, V ′, d∗) such that:
1) (S2, V ′, d∗) is discrete conformal to (S2, V ′, d′); 2) the discrete cur-
vatures of d∗ at p, q, r are 4π/3; 3) the discrete curvatures of d∗ at all
other vertices are zero; and 4) the area of (S2, V ′, d∗) is

√
3/2. There-

fore, (S2, V ′, d∗) is isometric to the metric double (D(∆ABC), V ′′, d′′)
of an equilateral triangle ∆ABC of edge length 1. Let F be the dis-
crete conformal map from (D(∆ABC), V ′′, d′′) to (S2, V ′, d′) such that
F sends A,B,C to p, q, r respectively. Due to the uniqueness part of
Theorem 1.2, we may assume that f = F | : ∆ABC → D and f sends
A,B,C to p, q, r respectively. We call f the discrete uniformization map
associated (D,V, d, (p, q, r)). Given a Jordan domain Ω, Caratheodory’s
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extension theorem says that the Riemann mapping from the unit disk
D to Ω extends to a homeomorphism from the closure D of D to the
closure Ω. In particular, given three boundary points p, q, r of Ω, there
exists a unique homeomorphism g from ∆ABC to Ω sending A,B,C to
p, q, r respectively such that g is conformal in the interior of ∆ABC. We
call g the extended Riemann mapping for (Ω, (p, q, r)). For any subset
X in the plane C, let dst be the restriction of the Euclidean metric on
C to X.

Theorem 1.5 ([29]). Suppose Ω is a Jordan domain in the com-
plex plane with three distinct points p, q, r ⊂ ∂Ω. There exists a se-
quence (Ωn, Tn, dst, (pn, qn, rn)) of simply connected triangulated polyg-
onal disks in C where Tn are triangulations by equilateral triangles and
pn, qn, rn are three boundary vertices such that

(a) Ω = ∪∞n=1Ωn with Ωn ⊂ Ωn+1 and,
(b) discrete uniformization maps associated to (Ωn, Tn, dst, (pn, qn, rn))

converge uniformly to the extended Riemann mapping associated to
(Ω, (p, q, r)).

In [29], a conjectural discrete uniformization for non-compact sim-
ply connected surface is proposed. It is related to the existence and
uniqueness of convex surfaces in the hyperbolic 3-space and Köbe’s cir-
cle domain conjecture.

1.5. Previous works on discrete conformal geometry. The vertex
scaling condition (1) in Definition 1.1 was introduced by Roček and
Williams in physics [33] and by Luo in [27]. Recall that if u : V → R
is a function and x ∈ RE>0, then the vertex scaling u ∗ x of x is

(4) u ∗ x(vv′) = x(vv′)eu(v)+u(v′),

for all edges vv′ ∈ E(T ). Two PL metrics d, d′ on (S, V, T ) differ by a
vertex scaling if there exists a function u : V → R such that

(5) ld′ = u ∗ ld.
A convex variational principle (Theorem 5.4) associated to the vertex
scaling condition (5) was established by Luo in [27]. There have been
many important works on various finite dimensional variational princi-
ples closely related this work. The convex function used in [27] is closely
related to the hyperbolic volume and the dual volume. Indeed, the hy-
perbolic geometric meaning of the convex function used in [27] was ex-
plained by Bobenko–Pinkall–Springborn in [6] who also obtained an ex-
plicit form of it. Other important related works include Schlenker [36],
Fillastre [16], Fillastre–Izemetiev [17], Colin de-Verdière [11], Brägger
[10], Rivin [35] and others.

The other related notion of discrete conformality comes from circle
packings and circle patterns. It is in some sense dual to the vertex
scaling (5). See the work of [18], [7] and others.
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Note that if (S, T , d) is a Delaunay PL surface and (S, T , d′) is not
Delaunay such that (5) holds, then d and d′ are not discrete conformal
in the sense of Definition 1.1. In [27], d and d′ are defined to be discrete
conformal if (5) holds. However, the existence of constant curvature
metric within a discrete conformal class is false in this setting.

The main issue is that if we are given two PL triangulated surfaces
(S, T , l) and (S, T ′, l′) related by a diagonal flip, then the vertex scaled
PL metric surface (S, T , λ ∗ l) may not be obtained from (S, T ′, µ ∗ l′)
by a diagonal flip for any choice of µ.

Our main contribution is to add the Delaunay condition (a) in Def-
inition 1.1. This makes the definition to be triangulation independent.
From the computational geometry point of view, Delaunay triangula-
tions are the most natural choices of triangulations. Using of Delaunay
condition to define triangulation independent quantities has appeared
before. For instance, a triangulation independent discrete Laplace oper-
ator on a polyhedral surface was introduced by Bobenko and Springborn
in [8].

In the work of Bobenko–Pinkall–Springborn [6], they further ex-
tended the work of [27] on the vertex scaling condition (1). In par-
ticular, they observed a relationship between vertex scaling condition
(1) and Penner’s decorated Teichmüller theory. This observation of [6]
is important for the proof of Theorem 4.3. Furthermore, [6] introduced
the vertex scaling conditions (2) and (3) for spherical and hyperbolic
polyhedral surfaces and established the associated variational principles.

Other different versions of discrete Riemann mapping theorem and
discrete conformality have appeared in the work by Thurston [39], Can-
non [12], Schramm [37], Glickenstein [18], Hersonsky [22], Mercat [31]
and others.

A theorem of Troyanov [41] states that the same result of Theo-
rem 1.2 holds if discrete conformality is replaced by the classical Rie-
mannian conformality. The major difference between Troyanov’s work
and Theorem 1.2 is that in our case, we discretize the metric and con-
formality so that metrics are represented as edge length vectors in RN
and discrete conformality can be decided algorithmically. Theorem 1.2
is also related to the work of Kazdan and Warner [23] and [24] on pre-
scribing Gaussian curvature. It is possible that Theorem 1.2 implies the
existence part of Troyanov’s theorem and Kazdan–Warner’s theorem for
closed surfaces by approximation.

1.6. Basic ideas of the proof of Theorem 1.2. Given a PL met-
ric d on (S, V ), let D(d) be the set of all PL metrics discrete con-
formal to d, considered up to isometries isotopic to the identity (re-
specting V). The space D(d) is a discrete analogue of the classical con-
formal class {eug|u : Σ → R} of all Riemannian metrics conformal
to a given Riemannian metric g. The key ingredient in the proof of
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Theorem 1.2 is that D(d) is diffeomorphic to RV such that the dis-
crete curvature map K : D(d) → (−∞, 2π)V is C1-smooth. Assuming
that D(d) is C1 diffeomorphic to RV , the rest of the proof of Theo-
rem 1.2 follows from the standard continuity method. The basic idea
goes as follows. Since a PL metric d′ and its scalar multiplied met-
ric λd′ have the same discrete curvature, K is defined on the quotient
space D(d)/R>0 where R>0 acts by scaling PL metrics. Using a vari-
ational principle established by Luo in [27] (Theorem 5.4), we show
that K is the gradient of a C2-smooth convex function defined on RV .
This implies that the curvature map K : D(d)/R>0 → (−∞, 2π)V is
injective. By the Gauss–Bonnet theorem, the image of K is contained
in the subspace {z ∈ (−∞, 2π)V |

∑
v∈V z(v) = 2πχ(S)} whose dimen-

sion is the same as that of D(d)/R>0. Using a result of Akiyohsi [1]
and degeneration analysis, we show that the image of K is equal to
{z ∈ (−∞, 2π)V |

∑
v∈V z(v) = 2πχ(S)}. This establishes Theorem 1.2.

The space D(d) is essentially a combinatorial object (e.g., a CW com-
plex) by Definition 1.1 and is covered by cells defined as follows. Each
PL metric d′ discrete conformal to d admits a Delaunay triangulation
T . Let the edge length vector of d′ with respect to T be ld′ ∈ RE(T )

and let U(T ) ⊂ RV be the set of vectors x ∈ RV such that the vertex
scaled triangulated PL metric (S, T , x ∗ ld′) is still Delaunay. It can be
shown that U(T ) is diffeomorphic to a closed convex polytope (Lemma
5.1). Furthermore, by definition, D(d) is a union of cells W (T ) where
W (T ) = {(S, T , x ∗ ld′)|x ∈ U(T )}. Thus, the space D(d) is built in a
combinatorial way by gluing of cells W (T ). In general, it is very diffi-
cult to construct a smooth structure on a space using the gluing of cells.
We overcome this difficulty by employing Teichmüller theory. Using the
works of Penner [32], Bowditch–Epstein [9], Rivin [35], and Bobenko–
Pinkall–Springborn [6], we proved that RV = ∪T U(T ) and that the
corresponding maps AT : W (T ) → U(T ) sending x ∗ ld′ to x (taken to
be chart maps for D(d)) can be glued to produce a global homeomor-
phism from D(d) to RV . Finally, we prove the C1-smoothness of the
homeomorphism and its inverse by a direct computation (Lemma 4.6).
The C1-smoothness of natural maps between various moduli spaces of
geometric structures have appeared before. See, for instance, the impor-
tant work of Bonahon [3], [4]. As pointed out by a referee, there should
be a more geometric explanation of this C1-smoothness phenomenon.

