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Abstract

Modeling cell differentiation from omics data is an essential problem in systems biology

research. Although many algorithms have been established to analyze scRNA-seq data,

approaches to infer the pseudo-time of cells or quantify their potency have not yet been sat-

isfactorily solved. Here, we propose the Landscape of Differentiation Dynamics (LDD)

method, which calculates cell potentials and constructs their differentiation landscape by a

continuous birth-death process from scRNA-seq data. From the viewpoint of stochastic

dynamics, we exploited the features of the differentiation process and quantified the differ-

entiation landscape based on the source-sink diffusion process. In comparison with other

scRNA-seq methods in seven benchmark datasets, we found that LDD could accurately

and efficiently build the evolution tree of cells with pseudo-time, in particular quantifying their

differentiation landscape in terms of potency. This study provides not only a computational

tool to quantify cell potency or the Waddington potential landscape based on scRNA-seq

data, but also novel insights to understand the cell differentiation process from a dynamic

perspective.

Author summary

Quantifying the Waddington landscape of cell differentiation from high throughput data

is a challenging problem in systems biology and biophysics. Here, we propose a theoretical

method named LDD (Landscape of Differentiation Dynamics), which builds cell poten-

tials and constructs their differentiation landscape by a continuous birth-death process

from scRNA-seq data. This method well exploits the dynamical features of the differentia-

tion process, thus quantifying the differentiation landscape in an accurate manner. We

show that LDD can accurately and efficiently build the evolution tree of cells with pseudo-
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time, in particular quantifying their differentiation landscape in terms of potency. Taken

together, this study provides not only a computational tool to quantify cell potency based

on scRNA-seq data, but also a theoretical approach to understand the cell differentiation

process from a dynamic perspective.

This is a PLOS Computational Biology Methods paper.

Introduction

Single-cell RNA sequencing (scRNA-seq) has become a rapidly developing technique since

2009 when Tang et al. [1–3] first proposed the sequencing method. SMART-seq2 [4], CELL-

seq [5], Drop-seq [6], and 10X genomics [7] are the most popular protocols at present. They

can measure gene expressions for individual cells rather than tissue-level bulk cells without

high costs. By analyzing scRNA-seq data, we can determine tissue heterogeneity and capture

various developing stages of cells.

Cell differentiation is a process in which several kinds of functional cells arise from one cell

type called the pluripotent cell. It is considered that cell specification results from changes in

gene expression patterns. As the expression data could be extracted from single cells, many

mathematical models have been built, and statistical analysis has been applied to describe the

differentiation process, such as RNA velocity [8] and pseudo-time. Pseudo-time is one of the

most popular approaches, which attaches a number to each sample or cell as the evolution

time from the pluripotent cell. There are mainly two approaches to estimate the pseudo-time

of each cell. One is the distance-based method, including Wanderlust/Wishbone [9, 10], Diffu-

sion maps/destiny [11–13], Monocle/Monocle2 [14, 15], scEpath [16] and others. This type of

method defines the pseudo-time as the distance from a root cell based on a graph structure.

The other type is the entropy-based method, including StemID [17], SLICE [18], SCENT [19],

and Markov-chain entropy [20]. This type of method computes some predefined entropy of a

cell-cell graph or a gene interaction network as the pseudo-time. We can refer to many com-

prehensive reviews [21–23] and comparison papers [24–26] for a survey of those works.

Although many algorithms have been developed to analyze scRNA-seq data, how to accurately

infer the pseudo-time of cells or quantify their potency has not yet been satisfactorily solved.

In particular, most of the existing methods are based on statistical measures depending heavily

on the samples, or based on the approximation of an equilibrium process, without a dynamical

description which is essential for elucidating the differentiation process.

From a modeling viewpoint, cell differentiation is not an equilibrium, but a non-equilib-

rium, process due to frequent birth and death of cells, and thus can be well modeled by a con-

tinuous birth-death (or source-sink diffusion) process. In this paper, derived from such a

dynamic process, we propose a new method named Landscape of Differentiation Dynamics

(LDD) to analyze the cell differentiation process. Further, we use LDD to compute both the

pseudo-time and directed differentiation paths, which are also known as the differentiation

landscape. LDD not only quantifies the potency of cells, but also determines the pseudo-time

derived from the continuous birth-death process, rather than from the geometric graphical

distance used widely in traditional methods. Our method is based on the source-sink diffusion
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process, which exploits the dynamical features of the stochastic differentiation process, thus

quantifying the differentiation landscape in an accurate manner from a dynamic perspective.

