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Abstract

It is well known that the spectral measure of eigenvalues of a rescaled square non-Hermitian
random matrix with independent entries satisfies the circular law. We consider the product TX,
where T is a deterministic N ˆM matrix and X is a random M ˆN matrix with independent
entries having zero mean and variance pN ^Mq´1. We prove a general local circular law for
the empirical spectral distribution (ESD) of TX at any point z away from the unit circle under
the assumptions that N „M , and the matrix entries Xij have sufficiently high moments. More
precisely, if z satisfies ||z| ´ 1| ě τ for arbitrarily small τ ą 0, the ESD of TX converges to
χ̃DpzqdApzq, where χ̃D is a rotation-invariant function determined by the singular values of T
and dA denotes the Lebesgue measure on C. The local circular law is valid around z up to scale
pN ^Mq´1{4`ε for any ε ą 0. Moreover, if |z| ą 1 or the matrix entries of X have vanishing
third moments, the local circular law is valid around z up to scale pN ^Mq´1{2`ε for any ε ą 0.

1 Introduction

Circular law for non-Hermitian random matrices. The study of the eigenvalue spectral of non-
Hermitian random matrices goes back to the celebrated paper [19] by Ginibre, where he calculated
the joint probability density for the eigenvalues of non-Hermitian random matrix with independent
complex Gaussian entries. The joint density distribution is integrable with an explicit kernel (see
[19, 28]), which allowed him to derive the circular law for the eigenvalues. For the Gaussian random
matrix with real entries, the joint distribution of the eigenvalues is more complicated but still
integrable, which leads to a proof of the circular law as well [6, 10, 18, 35].

For the random matrix with non-Gaussian entries, there is no explicit formula for the joint
distribution of the eigenvalues. However, in many cases the eigenvalue spectrum of the non-Gaussian
random matrices behaves similarly to the Gaussian case as N Ñ 8, known as the universality
phenomena. A key step in this direction is made by Girko in [20], where he partially proved the
circular law for non-Hermitian matrices with independent entries. The crucial insight of the paper is
the Hermitization technique, which allowed Girko to translate the convergence of complex empirical
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measures of a non-Hermitian matrix into the convergence of logarithmic transforms for a family of
Hermitian matrices, or, to be more precise,

Tr logrpX ´ zq:pX ´ zqs “ log
“

detppX ´ zq:pX ´ zqq
‰

, (1.1)

with X being the random matrix and z P C. Due to the singularity of the log function at 0, the small
eigenvalues of pX ´ zq:pX ´ zq play a special role. The estimate on the smallest singular value of
X´z was not obtained in [20], but the gap was remedied later in a series of paper. Bai [1, 2] analyzed
the ESD of pX ´ zq:pX ´ zq through its Stieltjes transform and handled the logarithmic singularity
by assuming bounded density and bounded high moments for the entries of X. Lower bounds on
the smallest singular values were given by Rudelson and Vershynin [31, 32], and subsequently by
Tao and Vu [36], Pan and Zhou [30] and Gőtze and Tikhomirov [21] under weakened moments and
smoothness assumptions. The final result was presented in [38], where the circular law is proved
under the optimal L2 assumption. These papers studied the circular law in the global regime, i.e.
the convergence of ESD on subsets containing ηN eigenvalues for some small constant η ą 0. Later
in a series of papers [7, 8, 39], Bourgade, Yau and Yin proved the local version of the circular law
up to the optimal scale N´1{2`ε under the assumption that the distributions of the matrix entries
satisfy a uniform sub-exponential decay condition. In [37], the local universality was proved by Tao
and Vu under the assumption of first four moments matching the moments of a Gaussian random
variable.

( )a ( )b ( )c

Figure 1: The eigenvalue distribution of the product TX of a deterministic N ˆM matrix T with a
Gaussian random M ˆN matrix X. The entries of X have zero mean and variance pN ^Mq´1, and
TT : has 0.5pN ^Mq eigenvalues as 2{17 and 0.5pN ^Mq eigenvalues as 32{17. (a) N “M “ 1000.
(b) N “ 1000, M “ 2000. (c) N “ 1500, M “ 750.

In this paper, we study the ESD of the product of a deterministic NˆM matrix T with a random
M ˆN matrix X, where we assume N „M . In Figure 1, we plot the eigenvalue distribution of TX
when T have two distinct singular values (except the trivial zero singular values). The goal of this
paper is to prove a local circular law for the ESD of TX at any point z away from the unit circle.
Following the idea in [7], the key ingredients for the proof are (a) the upper bound for the largest
singular value of TX´ z, (b) the lower bound for the least singular value of TX´ z, and (c) rigidity
of the singular values of TX ´ z. The upper bound for the largest singular value can be obtained
by controlling the norm of TX ´ z through a standard large deviation estimate (see e.g. [9, 27, 33]
and (2.64)). The lower bound for the least singular value of TX ´ z follows from the results in e.g.
[32] and [36] (see also Lemma 2.23). Thus the bulk of this paper is devoted to establish (c).
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Basic ideas. To obtain the rigidity of the singular values of Tx ´ z, we study the ESD of Q :“
pTX ´ zq:pTX ´ zq using Stieltjes transform as in [7]. We normalize X so that its entries have
variance pN ^Mq´1. Then Q is an N ˆ N Hermitian matrix with eigenvalues being typically of
order 1. We denote its resolvent by Rpwq :“ pQ´ wq´1, where w “ E ` iη is a spectral parameter
with positive imaginary part η. Then the Stieltjes transform of the ESD of Q is equal to N´1TrRpwq,
and we have the convergence estimate

N´1TrRpwq « mcpwq (1.2)

with high probability for large N . Here mc is the Stieltjes transform of the asymptotic eigenvalue
density, and the convergence in (1.2) is referred to as the averaged law. By taking the imaginary part
of (1.2), it is easy to see that a control of the Stieltjes transform yields a control of the eigenvalue
density on a small scale of order η around E (which contains an order ηN eigenvalues). A local law is
an estimate of the form (1.2) for all η " N´1. Such local laws have been a cornerstone of the modern
random matrix theory. In [16], a local law was first derived for Wigner matrices. Subsequently in
[7], a local law for the resolvent of pX ´ zq:pX ´ zq was established to prove the local circular law.