1.7. Notations, conventions and organization of the paper. Tri-
angulations to be used in the paper are defined as follows. Take a finite
disjoint union of Euclidean triangles and identify edges in pairs by home-
omorphisms. The quotient space is a compact surface together with a
triangulation T whose simplices are the quotients of the simplices in the
disjoint union. Let V = V (T ) and E = E(T ) be the sets of vertices and
edges in T . If e is an edge in T adjacent to two distinct triangles t, t′,
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then the diagonal switch on T at e replaces e by the other diagonal in
the quadrilateral t∪e t′ and produces a new triangulation T ′ on (S, V ).
A PL metric d on (S, V ) is obtained as isometric gluing of Euclidean
triangles along edges so that the set of cone points is contained in V .
It is the same as a flat cone metric on (S, V ) whose cone points are
contained in V . Given a PL metric d and a triangulation T on (S, V ),
if each triangle in T (in d metric) is isometric to a Euclidean triangle,
we say T is geometric in d. If T is a triangulation of (S, V ) isotopic
to a geometric triangulation T ′ in a PL metric d, then the length of an
edge e ∈ E(T ) (or angle of a triangle at a vertex in T ) is defined to be
the length of the corresponding geodesic edge e′ ∈ E(T ′) (respectively
angle of the corresponding triangle in T ′) measured in metric d. The
interior of a surface X is denoted by int(X). If X is a finite set, |X|
denotes its cardinality and RX denotes the vector space {f : X → R}.
All surfaces are assumed to be connected.

The paper is organized as follows. In §2, we recall the Teichmüller
space TPL(S, V ) of PL metrics and its topology and show that TPL(S, V )
admits a natural cell decomposition from Delaunay triangulations. In
§3, we recall Penner’s theory of decorated Teichmüller space and its cell
decomposition from Delaunay triangulations. In §4, we relate discrete
conformality with decorated Teichmüller space and show that there
exists a C1-smooth diffeomorphism from TPL(S, V ) to decorated Te-
ichmüller space sending discrete conformality to decoration changes.
Theorem 1.2 is proved in §5 using Akiyoshi’s work and a variational
principle developed in [27].

Acknowledgment. We thank the referees for their careful reading of
the paper and their comments and suggestions. The work is supported
in part by the National Science Foundation of USA (DMS 1222663, DMS
1221339, DMS 1207832 and DMS 1405106) and the National Science
Foundation of China.

2. Teichmüller space of PL metrics, its cell decomposition
and Delaunay conditions

Suppose (S, V ) is a marked connected closed surface. The discrete
curvature Kd : V → (−∞, 2π) of a PL metric d on (S, V ) satisfies the
Gauss–Bonnet formula that

∑
v∈V Kd(v) = 2πχ(S). Therefore, if χ(S−

V ) ≥ 0, i.e., (S, V ) = (S2, {v1, ..., vn}) with n ≤ 2, or (RP 2, {v1, ..., vn})
for n = 1, the Gauss–Bonnet identity implies there is no PL metric on
(S, V ). From now on, we will always assume that the Euler character-
istic χ(S − V ) < 0.

2.1. Teichmüller space of PL metrics and its length coordi-
nates. The Teichmüller space of all PL metrics on (S, V ), denoted by
TPL(S, V ) or simply TPL, is the space of all polyhedral metrics on (S, V ),
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considered up to isometry isotopic to the identity map (respecting V).
The equivalence class of a PL metric d will be denoted by [d].

Troyanov [41] shows that TPL(S, V ) is homeomorphic to R−3χ(S−V ).
Below, we will use a natural collection of charts on TPL which makes it
a real analytic manifold. Suppose T is a triangulation of (S, V ) with

the set of edges E = E(T ). Let RE(T )
∆ be the set of x ∈ RE(T ) such

that x(e) > 0 for each edge e ∈ E, and such that x(ei) + x(ej) > x(ek)
whenever there is a triangle t ∈ T with edges ei, ej , ek. By definition,

RE(T )
∆ is non-empty and is an open convex polytope in RE . For each

x ∈ RE(T )
∆ , one constructs a PL metric dx on (S, V ) by replacing each

triangle t with edges ei, ej , ek by a Euclidean triangle of edge lengths
x(ei), x(ej), x(ek) and gluing them by isometries along the corresponding
edges. This construction produces an injective map

ΦT : RE(T )
∆ → TPL(S, V )

sending x to [dx]. The image P (T ) := ΦT (RE(T )
∆ ) is the space of all

(isotopy classes of) PL metrics [d] on (S, V ) for which T is isotopic to a
geometric triangulation in d. We call x the length coordinate of dx and
ΦT (x) (with respect to T ).

In general P (T ) 6= TPL(S, V ). For instance, let d be the metric
double of an obtuse triangle t along its boundary and T be the natural
triangulation whose edges are edges of t. Let T ′ be the triangulation
obtained by the diagonal switch at the shortest edge of t. Then T ′ is
not isotopic to any geometric triangulation in d.

Since each PL metric on (S, V ) admits a geometric triangulation (for
instance, its Delaunay triangulation), we see that TPL(S, V ) = ∪T P (T )
where the union is over all triangulations of (S, V ). The space TPL(S, V )
is a real analytic manifold with coordinate charts {(P (T ),Φ−1

T )|T tri-

angulations of (S, V )}. To see that transition functions Φ−1
T ΦT ′ are real

analytic, note that any two triangulations of (S, V ) are related by a
sequence of diagonal switches. Therefore, it suffices to show the result
for T and T ′ which are related by a diagonal switch along an edge e.
In this case, the transition function takes the following form:

(6) Φ−1
T ΦT ′(x0, x1, ...., xm) = (f(x0, ..., xm), x1, ..., xm),

where x0 is the length of e and f is the length of the diagonal switched
edge. See Figure 3(a), (b). Let t, t′ be the triangles adjacent to e so
that the lengths of edges of t, t′ are x0, x1, x2 and x0, x3, x4. Using the
cosine law, we see that f is a real analytic function of x0, ..., x4 given by
(7)

f =

√
x2

1 +x2
4− 2x1x4 cos(arccos(

x2
0 +x2

1−x2
2

2x0x1
) + arccos(

x2
0 +x2

4−x2
3

2x0x4
)).
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In the special case when the quadrilateral t∪e t
′ is inscribed to a circle,

we have the Ptolemy identity x0f = x1x3 + x2x4. Therefore,

Corollary 2.1. If T ′ is obtained from T by a diagonal switch at the
edge e and the quadrilateral t ∪e t

′ is inscribed to a circle, then

(8) Φ−1
T ΦT ′(x0, x1, x2, ..., xm) = (

x1x3 + x2x4
x0

, x1, x2, ..., xm).

e

e1

e2

e3

e4

e1

e2

e3

e4

x 1

x 2

x 3

x 4

x 0

v1

v2

v3

v4

x 31

x 32

x 41

x 42

x 12

f

α

α '

f

(a) (b) (c)

Figure 3. Diagonal switch and lengths of quadrilaterals.

2.2. Delaunay triangulations. Recall that a cell decomposition C of
a marked surface (S, V ) is a CW decomposition of S so that V is the
set of 0-cells of C. If (S, V, d) is a polyhedral surface, a geometric cell
decomposition of (S, V, d) is a cell-decomposition of (S, V ) so that each
open 1-cell is a geodesic arc.

Given a PL metric d on (S, V ), its Voronoi decomposition is the col-
lection of 2-cells {R(v)|v ∈ V } where R(v) = {x ∈ S|d(x, v) ≤ d(x, v′)
for all v′ ∈ V }. The dual cell-decomposition C(d) of the Voronoi decom-
position is called the Delaunay tessellation of (S, V, d) ([2], [8]). It is
the geometric cell decomposition of (S, V, d) with vertices V and edges
corresponding to 1-dimensional connected components of R(v) ∩ R(v′)
for v, v′ ∈ V . A Delaunay triangulation T (d) of (S, V, d) is a geometric
triangulation of the Delaunay tessellation C(d) by further triangulating
all non-triangular 2-dimensional cells without introducing extra vertices.
For a generic PL metric d, C(d) is a Delaunay triangulation of d. The
following was proved by Bobenko–Springborn and Aurenhamer et al.

Lemma 2.2. (See [8], [2]) (1) Each PL metric d on (S, V ) has a
Delaunay triangulation.

(2) A geometric triangulation T of (S, V, d) is Delaunay if and only if
the sum of opposite angles facing each edge e is at most π. Furthermore,
the sum is strictly less than π if and only if the edge e is in C(d).

(3) If T and T ′ are Delaunay triangulations of d, then there exists
a sequence of Delaunay triangulations T1 = T , T2, ..., Tk = T ′ of d so
that Ti+1 is obtained from Ti by a diagonal switch.
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Definition 2.3. (Delaunay cells in Teichmüller space) For a triangu-
lation T of (S, V ), the associated Delaunay cell in TPL(S, V ) is defined
by

DPL(T ) = { [d] ∈ TPL(S, V )|T
is isotopic to a Delaunay triangulation of d}.

Note that DPL(T ) ⊂ P (T ) and DPL(T ) contains the PL metric such
that all edges have length 1.

Lemma 2.4. Given a finite set of triangulations T1, ..., Tm of (S, V ),
then ∩mi=1DPL(Ti) 6= ∅ if and only if there exists a cell-decomposition C
of (S, V ) so that each Ti is isotopic to a triangulation of C with no ad-
ditional vertices introduced. Furthermore, if ∩mi=1DPL(Ti) 6= ∅, there ex-
ists, unique up to isotopy, a cell-decomposition denoted by ∩mi=1Ti which
has the maximum number of edges so that Ti is isotopic to a triangula-
tion of ∩mi=1Ti.