In this study, we constructed the potential landscape V(x) by solving Eq (3) under the non-

equilibrium steady state assumption of the differentiation dynamics. One key observation of

our work was that we could obtain the net-flow rate R(x) from the data without assuming its

prior knowledge, which advances previous proposals on non-equilibrium dynamics of gene

expression [27]. LDD is a two-level algorithm: one at the single cell level, which quantifies cell

heterogeneity for each cell based on the diffusion process, and the other at the cluster level,

which quantifies the transition between cell types (or clusters) based on the Markov process.

Additionally, the reverse of the pseudo-time could be calculated for each cell type. Therefore,

cells with the highest potential are deemed pluripotent and will evolve into differentiated cells

with lower potential. Lineages or differentiation branches could be detected from a transition

matrix between different clusters. From the differentiation landscape constructed by LDD, we

could clarify the global landscape structure of a real biological process. Further, pluripotent

cells with higher potential in our study were quantitatively shown to differentiate into down-

stream cells with lower potential by LDD, similar to a ball rolling down a mountain as

described by the Waddington landscape [28]. Taken together, this study provides not only a

new dynamical model with a computational tool to quantify the cell potency based on scRNA-

seq data, but also a new approach to understand the differentiation process from a dynamic

and stochastic perspective.

Results

Modeling cell differentiation by continuous birth-death process

Cell differentiation is clearly a non-equilibrium process due to frequent birth and death of

cells. Thus, to model the cell differentiation, we use the continuous birth-death process as the

underlying dynamics of cell differentiation, which is also named as the source-sink Fokker-

Planck equation in mathematics and the population balance equation in Klein at al.’s work

[27, 29, 30]. The continuous birth-death process assumes that the probability density function

c(x, t) of all sample cells develops as

@cðx; tÞ
@t

¼ r � ðcðx; tÞrFðxÞÞ þ DDcðx; tÞ þ RðxÞcðx; tÞ; ð1Þ

where x is a vector of gene expression, t is the time, F(x) is a potential function, D is the noise

amplitude, and R(x) is the net-flow of cells at state x.r,r�, and Δ denote the gradient, diver-

gence, and Laplace operators, respectively. When the system reaches a non-equilibrium steady

state, i.e. limt!1 c(x, t) = p(x) or @c(x, t)/@t = 0, the potential can be decomposed as F(x) = U
(x) + V(x) and calculated by

UðxÞ ¼ � D log pðxÞ; ð2Þ

LVðxÞ ¼ ½r log pðxÞ � r þ D�VðxÞ ¼ � RðxÞ; ð3Þ

according to [27]. We name the flow that is differentiation-oriented as “advection”, while we

use the term “diffusion” which is caused by random noise [31–33]. U(x) is known as the equi-

librium potential caused by diffusion without birth and death, and V(x) is a new potential

caused only by advection without diffusion. By definition, noise is known to only influence the

diffusion process and generates meta-stable wells in U(x). Therefore, V(x) can be taken as the

cell differentiation potential to describe the differentiation direction. The cells will evolve from

pluripotent cells with high V(x) to differentiated cells with low V(x). V(x) can represent the
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Waddington landscape [28] of the cell at state x, and the additive inverse of V(x) can be con-

sidered as a reflection of the pseudo-time (see Materials and methods).

Estimating cell potential V(x) and constructing differentiation paths

To obtain V(x) from Eq (3), the net-flow R(x) and backward operator L ¼ r log pðxÞ � r þ D
need to be estimated from scRNA-seq data. Due to the limitation of sample size, it is difficult

to accurately measure net-flow R(x) for every cell. In contrast to [27], which required addi-

tional information, we first clustered samples into different cell types/clusters, and then com-

puted the net-flow R̂s for each cluster s from the gene expression matrix by the divergence

theorem and marginal decomposition. On the other hand, benefiting from the diffusion map

theory [34, 35] and model reduction [36], the backward operator L was approximated by L̂,

which was the coarse-grained discrete matrix representation of L between cell clusters,

obtained from the cell-to-cell transition matrix. Thus, with the approximated net-flow R̂ for

every cluster/cell type, and the approximated transition operator L̂, V̂ could be obtained

numerically, generating a concrete value for the potency of each cell type. Additional details

can be found in Materials and methods. We remark that in [27], the net-flow rate was set as

the prior knowledge for each cell. However, we were able to obtain the value from the gene

expression matrix if cells were clustered into different metastable states. This is one key point

of our work.

To illustrate the entire differentiation process, we constructed its landscape, in which nodes

were cell types with potential V̂ , paths were determined by the transition matrix between clus-

ters, and directions were from high to low potential. We named this procedure as Landscape

of Differentiation Dynamics (LDD). Fig 1 provides a flowchart of LDD, which is described in

details in Materials and methods. An algorithmic description is provided in S1 Text section S1

and Fig I in S1 Text.