In generalizing the proof in [7] to our setting, a main difficulty is that the entries of TX are not
independent. We will use a new comparison method proposed in [24], which roughly states that
if the local laws hold for Rpwq with Gaussian X, then they also hold in the case of a general X.
For definiteness, we assume N “M for now, and T is a square matrix with singular decomposition

T “ UDV . For a Gaussian X ” XGauss, we have V XGaussU
d
“ X̃Gauss, where X̃ is another

Gaussian random matrix. Then for the determinant in (1.1),

detpTXGauss ´ zq“ detpDVXGaussU ´ zq
d
“ detpDX̃Gauss ´ zq. (1.3)

The problem is now reduced to the study of the singular values of DX̃Gauss ´ z, which has inde-
pendent entries. Notice the entries of DX̃Gauss are not identically distributed, which will make our
proof much more complicated. However, this issue can be handled, e.g. as in [14], where a local law
was obtained for generalized Wigner matrices with non-identically distributed entries.

To use the comparison method invented in [24], it turns out the averaged local law from (1.2)
is not sufficient. We have to control not only the trace of Rpwq, but also the matrix Rpwq itself
by showing that Rpwq is close to some deterministic matrix Πpwq, provided that η " N´1. This
closeness can be established in the sense of individual matrix entries Rijpwq « Πijpwq (see e.g.
[7, 17]). We call such an estimate an entrywise local law. More generally, in [4, 25] the following
closeness was established for generalized matrix entries:

xv, Rpwquy « xv,Πpwquy, η " N´1, @}v}2, }u}2 “ 1. (1.4)

We call the estimate in (1.4) an anisotropic local law. (If Π is a scalar matrix, (1.4) is also referred
to as an isotropic local law, in the sense that Rpwq is approximately isotropic for large N .) This
kind of anisotropic local law is needed in applying the method in [24]. Here we outline the three
steps to establish the anisotropic local law for Q “ pTX ´ zq:pTX ´ zq: (A) the entrywise local law
and averaged local law when T is diagonal (Theorem 2.18); (B) the anisotropic local law when T is
diagonal (Theorem 2.18); (C) the anisotropic local law and averaged local law when T is a general
(rectangular) matrix (Theorem 2.19).

In performing Step (A), our proof is basically based on the methods in [7]. However, our multi-
variable self-consistent equations and their solutions are much more complicated here. Thus a key
part of the proof is to establish some basic properties of the asymptotic eigenvalue density and prove
the stability of the self-consistent equations under small perturbations. These work need some new
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ideas and analytic techniques (see Appendix A). In performing Step (B), we applied and extended
the polynomialization method developed in [4, section 5]. Finally, as remarked around (1.3), (B)
implies the anisotropic local law for a Gaussian X and a general T . Based on this fact we perform
Step (C) using a self-consistent comparison argument in [24]. With the averaged local law proved
in Step (C), we can prove the local circular law for TX. In general, the averaged local law we get
is up to the non-optimal scale η " pN ^Mq´1{2. As a result, we can only prove the local circular
law for TX up to the scale pN ^Mq´1{4`ε. A new observation is that the non-optimal averaged
local law can lead to the optimal local circular law for TX outside the unit circle (i.e. |z| ą 1) (see
Section 2.4). To prove the optimal local circular law inside the unit circle (i.e. |z| ă 1), we need the
optimal averaged local law up to the scale η " pN ^Mq´1, which can be obtained under the extra
assumption that the entries of X have vanishing third moments.

Conventions. The fundamental large parameter is N and we assume that M is comparable to N
(see (2.1)). All quantities that are not explicitly constant may depend on N , and we usually omit
N from our notation. We use C to denote a generic large positive constant, which may depend on
fixed parameters and whose value may change from one line to the next. Similarly, we use c or ε
to denote a generic small positive constant. If a constant depend on a quantity a, we use Cpaq or
Ca to indicate this dependence. We use τ ą 0 in various assumptions to denote a small positive
constant, and use ζ, τ 1 to denote constants that depend on τ and may be chosen arbitrarily small.
All constants C, c and ε may depend on τ ; we neither indicate nor track this dependence.

For any (complex) matrix A, we use A: to denote its conjugate transpose, AT the transpose,
}A} the operator norm and }A}HS the Hilbert-Schmidt norm. We use the notation v “ pviq

n
i“1 for

a vector in Cn, and denote its Euclidean norm by |v| ” }v}2. We usually write the n ˆ n identity
matrix In as 1 without causing any confusions.

For two quantities AN and BN ą 0 depending on N , we use the notations AN “ OpBN q and
AN „ BN to mean |AN | ď CBN and C´1BN ď |AN | ď CBN , respectively, for some positive
constant C ą 0. We use AN “ opBN q to mean |AN | ď cNBN for some positive constant cN Ñ 0
as N Ñ 8. If AN is a matrix, we use the notations AN “ OpBN q and AN “ opBN q to mean
}AN } “ OpBN q and }AN } “ opBN q, respectively.

