
1 23

Computational Optimization and
Applications
An International Journal

ISSN 0926-6003
Volume 52
Number 3

Comput Optim Appl (2012) 52:583-607
DOI 10.1007/s10589-011-9430-2

A nonmonotone filter method for nonlinear
optimization

Chungen Shen, Sven Leyffer & Roger
Fletcher

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you

wish to self-archive your work, please use the

accepted author’s version for posting to your

own website or your institution’s repository.

You may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.

Comput Optim Appl (2012) 52:583–607
DOI 10.1007/s10589-011-9430-2

A nonmonotone filter method for nonlinear
optimization

Chungen Shen · Sven Leyffer · Roger Fletcher

Received: 14 October 2009 / Published online: 29 October 2011
© Springer Science+Business Media, LLC 2011

Abstract We propose a new nonmonotone filter method to promote global and fast
local convergence for sequential quadratic programming algorithms. Our method
uses two filters: a standard, global g-filter for global convergence, and a local non-
monotone l-filter that allows us to establish fast local convergence. We show how
to switch between the two filters efficiently, and we prove global and superlinear lo-
cal convergence. A special feature of the proposed method is that it does not require
second-order correction steps. We present preliminary numerical results comparing
our implementation with a classical filter SQP method.

Keywords Nonlinear optimization · Nonmonotone filter · Global convergence ·
Local convergence

1 Introduction and background

We consider the constrained optimization problem
⎧
⎨

⎩

minimize
x

f (x)

subject to ci(x) = 0, i ∈ E ,

ci(x) ≤ 0, i ∈ I,

(1.1)

C. Shen
Department of Applied Mathematics, Shanghai Finance University, Shanghai 201209, China
e-mail: shenchungen@gmail.com

S. Leyffer (�)
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439,
USA
e-mail: leyffer@mcs.anl.gov

R. Fletcher
Mathematics Department, University of Dundee, Dundee, UK
e-mail: fletcher@math.dundee.ac.uk

Author's personal copy

mailto:shenchungen@gmail.com
mailto:leyffer@mcs.anl.gov
mailto:fletcher@math.dundee.ac.uk

584 C. Shen et al.

where c(x) = (c1(x), c2(x), . . . , cm(x))T , E = {1,2, . . . ,m1}, and I = {m1 +
1,m1 + 2, . . . ,m}. The objective function f : R

n → R and the constraint functions
ci : R

n → R are twice continuously differentiable functions.
The sequential quadratic programming (SQP) method is an iterative method for

solving the problem (1.1). Fletcher and Leyffer [11] proposed the filter technique
for SQP methods and used it in the context of a trust-region SQP method for solv-
ing nonlinear optimization problems. Their computational results were encouraging.
Subsequently, global convergences of the trust-region filter SQP methods were estab-
lished by Fletcher et al. [13, 14]. Gonzaga et al. [17] proposed a globally convergent
filter method in which each iteration is composed of a feasibility phase and an opti-
mality phase, and Ribeiro et al. [24] presented an alternative version of that method.
Wächter and Biegler [28] proposed a line-search filter SQP method and showed its
global convergence. Audet and Dennis Jr. [1], and Karas et al. [20] applied the filter
technique to derivative-free optimization and nonsmooth optimization, respectively.

Unfortunately, filter SQP methods may also encounter the Maratos effect [6]. To
overcome this disadvantage, Ulbrich [26] presented a trust-region filter method, using
the Lagrangian function instead of the objective function as one measure in the entry
of the filter. Ulbrich showed local convergence without the use of second-order cor-
rection (SOC) steps. Wächter and Biegler [27] proposed a line-search filter method
and proved fast local convergence with the help of SOC steps. Gould and Toint [18]
introduced a nonmonotone trust-region filter algorithm, which provides a global con-
vergence framework for filter methods. However, they did not show fast convergence
proofs. Our nonmonotone filter method differs substantially from the method pro-
posed in Gould and Toint [18], and is easier to implement in our view.

In this paper, we present a new filter method that combines global and fast lo-
cal convergence. Our method improves on previous results for second-order filter
methods. Unlike Ulbrich [26], we do not use the Lagrangian function in our filter
but continue to use the objective in both filters. Thus, we avoid the potential pitfall
of converging to a saddle point. In addition, our method does not need to compute
second-order correction steps, unlike that of Wächter and Biegler [27]. This is an
advantage because the computation of second-order correction steps can be cumber-
some, and complicates the implementation in our experience. In Sect. 5 we show that
the omission of SOC steps does not degrade performance.

To obtain global and fast local convergence, our algorithm defines two filters: one
is a standard filter (g-filter) for global convergence; the other one is a nonmonotone
filter (l-filter) for local convergence. The g-filter forces iterates toward an optimal
point, and the l-filter is a local filter that accepts full SQP steps promoting fast local
convergence. Without the help of the SOC steps, we prove that, for all sufficiently
large iteration numbers, iterates with full SQP steps are accepted by the l-filter and
therefore fast local convergence is achieved.

This paper is organized as follows. In Sect. 2, we provide some definitions of our
filters and describe how these filters work in the main algorithm. In Sect. 3, we prove
that the algorithm is well defined. Under the Mangasarian-Fromowitz constraint qual-
ification (MFCQ) condition, we show that at least one of accumulation points is a
KKT point. In Sect. 4, we prove that iterates generated by our filter algorithm con-
verge to a minimizer superlinearly or quadratically under mild conditions. In Sect. 5,

Author's personal copy

A nonmonotone filter method for nonlinear optimization 585

we provide preliminary numerical results showing that the absence of SOC steps does
not adversely affect the algorithm.

Notation We make extensive use of the symbols o(·), O(·), and �(·). Let ηk and
νk be two vanishing sequences, where ηk , νk ∈ R. If the sequence of ratios {ηk/νk}
approaches zero as k → ∞, then we write ηk = o(νk). If there exists a constant C > 0
such that |ηk| ≤ C|νk| for all k sufficiently large, then we write ηk = O(νk). If both
ηk = O(νk) and νk = O(ηk), then we write ηk = �(νk).

2 Definitions and algorithm statement

Our algorithm is an SQP method. It generates iterates by solving a sequence of
quadratic programs. At the kth iterate xk , we compute a trial step by solving the
quadratic program

QP(xk, ρ)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minimize
d

q(d) = ∇f (xk)
T d + 1

2
dT Bkd

subject to ∇ci(xk)
T d + ci(xk) = 0, i ∈ E ,

∇ci(xk)
T d + ci(xk) ≤ 0, i ∈ I,

‖d‖∞ ≤ ρ,

where ρ > 0 is the trust-region radius and Bk approximates the Hessian of the La-
grangian

L(x,λ) = f (x) + λT c(x), λ ∈ R
m (2.1)

at xk . The solution of QP(xk, ρ) is denoted by d if QP(xk, ρ) is feasible. If it is
infeasible, our algorithm enters a feasibility restoration phase [11, 12] to find a new
point so that the QP subproblem is feasible at this point. After d is computed, we take
x̂ := xk + d as the next trial iterate. We define

�q(d) = q(0) − q(d) = −∇f (xk)
T d − 1

2
dT Bkd (2.2)

as the predicted reduction of f (x), and

�f̃ (d) = max
j∈{0,...,M}

f (xk−j) − f (x̂) (2.3)

as the nonmonotone actual reduction of f (x), where M ≥ 0 is the level of nonmono-
tonicity and M = 0 corresponds to a monotone algorithm. We also define

�f (d) = f (xk) − f (x̂) (2.4)

as the actual reduction of f (x). We define the constraint violation as

h(x) =
∑

i∈E
|ci(x)| +

∑

i∈I
max{0, ci(x)}.

Author's personal copy

586 C. Shen et al.

Fig. 1 The left figure shows a g-filter. The black triangles correspond to three filter entries, and the shaded
area shows the set of points that are dominated by these entries. The right figure shows the corresponding
nonmonotone l-filter with M = 1

For convenience, we also define

h̃k = max
j∈{0,...,M}

h(xk−j).

We use d̄k to denote the solution of QP(xk,∞) if it is feasible. We emphasize that
we need d̄k only conceptually and that we do not solve QP(xk,∞). If the solution of
QP(xk, ρ) satisfies ρ > ‖d‖∞, then we take d as d̄k .