Computing differentiation landscape of simulated models

We used three simulated models to construct potential and verify our LDD method. The first

is a drift-diffusion process, in which particles evolve by

xðt þ DtÞ ¼ xðtÞ � rFðxðtÞÞ � Dt þ
ffiffiffiffiffiffiffiffiffi
DDt
p

� ξðtÞ; ð4Þ

where x is the position of a particle in 50 dimensions, F is a potential function, D is the noise

amplitude, and ξ is a normal random vector standing for noise. A bifurcation from one branch

to two branches occurred in the system, representing cell differentiation. Particles/cells were

generated from a source, and two sinks indicated places for particle/cell removal or death. It

imitated the cell’s lifespan from birth to death. Details about the model are shown in S1 Text.

In the example, 400 samples/cells were simulated. After reducing to two dimensions using

principal component analysis (PCA) and clustering the 400 samples into four groups/clusters

by k-means, we computed the potential V̂ of each cluster. The landscape in a three-dimen-

sional view is illustrated in Fig 2A. Fig A(a) in S1 Text shows the potential in a two-dimen-

sional space. In Fig 2B, the differentiation paths between the four clusters were constructed.

The cluster with the highest potential corresponded to the source region, and the two sinks

with low potential values were at the end of two lineages.

The next two simulated examples are two-gene and six-gene regulatory networks. Their

gene interactions are shown in Fig 2C and 2D, respectively. A region for cell birth is shown, as

well as several regions for cell death. The detailed simulation method can be found in S1 Text.

For the two-gene network, as the genes inhibit each other, two lineages formed. In each
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branch, one gene had high expression, while expression of the other gene was very low. The

illustrative landscape for the two-gene network is in Fig 2E, and the two-dimensional plot is in

Fig A(b) in S1 Text. Fig 2F shows the differentiation paths between seven groups. LDD gener-

ated the potential in a correct order, i.e. pluripotent cells with higher values, and differentiated

cells with lower values. Similar results of LDD were obtained in the six-gene network, which

had four branches for the samples. Only two genes had high expression, while the others were

low in each branch, which are shown in Fig A(c) and A(d) in S1 Text.

The three examples demonstrate the ability of LDD to quantitatively characterize the sto-

chastic process of cell differentiation from a dynamic perspective, due to our model based on

the continuous birth-death process. In particular, only using the observed data, LDD could

quantitatively show that pluripotent cells with higher potential differentiated into downstream

cells with lower potential, similar to a ball rolling down a mountain as described by Wadding-

ton [28].

Fig 1. Flowchart of the Landscape of Differentiation Dynamics (LDD) method. A: A pool of single cells, from which we can obtain the gene expression matrix

by single cell sequencing. B: After preprocessing, quality control, and dimension reduction, a low-dimensional data matrix is obtained. C: The samples are

clustered into different types. Undirected differentiation paths are determined by a transition matrix between clusters. D: After applying the continuous birth-

death process to model the whole differentiation process, the potential V(x), differentiation directions, and landscape can be constructed.

https://doi.org/10.1371/journal.pcbi.1007488.g001
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Fig 2. Differentiation landscape, differentiation paths, and gene networks for simulated models. A and B are the LDD potential landscape and

differentiation paths using data from the simulated drift-diffusion process, in which samples/cells were clustered into four groups. C and D are the two-

gene and six-gene regulatory networks for simulation, respectively. For the two-gene network, the potential landscape and differentiation paths for

clusters are shown in E and F, respectively, where seven clusters were detected. Constant potential V for each cluster was computed by LDD, while the

landscape is an illustration constructed by the method in Materials and methods.

https://doi.org/10.1371/journal.pcbi.1007488.g002
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Computing differentiation landscape of real datasets

To further verify the efficiency of LDD, we applied it to four real datasets, i.e. Guo’s dataset,

Nef’s dataset, Xu’s dataset, and Furlan’s dataset.

Guo’s dataset [37] describes cells developing from zygote to blastocyst, through oocyte,

2-cell, 4-cell, 8-cell, morula, E3.5 blastocyst, and E4.25 blastocyst stages. At the end term of

morula, the cells could differentiate into trophectoderm (TE) and inner cell mass (ICM). Nef’s

dataset [38] focused on the determination of mouse’s sex. 400 samples were selected from

E10.5, E11.5, E12.5, E13.5, and E16.5 stages. Two branches named the interstitial progenitor

cell lineage and Sertoli cell lineage appeared during the observation time. Xu’s dataset [39]

showed that the progenitor hepatoblasts had bipotency to divide into hepatocytes and cholan-

giocytes. Furlan’s dataset [40] found that a large number of chromaffin cells in adrenal medulla

arose from a kind of peripheral glial stem cell called Schwann cell precursors (SCPs). The

description and the preprocessing of these datasets can be found in S1 Text.

