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Abstract

It is well known that the spectral measure of eigenvalues of a rescaled square non-Hermitian
random matrix with independent entries satisfies the circular law. We consider the product T'X,
where T' is a deterministic N x M matrix and X is a random M x N matrix with independent
entries having zero mean and variance (N A M)™'. We prove a general local circular law for
the empirical spectral distribution (ESD) of TX at any point z away from the unit circle under
the assumptions that N ~ M, and the matrix entries X;; have sufficiently high moments. More
precisely, if z satisfies ||z| — 1| = 7 for arbitrarily small 7 > 0, the ESD of T'X converges to
xp(2)dA(z), where xp is a rotation-invariant function determined by the singular values of T’
and dA denotes the Lebesgue measure on C. The local circular law is valid around z up to scale
(N A M)~Y4%¢ for any ¢ > 0. Moreover, if |z| > 1 or the matrix entries of X have vanishing
third moments, the local circular law is valid around z up to scale (N A M)~"/?%¢ for any € > 0.

1 Introduction

Circular law for non-Hermitian random matrices. The study of the eigenvalue spectral of non-
Hermitian random matrices goes back to the celebrated paper [I9] by Ginibre, where he calculated
the joint probability density for the eigenvalues of non-Hermitian random matrix with independent
complex Gaussian entries. The joint density distribution is integrable with an explicit kernel (see
[19, 28]), which allowed him to derive the circular law for the eigenvalues. For the Gaussian random
matrix with real entries, the joint distribution of the eigenvalues is more complicated but still
integrable, which leads to a proof of the circular law as well [6] 10} 18] [35].

For the random matrix with non-Gaussian entries, there is no explicit formula for the joint
distribution of the eigenvalues. However, in many cases the eigenvalue spectrum of the non-Gaussian
random matrices behaves similarly to the Gaussian case as N — o0, known as the universality
phenomena. A key step in this direction is made by Girko in [20], where he partially proved the
circular law for non-Hermitian matrices with independent entries. The crucial insight of the paper is
the Hermitization technique, which allowed Girko to translate the convergence of complex empirical
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measures of a non-Hermitian matrix into the convergence of logarithmic transforms for a family of
Hermitian matrices, or, to be more precise,

Trlog[(X — 2)(X — 2)] = log [det((X — 2)N(X — 2)], (1.1)

with X being the random matrix and z € C. Due to the singularity of the log function at 0, the small
eigenvalues of (X — 2)T(X — 2) play a special role. The estimate on the smallest singular value of
X —z was not obtained in [20], but the gap was remedied later in a series of paper. Bai [I],[2] analyzed
the ESD of (X — 2)T(X — 2) through its Stieltjes transform and handled the logarithmic singularity
by assuming bounded density and bounded high moments for the entries of X. Lower bounds on
the smallest singular values were given by Rudelson and Vershynin [31l 2], and subsequently by
Tao and Vu [36], Pan and Zhou [30] and G6tze and Tikhomirov [2I] under weakened moments and
smoothness assumptions. The final result was presented in [38], where the circular law is proved
under the optimal L? assumption. These papers studied the circular law in the global regime, i.e.
the convergence of ESD on subsets containing n/N eigenvalues for some small constant n > 0. Later
in a series of papers [7, [8, B9], Bourgade, Yau and Yin proved the local version of the circular law
up to the optimal scale N~Y2*¢ under the assumption that the distributions of the matrix entries
satisfy a uniform sub-exponential decay condition. In [37], the local universality was proved by Tao
and Vu under the assumption of first four moments matching the moments of a Gaussian random
variable.
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Figure 1: The eigenvalue distribution of the product T'X of a deterministic N x M matrix T with a
Gaussian random M x N matrix X. The entries of X have zero mean and variance (N A M)~!, and

TTT has 0.5(N A M) eigenvalues as 2/17 and 0.5(N A M) eigenvalues as 32/17. (a) N = M = 1000.
(b) N = 1000, M = 2000. (c) N = 1500, M = 750.

In this paper, we study the ESD of the product of a deterministic N x M matrix T with a random
M x N matrix X, where we assume N ~ M. In Figure[I] we plot the eigenvalue distribution of T'X
when T have two distinct singular values (except the trivial zero singular values). The goal of this
paper is to prove a local circular law for the ESD of TX at any point z away from the unit circle.
Following the idea in [7], the key ingredients for the proof are (a) the upper bound for the largest
singular value of TX — z, (b) the lower bound for the least singular value of TX — z, and (c) rigidity
of the singular values of T X — z. The upper bound for the largest singular value can be obtained
by controlling the norm of TX — z through a standard large deviation estimate (see e.g. [9, 27, [33]
and ) The lower bound for the least singular value of TX — z follows from the results in e.g.
[32] and [30] (see also Lemma [2.23). Thus the bulk of this paper is devoted to establish (c).



Basic ideas. To obtain the rigidity of the singular values of Tz — z, we study the ESD of @ :=
(TX — 2)'(TX — ) using Stieltjes transform as in [7]. We normalize X so that its entries have
variance (N A M)~!. Then @ is an N x N Hermitian matrix with eigenvalues being typically of
order 1. We denote its resolvent by R(w) := (Q —w)~!, where w = E + in is a spectral parameter
with positive imaginary part 1. Then the Stieltjes transform of the ESD of @ is equal to N1 Tr R(w),
and we have the convergence estimate

N7'Tr R(w) ~ me(w) (1.2)

with high probability for large V. Here m, is the Stieltjes transform of the asymptotic eigenvalue
density, and the convergence in is referred to as the averaged law. By taking the imaginary part
of , it is easy to see that a control of the Stieltjes transform yields a control of the eigenvalue
density on a small scale of order 1 around F (which contains an order nN eigenvalues). A local law is
an estimate of the form for all n » N~!. Such local laws have been a cornerstone of the modern
random matrix theory. In [16], a local law was first derived for Wigner matrices. Subsequently in
[7], a local law for the resolvent of (X — 2)T(X — z) was established to prove the local circular law.

In generalizing the proof in [7] to our setting, a main difficulty is that the entries of TX are not
independent. We will use a new comparison method proposed in [24], which roughly states that
if the local laws hold for R(w) with Gaussian X, then they also hold in the case of a general X.
For definiteness, we assume N = M for now, and T is a square matrix with singular decomposition

T = UDV. For a Gaussian X = XG9S we have VXCoussyy 4 XG‘““S, where X is another
Gaussian random matrix. Then for the determinant in (|1.1)),

det(TXC"s — 2)=det(DVXGossy — 2) £ det(DXGouss — 2). (1.3)
The problem is now reduced to the study of the singular values of DXGauss _  which has inde-
pendent entries. Notice the entries of DX G455 are not identically distributed, which will make our
proof much more complicated. However, this issue can be handled, e.g. as in [14], where a local law
was obtained for generalized Wigner matrices with non-identically distributed entries.

To use the comparison method invented in [24], it turns out the averaged local law from
is not sufficient. We have to control not only the trace of R(w), but also the matrix R(w) itself
by showing that R(w) is close to some deterministic matrix ITI(w), provided that n » N~!. This
closeness can be established in the sense of individual matrix entries R;;(w) ~ IL;;(w) (see e.g.
[7, I7]). We call such an estimate an entrywise local law. More generally, in [4] 25] the following
closeness was established for generalized matrix entries:

(v, R(w)u) ~ (v,I(w)u), n>» N~ Y|v|s, |ulz = 1. (1.4)

We call the estimate in an anisotropic local law. (If II is a scalar matrix, is also referred
to as an isotropic local law, in the sense that R(w) is approximately isotropic for large N.) This
kind of anisotropic local law is needed in applying the method in [24]. Here we outline the three
steps to establish the anisotropic local law for Q = (T'X — 2)T(T'X — 2): (A) the entrywise local law
and averaged local law when T is diagonal (Theorem [2.18]); (B) the anisotropic local law when T is
diagonal (Theorem [2.18)); (C) the anisotropic local law and averaged local law when T is a general
(rectangular) matrix (Theorem [2.19).

In performing Step (A), our proof is basically based on the methods in [7]. However, our multi-
variable self-consistent equations and their solutions are much more complicated here. Thus a key
part of the proof is to establish some basic properties of the asymptotic eigenvalue density and prove
the stability of the self-consistent equations under small perturbations. These work need some new



ideas and analytic techniques (see Appendix . In performing Step (B), we applied and extended
the polynomialization method developed in [4] section 5]. Finally, as remarked around , (B)
implies the anisotropic local law for a Gaussian X and a general T. Based on this fact we perform
Step (C) using a self-consistent comparison argument in [24]. With the averaged local law proved
in Step (C), we can prove the local circular law for TX. In general, the averaged local law we get
is up to the non-optimal scale n » (N A M )*1/ 2. As a result, we can only prove the local circular
law for TX up to the scale (N A M )_1/ 4+¢ A new observation is that the non-optimal averaged
local law can lead to the optimal local circular law for TX outside the unit circle (i.e. |z| > 1) (see
Section [2.4). To prove the optimal local circular law inside the unit circle (i.e. 2| < 1), we need the
optimal averaged local law up to the scale n » (N A M)~!, which can be obtained under the extra
assumption that the entries of X have vanishing third moments.

Conventions. The fundamental large parameter is N and we assume that M is comparable to N
(see (2.1)). All quantities that are not explicitly constant may depend on N, and we usually omit
N from our notation. We use C' to denote a generic large positive constant, which may depend on
fixed parameters and whose value may change from one line to the next. Similarly, we use ¢ or €
to denote a generic small positive constant. If a constant depend on a quantity a, we use C(a) or
C, to indicate this dependence. We use 7 > 0 in various assumptions to denote a small positive
constant, and use ¢, 7’ to denote constants that depend on 7 and may be chosen arbitrarily small.
All constants C, ¢ and € may depend on 7; we neither indicate nor track this dependence.

For any (complex) matrix A, we use AT to denote its conjugate transpose, AT the transpose,
| A| the operator norm and |A| gs the Hilbert-Schmidt norm. We use the notation v = (v;)?; for
a vector in C", and denote its Euclidean norm by |v| = |v||2. We usually write the n x n identity
matrix I, as 1 without causing any confusions.

For two quantities Ay and By > 0 depending on N, we use the notations Ay = O(By) and
AN ~ By to mean |Ay| < CBy and C7 !By < |Ay| < OBy, respectively, for some positive
constant C > 0. We use Ay = o(By) to mean |Ay| < cyBy for some positive constant ¢y — 0
as N — oo. If Ay is a matrix, we use the notations Ay = O(By) and Ay = o(By) to mean
|[An|l = O(By) and |An| = o(Bx), respectively.

Acknowledgements. The third author would like to thank Terence Tao, Mark Rudelson and
Roman Vershynin for fruitful discussions and valuable suggestions.

2 The main results

In this section, we state and prove the main result of this paper. In Section[2.1] we define our model
and list our main assumptions. In Section [2:2] we first define the asymptotic eigenvalue density po.
of @ = (TX — 2)/(TX — 2), and then state the main theorem—Theorem of this paper. Its
proof depends crucially on local estimates of the resolvent of ), which are presented in Section [2.3]
In Section we prove Theorems based on the local estimates stated in Section [2.3

2.1 Definition of the model

In this paper, we want to understand the local statistics of the eigenvalues of T X — zI, where T is
a deterministic N x M matrix, X is a random M x N matrix, z € C and I is the identity operator.
We assume M ~ N, i.e.

TS —<T7T (2.1)



for some small 7 > 0. We assume the entries X;, of X are independent (not necessarily identically
distributed) random variables satisfying

1
NAM

EXi, =0, E[X;,]*= (2.2)

forall 1 < ¢ < M,1 < pu < N. For definiteness, in this paper we only focus on the case where
all matrix entries are real. However, our results and proofs also hold, after minor changes, in the
complex case if we assume in addition EXZ»ZM = 0 for X;, € C. We assume that for all p € N, there is
an N-independent constant C}, such that

E|VN A MX;,|P <C, (2.3)
forall 1 <i< M,1<pu<N. Wedefine ¥ := TT', and assume the eigenvalues of ¥ satisfy that
T 2012002 Z0NAMST (2.4)

and all other eigenvalues are 0. We can normalize T by multiplying a scalar such that

1 NAM

NI Zl oi = 1. (2.5)

We summarize our basic assumptions here for future reference.

Assumption 2.1. We suppose that , , , and hold.

2.2 The main theorem

Our main result is Theorem [2.6l To state it, we need to define the asymptotic eigenvalue density
function for @. We first introduce the self-consistent equations, and the asymptotic eigenvalue
density will be closely related to their solutions. Define

1 NAM
PE = ; Og, (2.6)
as the empirical spectral density of ¥. Let n := |suppps| be the number of distinct nonzero
eigenvalues of 3, which are denoted as
Tl >8> > 8, 2T (2.7)

Let [; be the multiplicity of s;. By (2.5)), I; and s; satisfy the normalization conditions

1 n 1 n
=1 5. = 1. 2.
N/\Mizllz : NAMl_:Zllez (2:8)

For each w e C := {w e C: Imw > 0}, we define the self-consistent equations of (mq,ms) as

2

1 ||
— = —w(l _ 2.9
mo wl +m1)+1+m1 (2.9)
! f l (1+ sima) + | (2.10)
my = — :8; | — im .
TN = Ol sifm2 1+my



If we plug (2.9) into ([2.10]), we get the self-consistent equation for m; only,
-1
2
Si ]

EE +m
7’11_)(1 + ml) + Fp— 1

1 n
mi = N;l,sl —w [ 1+ (2'11)

The next lemma states that the solution to (2.11]) in C. is unique if z is away from the unit circle.
It is proved in Appendix

Lemma 2.2. Fiz z € C such that |z| # 1. For w € C,, there exists at most one analytic function
Mic,zn(w) : C4 — Cy such that holds and wmi. , s;(w) € C4. Moreover, mic s n(w) is the
Stieltjes transform of a positive integrable function p1. with compact support in [0, 00).

We shall abbreviate mi.(w) := mic . xn(w). We also define mo.(w) := mo. . s (w) by taking
my; = mi.(w) in . Obviously, ms. is also an analytic function of w. Furthermore, for any
w € Cy we have ma.(w), wms.(w) € C; by using and mi., wmi. € C.. We define two
functions on R as

1., )
p1,2:(x) = - 71}1{% Immy oc(z +in), zeR. (2.12)

It is easy to see that p1 2. = 0 and supp(p1,2.) S [0,00). Moreover, supp pa. = supp pic by (2.9). We
shall call ps. the asymptotic eigenvalue density of Q = (T'X — 2)T(T'X — z) (for a reason that will
be made clear during the proof in Section [4). Since Im(wms.) = 0, we have

Ell

Im | —w (1 + symae) + ————
ml w (1 + s;ma.) [

] < —Imw,

and (2.10) gives |mi.| < 1/Imw — 0 as Imw — oo. Similarly, |me.| < 1/Imw — 0 as Imw — co.
Thus m4 2.(w) is indeed the Stieltjes transform of py o,

My ze(w) = JR Prac(@) ) (2.13)

r—w

We now state the basic properties of p1. and ps., which can be obtained by studying the solutions
mi.2.(w) to the self-consistent equations (2.9) and (2.11)) when w € (0,0). Here we extend the
definition of mj 2. continuously down to the real axis by setting

mi 2c(x) = lim my 2c(x +in), xzeR.
7\0

As a convention, for w € C,, we take \/w to be the branch with positive imaginary part. Define
m = y/w(l +mq) and m. := y/w(1 + my.). Equation (2.11]) then becomes

f(Ww,m) =0, (2.14)
where

m(m? — |2|?)
Vwm? — (s; + |z]2)m? — yw|zPm + |z|*

fWw,m) = —vw +m + % i lisi (2.15)

The following lemma gives the basic structure of supp pi,2.. Its proof is given in Appendix



Lemma 2.3. Fiz 7 < HZP — 1‘ < 771, The support of p1.2. is a union of connected components:

supp p1,2¢ N (0, +0) = ( U [€2k,e2k1]> N (0,0), (2.16)

1<k<L

where L = L(n) € N and C177! = e; > ea > ... > ear = 0 for some constant C; > 0 that does
not depend on 7. If |2|> < 1 — 17, we have ear, = 0; if 1 + 7 < [2]> < 1+ 771, ear, = €(7) for some
constant €(1) > 0. Moreover, for every e; > 0, there exists a unique mc(e;) such that

Om f(v/Ei, me(es)) = 0. (2.17)

We shall call e;’s the edges of p1.. For any w € (0,00) and 1 < ¢ < n, the cubic polynomial
Jum? — (s; + |2[)m? — yw|z|?m + |z]* in has three distinct roots a;(w) > 0, b;(w) > 0 and
—¢;(w) < 0 (see Lemma [A.I)). Our next assumption on py; and |z| takes the form of the following
regularity conditions.

Definition 2.4. (Regularity) Fiz 7 < |[z|> — 1| < 77! and a small constant € > 0.
(i) We say that the edge e, # 0, k = 1,...,2L, is reqular if

lfgiiéln{\mc(ek) —a;(ex)], |me(ex) — biler)], [meler) + ci(ex)|} = € (2.18)
and
|02, f (Ver, me(ex))| = e. (2.19)

In the case |z|*> <1 — 7, we always call ear, = 0 a regular edge.
(i) We say that the bulk components [esg, eax—1] is reqular if for any fixred 7" > 0 there exists a
constant ¢(7,7'") > 0 such that the density of p1c in [eag + 7', ear—1 — '] is bounded from below by c.

Remark 1: The edge regularity conditions (i) has previously appeared (may be in slightly different

forms) in several works on sample covariance matrices and Wigner matrices [3] 11}, 23] 24} 26 [29].

The conditions ([2.18) and (2.19)) guarantees a regular square-root behavior of p;. near e, and ensures
that the gap in the spectrum of p;. adjacent to e, does not close for large N (Lemma [A.5]),

i _ > 2.20

Iln;]? le; —ex| = € ( )

for some constant € > 0. The bulk regularity condition (ii) was introduced in [24]. Tt imposes a

lower bound on the density of eigenvalues away from the edges. Without it, one can have points in
the interior of supp p1. with an arbitrarily small density and our arguments would fail.

Remark 2: The regularity conditions in Deﬁnitionare stable under perturbations of |z| and px. In
particular, fix px, suppose the regularity conditions are satisfied at z = 2o with 7 < |\zo|2 -1 <L
Then for sufficiently small ¢ > 0, the regularity conditions hold uniformly in z € {z : ||z] — |20]| < ¢}.
For a detailed discussion, see the remark at the end of Section

We will use the following notion of stochastic domination, which was first introduced in [I2]
and subsequently used in many works on random matrix theory, such as [4 [, [7, 3] 14, 24]. It
simplifies the presentation of the results and their proofs by systematizing statements of the form
“¢ is bounded by ¢ with high probability up to a small power of N”.

Definition 2.5 (Stochastic domination). (i) Let

&= (f(N)(u):NEN,u€U(N)), (= (C(N)(u):NEN,ueU(N))



be two families of nonnegative random variables, where UN) is a possibly N-dependent parameter
set. We say & is stochastically dominated by ¢, uniformly in u, if for any (small) € > 0 and (large)
D >0,
sup P [f(N)(u) > Neg‘(N)(u)] <N7P
ueU W)

for large enough N = Ny(e, D), and we use the notation £ < (. Throughout this paper the stochastic
domination will always be uniform in all parameters that are not explicitly fized (such as matriz
indices, and w and z that take values in some compact sets). Note that No(e, D) may depend on
quantities that are explicitly constant, such as 7 and C, in , and .

(i) If for some complex family & we have |£| < ¢, we also write € < ¢ or & = O<(¢). We also
extend the definition of O<(-) to matrices in the weak operator sense as follows. Let A be a family
of complex square random matrices and ¢ a family of nonnegative random variables. Then we use
A= 0-(C) to mean |A| < ¢, where | Al is the operator norm of A.

(iv) We say that an event E holds with high probability if 1 — 1(Z) < 0.

In the following, we denote the eigenvalues of TX as p;, 1 < j < N. We are now ready to state
our main theorem, i.e. the general local circular law for T'X.

Theorem 2.6 (Local circular law for TX). Suppose Assumptzon. 2.1 holds, and 7 < ||zo|”> — 1] < 71
for any N (zo can depend on N ). Suppose px. (defined in (@) and |zg| are such that all the edges
and bulk components of p1. are regular in the sense of Definition[2.4. We assume in addition that
the entries of X have a density bounded by N2 for some Cy > 0. Let F be a smooth non-negative
function which may depend on N, such that |F|o < C1, |[F'|e < N and F(2) =0 for |z| = C4,
for some constant Cy > 0 independent of N. Let F,, o(z) = K**F(K®(z— 29)), where K := N A M.
Then TX has (N — K) trivial zero eigenvalues, and for the other eigenvalues p;, 1 < j < K, we
have

K
1 Y — a
Z i) = 1 [ Faale)Ro(0AG) < K120 |AF 1, (221)
for any a € (0,1/4]. Here
- L[~
Xp(z) 1= ZJ (log ) A, pac(x, z)dz, (2.22)
0

where pac = pac.z,5 15 defined in CIfl147 < \zo| < 14771 or the entries of X have vanishing
third moments,
EX;, =0, (2.23)

for1<i< M,1<pu<N, then we have the improved result

N

K
1 iy - a
*Z i) = 3 [ Faoale)Ro(AG) < KA, (2.24)

for any a € (0,1/2]. If N = M, the bounded density condition for the entries of X is not necessary.

Remark 1: Note that F,, ,(z) = K?*F(K®(z — z0)) is an approximate delta function obtained from
rescaling F' to the size of order K~ around zy. Thus ([2.21)) gives the general circular law up to scale

K—1/4%¢ while || gives the general circular law up to scale K~/2%¢. The %p in 1) gives the
distribution of the eigenvalues of TX. It is rotationally symmetric, because pa.(x, z) only depends

on |z| (see (2.9) and (2.10)). When T is the identity matrix, xp becomes the indicator function yp
on the unit disk D, and we get the well-known local circular law for X [7]. For a general T', we do



not have much understanding of xp so far. This will be one of the topics of our future study. Also,
we have assumed that z is strictly away from the unit circle. Our proof may be extended to the
|z — 1| = o(1) case if we have a better understanding of the solutions mj 2. to equations (2.9) and
(12.10)).

Remark 2: As explained in the Introduction, the basic strategy of this paper is first to prove the
anisotropic local law for the resolvent of Q when X is Gaussian, and then to get the anisotropic local
law for a general X through comparison with the Gaussian case. Without , our comparison
arguments do not give the anisotropic local law up to the optimal scale, so we can only prove the
weaker bound . We will try to remove this assumption in future works.

Remark 3: In the statement of the theorem, we have included an extra bounded density condition.
This is only used in Lemma to give a lower bound for the smallest singular value of TX — z.
Thus it can be removed if we have a stronger result about the smallest singular value.