Proof. If ∩mi=1DPL(Ti) 6= ∅, take a point [d] ∈ ∩mi=1DPL(Ti) and con-
sider the Delaunay tessellation C(d) associated to d. Then by definition
each Ti is isotopic to a triangulation of C(d).

Conversely, if C is a cell-decomposition of (S, V ) without 1-gons and
bi-gons as 2-cells, produce a flat cone metric d on (S, V ) by making all
2-cells in C regular Euclidean polygons of edge length 1. Since Ti is
isotopic to a geometric triangulation T ′i of C, by the construction, each
T ′i is Delaunay in d. Therefore, [d] ∈ ∩mi=1DPL(Ti).

To prove the last statement, if ∩mi=1DPL(Ti) 6= ∅, let C be the cell-
decomposition of (S, V ) whose edges are isotopic to edges in Ti for each
i. Then by the construction, if C′ is a cell-decomposition so that Ti is a
triangulation of C′ for each i, C′ is isotopic to a subcomplex of C. q.e.d.

Assume that T is geometric in d. One can characterize PL metrics
[d] ∈ DPL(T ) in terms of the length coordinate x = Φ−1

T ([d]) as follows.
By definition, T is Delaunay in d if and only if

(9) α+α′ ≤ π, i.e., cos(α)+cos(α′) ≥ 0, for each edge e ∈ E(T )

where α, α′ are the two angles facing e. See Figure 3(a). Let t and t′

be the triangles adjacent to e and e, e1, e2 be edges of t and e, e3, e4 be
the edges of t′. Note that t′ = t is allowed. Suppose in the metric d the
length of e is x0 and the length of ei is xi, i = 1, ..., 4. By the cosine
law, Delaunay condition (9) is the same as

(10)
x2

1 + x2
2 − x2

0

2x1x2
+
x2

3 + x2
4 − x2

0

2x3x4
≥ 0, for all edges e ∈ E(T ).

Inequality (10) shows that DPL(T ) ⊂ TPL is bounded by a finite
set of real analytic subvarieties. It turns out {DPL(T )|T } forms a real
analytic cell decomposition of TPL.
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Let us recall the basics of real analytic cell decompositions of a real
analytic manifold Mn. A closed subspace C ⊂Mn is a real analytic cell
if there is a real analytic diffeomorphism h defined in an open neighbor-
hood U of C into Rn so that h(C) is a closed (possibly non-compact)
convex polytope in Rn. A face C ′ of C is a subset so that h(C ′) is a
face of the polytope h(C). A real analytic cell decomposition of M is
a locally finite collection of n-dimensional real analytic cells {Ci|i ∈ J}
so that M = ∪i∈JCi and Ci1 ∩ ... ∩Cik is a face of Cij for all choices of
indices.

Theorem 2.5. For a marked closed surface (S, V ) with χ(S−V ) < 0,
the set {DPL(T )|T triangulations of (S, V ) } forms an analytic cell-
decomposition of the Teichmüller space TPL(S, V ).

Proof. To see thatDPL(T ) is a real analytic cell of dimension−3χ(S−
V ), one takes the open neighborhood of DPL(T ) to be P (T ). Recall

that P (T ) = ΦT (RE(T )
∆ ) is the set of all PL metrics [d] for which T is

isotopic to a geometric triangulation in d. Also fixes an edge e1 ∈ E(T ).
Define hT : P (T ) → RE × R to be the real analytic map sending x to
(φ0(x), ln(x(e1))) where φ0(x)(e) = π − (α + α′) with α and α′ being
angles facing e. The fact that DPL(T ) is a real analytic cell follows
from,

Theorem 2.6. (Rivin, [35]) The map hT : P (T )→ RE×R is a real
analytic embedding whose image is an open set in the affine subspace
P ∗ = {(y, t) ∈ RE × R|

∑
e∈E y(e) = π(|V | − χ(S))}. Furthermore,

hT (DPL(T )) = P ∗ ∩ (RE≥0 × R) is a closed convex polytope whose co-

dimension-1 faces are defined by α+ α′ = π for some edges e.

To show that {DPL(T )|T } forms a cell decomposition, consider W =
DPL(T1)∩ ....∩DPL(Tm) 6= ∅. We will show that hTi(W ) is a face of the
convex polytope hTi(DPL(Ti)) for each i. By Lemma 2.4, consider the
cell-decomposition ∩mi=1Ti of (S, V ). Let Ui be the face of hTi(DPL(Ti))
defined by the set of linear equalities: α + α′ = π for all edges e in Ti
which is not isotopic to an edge of ∩mj=1Tj . We claim hTi(W ) = Ui.

To see that hTi(W ) ⊂ Ui, take [d] ∈ W and an edge e of Ti which is
not isotopic to an edge of ∩mj=1Tj . Then by Lemma 2.4, the Delaunay

tessellation C(d) is isotopic to a subcomplex of ∩mj=1Tj . Therefore, e is

not isotopic to an edge of C(d). By Lemma 2.2(2), this implies α+α′ = π
where α and α′ are angles opposite to e in Ti, i.e., hTi(W ) ⊂ Ui.

Conversely, suppose [d] satisfies hTi([d]) ∈ Ui. By definition [d] ∈
DPL(Ti) and α + α′ = π for all edges e of Ti which are not isotopic to
edges of ∩mj=1Tj . Let C(d) be the Delaunay tessellation associated to

d and e be an edge of C(d). Then by Lemma 2.2(2), α + α′ < π for
the two angles α and α′ facing e. Therefore, e is isotopic to an edge
in ∩mj=1Tj . This shows that C(d) is isotopic to a subcomplex of ∩mj=1Tj .
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Since Tj is isotopic to a triangulation of ∩m
j=1Tj , it follows that Tj is

isotopic to a triangulation of C(d). Therefore, [d] ∈ DPL(Tj) for all j
and Ui ⊂ hTi(W ). q.e.d.

Note that the cell decomposition TPL(S, V ) = ∪[T ]DPL(T ) of the
Teichmüller space is invariant under the action of the mapping class
group.

3. Penner’s work on decorated Teichmüller spaces

One of the main tools used in the proof of Theorem 1.2 is the dec-
orated Teichmüller space theory developed by R. Penner [32]. We will
recall a natural cell structure on the decorated Teichmüller space discov-
ered by Penner and Bowditch–Epstein [9] and the work of Akiyoshi [1].

3.1. Decorated triangles. Let H
2 be the 2-dimensional hyperbolic

plane. An ideal triangle is a hyperbolic triangle in H
2 with three vertices

v1, v2, v3 at the circle at infinity of H
2. Any two ideal triangles are

isometric. A decorated ideal triangle τ is an ideal triangle so that each
vertex vi is assigned a horoball Hi centered at vi. Let ei be the complete
geodesic edge of τ opposite to the vertex vi. The inner angle ai of τ
is the length of the portion of the horocycle ∂Hi between ej and ek,
{i, j, k} = {1, 2, 3}. The length li ∈ R of the edge ei in τ is the signed
distance between Hj and Hk (j, k �= i). To be more precise, if Hj∩Hk =
∅, then li > 0 is the distance between Hk and Hj . If Hj ∩Hk �= ∅, then
−li is the distance between two end points of ∂(ei ∩Hj ∩Hk). Penner

calls Li = eli/2 the λ-length of ei.

a1

a2

a3
l1

l2

l3

li>0 li<0

H j

H k

Figure 4. Decorated ideal triangles and their edge lengths.

It is known that for any l1, l2, l3 ∈ R, there exists a unique decorated
ideal triangle of edge lengths l1, l2, l3. The relationship between the
lengths li and angles aj ’s is the following cosine law proved by Penner:
(11)

ai = e
1
2
(li−lj−lk) =

Li

LjLk
, ln(ai) + ln(aj) = −lk, {i, j, k} = {1, 2, 3}.

Let S be a closed connected surface and V = {v1, ..., vn} ⊂ S. We as-
sume n ≥ 1 and χ(S−V ) < 0. Following Penner, a decorated hyperbolic
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metric on S − V is a complete finite area hyperbolic metric d on S − V
together with a horoball Hi centered at the i-th cusp corresponding to
vi. We can parameterize it as (d,w) where w = (w1, ..., wn) ∈ Rn>0 and
wi is the length of the horocycle ∂Hi. Two decorated hyperbolic met-
rics on S − V are equivalent if there is an isometry h between them so
that h is homotopic to the identity and h preserves the horoballs. The
space of all equivalence classes of decorated hyperbolic metrics on S−V
is defined to be the decorated Teichmüller space TD(S − V ). If we use
T (S−V ) to denote the usual Teichmüller space of complete hyperbolic
metrics of finite area on S−V , then there is a natural homeomorphism
from TD(S − V ) to T (S − V )×Rn>0 by sending [(d,w)] to ([d], w). The
projection TD(S − V ) → T (S − V ) sending [(d,w)] to [d] records the
underlying hyperbolic metric.