In this paper, we use the filter technique to check the acceptance of a trial point.
The following definitions are taken from Chin and Fletcher [5].

Definition 2.1 A point x̂ (or (h(x̂), f (x̂))) is said to be acceptable to xj (or
(h(xj), f (xj))) if one of the following conditions is satisfied:

h(x̂) ≤ βh(xj) or (2.5a)

f (x̂) − f (xj) ≤ −γ h(x̂), (2.5b)

where β , γ ∈ (0,1) are constants. A point x̂ (or (h(x̂), f (x̂))) is said to be dominated
by xj (or (h(xj), f (xj))) if it is not acceptable to xj (or (h(xj), f (xj))).

Next, we introduce the global g-filter, denoted by F g
k , and the local l-filter, de-

noted by F l
k at iteration k. In fact, the g-filter (see Fig. 1, left) is a standard filter [5].

Definition 2.2 At iteration k, the standard, or monotone filter, and the filter accep-
tance are defined as follows.

1. The g-filter, F g
k , is a set of indices j ≤ k such that no pair {(h(xj), f (xj))} is

dominated by any other pair in the filter.

Author's personal copy

A nonmonotone filter method for nonlinear optimization 587

2. A point x̂ (or (h(x̂), f (x̂))) is said to be acceptable to F g
k if x̂ is acceptable to xj

for all j ∈ F g
k .

Now we define the l-filter, which allows us to accept full SQP steps. Our l-filter is
a new nonmonotone filter that depends on an integer parameter M ≥ 0, which denotes
the number of entries that are allowed to dominate another filter entry, see Fig. 1, right
for a nonmonotone filter with M = 1. If M = 0, then the nonmonotone filter reduces
to the standard monotone filter.

Definition 2.3 Let M ≥ 0 be an integer. At iteration k, the local nonmonotone filter,
and nonmonotone filter acceptance are defined as follows.

1. The l-filter, F l
k , is a set of indices j ≤ k such that any pair {(h(xj), f (xj))} is

dominated by at most M other pairs in the filter.
2. A point x̂ (or (h(x̂), f (x̂))) is said to be nonmonotonically acceptable to F l

k if
(h(x̂), f (x̂)) is dominated by at most M pairs {(h(xj), f (xj)) | j ∈ F l

k}.

To control infeasibility of all iterates, we give an upper bound condition for ac-
cepting a point, namely

h(x) ≤ u, (2.6)

where u is a positive scalar, which can be implemented in the algorithm by initiating
the l/g filters with the pair (u,−∞).

The two filters interact in a natural way. As long as ‖d‖ = ρ, we measure progress
with the g-filter. Once we detect ‖d‖ < ρ, either we start using the l-filter, which we
continue to use until we converge, or we compute a step with ‖d‖ = ρ. In the latter
case, we flush the l-filter and return to using the g-filter. To prevent cycling between
the two filters, we backtrack to the last iterate that was acceptable to the g-filter.

We include a new iterate (h(xk), f (xk)) in the respective filter if h(xk) > 0. Al-
ternatively, we could have adopted the strategy in Fletcher et al. [14] and only added
a new entry (h(xk), f (xk)) if the step xk + d is acceptable, but fails to satisfy the
sufficient reduction condition, i.e. a so-called h-type step. We prefer to work with the
simpler condition h(xk) > 0. We note that the switching and sufficient reduction con-
ditions differ for the two filters to accommodate fast local convergence. We also note
that all entries (h(xj), f (xj)) in the l-filter have been obtained from a full SQP-step;

that is, xj = xj + d̄j for each j ∈ F l
k .

Next, we explain how a trial point is accepted in our algorithm. During the global
phase, a trial point x̂ is required to be acceptable to F g

k ∪ {k}. Once we switch to
the local filter, a trial point x̂ must be nonmonotonically acceptable to F l

k ∪ {k}. In
addition, if the appropriate switching condition holds, then the trial point must also
satisfy an appropriate sufficient reduction condition. The switching condition for the
l-filter is

�q(d̄k) > 0 and h̃k ≤ ζ‖d̄k‖τ∞. (2.7)

Author's personal copy

588 C. Shen et al.

If the switching condition holds, then we expect that the objective is reduced over the
step. A suitable nonmonotone sufficient reduction condition is

�f̃ (d̄k) ≥ σ min
{
�q(d̄k), ξ‖d̄k‖2∞

}
, (2.8)

where ζ > 0, τ ∈ (2,3], σ ∈ (0, 1
2) and ξ > 0. The switching condition and the suffi-

cient reduction criterion for the g-filter are

�q(d) > 0 (2.9)

and

�f (d) ≥ σ�q(d), (2.10)

respectively.
We briefly motivate our choice of the switching condition (2.7) and (2.9) and the

sufficient reduction criterion (2.8) or (2.10). For global convergence, we hope that
iterates close to the feasible region of problem (1.1) also improve optimality. As in
other filter methods, such as that of Fletcher and Leyffer [11], the switching condition
(2.9) and the sufficient reduction criterion (2.10) are used to achieve this goal. We
note that the switching condition (2.7) is more stringent than that of Fletcher and
Leyffer [11] because the second condition maxi∈{0,...,M} h(xk−i) ≤ ζ‖d̄k‖τ∞ in (2.7)
is also required. Therefore our sufficient reduction criterion is easier to satisfy than
that of Fletcher and Leyffer [11]. To obtain fast local convergence, we must accept
the full SQP step for all sufficiently large k. Thus, we relax the sufficient reduction
criterion by strengthening the switching condition. These conditions, along with the
nonmonotone acceptance condition for the l-filter, play an important role in obtaining
fast local convergence.

Definition 2.4 A trial point x̂ is said to satisfy the g-filter acceptance conditions
if (x̂ is acceptable to the g-filter and xk (F g

k ∪ {k})) and if the sufficient reduction
criterion (2.10) holds whenever the switching condition (2.9) is satisfied.

Definition 2.5 A trial point x̂ is said to satisfy the nonmonotone l-filter acceptance
conditions if (x̂ is nonmonotonically acceptable to the l-filter and xk (F l

k ∪ {k})) and
if the sufficient reduction criterion (2.8) holds whenever the switching condition (2.7)
is satisfied.

If QP(xk, ρ) is incompatible, the algorithm switches to the feasibility restoration
phase to find a new iterate that is acceptable to the current g-filter by reducing the
constraint violation. Any method for solving a nonlinear algebraic system of equali-
ties and inequalities can be used to implement this calculation. Of course, the restora-
tion phase may converge to a nonzero local minimum of h(x). On the other hand,
if the iterates generated by the restoration phase are converging to a feasible point,
then we can eventually find an acceptable point such that QP is consistent, unless the
MFCQ condition fails. In this paper, we do not specify the particular procedure for
this feasibility restoration phase.

Author's personal copy

A nonmonotone filter method for nonlinear optimization 589

Algorithm 2.1: Nonmonotone Filter SQP Algorithm

Given x0 ∈ R
n.1

Choose constants σ ∈ (0,1), β ∈ (0,1), γ ∈ (0,1), τ ∈ (2,3], M ≥ 0, ζ > 0, ξ > 0,2

u > 0, ρo > 0, ρmax > 0.
Initialize ρ ∈ (ρo,ρmax) and the l/g filters with (u,−∞).3

Let k := 0, set FLAG = global4

while d
= 0 do5

repeat6

Solve QP(xk, ρ) for a step d7

if infeasible then8

Add (h(xk), f (xk)) to the g-filter9

Enter feasibility restoration to find xk+1 such that QP(xk+1, ρ)10

feasible for ρ > ρo

Set k := k + 111

else12

Set x̂ = xk + d13

if ‖d‖∞ < ρ & FLAG = global then14

Set FLAG = local and save xg = xk , ρg = ‖d‖∞15

if FLAG = local then16

if x̂ is nonmonotonically acceptable to F l
k

∪ {k} then17

if �f̃ (d) < σ min{�q(d), ξ‖d‖2∞}, �q(d) > 0 and h̃k ≤ ζ‖d‖τ∞18

then
Set FLAG = global, flush F l

k
= ∅, and return to xk = xg ,19

ρ = ρg/2
else20

x̂ is accepted21

else22

Set FLAG = global, flush F l
k

= ∅, and return to xk = xg ,23

ρ = ρg/2

else if FLAG = global then24

if x̂ is acceptable to F g
k

∪ {k} then25

if �f (d) < σ�q(d) and �q(d) > 0 then26

Set ρ = ρ/227

else28

x̂ is accepted29

else30

Set ρ = ρ/231

until x̂ is accepted32

Add (h(xk), f (xk)) to l-filter or g-filter (depends on FLAG) if h(xk) > 033

Set ρk = ρ, dk = d , �qk = �q(d), xk+1 = xk + dk ρ = max(ρo,min(2ρ,ρmax)).34

Set k := k + 135

Author's personal copy

590 C. Shen et al.

In Algorithm 2.1, we use FLAG to indicate which filter is considered. FLAG =
local indicates that we are using the l-filter, and FLAG = global indicates that we are
using the g-filter. When we leave FLAG = local, we empty the l-filter to prevent old
entries from interfering with local convergence.