We conclude this section with two examples verifying the regularity conditions of Definition [2.4

Example 2.7 (Bounded number of distinct eigenvalues). We suppose that n is fized, and that
S1y---38n and ps({s1}), ..., pu({sn}) all converge as N — co. We suppose that limy e, > limy ex11
for all k, and furthermore for all e, we have 02, f(\/ex, mc(ex)) # 0. Then it is easy to check that
all the edges and bulk components are regular in the sense of Definition [2.]] for small enough e.

Example 2.8 (Continuous limit). We suppose px is supported in some interval [a,b] < (0,0),
and that px, converges in distribution to some measure py, that is absolutely continuous and whose
density satisfies T < dp(E)/dE < 771 for E € [a,b]. Then there are only a small number (which
is independent of n) of connected components for supppi., and all the edges and bulk components
are reqular. See the remark at the end of Section [A.]]

2.3 Hermitization and local laws for resolvents
In the following, we use the notation
Y=Y, =TX —zI, (2.25)

where I is the identity matrix. Following Girko’s Hermitization technique [20], the first step in
proving the local circular law is to understand the local statistics of singular values of Y. In

this subsection, we present the main local estimates concerning the resolvents (YYT — w)fl and

(YTY — w)_l. These results will be used later to prove Theorem
Our local laws can be formulated in a simple, unified fashion using a 2N x 2N block matrix,
which is a linear function of X.

Definition 2.9 (Index sets). We define the index sets
I,:={1,..,N}, IM :={1,....M}, Iy:={N+1,.,2N}, IT:=T,0T,, IM =1V U1,.

We will consistently use the latin letters i,5 € Z1 or I{M, greek letters p,v € Is, and s,t € . We
label the indices of the matrices according to

X=(X;:ieIM pely), T=(T,:ieTy,jeIM).

When M = N, we always identify IM with T,. Forie I, and u € Iy, we introduce the notations
t:=1+Nelyandp:=p—Nel.



Definition 2.10 (Groups). For an T x T matriz A, we define the 2 x 2 matriz Af;;) as

Ay Ay
i i
We shall call Ap;;1 a diagonal group if i = j, and an off-diagonal group otherwise .

Definition 2.11 (Linearizing block matrix). For w := E +in € C,, we define the T x T matriz

H(w) = H(T, X, z,w) := ( wj}féT w_lif > , (2.27)
where we take the branch of \/w with positive imaginary part. Define the T x T matriz
G(w)=G(T, X, z,w) := H(w)™ ", (2.28)
as well as the 17 x 17 and Iy X Iy matrices
Grw) = (YY1 —w)™', Gr(w) = (YTY —w) ", (2.29)
Throughout the following, we frequently omit the argument w from our notations.
By Schur’s complement formula, it is easy to see that
6= (e, v e )= (e e ).
L w L w w R R
(2.30)

Therefore a control of G immediately yields controls of the resolvents G and Gg.

In the following, we only consider the N < M case. The N > M case, as we will see, will be
built easily upon N < M case. We introduce a deterministic matrix II, which will be proved to be
close to G with high probability.

Definition 2.12 (Deterministic limit of G). Suppose N < M and T has a singular decomposition
T=UDV, D= (D,0), (2.31)

where D = diag(dy,ds, . ..,dN) is a diagonal matriz. Define T[i]e to be the 2 x 2 matriz such that

-1 (—w(l+ |d;|*ma.) —w'?z
(7))~ = < _w'/?z —w(l +mi)) (2.32)

Let I1g be the 2N x 2N matriz with (ILg)[) = 731 and all other entries being zero. Define

o= (50 (1 5) - (U5 i)

(2.33)
where & =TT and A(E) = [w(1 + ma.X)(1 + mic) — \z|2]71 .

Definition 2.13 (Averaged variables). Suppose N < M. Define the averaged random variables

mi= = Y (56),,, ma= 1 Y (56),, (2.34)

i€Zy nels
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where

? ) . (2.35)

Define ;) to be the 2 x 2 matriz such that

-1 —w(l+ |d;|? ms) —w'/?z
() = ( /2 Cw(itmy) ) (2.36)

Remark: Note that under the above definition we have

1 1
mo = NTIGR = NTI‘GL,

which is the Stieltjes transform of the empirical eigenvalue density of YYT and YTY. Moreover, we
will see from the proof that m; . are the almost sure limits of m; 5 as N — oo with

1 - 1 _
mie = Z (ZI),,, moe = ~ Z (EH)W. (2.37)
1€Z4 M€I2

The following two propositions summarize the properties of p; 2. and my o, that are needed to
understand the main results in this section. They are proved in Appendix [A] In Fig.2] we plot pa.
for the example from Fig.[I]in the cases |z| > 1 and |z| < 1, respectively.

12|=0.75

z|=1.2

Figure 2: The densities po.(z,2) when |z| = 0.5, 0.75, 1.2, 1.5. Here py = 0.5(5\/2/—17 + 0.554\/2/—17.

Proposition 2.14 (Basic properties of p1 2.). Fiz e > 0. The density p1. is compactly supported in
[0,00) and the following properties regarding p1. hold.

11



(i) The support of pi. is UlgkgL(n)[egk,egk,l] where ey >eg > ... >eor = 0. If 1 +7 < |22 <
1+771 thenear, =€ if [2|> <1 —7, then e; = 0.

(i) Suppose [ear, eax—1] is a regular bulk component. For any 7' >0, if x € [ear + 7', €211 — 7],
then p1c(z) ~ 1.

(iii) Suppose e; is a nonzero reqular edge. If j is even, then pi.(x) ~ /T —€; as x — e; from
above. Otherwise if j is odd, then pi.(x) ~ \/ej —x as x — e; from below.

() If |2|> < 1 — 7, then pre(z) ~ 7Y% as x \, ear, = 0.

The same results also hold for ps.. In addition, ps. is a probability density.

Proposition 2.15. The preceding proposition implies that, uniformly in w in any compact set of
C+7
maze(w)] = O(w[~2). (2.38)
Moreover, if 1 + 7 < |22 < 14 771, then |mi2.(w)| ~ 1 for w in any compact set of Cy; if
|22 < 1 — 7, then |my ac(w)| ~ |w|~Y2 for w in any compact set of C.
We will consistently use the notation F + in for the spectral parameter w. In this paper, we

regard the quantities E(w) and n(w) as functions of w and usually omit the argument w. In the
following we would like to define several spectral domains of w that will be used in the proof.

Definition 2.16 (Spectral domains). Fiz a small constant ( > 0 which may depend on 1. The
spectral parameter w is always assumed to be in the fundamental domain

D=D((,N):={weC :0<E<C LN M m| P << (2.39)
unless otherwise indicated. Given a regular edge ey, we define the subdomain
c=DY(( T, ,N):={weD((,N):|E—ex| <7 ,E >0} (2.40)
Corresponding to a regular bulk component [ea, ear—1], we define the subdomain
D) =D4(¢,7',N):={weD((,N): E€ e + 7, en_1— 11} (2.41)
For the component outside supp p1., we define the subdomain
D° = D°(C, 7, N) i= {w e D(C, V) : dist(E, supp pu) > 7'} (2.42)
We also need the following domain with large n,
D, =D;(¢):={weC,:0<E<(n=¢1, (2.43)
and the subdomain of D U Dy,
D =D((,N) = {weD((,N): > N |my[ 71} U DL(Q). (2.44)

We call S a regular domain if it is a regqular D¢ or DZ domain, a D° domain or a Dy domain.

Remark: In the definition of D, we have suppressed the explicit w-dependence. Notice that when
|2|> < 1 — 7, since |mac| ~ |w|7Y/2 as w — 0, we allow 1 ~ |w| ~ N~2¥2¢ in D. In the definition of
D¢, the condition £ > 0 is only for the edge at 0 when |2]? <1 —7.

Now we are prepared to state the various local laws satisfied by G defined in (2.28). Let

I o+ Mae 1
¥ = () im y [ (2.45)

be the deterministic control parameter.
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Definition 2.17 (Local laws). Suppose N < M. Recall G = G(T, X, z,w) defined in and
II=1I(%, z,w) defined in (2.33). Let S be a regular domain.
(i) We say that the entrywise local law holds with parameters (T, X, z,S) if

[G(T, X, z,w) —II(%, z,w)],, < ¥(w) (2.46)

uniformly in w e S and s,t € L.
(i) We say that the anisotropic local law holds with parameters (T, X, z,S) if

|IG(T, X, z,w) — (X2, z, w)| < ¥(w) (2.47)

uniformly in w € S.
(iti) We say that the averaged local law holds with parameters (T, X, z,S) if
1

‘mg(T, X,Z,’LU) - m2c(2327w)‘ < ]\7777 (248)

uniformly in w € S.
The local laws for G with a general T will be built upon the following result with a diagonal T'.

Theorem 2.18 (Local laws when T is diagonal). Fiz 1 < ||z|> — 1| < 771, Suppose Assumption
holds, N = M, and T = D := diag(dy, ...,dn) is a diagonal matriz. Let S be a reqular domain. Then
the entrywise local law, anisotropic local law and averaged local law hold with parameters (D, X, z,S).

Now suppose that N < M and T is an N x M matrix such that the eigenvalues of ¥ satisfy
and . Consider the singular decomposition 7' = UDV, where U is an N x N unitary matrix, V'
is an M x M unitary matrix and D = (D, 0) is an N x M matrix such that D = diag(dy, da, ..., dy).
Then we have

TX —2=UDV1 X — z, (2.49)
where V7 is an N x M matrix and V5 is an (M — N) x M matrix defined through V = ( “2 ) CIf

X = X@auss is Gaussian, then V; X @aouss 4 xGaussyrt with X being an N x N Gaussian random
matrix. Then by the definition of G in (2.28]),

Gauss da U o0 oGauss UT 0
G(T, X ,Z,W) = < 0 U )G(D,X ,z,w)( 0o Ut ) (2.50)

Since the anisotropic local law holds for G(D,X Gauss 5 w) by Theorem we get immediately
the anisotropic local law for G(T, X Gauss w). The next theorem states that the anisotropic local
law holds for general TX provided that the anisotropic local law holds for T X @auss

Theorem 2.19 (Anisotropic local law when N < M). Fiz 7 < ||2|> — 1| < 7. Suppose Assump-
tion holds and N < M. Let T = UDV be a singular decomposition of T, where D = (D,0) with
D = diag(dy,da,...,dn). Let S be a regular domain. Then the anisotropic local law and averaged
local law hold with parameters (T, X, z,S N ﬁ) If in addition holds, then the anisotropic local
law and averaged local law hold with parameters (T, X, z,S).

Finally we turn to the N > M case. Suppose T = UDYV is a singular decomposition of T, where

D)isaanM

U is an N x N unitary matrix, V is an M x M unitary matrix and D = ( 0
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matrix such that D = diag(dy, da,...,dy). Let U = (U1, Us), where Uy has size N x M and Us has
size N x (N — M). Following Girko’s idea of Hermitization [20], to prove the local circular law in
Theorem [2.6| when N > M, it suffices to study det(T'X — z) (see (2.52]) below), for which we have

DVXUl —Z DVXU2

det(TX — z) = det ( 0 .

) =det(VIDTUI XT — 2)(—2)N"M.  (2.51)

Comparing with (2.49)), we see that this case is reduced to the N < M case, with the only difference
being that the extra (—z)N¥ =™ term corresponds to the N — M zero eigenvalues of TX. Thus we
make the following claim.

Claim 2.20. The N < M case of Theorem[2.6 implies the N > M case of Theorem [2.6,

2.4 Proof of Theorem

By Claim it suffices to assume N < M. Our main tool will be Theorem A major part
of the proof follows from [7), Section 5]. The following lemma collects basic properties of stochastic
domination <, which will be used tacitly during the proof and throughout this paper.

Lemma 2.21 (Lemma 3.2 in [@]). (i) Suppose that &(u,v) < {(u,v) uniformly inue U andve V.
If [V| < N€ for some constant C, then

3 e(uw) < Y Cluw)

veV veV

uniformly in u.
(i1) If & (u) < ¢1(w) uniformly in ue U and & (u) < (o(u) uniformly in uw e U, then

&1 (w)82(u) < G (u)Ca(u)

uniformly in u e U.
(iii) Suppose that W(u) = N~C is deterministic and &(u) is a nonnegative random variable such
that E¢(u)? < N for all u. Then if £(u) < ¥ (u) uniformly in u, we have

E&(u) < ¥(u)
uniformly in u.

The Girko’s Hermitization technique [20] can be reformulated as the following (see e.g. [22]): for
any smooth function g,

1Y 1 N
N izlg(ﬂj) =N JAQ(Z);Iog(M ) — 2)dA(2)
1 ) N
T 4N JAg(z) log [det (Y (2)Y"(2)) | dA(z) = 4N JAg(z) D log \;(2)dA(z), (2.52)

Jj=1

where 0 < A1 < Ay < ... < Ay are the ordered eigenvalues of Y(,Z)YJf (2). For g = F,, 4, we use the
new variable £ = N%(z — zy) to write the above equation as

—1+2a

N N
;;on,a(w) _N - J (AF)(g)j;bgAj(z)dA(g). (2.53)
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Define the classical location v;(z) of the j-th eigenvalue of Y (2)Y(2) by

i (2) j
f pac(z)dr = =, 1<j<N. (2.54)
0 N

By Proposition we have that for any § > 0

o< 2

for large enough N. Suppose we have the bound

Zlogyj <N
J

73 (2)
f llog v;(2) — log x| pac(x, z)dx < N° (2.55)
Yi-1(2)

NJ- (log ) pac(z, 2)

(2.56)

Plugging (2.55)) and ( into , we get

N 2a 00
;,Zl Feo(py) = ]Lr J(AF)(&) L (log ) pac (2, 2)dwdA(€) + O (N HH29|AF| 1))

=[ro] " log ) A pac (2, 2)ded A(€) + O< (N2 | AF| ).
47T 0

Thus we obtain if we can prove for b = 1/2, and we obtain if we can can prove
for b= When 147 <|20]* <1+7! or the assumption (2.23) holds.

We need the following lemma Which is a consequence of Theorem [2.19} Recall and ,
the number of components L has order 1 and each component [esy, e2r—1] contains order N of +,’s
We define the classical number of eigenvalues to the left of the edge ex, 1 < k < 2L, as

N = [N J pQC(z)] . (2.57)

0
Note that N2L = 07 N1 = N and N2k+1 = ]\fgk7 1< k <L-1.

Lemma 2.22 (Singular value rigidity). Fiz a small € > 0.

(i) If the averaged local law holds with parameters (T, X,z,D(¢,N) n ﬁ(C,N)) for arbitrarily
small ¢, then the following estimates hold. For any egr, > 0 and Naj +NY2%¢ < j < Noy_y — N1/2+e,

~1/3
=l (min{ﬂ = Nox Nk 13}) N2, (2.58)
Vi

N N

In the case |z|> < 1 — 7 with e, = 0, we have for any Nop + NY2%€ < j < Nyp_y — NV/2+e,

p—— Nopoq—4\
J

Moreover, if 1 + 7 < |22 <1+ 771, then for any fizred 0 < ¢ < e,

#{j:0< )<} <L (2.60)
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(ii) If the averaged local law holds with parameters (T, X, z,D((, N)) for arbitrarily small ¢, then
the following estimates hold. For any esr, > 0 and Nop + N < j < Nop_1 — N€,

A — — Nog Nap—1—7)\ 7
1A =l Jﬂ' < (min{J ~ 2k 2’“]\; J}) N (2.61)
J

In the case |z|* <1 — 7 with ear, = 0, we have for any Noj, + N < j < Nop_1 — N€,

o Nov i\ 13
Py =2l (“ ! J) : (2.62)
Vi N
Proof. The proof is similar to the proof of [7, Lemma 5.1]. See also [4, Theorem 2.10] or [14], Theorem
7.6] O

Using (2.58) and (2.59)), we get that
Ai — s
> llog \; — log ;| < > M < N2 (2.63)
Nop+NL/2+e<G<Noj 1 —N1/2+e Nok + N2 +e<jeNog_y —NY/2te I
Through a standard large deviation estimate, we have the following bound (see e.g. [9, 27, [33]),
P(|X| > t) < e "N for t> Cp, (2.64)
where ¢, Cy > 0 are constants. Thus we have
N <Y< (ITIIX]+[2)? <1, 1<j<N. (2.65)
Together with Lemma [2.23| concerning the smallest singular value of TX — z, we get
2L
> > llog \j| < N1/2+e, (2.66)
k=1|j—ex|<N1/2te

Since |log ;| < 1 by Proposition we conclude

> > llog \j — log ;| < N2+, (2.67)

k=1 |j—ep|<N1/2+e

Combining (2.63)-(2.67)), we get for any € > 0,
> log A, —logy;| < NY/2*e (2.68)

1<j<N

for large enough N. This implies (2.56|) for b = 1/2. If in addition the assumption (2.23)) holds, the
averaged local law holds with parameters (T, X, z, D(¢, N)) for arbitrarily small ¢ by Theorem [2.19]

Then we can prove (2.56) for b = 0 using the better bounds (2.61)) and (2.62).

Finally we prove that when |z|? > 1 + 7, with the bounds (2.58)) we can still prove the estimate
(2.56) for b = 0. By the averaged local law and the definition of v; in (2.54]), we have

N

St o2

Jj=1

(2.69)




uniformly in N—2+¢ <5 < N2, Taking integral of (2.69) over n from N~1/2%¢ to NV/2 we get

N —
>\j — iN"1/2+e )\ —_iNL?2
leog (%‘ N1 Z:llog o pomvavel | 1. (2.70)
= j

Then we use (2.58) and the bound (2.65)) to estimate that

1 Aj — iN1/2
Z ) v fZNl/Q

J=1
3 log (N
= ) v — sN—1/2+e
Using v; ~ 1, (2.60) and (2.73)), we get

N -
M —iN 1/2+€
1 M 1
j;og<7j—m_l/2+ﬁ> Zog

N
<3 ’(Aj - »yj)N—l/Q) < N<.
j=1

Thus we conclude

< N°. (2.71)

>‘j _ Z'Nfl/2+e
<1+ Z log (’Yj Nz Z log —

Aj=c Aj=c
<1+ Y] ’(Aj—%-)N—l/“f < NZ%. (2.72)
XJ'ZC

Combing (2.71)) and (2.72)), we conclude (2.56)) for b = 0.

Lemma 2.23 (Lower bound on the smallest singular value). If N < M and the entries of X have
a density bounded by N for some C3 > 0, then

|[log A\1(2)] < 1 (2.73)

holds uniformly for z in any fixed compact set. If N = M, the bounded density condition is not
necessary.

Proof. To prove ([2.73)), we need to prove that
P(M(z) <) <NC (2.74)

for any €,C > 0. In the case N = M without the bounded density assumption, we have A\i(z) =
7N, (%), where X} (z) is the smallest singular values of X —T~'z. Following [32] or [36, Theorem 2.1],
we have |log A} (z)| < 1, which further proves ([2.73]).

Now we turn to the case N < M with the bounded density assumption. By we have that

TX —2z=UD(ViX — D 'U'2) = UDY (2).

Hence it suffices to control the smallest singular value of Y (2), call it A;(z). Notice the columns
Y1,..., Yy of Y(2) are independent vectors. From the variational characterization

Au(z) = min [¥ (2)ul?,

we can easily get

(2.75)

1<k<N

M (2)Y2 = N7Y2 min dist (Yk,span{th # k}) -1z 13}1€i<nN‘<}~/k,
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where uy, is the unit normal vector of span{ffl,l # k} and hence is independent of Y. By conditioning
on ug, we get immediately

P (2) < N~C0) < ON-Co/2+Cotar2, (276)

which is a much stronger result than (2.74). Here we have used Theorem 1.2 of [34] to conclude that
(Y, ugy for fixed uy has density bounded by CN Cs, O]

2.5 Outline of the paper

The rest of this paper is devoted to the proof of Theorems and In Section[3] we collect the
basics tools that we shall use throughout the proof. In Section we perform step (A) of the proof by
proving the entrywise local law and averaged local law in Theorem [2.18| under the assumption that
T is diagonal. We first prove a weak version of the entrywise local law in Sections and then
improve the weak law to the strong entrywise local law and averaged local law in Sections [£.4]
In Section [5, we perform step (B) of the proof by proving the anisotropic local law in Theorem [2.18
using the entrywise local law proved in Section [4| Finally in Section |§| we finish the step (C) of the
proof, where using Theorem [2.18] we prove Theorem [2.19| with a self-consistent comparison method.

The first part of Appendix [A] establishes the basic properties of p; o, stated in Lemma and
Proposition[2.14} In Sections and [A-3] we establish some key estimates on my 5. and the stability
of the self-consistent equation (2.11) on regular domains.

3 Basic tools
In this preliminary section, we collect various identities and estimates that we shall use throughout
the following.

Definition 3.1 (Minors). For J < I, we define the minor HY) := {Hy : s,t € I\J}, and
correspondingly G = (H))™'. Let [J] := {s € T : s € Jors e J}y. We also denote
HUVI .= {Hy : s,t € T\[J]} and GU1 .= (HUN)=1. We abbreviate ({s}) = (s), ({s,t}) = (st),
[{s}] = [s] and [{s,t}] = [st].

Notice that by the definition, we have Hﬁ;]) =0 and Gg‘t]) =0ifseJorteJ.
Lemma 3.2. (Resolvent identities).

(i) Forie Ty and u € Iy, we have

1 ; 1
= —w—w(YGOYT — = —w—w(YIGWY) . 3.1
Gii v w( )ii’ GW v w( >W ( )
Fori# jeZ; and p # v € Iy, we have
Gij = wGiGY) (YGUIYT) | Gy = wGGY) (YIGUY) (3.2)
ij pv
(i) Forie I, and p € Iy, we have
G = GG (—wl/QYm +w(vey) ) : (3.3)
i
Gpi = G GI <—w1/2ygi +w (YTGWYT) ) . (3.4)
Qi
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(iii) Forr €T and s,t € T\{r},

Gerrt 1 _ 1 Gerrs
G ' Go G a.cla,.,

G" =G, — (3.5)

(iv) All of the above identities hold for G\Y) instead of G for J c T.
Proof. All these identities can be proved using Schur’s complement formula. They have been previ-
ously derived and summarized e.g. in [14} [I5] [17]. O
Lemma 3.3. (Resolvent identities for G;;; groups).

(i) Forie 1, we have

[1]
Ghy = — > Huk Gy Hy (3.6)
E,l#i
For i # j € T, we have
Grigt = —Gpiy Y, Hu Gl = = 2 Gl Hin Gy (3.7)
k#i k#j
[4]
= _G[u ’L]]G + G[u Z zk]G kl] G[jj]' (38)
k,l¢{i,5}
(ii) For ke Iy andi,j € I1\{k},
(k] _
Glij = G = Grn G G (3.9)
and ) )
1 _ (Al _ (k1)
Grg = (G[n]> G[u]G Zk]G 1ok G lki] (G[n]) : (3.10)

(iii) All of the above identities hold for GI') instead of G for J c T.