Now suppose T is a triangulation of (S, V ) with E = E(T ). Then
Penner introduced a homeomorphism map ΨT : RE>0 → TD(S − V )

called the λ-length coordinate as follows. For each x ∈ RE>0, i.e., x :
E → R>0, ΨT (x) is the equivalence class of the decorated hyperbolic
metric (d,w) on S − V obtained as follows. If t is a triangle in T with
three edges ei, ej , ek, one replaces t by the decorated ideal triangle of
edge lengths 2 lnx(ei), 2 lnx(ej) and 2 lnx(ek) and glues these decorated
ideal triangles isometrically along the corresponding edges preserving
decoration. One obtains a decorated hyperbolic metric (d,w) on S−V .
The horoballs are the gluing of the corresponding portions of horoballs
associated to ideal triangles. In particular, wi is the sum of all angles
of the decorated ideal triangles at vi. Penner proved, using his Ptolemy
identity, that Ψ−1

T ΨT ′ is real analytic for any two triangulations T and
T ′. Here Ptolemy identity for decorated ideal quadrilaterals states that
AA′ + BB′ = CC ′ where A,A′, B,B′ are the λ-lengths of the edges
of a quadrilateral labelled cyclically and C,C ′ are the λ-lengths of the
diagonals. See Figure 5. In particular, {ΨT |T } forms real analytic
charts for TD(S − V ).

The following lemma is well known. We omit the proof.

Lemma 3.1. Suppose C is an embedded horocycle of length wi cen-
tered at a cusp in a complete hyperbolic surface and C ′ is another em-
bedded horocycle of smaller length w′i centered at the same cusp. Then
the wi = w′ie

t where t = d(C,C ′) is the distance between C and C ′.

By the lemma and definition, if ΨT (x) = [(d,w)] then for any k > 0,
ΨT (kx) = [(d, 1

kw)]. Thus, for any decorated metric (d,w), by choos-
ing k large, one may assume the associated horoballs are disjoint and
embedded in (d, 1

kw).

3.2. Delaunay triangulations. Given a decorated hyperbolic metric
(d,w) on S−V , there is a natural Delaunay triangulation T associated
to (d,w). The geometric definition of T goes as follows. First assume
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that the associated horoballs H1(w), ...,Hn(w) are embedded and dis-
joint in S−V . Consider the Voronoi cell decomposition of the compact
surface Xw = S − V − ∪ni=1int(Hi(w)) so that the 2-cell Ri(w) asso-
ciated to vi is {x ∈ Xw|d(x, ∂Hi(w)) ≤ d(x, ∂Hj(w)), all j}. Recall
that an orthogeodesic arc in Xw is a geodesic segemant from ∂Xw to
∂Xw perpendicular to ∂Xw. The dual of the Voronoi decomposition
is a decomposition C(d,w) of Xw by a collection of disjoint embedded
orthogeodesic arcs {s′} constructed as follows. If s ⊂ Ri(w) ∩ Rj(w)
is a 1-dimensional connected component, take a point p ∈ s and con-
sider the two shortest geodesics paths bi and bj in Ri(w) and Rj(w)
respectively from p to ∂Hi(w) and ∂Hj(w). The shortest orthogeodesic

arc s′ in Xw homotopic to b−1
i ∗ bj is in C(d,w) and is dual to s. A

Delaunay triangulation of Xw is a subdivision of C(d,w) by decompos-
ing (using orthogeodesic arcs) all non-hexagonal 2-cells into hexagonal
2-cells. Since each orthogeodesic arc extends to a complete geodesic
from cusp to cusp, one obtains a Delaunay triangulation T (d,w) of the
decorated metric (d,w) on S − V by extending each orthogeodesic arc
s′ to a complete geodesic. For a generic metric (d,w), a Delaunay tri-
angulation is the dual to the Voronoi decomposition. By the definition
of Voronoi cells and Lemma 3.1, Delaunay triangulations of (d,w) and
(d,w/k) are the same when k > 1. Due to this, for a general decorated
metric (d,w), we define a Delaunay triangulation of (d,w) to be that of
(d,w/k) for k large.

Given triangulation T of (S, V ), let DD(T ) be the set of all equiv-
alence classes of decorated hyperbolic metrics (d,w) in TD(S − V ) so
that T is isotopic to a Delaunay triangulation of (d,w). Penner proved
the following important theorem in [32]. See also [9]. Details on the
real analytic diffeomorphism part of the decomposition can be found in
[19].

Theorem 3.2. (Penner) The decorated Teichmüller space TD(S−V )
has a real analytic cell decomposition by {DD(T )|T } and

TD(S − V ) = ∪[T ]DD(T ),

where the union is over all isotopy classes of triangulations. The de-
composition is invariant under the action of the mapping class group.

3.3. Finite set of Delaunay triangulations. The following theorem
of Akiyoshi [1] holds for decorated finite volume hyperbolic manifolds
of any dimension.

Theorem 3.3. (Akiyoshi) For any finite area complete hyperbolic
metric d on S − V , there are only finitely many isotopy classes of tri-
angulations T so that ([d] × Rn>0) ∩ DD(T ) 6= ∅. In particular, there
exist triangulations T1, ..., Tk so that for any w ∈ Rn>0, any Delaunay
triangulation of (d,w) is isotopic to one of Ti.
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We thank B. Springborn for informing us the above result was known
before and was a theorem of Akiyoshi. However, our proof is different
and short. For completeness, we present our proof in the appendix.

4. Euclidean polyhedral metrics and decorated hyperbolic
metrics

The goal of this section is to associate a complete finite area hyper-
bolic metric d∗ on S − V to each PL metric d on (S, V ) such that two
PL metrics d1 and d2 are discrete conformal if and only if d∗1 and d∗2 are
isometric by an isometry isotopic to the identity (respecting V ). This is
a discrete version of the classical theorem that each Riemannian metric
g on S−V corresponds to a complete hyperbolic metric g∗ (the Poincaré
metric) such that g∗1 = g∗2 if and only if g1 and g2 are conformal. We
achieve this by using Penner’s decorated hyperbolic metrics.

Let us begin with an important observation of Bobenko–Pinkall–
Springborn [6] which relates Euclidean polyhedral metrics to decorated
hyperbolic metrics. Suppose (S, T , l) is a triangulated polyhedral sur-

face with edge length vector l ∈ RE(T ). Let T − V be the associated
ideal triangulation of the punctured surface S − V . One constructs
a decorated hyperbolic metric dl,T on the ideal triangulated surface
(S − V, T − V ) by replacing each triangle τ ∈ T by a decorated ideal
triangle τ∗ whose λ-length at an edge e is the Euclidean length l(e). By
the construction and definition, one sees that edge length vectors l and
u∗l correspond to two decorated hyperbolic metrics having the same the
underlying hyperbolic metric, i.e., if dl,T = (p, w), then du∗l,T = (p, w′).
As remarked in §1.5, due to the lacking of Delaunay condition, this
construction does not fully capture the discrete conformality.

We now use this construction for Delaunay triangulations to prove
that the spaceD(d) of all PL metrics discrete conformal to a given metric
d is homeomorphic to RV . Fix a triangulation T of (S, V ), we have two

coordinate maps Φ−1
T : P (T ) → RE(T ) and ΨT : RE(T ) → TD(S − V ).

Consider the injective map AT : P (T ) → TD(S − V ) defined by ΨT ◦
Φ−1
T which is the Bobenko–Pinkall–Springborn construction associated

to the triangulation T . By definitions and Lemma 3.1, one sees that

two vectors x, y ∈ RE(T )
∆ are related by a vertex scaling y = u ∗ x for

some u ∈ RV , if and only if ΨT (x) and ΨT (y) have the same underlying
hyperbolic structure.

Proposition 4.1. AT |DPL(T ) is a real analytic diffeomorphism from
DPL(T ) onto DD(T ).

Proof. Since AT is injective and real analytic, it suffices to show that
Φ−1
T (DPL(T )) = Ψ−1

T (DD(T )).
Recall that the characterization of a PL metric d which is Delaunay

in T in terms of x = Φ−1
T (d) is as follows. Take an edge e ∈ E(T ) and
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let t and t′ be the triangles adjacent to e so that e, e1, e2 are edges of t
and e, e3, e4 are the edge of t′. Suppose α, α′ are the angles (measured
in d) in t and t′ facing e. Then the Delaunay condition is equivalent to

(12) α+α′ ≤ π, i.e., cos(α)+cos(α′) ≥ 0, for all edges e ∈ E(T ).

Suppose the length of e (in d) is x0 and the length of ei is xi, i = 1, ..., 4.
By the cosine law, the condition (12) is the same as

(13)
x2

1 + x2
2 − x2

0

2x1x2
+
x2

3 + x2
4 − x2

0

2x3x4
≥ 0, for all edges e ∈ E(T ).

This shows that Φ−1
T (DPL(T )) is the set of x ∈ RE(T )

>0 such that (13)
and (14) hold where

(14) x(ei) + x(ej) > x(ek), ei, ej , ek form edges of a triangle in T .
We thank a referee for informing us that the lemma below was proved

by Penner as Lemma 5.27 in [32]. We provide the proof for complete-
ness.

Lemma 4.2. (Penner) Φ−1
T (DPL(T )) = {x ∈ RE(T )

>0 | (13) holds for
each edge e ∈ E(T )}.

Proof. This is the same as showing that if (13) holds for all edges,
then (14) holds for all triangles. Suppose otherwise, there exists x ∈
RE>0 so that (13) holds but there is a triangle with edges ei, ej , ek so
that

(15) x(ei) ≥ x(ej) + x(ek).

In this case, we say ei is a “bad” edge. Let e be a “bad” edge of
the largest x value, i.e., x(e) = max{x(ei)| (15) holds}. Let t, t′ be
the triangles adjacent to e and the edges of t and t′ be {e, e1, e2} and
{e, e3, e4}. Note that t′ = t is allowed if e is adjacent to only one triangle.
Let x0 = x(e), xi = x(ei) for i = 1, 2, 3, 4. Without loss of generality we
may assume that

(16) x1 + x2 ≤ x0.