Backtracking to the g-filter is initiated if a new iterate cannot be accepted by the
l-filter and we therefore need to reduce the trust region. We use xg and ρg to record
information on the latest iterate xk that was accepted by the g-filter. When we back-
track to the g-filter, we backtrack to the last xg . We can also stay at some iterate xk+l

which is accepted by the l-filter, if xk+l is acceptable to the g-filter (in which case we
backtrack to this point). This approach prevents iterates from oscillating between the
g-filter and the l-filter.

Algorithm 2.1 has two crucial parts: the l-filter acceptance (lines 15–21) and the g-
filter acceptance (lines 23–29). We switch from the g-filter to the l-filter if ‖d‖∞ < ρ,
indicating that we are potentially generating Newton steps. We switch from the l-filter
to the g-filter if we cannot accept a new point and therefore must reduce trust-region
radius ρ.

In our convergence proof we use the terminology introduced by Fletcher et al.
[14]. We call d an f -type step if the switching condition (2.7) or (2.9) is satisfied,
indicating that the sufficient reduction criterion (2.8) or (2.10) is required. In this
case, we refer to iteration as an f -type iteration. Similarly, we call d an h-type step
if the switching condition (2.7) or (2.9) is not satisfied; we refer to k as an h-type
iteration. If xk is generated by the restoration phase, we also refer to it as an h-type
iteration.

3 Global convergence analysis

In this section, we give the global convergence of Algorithm 2.1. Under some mild
conditions, we show that the iteration sequence generated by Algorithm 2.1 has at
least one accumulation point that is a KKT point. Before presenting the detailed
proofs, we give some standard assumptions.

Global Convergence Assumptions

A1 Let {xk} be generated by Algorithm 2.1, and suppose that {xk} are contained in a
closed and compact set S of R

n.
A2 The problem functions f, ci(x), i ∈ E ∪ I are twice continuously differentiable

on S.
A3 The matrix Bk is uniformly bounded for all k.
A4 The Mangasarian Fromowitz constraint qualification (MFCQ) condition holds at

all feasible accumulation points.

Remark 3.1 It follows from assumptions A1 and A2 that there exists a constant
M̄ > 0, independent of k, such that ‖∇2ci(xk)‖ ≤ M̄, i ∈ E ∪ I , ‖∇2f (xk)‖ ≤ M̄

for all xk ∈ S. Assumption A3 is expressed mathematically, without loss of general-
ity, as yT Bky ≤ M̄‖y‖2 for all y ∈ R

n.

Author's personal copy

A nonmonotone filter method for nonlinear optimization 591

Our proof is divided into two steps. First, we show that the iteration sequence has
feasible accumulation points. Second, we prove that at least one accumulation point
is a KKT point if assumptions A1–A4 hold.

Lemma 3.1 Consider an infinite sequence {(h(xk), f (xk))} in which each pair
(h(xk), f (xk)) is added to the l-filter for satisfying the nonmonotone l-filter accep-
tance conditions. Assume {f (xk)} is bounded below. Then the sequence {h(xk)} con-
verges to zero.

Proof From Algorithm 2.1 and the upper bound condition (2.6), we have 0 < h(xk)

≤ u for all k. So the sequence {h(xk)} has at least one accumulation point. Suppose
that there exists a subsequence h(xki

) of {h(xk)} such that h(xki
) → h̄, where h̄ > 0

is a scalar, and seek a contradiction.
If the sequence {f (xki

)} is not bounded above, then we can choose a subsequence
so that it is monotonically increasing. Without loss of generality, we assume that
{f (xki

)} itself has this property. Therefore,

f (xki+1) > f (xki
) − γ h(xki+1) (3.1)

for all i. By the nonmonotone l-filter acceptance conditions, xki+1 cannot be domi-
nated by xki

, xki−1 , . . . , xki−M
at the same time. This fact, together with (3.1), yields

h(xki+1) ≤ β max
j∈{0,...,M}

h(xki−j
).

Similarly, we also have

h(xki+l
) ≤ β max

j∈{0,...,M}
h(xki−j

),

where l ∈ {2, . . . ,M + 1}. Hence,

max
j∈{1,...,M+1}

h(xki+j
) ≤ β max

j∈{0,...,M}
h(xki−j

),

which implies h(xki
) → 0. This contradicts the fact that h(xki

) → h̄ > 0. It follows
that h(xk) → 0 in this situation.

If the sequence {f (xki
)} is bounded, then there exists a subsequence of

{(h(xki
), f (xki

))} that converges to (h̄, f̄), where f̄ is a scalar. Without loss of gen-

erality, we assume that (h(xki
), f (xki

)) → (h̄, f̄). We define r = h̄
4 min(1 − β,γ).

Then there exists an i0 > 0 such that, for any i ≥ i0, (h(xki
), f (xki

)) lies in the

neighborhood U(h̄,f̄)(r) of (h̄, f̄) with radius r , and h(xki
) ≥ h̄

2 ; that is,

(h(xki
), f (xki

)) ∈ U(h̄,f̄)(r) =: {(x, y) | (x − h̄)2 + (y − f̄)2 < r2}

and h(xki
) ≥ h̄

2 for all i ≥ i0. We choose some i > i0. Then, on the one hand,
(h(ki+j), f (ki+j)) lies in U(h̄,f̄)(r) for j ∈ {1, . . . ,M + 2}. Therefore,

Author's personal copy

592 C. Shen et al.

|h(xki+M+2) − h(xki+j
)| ≤ |h(xki+M+2) − h̄| + |h(xki+j

) − h̄|

<
h̄

2
min(1 − β,γ) ≤ h̄

2
(1 − β) (3.2)

and

|f (xki+M+2) − f (xki+j
)| ≤ |f (xki+M+2) − f̄ | + |f (xki+j

) − f̄ |

<
h̄

2
min(1 − β,γ) ≤ h̄

2
γ (3.3)

for j ∈ {1, . . . ,M + 1}. It follows that β .

h(xki+M+2) > h(xki+j
) − h̄

2
(1 − β) ≥ h(xki+j

) − h(xki+j
)(1 − β) = βh(xki+j

)

and

f (xki+M+2) > f (xki+j
) − h̄

2
γ ≥ f (xki+j

) − γ h(xki+M+2)

for j ∈ {1, . . . ,M}, which means that xki+M+2 cannot be accepted by xki+j
, j ∈

{1, . . . ,M + 1}. On the other hand, the nonmonotone l-filter acceptance condi-
tions ensure that xki+M+2 must be acceptable to at least one of the points xki+j

, j ∈
{1, . . . ,M + 1}. This is a contradiction, which implies that the whole sequence
{h(xk)} converges to zero. �

The following corollary follows directly from Lemma 3.1, because the g-filter is
equivalent to an l-filter with M = 0.

Corollary 3.1 Consider an infinite sequence {(h(xk), f (xk))} in which each pair
(h(xk), f (xk)) is added to the g-filter for satisfying the g-filter acceptance conditions.
Assume {f (xk)} is bounded below. Then the sequence {h(xk)} converges to zero.

From Algorithm 2.1, it follows that either h(xk) = 0 or (h(xk), f (xk)) is included
in the g-filter or the l-filter for all sufficiently large k. Combining Lemma 3.1 and
Corollary 3.1, we obtain that the whole sequence converges to zero.

Before we show that Algorithm 2.1 is well defined and converges globally, we
state some preliminary results.