Proof. These identities can be proved using Schur’s complement formula. The details are left to the
reader. O

Next we introduce the spectral decomposition of G. Let

N
Y = V]
k=1

be the singular decomposition of Y, where A\; > Ay > ... > Ay = 0 and {&.}Y_, and {(z}}_, are
orthonormal bases of CZ* and C”2 rebpectlvely Then by -, we have

- S Exel TN Wl
B k; A —w ( w2y NGl Gl K (3.11)

Definition 3.4 (Generalized entries). For v,w € CT, s € Z and an T x T matriz A, we shall denote

Avw =V, AW), Ay i=(v, Ae,), A :={es, AW), (3.12)

where ez is the standard unit vector.
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Given vectors v € CT* and w € C?2, we always identify them with their natural embeddings

( ?), ) and ( 3} ) in CT. The exact meanings will be clear from the context.

Lemma 3.5. Fiz 7 > 0. The following estimates hold uniformly for any w e D(r,N). We have
|Gl < Cn™!, oGl < Oy, (3.13)

Let v e CT and w € C*2, we have the bounds

S Gl = Y Gl = (3.14)

HEL HEL
ImGW

€Ty €Ly

_ _1 Im Gyw
S 1Gwil” = 2 |Giwl” = [w] ™ G + 0] T T (3.16)
i€Zy i€l

_ _1 ImGyy
MGl = Y Gl = | Gy + @ fw] Y (3.17)
HEL> neZs n

All of the above estimates remain true for G) instead of G for J < T.
Proof. The estimates in (3.13)) follow from (3.11)). For any unit vectors x,y € CZ, we have

|, )l (<Egr ) N 1/2
e [Z<xé>|] Sleof| -k

For any unit vectors x € C7* and y € C’2, we have

VA K 601 [l

(6, Gy < 2 Z — i > (el + ol ) - 2.

Gyl < S

k=1

where we have used that for w = E + in, |w|71/2 VAk/|Ax —w| < p~L. For the other two blocks of
G, we can prove similar estimates. This implies (3.13|). It is trivial to generalize the proof to 0,,G,
where 772 comes from the (A — w)~? factor of 0,,G. For (3.14)), we observe that

Im Gy _ llmi (W, Gy (¢l w) i 6. Gl

7 s A—w = (= B)? + 2

and by
Z |GWM|2 = Z <W,GR6H><6H,GI%W> = <W,GRG W> Z |<W Ck>‘ ) (3.18)

/_LEIQ /_LEIQ )\k? - 77

Similarly, we can prove the identity for Y, |G,N,|2 and (3.15)). For identity (3.16)), first we can prove
HEL2

S |Gwil® = Y |Giwl® using (3.11). Then we use (2.30) and (3.18) to get

i€Zq i€y
2 Gl = ol (GRY'YE) = ful [ Gr (VY —@) GL| ) (GrGl)
iGIl
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1 Im wa

— [0 G + @ |o] 7 (GrG) = 0] Gy + 0]l (3.19)

Identity (3.17)) can be proved in a similar way. O

The following Lemma give useful large deviation bounds. See Theorem B.1 and Lemmas B.2-B.4
in [I3] for the proof. See also Theorem C.1 of [14].

Lemma 3.6. (Large deviation bounds) Let (Xi(N)), (YZ-(N)) be independent families of random vari-
ables and (az(-;»v)), (bEN)) be deterministic. Suppose all entries Xi(N) and Yi(N) are independent and

satisfies and . Then we have the following bounds:
1/2
()
AT 7 (3.20)

o ) 1/2
(zmr) o
7 2]
;biXi <% iZjainin D v— ;jainin < N

(N)

If the coefficients (a;; ) and (bl(-N)) depend on some parameter u, then all of the above estimates are

uniform in u.

We have stated some basic properties of py 2. and mj 2. in Lemma and Proposition [2.14]
Now we collect more estimates for m; o, that will be used in the proof. The next lemma is proved
in Appendix [A22] For w = E + in € D, we define the distance to the spectral edge through

k=k(E):= min |E — ekl (3.21)

1<k<2L,e,>0
Notice in the |z] < 1 case, we do not take into consideration the edge at ear, = 0.
Lemma 3.7. Fiz 7 > 0 and suppose 7 < ||z|> — 1] < 771. We denote w = E + in.

Case 1 Fiz 7" > 0. Suppose the bulk component [esy,ear—_1] is reqular in the sense of Definition .
Then for we DY (¢, 7', N), we have

14+ mie| ~Immye ~ 1, |mac| ~ Immog, ~ 1. (3.22)
Case 2 Fixz 7' > 0. Then for we D°((, 7', N), we have
Immy o ~n, |1+ mac| ~1, |moc| ~ 1. (3.23)

Case 3 Suppose ey, # 0 is a reqular edge. Then for w e D§(¢, 7', N), if 7" > 0 is small enough,

A/ if B e c
Immch ~ A " Zf SUPP P12 5 |1 + mlc| ~ 1; |m20‘ ~ 1. (324)
n/v/k+n if E¢suppp1ac

Case 4 Suppose |z|> < 1 — 1. We take ear, = 0 and 7/ > 0 to be small enough. Then for w €
D5, (¢, 7', N), if Imw > 7/, we have

1+ mie| ~Immye ~ 1, |ma| ~ Immag. ~ 1; (3.25)

if |lw| < 27/, we have

Vi i/t
mie =i— + O(1), moe. = W

o + O(1), (3.26)

for some constant t > 0, and
Immy gc ~ |w|_1/2. (3.27)
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Case 5 For we D ((), we have

1 1
Imic| ~ Immy ~ e [mae| ~ Tmmg, ~ —. (3.28)

In Cases 1-4, we have
\wu+&m%x1+mhyqﬂﬂ>q (3.29)
where ¢ > 0 is some constant that may depend on T and 7. In Case 5, we have

ku1+&m%x1+mnyq4ﬂ>n, (3.30)

Note that the uniform bounds (3.29) and (3.30) guarantee that the matrix entries of II(w) remain
bounded. We have the following Lemma, which is prove in Appendix

Lemma 3.8. In Cases 1-4 of Lemma we have
Imtaell < Clol ™72, | (mia) ™| < Clul™2, (3:31)
and in Case 5 of Lemma we have
il < Cn" | (mae) | < om (3.32)
For all the cases in Lemma

ImIIyy < CIm(my. + ma.), (3.33)

uniformly in w and any deterministic unit vector v e CT.

The self-consistent equation (2.11)) can be written as
T(w,mq) =0, (3.34)

where

-1
1 w 1+m1 2
T(w,my) =m; + — Lisi(ll+mq) w1+ s; 14+mq)— |z . (3.35
(w,m1) 1 N; ( 1)[ ( —w(1+m1)2+|22>( 1) ||1 (3.35)

The stability of (3.34) roughly says that if Y(w,m;) is small and m;(w’) — mi.(w’) is small for
w' :=w+ N7 then m;(w) — my.(w) is small. For an arbitrary w € D, we define the discrete set

L(w) := {w} u{w €D :Rew = Rew,Imw’ € [Imw,1] n (N"1°N)}, (3.36)

Thus, if Imw > 1 then L(w) = {w}, and if Imw < 1 then L(w) is a 1-dimensional lattice with
spacing N 10 plus the point w. Obviously, we have |L(w)| < N1°.

Definition 3.9 (Stability of (3.34)). We say that is stable on D if the following holds.
Suppose that N~2|m1.| < 6(w) < (log N)~t|myc| for w e D and that § is Lipschitz continuous with
Lipschitz constant < N*. Suppose moreover that for each fizred E, the function n — §(E + in) is
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non-increasing for n > 0. Suppose that uy : D — C is the Stieltjes transform of a positive integrable
function. Let w € D and suppose that for all w' € L(w) we have

T (w, u1)] < §(w). (3.37)
Then
() — ()] € o (3.38)
! S Vet o '
for some constant C > 0 independent of w and N.
We say that is stable on Dy, if for 0 < §(w) < (log N)~1|my.|, implies
lug (w) — mq.(w)| < C9, (3.39)

for some constant C > 0 independent of w and N.

This stability condition has previously appeared in [4] [7, 24]. In [24], for example, the stability
condition was established under various regularity assumptions. In the following lemma, we establish
the stability on each regular domain. The proof is presented in Appendix This lemma leaves
the case |w|/? + |z|> = o(1) alone. We will handle this case in a different way in Section

Lemma 3.10. Fiz 7 > 0 and let 7' > 0 be sufficiently small depending on 7. Let T < ||z|?—1| < 771.

Case 1 Suppose the bulk component [eay, eax—1] is regular in the sense of Definition . Then
is stable on DY (¢, 7', N) in the sense of Definition .

Case 2 is stable on D°((, 7', N) in the sense of Definition [3.9

Case 8 Suppose e, # 0 is a regular edge in the sense of Definition . Then is stable on
D¢ (¢, 7', N) in the sense of Definition .

Case 4 Suppose |2|?> <1 —7 and ear, = 0. If |w|"? + |2|? = € for some constant € > 0, then is
stable on DS, (¢, 7', N) in the sense of Definition .

Case 5 is stable on Dy (C) in the sense of Definition[3.9

4 Entrywise local law when T’ is diagonal

In this section we prove the entrywise local law and averaged local law in Theorem when T is
diagonal. The proof is similar to the previous proofs of entrywise locals laws in e.g. [4, [l [7} 24]. We
basically follow the ideas in [7], and we will provide necessary details for the parts that are different
from the previous proofs.

The main novel observation of this section is that the self-consistent equations and
can be “derived” from the random matrix model by an application of Schur’s complement formula.
It is helpful to give a heuristic argument here. We introduce the conditional expectation

Efy[] := E[- | HU],

i.e. the partial expectation in the randomness of the i and i-th rows and columns of H. For the
diagonal G{;;) group, we ignore formally the random fluctuations in (3.6) to get that

, _ —pt2 w \d;|2GL) 0
G L~ EpHun — > Ery (Hym G Hyn ) = o R [ ke -
[i4] [i]4 [#d] MZ?M [z]( (k] [kl [ll]) _wlli?2z —w N; 0 |dk|2G;[€Z}]€
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—w w2z dil*ms 0
—(_wl/zz o )—w(' |0 ? m1>, (4.1)

where we use the definition of m; and my in (2.34). The 11 entry of (4.1) gives the equation
-1 - mq
w (1 + |di|2ma) (1 +ma) — |2|*

Gii ~

from which we get that

2
G [w(+| |m2)—$—1+m1

Summing over ¢ and using that N ! > Gii = N1 Zu G = ma, the above equation becomes

|Z|2m2 ~1
14+ mq

which gives . Multiplying with |d;]? and summing over i, we get the self-consistent equation
. In this section we give a justification of these approximations.

Before we start the proof, we make the following remark. In this section we mainly focus on
the domain D. On the domain Dy, the proofs are much simpler and we only describe them briefly.
The parameter z can be either inside or outside of the unit circle. Recall Lemmas and the
domain D of w can be divided roughly into four cases: w near a nonzero regular edge, w — 0, w in
the bulk, or w outside the spectrum. In this section we will only consider the case |z|> < 1 — 7 since
it covers all four different behaviors. Notice in this case |my 2.(w)| ~ [w| =2 for w in any compact

set of C, by Proposition Also due to the remark above Lemma in Sections

assume |w|"/? + |z|> = ¢ for some ¢ > 0. We will handle the |w|'/? + |2|? = o(1) case in Section

—w (mg + mima) +

4.1 The self-consistent equations
To begin with, we prove the following weak version of the entrywise local law.

Proposition 4.1 (Weak entrywise law). Fiz |2|> < 1 —7 and a small constant ¢ > 0. Suppose
Assumption holds, N = M and T = D := diag(dy, ...,dn). Then for any regular domain S < D,

1/4
1 ‘w|1/2
‘< e ( N (4.3)

for all w e S such that |w|'/? + |2|? = ¢. For w e Dy, we have

max
i,J€L1

(G(w) — H(w))[ij]

1 1
L 4.4
<w (4.4)

max
,J€Ty

(G(w) — H(w))[ij]

For the purpose of proof, we define the following random control parameters.

Definition 4.2 (Control parameters). Suppose N = M and T = D := diag(dy,...,dyn). We define

, Ay := max
i#jels

A := max
1,j€Z1

(G =My

(G =gy (4.5)

For J € I, define the averaged variables mg‘g (mg‘jz]) by replacing G in with G (G1]), i.e.
J 1 J J 1
mg )= N Z \di\QGE—i ), mé )= N Z G/(;L). (4.6)
i¢J n¢J
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The averaged error and the random control parameter are defined as

Im (mye. + mo.) + 6 1

= |my — mac| + |mo — ma.|, Ty := \/ (m1 N 2c) + N—n (4.7)

Remark: By (2.4)), we immediately get that
7Im mg‘]) < Im mg‘]) <7 'Im mé‘]), (4.8)
and 6 = O(A), since |my — mic| < 771A, |ma —ma.| <A
We introduce the Z variables
[ ._ 1)
Ziy = (1= Ep) (G[u])
By the identity (3.6) we have
2[4 1/2
1 _ | —w—wl|di|" my —wh*z

where

Pl — |, (XGWXT) w2d X — (DXGWD)X)”, ) | (4.10)

Zy = ;i | , |
. w( w24, x1 — (XIDIGHXIDN).  ml! - (X1DIGHDX)..

Lemma 4.3. For J < Iy, the following crude bound on the difference between m, and ma (a =1,2)
holds:

‘ma B Y (4.11)
N7
where C = C(7) is a constant depending only on 7.
Proof. For i € I, we have
(i ) Qszle 9 Im Gy 1!
my—my’| = di, ik — 4.12
| ' k§1| | Gii N|G“| Z | ' | ‘ u| Nn ( )

where in the ﬁrst step we use (3.5)), in the second and third steps the equality (3.15). Similarly,

using ) and (| we get

(4) ((2) — (@) . (4) —
‘ i 1 2 G- 1 G~ Im G~ 271
\ml) —mg )| == Z |d|? ’”(i)m <— @ iy 2 i) <
ol Gl NG|\ lwl w7 Nn
By induction on the indices in [.J], we can prove (4.12)). The proof for ms is similar. O

Lemma 4.4. Suppose |z|> <1 — 7. Forie I, we have

[4]

Imm;]

Nn ~’

| (Z1i) 1, | < |w] 1 (Z1) g | < |w] (4.13)
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~1/2 [
I
| (Zga),, | < |w] “’\'W + JTV”|1w| +\/ B fors #te (1,2}, (4.14)

uniformly in w € D U Dy. In particular, these imply that
Zm < |U)|\I/9, (415)

uniformly in w € D, and
Zp < |w|(Nm)~Y/2, (4.16)

2) 1/2

uniformly in w € Dyp,.

Proof. Apply the large deviation Lemma to Zp;) in (4.10)), we get that
1/2 1/2
(Z11) 1, 12 P2 c |
g [i] [i] = [i]
Wl L (sie) + (mlanf) | <5 (S
1 p#v v

C Im Gl 2 Im mL!
_ e _ C 2
N ; " Nnp ~

where in the third step we use the equality Similarly we can prove the bound for (Z[i])22

using Lemma and (3.15). Now we consider (Z[z]) First, we have X;; < N~1/2 by 1) For
the other part, we use Lemma and ( - ) to get that

_ [2]
(oetion) | < (Siarfett’) = &[S (a2 )

< |tmil, i " co[yflml [Tmmy (4.17)
S| Nl Ny N N |w] Nn ) '

Similarly we can prove the estimate for (Z[l-]) .
Now we prove (4.15)). By the definitions (4.7]) and using (4.11)), we get that

[4] Immso. + Im (mg] — m2> + Im (mg — ma.)
[(Zta) | =< lwl\| =575 = Il Ny < Clw|Wy.  (4.18)

We can estimate (Z[Z-])22 and the third term in 1) in a similar way. For the Cases 1-4 in Lemma

|—1/2

we have |my.| ~ 1 for |w| ~ 1, Immy. ~ |w |mic| for |w| — 0, and n < CImm;.. Thus

|| C | Imm,
< —— < Oy for |w| ~ 1, <C < CVYy for |w| — 0.
Nl|w| ~ /N o ol N |w| N o [l

Then for the second term in (4.14)), we have that

mi| _ [l
v
No| S N [u| < O

This concludes (4.15]). Finally, the estimate (| - 4.16]) follows directly from (4.13)), (4.14)) and (3.13). O
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Lemma 4.5. Suppose |z|> < 1 — 7. Define the w-dependent event Z(w) := {0 < |w|~/?(log N)~'}.
Then we have that for w € D,

1+my
3 +
—w (L +my)” +[z]?

1(E)m2 = 1(8) | 0<(\I’e)1 , 1E) T (w,m) < 1(2) Py, (4.19)

where Y is defined in . For we Dy, we have

1+m _ _ _ _
my = —— +O< (n () 1/2), Y(w,mi) < n~* (Np)~ 2. (4.20)
—w (14+mq)” + 2|

Proof. Using (4.9)), we get
Ghi =7 + € (4.21)

where 7, is defined in and

di|* (ma —m)] 0
0 —my

By (4.11)) and |-i we get that ef;) < [w|Wy. Let B; = 7T[,L] [;]16, where 7). is defined in 1)
By (3.31)) and the definition of E, we have 1(2)|Bimpel < Clog N)~!. Thus we have the expansion

mi

1(E)mp = 1E)(np, + Bi) ™! = LE)me (1 - Bimpage + (Bimge)? + .) = L(E) (mpge + €a), (4.22)

where ¢, can be estimated as 1(Z)|e,| < 1(E)C|w|~?(log N)~!. This shows that 1(Z Nl =
1(2)O0(Jw|~?), and so 1(Z He Tl < 1(E)|w|Y?¥y < 1(E) CN~/2 by the definition of D in
(12.39). Again we do the expansion for (4.21)),

1 0
I(E)G[n] = 1(5) (ﬂ'[_i]l + e[z]) = E 7T[Z] < Z —€[{]T[i] > = I(E) (ﬂ'm + Eb) R (423)

where 1(Z) €| < 1(2)¥y. Now the 11 entry of (4.23) gives that

—1—m1

1(
w (1 4+ |d;]Pma) (1 +my) — |2]

(1]

)Gii = 1(2)

3+ 1E)0< (7). (4.24)

from which we get that

1(2)Gy [w (1+ 1diPma) + 1 f';l] —1(2) [1 + O (|w|1/2\119)]. (4.25)

Here we use that

1+ mq

1(2) [—w (1 + |d;|*m2) + ks ] O(Jw|"?),

which follows from Proposition and the definition of =. Summing (4.25) over i,

ey ‘Z|2m2 _ - 1/2
1(2) [—w (mz + myma) + =2 | = 1(3) [1 + 0. (|w| \1/9)] ,
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which gives
- — 1+m -
1(E)ms = 1(2) 2 +1(2)0~ (V). (4.26)
—w(1+mq)” + |22

Now plug (4.26) into (4.24), multiply with |d;|? and sum over i, we get

*17777,1

2

1 n
1Z)m1 = 1(E) | 5 D, lisi +O0-(Tg) |, (427
=1

where we use (3.29) and 1(Z)(1 + m;) = 1(2)O(|w|~"/?). This concludes the proof.

Similarly, when w € Dy, it is easy to prove (4.20]) using the estimates (4.16)) and (3.13]). Note that
|m12| = O(n=t) by 1) which implies immediately the bounds || = O(n~') and | (F[i])_l | =
O(n). Hence without introducing the event =, we can obtain directly

Gl = Ty + O<(n ™ (Nn)~1/2). (4.28)
The rest of the proof is essentially the same. O

Notice that applying Lemma to 1) we obtain |my2 — my 2| < n_l(Nn)_1/2. Plugging

it into (4.28)), we get immediately (4.4) for w € Dy. This proves the entrywise law on Dy, since
n~IN~Y2 < CV¥ by the definition (2.45) and the estimate (3.28))

4.2 The large 7 case

It remains prove Proposition on domain D. We would like to fix F and then apply a continuity
argument in 7 by first showing that the rough bound A < |w|~*?(log N)~! in Lemma holds for
large . To start the argument, we first need to establish the estimates on G when 1 ~ 1. The next
lemma is a trivial consequence of .

Lemma 4.6. For any w e D and n = ¢ for fized ¢ > 0, we have the bound

max |Gst (w)] < C (4.29)

for some C > 0. This estimate also holds if we replace G with G*') for J c T.

Lemma 4.7. Fiz ¢ >0 and |2|?> <1 — 7. We have the following estimate

max A (w) < N~Y2, (4.30)

weD,n=c

Proof. By the previous lemma, we have |mgl]2| = 0O(1). So by Lemma 1Z | < N~Y/2 uniformly
in 7 = c¢. Then as in (4.21)),

~1
—1
G[ii] = (W[i] + G[Z-]) , (4.31)
1

where HTF[;] | = O(1) and [ef;y| < N~Y/2. Notice since G[;;; = O(1), we have the estimate

i (G[iil] B E[i]) = G (1 = 0 Gragg) = 0<(1).
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Then we can expand (4.31]) to get that
Gligp = mi + O< (N_1/2> : (4.32)

The 11 and 22 entries of (4.32)) leads to the equations

2
mi= Z |di|” l (1 +|di|*m2) + ; L’f' ] + O« (N*W) , (4.33)

my

-1
|Z|2 —1/2

Our goal is to prove that Immy 2 > C (log N)~! with high probability for some C > 0.
Using the spectral decomposition (|3 , we note that for [ > 1,

1 E-n|  _ 1

N _ F)2 2 S

N Ao~ B|>ln ()\k E) +n l?]

1 E—- ) 1 l

N GBS W e < e
i<t Pk~ E)? 4 Bty M = B2

Summing up these two inequalities and optimizing [, we get

I
IRema| < 24 /%. (4.35)

Assume that Immy < C(log N)~!, then by (4.8) we also have Imm; < C7~!(log N)~!. From (4.35),
we get |ma| < C(log N)~/2. Together with Imw =7 > ¢ and Im[|z|2/(1 + m4)] < 0, (4.33) gives

1 2 1
Ima| < NZ |d;[* [Im l—w (1 +|dil*ma) + 1|f|mH +o(l)<C (4.36)
i 1

with high probability. Using the above estimate and |my| < C(log N)~? we get

E

—w(l =
w ( +m1)+1+|di|2m2

< C with high probability.

On the other hand

Im | —w (1 +my) + —
ml w ( my) 15 [ Pms

] < —Imw = —, (4.37)

where we use Im[|z|2/(1 + |d;|*m2)] < 0 and

Tm(wm,) —Iml 2|d| €. (i F( w)

Hence (4.34) implies Immo > ¢ with high probability for some ¢ > 0. This contradicts Immgy <
C(log N)~!. Thus Immsy > C(log N)~! with high probability for some C' > 0 , which also implies
Imm; > C(log N)~! by (4.8).
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Now we can proceed as in Lemma [£.5] and get that
1+ mq
—w (1 +my)* + |22

my = +0- (N—1/2) . T(w,my) < N2, (4.38)

We omit the details. Applying Lemmam to (4.38), we conclude |my o —my 2.| < N~/ uniforml
inn > c. By 1) we get ||(G —IT)[;]| < N~V/2 uniformly in > c and i € Z;. Finally using |D
and Lemmas [3.503.6] we can prove the off-diagonal estimate (see (4.51)).