Acknowledgements. The third author would like to thank Terence Tao, Mark Rudelson and
Roman Vershynin for fruitful discussions and valuable suggestions.

2 The main results

In this section, we state and prove the main result of this paper. In Section 2.1, we define our model
and list our main assumptions. In Section 2.2, we first define the asymptotic eigenvalue density ρ2c

of Q “ pTX ´ zq:pTX ´ zq, and then state the main theorem—Theorem 2.6—of this paper. Its
proof depends crucially on local estimates of the resolvent of Q, which are presented in Section 2.3.
In Section 2.4, we prove Theorems 2.6 based on the local estimates stated in Section 2.3.

2.1 Definition of the model

In this paper, we want to understand the local statistics of the eigenvalues of TX ´ zI, where T is
a deterministic N ˆM matrix, X is a random M ˆN matrix, z P C and I is the identity operator.
We assume M „ N , i.e.

τ ď
M

N
ď τ´1 (2.1)
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for some small τ ą 0. We assume the entries Xiµ of X are independent (not necessarily identically
distributed) random variables satisfying

EXiµ “ 0, E |Xiµ|
2 “

1

N ^M
(2.2)

for all 1 ď i ď M, 1 ď µ ď N . For definiteness, in this paper we only focus on the case where
all matrix entries are real. However, our results and proofs also hold, after minor changes, in the
complex case if we assume in addition EX2

iµ “ 0 for Xiµ P C. We assume that for all p P N, there is
an N -independent constant Cp such that

E |
?
N ^MXiµ|

p ď Cp (2.3)

for all 1 ď i ďM, 1 ď µ ď N . We define Σ :“ TT :, and assume the eigenvalues of Σ satisfy that

τ´1 ě σ1 ě σ2 ě ¨ ¨ ¨ ě σN^M ě τ (2.4)

and all other eigenvalues are 0. We can normalize T by multiplying a scalar such that

1

N ^M

N^M
ÿ

i“1

σi “ 1. (2.5)

We summarize our basic assumptions here for future reference.

Assumption 2.1. We suppose that (2.1), (2.2), (2.3), (2.4) and (2.5) hold.

2.2 The main theorem

Our main result is Theorem 2.6. To state it, we need to define the asymptotic eigenvalue density
function for Q. We first introduce the self-consistent equations, and the asymptotic eigenvalue
density will be closely related to their solutions. Define

ρΣ :“
1

N ^M

N^M
ÿ

i“1

δσi (2.6)

as the empirical spectral density of Σ. Let n :“ |supp ρΣ| be the number of distinct nonzero
eigenvalues of Σ, which are denoted as

τ´1 ě s1 ą s2 ą ¨ ¨ ¨ ą sn ě τ. (2.7)

Let li be the multiplicity of si. By (2.5), li and si satisfy the normalization conditions

1

N ^M

n
ÿ

i“1

li “ 1,
1

N ^M

n
ÿ

i“1

lisi “ 1. (2.8)

For each w P C` :“ tw P C : Imw ą 0u, we define the self-consistent equations of pm1,m2q as

1

m2
“ ´wp1`m1q `

|z|
2

1`m1
, (2.9)

m1 “
1

N

n
ÿ

i“1

lisi

«

´w p1` sim2q `
|z|

2

1`m1

ff´1

. (2.10)

5



If we plug (2.9) into (2.10), we get the self-consistent equation for m1 only,

m1 “
1

N

n
ÿ

i“1

lisi

»

–´w

¨

˝1`
si

´wp1`m1q `
|z|2

1`m1

˛

‚`
|z|

2

1`m1

fi

fl

´1

. (2.11)

The next lemma states that the solution to (2.11) in C` is unique if z is away from the unit circle.
It is proved in Appendix A.3.

Lemma 2.2. Fix z P C such that |z| ‰ 1. For w P C`, there exists at most one analytic function
m1c,z,Σpwq : C` Ñ C` such that (2.11) holds and wm1c,z,Σpwq P C`. Moreover, m1c,z,Σ,N pwq is the
Stieltjes transform of a positive integrable function ρ1c with compact support in r0,8q.

We shall abbreviate m1cpwq :“ m1c,z,Σpwq. We also define m2cpwq :“ m2c,z,Σpwq by taking
m1 “ m1cpwq in (2.9). Obviously, m2c is also an analytic function of w. Furthermore, for any
w P C` we have m2cpwq, wm2cpwq P C` by using (2.9) and m1c, wm1c P C`. We define two
functions on R as

ρ1,2cpxq “
1

π
lim
ηŒ0

Imm1,2cpx` iηq, x P R. (2.12)

It is easy to see that ρ1,2c ě 0 and supppρ1,2cq Ď r0,8q. Moreover, supp ρ2c “ supp ρ1c by (2.9). We
shall call ρ2c the asymptotic eigenvalue density of Q “ pTX ´ zq:pTX ´ zq (for a reason that will
be made clear during the proof in Section 4). Since Impwm2cq ě 0, we have

Im

«

´w p1` sim2cq `
|z|

2

1`m1c

ff

ď ´Imw,

and (2.10) gives |m1c| ď 1{Imw Ñ 0 as Imw Ñ 8. Similarly, |m2c| ď 1{Imw Ñ 0 as Imw Ñ 8.
Thus m1,2cpwq is indeed the Stieltjes transform of ρ1,2c,

m1,2cpwq “

ż

R

ρ1,2cpxq

x´ w
dx. (2.13)

We now state the basic properties of ρ1c and ρ2c, which can be obtained by studying the solutions
m1,2cpwq to the self-consistent equations (2.9) and (2.11) when w P p0,8q. Here we extend the
definition of m1,2c continuously down to the real axis by setting

m1,2cpxq “ lim
ηŒ0

m1,2cpx` iηq, x P R.