Lemma 3.2 Let assumptions A1–A4 hold. If d is a feasible point of the subproblem
QP(xk, ρ), then it follows that

�f (d) ≥ �q(d) − nρ2M̄ (3.4)

and

h(xk + d) ≤ 1

2
ρ2mnM̄. (3.5)

Author's personal copy

A nonmonotone filter method for nonlinear optimization 593

Proof By the definition of h(x) and [14, Lemma 3], the conclusion follows. �

Next, we show that in a neighborhood of a feasible but not optimal point, QP(x,ρ)

has a positive predicted reduction.

Lemma 3.3 Let assumptions A1–A4 hold, and let x∗ ∈ S be a feasible point of prob-
lem (1.1) at which MFCQ holds but which is not a KKT point. Then there exist a
neighborhood N of x∗ and positive constants ε, ν, and κ such that for all x ∈ S ∩ N
and all ρ for which

νh(x) ≤ ρ ≤ κ, (3.6)

it follows that QP(x,ρ) has a feasible solution d . Moreover, the predicted reduction
satisfies

�q(d) ≥ 1

3
ρε, (3.7)

the sufficient reduction criterion (2.10) holds, and the actual reduction satisfies

�f (d) ≥ γ h(x + d). (3.8)

Proof The conclusion follows from Fletcher et al. [14, Lemma 5] with slight modifi-
cations. �

Now, we prove that Algorithm 2.1 is well defined, that is, that the inner iteration
(the repeat loop between lines 6 and 32 in Algorithm 2.1) terminates finitely.

Lemma 3.4 Let assumptions A1–A4 hold. Then the inner iteration terminates
finitely.

Proof The conclusion follows from Fletcher et al. [14, Lemma 6] with slight modifi-
cations. �

We are now able to prove our global convergence result.

Theorem 3.1 Let assumptions A1–A4 hold, and assume that QP(xk, ρ) is solved to
global optimality. Then one of the following three cases occurs.

(i) The restoration phase fails to terminate and converges to a stationary point of
the constraint violation.

(ii) A KKT point of problem (1.1) is found (d = 0 is generated for some k).
(iii) There exists at least one accumulation point x∗ of {xk} generated from Algo-

rithm 2.1 such that it is a KKT point.

Proof If the restoration phase fails to terminate or d = 0 for some k, cases (i) and
(ii) follow trivially. Since the inner loop terminates finitely, we need only to consider
that the outer iteration sequence is infinite. We distinguish two cases depending on
whether there are a finite number of h-type iterations or not.

Author's personal copy

594 C. Shen et al.

First, we consider the case that there exist an infinite number of h-type iterations
contained in the main iteration sequence. If there exist an infinite number of h-type
iterates added to the g-filter, then it follows from assumption A1 and Lemma 3.1
that there exists a subsequence of this h-type sequence that converges to x∗, which
is feasible for problem (1.1). Let G denote the index set of this subsequence. By
Lemma 3.3 and assumption A4, the feasibility of x∗ implies that the subproblem QP
is consistent, f (xk + d) − f (xk) ≥ γ h(xk + d), and the switching condition (2.9)
and the sufficient reduction condition (2.10) hold for sufficiently large k if ρ satisfies
condition (3.6). This together with Algorithm 2.1 yields that xk + d is acceptable to
the filter and xk if ρ2 ≤ 2βh(xk)

mnM̄
for sufficiently large k. Therefore, an f -type iteration

is generated if

νh(xk) < ρ ≤ min

{

κ,

√
2βh(xk)

mnM̄

}

(3.9)

holds. Now we show that (3.9) can be satisfied for sufficiently large k. We note that
the upper bound in (3.9) is more than twice the lower bound, as h(xk) → 0. From
Algorithm 2.1, a value ρ ≥ ρo is chosen at the beginning of each iteration. Then
it will be greater than the upper bound in (3.9) for sufficiently large k. Hence, by
successively halving ρ in the inner loop, we will eventually locate ρ in the range of
(3.9) or to the right of this interval. Since d is a global optimizer of QP(xk, ρ), the
predicted reduction �q(d) decreases monotonically as ρ decreases. As a result, no h-
type iterations are generated for ρ larger than the upper bound in (3.9). Therefore, for
sufficiently large k ∈ G , an f -type iteration is generated that contradicts the definition
of G . Therefore, x∗ must be a KKT point of problem (1.1).

Next, we consider the case where an infinite number of h-type iterates is added to
the l-filter while only a finite number of h-type iterates are added to the g-filter. Let
L denote the index set such that each k ∈ L is an h-type iterate added to the l-filter.
Assumption A1 ensures that the sequence {xk} has at least one accumulation point.
If there exists an infinite subset K such that d = d̄k, k ∈ K and {d̄k}K converges
to a zero vector, then {xk} must have an accumulation point that is a KKT point,
which completes the proof. Now we assume that ‖d̄k‖∞ ≥ ε̄ for some scalar ε̄ > 0. It
follows that from Lemma 3.1 and Corollary 3.1 that the second inequality of (2.7) can
be satisfied by choosing k large enough. Similar to the earlier proof, for sufficiently
large k, if ρ satisfies (3.9), then k is an f -type iteration. Even if ρ lies in the right of
interval (3.9), the condition (2.7) is satisfied. Then, any k ∈ L sufficiently large could
not be an h-type iteration, which contradicts the definition of L. Therefore, x∗ is a
KKT point of problem (1.1).

Now, we consider the case that only a finite number of h-type iterations are gen-
erated. Then there exists an integer K > 0 such that for all k ≥ K , k is an f -type
iteration. We consider two subcases in the following. One is that there exists an inte-
ger K1 ≥ K such that d = d̄k for all k ≥ K1. By (2.8), we have that for any k ≥ K1,

max
j∈{0,...,M}

f (xk+l−j−1) − f (xk+l) ≥ σ min
{
�q(d̄k+l−1), ξ‖d̄k+l−1‖2∞

} ≥ 0 (3.10)

for l ∈ {1, . . . ,M + 1}. Then the sequence {maxj∈{0,...,M}f (xk−j)} decreases mono-
tonically. This together with (3.10) gives

Author's personal copy

A nonmonotone filter method for nonlinear optimization 595

max
j∈{0,...,M}

f (xk−j) − max
j∈{1,...,M+1}

f (xk+j)

≥ σ min
j∈{1,...,M+1}

{
�q(d̄k+j−1), ξ‖d̄k+j−1‖2∞

}

for all k ≥ K1. Since assumptions A1–A2 imply boundedness of f , it follows that

min
j∈{1,...,M+1}

{
�q(d̄k+j−1), ξ‖d̄k+j−1‖2∞

} → 0 (3.11)

as k → ∞. We define

K =
{
l | min

{
�q(d̄l), ξ‖d̄l‖2} = min

j∈{1,...,M+1}
{
�q(d̄k+j−1), ξ‖d̄k+j−1‖2∞

}
,

k ≥ K1

}
.

Without loss of generality, we assume that {xk}k∈K converges to x∗, which is a feasi-
ble point for problem (1.1) from Lemma 3.1. By Lemma 3.3, if

νh(xk) < ρ ≤ κ̄, k ∈ K, (3.12)

then �q(d) ≥ 1
3ρε. Since h(xk) → 0, the radius ρ must lie in the interval (3.12) or

the right of this interval. The global optimality of d ensures that

�q(d̄k) ≥ 1

3
ρε >

ε

3
‖d̄k‖∞.

This together with (3.11) and the definition of K implies that ‖d̄k‖∞ → 0, k ∈ K.
Therefore, x∗ is a KKT point.

Now, we consider the other subcase that all d
= d̄k for all k ≥ K ; in other words,
all sufficiently large iterations are added to the g-filter, which is similar to situation
discussed by Chin and Fletcher [5]. It then follows that {f (xk)} is monotone for
all k ≥ K . Since f is bounded below, the sufficient reduction criterion (2.10) gives
�q(d) → 0 as k → ∞. Let x∗ be an accumulation point of {xk}.