4.3 Proof of the weak entrywise local law

In this subsection, we finish the proof of Proposition on domain D. We shall fix the real part
E of w = E + in and decrease the imaginary part 7. Recall Lemma [£.5] is based on the condition
A < |w|=Y2(log N)~! (i.e. event Z). So far this is only established for large 7 in . We want to
show this condition for small 7 also by using a continuity argument.

It is convenient to introduce the random function

NImw'\ ¥4
o / 711/2
'U(w) o w}’?g()fu) e(w )‘w | ( |w/\1/2 > ’

where L(w) is defined in (3.36)). Fix a regular domain S, an € < (/4 and a large D > 0. Our goal is
to prove that with high probability there is a gap in the range of v, i.e.

P (v(w) < N¢,o(w) > N3E/4) < N~D+2 (4.39)

for all w € S and large enough N = N(e, D).
Suppose v(w) < N€, then it is easy to verify

O(w') < Clw'| 72 (log N) ™ (4.40)

for all w’ € L(w). Hence {v(w) < N} < Z(w’) for all w’ € S n L(w). Then by (4.19), we have that
for all w’ € SNL(w), there exists an Ny = Ny(e, D) such that

N Ne b
P | v(w) < N, T(w) w2\ N | < , (4.41)
for all N > Ny. Taking the union bound we get
NI !
P v(w) < N¢, max T(w), | — " > N¢| < N~P+10, (4.42)
w'eL(w) |w/|—1/2

Now consider the event

1]

NI !
Z1:=<{v(w) < N°, max T(w) % < N€}. (4.43)
w'eL(w) lw!|~ /

Then 1(Z1)Y(w') < § (w') for all w’ € L(w) with ¢ (w') = le,vw %
If K « 1 (recall (3.21)), then |w| ~ 1 and we have

We now apply Lemma

1 1/4
L(ED)|ma (w') = mie(w)] < Cy/3(w) < ON? (NImw’)

30



for all w’ € L(w); if K = ¢ > 0 for some constant ¢ > 0, then

= |w'[/2 \ NImw’

Ne¢ |w/|1/2 1/2
1(El)|m1 (’LU/) — mlc(u}/)| < Cé(w/) < C ( )

for all w’ € L(w). Combining these two cases we get

1/4
Ne/2 |w/|1/2
= AN /
L(Z1)[ma(w') —mae(w')] < Cilw’lm (Nlmw, (4.44)

for all w’ € L(w). By (4.19)), we have

Ne/2 |,w/|1/2 1/4
_ ’ / —_ / / =
1(Z1)|ma(w') — mac(w’)| < 1(Z1)|m1(w’) — mic(w’)| + 1(Z1) ¥y < W NTm ;

for all w' € S nL(w). Combining this bound with (4.44)), we see there is Ny = N (¢, D) such that

1/4
NI ! NI !
P | v(w) < N¢, max Y(w) % < N¢, max O(w')|w'|/? 1111112) > N34 | < NP
w'eL(w) lw'|~ / w'eL(w) lw!| M

(4.45)

for N > max{Np, N1}. Adding (4.42) and (4.45)), we get

1/4
NI !
P | v(w) < N¢, max O(w')|w'|"/? % o N34 | < NP1

weL(w) w1/

Taking the union bound over L(w) we get (4.39) for all N > max{Ny, N1}.

Now we conclude the proof of Proposition by combining (4.39) with the large n estimate
(4.30). We choose a lattice A = S such that |A] < N?° and for any w € S there is a w’ € A with
|w’ —w| < N~9. Taking the union bound we get

P <3w e A v(w) e (N34, Ne]) < N~D+41, (4.46)
Since v has Lipshcitz constant bounded by, say, N, then we have
P (aw €S :v(w) e (2N3/4, N€/2]) < N~D+4L, (4.47)
Combining with (4.30]), we see that there exists Ny = Na(e, D) such that for N > N,

P (Vw eS:v(w) < 2N36/4) >1_oN—D+1,

Since € and D are arbitrary, the above inequality shows that v(w) < 1 uniformly in w € S, or

1/4
1 ‘w|1/2
— | — . 4.4
O(w) < WEE ( Nn (4.48)

In particular we see that for all w € S, the event = holds with high-probability.
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Now using and ( -, we get

1 w2\
|Grian = el < |G = mal + [y = 7l < o +0 < o5 ( N ) : (4.49)

To conclude Proposition it remains to prove the estimate for the off-diagonal entries. By (4.11)),
it is not hard to see that s
1 | w|1/2
< 4.50
o (5 o0

-1
for any |J| <1 with I € N fixed. Thus we have G[} = O (jw|~*/2) and (G{]) = O (jwl"/?) with
high probability. Let i # j € 77, using (3.8)) and the above diagonal estimates, we get that

HG[Z]] ~ TiJe

|Grin]| < lwl 1ol w1 Y HuwGlE v ! <W|1/2>1/4 (4.51)
il < lw] ™' = + |w|~ ik il < Tg < , .
] VN el 5} TR w2\ Ny
where, as in the proof of Lemma [£.4] we use Lemmas [3.5] and [3.6] to obtain that
Jl
ol ™| Y HinGrlyHi —'(ZW{”}XMG[ ]X ZM{”}XMG“]X”) < Wy, (4.52)
T 7,] . .
1) Segtid) XnGur Xl sty XunCui X1

4.4 Proof of the strong enterywise local law

In this section, we finish the proof of the (strong) entrywise local law in Theorem on domain
D and under the condition |w|"? 4 |z|? = ¢. In Lemma we have proved an error estimate of the
self-consistent equations of m, o linearly in Wy. The core part of the proof is to improve this estimate
to quadratic in Wy. For the sequence of random variables Z;, we define the averaged quantities

1

2= %

\\Mz

7T[i]Z[i]W[i]v (Z) = Z |di |7 Zpy gy

The following Lemma is an improvement of Lemma
Lemma 4.8. Fiz |z|° <1—7. Then forwe D,

1+m
mg = 5 5t O (lw|"?¥3 + [Z]] + K1), (4.53)
—w (1 +mq)” + |z|
and
Y(w,ma) < [w'?0G + |[Z]] + KZ)]. (4.54)
ForweDyp,
1+my 1
mo = + O N +1Z]| + IKZ2)|) , 4.55
= e O (T 2+ K (4.55)
and

T(w,m1) < (Np)~" +[[Z]] + KZ)]. (4.56)
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Proof. The proof is almost the same as the one in Lemma we only lay out the difference. We
first consider the case w € D. By Proposition the event = holds with high probability. Hence
without loss of generality, we may assume = holds throughout the proof. Using (3.9), we get

1 |dy|> 0 @\ _ [ |1dl*> 0\ Gy, 1 |dy,]> 0 1
Nkzz ( 0 1 (G[k’ﬂ_G[kk]) =L o 1) v *tN ; o 1 ) GGGl
€elq 7

By Proposition [4.1] and (£.51)), we have (4.57)
|GGl G| <l /2w,
By Lemma it is easy to verify that HG[“-]/NH < Clw|V2W2. Plug it into ’ we et
okt — o <l 05, (4.58)

Using (4.15) and (4.58), the error €, in (4.23) is

ev = O<(Jw["?WF) — 7y Zpy [1 + 0<(Iw\1/2‘Pe)] = O<(Jw|"*W3) — mpiy Zpgmpy-
Then following the arguments in Lemma we can obtain the desired result on =. For w € Dy,
the proof is similar by using (4.4)). O

In the following lemma we prove stronger bounds on [Z] and (Z) by keeping track of the can-
cellation effects due to the average over the index . The proof is given in Appendix

Lemma 4.9. (Fluctuation averaging) Fiz |z|> < 1—71. Suppose ® and ®, are positive, N-dependent
deterministic functions satisfying N~Y2 < ®,®, < N~° for some constant ¢ > 0. Suppose moreover
that A < |w|=Y2® and A, < |w|~Y/2®,. Then for we D,

IZ1+ K2)] < |w] ™" 2. (4.59)

Now we finish the proof of the entrywise local law and averaged local law on the domain D. By
Proposition we can take in Lemma [4.9]

vz, [Tm(ma + mac) + ] =8(Ny)=1/4 ff 2
P, = |w| s == -
N1 Nn
with A, < Uy < |w| =120, and A < 0 < |w|~/2®. Then (4.54)) gives
Y (w,my) < [wl T e + mac) + |w|1/4(N77)71/4.
N7

Then using the stability Lemma [3.10

| el bma) el L el (el P

mi — mie — _— )

o N/ +71 (N)>/S = Nn = (Nn)/8 Ny

Here if \/k + 1 = (log N)~1, we use

lw|Y?Tm(m1, + mae) - Clog N - 1
Nk +71 = Ny Nn’
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while if \/k + 1 < (log N)~!, we have Im(m1. + ma.) = O(y/k + 1), which also gives that

[w|Y2Im(my. + ma) 1

Nnyk +1 Nn’

We then use (4.53)) to get that

1/21 . , 1/4( Np)—1/4 /2 1/2+1/8
0 < ‘ml - m1c| + |’U)| m(my. + mac) + |w| (Nn) < |w|—1/2 (|w| ) ) (4.60)

Nn Nn
Repeating the previous steps with the new estimate (4.60), we get the bound

1/2 ) Shoy 172841242

0 < w|—1/2<|w|
| Ny

1

after [ iterations. This implies the averaged local law 8 < (Nn)~! since [ can be arbitrarily large.

Finally as in (4.49)) and (4.51)), we have for i # j

Im(myc + mac) 1
|Gy = mragel + | Grigt | < o + Ny Ny
This concludes the entrywise local law and averaged local law in Theorem when |w|"/2+ 2% ~ 1.
When w € Dy, we have proved the entrywise law (see the remark after (4.28])). Also we can
prove a similar result as Lemma which implies
14+ mq

MmO (V)71 Tlw,ma) < (N~ (4.61)

The averaged local law then follows from Lemma We leave the details to the reader.

4.5 Proof of Theorem when |z| and |w| are small

In the previous proof, we did not include the case where |w|"/? + |z|? < ¢ for some sufficiently small
constant € > 0. The only reason is that Lemma does not apply in this case. In this section, we
deal with this problem.

The main idea of this subsection is to use a different set of self-consistent equations, which has
the desired stability when |w| and |z| are small. Multiplying with |d;|? and summing over i,

1 n —1- mi
(S ( )lN; w(1+5im2)(1+m1>_|2|2 < )] ( )
Recall that ¥ := DD = D'D. We introduce a new matrix
~ —wy ! w?(X — D7 12)
H(’U}) T ( wl/Z(X o D*lz)‘[ —wl ) (463)

and define G := H~!. By Schur’s complement formula, the upper left block of G is

Gr=[(X-D'2)(X —D'2) —ws™1],
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and the lower right block is equal to

Gr=[(X=D2)N(X -D"2) —w] " = [(DX —2) (DX —2)—w] " = Gn.

Now we write m; o in another way as

1 -1 1 ~
my = - Tr [DT (YY" —w) D] = I Gr. (4.64)
11 -
my = < TrGr = T [(X = D7) 'S(X = D72) —w]
_ 1 D L)X - DLy —w| = Ay (516
= T [X DX DTS —w] = T (2 GL> . (4.65)

We apply the arguments in the proof of Lemma to H, and get that

a1 —w|d;| 7> — wmy —w'?zd;?
] — —wt/2zd; ! —w — wmy

) T O (Ju|T), (4.66)

from which we get that

o —1-m
1(H)Gu - 1(‘—') [w(|di|_2 + m2)(1 + m1) - |Z‘2|di‘_2

+ O<(\I/9)] .

Plugging this into (4.65)), we get

1(E)my = 1(8) “{ > L lom + O<(\I/9)] . (4.67)

A siw(s; T+ ma)(L+ma) — [2f2s; !

We take the equations in (4.62]) and (4.67) as our new self-consistent equations, namely,

L(E) fi(mi,m2) = L(E)O(Yy), 1(E)f2(m1,m2) = 1(E)O(¥y), (4.68)
where
fi(ma,ma) i=mq + %Zlisiw 0+ s-mi)tlnil ) 1o (4.69)
1 1+m
fz(ml,mg) = Mmoo + N lew(l m Sim2>(1 +1m1) — |Z|2 . (470)

According to the following lemma, this system of self-consistent equations are stable when |w| and
|z|? are small enough .

Lemma 4.10. Suppose that N~2|w|~/? < §(w) < (log N)~Hw| ™2 for w e D. Suppose uyo: D —
C are Stieltjes transforms of positive integrable functions such that

max {| fi (w1, ug) (W), [ f2(ur, ug) (W)} < 6(w).

124 |22 < €, we have

Then there exists an € > 0 such that if |w|
lur (w) — mac(w)| + Juz(w) — mac(w)| < C6, (4.71)

for some constant C > 0 independent of w, z and N.
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Proof. The proof depends on the estimate of the Jacobian at (mi., ma.). By (3.26) and (A.35)),
il + O 4 |2?) ity + 0wl + [#I)

Mmic = \/a I 2c \/E )

where to = (N~* X" | 1;/s;)'. Then we can calculate that

2 1/2 2
et (alfl 62f1> et <1+O(|z| ) to+ O(jw|'/? + || )) — 24+ O(w|2 + |4?).

Orf2 Oaf O(lP) 2+ 0(jw['? + |2)
We can conclude the stability by expanding fi o(u1, ug) around (mq., mo.) and using a fixed point
argument as in the proof of Lemma in Section O

With this stability lemma, we can repeat all the arguments in the previous subsections to prove
the entrywise local law and averaged local law when |w\1/ ‘22 <e

5 Anisotropic local law when 7' is diagonal

In this section we prove the anisotropic local law in Theorem when T is diagonal. The basic
ideas of the proof follow from [4, section 5], and the core part of our proof is a novel way to perform
the combinatorics. By the Definition m (ii) and the definition of matrix norm, it suffices to prove
the following proposition for generalized entries of G.

Proposition 5.1. Fiz |,z|2 < 1 — 7 and suppose that the assumptions of Theorem hold. Then
for any regular domain S,

[Ku, (G(w) = T(w)) v)| < ¥ (5.1)

uniformly in w € S and any deterministic unit vectors u,v € CT.
It is equivalent to show that
i [ Wi Y
>0 uly (Grigy = Tpgy) vy < ¥, gy = ( s ) ;U] = ( o ) : (5.2)
i,j€Z1

By the entrywise local law,

D uly (G = M) v Z 1Grisy — g || Jugay| [oga| + | X vl Grspvr| < ¥ + |25 wlyGrisew
i,J i#] i#]
Thus to show 7 it suffices to prove
D ulyG v (5.3)
i#j

Notice from the entrywise law, we can only get

Zu U]

1#]

< ¥lufifv]y < N,

using |u; < N'Y2|ul and |v]; < N'Y2|v|,. In particular, this estimate of the ¢! norm is sharp
when u, v are delocalized, i.e. their entries have size of order N—/2.
The estimate ([5.3)) follows from the Chebyshev’s inequality if we can prove the following lemma.
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Lemma 5.2. Suppose the assumptions in Proposition[5.1] hold. For any even p € 2N, there exists a
constant C,, which is independent of N such that

i
E Z ”[i]G[ij]“[J]

i#]

<G,

The proof of Lemma is based on the polynomialization method developed in [4], section 5].
Again we only give the proof for w e D. When w € Dy, the proof is almost the same.

5.1 Rescaling and partition of indices

For our purpose, it is convenient to define the rescaled matrix
R .= w'2G\), (5.4)
for any J < Z and |J| < for some fixed [. Consequently we define the control parameter ®
= |w|"? . (5.5)

By the entrywise law, for w € D,

—1
R() = 0-(1), (REZQ) = 0.(1), RY)=0.(®)fori#j (5.6)

under the above scaling. Now to prove Lemma it is equivalent to prove

P
Z Uy, l]]v[j] < Cpq)p. (5.7)
i#]
We expand the product in (5.7)) as
p p/2 ) P T —
> uly Riigv) > I 4Boaavsa - T 4B
i#j i #jk€L1 k=1 k=p/2+1

Formally, we regard {i1, ..., p, j1, ..., jp} as the set of 2p (index) variables that take values in Zy. Let
B, be the collection of all partitions of {i1, ..., 4, j1, ..., jp} such that i, ji are not in the same block
for all k = 1,...,p. For I € B, let n(I') be the number of its blocks and define a set of Z;-valued
variables as

L(P) = {bl, m>bn(1")}- (58)
Now it is convenient to regard I' as a symbol-to-symbol function
I: {ila'”vipajlv’“vjp}_)L(F)7 (59)

such that each T'! (b;) is a block of the partition. Then we can rewrite the sum as

p/2 P
T I
2 up Ry 2 2 H Uip (i) B0 G0 T (G0 VI G - H Upp (i BID )T GO0 Gl
i#] T'eB, bieZ,, k=p/2+1

1=1,.. ,n(r) (5.10)
5.10
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where X* denote the summation subject to the condition that the values of by, ...b, are ordered as
b1 < bg <...<b,. We pick one term from the above summation and denote

p/2 P

._ t 7
AM) = [ Tufrgo Braorororeor - 11 wreeo RireorGovmeo- (5.11)
k=1 k=p/2+1

Notations: For any by, € L, we can define a corresponding Z,-valued variable by, in the obvious way,
and we denote

[L] := {b1, .., bn, b1, o B} (5.12)

For notational convenience, we will also use letters ¢, j, k, [ to denote the symbols in L.

5.2 String and string operators

During the proof we will frequently use the following resolvent identities for rescaled matrix R. They
follows immediately from Lemma [3.3]

Lemma 5.3 (Resolvent identities for Ry;;) groups). For k¢ J and i,j € T;\J U {k}, we have

U1 _ plIkl , pld] (] 7 plil

R[z‘j]_R[z‘j] JrR[z’k] (R[kk]) R[kj]? (5.13)
DN _ (plRY (Rl T Bl (plal \ Tl (LR T

(R[ii]) = (R[ii]) (R[ii]) R (R[kk]) R (R[ii]> ; (5.14)
EA RNy Y ) B (7] L7 1]

(Bi) = vl —w ll/;{’}H[iz]R[u']H[z'ir (5.15)

Furthermore, for i # j and L defined in (@, we have

(G _ pl\G g RV - - (1]
Ri " = Ry Sun R with Sp) = —w™ 2 Higg +w™ Y Hyg Ry Hygy- (5.16)
kgL

In this section, we expand the R variables in A(T') using the identities in Lemma During
the expansion, we need to distinguish carefully between an algebraic expression and its values as a
random variable.

Definition 5.4 (Strings). Let 2 be an alphabet containing all symbols that may appear during the
-1

expansion, such as REI],]], (R&]j]]) » STijls ugi] and vp;) for i,j,J < L(T'). We define a string s

to be a formal expression consisting of the symbols from 2, and denote by [s] the random variable

represented by it. Let M be the collection of all possible strings. We denote an empty string by .

Given a string s, after an expansion of R’s in it, we will get a different string s’. However they
represent the same random variable [s] = [s']. During the proof, we will identify more elements of

2 (see the symbols in (5.32)).

To perform the expansions in a systematical way, we define the following operators acting on
-1
strings. We call the symbols R{;]j]], (R{;}j]]) to be mazimally expanded if J U {i,j} = L. We call a
string s to be mazimally expanded if all the R symbols in s is maximally expanded.
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Definition 5.5 (String operators). (i) Define an operator T(k) for Q € M, in the following sense.

—1
Find the first RE’]] in Q such that k ¢ J U {i,j}, or the first ( { ]]) such that k ¢ Ju {i}. If R%i‘jjl]

-1 -1
is found, replace it with R[;I]k], if (R[J ) is found, replace it with (RB?) ;if neither is found,

T(k)(Q) Q and we say that T, ( ) is trivial for Q.

(ii) Define an operator 7'1 ) for Q € M, in the following sense. Find the first R: ]] in  such

1
that k ¢ J U {2 j}, or the first (RL.]) such that k ¢ T U {i}. If R is found, replace it with

J]
\ (@] [#5] .
[] (71 \ [J [7] - o oigr (plJ] [7] (] (/] [JEI\ .
R[lk] (R[ ]) R zf (R ) 1s found, replace it with (R[u‘]) R[ ] (R[kk]) R[kl] (R[n‘] ) ;
if neither is found, 7'1( )( Q) = & and we say that Tl(k) s null for Q).
(i) Define an operator p for Q € M, in the following sense. Find each mazimally expanded

RV 4 0 and replace it with R L\{”}]S R L\{J} . If nothing is found, p(2) = Q.

[i5] 1)
According to Lemma [5.3] for any Q € 9t we have

(%2 + ) @] =190, [o@] = [9] (5.17)

Definition 5.6. Define the function Fa_max : M — N (where the subscript “d-maz” stands for
“distance to being maximally expanded”) through

Facmax (RE)) = V(T 0 (03D
where = could be 1 or —1, and

-Fdfmax(Q) = 2 -Fdfmax(R»

R wariables in
Define another function Fog : M — N with Fog(Q) being the number of off-diagonal symbols in Q.
By off-diagonal symbols, we mean the terms of the form Ay with s ¢ {¢,7} or Apij) with @ # 7, e.g.
R[ZJ
that a R symbol is maximally expanded if and only if Fyq_nax(R) = 0 and a string € is maximally
expanded if and only if Fy_max(2) = 0. The next two lemmas are almost trivial by Definition

Lemma 5.7. If 7 (k)( Q) =Q and Tl(k)(Q) =,

and Sp;;) with @ # j. Later we will define other types of off-diagonal symbols (see (5.32))). Note

fd—max (T(gk) (Q)) = fd—max(Q)v -Fd—max (Tl(k) (Q)) = 07 (518)
otherwise,
Facmax (87(9) = Facmax(@ = 1. Facmax (17(9) < Facmax(@) +40(1). (5.19)
For p, we have
Fd—max (P(Q)) = Fa—max(2) + a, (5.20)

where a is the number of mazimally expanded off-diagonal R’s in €.

Lemma 5.8. For any Q2 € M, we have
Forr (7)) = Fosr (@), Forr () = Forr (), (5:21)

and
Forl@) +1< For (V@) < Forl@) +2 f 1P (@) 2 @ (5.22)
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5.3 Expansion of the strings

For simplicity of notations, throughout the rest of this section we omit the complex conjugates on
the right hand side of (if we keep the complex conjugates, the proof is the same but with
slightly heavier notations). Suppose the right hand side of is represented by a string Qa.
Given a binary word w = ajas...a,, with a; € {0,1}, we define the operation

(Qa)w = prilm) - prlb2) prP) (Q4) (5.23)

where bgpir 1= b, (recall (5.8)) for any 1 < r < n and ¢ € N. So a binary words w uniquely
determines an operator composition. By (5.17), [(2a)wo] + [(2a)w1] = [(2a)w] and so we get

D1 1(Qa)w] = [Q4]

|w|=m
for any m > 1, where |w]| is the length of w.