As a convention, for w P C`, we take
?
w to be the branch with positive imaginary part. Define

m :“
?
wp1`m1q and mc :“

?
wp1`m1cq. Equation (2.11) then becomes

fp
?
w,mq “ 0, (2.14)

where

fp
?
w,mq “ ´

?
w `m`

1

N

n
ÿ

i“1

lisi
mpm2 ´ |z|2q

?
wm3 ´ psi ` |z|2qm2 ´

?
w|z|2m` |z|4

. (2.15)

The following lemma gives the basic structure of supp ρ1,2c. Its proof is given in Appendix A.1.
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Lemma 2.3. Fix τ ď
ˇ

ˇ|z|2 ´ 1
ˇ

ˇ ď τ´1. The support of ρ1,2c is a union of connected components:

supp ρ1,2c X p0,`8q “

˜

ď

1ďkďL

re2k, e2k´1s

¸

X p0,8q, (2.16)

where L ” Lpnq P N and C1τ
´1 ě e1 ą e2 ą . . . ą e2L ě 0 for some constant C1 ą 0 that does

not depend on τ . If |z|2 ď 1 ´ τ , we have e2L “ 0; if 1 ` τ ď |z|2 ď 1 ` τ´1, e2L ě εpτq for some
constant εpτq ą 0. Moreover, for every ei ą 0, there exists a unique mcpeiq such that

Bmfp
?
ei,mcpeiqq “ 0. (2.17)

We shall call ei’s the edges of ρ1c. For any w P p0,8q and 1 ď i ď n, the cubic polynomial
?
wm3 ´ psi ` |z|

2qm2 ´
?
w|z|2m` |z|4 in (2.15) has three distinct roots aipwq ą 0, bipwq ą 0 and

´cipwq ă 0 (see Lemma A.1). Our next assumption on ρΣ and |z| takes the form of the following
regularity conditions.

Definition 2.4. (Regularity) Fix τ ď
ˇ

ˇ|z|2 ´ 1
ˇ

ˇ ď τ´1 and a small constant ε ą 0.
(i) We say that the edge ek ‰ 0, k “ 1, . . . , 2L, is regular if

min
1ďiďn

t|mcpekq ´ aipekq|, |mcpekq ´ bipekq|, |mcpekq ` cipekq|u ě ε, (2.18)

and
ˇ

ˇB2
mfp

?
ek,mcpekqq

ˇ

ˇ ě ε. (2.19)

In the case |z|2 ď 1´ τ , we always call e2L “ 0 a regular edge.
(ii) We say that the bulk components re2k, e2k´1s is regular if for any fixed τ 1 ą 0 there exists a

constant cpτ, τ 1q ą 0 such that the density of ρ1c in re2k ` τ
1, e2k´1´ τ

1s is bounded from below by c.

Remark 1: The edge regularity conditions (i) has previously appeared (may be in slightly different
forms) in several works on sample covariance matrices and Wigner matrices [3, 11, 23, 24, 26, 29].
The conditions (2.18) and (2.19) guarantees a regular square-root behavior of ρ1c near ek and ensures
that the gap in the spectrum of ρ1c adjacent to ek does not close for large N (Lemma A.5),

min
l‰k

|el ´ ek| ě ε (2.20)

for some constant ε ą 0. The bulk regularity condition (ii) was introduced in [24]. It imposes a
lower bound on the density of eigenvalues away from the edges. Without it, one can have points in
the interior of supp ρ1c with an arbitrarily small density and our arguments would fail.

Remark 2: The regularity conditions in Definition 2.4 are stable under perturbations of |z| and ρΣ. In

particular, fix ρΣ, suppose the regularity conditions are satisfied at z “ z0 with τ ď ||z0|
2
´ 1| ď τ´1.

Then for sufficiently small c ą 0, the regularity conditions hold uniformly in z P tz : ||z| ´ |z0|| ď cu.
For a detailed discussion, see the remark at the end of Section A.3.

We will use the following notion of stochastic domination, which was first introduced in [12]
and subsequently used in many works on random matrix theory, such as [4, 5, 7, 13, 14, 24]. It
simplifies the presentation of the results and their proofs by systematizing statements of the form
“ξ is bounded by ζ with high probability up to a small power of N”.

Definition 2.5 (Stochastic domination). (i) Let

ξ “
´

ξpNqpuq : N P N, u P U pNq
¯

, ζ “
´

ζpNqpuq : N P N, u P U pNq
¯

7



be two families of nonnegative random variables, where U pNq is a possibly N -dependent parameter
set. We say ξ is stochastically dominated by ζ, uniformly in u, if for any (small) ε ą 0 and (large)
D ą 0,

sup
uPUpNq

P
”

ξpNqpuq ą N εζpNqpuq
ı

ď N´D

for large enough N ě N0pε,Dq, and we use the notation ξ ă ζ. Throughout this paper the stochastic
domination will always be uniform in all parameters that are not explicitly fixed (such as matrix
indices, and w and z that take values in some compact sets). Note that N0pε,Dq may depend on
quantities that are explicitly constant, such as τ and Cp in (2.1), (2.3) and (2.4).