We define

τK = min
j∈F g

K,h(xj)>h(xk)

h(xj). (3.13)

From Lemmas 3.2 and 3.3, if

νh(xk) < ρ ≤ min

{√
βτK

mnM̄
, κ̄

}

, k ≥ K, (3.14)

then (3.7), (3.8), and (2.10) are satisfied. Thus, xk + d is acceptable to xk and
all xj with h(xj) > h(xK), j ∈ F g

K . For all j with h(xj) ≤ h(xK), j ∈ F g
K , we

must have f (xj) > f (xK); otherwise (h(xj), f (xj)) must have been deleted. It fol-
lows from the monotonicity of {f (xk)} for all k ≥ K that f (xj) > f (xk) for all
j ∈ {K, . . . , k − 1} and all j with h(xj) ≤ h(xK), j ∈ F g

K . This together with (3.8)
yields that xk +d is acceptable to all xj for all j ∈ {K,K +1, . . . , k−1} and all j with

Author's personal copy

596 C. Shen et al.

h(xj) ≤ h(xK), j ∈ F g
K . Similar to the earlier proof, an f -type iteration is generated

when (3.14) is satisfied. The right-hand side of (3.14) is a constant, independent of k.
Since the upper bound of (3.14) is a constant and the lower bound converges to zero,
the upper bound must be more than twice the lower bound. So a value of ρ will be lo-
cated in this interval, or a value to the right of this interval. Hence, ρ ≥ min{ 1

2 κ̄, ρo}.
The global optimality of dk ensures �q(d) ≥ 1

3ε min{ 1
2 κ̄, ρo} holds even if ρ is

greater than the right-hand side of (3.14). This contradicts the fact �q(d) → 0 as
k → ∞. Thus, x∗ is a KKT point. �

We are aware that requiring global solutions of the QP subproblems in our global
convergence analysis is undesirable. The same assumption was used by Fletcher et
al. [14]. Later, Fletcher et al. [13] proposed a trust-region SQP-filter algorithm that
uses a decomposition of the step in its normal and tangential components. Under
some mild conditions, they obtained global convergence without requiring the global
solutions of the QP subproblems. As a matter of fact, we can remove the global op-
timality assumption by using this decomposition technique and weaker assumptions
[13, (2.12) and (2.15)]. These assumptions can be guaranteed by implementation of
algorithm if the generalized Cauchy step is generated by solving one additional linear
program subproblem. Similar to Fletcher et al. [13, Lemmas 3.5–3.7], we can obtain
that

�q(d) ≥ κρε,

if χk ≥ ε and 0 < ρ < δm, where κ > 0, δm > 0, and ε > 0 are scalars and χk is
the measure of first-order criticality [13, (2.13)]. Applying this conclusion to Theo-
rem 3.1, we obtain global convergence without requiring the global optimality con-
dition.

4 Local convergence analysis

In this section, we prove the local convergence properties of Algorithm 2.1. As we
mentioned earlier, the l-filter promotes fast local convergence. We will prove that
when the iterates approach a local optimal point, the nonmonotone l-filter conditions
are satisfied for all Newton steps and that all iterates with h(x) > 0 are added to the
l-filter. Therefore, fast local convergence is achieved, and the new method avoids the
Maratos [21] effect.

Let x∗ be an accumulation point of {xk} generated by Algorithm 2.1, which is a
KKT point of the problem (1.1). The corresponding multiplier is denoted by λ∗ =
(λ∗

1, . . . , λ
∗
m). Before stating the main results, we need some additional assumptions.

Local Convergence Assumptions

A5 Let f and ci, i ∈ E ∪ I be twice continuously differentiable with Lipschitz con-
tinuous Hessian. The point x∗ associated with its multiplier λ∗ satisfies the linear
independence constraint qualification (LICQ), the strict complementarity condi-
tion (SCC), and the second-order sufficient conditions (SOSC). That is,
1. ∇cE ∪I ∗(x∗) has full column-rank, where I ∗ := {i | ci(x

∗) = 0, i ∈ I};

Author's personal copy

A nonmonotone filter method for nonlinear optimization 597

2. λ∗
i > 0, i ∈ I ∗; λ∗

i = 0, i ∈ I\I ∗; and
3. yT ∇2L(x∗, λ∗)y ≥ κ‖y‖2 holds for all y satisfying ∇ci(x

∗)T y = 0, i ∈ E ∪
I ∗, where κ > 0 is a scalar.

A6 Let M ≥ 1 be the level of nonmonotonicity.

From the previous section, we know that d̄k is the solution of QP(xk,∞) for all k.
Then d̄k satisfies the KKT conditions of QP(xk,∞), namely,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∇f (xk) + ∑
i∈E ∪I λk,i∇ci(xk) + Bkd̄k = 0,

∇ci(xk)
T d̄k + ci(xk) = 0, i ∈ E ,

(∇ci(xk)
T d̄k + ci(xk))λk,i = 0, i ∈ I,

λk,i ≥ 0, ∇ci(xk)
T d̄k + ci(xk) ≤ 0, i ∈ I,

(4.1)

where Bk = ∇2f (xk) + ∑
i∈E ∪I λk−1,i∇2ci(xk) is the Hessian of the Lagrangian,

and λk = (λk,1, . . . , λk,m)T ∈ R
m.

To obtain fast convergence, we need to prove two results. One is that the Newton
step d̄k is computed for all sufficiently large k. The other is that the Newton step d̄k

is accepted for all sufficiently large k. As we discussed in Sect. 2, the Newton step d̄k

is not computed explicitly at any iteration. However, if the solution d of QP(xk, ρ)

satisfies ‖d‖∞ < ρ, then d is the Newton step d̄k provided assumption A5 holds.
From the mechanism of Algorithm 2.1, the first trial trust-region radius ρ is always
greater than or equal to the constant ρo. Therefore, we need only to prove that d̄k → 0
as k → +∞, and then all d solving QP(xk, ρ) with ρ ≥ ρo are Newton steps, which
implies that d̄k is computed for all sufficiently large k. In Lemmas 4.1 and 4.2 and
Proposition 4.1 we show that d̄k → 0 as k → +∞.

Lemma 4.1 Let assumption A5 hold. If (xk, λk) → (x∗, λ∗) as k → ∞ and k ∈ K,
where K is an infinite index set, then ‖d̄k‖ → 0 as k → ∞ and k ∈ K.

Proof Since x∗ is a local minimizer of the problem (NLP), it follows with assump-
tion A5 that there exist no strictly feasible descent directions, that is,

D′ ∩ F ′ = {0}, (4.2)

where D′ = {d | ∇f (x∗)T d < 0} and F ′ = {d | ∇ci(x
∗)T d = 0, i ∈ E ;∇ci(x

∗)T d ≤
0, i ∈ I ∗}. We distinguish two cases, depending on whether the sequence {d̄k} is
bounded or not.

If the sequence {d̄k} is bounded, then it must have a convergent subsequence.
Suppose that there exists an infinite set K′ ⊆ K such that {dk}K′ → d̄
= 0. In view of
KKT conditions (4.1), we obtain the following systems:

∇f (xk)
T d̄k = −

∑

i∈E ∪I
λk,ici(xk) − d̄T

k Bkd̄k, (4.3)

∇ci(xk)
T d̄k + ci(xk) = 0, i ∈ E , (4.4)

∇ci(xk)
T d̄k + ci(xk) ≤ 0, i ∈ I. (4.5)

Author's personal copy

598 C. Shen et al.

Letting k tend to infinity, we obtain

∇f (x∗)T d̄ = −d̄T ∇2L(x∗, λ∗)d̄ < 0 (4.6)

and d̄ ∈ F ′, where the last inequality of (4.6) follows from assumption A5. However,
0
= d̄ ∈ D′ ∩ F ′, which contradicts (4.2). Therefore, {d̄k}K → 0 in this situation.

If the sequence {d̄k} is unbounded, then its normalized sequence {d̄k/‖d̄k‖} must
be bounded. Suppose that there is a K′ such that d̄k/‖d̄k‖ → d̄
= 0 and ‖d̄k‖ → ∞
as k ∈ K′ and k → ∞. Dividing (4.3) by ‖d̄k‖2 and dividing (4.4)–(4.5) by ‖d̄k‖, we
obtain

∇f (xk)
T d̄k/(‖d̄k‖2) = −

∑

i∈E ∪I
λk,ici(xk)/(‖d̄k‖2) − d̄T

k Bkd̄k/(‖d̄k‖2), (4.7)

∇ci(xk)
T d̄k/‖d̄k‖ + ci(xk)/‖d̄k‖ = 0, i ∈ E , (4.8)

∇ci(xk)
T d̄k/‖d̄k‖ + ci(xk)/‖d̄k‖ ≤ 0, i ∈ I. (4.9)

Taking the limit as k → ∞, we obtain

0 = −d̄T ∇2L(x∗, λ∗)d̄ < 0 (4.10)

and d̄ ∈ F ′, where the last inequality of (4.10) follows from assumption A5, which is
a contradiction. Therefore, {d̄k}K → 0. �

For the sake of completeness, we state Proposition 4.1 from Qi and Qi [23].