Lemma 5.9. Given any w such that |w| = (n?+1)(p+6lg) and (Qa)w # F, either Forg((Qa)w) =
lo:=(8/C+2)p, or (Qa)w s mazimally expanded.

Proof. We use mg to denote the number of 0’s in w, and m; to denote the number of 1’s. Further-
more, we use méo) to denote the number of 0’s corresponding to the trivial 7’s, and mél) to denote
the number of 0’s corresponding to the non-trivial 7’s. Assume Fo((Qa)w) < lo and (A )w is not

maximally expanded. By (5.21)-(5.22), m1 < lo —p < lo. By (5.18)-(5.20),

-Fdfmax((QA)w) < -Fdfmax(QA) + lO + 4nm1 - mél)

Using Fa—max(2a) = np, we get a rough estimate mél) +my < n(p+ 6ly). By pigeonhole principle,
there are at least n 0’s in a row in w that correspond to trivial 79’s. This indicates that (Qa)w is

maximally expanded, which gives a contradiction. O

Lemma 5.10. There exists constants Cp ., Cp ¢ > 0 such that

%
> 2 B )y [(Qam)w]| < Cpiy N?DP < Cp (P (5.24)
reB, —biel, [w|=(n°+1)(p+6l0),
I=1,...,n(I) }—off((QA(l"))w)Z(l)O

Proof. The first bound is due to the fact that each summand is bounded by C'®! and there are at
most N2 of them. For the second bound, we used ® < CN /2. O

This lemma shows that all the strings with sufficiently many off-diagonal symbols contributes at
most ®P. It only remains to handle the maximally expanded strings. Define a diagonal symbol as

0 d; X _ (L]
S[ii] = — (JXI 0 ) + w ! Z H[ik]R[kl]H[li]7 (5.25)
i kl¢L
such that ) 12
[\ _ (—w -z _ G,
(Rl = ( Y /2> S (5.26)
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Notice all the R symbols in a maximally expanded string is diagonal. We taylor expand R%ﬁ}{i}] as
lo—1
R [ 122 4 (S — B = S Fae [(Sit — By 7] + 0 o) (5.27)
- % e (Spa ) = Z Tic [ (St i) Tic] < ( ) :
k=0
1/214.12 0
s wl2e g (@ ldiPmae
where 7. = W/ *m[;1c, Bi < 0 w1/2m10)7 and for the error term,
L
S — By — wl2Z IV | 172 (1P (mae —mh) 0 o
i i [4] 0 Mie — mgL]

by (4.15) and the averaged local law. Now for all maximally expanded (Qa)w with |w| = (n? +

1)(p + 6lp), denote by o [(2a)w] the expression after plugging in (5.26]) and (5.27) without the tail
terms. Similar to Lemma we have

*

Z Z E Z ([[(QA(F))W]] -0 [[(QA(F))w]> < Cp PP,

TeB, bieZy, \w|=(nQ+1)(p+610)7
I=1,...,n(T) (2a)w maximally expanded

From the above bound and Lemmas we see that to prove (5.7)), it suffices to show

*

> 2 [E 2 o [(Qam)w]| < Cp 2" (5.28)
FEBP biely, w|= n2+1 +6lo),
I=1,...,n(I") (QA‘)W‘ m(axima)lgil) expga?nded

We write o [(2a)w] as a sum of monomials in terms of Sp;;,

o[(Qa)w] = 2 M(w,A(T), i), (5.29)

where i is an index to label these monomials. Notice that after plugging (5.29)) into (5.28]), the
number of summands M (w, A(T"), ) inside the expectation only depends on p and ¢. Thus to show
(5.28)), it suffices to prove the following lemma.

Lemma 5.11. Fiz any I' € B, and binary word w with |w| = (n? + 1)(p + 6lo). Suppose (Qa)w s
mazimally expanded. Let M(w, A(T)) be an monomial in o [(Qar))w]. We have

*
> |EM (w, A(T))| < Cp c®P (5.30)
bieZy,l=1,...,n(T)

for some constant C, ¢ that only depends on p and (.

For the rest of this section, we fix a I' € B, and a maximally expanded (Qar))w With [w| =
(n?+1)(p+6lp). Then we fix a monomial M(w, A(T)) in o [(Qa))w]- Let Qs be the string form
of M(w,A(T)) in terms of Sp;;;. It is not hard to see that

Fott (1) = Forr (20)w) - (5.31)
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Now we decompose S|;;) as

Stij) = Sjj + Sff + Sg + S+ S{} + Sfj?, (5.32)

where we define the following symbols in 2A:

X . (0 1 x . _ 5vt (00
SX = diX;; (o 0>7 S¥ = dix], (1 0), (5.33)
R 0 R R 7 + (RED 0
S = Z didy X5 X5 0 81 , Sij = Z didy Xip X7, | R o) (5.34)
k,l¢L k,l¢L
- 0 0 - 0 0
2= I X5 R._ il
SZj = Z dile;szj <0 R[L]> ) ng = Z dileZkX[j <R[L—] 0> . (5.35)
k,I¢L Kl k,¢L Kl

We expand Sp;j1’s of M(w,A(T')) as in (5.32), and write M(w,A(I")) as a sum of monomials in
terms of SX and S&
M(w,A) = ) Q(w. A(T), i), (5.36)

where 7 is an index to label these monomials. Again it is not hard to see that

Fort (2q) = Forr (Qar) = Forr ((Qa)w) - (5.37)

Since the number of summands in ((5.36) is independent of N, to prove (5.30) it suffices to show

> IEQ(w, A())| < O, ®P (5.38)

bieZy,l=1,...,n(T")

for any monomial Q(w, A(T")) in (5.36). Throughout the following, we fix a Q(w, A(T')) with nonzero
expectation, and denote by ¢ the string form of Q(w, A(T')) in terms of S5 and SE. Notice the
R variables in S® are maximally expanded. As a result, the S¥ variables are independent of S%
variables in Q(w, A(T)). Therefore we make the following observation: if S& appears as a symbol
in Qg, then Qg contains at least two of them.

Definition 5.12. Recall I" defined in (@) Let h be the number of blocks of I whose size is 1, i.e.

n(T)

hi= > 1(T7 ()] =1). (5.39)

=1

Forl=1,...,n, define
L= |{ir, ..., 007N, o= {1, Gt n DTN

Lemma 5.13. Suppose for any by, ..., b, taking distinct values in Iy,

IEQ(w, AD))] < CN 20 [ T ug[" [vppn|” (5.40)
=1

holds for some constant C independent of N. Then the estimate holds.
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Proof. By Cauchy-Schwarz inequality,

N a) b _|NY2 ifa+b=1
2 lupl fopm | < . :
P 1 ifa+b>2

Then using h = >, 1(I; + J, = 1), we get
=1

*

N EQw, AM) < CONTETT S fupy|" opy|” < @7
l

bieZy,l=1,...,n(T) =1bel;
O

Hence it suffices to prove (5.40)). The key is to extract the N~"/2 factor from E Q(w, A(T)). For
this purpose, we need to keep track of the indices in L during the expansion.

Definition 5.14. Define a function Fin : L x M — N with Fiy(1,Q) giving the number of times
or | appears as an index of off-diagonal R or S in €.

The following lemma follows immediately from Definition [5.5] and the expansions we have done
to obtain Qg from (Qa)w-.

Lemma 5.15. (1) For any string 0, if Ték) s not trivial for Q, then
Fin (L787() = Funt.9), Fan (L7P(@)) = Funll,2) + 20 (5.41)

(2) For any string €2,
Fin (I, p(2)) = Fin(l, Q). (5.42)

(3) For any mazimally expanded (Qa)w,

Let Qég be the substring of Qg containing only S* symbols, and Qg be the substring of g
containing only S¥ symbols. Define

Vi={leL| Fin(l,Qn) =1}, (5.44)

and
Vo :={l € L| Fin(l,Qa) = 1 and F,(1,23) = 0}, (5.45)
Vi:={leL| Fin(l,Qa) = 1 and Fin(1,Q3) > 2}. (5.46)

Recall the observation above Definition YV =V,uV; and
h=[V] = Mol + WVil.

Let nx be the number of off-diagonal S¥ symbols in Qg and ng be the number of off-diagonal S
symbols in Qg. Notice that n, := nx + ng is the total number of off-diagonal symbols in Q.
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5.4 Introduction of graphs and conclusion of the proof

We introduce the graphs to conclude the proof of . We use a connected graph to represent
the string Qg, call it by Bgo. The indices in [L] are represented by black nodes in ®¢o. The SX
or SE symbols in Qg are represented by edges connecting the nodes s and . We also define colors
for the nodes and edges, where the color set for nodes is {black,white} and the color set for edges
is {SX,S% X R}. In B, all the nodes are black, all SX edges are assigned S color and all S
edges are assigned S color. We show a possible graph in Fig. [3| In this subsection, we identify an
index with its node representation, and a symbol with its edge representation.

Definition 5.16. Define function deg on the nodes set [L], where deg(l) is the number of S¥ edges
connecting to the node .

By Lemma [5.15] we see that for any [ € Vy,

Fin(l,Q0) = deg(l) + deg(l) =1 (mod 2). (5.47)
Hence
Vol = Z [Fin (1,Q0) mod 2] < Z [(deg(l) mod 2) + (deg(l) mod 2)]. (5.48)
leVo 1leVo

Now we expand the S® edges. Take the Sg edge as an example (recall ) We replace the
S g edge with an R-group, defined as following. We add two white colored nodes to represent the
summation indices k,! ¢ [L], two X-colored edges to represent X,z and X5, and a R-colored edge

_ (L]
connecting k and [ to represent (8 Rél ) . We call the subgraph consisting of the three new edges

and their nodes an R-group. If i = j, we call it a diagonal R-group; otherwise, call it an off-diagonal
R-group. We expand all S® edges in &g into R-groups and call the resulting graph ®g;. For
example, after expanding the S¥ edges in Fig. we get the graph in Fig. In the graph &qq,
the R edges, X edges and SX edges are mutually independent, since the R symbols are maximally
expanded, and the white nodes are different from the black nodes.

bo b3
@
®— 05~
o
o
by by bs

Figure 3: An example of the graph &qo.

Notice that each white node represents a summation index. As we have done for the black nodes,
we first partition the white nodes into blocks and then assign values to the blocks when doing the
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Figure 4: The resulting graph ®¢; after expanding each S% in Fig. into R-groups.

summation. Let W be the set of all white nodes in ¢4, and let W be the collection of all partitions
of W. Fix a partition v € W and denote its blocks by Wi, ..., Wy,(,). If two white nodes of some
off-diagonal R-gr happen to lie in the same block, then we merge the two nodes into one diamond

white node (Fig. . All the other white nodes are called normal (Fig.. Let ng) be the number
of diamond nodes (< the number of diagonal R-edges in Bg1). Then we trivially have

# of white nodes = —ngg) + Z [deg (b)) + deg(br)] - (5.49)
k=1

(b) Normal white nodes.

(a) Diamond white node.
Figure 5: Two types of white nodes

By (5.48), there are |Vo| black nodes with odd deg in [Vy] (where [Vo] is defined in the obvious
way). WLOG, we assume these nodes are by, .-y bpyy|- To have nonzero expectation, each white
block must contain at least two white nodes. Therefore for each k = 1, ..., [Vy], there exists a block
connecting to by which contains at least 3 white nodes. Call such a block W(by), and denote by
A(by) the set of the adjacent white nodes to by, in W (by). (Note that the W (by)’s or A(bg)’s are not
necessarily distinct.) WLOG, let W1, ..., W, be the distinct blocks among all W (b)’s. Define

Voo := {br| A(bx) has no normal white nodes, 1 < k < [Vl},
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and
Vo1 := {bk| A(bx) has at least one normal white node, 1 <k < [Vyl}.

The following lemma gives the key estimates we need.
Lemma 5.17. For any partition v € W,

Vool — Voul/2 — nl) + S, [deg (bx.) + deg(by)]
2 b

m(y) < (5.50)

and
nx +ngr =p+ Vil + Voo, nx =W, nR = Vool (5.51)

Proof. The second inequality of (551) can be proved easily through
Vil < |{k € LIFin(k, Q) > 2} <n

Notice for b € Vo, A(by) contains at least three diamond white nodes, while each of the white node
is share by another b;. Thus we trivially have |Vyo| < ng) .

Now we prove . A diamond white node is connected to two black nodes and a normal white
node is connected to one black node. Hence a diamond white node belongs to two sets A(bx, ), A(bk, ),
and a normal white node belongs to exactly one set A(by). Therefore for each i = 1,...,d, if W;
contains exactly one A(by) then

]-Voo (bk)

(Wil 23 =2+ 1y, (bi) + 5

Otherwise if W; contains more than one A(by), then

|WZ| = Z (2 : 1V01 (bk) + g : 1V00 (bk)> > 2+ Z (1\)01 (bk) + ]'V‘)‘)Z(bk)> )

bk:A(bk)EWi bk:A(bk)EWi

Here the first inequality can be understood as following. For each black node by with A(bg) S W,
we count the number of white nodes in A(by) and add them together. During the counting, we
assign weight-1 to a normal white node and weight-1/2 to a diamond white node (since it is shared
by two different black nodes). If by € Vo, there are at least three diamond white nodes in A(by)
with total weight > 3/2; if by € Vo1, there are at least one normal white node and two other white
nodes in A(by) with total weight > 2. Thus >, 4 cw, (2 1y, (bk) + 2 - 1y, (br)) is smaller than
the number of white nodes in W;. Then summing |W;| over i, we get

Vool
-

d
Z |WZ| > 2d + |V01| +
=1

For the other m — d blocks, each of them contains at least two white nodes. Therefore

Mool _
2

where we use (5.49) in the last step. This proves (5.50)).

For by, € Voo, A(by) contains at least three white nodes from off-diagonal R-groups,

2m + |V01| +

2|W|+2(m d) Z deg (by,) + deg(by)],
i=1 k=1

Voo S{bk € L| Fin(be, Q) = 1 and Fin (b, Q5) = 3} =: V.
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Recall |j| , only Tl(k) may increase Fi,. Thus w contains Tl(bk) for each by € V1 U Vs (recall
the definition of V; in (5.46))). Therefore by (5.22)), (5.37) and the fact that Vo and V; are disjoint,

nx +ng = For((Qa)w) =Fox(Qa) + V1 U Va| = p + [Vi| + Vool
This proves the first inequality of (5.51]). O

By (2.3) and (5.6, a diagonal R edge contributes 1, an off-diagonal R edge contributes ®, and
S¥X or X edge contributes N~'/2. Denote

U= luga|™ o™
=1

Then using Lemma [2.21] we get

EQ(w, A(D))| < Cu(N~Y Z)M 2 Z*: @nrnR ﬁ (v _1/2)deg(bk)+deg(bk)
YEW v (W1),eeoyy (Wi )EZ\L k=1
3 deg(by,)+deg(by,)
< CUN—"x/? Z NS gnrnl)
YEW
~ Vo1l =IVool/2—n{ (@
SCUNT™P N N— =2 " "n
YEW
< CUN—H? Z N—(nx=ViD)/2 N=(n” = Voo ) /2 nr—nfy”
YEW
< CUN2 YT grxtnn=Mil=Pol < oy N—"2g,
YEW

where in the third step we used (5.50)), in the fourth step h = [V| = |V1| + [Voo| + [Vo1|, in the fifth
step N~/2 < ® and (5.51)), and in the last step (5.51)). Thus we have proved (5.40)), which concludes
the proof of Proposition [5.1

6 Anisotropic local law: self-consistent comparison

In this section we prove Theorem We first prove the anisotropic and averaged local laws under

the vanishing third moment assumption . When n > N~V 2+¢|my.| 7Y, the anisotropic and

averaged local laws can be established without assuming . For convenience, we only consider

the case w € D and |z|2 < 1 — 7 in this section. The proof for other cases is almost the same.

Following the notations in the arguments between Theorems [2.18| and 2.19]
—w(DTD)~! T UD 0

w?(ViX — (UD) '2)! ) L ( 0 I )

(6.1)

w'2(ViX — (UD)™'2)

H(TX—Z,UJ)—T( —wl

Now we define

e o |1/2 —w(D'D)~
G(w) := fwl" ( w2 (WX - (UD)™'2)!

w2 (VX — (UD) ')

—1
- [w|"?T'GT.  (6.2)
—wl
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Since T is invertible and |T| + [T~ < 7~ by (2.4)), to prove the anisotropic law in Theorem [2.19]
it suffices to show

| G(w) — T(w)| < ®(w) (6.3)

where
Tl(w) := |w|V?T I(w)T, ®(w) = |w|"/2T(w). (6.4)

Notice we have |II| = O(1) by (3.31). By the remark around (2.50)), if X = XG9uss is Gaussian,
then (6.3)) holds. Hence for a general X, it suffices to prove that

| G(X,w) = GX w)| < @(w). (6.5)
Similar to Lemma [3.5] it is easy to prove the following estimates for G.

Lemma 6.1. Forie I{V[, we define v; = Vie; € R, d.e. v; is the i-th column vector of Vy. Let
ueR” and w e R%2, then we have for some constant C > 0,

37 (Guuyl? = o] 2w, (6.6)
HeLs n
D 1G]’ < O 2 22w (6.7)
€M n
- — I WwWwW

D Gwy, P < C (|w| Y2 G + @ || Y mg> , (6.8)
ieIM n

- — I uu
Y Gwl*<C <|w| Y2 G o+ @ Jw| TP mg) , (6.9)
wels n

6.1 Self-consistent comparison

Our proof basically follows the arguments in [24] Section 7] with some minor modifications. Thus
we will not write down all the details for the proof. By polarization, it suffices to show the following
proposition.

Proposition 6.2. Fix |z|2 < 1 — 7 and suppose that the assumptions of Theorem hold. If
holds or n = N~Y2%C|my.| =1, then for any reqular domain S < D,

<v, (g<w) - ﬁ<w)) v> < ®(w) (6.10)

uniformly in w € S and any deterministic unit vectors v e CT.

We first assume that (2.23)) holds. Then we will show how to modify the arguments to prove the
n=N"Y 2+¢|mag.| 7! case. The proof consists of a bootstrap argument from larger scales to smaller
scales in multiplicative increments of N ¢, where

¢
Se (0200) : (6.11)

with Cy > 0 being a universal constant that will be chosen large enough in the proof. For any
=1 a7—14¢
n=|mi N , we define

mi=nN°for [=0,..,L—1, ny:=1. (6.12)
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where L = L( ) 1= max {l € N| pN°(~D < 1}. Note that L <2571

By (3.13), the function w +— G(w) — II(w) is Lipschitz continuous in S with Lipschitz constant
bounded by CN 3. Thus to prove (6.10) for all w € S, it suffices to show (6.10)) holds for all w in

some discrete but sufficiently dense subset S = S. We will use the following discretized domain S.

Definition 6.3. Let S be an N~'°-net of S such that |S| < N?0 and
E+ineS=E+ineSs forl=1,...L(n).

The bootstrapping is formulated in terms of two scale-dependent properties (A,,) and (C,,)
defined on the subsets R R
Sy = {weS | Tm w >N_5m}.

(A,,) For all w e §m, all deterministic unit vector v, and all X satisfying —, we have
Im Gy (w) < [w]"Im [myc(w) + mac(w)] + NOOD(w). (6.13)

(Cp) For all we §m, all deterministic unit vector v, and all X satisfying —, we have
‘vi(w) — gy (w)] < NOOD(w). (6.14)

It is trivial to see that property (Ag) holds. Moreover, it is easy to observe the following result.

Lemma 6.4. For any m, property (C,,) implies property (A,,).

Proof. This result follows from . O
The key step is the following induction result.

Lemma 6.5. For any 1 < m < 2571, property (A,,_1) implies property (C,,).

Combining Lemmas and we conclude that 1' holds for all w € S. Since & can be
chosen arbitrarily small under the condition 1) we conclude that (6.10]) holds for all w € S, and
Proposition follows. What remains now is the proof of Lemma[6.5] Denote

Fo(X,w) =

Gy (X, w) — ﬁw(w)‘ . (6.15)

By Markov’s inequality, it suffices to prove the following lemma.

Lemma 6.6. Fiz p e 2N and m < 25~'. Suppose that the assumptions of Proposition . (-)
and property (A,,—1) hold. Then we have

EF?(X,w) < (N9°®(w))” (6.16)

for all w e §m and all deterministic unit vector v.

In the following, we prove Lemma . First, in order to make use of the assumption (Am 1),

which has spectral parameters in Sm 1, to get some estimates for spectral parameters in Sm, we
shall use the following rough bounds for G, .
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Lemma 6.7. For any w = E +ine€ S and x,y € CT, we have

L(n)
Gy () = Ty (10) | <N Y [0 Gy, (B + i) + T Gy, (B + i)

Gy, y, (B + i) + Im Gy, y, (B +im) | + X[y,

where x = ( zl ) andy = ( Y1 )forxl,yle(CIl and Xg,y2 € CT2.
2

y2
Proof. The proof is similar to the one for [24] Lemma 7.12]. O
Lemma 6.8. Suppose (A,,_1) holds, then
G(w) - T(w) = O (N*) (6.17)
and
1 Gy < N2 [Jw]2Im (ma(w) + mae(w)) + No(w)] (6.18)

for all w e §m and all deterministic unit vector v

Proof. Let w = E +in € S,,. Then E + i € Sy for | = 1,.. ., L(n), and gives
ImGyv(w) < 1. The estimate (6.17) now follows immediately from Lemma To prove ,
we remark that if s(w) is the Stieltjes transform of any positive integrable function on R, the map
n — nlm s(E + in) is nondecreasing and the map 7 — n~'Im s(E + in) is nonincreasing. We apply
them to |w|~Y2Im Gyy (F + 1) and Tmmy 2.(E + in) to get for wy = E +in; € Si_1,

|w‘1/2

|U}1|1/2

| |1/2

Im Gy (w) < N° Im Gyy (wy) < N° [w|1/21m (m1e(wy) + mae(w)) + NE° w |1/2<I>(w1)]
1

< N% [|w|1/21m (Mie(w) + mae(w)) + N005q>(w)] ,

where we use ®(w) := |w|/2¥(w) and the fact that 7 — ¥(FE + in) is nonincreasing, which is clear
from the definition ([2.45)). O

Now we apply the self-consistent comparison method presented in [24] Section 7] to prove Lemma
To organize the proof, we divide it into two small subsections.

6.1.1 Interpolation and expansion

Definition 6.9 (Interpolating matriceb). Introduce the notation X° := XGuss gnd X' := X. Let

and pllu be the laws of Xi and X}, respectively, forie M and p € Ty. For 0 € [0,1], we define

pip Qi

the interpolated law
Pl = (L= 0)pg, + Opi,-

We shall work on the probability space consisting of triples (X°, X% X1) of independent M x T,
random matrices, where the matriz X% = (Xe ) has law

[T I1A.ax5). (6.19)

ieTM pels
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For NeR,ieIM and pu € Iy, we define the matriz X(ei’:‘) through

0, __ Xie,u Zf(]?”)?é Z":u)
(X)) {)\ i (Go0) = o)

—~

We also introduce the matrices
6 — 0 0,
G'(w) =G (X% w), Gl w) =G (X(w),
according to and the Definition [2.11]

We shall prove Lemma, through interpolation matrices X% between X° and X!. It holds for
X° by the the anisotropic law (6.3)) (see the remark above (6.5))).