(ii) If for some complex family ξ we have |ξ| ă ζ, we also write ξ ă ζ or ξ “ Oăpζq. We also
extend the definition of Oăp¨q to matrices in the weak operator sense as follows. Let A be a family
of complex square random matrices and ζ a family of nonnegative random variables. Then we use
A “ Oăpζq to mean }A} ă ζ, where }A} is the operator norm of A.

(iv) We say that an event Ξ holds with high probability if 1´ 1pΞq ă 0.

In the following, we denote the eigenvalues of TX as µj , 1 ď j ď N . We are now ready to state
our main theorem, i.e. the general local circular law for TX.

Theorem 2.6 (Local circular law for TX). Suppose Assumption 2.1 holds, and τ ď ||z0|
2
´ 1| ď τ´1

for any N (z0 can depend on N). Suppose ρΣ (defined in (2.6)) and |z0| are such that all the edges
and bulk components of ρ1c are regular in the sense of Definition 2.4. We assume in addition that
the entries of X have a density bounded by NC2 for some C2 ą 0. Let F be a smooth non-negative
function which may depend on N , such that }F }8 ď C1, }F 1}8 ď NC1 and F pzq “ 0 for |z| ě C1,
for some constant C1 ą 0 independent of N . Let Fz0,apzq “ K2aF pKapz´z0qq, where K :“ N ^M .
Then TX has pN ´ Kq trivial zero eigenvalues, and for the other eigenvalues µj, 1 ď j ď K, we
have

1

K

K
ÿ

j“1

Fz0,apµjq ´
1

π

ż

Fz0,apzqχ̃DpzqdApzq ă K´1{2`2a}∆F }L1 , (2.21)

for any a P p0, 1{4s. Here

χ̃Dpzq :“
1

4

ż 8

0

plog xq∆zρ2cpx, zqdx, (2.22)

where ρ2c ” ρ2c,z,Σ is defined in (2.12). If 1`τ ď |z0|
2
ď 1`τ´1 or the entries of X have vanishing

third moments,
EX3

iµ “ 0, (2.23)

for 1 ď i ďM, 1 ď µ ď N , then we have the improved result

1

K

K
ÿ

j“1

Fz0,apµjq ´
1

π

ż

Fz0,apzqχ̃DpzqdApzq ă K´1`2a}∆F }L1 , (2.24)

for any a P p0, 1{2s. If N “M , the bounded density condition for the entries of X is not necessary.

Remark 1: Note that Fz0,apzq “ K2aF pKapz ´ z0qq is an approximate delta function obtained from
rescaling F to the size of order K´a around z0. Thus (2.21) gives the general circular law up to scale
K´1{4`ε, while (2.24) gives the general circular law up to scale K´1{2`ε. The χ̃D in (2.22) gives the
distribution of the eigenvalues of TX. It is rotationally symmetric, because ρ2cpx, zq only depends
on |z| (see (2.9) and (2.10)). When T is the identity matrix, χ̃D becomes the indicator function χD
on the unit disk D, and we get the well-known local circular law for X [7]. For a general T , we do
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not have much understanding of χ̃D so far. This will be one of the topics of our future study. Also,
we have assumed that z is strictly away from the unit circle. Our proof may be extended to the
|z ´ 1| “ op1q case if we have a better understanding of the solutions m1,2c to equations (2.9) and
(2.10).

Remark 2: As explained in the Introduction, the basic strategy of this paper is first to prove the
anisotropic local law for the resolvent of Q when X is Gaussian, and then to get the anisotropic local
law for a general X through comparison with the Gaussian case. Without (2.23), our comparison
arguments do not give the anisotropic local law up to the optimal scale, so we can only prove the
weaker bound (2.21). We will try to remove this assumption in future works.

Remark 3: In the statement of the theorem, we have included an extra bounded density condition.
This is only used in Lemma 2.23 to give a lower bound for the smallest singular value of TX ´ z.
Thus it can be removed if we have a stronger result about the smallest singular value.

We conclude this section with two examples verifying the regularity conditions of Definition 2.4.

Example 2.7 (Bounded number of distinct eigenvalues). We suppose that n is fixed, and that
s1, . . . , sn and ρΣpts1uq, . . . , ρΣptsnuq all converge as N Ñ8. We suppose that limN ek ą limN ek`1

for all k, and furthermore for all ek we have B2
mfp

?
ek,mcpekqq ‰ 0. Then it is easy to check that

all the edges and bulk components are regular in the sense of Definition 2.4 for small enough ε.

Example 2.8 (Continuous limit). We suppose ρΣ is supported in some interval ra, bs Ă p0,8q,
and that ρΣ converges in distribution to some measure ρ8 that is absolutely continuous and whose
density satisfies τ ď dρ8pEq{dE ď τ´1 for E P ra, bs. Then there are only a small number (which
is independent of n) of connected components for supp ρ1c, and all the edges and bulk components
are regular. See the remark at the end of Section A.1.

2.3 Hermitization and local laws for resolvents

In the following, we use the notation

Y ” Yz :“ TX ´ zI, (2.25)

where I is the identity matrix. Following Girko’s Hermitization technique [20], the first step in
proving the local circular law is to understand the local statistics of singular values of Y . In

this subsection, we present the main local estimates concerning the resolvents
`

Y Y : ´ w
˘´1

and
`

Y :Y ´ w
˘´1

. These results will be used later to prove Theorem 2.6.
Our local laws can be formulated in a simple, unified fashion using a 2N ˆ 2N block matrix,

which is a linear function of X.