Proposition 4.1 Assume w∗ ∈ R
t is an isolated accumulation point of a sequence

{wk} ⊆ R
t such that for every subsequence {wk}K converges to w∗. Assume, more-

over, that there exists an infinite subset K̄ ⊆ K such that {‖wk+1 −wk‖K̄} → 0. Then
the whole sequence {wk} converges to w∗.

Proof See Moré and Sorensen [22, Lemma 4.10] or Kanzow and Qi [19, Proposi-
tion 5.4]. �

Lemma 4.2 Let assumption A5 hold. Then the whole sequence {(xk, λk)} converges
to (x∗, λ∗).

Proof Assumption A5 implies that x∗ is an isolated solution of the problem (1.1); see
Robinson [25, Theorems 2.4, 4.2]. Let {xk}K be a subsequence of {xk} converging
to x∗. By Lemma 4.1, there exists an infinite set K̄ ⊆ K such that {d̄k}K̄ → 0. The
mechanism of Algorithm 2.1 guarantees that

‖xk+1 − xk‖ = ‖dk‖ ≤ ‖d̄k‖,
where dk is from Algorithm 2.1, that is, an accepted step. Hence,

{‖xk+1 − xk‖}K̄ → 0,

Author's personal copy

A nonmonotone filter method for nonlinear optimization 599

which together with Proposition 4.1 yields xk → x∗ as k → ∞. Assumption A5 im-
plies the uniqueness of multipliers associated with x∗. Moreover, as xk → x∗, as-
sumption A5 also ensures the uniqueness of the multipliers in a neighborhood of x∗.
Hence, it follows that the sequence {λk} exists and converges to λ∗. �

It follows from Lemmas 4.1 and 4.2 that d̄k → 0 as k → ∞. Next, we show that
the Newton step provides superlinear convergence.

Lemma 4.3 Let assumption A5 hold. Then it follows that

‖xk + d̄k − x∗‖ = o(‖xk − x∗‖) (4.11)

and
∥
∥
∥
∥
xk + d̄k − x∗

λk − λ∗
∥
∥
∥
∥ = O

(∥
∥
∥
∥

xk − x∗
λk−1 − λ∗

∥
∥
∥
∥

2
)

. (4.12)

Moreover,

‖d̄k‖ = �(‖xk − x∗‖). (4.13)

Proof Equations (4.11) and (4.12) follow from Facchinei and Lucidi [8, Theo-
rem 4.1]. Using (4.11), we have

‖xk + d̄k − x∗‖
‖xk − x∗‖ ≥

∣
∣
∣
∣

‖d̄k‖
‖xk − x∗‖ − 1

∣
∣
∣
∣ → 0, as k → ∞.

Therefore,

‖d̄k‖
‖xk − x∗‖ → 1, as k → +∞,

which implies (4.13). �

From Lemma 4.3, it follows that if Newton steps are accepted for all sufficiently
large k, then Algorithm 2.1 has a superlinear rate of convergence for the primal vari-
able x and a quadratic rate of convergence for the primal-dual pair (x,λ). Next, we
establish some preliminary results for proving l-filter acceptance of d̄k for sufficiently
large k.

Lemma 4.4 Let assumption A5 hold. Then

ci(xk + d̄k) = O(‖d̄k‖2), i ∈ E ∪ I ∗ (4.14)

holds for all sufficiently large k.

Proof Lemmas 4.1 and 4.2 and assumption A5 ensure that QP(xk,∞) is equivalent
to

EQP(xk)

⎧
⎨

⎩

minimize
d

q(d) = ∇f (xk)
T + 1

2
dT Bkd

subject to ∇ci(xk)
T d + ci(xk) = 0, i ∈ E ∪ I ∗,

(4.15)

Author's personal copy

600 C. Shen et al.

when xk is sufficiently close to x∗. Thus, it follows that

∇ci(xk)
T d̄k + ci(xk) = 0, i ∈ E ∪ I ∗,

for all sufficiently large k. The conclusion follows with Taylor expansion and as-
sumption A5. �

To prove the local convergence of Algorithm 2.1, we introduce the exact penalty
function

�ψ(x) = f (x) + ψh(x), (4.16)

where ψ > ‖λ∗‖∞ is the penalty parameter. We emphasize that we use the penalty
function only as a proof technique. The following result is based on the penalty func-
tion, which plays a key role in proving acceptance of the Newton step d̄k .

Lemma 4.5 Let assumption A5 hold, let xk+i−1 = xk+i−2 + d̄k+i−2, i ∈ {0,1,2},
and let ψ > ‖λ∗‖∞. Then there exists an integer K1 > 0 such that for all k ≥ K1

�ψ(xk+i−2) − �ψ(xk+1) ≥
(

γ +
(

1

β
− 1

)

ψ

)

h(xk+1), i ∈ {0,1}, (4.17)

holds.

Proof From a Taylor expansion of the Lagrangian and the KKT conditions of prob-
lem (1.1), we have that

f (xk+1) +
∑

i∈E ∪I ∗
λ∗

i ci(xk+1) − f (x∗)

= L(xk+1, λ
∗) − L(x∗, λ∗)

= ∇xL(x∗, λ∗)(xk+1 − x∗) + O(‖xk+1 − x∗‖2)

= O(‖xk+1 − x∗‖2).

Rearranging this equation gives

f (xk+1) = f (x∗) −
∑

i∈E ∪I ∗
λ∗

i ci(xk+1) + O(‖xk+1 − x∗‖2). (4.18)

It follows from (4.18) and Lemma 4.4 that

�ψ(xk+1) +
(

γ +
(

1

β
− 1

)

ψ

)

h(xk+1)

= f (xk+1) +
(

γ + ψ

β

)

h(xk+1)

= f (x∗) −
∑

i∈E ∪I ∗
λ∗

i ci(xk+1) +
(

γ + ψ

β

)

h(xk+1) + O(‖xk+1 − x∗‖2)

Author's personal copy

A nonmonotone filter method for nonlinear optimization 601

= f (x∗) + O(‖xk+1 − x∗‖2) + O(‖d̄k‖2).

Substituting (4.13) and (4.11) into this equation, we have

�ψ(xk+1)+
(

γ +
(

1

β
− 1

)

ψ

)

h(xk+1) = f (x∗)+ o(‖xk+i−2 − x∗‖2), i ∈ {0,1}.
(4.19)

On the other hand, from Chamberlain et al. [4, Lemma 1] and assumption A5, we
obtain that there exists a scalar c̄ > 0 such that when x is sufficiently close to x∗,

�ψ(x) ≥ f (x∗) + c̄‖x − x∗‖2. (4.20)

Combining this equation with (4.19) gives

�ψ(xk+i−2) ≥ f (x∗) + c̄‖xk+i−2 − x∗‖2

≥ �ψ(xk+1) +
(

γ +
(

1

β
− 1

)

ψ

)

h(xk+1), i ∈ {0,1}

for all k ≥ K1, where K1 > 0 is an integer. �

The following lemma shows that the sufficient reduction criterion (2.8) holds if
the switching condition (2.7) is satisfied for all sufficiently large k. Therefore, for all
sufficiently large k, the Newton step d̄k will not be rejected by the sufficient reduction
criterion (2.8).

Lemma 4.6 Let assumption A5 hold. Then there exists an integer K2 ≥ K1 (K1 is
given by Lemma 4.5) such that if (2.7) holds for k ≥ K2, then (2.8) holds for xk+i =
xk+i−1 + d̄k+i−1, i ∈ {0,1}.