Lemma 6.10. Lemma holds if X = X©.

Using (6.19) and fundamental calculus, we get the following basic interpolation formula.

Lemma 6.11. For F : RZi %% _ C we have

iEF xH=3 3 [EF( ’ W) IEF< fjoﬂﬂ (6.20)

ieTM pels

provided all the expectations exists.

We shall apply Lemma with FI(X) = F2(X,w) for F,(X,w) defined in (6.15). The main
work is devoted to prove the following self-consistent estimate for the right-hand side of (6.20)).

Lemma 6.12. Fiz pe 2N and m < 26~'. Suppose and (Am—1) holds, then we have

>y []EF ( ’ ’“> EFP <ij§0“>] — O (NP ) + EFP(X?, w)) (6.21)

i€ZM pely

for all 9 € [0,1], all we §m, and all deterministic unit vector v.

Combining Lemmas [6.10] [6.11] and m with a Gronwall argument, we can conclude the proof of
Lemma and hence Proposition

In order to prove Lemma [6.12] we compare X( #) and X( )7“ via a common X(elf), i.e. under

the assumptions of Lemma [6.12] we will prove

3y [EFg (XO,’X@”“) _EFRP (X“’ 0 )] — O ((N9@) + EFP(X? w)) (6.22)

(ip) (ip)
i€IM pels

for all we {0,1}, all 8 € [0,1], all w € §m, and all deterministic unit vector v.

Underlying the proof of is an expansion approach which we will describe below. Through-
out the rest of the proof, we suppose that (A,,_1) holds. Also the rest of the proof is performed at
a single w € § Define the 7 x Z matrix Af\z ) through

(A(lu ) - Aéisaut + >\6it5,u.s~ (623)
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Then we have for any A, N’ € R and K € N,

(ip)

J— K+1
k A=A K+1 A=A
g(“‘) (U‘) + Z g(llt) ( A V g(ut > T g (ip) (VA(Z[L) V g zp)) ’ (624)

where V := (‘g ?) and o := |Z‘11/;2 The following result provides a priori bounds for the entries
of QGSA .
(ip)

Lemma 6.13. Suppose that y is a random variable satisfying |y| < N—Y2. Then

g?éz) ~1I = O<(N26) (6.25)

for all i e IV and p e Io.
Proof. See [24] Lemma 7.14]. O

In the following, for simplicity of notations we introduce f;,)(A ) Fr(X (w)) We use f(w to
denote the n-th derivative of f(;,). By Lemma and expansion (|6 we get the following result.

Lemma 6.14. Suppose that y is a random variable satisfying |y| < N~Y2. Then for fited n € N,

‘ 18 ) ‘ < N2(n+p), (6.26)

By this lemma, the Taylor expansion of f;,) gives
4p

Fiim () = 2 f§$)<>+o<<<1>p>, (6.27)

n=

provided Cjy is chosen large enough in (6.11)). Therefore we have for v € {0, 1},
0, X5 9,0
EFY (X(m) ') —EY (X(m)) E [ £ (X; ) Fiw (0)]
S (n)
=E fi,(0) + Efw)( ) + Z Ef(w)( VE (X}1,)" + 0<(97),

where we used that X}, has vanishing first and third moments and its variance is 1/N. Thus to
show (6.22]), we only need to prove for n = 4,5, ..., 4p,

N2 2 2 ’Ef(n) )‘ -0 ((NCoci(I))p +EF5(X9,U))) 7 (6.28)

w)
'LEIM HELy

where we have used (2.3)). In order to get a self-consistent estimate in terms of the matrix X¢ on

the right-hand side of (6.28)), we want to replace X(oi’g) in f(;,(0) := FP (X(QZS)) with X X(‘)Z:‘;w
Lemma 6.15. Suppose that
NN N RSN (XG)| = O (NO@) + BRY(X?, w)) (6.29)

i€eIM pels

holds for n =4, ...,4p, Then holds for n =4, ..., 4p.
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Proof. From ([6.27)) we can get
4p—1

Y" (l+n
FaO) = £y ) = 2 T i (0) + O<(NV27). (6.30)

The result follows by repeatedly applying (6.30). The details can be found in [24, Lemma 7.16]. O

6.1.2 Conclusion of the proof with words

What remains now is to prove (6.29). In order to exploit the detailed structure of the derivatives
on the left-hand side of (6.29)), we introduce the following algebraic objects.

Definition 6.16 (Words). Given i € M and u € Iy. Let W be the set of words of even length
in two letters {i,u}. We denote the length of a word w € W by 2n(w) with n(w) € N. We use
bold symbols to denote the letters of words. For instance, w = t18atass - - - t,s,11 denotes a word of
length 2n. Define W,, := {w € W : n(w) = n} to be the set of words of length 2n. We require that
each word w € W,, satisfies that t;s;+1 € {ip, pi} for all 1 <1< n.

Next we assign each letter = its value [+] through [i] := v, [p] := u, where v; € CTt is defined
in Lemma and is regarded as a summation index. Note that it is important to distinguish the
abstract letter from its value, which is a summation index. Finally, to each word w we assign a
random variable Ay ; ,(w) as follows. If n(w) = 0 we define

Av,i,/_L(W) = gvv *ﬁvv~
If n(w) = 1, say w = tysatoss -+ t, 8,11, we define
Av i) = G611 Grsalta] *** Glsnlltn] Isnar]v - (6.31)
Notice the words are constructed such that, by (6.24]),
o \" ~ n
(aqu) (gvv - va) = (—O[) n! Z Av,i,,u(w)

weW,

forn =0,1,2,..., which gives that

() R0 =Caya 3 [

| |
ni+-+np=nr=1 TNy gp/2:

8 0 SR BN v o ooy

Wr€Wn, Wrip/2€Wn, o

Then to prove ([6.29), it suffices to show that

p/2
N2 S B ] Avi(we) Av i (wrgpp)| = O (NP2 @) + EFP (XY, w)) (6.32)

ieIM pelz | r=1

for 4 < n < 4p and all words wy,...,w, € W satisfying n(w;) + --- + n(wp,) = n. To avoid the
unimportant notational complications coming from the complex conjugates, we in fact prove that

D)

i€eIM pels

p
E[]Aviu(w)

r=1

= O (NP + EFP(X% w)), (6.33)
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and the proof of (6.32)) is essentially the same but with slightly heavier notations. Treating empty
words separately, we find it suffices to prove

q
N2 3 N EAR (wo) [ [ Avip(we)| = O (N9°@)? + EFP(X?,w)) (6.34)
ieZM pely r=1

for 4 <n <4p, 1 < q <p, and w, such that n(wy) =0, >, n(w,) = n and n(w,) > 1 for r > 1.
To estimate (6.34) we introduce the quantity

s = |gvvs

for s € Z, where as a convention we let v, = e, for p € Z».

+1Gv.vl- (6.35)

Lemma 6.17. For w € W we have the rough bound

Ay i (w)] < N2CRIHD, (6.36)

Furthermore, for n(w) = 1 we have
| Avip(w)| < (R} + RE)N2 () =1, (6.37)

For n(w) = 1 we have better bound
[Aviu(w)] < RiRy. (6.38)

Proof. - follows immediately from the rough bound ( and definition . For (6.37)) we
break Ay ;,(w) into Gyr,1(9 52 2] Glsnlltn] )1/ times (Q[SZ][tQ] “Glsallt n]) g[sn“ + and use

Cauchy-Schwarz inequality. (6.38)) follows from the constraint t; # s in the definition (6.31 O

By pigeonhole principle, if n < 2g — 2 there exists at least two words w, with n(w,) = 1.
Therefore by Lemma, we have

q

Ay it (wo H viu(w)| < NPCHOFPa(X) (1(n = 2¢ = 1)(R] + R;) + 1(n < 2¢ — 2)RIR}) .

Then by Lemma (6.39)
s Z R2+— 3R < |w['*Im Gy +nw| G
zeIM ;LeIQ Nn
o lelmmie + moc) + ] 2NCD N(Co+Dig2, (6.40)

Nn

where in the second step we used the two bounds in Lemma lw|~'?n = O(|w|Im m;.) by Lemma

and in the last step the definition of ®. Using the same method we can get

% 2 Z R?Ri < (N(CO+2)6(I)2>2. (641)

i€ pels
Plugging (6.40]) and ( into , we get that the left-hand side of (|6 is bounded by

2 4
N—n/2+2N26(n+q+2) ]EF‘]’)—q(X) (1(n >2q — 1) (NC()(S/Z(I)) + 1(n <2q— 2) (NC(,(S/Q@) ) ]
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Using ® > ¢cN~1/2, we find that the left hand side of (6.34) is bounded by
n—2 n
N2(n+a+2) g pp=a(X) <l(n >2¢—1) (NCO5/2<1>) +1(n <2¢—2) <N005/2<I>) )
n—2 n
<EFP-9(X) <1(n >2¢—1) (NC05/2+125<1>) +1(n <2 -2) (NC05/2+125<1>) >

where we used that ¢ < n and n > 4. Choose Cy > 25, then by (|6 we have NC00/2+126 < N¢/2
and hence N€09/2+120% < 1. Moreover, if n = 4 and n > 2q — 1, then n = q + 2. Therefore we
conclude that the left-hand side of (6.34) is bounded by

EFE9(X) (N“°®)?. (6.42)
Now (6.34)) follows from Holder’s inequality. This concludes the proof of (6.29)), and hence of (6.22)),
and then of Lemma This finishes the proof of Proposition under the assumption (2.23))

In the rest of this section, we prove Proposition when 7 > N_1/2+<|m20|_1. In this case, we
can verify that
o < N2, (6.43)

Following the previous arguments, we see that it suffices to prove the estimate (6.29) for n = 3. In
other words, we need to prove the following lemma.

Lemma 6.18. Fiz 1 <m <26~! andpe2N. Letwe S,, n D (recall ) and suppose (A,,—1)
holds. Then we have

N2 NN B (X0)] = O (NP@) + BFL(X,w)) . (6.44)

ieTM peT

Proof. The main new ingredient of the proof is a further iteration step at a fixed w. Suppose
G—1I=0-(N?¢) (6.45)

for some ¢ < 1. By the a priori bound , holds for ¢ = 1. Assuming , we shall

prove a self-improving bound of the form
N-3/2 Z Z ‘E f(z?;z) X0 ‘ _ ( (NCoS )P 4 (N’</4¢)p n EFf,”(Xe,w)) . (6.46)
i€ZM pels

Once is proved, we can use it iteratively to get an increasingly accurate bound for the left
hand 51de of - After each step, we obtain a better a priori bound (/6.45)) where ¢ is reduced by
N—¢/4. Hence after O(¢C™1) 1terat10ns we can get (6

As in Section[6.1.2] to prove it suffice to show

q
N2 STST AP () [ | Av ()] < FZZ9(X)(NComD0p 4 N=2g)0, (6.47)

ieTM pels r=1

which follows from

q
N2 ST ST T Ava(wn)| < (NCD0g 4 N—¢2g)0, (6.48)

ieTM pely r=1

Each of the three cases ¢ = 1, 2, 3 can be proved as in [24, Lemma 12.7], and we leave the details
to the reader. This concludes Lemma [6.18 O
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6.2 Averaged local law for T X

In this section we prove the averaged local law in Theorem [2.19] Again for convenience, we only
consider the case w € D and |2|2 < 1 — 7. First we assume ([2.23) holds. The anisotropic local law
proved in the previous section gives a good a priori bound. In analogy to (6.15]), we define

F(X,w) : = [w|"?|mz(w) — mac(w)| = % > Guw(w) = [w]Pmge(w)|.

I/EIQ

Since ®2 = O(|w|"/2/(Nn)), it suffices to show that F' < 2. Following the argument in Section
analogous to (6.29), we only need to prove that

VoYY

i€ZM pels

E ( a)i)n ﬁp(X)‘ ) ((N5<I>2)p n Eﬁp(X)) (6.49)

for all n = 4,...,4p. Here 6 > 0 is an arbitrary positive constant. Analogously to (6.33)), it suffices
to prove that for n = 4, ..., 4p,

VoYY

i€TM pels

ETpl (;f 3 Aw,#(wr)) ‘ ) ((N5<1>2)p + Eﬁp(X)) (6.50)

veZy
for 3. n(w,) = n. The only difference in the definition of Ay ; ,(w) is that when n(w) = 0, we define
Av,i,u(w) = gvv *|w|1/2m20-

Similar to (6.35) we define
Ru,s = |g1/vs‘ + |gv3u‘- (651)

By the anisotropic local law, G Il = O~ (®). Hence combining with Lemma and lb we get

1 12Im @G, I . . 12
_ Z Rz%s < |’LU| mg Ve |U}‘ m(ml + mo )+ |U}| _ O(CI)2) (652)
’ N7 N7
veZy
Using the anisotropic local law again, we get G = O-(1). Then we have
1 1
¥ D1 Ae,in(w)| < ¥ D (R2+R2,) < @ for n(w) > 1. (6.53)
veELo vELy

Following (6.53)), for n > 4, the left-hand side of (6.50) is bounded by
E FP=9(X)(9?)4.

Applying Holder’s inequality, we conclude the proof.
Then we prove the averaged local law when 7 > N~1/2+C|my, | =1, Tt suffices to prove

N2 3 3R (a)i)gﬁp()() -0 ((ﬂf}p +EﬁP(X)> . (6.54)

ieTM peTs
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Analogous to (6.50)), it is reduced to show that
_3/2 (1 |12\ ? -
v B R[]y 8 At )| =0 ( (U, ) +EFGO) 059
rLeI{VI peZy r=1 veZs

where ¢ is the number of words with nonzero length. Again we can prove the three cases ¢ = 1, 2, 3
as in [24, Lemma 12.8], and we leave the details to the reader. This concludes the averaged law.

A Properties of p; 2. and Stability of (2.11))

A.1 Proof of Lemma and Proposition m
We now prove Lemma First is a technical lemma for f defined in ([2.15]).

Lemma A.1. For w> 0 and |z| >0, f can be written as

1 & A; B; C;
=— 2L N s -+ e - A1l
F (V) =~ +m+ w Nz(m_ e BN S
where we have the following estimates for the poles and the coefficients,
. 2 . 2
max (|z|, 51;5') <a; < ‘SH_\/{' +lz], an <ap-1<...<ay, (A.2)
2
O<b1<b2<...<bn<min<|z|,|\j|a), (A.3)
—(si + [21%) + /(si +]2[?)2 + 4w|z[?
(6 4 [21%) + v/ (si + o) wl <ci<|z|, 1 <ca<...<cp, (A.4)
24/w
and
. 2 . 2 ) 2
O<Ai<2$l+|z| +\/E|z|,0<Bi<251+\z| +\/@\z|,0<ci<31+|z\ +\/E|z\ (A5)
w w w

Proof. The proof is based on basic algebraic arguments. Let
s = NJwm® = (s: + |2ym® — alalPm + oI
It is easy to verify that
A =18(s; + [2[H)w]2]® + 4(si + |22 2* + (85 + |22)2w]2|* + 4w?|2|® — 2Tw|2|® > 0.

Thus p; has three distinct real roots. By the form of p;, we see that there are two positive roots and
one negative root, call them a; > b; > 0 > —¢;. Now we perform the partial fraction expansion for
the rational functions in (2.15)),

m2 B |Z|2 _ A; + B; Cz/ (A 6)
Vwm3 — (s; + [2[2)m2 — Jw|zPm + 2] m—a; m—b; m+c’ '
where
Al = a?—|z|2 B = b?*|z|2 C = *C?+|Z|2 (A 7)

CoVw(a; —b)(a; +e) T Vwb —a)(bi+ ) Tt Vw(e +ai) (e +bi)
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We take s; = 0 in p; and call the resulting polynomial as

z
po = Vwm?® — |z]*m? — Vw|z|*m + |2|* = Vw (m - ||) (m® — |2]?),
Vw
which has roots m = =£|z|,|z|>/v/w. By (2.7), we have p; < pg < ... < pp < po for all m # 0.
Comparing the graphs of p;’s (as cubic functions of m) for 0 < i < n, we get that
|22

2
max<|z| |\/|E) <Up < Upo1 <...<ai, 0<b1<b2<...<bn<min<z| \/U)’ (A.8)

and
O0<c<c<...<cy,<|z| (A.9)
Thus we get (A.3). By these bounds, we see that a? — [z|> > 0, b? — |2|> < 0 and —c? + |2]? > 0,
which, by (A.7), give that A, > 0, B, > 0 and C! > 0. Plugging into f, we get immediately
for Ai = A;ai, Bi = B;bl and Cl = CZICZ
Now we compare p; with p} := /wm? — (s; + |2|*)m? — y/w|z|?*m, which has roots

(s +|2%) £ /(50 + [2[*)? + dw|2]?

=0
’ 2w

Since p}; < p; for all m, we get

N YA GO ) Sl e el e

2w Jw

+ |z, (A.10)

and

—(si + [2%) + /(s + [2[%)? + dwlz]?
C; > .
23 /w
From (A.9) and (A.11] m, we get (A.4). Then we compare p; with p/ := \Jwm3 — (s; + |2|*)m?, which
has roots w =0, (s; + |22 )/\F Notlce p! > p; for m > |z|>/y/w and az > | |2/\/w, so we get

> (s; + |2]? )/f Combining this bound with (A.8) and (A.10), we get (A.2
Fmally we estimate the coefficients A;, B; and C;. Using (A.7)) and (A.2] -, we first can
estimate that

(A.11)

A — (@i —l2D(@i+1z) _ _aitlzl _ 2
toVw(ai = bi)(ai ) T Vw(aite) \/E’

Vw(a; = bi) (b +ci)  Vw(bi+c) wlz|

o lelze)arle) _ ll—e skl + vl

C Vaw(e +ai)(c + b)) Vaw(e + b ) w|z|

from which we get that

B —

Ay < (SR N st Bl o)
’ T Vw w ’ '
N G i E PR A RV s
K3 7 \ w| | w ’ .

. 2 ) 2
o= Cler < si + |2| ‘—|-| Vw|z| 2] = si+ |27 + \/@|z| (A14)
w|z w
O
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In (A.1)), it is sometimes convenient to reorder the terms and rename the constants to write f as

2n C+

F(m) = v +m w2 4 ;Z

1
Al
NZeryl (A-15)

where all the constants C’,j and C; are positive, and we choose the order such that
O<z1<To<...<Zop, 0<y1 <yo2<...<yp. (A.16)

Clearly, f is smooth on the 3n + 1 open intervals of R defined by
I—" = (_007_yn)7 I—k = (_yk+1a _yk) (k = 17' -, = 1)7 IO = (_y17x1)7

I = (g, 2p41) (k=1,...,2n—1), I, := (z2p, +0).

Next, we introduce the multiset C of critical points of f (as a function of m), using the conventions
that a nondegenerate critical point is counted once and a degenerated critical point twice. First we
will prove the following elementary lemma about the structure of C (see Fig.[6] and [7)).

Lemma A.2. (Critical points) We have |C n I_,| = |C N I2,| = 1 and |C n I;| € {0,2} for k =
—n+1,...,2n— 1.

Proof. We omit the dependence of f on w for now. By (A.15)) we have

) 1S O & 20
P =1 3 O L - 32 S
1=

m— ) _1(m+yl)2 —xk l 1 m+yl

We see that f” is decreasing on all the intervals I, for k = —n + 1,...,2n — 1. Thus there is at
most one point m € Iy such that f”(m) = 0. We conclude that f has at most two critical points on
I;.. By the boundary conditions of f’ on 01y, we get |C n Ii| € {0,2} for k = —n +1,...,2n — 1.
For m < —y,, we have f”(m) < 0, while for m > z,, we have f”(m) > 0. By the boundary
conditions of f’ on dI_, and dIs,, we see that f’ decreases from 1 to —oo when m increases
from —oo to —y,, while f’ increases from —oo to 1 when m increases from zs, to +o0. Hence
we conclude that each of the intervals (—oo, —y,,) and (2., +00) contains a unique critical point in
it,i.e. |CnI_p|=1[Cn Iz, =1 O

From this lemma, we deduce that |C| = 2p is even. We denote by 23, the critical point in I_,,, z;
the critical point in Is,, and 22 = ... = 29,1 the 2p — 2 critical points in I_,,41 U ... U Is,_y. For
k =1,...,2p, we define the critical values hy := f(zx). The next lemma is crucial in establishing
the basic properties of pi. (see e.g. Fig.[6]).

Lemma A.3. (Orderings of the critical values) The critical values are ordered as hy = hy =
> hop. Furthermore, there is an absolute constant Cy > 0 independent of T such that hy €

[700(771|w|71/2 + |z]) — Vw, C’O(T’l\wrl/z +1z]) —Vw] fork=1,...,2p

Proof. Notice for the equation (2.14)), if we multiply both sides with the product of all denominators
in f, we get a polynomial equation P,(m) = 0 with P, being a polynomial of degree 3n + 1. An
immediate consequence is that for any fixed w > 0 and E € R, f(yv/w,m) = E can have at most
3n + 1 roots in m. This fact is useful in the proof of this lemma and Lemma

For i = —n,...,2n, define the subset J;(w) := {m € I; : 0,, f(+/w,m) > 0}. From Lemma[A.2]
we deduce that if i = —n +1,...,2n — 1, then J; # ¢J if and only if I; contains two distinct critical
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points of f, in which case J; is an interval. Moreover, we have J_, = (-0, z9p,) and Jo, = (21, +0).
Next, we observe that for any —n < i < j < 2n, we have f(J;) n f(J;) = &. Otherwise if there
were E € f(J;) n f(J;), we would have |{z : f(z) = E}| > 3n + 1. We hence conclude that the sets
f(Js), —n < i < 2n can be strictly ordered. The claim hq > hg > ... = hg, is now reformulated as

f(Ji) < f(J;) whenever ¢ < j and J;, J; # . (A.17)
To prove (A.17)), we use a continuity argument. Let ¢ € (0, 1] and introduce

2n n
t < CF
ft(m)zf\/w+m+w71/2+N E N E

=1 T Tk

It is easy to check (A.17) holds for small enough ¢ > 0. We claim that

m+yl

Ji# @B =J# @ forall te(01] (A.18)

This is trivial for ¢ = —n,2n. Recall that for —n 4+ 1 < i < 2n — 1, J! # & is equivalent to I;
containing two dlstlnct critical points. Moreover, 0; mft( ) <0in I,nﬂ U...uUls,_1, from which
we deduce that the number of distinct critical points in each I;, i = —n + 1, ...,2n — 1, does not
decreases as t decreases. This proves (A.18)).