Definition 2.9 (Index sets). We define the index sets

I1 :“ t1, ..., Nu, IM1 :“ t1, . . . ,Mu, I2 :“ tN ` 1, ..., 2Nu, I :“ I1Y I2, IM :“ IM1 Y I2 .

We will consistently use the latin letters i, j P I1 or IM1 , greek letters µ, ν P I2, and s, t P I. We
label the indices of the matrices according to

X “ pXiµ : i P IM1 , µ P I2q, T “ pTij : i P I1, j P IM1 q.

When M “ N , we always identify IM1 with I1. For i P I1 and µ P I2, we introduce the notations
ī :“ i`N P I2 and µ̄ :“ µ´N P I1.
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Definition 2.10 (Groups). For an I ˆ I matrix A, we define the 2ˆ 2 matrix Arijs as

Arijs “

ˆ

Aij Aij̄
Aīj Aīj̄

˙

. (2.26)

We shall call Arijs a diagonal group if i “ j, and an off-diagonal group otherwise .

Definition 2.11 (Linearizing block matrix). For w :“ E ` iη P C`, we define the I ˆ I matrix

Hpwq ” HpT,X, z, wq :“

ˆ

´wI w1{2Y

w1{2Y : ´wI

˙

, (2.27)

where we take the branch of
?
w with positive imaginary part. Define the I ˆ I matrix

Gpwq ” GpT,X, z, wq :“ Hpwq´1, (2.28)

as well as the I1 ˆ I1 and I2 ˆ I2 matrices

GLpwq “
`

Y Y : ´ w
˘´1

, GRpwq “
`

Y :Y ´ w
˘´1

. (2.29)

Throughout the following, we frequently omit the argument w from our notations.

By Schur’s complement formula, it is easy to see that

G pwq “

ˆ

GL w´1{2GLY

w´1{2Y :GL w´1Y :GLY ´ w
´1I

˙

“

ˆ

w´1Y GRY
: ´ w´1I w´1{2Y GR

w´1{2GRY
: GR

˙

.

(2.30)
Therefore a control of G immediately yields controls of the resolvents GL and GR.

In the following, we only consider the N ď M case. The N ą M case, as we will see, will be
built easily upon N ď M case. We introduce a deterministic matrix Π, which will be proved to be
close to G with high probability.

Definition 2.12 (Deterministic limit of G). Suppose N ďM and T has a singular decomposition

T “ UD̄V, D̄ “ pD, 0q, (2.31)

where D “ diagpd1, d2, . . . , dN q is a diagonal matrix. Define πrisc to be the 2ˆ 2 matrix such that

`

πrisc
˘´1

“

ˆ

´wp1` |di|
2m2cq ´w1{2z

´w1{2z̄ ´wp1`m1cq

˙

. (2.32)

Let Πd be the 2N ˆ 2N matrix with pΠdqriis “ πrisc and all other entries being zero. Define

Π ” ΠpΣ, z, wq :“

ˆ

U 0
0 U

˙

Πd

ˆ

U : 0
0 U :

˙

“

ˆ

´p1`m1cqApΣq w´1{2zApΣq

w´1{2z̄ApΣq ´p1`m2cΣqApΣq

˙

,

(2.33)

where Σ “ TT : and ApΣq “
“

wp1`m2cΣqp1`m1cq ´ |z|
2
‰´1

.

Definition 2.13 (Averaged variables). Suppose N ďM . Define the averaged random variables

m1 :“
1

N

ÿ

iPI1

`

Σ̄G
˘

ii
, m2 :“

1

N

ÿ

µPI2

`

Σ̄G
˘

µµ
, (2.34)
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where

Σ̄ :“

ˆ

Σ 0
0 I

˙

. (2.35)

Define πris to be the 2ˆ 2 matrix such that

`

πris
˘´1

“

ˆ

´wp1` |di|
2
m2q ´w1{2z

´w1{2z̄ ´wp1`m1q

˙

. (2.36)

Remark: Note that under the above definition we have

m2 “
1

N
TrGR “

1

N
TrGL,

which is the Stieltjes transform of the empirical eigenvalue density of Y Y : and Y :Y . Moreover, we
will see from the proof that m1,2c are the almost sure limits of m1,2 as N Ñ8 with

m1c “
1

N

ÿ

iPI1

`

Σ̄Π
˘

ii
, m2c “

1

N

ÿ

µPI2

`

Σ̄Π
˘

µµ
. (2.37)

The following two propositions summarize the properties of ρ1,2c and m1,2c that are needed to
understand the main results in this section. They are proved in Appendix A. In Fig. 2 we plot ρ2c

for the example from Fig. 1 in the cases |z| ą 1 and |z| ă 1, respectively.

| =0.5z|

| =0.75z|

| =1.2z|

| =1.5z|

Figure 2: The densities ρ2cpx, zq when |z| “ 0.5, 0.75, 1.2, 1.5. Here ρΣ “ 0.5δ?
2{17

` 0.5δ
4
?

2{17
.

Proposition 2.14 (Basic properties of ρ1,2c). Fix ε ą 0. The density ρ1c is compactly supported in
r0,8q and the following properties regarding ρ1c hold.
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(i) The support of ρ1c is
Ť

1ďkďLpnqre2k, e2k´1s where e1 ą e2 ą . . . ą e2L ě 0. If 1` τ ď |z|2 ď

1` τ´1, then e2L ě ε; if |z|2 ď 1´ τ , then e1 “ 0.
(ii) Suppose re2k, e2k´1s is a regular bulk component. For any τ 1 ą 0, if x P re2k` τ

1, e2k´1´ τ
1s,

then ρ1cpxq „ 1.
(iii) Suppose ej is a nonzero regular edge. If j is even, then ρ1cpxq „

?
x´ ej as x Ñ ej from

above. Otherwise if j is odd, then ρ1cpxq „
?
ej ´ x as xÑ ej from below.