Using LDD, we computed the potential and differentiation paths of each dataset. The illus-

trative landscapes, potential values, and lineages of Xu’s dataset are displayed in Fig 3A–3C,

which show that the progenitor hepatoblasts (cluster 1) with high potency differentiated into

hepatocytes (cluster 3) and cholangiocytes (cluster 5) with low potency. Fig 3D–3F are the cor-

responding results of Furlan’s dataset. There was a single path through which the SCPs became

Fig 3. Differentiation landscape and differentiation paths for real datasets. A, D are the LDD potential landscapes, B, E are the potential values plotted in the

two-dimensional reduction space, and C, F are the differentiation paths. A-C use Xu’s dataset, which describes that hepatoblasts (cluster 1) differentiate into

hepatocytes (cluster 3) and cholangiocytes (cluster 5). D-F use Furlan’s dataset and show that chromaffin cells (cluster 4) are generated from SCPs (cluster 1).

https://doi.org/10.1371/journal.pcbi.1007488.g003
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chromaffin cells. For Guo’s dataset and Nef’s dataset, the results are given in Fig B in S1 Text.

For Nef’s dataset, we also computed Pearson correlations between LDD potential and three

character genes Pbx1, Gpc3, and Sfrp1 as 0.9015, 0.8582, and 0.8000. These genes decreased

during the differentiation process, which indicated that the pseudo-time conformed to the dif-

ferentiation direction.

Comparison with other pseudo-time algorithms

From both the simulated and real datasets, we showed that LDD could obtain the correct dif-

ferentiation paths by quantifying potential values of cells. The pseudo-time is another impor-

tant topic in single cell research, which provides a time label to each cell. We set the additive

inverse of potential V̂ as our pseudo-time by LDD, and compare it with several traditional

methods. Because entropy-based methods usually need additional information, such as gene

interactions or function annotations, we only compared LDD with six distance-based meth-

ods, i.e. TSCAN [41], Monocle2 [15], Diffusion Map [11, 12], DPT [13], SLICER [42], and

Slingshot [43]. Their properties are listed in Table 1, and the details are given in S1 Text.

For the simulated datasets, we chose the Pearson correlation between the pseudo-times and

the true-time labels as the measurement. The second to the fourth columns in Table 2 show

the results for the Simu1 (the drift-diffusion process), Simu2 (the two-gene regulatory net-

work), and Simu3 (the six-gene regulatory network) datasets. The closer the Pearson correla-

tion approximated to 1, the more reliable the algorithm was. LDD and DPT outperformed the

others; however, DPT required additional information, i.e. a started root sample to represent

the stem cell. Hence, it implies that LDD effectively uses the information in the samples, which

leads to correct differentiation paths.

For the real datasets, the accurate cell time is unavailable; however, several stage-level time

labels, such as E10.5 and E11.5, are given. Under one stage label, there are several cell types.

Therefore, instead of the Pearson correlation, we used the one-sided Wilcoxon ranksum test to

determine whether the stem cell stage had earlier pseudo-time than the differentiated stage.

The p-value was chosen as the measurement [19, 20]. The fifth to the eighth columns in

Table 2 list the p-values for the four real datasets (Guo’s, Nef’s, Xu’s, and Furlan’s). The alter-

native hypothesis was that pluripotent stem cells had earlier pseudo-time than differentiated

Table 1. Properties of different pseudo-time methods.

LDD TSCAN Monocle2 Diffusion map DPT SLICER Slingshot

Basic Model Birth-death

Dynamics

Distance on tree/

graph

Distance on tree/

graph

Distance on tree/

graph

Distance on tree/

graph

Distance on tree/

graph

Distance on tree/

graph

Not use a root cell as

input

Yes No No No No No No

Dimension

Reduction

Yes Yes Yes Yes Yes Yes Yes

Clustering Yes Yes No No No No Yes

Detecting ⩾ 1

branches

Yes Yes Yes Yes Yes Yes Yes

Reference — [41] [15] [11, 12] [13] [42] [43]

Each column is a method. For the rows, “Basic Model” indicates the theoretical model used in the method. “Not use a root cell as input” indicates whether the algorithm

requires a start cell as input. For some algorithms if giving a wrong root cell, the pseudo-time could be reverse of the true time direction or even be totally messed.