Since e is a “bad” edge of the largest x value, we have x3 < x0 +x4 and
x4 < x0 + x3, i.e.,

(17) |x3 − x4| < x0.

On the other hand, inequality (13) holds for x0, x1, ..., x4. It is the
same as

(18)
x2

0 − (x1 + x2)2

2x1x2
≤ (x3 − x4)2 − x2

0

2x3x4
.

Inequality (16) says the left-hand-side of (18) is at least 0 and in-
equality (17) says the right-hand-side of (18) is negative. This is a
contradiction. q.e.d.
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The space Ψ−1
T (DD(T )) can be characterized as follows. Suppose that

the λ-length vector for (d′, w) ∈ DD(T ) is x = Ψ−1
T (d′, w). For each edge

e in (S, T , d′), let a, a′ be the two angles facing e and b, b′, c, c′ be the
angles adjacent to the edge e. Then T is Delaunay for (d′, w) if and
only if for each edge e ∈ E(T ) (see [32] or [19]),

(19) a+ a′ ≤ b+ b′ + c+ c′.

Let t and t′ be the triangles adjacent to e and e, e1, e2 be edges of
t and e, e3, e4 be the edges of t′. Let the λ-length of e be x0 and the
λ-length of ei be xi. Then using the cosine law (11), one sees that (19)
is equivalent to

(20)
x2

0

x1x2
+

x2
0

x3x4
≤ x1

x2
+
x2

x1
+
x3

x4
+
x4

x3
, for each e ∈ E(T ).

Inequality (20) is equivalent to

(21) 0 ≤ x2
1 + x2

2 − x2
0

2x1x2
+
x2

3 + x2
4 − x2

0

2x3x4
, for each e ∈ E(T ).

Therefore,

Ψ−1
T (DD(T )) = {x ∈ RE>0| (21) holds at each edge e ∈ E(T )}.

However, inequality (21) is the same as (13). This shows
Φ−1
T (DPL(T )) = Ψ−1

T (DD(T )).
Finally, since both ΦT and ΨT are real analytic diffeomorphisms and

AT = ΨT ◦Φ−1
T and A−1

T = ΦT ◦Ψ−1
T , we see that AT is a real analytic

diffeomorphism. q.e.d.

This concludes the proof of Proposition 4.1.

4.1. Globally defined map, diagonal switch and Ptolemy rela-
tion.

Theorem 4.3. Suppose T and T ′ are two triangulations of (S, V )
so that DPL(T ) ∩DPL(T ′) 6= ∅. Then

(22) AT |DPL(T )∩DPL(T ′) = AT ′ |DPL(T )∩DPL(T ′).

In particular, the gluing of these AT |DPL(T ) mappings produces a home-
omorphism A = ∪TAT |DPL(T ) : TPL(S, V ) → TD(S − V ) such that
A([d]) and A([d′]) have the same underlying hyperbolic structure if and
only if d and d′ are discrete conformal.

Proof. Suppose [d] ∈ DPL(T ) ∩ DPL(T ′), i.e., both T and T ′ are
Delaunay in the PL metric d. Then there exists a sequence of tri-
angulations T1 = T , T2, ..., Tk = T ′ on (S, V ) so that each Ti is De-
launay in d and Ti+1 is obtained from Ti by a diagonal switch. In
particular, AT ([d]) = AT ′([d]) follows from ATi([d]) = ATi+1([d]) for
i = 1, 2, ..., k − 1. Thus, it suffices to show AT ([d]) = AT ′([d]) when
T ′ is obtained from T by a diagonal switch along an edge e. In this
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case the transition functions Φ−1
T ΦT ′ and Ψ−1

T ΨT ′ are the same. In-

deed, Φ−1
T ΦT ′ was calculated in (6). Penner proved that the λ-lengths

satisfy the Ptolemy identity for decorated ideal quadrilaterals. See [32]
and Figure 5. This result, translated into the language of length coor-
dinates, says that Ψ−1

T ΨT ′(x) takes the same form as in (8). Thus, (22)
holds. Taking the inverse, we obtain

(23) A−1
T |DD(T )∩DD(T ′) = A−1

T ′ |DD(T )∩DD(T ′).

Lemma 4.4. (a) DPL(T ) ∩ DPL(T ′) 6= ∅ if and only if DD(T ) ∩
DD(T ′) 6= ∅.

(b) The gluing map A = ∪TAT |DPL(T ) : TPL → TD is a homeomor-
phism invariant under the action of the mapping class group.

Proof. By (22) and (23), the maps A = ∪TAT |DPL(T ) : TPL → TD

and B = ∪TA−1
T |DD(T ) : TD → TPL are well defined and continu-

ous. Since A(DPL(T ) ∩DPL(T ′)) ⊂ DD(T ) ∩DD(T ′) and B(DD(T ) ∩
DD(T ′)) ⊂ DPL(T ) ∩DPL(T ′), part (a) follows. To see part (b), since
TD = ∪TDD(T ), the map A is onto. To see that A is injective, suppose
x1 ∈ DPL(T1), x2 ∈ DPL(T2) so that A(x1) = A(x2) ∈ DD(T1)∩DD(T2).
Apply (23) to A−1

T1 |,A
−1
T2 | on the set DD(T1)∩DD(T2) at the point A(x1),

we conclude that x1 = x2. This shows that A is a bijection with inverse
B. Since both A and B are continuous, A is a homeomorphism. q.e.d.

Now if d and d′ are two discrete conformally equivalent PL met-
rics, then A([d]) and A([d′]) are of the form (p, w) and (p, w′) by the
definition of Ψ−1

T ΦT . If d, d′ are two PL metrics such that A([d])
and A([d′]) are of the form (p, w) and (p, w′), we prove that d and
d′ are discrete conformal as follows. Consider a generic smooth path
γ(t) = (p, w(t)), t ∈ [0, 1], in TD(S − V ) from (p, w) to (p, w′) such that
γ(t) intersects the cells DD(T )’s transversely. This is possible since
{DD(T )|T } forms a real analytic cell decomposition of TD(S − V ) and
there are only finitely many DD(T ) which intersects {p}×RV>0. There-
fore, the path γ passes through a finite set of cells DD(Ti) and Tj and
Tj+1 are related by a diagonal switch. Let t0 = 0 < ... < tm = 1 be a
partition of [0, 1] so that γ([ti, ti+1]) ⊂ DD(Ti). Say di is the PL metric
so that A([di]) = γ(ti) ∈ DD(Ti)∩DD(Ti+1), d1 = d and dm = d′. Then
by definition, the sequences {d1, ..., dm} and the associated Delaunay
triangulations {T1, ..., Tm} satisfy the definition of discrete conformality
for d, d′. q.e.d.

Theorem 4.5. The homeomorphism A : TPL(S, V )→ TD(S − V ) is
a C1-diffeomorphism.

Proof. It suffices to show that for a point [d] ∈ DPL(T ) ∩ DPL(T ′),
the derivatives DAT [d]) and DAT ′([d]) are the same. Since both T
and T ′ are Delaunay in d and are related by a sequence of Delaunay
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triangulations (in d) T1 = T , T2, ..., Tk = T ′, DAT ([d]) = DAT ′([d])
follows from DATi([d]) = DATi+1([d]) for i = 1, 2, ..., k − 1. Therefore,
it suffices to show DAT ([d]) = DAT ′([d]) when T and T ′ are related by
a diagonal switch at an edge e. In the coordinates ΦT and ΨT , the fact
that DAT ([d]) = DAT ′([d]) is equivalent to the following smoothness
question on the diagonal lengths.

Lemma 4.6. Let Q be a convex Euclidean quadrilateral whose four
edges lengths are x, y, z, w labelled cyclically and the length of a di-
agonal be a. Let A(x, y, z, w, a) be the length of second diagonal and
B(x, y, z, w, a) = xz+yw

a . If a point (x, y, z, w, a) satisfies A(x, y, z,
w, a) = B(x, y, z, w, a), i.e., Q is inscribed to a circle, then DA(x, y, z,
w, a) = DB(x, y, z, w, a) where DA is the derivative of A. (See Fig-
ure 5).

x

z

w

a

A

α

β

β '

α '

β '

α '

β

α '

β '

x

y

z

w

a

A

xz+yw =aA

A

A'
B

B'

C

C '

AA'+BB'=CC'

α

α '

β '

Figure 5. Euclidean and hyperbolic Ptolemy.

Proof. Since the roles of x, y, z, w are symmetric with respect to A,
it suffices to show that ∂A

∂a = ∂B
∂a and ∂A

∂x = ∂B
∂x . First, we have ∂B

∂x = z
a

and ∂B
∂a = −B

a .
Now let α, α′, β, β′ be the angles formed by the pairs of edges {y, a},

{a, x}, {a, z} and {a, w}. By the cosine law, we have

A2 = y2 + z2 − 2yz cos(α+ β).

Take partial x derivative of it. We obtain

2A
∂A

∂x
= 2yz sin(α+ β)

∂α

∂x
.

But it is well known (see, for instance, [28]) that in the triangle of
lengths x, y, a,

(24)
∂α

∂x
=

x

ay sin(α)
.
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Therefore,
∂A

∂x
=
xz sin(α+ β)

aA sin(α)
.