Next, suppose that there exist ¢ < j such that J;,J; # & and f(J;) > f(J;). From , we
deduce that J, Jt # & for all t € (0,1]. By a simple continuity argument, we get that f*(Jf) >
fH(J}) for all t e (O 1]. However, this is impossible for small enough ¢ as explained before (A.18].
Thls concludes the proof of (A.17] m

To prove the second statement of Lemma H we only need to show that hy < Co(7~w| ™1/ +
|2]) — v/w and hay, = —Co (77 Hw| ™2 + |2|) — y/w for some absolute constant Cy. We only give the
proof for hy; the proof for hy, is similar. At z;, we have
f(z1) + Vw < (21 + yn) 1+i§ Cilj-l—iii +w M =2(z +y,) + w2

! = " N b1 (21 — {Ek)2 N =1 (Zl + yl)2 " 7

where we use

0=f(=1 _1——2 P NZ . (A.19)

— ) (21 +w)°
Now we would like to estimate z1 + yy,- Agam using (A.19)), we have that

2n

NZ

Then by (A.5) we get

2n n
1 L1 _ T+ |22 + Vw|z|
Z1 — Tap < NZC’“ +NZCl <\/5 " .
k=1 =1
Using the above estimates and (A.2)-(A.4), we obtain that

—1 2 2
f(Zl) <9 (\/57 + |Z| + \/E|Z| + s1 + |Z| + 2|Z|> +’U)_1/2 _ \/Eg CQ(T_1|’U)|_1/2 + |Z|) _ \/@

w Vw

for some constant Cy > 0 that does not depend on 7. O
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f(w]/2’ m)

Figure 6: The graphs of f(y/w,m) for the example from Figure ie. py = 0.55\/2/7 + 0.554\/2/7.

We take |z| = 1.5, and w = 10 and 0.01 in the upper and lower graphs, respectively. In the lower
graph, we only plot the five branches near m = 0. The remaining two branches are far away.

Proof of Lemma[2.3 Let J(w) := Ufﬁ_n Ji(w). Given w > 0 such that 0 € f(J(w)), then the set
{meR: f(y/w,m) = 0} has 3n + 1 points. Since f(1/w,m) = 0 has at most 3n + 1 solutions in
m, we deduce that m.(w) is real and hence m;.(w) is also real. Since m;, is the Stieltjes transform
of p1., we conclude that w ¢ supp pi.. On the other hand, suppose w > 0 and 0 ¢ f (J(w)). Then
the set of preimages {m € R : f(y/w,m) = 0} = {m € R: P,(m) = 0} has 3n — 1 points. Since
P, (m) is a degree 3n + 1 polynomial with real coefficients, we conclude that P, has a unique root
with positive imaginary part. By the uniqueness of the solution of P, in C; (Lemma and
the continuity of the roots of P, i, in 7, we conclude that Imm.(w) > 0 and Imm,.(w) > 0 by

taking n \ 0, i.e. w € supp p1.. In sum, we get

supp p1c = {w > 0:0¢ f (J(w))}. (A.20)

From Lemma we see that there exists an absolute constant C; > 0 such that if w > Cy771,
then hy(w) < Co(r'w|™2 + |2|) — yw < 0. Hence fix w = C17~", we have 0 € f(Jo,(w)) and
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T m)
<

f(w]/2’ m)

Figure 7: The graphs of f(y/w, m) for the example from Figure ie. py = 0.55\/2/7 + 0.554\/2/7.
We take |z| = 0.5, and w = 6 and 0.01 in the upper and lower graphs, respectively. In the lower
graph, we only plot the five branches near m = 0. The remaining two branches are far away.

w ¢ supp p1. (see the upper graphs in Fig.@ and m) This shows that p;. is compactly supported in
[0, C1771]. Now we decrease w so that w < s1 + |2|? + 1, then using (A.2)),

s1+ 2P+ 1—w
Jw

By continuity, there must be some 0 < w < C7~! such that 0 ¢ f (J(w)). Thus supp pi. # . By
(A.20)), it is not hard to see that supp pi. is a disjoint union of (countably many) closed intervals,

Supp p1e = U[ezk, e2r-1], (A.21)
k

> 0.

hi(w) > 21 + w2 — w >

where C177! > e; = ey > .... Furthermore, for e; to be a boundary point, we must have that 0 is
a critical value of f(,/e;,m), i.e. there is a unique critical point m = m.(e;) such that

f(Veime(ei)) = 0, Omf(Vei,me(ei)) = 0. (A.22)
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Notice the two equations in are equivalent to two polynomial equations in (y/w,m) with
order 3n + 1 and 6n, respectively. By Bézout’s theorem, there are at most finitely many solutions
o (A.22). Hence there are finitely many e;’s, call them e; > ey > ... > esr, where L = L(n) € N.
To prove the statement about ey, we use Lemma [A-4] below. This concludes Lemma 2.3 O

Lemma A.4. If 1 +7 < [z|2 < 1+ 77, there is a constant €(7) > 0 so that ear, = €(7). If
|2 <1 =7, ear, = 0 and pre(z) ~ 272 when z \, 0.

Proof. By this lemma, the behavior of the leftmost edge ey, changes essentially when z crosses the
unit circle. From the following proof, we see that the singularity happens at |z|2 = N -1 S lisi.
Thus the fact that the singular circle has radius 1 comes from our normalization ([2.5) for 7.

We first study equation ({2 when w \, 0 in the case 1 +7 < [2[> < 1+ 771 We calculate the
derivative of f as

1 < m? —|z|2
Om ym) =1+ lisi
f(w,m) ; % Jwm® — (51 + |2[2)m2 — yw|zPm + |2
_@il Vo (m? = |22)? + 2s,|2)2m
N S [Vwmd — (s + |22)m? = ywlzPm + 2|4

It is easy to see that Jy # & for all w > 0, since 0,, f(y/w,0) = 1 — |2|72 > 0 (see the lower graph
in Fig.@. Call the end points of Jy as zi(w) > 0 and zg41(w) < 0. By the definition of Iy, we have
2 < by < |z|. Suppose z, = o(|z]) as w — 0, then gives that 0 = 1 — [2|72 + o(1), which
gives a contradiction. Thus z; ~ |z] as w — 0. Now using 0,, f(1v/w, z;) = 0, we can estimate that

(A.23)

"Wwzg = (si + 2P — Vaolel2ex + [#I4T

2
L Vw (22 — [22)7 + 2s4] 2] 2
F(Vw, 2 y Z
TN -
C 2si|z]22}
21” oF >c—w (A.24)

for some C > 0 independent of w, where in the second step we use that
Vwzy — (si + 21223 — Vwl|z|?z, + |2[* > 0, and vwz] — (s; + |2|*) 22 — Vwl|z[*z < 0

which come from that 0 < z; < b; for all 1 <i < n. By (A.24] 7 we can find € small enough such that
Ff(Ww, z) > 0 for all 0 < w < e. In this case O € f(Jo(w)) and hence w ¢ supp pi.. In fact, it is not
hard to see that there is a solution mg = /w|z|?/(|z]? — 1) + o(y/w) € Iy such that f(y/w,mg) = 0
and Oy, f (v/w, mg) > 0. This proves the first statement of Lemma

Now we study equation when |z|? < 1 — 7 and w — 0. For later purpose, we allow w to
be complex and prove a more general result than what we need for this lemma. Let w = 0 in the

equation (2.14)), we get m = 0 or

m? — |z|?
1;8; A.25
Z S (i |2 B)mE + [ (4.25)
We define
x — |2|? |22 < -z + |2]? — s
l; = — l; . A.26
9(@ Z 15 (s; +|22)z + |2|* N Z f—(si + |2]2)x + |2]* ( )

i=1
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It is easy to see that g is smooth and decreasing on the intervals defined through

|2[* |2* |2* : |2*
Ky:=|—-0,——— K; = =2,... K = ———,0].
1 ( 9 51 I |Z|2 9 ) P I |Z|2’ s; n |Z|2 (7/ 5 ;n)v n+1 S + ‘Z|27

By the boundary values of g on these intervals, we see that g(x) has exactly one zero on intervals
K; for i =1,...,n, and has no zero on K,,11. Since g(z) = 0 is equivalent to a polynomial equation
of order n, it has at most n solutions. We conclude that all of its solutions are real. Obviously the
zeros on the intervals K; are positive for ¢ = 2,...,n. Now we study the zero on K;. Observe that
g(0) =1—1]2]72 < 0 (as |2]?> < 1 —7), the zero on K is negative, call it —t. Moreover, we can verify
that g(—771) > 0 by , sot < 7L If |2|? = 7/2, then by the concavity of g on the K7, we get

9(0) _ [ofA—[zf) _ 7
> > > .
t 7(0) . 1 (A.27)

In the case |z|? < 7/2, we have |z|> — s, < —7/2 and g(]z|? — s,) < 0 by (A.26]). Hence we have

—t < |2 — 5, < —7/2. (A.28)

Combining (A.27) and (A.28)), we get that er* <t < 77! for some constant ¢ > 0.
Now we return to the self-consistent equation (2.14). The previous discussions show that

f(0,ivt) =0, t = crt

It is easy to see that there exists constants c1, 7’ > 0 such that
|—(si + [2[*)m? + [2]* + Vw (m® — |2*m)| = ¢; for [m — iVt < 7'. (A.29)
First we consider the case |z| > € > 0. Expanding f(y/w, m) around (0,i+/t) and using ,
0 = 0w f(0,iVE)Vw + 0 f(0,iVE)(m — ivt) + o(v/w) + o(m — iV/1). (A.30)

y (A.23),
m? o (m? — \z|2)2
Oywf(Ww,m)=—1——» lis; , (A.31)
v ) N z; [—(si + |22)m? + [2]* + v (m? — |2]2m)]*
and (A.29), we get laﬁf(O,i\/f)’ < C and
2s;|2]2

O f(0,iV/t) = iy >c A.32
0 = e D > .

for some ¢ > 0. Using (A.32)), we get from (A.30]) that
m—ivt = 0(Ww), if 2] >« (A.33)

In particular, this shows that |m| ~ Imm ~ 1 as w — 0.
Then assume that |z|? < ¢, for sufficiently small . From g(—t) = 0 and (A.26)), we get that

R t+ 2% — s
— =0. A.34
N ; + [2]2)t + |z|* ( )
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- Expanding

From the leading order term, we get t=1 = t5* + O(|2[?), where to := (N71 Y, 1;/s:)
(A.34) to the first order term of |z|2, we get
0 2 4
t=1to+ (NZZ:? ) 1212 + O(|2|). (A.35)
(A.36)

Now we write equation (2.14) as
F(y/w,m) =0,
)/m. Expanding F around (0,iv/t) and using (A.29)), we get

where F(y/w,m) := f(y/w,m
0 =0,/ F(0,iVt)Vw + 0 F(0,it)(m — ivVE) + 8,0 s F(0,iVE) (m — ivt)w
iVt m —ivi[yw).  (A.37)

o(w, |m —

1., , 1, ,
+ iﬁﬁF(O, iVt)w + §amF(0, iVt)(m — iv't)
We can calculate that (the partial derivatives of F' can be obtained using ) and -

PV, ivi) - —2":/”” + 0|32, Vi),
0
(il2]* + 2v/wto) | : (A.39)

(A.38)

0w F(Vw,ivt) =
j=1
From (A.33) and (A.39), we get that
PO, i) = —2;',,'72'2 Fo(lzP), 9 mF(0,ivF) = "va‘/% 3 i% +of|2?),
0 j=1°d
2 O, 0. = 5 3+ O, K10, = Of1:)

0m0 s F(0,iVt) =
Plugging the above results into (A.37)), we get that

+ ywt
0 [W b <|z|2>] V4 [_2 a
53 t
j=1%J 0
o(w, |m — ivVt|?, |m — ivt|vw). (A.40)
Observing that |i|z|2y/To + v/wto| ~ |2[* + +/w], we get
n
— it l Z % O(jw|*/? + |z|2)1 Vw, if|z] <e (A.41)
=17
Combing (A.33) and (A.41), we get that if [2]> < 1 — 7, m = i/t + O(y/w) when w — 0. In
icular, this shows that |m| ~ Imm ~ 1 when w — 0. Finally we conclude the proof of Lemma
= me(w)w 2 — 1. O

part
by using that mq.(w)
To prove Proposmon we need the following lemma, which is a consequence of the edge

regularity conditions and -
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1/2

Lemma A.5. Suppose e, # 0 is a regular edge. Then |myc.(w) — myc(er)| ~ |w — ex]|Y? as w — ey

and ming .y le; — ex| = & for some constant § > 0.

Proof. Denote my, := m.(ex) and let w — ej. Notice by Lemma if e, # 0, we have
e<er<Crh (A.42)

Then we expand f around (/ey, my) to get that
1
0 =0, f (ver, mi) (Vo = v/er) + 505, f(Vew, mi) (me(w) — my)®
+ O [[Ww = er” + [me(w) — mg]* + [Vw — y/ex|[me(w) —my|], (A.43)
where by ,

2 n 2 2)?
mj (mk - |Z| )
omisy 7 A4
Oyl (Vew, mi) = N ; 5 ex(my — ai)?(my — b))% (mg + ¢;)? (A
and by »
, B; C;
52 : lisi 4 . gt - ) Ad5
md (Ver, mi) Z 1S [ my —a;)®  (mg—b;)3  (myg +¢;)3 | )

Applying (A.2))-(A.5), (A.42) and the conditions (2.18)-(2.19)) to (A.44) and (A.45]), we get that
1< |0y f(Ver,mp)| < C1, e < |02, f(Ver,mp)| < Ca (A.46)

for some Cy,Cy > 0. Slmllarly, if jw —ex] < 7" and |m.(w) —mg| < 7’ for some sufficiently small 77/,
using the condition we can get that

HMX{W%fQﬂEﬂ%@wM,Piaﬂv@im w

(Vo me(w)} < Cs. (A.47)

Plug them into equation (A.43)), for |w — eg| < 7" and |m.(w) — mg| < 7/, we get |m.(w) — my| ~

Vo — y/er2 and
— Oy f (Ve mi) (Vw — yer) + O(|Vw — er|?) = %@znf(\/a, mi) (me(w) —mg)®. (A.48)
By 7 we immediately get that |v/w — \/ex| ~ |w —ex| and |[mc(w) —my| ~ |m15( ) —mac(er)l,

Wthh proves the first part of the lemma. By m, if w is real and |w — eg| < 7/, we have that

_ _ —Qé’ﬁf(\/@,mk) —~ 12 1/2 12
o) = = | LRI oy - )| e v ()

Thus on a sufficiently small interval U = [e;, — d, e + ], m.(w) has positive imaginary part for w
on one side of e; and m.(w) is real for w on the other side. Hence U does not contain another edge.
This shows that min;.x |e; — ex| = 0. O

Proof of Proposition[2.1] The properties of p1. have been proved in Lemmas and and
included in the Definition Since supp p2. = supp pic by the discussions after Lemma we
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immediately get property (i) for pa.. The conclusion ps. being a probability measure is due to the
definition of msy in and the fact that mo. is the almost sure limit of ms.

The properties (i) and (iv) for pc can be easily obtained by plugging m. into (2.9). To prove
the property (iii) for ps., we need to know the behavior of Im mg.(w) when w — e; along the real
line. By , it suffices to prove that if |z — e;| < 7’ for some small enough 7’ > 0, then

|[—w(1 4+ mue)® + 2] = [m2 — |2]*| > €

for some constant € > 0. Suppose that [m?(w) — |z|?| = o(1). Plugging m. into oy, f(y/w, m.) in

(A.23)), and using condition (2.18]) and Lemma we get that
Om fF(Vw, me(w)) = =1 + O(Im? — |2?)). (A.50)
Again using condition (2.18) and Lemma we can bound @ 50 f (v/w, me(w)) and 62, f (v/w, me(w))

for w near e;. Thus we shall have that

0= 0mf (&5, me(e;)) = O f(Vw,me(w))+O(Jw—e;|"?) = =1+0(ImZ— 2| +|w—e;['/?). (A.51)
This gives a contradiction. Thus we must have a lower bound for |m2 — |z|?. O

Remark: Here we add a small remark on Example Given the assumptions in Example it
is easy to see that f can only take critical values on intervals I_,,, Iy, I, and I, since max{|a; —
ai—1|, |bi —bi—1], |ci — ¢i—1|} — 0 in this case. Thus the number of connected components of supp p1.
is independent of n, and all the edges and the bulk components are regular as in Example 277]

A.2 Proof of Lemmas and
We first prove Lemma We consider the five cases separately.

Case 1: For w = E +ine DY (¢, 7/, N), we have
p1c(T) J pre(z, 2)n
c(w)=| ——=—=dz, 1 c(w) = | —F5——dr. A.52
) = || S e et = || SR o

By the regularity condition of Definition (ii), we get immediately Immq. ~ 1. Since Imm;. <
|1 4+ m1.| < C by Proposition we get |1 + mq.| ~ 1. Notice wm1. can be expressed as

wpie(x, 2 xpe(x, 2
wmic(w) = J de = —f p1c(z, z)dx +f Mdm.
R r —Ww R R T —W
By the same argument as above and using the fact that « = 7/ for « € [ear, + 7/, €251 — '], we get

Im(wms.) = ImJ- Mdm ~ 1.
—w

Since the imaginary parts of —w and |2|?/(1 4+ my.) are both negative, we get

ks

Im | —w(1 )+ ——m—
m[ w( +m1)+1+mlc

] < —Im(wmy,.). (A.53)

Using the bounds for m. and Imm. proved above, it is easy to see

i

TR =0(1). (A.54)

‘—w(l + mlc) +
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Equations (A.53) and (A.54) together give that Imma. ~ 1 and |mg.| ~ 1. Similarly, we can also
prove that

-1

El
wmaoe = | —(1 +my) + ——mMm8M8M— eC
2 l( 1e) w(1l + mi.) +

and Im(wmg.) ~ 1. Now ([3.29) follows from

|2I°

——— | = s;Im(wms.).
1—|—m10> ! ( 20)

Im (w + s;wmao. —

Case 2: For w = E +in € D°(¢, 7/, N), using and dist(E,supp p1.2.) = 7/, we immediately
get Immy 2. ~ 1. Now we prove the other estimates.

We first prove (3.29). If n ~ 1, the proof is exactly the same as in Case 1. Hence we assume
n < ¢, where ¢ = ¢(r,7’) > 0 is sufficiently small. We separate it into two cases.

(i) Suppose E ~ 1. We shall prove that

min{|me(w) = a;(w)|, [me(w) = bi(w)], [me(w) + ci(w)[} = €, (A.55)
7
for some constant €. This leads immediately to (3.29) since

1
w|1l+s; + M 5
—w(1+my.)? + |7

For p; = VEmM? — (s; + |2|>)m? — VE|z|?>m + |z|*, it is not hard to prove that its roots a;(E), b;(E)
and —c¢;(F) decrease as E increase. Since E ¢ supp p1., we have mi.(F) € R and

dmic(E) [ pie(w, 2)
dE J]R (x— E)2d

_ | Vuwlme = ai)(me — b)) (me + i) |

—m3 + |z

(A.56)

) (14 me) — |2

x> 0.

So m1.(E) (and hence m.(F)) increases as E increases. If ey, is the smallest edge that is bigger than
E, then for a;(F) bigger than m.(E), we have that

a;(E) —me(E) = a;(er) — me(ex) + e(7') = e(7'), (A.57)

by using |E — eg| = 7’ (see (2.42))). On the other hand, If e;_; is the largest edge value that is
smaller than E, then for a;(FE) smaller than m.(E), we have that

me(E) = ai(E) = me(ex—1) — ai(ex—1) + e(1') = (7). (A.58)
Applying the same arguments to b;(F) and —¢;(E), we get

min{me(E) — ai(B)], me(E) — bi(B)], me(E) + ci(B)]} > e (A.59)

for E € (egp—1,eax) for some k. Now we are only left with the case E < esy, the rightmost edge,
when |z]2 > 1+ 7. In this case, we have seen that 0 < m.(E) < b;(E) for all i in the proof of Lemma
Thus we can use to get lower bounds for |m.(E) — a;(E)| and |m.(E) — b;(E)|. Since
¢;(E) ~ 1 in this case (e.g. by and using F, |z| ~ 1), |[m.(E) + ¢;(E)| > € is trivial. Again we
get the estimate (A.59)).
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Then we consider w = E + in with n < ¢/. First it is easy to check that a;(E + in), b;(E + in)
and ¢;(F + in) are continuous in 7. On the other hand for m.(E + in), we have

dumic(w) = J pel®2) g (A.60)
R

(z —w)?

by the condition dist(F,supp p1c) = 7. Thus we immediately get |m.(E + in) — m.(E)| = O(n).
Hence as long as ¢’ is small enough, is true, which further gives .

(i) Suppose w = E + in — 0, in which case we must have |2|> > 1+ 7 and E < eyr. Using
|ma,2c(w)] ~ 1 by Proposition we can calculate directly that

’w (1 + simae) (1 +mye) — |z|2‘ = ||z]> + O(w)| = c.

This concludes the proof of (3.29).
Then we show that |14+ my.| ~ 1 for w € D° and n < ¢/. We again divide it into two cases. First
suppose |w| ~ 1. If |m.| can be arbitrarily small, then by (3.29) we get that

F(Ww,me) = —v/w+ O(m,) # 0,

which gives a contradiction. Then suppose w = E +in — 0 when |2|> > 1+ 7 and E < ear,. We
have seen in the proof of Lemma [A-4] that

|22
2> =1

_ =P
a1

me(E) =VE

+0(VE) =1+ mu(E) +o(1).

Then using (A.60), we get
|22

|2 =1

11+ mi(E +in)| = ‘ +0o(1) +O(n)| ~ 1.

Finally we have |mg.| ~ 1 for w € D° and n < ¢ by Proposition

Case 3: For regular edge ej # 0, we always have ej > € for some € > 0 by Lemma [A74 Thus we
always have |w| ~ 1 for w = E + in € D{(¢, 7', N) as long as 7/ is sufficiently small. If  ~ 1, then
VE+ 1 ~n/\/k+n~1and the proof is exactly the same as in Case 1. Now we pick 7/ small and
consider the case n < 7’. By the regularity assumption and Lemma we have

uin {lme(w) — ai(w)], [me(w) = bi(w)], [me(w) + ei(w)]} > /2 (A.61)
uniformly in w € {w € D§(¢,7',N) : k(w) + n(w) < 27'}, provided 7’ is sufficiently small. The
above bound implies (3.29). If m.(w) — 0, then using we get from f(y/w,m.) = 0 that
—y/w + O(m,) = 0, which gives a contradiction. Thus we must have |1 + my.| ~ |m.| ~ 1. To show
|mac| ~ 1, we can use Proposition

We still need to prove the estimates for Immy o, when n < 7/. Recall the expansion
around e, and equation . Notice both @ s f(y/ex, my) and 02, f(y/€x, my) are real (as e), and
my, are real). Suppose k is odd, then Imm.(E) = 0 for E \ e;, (i.e. E ¢ suppp.) and Imm.(E) >0
for E /e (i.e. E € suppp.). Thus gives

me(w) —my = Cr(w)(w — ex)Y? + Dy (w),

69



with C, > 0, Cx ~ 1, |Di| = O(Jw — ex|) and Im Dy, ~ 7. Then for E > e;, we have
n
VE+D

Imm.(E + in) ~ Im(k + in)"/2 + O(n) ~

and for E < ey, we have
Imm(E + in) ~ Im(—x + in)"? + O(n) ~ VK + 1.
If k is even, the proof is the same except that in this case
me(w) —my = Cr(w)(er, — w)Y? + Dy (w).
For mq.(w) and ma.(w), we get the conclusion by noticing w ~ e; and

me
Vw(=mZ + |z]?)
Case 4: Again if n ~ 1, the proof is the same as in Case 1. If |w| < 27’ for small enough 7/, in the

Immy. =Im (w_l/ZmC) ~ Imme(w), Imms. =Im ~ Imme(w).

proof of Lemma |A.4] we have seen that m,. = iy/t + O(y/w), which gives the first equation in (3.26}).
Plugging it into (2.9), we get the second equation in (3.26)). Taking the imaginary part, we obtain

(3.27). Finally using (3.26)), we get (3.29)) easily.