“Dimension reduction” indicates whether dimensional reduction is applied on the data matrix. “Clustering” states whether the algorithm clusters cells during the

process. “Detecting ⩾ 1 branches” indicates whether the algorithm could find more than one different branches/lineages. The corresponding papers are listed in the

“Reference” row.

https://doi.org/10.1371/journal.pcbi.1007488.t001
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cells. Thus, the smaller the p-value was, the better the algorithm performed. From Table 2,

LDD was always shown to produce good results among the seven methods (the second place

in Nef’s dataset and the best in other three datasets).

The conclusion from the comparison between different pseudo-time methods is as follows:

LDD and DPT performed well in determining the pseudo-time but DPT required additional

information, i.e. a root cell. Thus, LDD is an efficient approach to model cell differentiation

and quantitatively characterize the Waddington potential landscape or differentiation paths by

exploiting dynamical and stochastic features of the differentiation process from the measured

data.

Discussion

In this paper, in contrast to the approximation of the equilibrium process widely used in previ-

ous methods, we used a stochastic non-equilibrium steady process, i.e. a continuous birth-

death process model, to describe the differentiation dynamics of cells, which well captures the

dynamical and stochastic features of the cell differentiation process. LDD based on this model

was proposed to compute the cell’s potency value and construct the differentiation paths/land-

scape from scRNA-seq data, derived from the diffusion map theory and divergence theorem.

Using the landscape, we showed that cells developed from high to low potential. Different line-

ages were also detected by the transition matrix obtained by LDD. As the LDD’s pseudo-time

(the additive inverse of potential) originates from a dynamic system, it gets rid of the limitation

of distance measures on graphs. Comparison studies with traditional methods also showed

that it was a powerful and effective method on both simulated and real datasets.

There are still some features and issues to be discussed: (1) The dynamical model used in

LDD requires that the sample cells are in a non-equilibrium steady state, i.e., the cells’ birth

rate should be equal to the death rate. In a short time period when the environment does not

change much, the model works, but for a long-term study, this condition may not hold. (2) As

the dynamical model describes a continuous flow of differentiation, the sampled cells need to

represent the whole differentiation process. When gathering data, this requirement should be

considered. (3) Cell clustering is another important issue. Clustering cells in our method

requires that different types are separated into different metastable states. However, our

Table 2. Comparison between seven pseudo-time methods.

Pearson Correlation ρ Wilcoxon Ranksum Test p-value

Dataset Simu1 Simu2 Simu3 Guo Nef Xu Furlan

Measure Correlation ρ between pseudo-time

and true time

Oocyte < E4.25 blastocyst E10.5< E16.5 E10.5 < E17.5 SCPs < chromaffin

LDD 0.9135 0.9520 0.8229 3.842e-09 9.432e-20 3.557e-24 2.104e-39

TSCAN 0.1343 0.0404 0.0055 1.344e-01 2.588e-01 6.145e-16 2.067e-34

Monocle2 0.0668 0.0121 0.0131 2.370e-07 3.084e-01 8.479e-22 2.067e-34

Diffusion map 0.7707 0.0398 0.0069 2.370e-07 6.277e-09 8.479e-22 2.067e-34

DPT 0.9079 0.9603 0.8797 2.370e-07 1.053e-15 8.479e-22 2.067e-34

SLICER 0.7348 0.8807 0.4514 3.672e-07 4.921e-22 8.479e-22 2.067e-34

Slingshot 0.0971 0.0147 0.0866 2.370e-07 3.725e-19 6.781e-22 2.067e-34

Seven pseudo-time methods, including LDD, were tested on three simulated datasets and four real datasets. For the simulated datasets, as we had true time labels for

every cell, the Pearson correlation between true times and pseudo-times was calculated. For real datasets, we used the one-sided Wilcoxon ranksum test to determine

whether pluripotent cells had earlier pseudo-time than differentiated cells. The alternative hypothesis is listed in the third row in the table. Bold numbers are the best

method in its column. LDD performs among the best, while the other six methods require a root cell as prior information.

https://doi.org/10.1371/journal.pcbi.1007488.t002
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samples/cells also need to keep the continuity of differentiation. Thus, there is an appropriate

balance between separability and continuity. In our examples, PCA and k-means clustering

can maintain the orthogonal invariance for the landscape, which may not occur with other

nonlinear approaches. Therefore, the method must be chosen carefully to ensure the system’s

properties (see Materials and methods). (4) The requirement on the samples is unclear and

ambiguous for the distance-based or entropy-based methods, which limits their applications.