Proof We need only to prove that

f (xk + d̄k) + σξ‖d̄k‖2 ≤ f (xk−1) (4.21)

holds for all sufficiently large k. Condition (2.7) and assumption (A6) imply that

h(xk−1) = O(‖d̄k‖τ),

where τ ∈ (2,3]. This together with (4.18) yields

f (xk + d̄k) + σξ‖d̄k‖2 + ψh(xk−1)

= f (x∗) −
∑

i∈E ∪I ∗
λ∗

i ci(xk + d̄k) + σξ‖d̄k‖2 + ψh(xk−1) + O(‖xk + d̄k − x∗‖2)

= f (x∗) + O(‖d̄k‖2) + O(‖xk + d̄k − x∗‖2)

= f (x∗) + o(‖xk−1 − x∗‖2),

Author's personal copy

602 C. Shen et al.

Fig. 2 The left figure shows that the pair corresponding to the black triangle on the line l1 is acceptable to
any pair corresponding to the triangle in the shaded area. The right figure shows the pair (h(xK3), f (xK3))

is the first entry in the l-filter entering into the area DK ′
2
(ψ)

where the second equality holds because of (4.14) and the third equality holds be-
cause of (4.11) and (4.13). Using (4.20), we obtain

�ψ(xk−1) ≥ f (xk + d̄k) + σξ‖d̄k‖2 + ψh(xk−1)

for all k ≥ K2. This together with the definition of �ψ(x) yields (4.21). �

We illustrate our proof in Fig. 2. The next lemma shows that any pair (h(x̂), f (x̂))

on the line

l1 : f = −ψh + f (x̂) + ψh(x̂)

is acceptable to any pair (h(xl), f (xl)) on and above the line

l2 : f = −ψh + f (xl) + ψh(xl)

so long as the intercept on the f -axis of the line l1 is (γ + (1
β

− 1)ψ)h(x̂) less than
that of the line l2. In fact, (h(x̂), f (x̂)) is acceptable to A, B , and C since they are all
above the line l2.

Lemma 4.7 Let x̂ be a trial point. For any point xl , if

�ψ(xl) − �ψ(x̂) ≥
(

γ +
(

1

β
− 1

)

ψ

)

h(x̂), (4.22)

then x̂ is acceptable to xl .

Author's personal copy

A nonmonotone filter method for nonlinear optimization 603

Proof If h(x̂) ≤ βh(xl), then x̂ is acceptable to xl . Otherwise, h(x̂) > βh(xl). Since
(4.22) can be rewritten as

f (xl) − f (x̂) ≥ ψ

(
1

β
h(x̂) − h(xl)

)

+ γ h(x̂),

it follows that f (xl) − f (x̂) > γh(x̂), which also implies that x̂ is acceptable to xl .
Therefore, the conclusion follows in both cases. �

In what follows, we consider an infinite sequence of iterations contained in the
main iteration sequence. Figure 2 (right) gives the (h,f) half-plane with the l-filter.
We define

Dk(ψ) = {
(h,f) | f ≤ −ψh + f (xk) + ψh(xk) and h ≥ 0

}
.

Since all the entries entered into the l-filter have h(x) > 0, there exist an integer
K ′

2 > K2 and ψ > ‖λ∗‖∞ such that ∀(h,f) ∈ DK ′
2
(ψ) ⇒ (h,f) is acceptable to

F l
K2

, where K2 is from Lemma 4.6. Without loss of generality, we assume that K3 is
the first iteration K3 > K2 in the l-filter such that (h(xK3), f (xK3)) ∈ DK ′

2
(ψ).

Next, we prove that the Newton step d̄k is accepted by the l-filter for all sufficiently
large k. The following lemma enables us to achieve our main results.

Lemma 4.8 Let assumptions A5 and A6 hold. Then there exists an integer K3 ≥ K2
(K2 is given by Lemma 4.6) such that the trial point xk + d̄k is accepted by the l-filter
for all k ≥ K3.

Proof Taking K3, we have xK3+1 = xK3 + d̄K3 from the property of the l-filter. First,
we prove that xK3+2 = xK3+1 + d̄K3+1 is again the Newton step. Since K3 is the first
iteration in which (h(xK3), f (xK3)) ∈ DK ′

2
(ψ), it follows that

�ψ(xK3) ≤ �ψ(xl)

holds for all l ∈ FK3 ∪ {K3}. It then follows with Lemma 4.5 that

�ψ(xl) − �ψ(xK3+1 + d̄K3+1) ≥
(

γ +
(

1

β
− 1

)

ψ

)

h(xK3+1 + d̄K3+1) (4.23)

holds for all l ∈ FK3 ∪ {K3}. In view of Lemma 4.7, xK3+1 + d̄K3+1 is acceptable
to xK3 and the filter FK3 . Thus, xK3+1 + d̄K3+1 is acceptable to the filter FK3+1.
Whether xK3+1 + d̄K3+1 is acceptable to xK3+1 or not, the nonmonotone l-filter ac-
ceptance conditions are satisfied. If the condition (2.7) is also satisfied, then it follows
with Lemma 4.6 that an f -type iteration is generated. Otherwise, an h-type iteration
is generated. Therefore, xK3+2 = xK3+1 + d̄K3+1.

In the following, we prove that xk = xk−1 + d̄k−1 is accepted as a new iterate for
all k > K3 + 2 by induction. Denote i := k − K3. For p = 2, the above proof has
shown that xK3+p = xK3+p−1 + d̄K3+p−1 is accepted as a new iterate. Assume that
xK3+p = xK3+p−1 + d̄K3+p−1 holds for any p < i. We need to prove that xK3+p =

Author's personal copy

604 C. Shen et al.

xK3+p−1 + d̄K3+p−1 holds for p = i. From the induction hypothesis and Lemma 4.5,
we obtain that

�ψ(xK3+j + d̄K3+j) ≤ �ψ(xK3+j−2) −
(

γ +
(

1

β
− 1

)

ψ

)

h(xK3+j + d̄K3+j)

and

�ψ(xK3+j + d̄K3+j) ≤ �ψ(xK3+j−1) −
(

γ +
(

1

β
− 1

)

ψ

)

h(xK3+j + d̄K3+j)

for j ∈ {2, . . . , i − 1}. It then follows that

�ψ(xK3+i−1 + d̄K3+i−1) ≤ �ψ(xK3+j)−
(

γ +
(

1

β
− 1

)

ψ

)

h(xK3+i−1 + d̄K3+i−1)

(4.24)
for j ∈ {0, . . . , i − 2}. Since K3 is the first iteration K3 > K2 in the l-filter such that
(h(xK3), f (xK3)) ∈ DK ′

2
(ψ), it follows that

�ψ(xK3) ≤ �ψ(xj)

for all j ∈ F l
K3

. These together with Lemma 4.7 yield that xK3+i−1 + d̄K3+i−1 is
acceptable to xj for j ∈ {K3, . . . ,K3 + i − 2} ∪ FK3 . Therefore the nonmonotone
l-filter acceptance conditions are satisfied. Similar to the earlier proof, for p = i, we
also have xK3+p = xK3+p−1 + d̄K3+p−1. Therefore, by induction, the claim of this
theorem is true. �

Lemmas 4.3 and 4.8 imply the main result of this section stated in the following.

Theorem 4.1 Let assumptions A5 and A6 hold. The sequence {xk} generated by
Algorithm 2.1 converges to x∗ q-superlinearly, and the sequence {(xk, λk)} converges
to (x∗, λ∗) q-quadratically.

Theorem 4.1 shows that the new algorithm does not suffer from the Maratos effect,
unlike traditional filter methods as the example by Fletcher et al. [15] shows. The
two key ingredients to ensuring fast local convergence in our algorithm are: (1) the
flushing of the l-filter to ensure that outdated information cannot prevent fast local
information, and (2) the nonmonotonicity of the l-filter.

5 Numerical experience

We summarize our experience with a preliminary version of the second-order filter
method described in Algorithm 2.1. Our goal is to demonstrate that the approach is
viable and comparable to our previous implementation. Detailed computational tests
and comparisons with other solvers are left for later.

We choose all 411 CUTEr [3] problems with less than 100 variables or constraints
that are available in AMPL [16] from Bob Vanderbei’s collection [2]. We compare

Author's personal copy

A nonmonotone filter method for nonlinear optimization 605

Fig. 3 Performance profile
comparing the number of QP
solves for filterSQP and FASTr

the established filterSQP solver [10, 11] (also available on NEOS) to our new imple-
mentation, called FASTr (for filter active-set trust-region solver). Both solvers use the
indefinite, active-set QP solver, BQPD [9] to solve the QP subproblems. We use the
number of QPs solved as our performance measure, which is roughly proportional to
CPU time. Our implementation of Algorithm 2.1 uses a nonmonotone g- and l-filter
with M = 2, though we have also experimented with other values of M = 3,4 with-
out any significant performance differences. Unlike filterSQP, FASTr does not use
second-order correction steps. A second difference from filterSQP is that FASTr uses
the main loop both for feasibility restoration and optimality, making the code shorter
and easier to maintain. Finally, filterSQP establishes feasibility with respect to the
linear constraints first, while FASTr only ensures that the simple bounds are satisfied
at x0. Both methods use the �1-norm to measure infeasibility and first-order error.