Now at the point where A(x, y, z, w, a) = B(x, y, z, w, a), the quadrilat-

eral is inscribed to the circle. Therefore, sin(α+β)
sin(α) = A

x . By putting these

together, we see that ∂A
∂x = xzA

aAx = z
a = ∂B

∂x .

Next, we calculate ∂A
∂a . By the formula above, we obtain 2A∂A

∂a =

2yz sin(α + β)(∂α∂a + ∂β
∂a ). Now by the derivative cosine law ([13]), we

have ∂α
∂a = −∂α

∂x cos(α′) which in turn is − x cos(α′)
ay sin(α) by (24). Similarly, we

have ∂β
∂a = −w cos(β′)

az sin(β) . Putting these together, we obtain,

∂A

∂a
= −yz sin(α+ β)

aA
(
x cos(α′)

y sin(α)
+
w cos(β′)

z sin(β)
).

Now since A = B, the quadrilateral is inscribed in a circle, there-

fore, sin(α+β)
sin(α) = A

x and sin(α+β)
sin(β) = A

w . Therefore, ∂A
∂a = − 1

a(z cos(α′) +

y cos(β′)) = −A
a = −B

a = ∂B
∂a where the identityA = z cos(α′)+y cos(β′)

comes from the triangle of lengths y, z, A and the fact that Q is inscribed
in a circle. q.e.d.

This concludes the proof of Theorem 4.5.
Suppose d is a PL metric on (S, V ) whose associated decorated hy-

perbolic metric is A([d]) = (p, w) where p ∈ T (S−V ) is the underlying
hyperbolic metric.

Corollary 4.7. The space D(d) ⊂ TPL(S, V ) of all equivalence classes
of PL metrics discrete conformal to d is C1-diffeomorphic to {p}×RV>0

under the diffeomorphism A.

The underlying (isotopy class of) hyperbolic metric p on S − V can
be constructed geometrically as described in §1.2. Let T be a Delaunay
triangulation of (S, V, d). For each Euclidean triangle τ in T (τ is con-
sidered as a subset of C), let τ∗ be the ideal hyperbolic triangle in H3

having the same set of vertices as that of τ . Here C is considered to be
in the sphere at the infinity of the hyperbolic 3-space H3 = C × R>0.
If τ , σ ∈ T are two Euclidean triangles in T glued along their common
edge by a Euclidean isometry f , then one glues τ∗ and σ∗ along their
corresponding edges by the same isometry f , considered as a hyper-
bolic motion of H3. In this way, one produces a complete finite area
hyperbolic metric d∗ on S − V .

Corollary 4.8. The underlying hyperbolic metric p on S−V is given
by [d∗].

We prove the corollary by checking that the shear coordinates of p and
d∗ are the same at each edge e of T . For details on shear coordinate
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see [32] or [4]. Let τ, σ be two Euclidean triangles in T adjacent to
e and let the quadrilateral τ ∪e σ be isometrically embedded into C.
For simplicity, we may assume without loss of generality that τ, σ ⊂ C
such that τ ∩ σ = e. Let the vertices of e be v1, v3 and the vertices
of τ, σ be v1, v2, v3 and v1, v3, v4 respectively. We use lij to denote the
Euclidean distance between vi and vj . Penner [32] showed that the

shear coordinate of p at e is ln( l23l14l12l34
). On the other hand, the shear

coordinate of the union τ∗ ∪ σ∗ ⊂ H3 at the common geodesic edge
e∗ can be calculated using the complex cross ratio of the four vertices

v1, v2, v3, v4 as ln(| (v1−v4)(v3−v2)
(v1−v2)(v3−v4) |). Since ln(| (v1−v4)(v3−v2)

(v1−v2)(v3−v4) |) = ln( l23l14l12l34
),

the corollary follows. q.e.d.

5. A proof of the main Theorem 1.2

Recall that S is a closed connected surface and V = {v1, ..., vn} ⊂ S.
We will identify RV with Rn by sending x to (x1, ..., xn) where xi = x(vi)
in this section. The discrete curvature K is a map from TPL(S, V ) to
(−∞, 2π)V ∩ GB where GB = {z ∈ Rn|

∑n
i=1 zi = 2πχ(S)} is defined

by the Gauss–Bonnet identity. Due to Kλd = Kd for any PL metric
d and λ > 0, the discrete curvature is defined on the quotient space
TPL(S, V )/R>0 where the action of R>0 on the Teichmüller space is by
scaling PL metrics.

Fix a PL metric d on (S, V ) and letD(d) be the set of all PL metrics on
(S, V ) discrete conformal to d modulo isometries isotopic to the identity
on (S, V ). By definition D(d) ⊂ TPL(S, V ) and is invariant under scalar
multiplication. Theorem 1.2 is equivalent to the statement that the
restriction map K| : D(d)/R>0 → (−∞, 2π)V ∩GB is a bijection.

Using the diffeomorphism A : TPL(S, V )→ TD(S − V ) and Theorem
4.3, we see that D(d) is C1-diffeomorphic to {p} × Rn>0 ⊂ TD(S − V )
where p the projection of A([d]) ∈ T (S − V ) × Rn>0 to T (S − V ). Let
u = (u1, ..., un) ∈ Rn, wi = eui , and w = (w1, ..., wn) ∈ Rn>0. Then
w = w(u) is a diffeomorphism from Rn to Rn>0. Define the curvature
map F : Rn → (−∞, 2π)n to be

(25) F(u) = KA−1(p,w(u)).

Due to Kλd′ = Kd′ , the map satisfies that F(v + k(1, 1, ..., 1)) = F(v).
Let P = {z ∈ Rn|

∑n
i=1 zi = 0} be the affine plane, Q = (−∞, 2π)n∩GB

and consider the restriction map F := F|P : P → Q. Theorem 1.2 is
equivalent to the statement that F : P → Q is a bijection. In this
section, we will show a stronger result that F is a C1-diffeomorphism
using a variational principle.

5.1. Injectivity of F . The proof uses a variational principle developed
in [27]. Since A is a C1-diffeomorphism and the discrete curvature
K : TPL(S, V ) → RV is real analytic, the map F defined by (25) is
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C1-smooth. By Theorem 3.3, let Ti, i = 1, ...,m, be the set of all
triangulations so that ({p} × Rn>0) ∩ DD(Ti) 6= ∅ and {p} × Rn>0 ⊂
∪mi=1DD(Ti).

Lemma 5.1. Let φ : Rn → {p}×Rn>0 be φ(u1, ..., un) = (p, eu1 , ..., eun),
Ui = φ−1(({p} × Rn>0) ∩ DD(Ti)) ⊂ Rn and J = {i|Ui has non-empty
interior in Rn}. Then Rn = ∪i∈JUi and Ui is real analytically diffeo-
morphic to a closed convex polytope in Rn.

Proof. By definition, both {p}×Rn>0 and DD(Ti) are closed and semi-
algebraic in TD(S − V ). Therefore, Ui is closed and semi-real analytic.
Now by definition, X := ∪i∈JUi is a closed subset of Rn since Ui is
closed. If X 6= Rn, then the complement Rn −X is a non-empty open
set which is a finite union of real analytic sets of dimension less than n.
This is impossible.

Next we show that for any triangulation T of (S, V ) and p ∈ T (S−V ),
the intersection U = φ−1(({p} × Rn>0) ∩ DD(T )) is real analytically
diffeomorphic to a convex polytope in a Euclidean space. In fact,
Ψ−1
T (U) ⊂ RE(T ) is real analytically diffeomorphic to a convex poly-

tope. To this end, let b = Ψ−1
T (p, (1, 1, ...., 1)). By definition, Ψ−1

T (U)

consists of vectors x ∈ RE(T )
>0 such that (20) holds and x = ln(λ) ∗ b for

some λ ∈ RV>0. Here ln(λ) = (ln(λ1), ..., ln(λn)) for λ = (λ1, ..., λn). We
claim that the Delaunay condition (20) consists of linear inequalities in
the variable δ : V → R>0 where δ(v) = λ(v)−2. Indeed, suppose the
two triangles adjacent to the edge e have vertices v1, v2, v3 and v1, v2, v4

as shown in Figure 3(c). Let xij (respectively bij) be the value of x
(respectively b) at the edge joining vi, vj , and λi = λ(vi). By definition,
xij = bijλiλj . The Delaunay condition (20) at the edge e says that

(26)
x2

12

x31x32
+

x2
12

x41x42
≤ x31

x32
+
x32

x31
+
x41

x42
+
x42

x41
.

It is the same as, using xij = bijλiλj ,

c3
λ1λ2

λ2
3

+ c4
λ1λ2

λ2
4

≤ c1
λ2

λ1
+ c2

λ1

λ2
,

where ci is some constant depending only on bjk’s. Dividing above

inequality by λ1λ2 and using δi = λ−2
i , we obtain

(27) c3δ3 + c4δ4 ≤ c1δ1 + c2δ2,

at each edge e ∈ E(T ). This shows for b fixed, the set of all possible

values of δ form a convex polytope P̂ defined by (27) at all edges and
δ(v) > 0 at all v ∈ V . On the other hand, by definition, the map from

P̂ to Ψ−1
T (U) sending δ to x = x(δ) given by x(vv′) = b(vv′)√

δ(v)δ(v′)
is a real

analytic diffeomorphism. Thus, the result follows. q.e.d.
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Recall that the curvature map F = (F1, ..., Fn) : Rn → Q is C1-
smooth. The value Fi(u) is the discrete curvature of the PL metric
A−1(p, w(u)) at the i-th vertex vi. We will prove,

Proposition 5.2. There exists a C2-smooth convex function W :
Rn → R so that its gradient 5W is F and the restriction W | : {u ∈
Rn|

∑n
i=1 ui = 0} → R is strictly convex.