In contrast, LDD provides a general mechanism for the differentiation process from a stochas-

tically dynamic viewpoint, and its results are guaranteed by the diffusion model for the mea-

sured samples. (5) The birth-death process modeling is inspired by [27], but we further

improve its theoretical result. In particular, we remove the requirement for measuring net-

flow, i.e. we show that net-flow R̂s can be directly computed from the gene expression matrix

by the divergence theorem and marginal decomposition. In addition, rather than the graph

Laplacian, we applied diffusion map theory, which considers the weights on edges and is a gen-

eralization of the graph Laplacian. (6) Saelens et al. [26] gave a comprehensive comparison

over 45 scRNA packages, in aspects of their accuracy, scalability, stability, and usability. Our

study focused on the theoretical framework and algorithm construction. Further improve-

ments and tests of our algorithm on multiple and larger datasets will be performed as our

future work.

In summary, by the diffusion map theory and divergence theorem, we provide a new

approach to quantify cell differentiation from measured scRNA-seq data based on the continu-

ous birth-death process, which well exploits the dynamical features of the cell differentiation

process from a dynamic landscape viewpoint. The essential evolution laws of cells need much

more efforts through joint experimental and theoretical studies in the future.

Materials and methods

Cell differentiation dynamics as continuous birth-death process

We use a stochastic non-equilibrium process Eq (1) to model the cell differentiation, which is

also named the source-sink Fokker-Planck equation or the population balance equation [27,

29, 30]. In Eq (1), the function c(x, t) represents the probability density function (pdf) of cells

at x, which will be estimated from scRNA-seq data. The term R(x) is crucial to understand the

birth and death of the cells involved in the system. If there is a source and cells are increasing

locally, R(x) will be positive. Conversely, if there is a sink and cells are removed or die, R(x)

will be negative.

Deriving cell differentiation potential V(x)

Assume that the system reaches a non-equilibrium steady state, which means cells keep being

born and dying but the whole population distribution is invariant. Let t!1, then we will

obtain from Eq (1)

r � ðpðxÞrFðxÞÞ þ DDpðxÞ þ RðxÞpðxÞ ¼ 0; ð5Þ

where p(x) = limt!1 c(x, t). Only depending on p(x), F(x) could have many solutions, one of

which can be written as

r � ðpðxÞrUðxÞÞ þ DDpðxÞ ¼ 0; ð6Þ

r � ðpðxÞrVðxÞÞ þ RðxÞpðxÞ ¼ 0; ð7Þ

Quantifying pluripotency landscape of cell differentiation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007488 November 13, 2019 10 / 17

https://doi.org/10.1371/journal.pcbi.1007488


and

FðxÞ ¼ UðxÞ þ VðxÞ: ð8Þ

The explicit forms for Eqs (6) and (7) are

UðxÞ ¼ � D log pðxÞ; ð9Þ

LVðxÞ ¼ � RðxÞ; ð10Þ

where L is the backward Kolmogorov operator

L ¼ r log pðxÞ � r þ D: ð11Þ

U(x) can be considered as the equilibrium potential caused by diffusion without samples’ birth

and death, while V(x) can be taken as the potential caused by a birth-death flow without diffu-

sion. If the noise amplitude D approaches zero, the diffusion vanishes and thus we can take V
(x) as the potential to describe cell pluripotency, or as the reverse pseudo-time of cell

differentiation.

To compute V(x), instead of setting R(x) as the given values at each point x like [27], we

cluster samples into groups/types to obtain R̂ for each group only from the expression matrix.

The backward operator L is also approximated by a coarse-grained L̂ defined on the cell clus-

ters. The cell differentiation potential V̂ is then computed for each cluster based on a discrete

version of Eq (10). The following subsections will show both theoretical and numerical details,

and the overall algorithm is described in S1 Text.

Constructing Kolmogorov operator L by diffusion map from cell samples

To approximate the backward Kolmogorov operator L in Eq (11), we utilize the diffusion map

theory [34, 35]. Denote the kernel function by

Kεðx; yÞ ¼
1

ð4pεÞm=2
e�
kx� yk2

4ε ; ð12Þ

where x and y are two samples in m-dimensional space, and ε is a parameter adjusting the ker-

nel width. If there are N samples/cells {x1, x2, . . ., xN} in total obtained from probability density

r(x), we can define

qεðxiÞ ¼
XN

j¼1

Kεðxi; xjÞ; ð13Þ

Kε;aðx; yÞ ¼
Kεðx; yÞ

qaεðxÞqaεðyÞ
; ð14Þ

dε;aðxiÞ ¼
XN

j¼1

Kε;aðxi; xjÞ; ð15Þ

and the transition matrix between samples i and j as

Pε;aðxi; xjÞ ¼
Kε;aðxi; xjÞ

dε;aðxiÞ
: ð16Þ
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The discrete backward Kolmogorov operator is constructed as