We choose the following parameters for FASTr (these are identical to the parame-
ters used in filterSQP). The initial trust-region radius is ρ0 = 10, the maximum trust-
region radius is ρmax = ∞, the sufficient reduction constant is σ = 0.1, the constants
for the filter envelopes are β = 0.999 and γ = 0.001, the switching constant τ = 2,
and the initial constraint upper bound is computed as u = max(100,1.25h(x0)).
When we developed filterSQP, we found that the filter algorithm is not sensitive to
these parameters. Changing the nonmonotonicity from M = 2 to M = 3 or M = 4
can changes the performance only on a small number of problems. The performance
profiles are almost unchanged for FASTr.

Figure 3 shows a performance profile [7] that compares filterSQP and FASTr. We
observe that, in general, the new implementation outperforms filterSQP. We believe
that some of this improvement can be attributed to the fact that FASTr does not invoke
SOC steps far from the solution. Instead, the nonmonotonicity allows us to accept
more steps, even far from the solution, resulting in larger trust-region radii ad faster
convergence.

Author's personal copy

606 C. Shen et al.

6 Conclusion and discussion

We have presented a nonmonotone filter method for nonlinear optimization and have
shown its global and fast local convergence under mild conditions. We introduce two
filters: the g-filter and the l-filter. The g-filter guarantees global convergence, while
the l-filter is a nonmonotone filter that promotes fast local convergence. The l-filter
includes only the full SQP steps, which are important to local convergence analy-
sis. The proposed algorithm improves on the algorithm in Wächter and Biegler [27],
since it achieves fast local convergence without the use of SOC steps. Moreover, the
proposed algorithm uses the objective function in the filter, instead of the Lagrangian
function [26], thereby avoiding the potential issue of converging to a saddle point.

Acknowledgements We are grateful to two anonymous referees whose careful reading and insightful
comments improved this paper. This work was supported by the Office of Advanced Scientific Computing
Research, Office of Science, US Department of Energy, under Contract DE-AC02-06CH11357. This work
was also supported by the US Department of Energy through the grant DE-FG02-05ER25694. The first
author was also supported by the National Science Foundation of China under grant number 11101281.

References

1. Audet, C., Dennis, J., Jr.: A pattern search filter method for nonlinear programming without deriva-
tives. SIAM J. Optim. 14(4), 980–1010 (2004)

2. Benson, H., Vanderbei, R.: Cute models in AMPL (1998). http://orfe.princeton.edu/rvdb/ampl/
nlmodels/cute/

3. Bongartz, I., Conn, A.R., Gould, N.I.M., Toint, P.L.: CUTE: constrained and unconstrained testing
environment. ACM Trans. Math. Softw. 21, 123–160 (1995)

4. Chamberlain, R.M., Powell, M.J.D., Lemarechal, C., Petersen, H.C.: The watchdog technique for
forcing convergence in algorithms for constrained optimization. Math. Program. Stud. 16, 1–17
(1982)

5. Chin, C.M., Fletcher, R.: On the global convergence of an SLP-filter algorithm that takes EQP steps.
Math. Program. 96(1), 161–177 (2003)

6. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. MPS-SIAM Series on Optimization.
SIAM, Philadelphia (2000)

7. Dolan, E.D., Moré, J.: Benchmarking optimization software with performance profiles. Math. Pro-
gram. 91(2), 201–213 (2002)

8. Facchinei, F., Lucidi, S.: Quadratically and superlinearly convergent algorithms for the solution of
inequality constrained minimization problems. J. Optim. Theory Appl. 85, 265–289 (1995)

9. Fletcher, R.: Stable reduced Hessian updates for indefinite quadratic programming. Math. Program.
87(2), 251–264 (2000)

10. Fletcher, R., Leyffer, S.: User manual for filterSQP. Numerical Analysis Report NA/181, University
of Dundee (1998)

11. Fletcher, R., Leyffer, S.: Nonlinear programming without a penalty function. Math. Program. 91,
239–270 (2002)

12. Fletcher, R., Leyffer, S.: Filter-type algorithms for solving systems of algebraic equations and in-
equalities. In: di Pillo, G., Murli, A. (eds.) High Performance Algorithms and Software for Nonlinear
Optimization, pp. 259–278. Kluwer Academic, Dordrecht (2003)

13. Fletcher, R., Gould, N.I.M., Leyffer, S., Toint, P.L., Wächter, A.: Global convergence of trust-region
SQP-filter algorithms for general nonlinear programming. SIAM J. Optim. 13(3), 635–659 (2002)

14. Fletcher, R., Leyffer, S., Toint, P.L.: On the global convergence of a filter-SQP algorithm. SIAM J.
Optim. 13(1), 44–59 (2002)

15. Fletcher, R., Leyffer, S., Toint, P.L.: A brief history of filter methods. SIAG/OPT Views-and-News
18(1), 2–12 (2007)

16. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modelling Language for Mathematical Program-
ming, 2nd edn. Books/Cole Thomson Learning, New York (2003)

Author's personal copy

http://orfe.princeton.edu/rvdb/ampl/nlmodels/cute/
http://orfe.princeton.edu/rvdb/ampl/nlmodels/cute/

A nonmonotone filter method for nonlinear optimization 607

17. Gonzaga, C.C., Karas, E.W., Vanti, M.: A globally convergent filter method for nonlinear program-
ming. SIAM J. Optim. 14(3), 646–669 (2003)

18. Gould, N.I.M., Toint, P.L.: Global convergence of a non-monotone trust-region SQP-filter algorithm
for nonlinear programming. Numerical Analysis Report RAL-TR-2003-003, Rutherford Appleton
Laboratory, UK (2003). Available online at www.numerical.rl.ac.uk/reports/reports.shtml

19. Kanzow, C., Qi, H.-D.: A QP-free constrained Newton-type method for variational inequality prob-
lems. Math. Program. 85, 81–106 (1999)

20. Karas, E.W., Ribeiro, A., Sagastizábal, C., Solodov, M.: A bundle-filter method for nonsmooth convex
constrained optimization. Math. Program. 116, 297–320 (2009)

21. Maratos, N.: Exact penalty function algorithms for finite dimensional and control optimization prob-
lems. Ph.D. thesis, Univ. of London (1978)

22. Moré, J.J., Sorensen, D.C.: Computing a trust region step. SIAM J. Sci. Stat. Comput. 4, 553–572
(1983)

23. Qi, H.D., Qi, L.Q.: A new QP-free, globally convergent, locally superlinearly convergent algorithm
for inequality constrained optimization. SIAM J. Optim. 11(1), 113–132 (2000)

24. Ribeiro, A., Karas, E.W., Gonzaga, C.C.: Global convergence of filter methods for nonlinear program-
ming. SIAM J. Optim. 19, 1231–1249 (2008)

25. Robinson, S.M.: Strongly regular generalized equations. Math. Oper. Res. 5, 43–62 (1980)
26. Ulbrich, S.: On the superlinear local convergence of a filter-SQP method. Math. Program. 100(1),

217–245 (2004)
27. Wächter, A., Biegler, L.: Line search filter methods for nonlinear programming: local convergence.

SIAM J. Optim. 16(1), 32–48 (2005)
28. Wächter, A., Biegler, L.: Line search filter methods for nonlinear programming: motivation and global

convergence. SIAM J. Optim. 16(1), 1–31 (2005)

Author's personal copy

http://www.numerical.rl.ac.uk/reports/reports.shtml

	A nonmonotone filter method for nonlinear optimization
	Abstract
	Introduction and background
	Notation

	Definitions and algorithm statement
	Global convergence analysis
	Global Convergence Assumptions

	Local convergence analysis
	Local Convergence Assumptions

	Numerical experience
	 Conclusion and discussion
	Acknowledgements
	References