On the other hand, the following is a well known fact from analysis,

Lemma 5.3. If W : Ω→ R is a C1-smooth strictly convex function
on an open convex set Ω ⊂ Rm, then its gradient 5W : Ω → Rm is an
embedding.

Combining Proposition 5.2 and the lemma, we conclude the map
F := F| : P → Q is injective.

It remains to prove Proposition 5.2.

Proof. The proposition follows by showing that (i) ∂Fi
∂uj

=
∂Fj

∂ui
and

(ii) the matrix [ ∂Fi
∂uj

]n×n is positive semi-definition so that its null vec-

tors are {λ(1, ..., 1)|λ ∈ R}. Indeed, in this case the function W (u) =∫ u
0

∑n
i=1 Fi(u)dui. Since Rn = ∪i∈JUi, it suffices to verify assertions (i)

and (ii) on each subset Uk.
To this end, take a point u ∈ Rn. Since Rn = ∪i∈JUi, there exists Uk

which contains u such that int(Uk) 6= ∅ in Rn. This means (p, w(u)) ∈
DD(Tk) and int(DD(Tk)) ∩ Rn 6= ∅. Let l = Ψ−1

Tk (p, (1, ..., 1)) ∈ RE(Tk)
>0 .

Then by definition, the PL metric on (S, V, Tk) whose edge length is
l(e)eua+ub at each edge e with ∂e = {va, vb} represents the point
A−1(p, w(u)) in TPL(S, V ).

Recall the main theorem proved in [27] (see Theorems 1.2, 2.1, and
Corollary 2.3) shows,

Theorem 5.4. ([27]) Suppose a PL metric on (S, V, T ) has edge

length vector l ∈ RE(T ) and u ∈ RV satisfies

(28) l(ei)e
uj+uk + l(ej)e

ui+uk > l(ek)e
uk+ui ,

for all triangles of edges ei = (vj , vk), ej = (vk, vi), ek = (vi, vj) where
um = u(vm) and vm ∈ V . Then the discrete curvature K = (K1, ...,Kn)
of the vertex scaled PL metric on (S, V ) of edge lengths l(e)eui+uj with

∂e = {vi, vj} satisfies ∂Ki
∂uj

=
∂Kj

∂ui
and the matrix [∂Ki

∂uj
]n×n is positive

semi-definition so that its null space is {λ(1, ..., 1)|λ ∈ R} on the open
set in RV defined by (28).

By Theorem 5.4, one concludes that assertions (i) and (ii) hold on
each Uk and, therefore, they hold on Rn. Therefore, the C1-smooth 1-
form η =

∑
i Fi(u)dui on Rn satisfies dη = 0 on each Uk, k ∈ J . Due to

Rn = ∪k∈JUk, we obtain dη = 0 in Rn. Hence, the integral W (u) =
∫ u

0 η
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is a well defined C2-smooth function on Rn so that its Hessian matrix
is positive semi-definition. Therefore, W is convex in Rn so that its
gradient 5W = F. Furthermore, since the kernel of the Hessian of
W consists of diagonal vectors λ(1, 1, ..., 1), the Hessian of the function
W |P is positive definite. Hence, W |P is strictly convex. q.e.d.

5.2. Surjectivity of F . Since both P and Q are connected manifolds
of dimension n− 1 and F is injective and continuous, the invariance of
domain theorem implies that F (P ) is open in Q. To show that F is
onto, it suffices to prove that F (P ) is closed in Q.

To this end, take a sequence {u(m)} in P which leaves every com-

pact set in P . We will show that {F (u(m))} leaves each compact set
in Q. By taking subsequences, we may assume that for each index

i = 1, 2, ..., n, the limit limm u
(m)
i = ti exists in [−∞,∞]. Further-

more, using Akiyoshi’s Theorem 3.3 that the space {p} × Rn>0 is in
the union of a finite set of Delaunay cells DD(T ), we may assume,
after taking another subsequence, that the corresponding PL metrics
dm = A−1(p, w(u(m))) are Delaunay in one triangulation T . All calcu-
lations below use the length coordinate ΦT .

Due to the normalization that
∑

i u
(m)
i = 0 and that u(m) does not

converge to any vector in P , there exist ti = ∞ and tj = −∞. Let us
label vertices v ∈ V by black and white as follows. The vertex vi is
black if and only if ti = −∞ and all other vertices are white.

Lemma 5.5. (a) There does not exist a triangle τ ∈ T with exactly
two white vertices.

(b) If ∆v1v2v3 is a triangle in T with exactly one white vertex at v1,
then the inner angle of the triangle at v1 converges to 0 as m → ∞ in
the metrics dm.

Proof. To see (a), suppose otherwise, say the triangle in T with ver-
tices v1, v2, v3 has exactly two white vertices at v2, v3. Let the edge

lengths of ∆v1v2v3 be aie
u
(m)
j +u

(m)
k , {i, j, k} = {1, 2, 3}, where

limm u
(m)
i > −∞ for i = 2, 3 and limm u

(m)
1 = −∞. By the triangle

inequality, we have

a2e
u
(m)
1 +u

(m)
3 + a3e

u
(m)
1 +u

(m)
2 > a1e

u
(m)
2 +u

(m)
3 .

This is the same as

a2e
−u(m)

2 + a3e
−u(m)

3 > a1e
−u(m)

1 .

However, by the assumption, the right-hand-side tends to ∞ and the
left-hand-side is bounded. The contradiction shows that (a) holds.

To see (b), let the length l
(m)
i of the edge vjvk in metric dm be

aie
u
(m)
j +u

(m)
k , {i, j, k} = {1, 2, 3}. Let α1(m) be the inner angle at v1.
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Note that the triangle is similar to the triangle of lengths {aie−u
(m)
i }.

Since limm aie
−u(m)

i is ∞ when i = 2, 3 and is finite for i = 1, the angle
α1 tends to 0. q.e.d.

We now finish the proof of F (P ) = Q as follows. Since the surface S

is connected and
∑

i u
(m)
i = 0, there exists an edge e ∈ E(T ) whose end

points v, v1 have different colors. Assume v is white and v1 is black. Let
v1, ..., vk be the set of all vertices adjacent to v so that v, vi, vi+1 form
vertices of a triangle and let vk+1 = v1. Now apply above lemma to
triangle ∆vv1v2 with v white and v1 black, we conclude that v2 must be
black. Repeating this to ∆vv2v3 with v white and v2 black, we conclude
v3 is black. Inductively, we conclude that all vi’s, for i = 1, 2, ..., k, are
black. By part (b) of the above lemma that the angle at v of each
triangle ∆vivi+1v tends to 0, we conclude that the curvature of dm at v
tends to 2π. This shows that F (u(m)) tends to infinity of Q. Therefore,
F (P ) = Q.

5.3. Finding the solution using a variational principle. The proof
above shows if K∗ ∈ Q, then the solution u∗ ∈ P to F (u∗) = K∗ is the
unique critical point of the convex function

∫ u
0

∑n
i=1(Fi(u) − K∗i )dui

on the hyper-plane {u ∈ Rn|
∑n

i=1 ui = 0}, i.e., the solution can be
found by a convex variational principle. We define the discrete Yam-
abe flow with surgery to be the gradient flow of the convex function∫ u

0

∑n
i=1(Fi(u) − K∗i )dui. The flow is defined on the space D(d) of

PL metrics discrete conformal to a given metric d. It takes the form
dui(t)
dt = Ki(u) − K∗i and u(0) = 0 when one uses the parametrization

of D(d) by u ∈ RV . The exponential convergence of the flow to the
solution u∗ was established in Theorem 1.4 of [27]. Note that the flow

equation dui(t)
dt = Ki(u)−K∗i depends on the triangulation T . A solution

u(t), t ∈ [0,∞) to the equation may go through several different charts
Ui’s. In this case, due to the triangulation change, the flow equation
dui(t)
dt = Ki(u)−K∗i takes different expressions with respect to different

triangulations. We call these “surgery change” of the flow.

Appendix: A proof of Akiyoshi’s theorem

For completeness, we present our proof in this appendix. The theorem
and the proof hold for decorated finite volume hyperbolic manifolds of
any dimension. We state the 2-dimensional case for simplicity.

Theorem 5.6. (Akiyoshi [1]) For a finite area complete hyperbolic
metric d on S−V , there exist triangulations T1, ..., Tk so that for any w ∈
Rn>0, any Delaunay triangulation of (d,w) is isotopic Ti, i ∈ {1, 2, ..., k}.

Proof. We begin by study the shortest geodesics in a complete finite
area hyperbolic surface (S − V, d). Recall the Shimizu lemma [5] which
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implies that if w ∈ (0, 1)n, then the associated horoballs Hi(w) in the
decorated metric (d,w) are embedded and pairwise disjoint. Let us
assume without loss of generality that w ∈ (0, 1)n. A geodesic α from
cusp vi to vj in (S − V, d) is called a shortest geodesic from vi to vj if
there exists a w ∈ (0, 1)n so that α ∩Xw is a shortest path among all
homotopically non-trivial paths in Xw joining ∂Hi(w) to ∂Hj(w). The
shortest property implies that α∩Xw is an orthogeodesic. Furthermore,
by Lemma 3.1, if α is a shortest geodesic, then for any w′ ∈ (0, 1)n,
α ∩ Xw′ is again a shortest geodesic in Xw′ from ∂Hi(w

′) to ∂Hj(w
′),

i.e., being a shortest geodesic from vi to vj is independent of the choice
of decorations. Indeed, for any geodesic β from cusp vi to vj , we have

(29) l(β ∩Xw′) = l(β ∩Xw)− ln(w′i)− ln(w′j) + ln(wi) + ln(wj).