Lε;a ¼
Pε;a � I
ε

: ð17Þ

When the sample size N!1 and the kernel width ε goes to 0, the discrete operator Lε,α

tends to be an operator La in the continuous space. When α = 1/2, L1=2 ¼ r log rðxÞ � r þ D
is exactly the backward operator in Eq (11) (see S1 Text for details). In our LDD algorithm, we

first construct a weighted undirected k-nearest-neighbor (kNN) network by the similarity

measure Eq (14) with the samples as nodes. After symmetrization, we obtain a Markov chain

with transition matrix P = (pij)N×N through Eq (16) as

pij ¼ Pε ;1
2
ðxi; xjÞ; i; j ¼ 1; 2; . . . ;N: ð18Þ

The stationary distribution of the Markov chain is defined as μ = (μi)1×N, where

mi ¼
dε;1=2ðxiÞ

XN

i¼1
dε;1=2ðxiÞ

; i ¼ 1; 2; . . . ;N; ð19Þ

which satisfies μ = μ P. P and μ are used in the procedures below. Usually for the Gaussian ker-

nel, the bandwidth
ffiffiffiffiffi
2ε
p

is set as the median value of the distances between all samples.

Clustering cells and computing the coarse-grained operator between

clusters

There are lots of well-known clustering methods, such as k-means, spectral cluster, dynamical

reduction [36], and new packages designed for single cell datasets, such as SC3 [44] and Seurat

[45]. It is still a challenge to make a choice among the diverse approaches [46]. However, for

our model, we have several limits when choosing a suitable clustering method. One important

point is that different cell types should be separated into different groups. Each cell type holds

a metastable state in the dynamical system. The other important point is that we need to main-

tain continuity of differentiation paths. Some nonlinear clustering approaches may fail, as they

may scatter different clusters far away or eliminate the transition point that connects different

branches. A suitable clustering is one fully using information from the data and coincident

with the biological background. In our simulated datasets and real datasets, as the model is

built on the original euclidean space, we used the linear principal component analysis (PCA)

to reduce dimension and k-means to cluster the data, which has orthogonal invariance and

keeps both the separation and continuity perfectly. When choosing the number of clusters in

k-means, the following constrains should be considered. (1) From the expression of Eq (S7) in

the S1 Text, we can conclude that the best number of the clusters is exactly the number of cell

subtypes (the metastable states). The metastable wells are separated by the ridges of system

potential F(x). Hence, there is an upper limit for the cluster number, which is decided by the

number of metastable wells. (2) For the differentiation process with one lineage, the lower

limit of cluster number is two, and for two lineages, it is four; one is for stem cells, one is

around the bifurcation point, and the other two clusters stand for two branches. (3) If two

neighboring clusters, which do not include the cluster near the bifurcation point, merge into

one, Eq (S7) will still hold, and the pseudo-time order of the cells will not change. Under these

constrains, we can ensure the LDD robustness for different cluster numbers. The results are

shown in Fig J in S1 Text.
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If we get K clusters of all cells by one of the above methods, we can define a coarse-grained

matrix P̂ 2 RK�K
between clusters s and t as

P̂st ¼ P̂ðOs;OtÞ ¼
m̂t

nsnt

X

i2Os

X

j2Ot

pij; s; t ¼ 1; 2; . . . ;K; ð20Þ

where m̂t ¼
P

i2Ot
mi and ns is the number of samples in Os (see S1 Text for details). Corre-

spondingly, we can get the approximated operator L̂ through P̂ by Eq (17) as

L̂ ¼
P̂ � I
ε

: ð21Þ

Theoretical derivation of net-flow for each cluster by divergence theorem

One of the most important advantages in the model is that we can compute the net-flow rate R̂
of each cluster only based on scRNA-seq data. From Eq (1), if we only focus on the samples/

cells in one cluster (or cell type) Os, we can define the conditional probability density function

(cpdf) as

rsðx; tÞ ¼
cðx; tÞwOs

ðxÞ
Z

Os

cðx; tÞdx
; ð22Þ

where wOs
ðxÞ is the indicator function of Os, i.e. wOs

ðxÞ ¼ 1 when x is in Os and 0 otherwise. In

the long time limit, c(x, t) and rs(x, t) will converge to the steady distribution p(x) and rs(x),

respectively. By applying the divergence theorem to the equation satisfied by rs(x) and elimi-

nating equal terms, we can derive an equation satisfied by the net-flow rate R̂s of cluster s as

R̂s ≜
Z

Os

RðxÞrsðxÞ dx ¼ � D
Z

Os

DrsðxÞ dx: ð23Þ

The derivation details are shown in S1 Text.