(iv) If |z|2 ď 1´ τ , then ρ1cpxq „ x´1{2 as xŒ e2L “ 0.
The same results also hold for ρ2c. In addition, ρ2c is a probability density.

Proposition 2.15. The preceding proposition implies that, uniformly in w in any compact set of
C`,

|m1,2cpwq| “ Op|w|´1{2q. (2.38)

Moreover, if 1 ` τ ď |z|2 ď 1 ` τ´1, then |m1,2cpwq| „ 1 for w in any compact set of C`; if
|z|2 ď 1´ τ , then |m1,2cpwq| „ |w|

´1{2 for w in any compact set of C`.

We will consistently use the notation E ` iη for the spectral parameter w. In this paper, we
regard the quantities Epwq and ηpwq as functions of w and usually omit the argument w. In the
following we would like to define several spectral domains of w that will be used in the proof.

Definition 2.16 (Spectral domains). Fix a small constant ζ ą 0 which may depend on τ . The
spectral parameter w is always assumed to be in the fundamental domain

D ” Dpζ,Nq :“ tw P C` : 0 ď E ď ζ´1, N´1`ζ |m2c|
´1 ď η ď ζ´1u. (2.39)

unless otherwise indicated. Given a regular edge ek, we define the subdomain

De
k ” De

kpζ, τ
1, Nq :“ tw P Dpζ,Nq : |E ´ ek| ď τ 1, E ě 0u. (2.40)

Corresponding to a regular bulk component re2k, e2k´1s, we define the subdomain

Db
k ” Db

kpζ, τ
1, Nq :“ tw P Dpζ,Nq : E P re2k ` τ

1, e2k´1 ´ τ
1su. (2.41)

For the component outside supp ρ1c, we define the subdomain

Do ” Dopζ, τ 1, Nq :“ tw P Dpζ,Nq : distpE, supp ρ1cq ě τ 1u. (2.42)

We also need the following domain with large η,

DL ” DLpζq :“ tw P C` : 0 ď E ď ζ´1, η ě ζ´1u, (2.43)

and the subdomain of DYDL,

pD ” pDpζ,Nq :“ tw P Dpζ,Nq : η ě N´1{2`ζ |m2c|
´1u YDLpζq. (2.44)

We call S a regular domain if it is a regular De
k or Db

k domain, a Do domain or a DL domain.

Remark: In the definition of D, we have suppressed the explicit w-dependence. Notice that when
|z|2 ă 1´ τ , since |m2c| „ |w|

´1{2 as w Ñ 0, we allow η „ |w| „ N´2`2ζ in D. In the definition of
De
k, the condition E ě 0 is only for the edge at 0 when |z|2 ď 1´ τ .

Now we are prepared to state the various local laws satisfied by G defined in (2.28). Let

Ψ ” Ψpwq :“

d

Im pm1c `m2cq

Nη
`

1

Nη
(2.45)

be the deterministic control parameter.
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Definition 2.17 (Local laws). Suppose N ď M . Recall G ” GpT,X, z, wq defined in (2.28) and
Π ” ΠpΣ, z, wq defined in (2.33). Let S be a regular domain.

(i) We say that the entrywise local law holds with parameters pT,X, z,Sq if

rGpT,X, z, wq ´ΠpΣ, z, wqsst ă Ψpwq (2.46)

uniformly in w P S and s, t P I.
(ii) We say that the anisotropic local law holds with parameters pT,X, z,Sq if

}GpT,X, z, wq ´ΠpΣ, z, wq} ă Ψpwq (2.47)

uniformly in w P S.
(iii) We say that the averaged local law holds with parameters pT,X, z,Sq if

|m2pT,X, z, wq ´m2cpΣ, z, wq| ă
1

Nη
(2.48)

uniformly in w P S.

The local laws for G with a general T will be built upon the following result with a diagonal T .

Theorem 2.18 (Local laws when T is diagonal). Fix τ ď ||z|
2
´ 1| ď τ´1. Suppose Assumption 2.1

holds, N “M , and T ” D :“ diagpd1, ..., dN q is a diagonal matrix. Let S be a regular domain. Then
the entrywise local law, anisotropic local law and averaged local law hold with parameters pD,X, z,Sq.

Now suppose that N ďM and T is an N ˆM matrix such that the eigenvalues of Σ satisfy (2.4)
and (2.5). Consider the singular decomposition T “ UD̄V , where U is an N ˆN unitary matrix, V
is an MˆM unitary matrix and D̄ “ pD, 0q is an NˆM matrix such that D “ diagpd1, d2, . . . , dN q.
Then we have

TX ´ z “ UDV1X ´ z, (2.49)

where V1 is an N ˆM matrix and V2 is an pM ´Nq ˆM matrix defined through V “

ˆ

V1

V2

˙

. If

X “ XGauss is Gaussian, then V1X
Gauss d

“ X̃GaussU : with X̃ being an N ˆ N Gaussian random
matrix. Then by the definition of G in (2.28),

GpT,XGauss, z, wq
d
“

ˆ

U 0
0 U

˙

GpD, X̃Gauss, z, wq

ˆ

U : 0
0 U :

˙

. (2.50)

Since the anisotropic local law holds for GpD, X̃Gauss, z, wq by Theorem 2.18, we get immediately
the anisotropic local law for GpT,XGauss, z, wq. The next theorem states that the anisotropic local
law holds for general TX provided that the anisotropic local law holds for TXGauss. —-

Theorem 2.19 (Anisotropic local law when N ď M). Fix τ ď ||z|
2
´ 1| ď τ´1. Suppose Assump-

tion 2.1 holds and N ďM . Let T “ UD̄V be a singular decomposition of T , where D̄ “ pD, 0q with
D “ diagpd1, d2, . . . , dN q. Let S be a regular domain. Then the anisotropic local law and averaged

local law hold with parameters pT,X, z,SX pDq. If in addition (2.23) holds, then the anisotropic local
law and averaged local law hold with parameters pT,X, z,Sq.