Case 5: For w = E + in e D (¢, N), the bounds for m; 2 and Imm; 5 in (3.28) follows from (A.52)
directly.

Finally we prove Lemma The estimates (3.31]) and (3.32)) follow immediately from (2.32)),
(3.29) and (3.30]). For (3.33), we can write

U 0 Uto S
I,y = <v7 ( 0o U ) I, ( 0 Ut >V> = () yu = ;@mﬂf[iwm%

u = 0 UT v, U] = u; .

To control ImIlyy, it is enough to bound {uf;, w[i]cu[i]> for each 1.
We first consider Cases 1-4 of Lemma, By the definition of ;). in (2.32), we get

where

" ’ ’ 1 Mic = |7,U| ! 1 + MmMic
= 70 (]. + |d| Remg )Imw + |d| (Re w)Immg + 7‘ | Imm1
| | 7 c (2 c |1 1 |2 c i

where in the second step we use and |1 + mie| ~ |w|~Y/2. In the first three cases of Lemma
we have |Jw| ~ 1 and Imw = O(Immy.), which give that Imm;; . < CIm(mq. + ma.). In case
4 of Lemmaﬁ we use |Imw| + [Rew| + |1 + my.|~2 = O(Jw|) and Imm 9. ~ |w|~"/? to get that
Im 7. < Clm(mye + mo.). Similarly we have the bound Im7; . < CIm(my. + ma.). Finally we
can estimate the following term using similar methods,

_ _ _ _ 1
Im (Uiuiﬂ'{i,c + Uiugﬂ'ig’(z) = 2Re (G;u;2) Im {w 1/2 [w(l + |di[Pmae) (1 + myc) — |z|2] }
< CRe (@u;2) Im(mye + mac) < C (Ju? + |ug)?) Im(mie + mac).

Combining the above estimates we get Im <ui T i]cu[i]> < C\u[iﬂ?lm(mlc + ma.), which implies
(3-33). For the Case 5 of Lemma [3.7, we use (3.28) and (3.32) to get

Im upy, Trjeup ) < luplImpel < ClupPIm(mae + moc).
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A.3 Proof of Lemma and Lemma

We first prove Lemma [3.10f During the proof, we also use the following equivalent definition of
the stability expressed in terms of m = \/w(l + mq), v = y/w(l + uy) and f(y/w, m). Suppose
the assumptions in Definition holds. Let w € D and suppose that for all w’ € L(w) we have
|F(v/w, w)] < w]26(w). Then

- Clwl|'/?6
S VEAn+S

Case 1: We take over the notations in Definition and abbreviate R := f(y/w,u), so that |R| <
|w|/25. Then we write the equation f(yv/w,u) — f(y/w,m.) = R as

(A.62)

alu—me)? + Blu—m.) = R, (A.63)

where using (A.1), a and 8 can be expressed as

1 n
iy e (o mimar * e BT (464

and

=1-= iSi
h N lel 5 |:(1’)”LC — ai)2 t (mc — bi)2 + (mc + Ci)z

] = Onf (Y, my). (A.65)

We shall prove that

lal + [dual < C, [B] ~ 1, (A.66)
for w € D% and u satisfying |u—m.| < (log N)~Y/3. If [u—m,| < (log N)~/3

By (520)

, we also have Imu ~ 1.
min{|m, — a;|, |me — bil, [me + cil} > ¢ (A.67)
for some € > 0. Replacing the m, in (3.29) with u, we also get that

minflu - a;|,Ju b, [u+ ]} > ¢ (A.68)

for some ¢ > 0. Using and (A.68), we get immediately that |a| + [, + |8] < C. What
remains is the proof of the lower bound |8 = ¢. If Imw > € for some constant ¢ > 0, the lower
bound follows from Lemma [A.6] below. If Im w < € for a sufficiently small €, the lower bound follows
from Lemma below. Now given the bound , it is easy to prove with a fixed point
argument. This proves the stability of

Lemma A.6. Suppose that Imw ~ 1 and |m.| ~ Imm, ~ 1. Then |0 f(v/w,m.)| = ¢ for some
constant ¢ > 0.

Proof. Using (2.13)), m. = v/w(1 + m1.) and the conditions Imw ~ 1, Imm, ~ 1, we can get that

' a\/ﬁf(\/aa mc)
Omf (Vw, me)

< C = |0mf(WVw,me)| < C|omf(vVw,me)], (A.69)

_l&mc

ovw
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for some constant C' > 0. Now we assume that |0, f(v/w,m.)| can be arbitrarily small. Then

|0 i f(v/w, me)| can also be arbitrarily small. Denote a := Oy, f(v/w, m.) and b := 0 s f(v/w, mc).
Using (A.23]) and (A.31]), we get that

\/> Mme l Vw (m? — |z|2)2 + 2s;|2*me (A70)
AT iS5 .
me N S (s + 2)m2 + 2]t + Vo (md - |2Pme)]?

and )
n 2 _ 2
_ (me — 12P) . (A.71)
=1 (si + [2)mZ + |2]* + Vw (md — [2[*m)]
Using (A.70) and (A.71), we can get that
.= |2|2)|2]2 1 2 _ J)(m2 2

where we use the equation f(y/w,m.) = 0 in the derivation. By our assumption, the left-hand
side of can be arbitrarily small. For the right-hand side of (A.72), we have |m.| ~ 1 and
|[vwme — |z|*| ~ 1 (because Im (y/wm,.) = Im (w + wmy.) ~ 1). Thus if |m. — i|z|| = ¢ for some
constant ¢’ > 0, we have |m? + |z|?| ~ 1, and

(Ve = [P, 1

Me 2

(mg = |2[*) (mea — Vwb)| ~

which gives a contradiction. Thus we must have a lower bound |0, f (v/w, m)| = cif |m —i|z|| = ¢
We still need to deal with the case where |m. — i|z|| < ¢ for some sufficiently small ¢. Notice
|z| ~ 1 in this case. Then we have

I (wile]) = -1+ P N lisi 421" (A.73)

Ovw N3 i+ 222 + |2 = 2iv/wlPT

Denote L; := (s; + |2|?)|z|> + |2|* — 2iv/w|z]3. Since iy/w = i(x + iy) = iz — y with 2,y > 0 and
2,y ~ 1, we have ReL; > 0, ImL; < 0 and |Re L;|,|Im L;| ~ 1. Furthermore, Im L? < 0 and
|Im L?| ~ 1. Thus each fraction 4|z|*/L? in has positive imaginary part and all the imaginary
have order 1. Therefore

of ‘ of .
)| > | S (| ~ 1
Then by (A.69), we get that |0, f(v/w,i|z])| = ¢ for some ¢ > 0. Using (3.29), it is easy to see that
Omf (Vw,me) = Om f(Vw, il2]) + O(Ime — ilz]]).

Thus in the case |m. — i|z|| — 0, we still can find ¢ > 0 such that |0, f(v/w, me)| = c. O

Lemma A.7. Suppose that w € Dz and Imw < e. Then for sufficiently small ¢ > 0, we have
|Om f (Vw,me)| ~ 1.

Proof. By (3.22) and (3-29), if |w| ~ 1 and Imm ~ 1, we have 0 z50mf(w,m:) = O(1) and
0%, f(w,m.) = O(1). Denote w = E + in. Taking the imaginary part of the following equation

1 ¢ A; B, C;
_ _ 71/2 . e, 03 7 (3
f(WE,m.(E)) vVE+m.+ E tw i=21 l;si <mc + + ) , (A.74)

— a; me — b; Me + C;
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and noticing that A;, B;, C; and a;, b;, ¢; are all positive real numbers for real E, we get

, B, C.
I;s; Ai : : =1. A.75
NZ Si ( PP PR e— mc+ci|2> (A.75)

Using the above equation, we get

Omf(VE, mc(E) 1_2152[ A; N B, . c, ]

—a;)2 (me—10;)2  (me+¢)?
Zl s, A; _ A; n B; B B; n Cj _ G
! —a;il? (me—a)?  |me—bi2  (me—5)2  |me+c2 (me+c)? |
(A.76)

We look at, for example, the term

A A A
Ime —ail> (me—a))?  |me —agf?

(1 - 6722’01‘)7

where m. — a; := |m. — a;|e??. Using Imm,. ~ 1, it is easy to see that Re(1 — e~2%) > ¢/ for some
constant ¢’ > 0. Applying the same estimates to the B, C terms in (A.76]), we get

onf (VE, m(B))| = Re [0 f(VE,mo(E))| > c (A.77)

for some constant ¢ > 0.
Now for w = E + in with n < ¢, we can expand 0, f (vw, m.(w)) around 8,, f(vVE, m.(E)),

Omf(Vw, me(w)) = Om f(E,mc(E)) + O(n),
where we use . Combing with (A.77)), we see that |0y, f (w, mc(w))| ~ 1 for small enough e. [

Case 2: We mimic the argument in the proof of Case 1. We see that it suffices to prove |a|+|d,a| < C
and |B| ~ 1 for a, 8 defined in (A.64) and (A.65) and |u — m.| < (log N)~/3. Using (3.29), it is
not hard to prove that |a| + [0,a| + |5] < C. What remains is the proof of the lower bound |8 > c.
For the case Imw ~ 1, it follows from Lemma If w — 0 in the case |z|> > 1 + 7, then
me(w) = O(y/w) — 0 by (3.23). Thus we can use (A.23) to get directly that

O f (Vw,me) = 1~ |27 + O(vw) > c.

Finally, we are left with the case £ = Rew ~ 1 and = Imw — 0. Using (2.13), m. = v/w(l+m1.),
|w| ~ 1 and dist(E, supp p1.) = 7/, we can get that

Iaﬁf(\/ﬁ, me)| ‘ om.
Om f(Vw, me) ENO

for some constant C' > 0. Thus it suffices to prove that ‘6\/@f(\/@, mc)| has a lower bound. Using
(A.31) and noticing that m.(E) € R, we get

: (2 = 121

2
N izt [ (it 2B)m2 + 2|t + VE (md = |2*me)]

<C

2

0 mf(WE, mc(E)) =

< -1
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Expanding 0, ; f (v/w, m.(w)) around é’ﬁf(\/E, mc(E)), using 1) and [m.(E+in)—m.(E)| ~ n,
we get for 7 small
0w f(Vw,me)| =1+ 0(n) =c.

Case 3: The case Imw > 7’ can be proved with the same method as in the proof of case 1. Hence
we only consider the case |w — ex| < 27’ in the following. Note that |w| ~ 1 in this case. Suppose

lw—ex| <27, |u—me| < (logN)~V/3. (A.78)

Then we claim that
laf ~1, B~ VE+7 (A.79)
for small enough 7. Using (A.78)), (3.29), (2.19) and Lemma we can get that

1 _
o = 50 f(Ver me(er)) + O(lw — er|'? + (log N)~/%) ~ 1.
To prove the estimate for 3, we use , (3:29) and Lemma[AF] to get

5 Lt %amf(\/ft?,mc(’w'))dwl _ f; amamf;\/\/g7mc(w))dwl+\£’[: afnf(\/a,mc(w/))dr’;c*j“/)dw,

w er, me(e w — ey|/? me(w)
| [ meten)) + Ot = x| dm
= 02 f(\/er, mi)(me(w) —me(er)) + O(lw — ex)). (A.80)

Thus we conclude for small enough 7 that

1Bl ~ fw = ex]'* ~ V& + 1.

With the estimate (A.79), we now proceed exactly as in the proof of [4, Lemma 4.5], by solving
the quadratic equation (A.63) for u — m, explicitly. We select the correct solution by a continuity
argument using that (A.62) holds by assumption at z +iN~'°. The second assumption of is
obtained by continuity from the estimate on |u — m.| at the neighboring point z +iN 19, We refer
to [4, Lemma 4.5] for the full details. This concludes the proof.

Case 4: The case when Imw > 7’ can be proved using the same method as in the proof of Case 1.
Now we are left with the case |w| < 27/ for some sufficiently small 7/. First we assume |z| = ¢ > 0
for some small ¢ > 0. Then mimicking the argument in the proof of Case 1, we see that it suffices
to prove |a| + |0ya] < C and |B] ~ 1 when |u — m.| < (log N)~/3. Using , it is not hard to
prove that |a| + [0,a] + |8 < C. The lower bound |3| = ¢ can be obtained easily from (A.32).

Then suppose |z|? < ¢, but |w|*?+|z|> = €. According to and using that |i|z|? + v/wto| ~
|w|'/? + |z|?, we can verify that

B = omf(Vw,me(w)) ~ [w]V2 +|z]* ~ 1.
It is also easy to verify that
O f(Vw,me(w)) = O(Jw|"? +|2%), 05, f(Vw,me(w)) = O(|w]"? + [2]?).

Hence if |u — m.| < (log N)~/2, we have

o = LT, me(w) + O (1 (Viw, me(w)(log N)~*) = Ou]2 + |2P).
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With a fixed point argument, we get (A.62)).

Case 5: Again we following the arguments in the proof of Case 1. However, instead of f(y/w, m), we
shall study Y (w,m;) in (3.35) directly. We take over the notations in Definition [3.9| and abbreviate
R := T (w,uy), so that |R| < . Then we write the equation Y(w,u1) — T(w,m1.) = R as

a(ur)(uy —mae)? + Blur —mi.) = R, (A.81)

where we use the same symbol as in (A.63]) for notational convenience. As in Case 1, we have
B = 0Om, T(w,mi.), and we can evaluate that |a| + |0y, | < C for w € Dy and u; satisfying
|ur — mie| « [mic]- Now to conclude (3.39), it suffices to prove |3| ~ 1 for w € Dy. In fact using

, we obtain that
ﬁzl-l—O(n_l) ~ 1,

for n = ¢~. This concludes the proof.

Proof of Lemma[2.3. The fact that pi. has compact support follows from Lemma 2.3} pi. being
integrable follows from Lemma Note that in proving Lemmas and we do not make
the regularity assumptions in Definition It remains to show that for fixed w € C; and |z| # 1,
there exists a unique ms.(w) € C satisfying equation . This follows from the n ~ 1 case in
the proof of Case 1 in this section. O

Remark: The estimate (3.29) has been used repeatedly during the proof of Lemma Here we re-
mark that it also gives the stability of the regularity conditions in Definition 2.4 under perturbations
of |z| and px. For example, we define the shifted empirical spectral density

1 NAM
Pt = N AM Z 5Ui+ta (A82)

i=1

and the associated m.(w,t) and function f(1/w, m,t). Given a regular edge ey, it satisfies that

f(\/a7mk7t:()) =0, amf(\/aymkat:()) =0.

where we denote my, := m.(ex). We have the Jacobian

J = det ( Oval — Omf

2 = aﬂf(\/aamk70)agnf(\/avmkao)
Oywlmf Ot ) (Vaw,m.t)= (/& mp,0)

By , we have |0 f(y/€x,mx,0)| = 1. Combining with (2.19), we get |J| > e. Using ,
we can verify that 0, f(y/ex, mx,0) = O(1) and 0;0p, f(\/ex, mk,0) = O(1). Thus if we regard ey,
and my, as functions of ¢, then dymy(t = 0) = O(1) and e (t = 0) = O(1) by the implicit function
theorem. Then it is easy to verify

O f(Vew(t),me(ex, 1)) = 05 f(ver, me(er)) + O(),
Ime(ex, t) — aier, )| = [me(ex) — aier)| + O(1),
and the similar estimates for |m. — b;| and |m. + ¢;|. Thus if Definition (i) holds for some psy,
then it holds for all px ; provided that ¢ is small enough.
Now given a regular bulk component [egy, ear—1] and E € [ea + 7/, ear,—1 — 7’']. Differentiating
the equation f(vE, m.(E,t),t) = 0 in t yields
_ atf(\/Ev mC(E7 t)7 t)
Om f(VE,me(E,t),t)

é’th(E, t) =

(0]



By (3.29), we find that 0, f(vE, m.(E),0) = O(1), while by (A.66), [0, f(VE, m(E),0)| = 5 ~ 1.
Thus 0ym.(E,0) = O(1). A simple extension of this argument shows that m.(E,t) = m.(E) + O(t)
and hence Imm.(FE,t) is bounded from below by some ¢ = ¢/(7,7"). Thus we conclude that if
Definition (ii) holds for some ps, then it holds for all py ; with ¢ in some fixed small interval
around zero. Obviously, the above arguments also work for the perturbation of |z|.

B Proof of Lemma (4.9

Our proof of (4.59) is an extension of [4, Lemma 4.9], [7, Lemma 7.3] and [I4, Theorem 4.7]. Here
we only prove the bound for |[Z]|. The proof for |[(Z)| is exactly the same. For i € Z;, we define
P; = Ep;) and Q; = 1 — P;. Recall that Z};) = Q;G ”1], we need to prove that

1 _ _
[Z] N T[4 (QlG[nl]) T[4 < |w| 1/2 (13(2),

||Mz

for w e D. For J < Z, we define w[[iJ]] by replacing m, 2 in |i with mEJg defined in 1) As in
1D we can prove that \mgl]Q —mqg] < \w|71/2 @2, which further gives that

H (QiGEil]) xl + o (|wr1/2 @3) - % Iz_vle ( e m) +0- (|wr1/2 @3) :

Thus if we abbreviate B; := |w|'/2Q; ( [’]G ! [Z]) it suffices to prove that B := N=! 3. B; < ®2.

We estimate B by bounding the p-th moment of its norm by ®2F for p = 2n with n € N, i.e.
E|B|P < ®2P. The lemma then follows from the Chebyshev’s inequality. Using | K K| = |K|? for
any square matrix K, we get that for p = 2n,

[Z2] =

an

1
N

Te(BB"" > |BBY|" = |B|*".
Thus it suffices to prove that
ETr(BBH)P/2 < 2P for p = 2n. (B.1)

This estimate can be proved with the same method in [I4, Appendix B], with the only complication
being that ;) is random and depends on i. In principle, this can be handle by using and
to put any indices j,k,... € Z; (that we wish to include) into the superscripts of ;). This
leads to a minor modification of the proof in [14, Appendix B]. Here we describe the basic ideas of
the proof, without writing down all the details.

The proof is based on a decomposition of the space of random variables using P; and Q. It is
evident that P; and @, are projections, P; + Qs = 1 and all of these projections commute with each
other. For a set J 7, we denote P; :=[[,.; Ps and Q; := [[,.; Qs. Let p = 2n and introduce

the shorthand notation Bk := By, for s < p odd and Bks = B;;S for s < p even. Then we get

ETr(BBY)P/? = % > ]ETrﬁBks = ]\ip Z IEITrH (ﬁ P + Q) ) (B.2)

ki1,k2,....kp s=1 ki1,k2,.. kp s=1
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Introducing the notations k = (ki, ko, ..., k,) and {k} = {k1,k2,...,kp}, we can write
P
ET:(BB')? = — 2 Yo ET]] <PI§QISBkS). (B.3)
K I, Lc{k}  s=1
Following [14], Appendix B], we claim that to conclude (B.1) it suffices to prove that for k € T
|QrBx| < @I, (B.4)

As in [I4] Appendix B], it is not hard to prove for k € I,
] /2 | Qi Gl | < @l (B.5)
Now we extend the proof to obtain the estimate 1D For the case |I| =1 (i.e. I = {k}),

1By = |wl 2] 2 |~V Zpg | < @,

Hzpgnlill <
where we can prove |Zpy| < |w|'/2®, by modifying the proof in Lemma For the case |I| = 2
WLOG, we may assume k =1 and I = {1,...,¢} with ¢ > 2. It is enough to prove that

o[/ HQt - Qerlier ] H < ot (B.6)

We take the ¢ = 3 as an example to describe the ideas for the proof of (B.6). Using (3.9), we get

(1]

Withe + |w|1/2

611 7r A17r [2] |w|1/26—— A27T[1] + errory g, (B.7)
where 6511] and 6[1—] are entries of
[ Clay 1\ g
1. _ 1/2 1 1] 2
il = | 2 N >, Gl (ehy ) Gl | < @2,
ké{1,2)
Aj 5 are deterministic matrices with operator norm O(1), and Herrorl_gH < |w|~Y2®2. Then we get

il = Al ol A )+ ol Al o

TGy = Ty G
+ | x| 12](;— 117r[12],417r 12]+|w|1/2 [12 G [12]A27T[12 +O<(\w| 1/2@4) (B.8)

[11]€ 11
We first handle the W[[i]Q]G[_lll]’]TH]Q] term. By lj
[12] [12] [12] ~1/2x2
Qerl Gl (Q2 m ) 71 < |22,

For the remaining term, we first expand 71'[[ ]2] = 773]23] + O~ (Jw|~'2®2) and use 1} to get
Q3Q27T (12] [11] [[1]2] . 123] (Qng ) [[izs +O. <|w\ 1/2q>4) < Jw|~ 1/2(1)3

Then we deal with the second terms in 1) We first expand e{ﬂ = eﬁ% + O (®3), where

[13]
o3l 1/2 [22] [13] { ~[13]\ "' A[13]
€y = = [w / Z G (k2] (G[zz) G[2k]
k¢{1 .3}
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Using the similar arguments as above, we have

Q3]w|1/26117r Al [12]G 1 [12 |w|1/2 577[1]23 Ay [:IL]23 (Q3 [11)

724 0 (|~ 20%)

< |w| 7282,

Thus we have

QaQslwerimp A Gyt < w712,

(1] (117

Obviously this estimate works for the rest of the terms in . This proves when t = 3.

We can continue in this manner for a general ¢. At the [-th step, we expand the leading order

terms using and , and after applying Q... Q3Q2 on them, the number of &, factors
increases by one at each step by . Trough induction we can prove . In fact the expansions
can be performed in a systematic way using the method in [I4) Appendix B], and we leave the details
to the reader. Also we remark that similar techniques are used in the proof in Section [B] and we
choose to present the details there (in fact the proof here is much easier than the one in Section .
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