Numerical computation of net-flow for each cluster

The net-flow rate formula can be simplified by marginal density functions as

R̂s ¼ � D
Z

Os

DrsðxÞ dx ¼ � D
Xm

j¼1

Z

O
ðjÞ
s ¼½a

ðjÞ
s ;bðjÞs �

@
2

xr
ðjÞ
s ðxÞ dx

¼ � D
Xm

j¼1

@xr
ðjÞ
s ðb

ðjÞ
s Þ � @xr

ðjÞ
s ða

ðjÞ
s Þ

� �
; s ¼ 1; 2; . . . ;K;

ð24Þ

where x = (x(1), x(2), . . ., x(m))T 2 Os, rðjÞs ðxÞ is the marginal density of rs(x) on the x(j)-axis, and

O
ðjÞ
s ¼ ½a

ðjÞ
s ; b

ðjÞ
s � is the interval that rðjÞs ðxÞ lies in. By approximating rðjÞs ðxÞ in one-dimensional

space through the kernel method and summation of the boundary derivatives, we can compute

R̂s conveniently.

When computing R̂s for each cluster separately by Eq (24), the steady state Eq (5) of the

original system may break down due to finite sample size effect and the numerical error in dis-

crete computation. A post-processing of R̂s is needed to ensure that the system is steady in dis-

crete setting. By integrating Eq (1) in the whole space, letting t!1 and using Eqs (22) and
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(23), we obtain the equation for R̂s as follows:

XK

s¼1

ðR̂s �

Z

Os

cðxÞ dxÞ ¼ 0: ð25Þ

If there are ns samples in cluster s and N ¼
PK

s¼1
ns, the constraint Eq (25) can be written as

XK

s¼1

nsR̂s ¼ 0: ð26Þ

Then we post-process the results obtained from Eq (24) as

~Rs ¼ R̂s �

XK

s¼1
nsR̂s

N
; ð27Þ

in order to satisfy Eq (26). In other parts of this paper, for notational convenience, we still use

R̂s instead of ~Rs, but note that it is a post-processed value.

Computing potential and constructing differentiation paths of cells

By Eqs (10) and (21), the potential V̂ in the cluster level satisfies L̂V̂ ¼ � R̂, i.e.

ðP̂ � IÞV̂ ¼ � R̂ε; ð28Þ

where P̂ is the coarse-grained matrix between clusters, vector V̂ ¼ ðV̂ 1; V̂ 2; . . . ; V̂ KÞ
T

is the

LDD potential of different clusters, and vector R̂ ¼ ðR̂1; R̂2; . . . ; R̂KÞ
T

represents the net-flow

of each cluster. As the matrix on the left hand side of Eq (28) is degenerate, we need to com-

pute its pseudo-inverse and get the least square solution of V̂ as

V̂ ¼ � ðP̂ � IÞyR̂ε: ð29Þ

On the other hand, the structure of differentiation branches can be inferred from the weight

matrix ~P 2 RK�K between clusters, whose element is given by

~pst ¼
X

i2Os

X

j2Ot

mipij; s; t ¼ 1; 2; . . . ;K; ð30Þ

and ~P will become the transition matrix between clusters after row normalization [36]. Non-

zero elements in ~P represent differentiation paths, while in some cases we use a threshold to

eliminate small values. The direction of differentiation is determined by V̂ from high to low

potential. Thus, using ~P and V̂ , we can construct the whole differentiation landscape or picture

only by the gene expression matrix obtained from an scRNA-seq dataset. Note that the noise D
is not required for evaluating the potential landscape V of cells.

Drawing the illustrative landscape

For most of the datasets in this paper, we constructed an illustrative 3D landscape. It is plotted

by fitting functions

f ðx; yÞ ¼
1

N

XN

i¼1

� e
�
ðx� xiÞ

2þðy� yiÞ
2

ðs=~piÞ
2

� �

;

Vðx; yÞ ¼ af ðx; yÞ þ bgðx; yÞ;

ð31Þ
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where (xi, yi) are the position of N samples in the two-dimensional reduced space, ~pi equals to

~Pss if sample i belongs to cluster s, g(x, y) is a function (usually linear) positively correlated with

V̂ , and a, b, σ are adjustable parameters. Some high values could be set as NaN when plotting.

Supporting information

S1 Text. Supplementary information of this paper. The supplementary document provides

one algorithm, six notes, and ten supplementary figures for the main text.

(PDF)
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