Lemma 5.7. Suppose (S − V, d) is a finite area complete hyperbolic
surface. Then

(a) there are only finitely many shortest geodesics from vi to vj.
(b) there is δij = δij(S − V, d) > 0 so that if α is a shortest geodesic

from vi to vj and β is another geodesic from vi to vj with |l(β ∩Xw)−
l(α ∩Xw)| ≤ δij, then β is a shortest geodesic.

(c) given vi, if α is a shortest orthogeodesic geodesics among all or-
thogeodesics in Xw from ∂Hi to ∂Xw, then α∗, the complete geodesic
containing α, is an edge of a Delaunay triangulation of the decorated
metric (d,w) and the mid-point of α is in Rj(w).

Proof. The first part follows from the simple fact that on any com-
pact surface Xw, for any constant C, there are only finitely many ortho-
geodesics of length at most C. Part (b) follows from (a) and equality
(29). Part (c) follows from the definition of Voronoi cells and its dual.
Note that in general, if β is a shortest orthogeodesic in Xw between
∂Hi(w) and ∂Hj(w), β∗ may not be an edge in any Delaunay triangu-
lation of (d,w). q.e.d.

Now we prove the theorem by contradiction. Suppose otherwise,
there exists a sequence of decorated metrics (d,w(m)) where w(m) =

(w
(m)
1 , ..., w

(m)
n ) ∈ Rn so that the associated Delaunay triangulations

Tm = T (d,w(m)) are pairwise distinct in (S − V, d). After normalizing

w(m) by scaling, relabel the vertices v1, ..., vn and taking subsequences,
we may assume

(i) w
(m)
1 = max{w(m)

i |i = 1, 2, ..., n} = 1/2;

(ii) for each i = 1, 2, ..., n, the limit limmw
(m)
i = ti ∈ [0, 1/2] exists;

(iii) t1, ..., tk > 0 and tk+1 = ... = tn = 0.
For simplicity, we use Eij(T ) to denote the subset of all edges of

T joining vi to vj . We will derive a contradiction by showing that
∪mEij(Tm) is a finite set.
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Lemma 5.8. There exists a constant C > 0 so that for all i, j ≤ k,
and all e ∈ Eij(Tm), the length

l(e ∩Xw(m)) ≤ C.
In particular, ∪mEij(Tm) is a finite set.

Proof. For any δ ∈ (0, 1/2), let u(m)(δ) = (w
(m)
1 , ..., w

(m)
k , δ, ..., δ) ∈

Rn. Fix a δ, since limmw
(m)
j = 0 for j > k, for m large, each point

x ∈ Xu(m)(δ) is in some Voronoi cell Ri(w
(m)) for some i ≤ k. Therefore,

there is a small δ > 0 so that for all i, j = 1, 2, ..., k, all large m, and all
e ∈ Eij(Tm), e∩Xw(m) ⊂ Xu(m)(δ). By the assumption that t1, ..., tk > 0

and by choosing δ smaller than min{t1, ..., tk}, we see that the surface
Xu(m)(δ) is a subset of the compact surface X(δ,...,δ). Therefore, there

is a constant C > 0 so that diam(Xu(m)(δ)) ≤ C/2 for all m. Note if

e ∈ E(T (d,w)) is an edge, then the length of the orthogeodesic e ∩Xw

in metric d satisfies,

(30) l(e ∩Xw) ≤ 2diam(Xw),

where diam(Y ) is the diameter of a metric space Y . Indeed, l(e∩Xw) ≤
diam(Ri(w)) + diam(Rj(w)) ≤ 2diam(Xw). This shows, by (30), that

l(e ∩Xw(m)) ≤ l(e ∩Xu(m)(δ)) ≤ 2diam(Xu(m)(δ)) ≤ C.
Finally, since for any constant C, there are only finitely many ortho-

geodesics in X(δ,...,δ) of lengths at most C, it follows that ∪mEij(Tm) is
finite. q.e.d.

Now for m large, each point in Xu(m)(1/2) is in ∪ki=1Ri(w
(m)). There-

fore, for large m, if i, j > k, then Eij(Tm) = ∅ since an edge e ∈ Eij(Tm)
must intersect Xu(m)(1/2). Hence, if Ejh(Tm) 6= ∅, then h ≤ k.

Lemma 5.9. There is n0 so that if m ≥ n0, j > k and e ∈ Eij(Tm),
then e is a shortest geodesic from vi to vj. In particular, for j > k and
i ≤ k, the set ∪mEij(Tm) is finite.

Proof. We need to study the Voronoi cell Rj(w
(m)). Since

limmw
(m)
j = 0 and ti > 0, for large m, the Voronoi cell Rj(w

(m)) ⊂
Hj(u

(m)(1/2)). Let ∂0Rj(w
(m)) be the piecewise geodesic boundary

component ∂Rj(w
(m))− ∂Hj(w

(m)).

Claim. For any two edges am, bm in ∂0Rj(w
(m)),

(31) lim
m
|dist(am, Hj(w

(m)))− dist(bm, Hj(w
(m)))| = 0.

Assuming the claim, we finish the proof of the lemma as follows.
Let εm be a shortest orthogeodesic in Xw from ∂Hj(w

(m)) to ∂Xw and
e′m = ε∗m be the complete geodesic containing εm. Then by Lemma 5.7,
e′m ∈ ∪ni=1Eij(Tm). Let the dual of e′m be the edge am of ∂0Rj(w

(m)).
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For any edge em ∈ Eij(w
(m)) dual to an edge bm of ∂0Rj(w

(m)), we

have l(em∩Xw(m)) = 2dist(bm, Hj(w
(m))) by the definition of Delaunay.

Therefore, by (31)

lim
m
|l(em ∩Xw(m))− l(e′m ∩Xw(m))| = 0.

By Lemma 5.7, since e′m is a shortest geodesic, em is also a shortest
geodesic for m large.

To see the claim (31), recall that a simple geodesic loop on (S−V, d)
is a smooth map α : [0, 1] → S − V so that α(0) = α(1), α|(0,1) is
a geodesic and α|[0,1) is injective. Now for each i ≤ k and for m

large, the equidistance curve αi,j(m) between Hi(w
(m)) and Hj(w

(m))
is a simple geodesic loop in the cusp region Hj(sm(1, 1, ..., 1)) where

limm sm = 0. This is due to the fact that w
(m)
j → 0 and w

(m)
i →

ti > 0. It is well known that if α is a simple geodesic loop in a
cusp region Hj(w), then the length of α is less than wj . Therefore,
l(αi,j(m)) ≤ sm and limm l(αi,j(m)) = 0. By definition, the boundary

∂0Rj(w
(m)) ⊂ ∪iαi,j(m). If am, bm are two edges ∂0Rj(w

(m), then by

definition |dist(am, Hj(w
(m)))− dist(bm, Hj(w

(m)))| ≤
∑k

i=1 l(αi,j(m)).
Therefore, (31) follows from limm l(αi,j(m)) = 0. q.e.d.

q.e.d.
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Math. (2) 32 (1986), no. 1–2, 79–94, MR0850552, Zbl 0611.53035.

Department of Computer Science
Stony Brook University
Stony Brook, NY, 11794

USA

E-mail address: gu@cs.stonybrook.edu

Department of Mathematics
Rutgers University

Piscataway, NJ, 08854
USA

E-mail address: fluo@math.rutgers.edu

Yau Mathematical Sciences Center
Tsinghua University

Beijing, 100084
China

E-mail address: jsun@math.tsinghua.edu.cn

http://library.msri.org/books/gt3m/
http://library.msri.org/books/gt3m/


256 X. D. GU, F. LUO, J. SUN & T. WU

Courant Institute of Mathematics
New York University

New York, NY 251 Mercer Street New York
N.Y. 10012

USA

E-mail address: tianqi@cims.nyu.edu


	1. Introduction
	1.1. Statement of results
	1.2. Discrete conformality, hyperbolic geometry, and thePtolemy identity
	1.3. Discrete conformality in spherical and hyperbolic geometries
	1.4. Convergence of discrete uniformization maps
	1.5. Previous works on discrete conformal geometry
	1.6. Basic ideas of the proof of Theorem 1.2
	1.7. Notations, conventions and organization of the paper

	2. Teichmüller space of PL metrics, its cell decomposition and Delaunay conditions
	2.1. Teichmüller space of PL metrics and its length coordinates
	2.2. Delaunay triangulations

	3. Penner's work on decorated Teichmüller spaces
	3.1. Decorated triangles
	3.2. Delaunay triangulations
	3.3. Finite set of Delaunay triangulations

	4. Euclidean polyhedral metrics and decorated hyperbolic metrics
	4.1. Globally defined map, diagonal switch and Ptolemy relation

	5. A proof of the main Theorem 1.2
	5.1. Injectivity of F
	5.2. Surjectivity of F
	5.3. Finding the solution using a variational principle

	Appendix: A proof of Akiyoshi's theorem
	References