Finally we turn to the N ąM case. Suppose T “ UD̄V is a singular decomposition of T , where

U is an N ˆ N unitary matrix, V is an M ˆM unitary matrix and D̄ “

ˆ

D
0

˙

is an N ˆM
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matrix such that D “ diagpd1, d2, . . . , dM q. Let U “ pU1, U2q, where U1 has size N ˆM and U2 has
size N ˆ pN ´Mq. Following Girko’s idea of Hermitization [20], to prove the local circular law in
Theorem 2.6 when N ąM , it suffices to study detpTX ´ zq (see (2.52) below), for which we have

detpTX ´ zq “ det

ˆ

DVXU1 ´ z DV XU2

0 ´z

˙

“ detpV TDTUT1 X
T ´ zqp´zqN´M . (2.51)

Comparing with (2.49), we see that this case is reduced to the N ďM case, with the only difference
being that the extra p´zqN´M term corresponds to the N ´M zero eigenvalues of TX. Thus we
make the following claim.

Claim 2.20. The N ăM case of Theorem 2.6 implies the N ąM case of Theorem 2.6.

2.4 Proof of Theorem 2.6

By Claim 2.20, it suffices to assume N ď M . Our main tool will be Theorem 2.19. A major part
of the proof follows from [7, Section 5]. The following lemma collects basic properties of stochastic
domination ă, which will be used tacitly during the proof and throughout this paper.

Lemma 2.21 (Lemma 3.2 in [4]). (i) Suppose that ξpu, vq ă ζpu, vq uniformly in u P U and v P V .
If |V | ď NC for some constant C, then

ÿ

vPV

ξpu, vq ă
ÿ

vPV

ζpu,wq

uniformly in u.
(ii) If ξ1puq ă ζ1puq uniformly in u P U and ξ2puq ă ζ2puq uniformly in u P U , then

ξ1puqξ2puq ă ζ1puqζ2puq

uniformly in u P U .
(iii) Suppose that Ψpuq ě N´C is deterministic and ξpuq is a nonnegative random variable such

that Eξpuq2 ď NC for all u. Then if ξpuq ă Ψpuq uniformly in u, we have

Eξpuq ă Ψpuq

uniformly in u.

The Girko’s Hermitization technique [20] can be reformulated as the following (see e.g. [22]): for
any smooth function g,

1

N

N
ÿ

i“1

gpµjq “
1

4πN

ż

∆gpzq
N
ÿ

j“1

logpµj ´ zqpµ̄j ´ z̄qdApzq

“
1

4πN

ż

∆gpzq log
ˇ

ˇdetpY pzqY :pzqq
ˇ

ˇ dApzq “
1

4πN

ż

∆gpzq
N
ÿ

j“1

log λjpzqdApzq, (2.52)

where 0 ď λ1 ď λ2 ď . . . ď λN are the ordered eigenvalues of Y pzqY :pzq. For g “ Fz0,a, we use the
new variable ξ “ Napz ´ z0q to write the above equation as

1

N

N
ÿ

i“1

Fz0,apµjq “
N´1`2a

4π

ż

p∆F qpξq
N
ÿ

j“1

log λjpzqdApξq. (2.53)
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Define the classical location γjpzq of the j-th eigenvalue of Y pzqY :pzq by

ż γjpzq

0

ρ2cpxqdx “
j

N
, 1 ď j ď N. (2.54)

By Proposition 2.14, we have that for any δ ą 0

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

j“1

log γjpzq ´N

ż 8

0

plog xqρ2cpx, zqdx

ˇ

ˇ

ˇ

ˇ

ˇ

ď

N
ÿ

j“1

N

ż γjpzq

γj´1pzq

|log γjpzq ´ log x| ρ2cpx, zqdx ď Nδ (2.55)

for large enough N . Suppose we have the bound

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j

log λj ´
ÿ

j

log γj

ˇ

ˇ

ˇ

ˇ

ˇ

ă N b. (2.56)

Plugging (2.55) and (2.56) into (2.53), we get

1

N

N
ÿ

i“1

Fz0pµjq “
N2a

4π

ż

p∆F qpξq

ż 8

0

plog xqρ2cpx, zqdxdApξq `OăpN
´1`b`2a}∆F }L1

q

“
1

4π

ż

F pξq

ż 8

0

plog xq∆zρ2cpx, zqdxdApξq `OăpN
´1`b`2a}∆F }L1q.

Thus we obtain (2.21) if we can prove (2.56) for b “ 1{2, and we obtain (2.24) if we can can prove

(2.56) for b “ 0 when 1` τ ď |z0|
2
ď 1` τ´1 or the assumption (2.23) holds.

We need the following lemma which is a consequence of Theorem 2.19. Recall (2.16) and (2.20),
the number of components L has order 1 and each component re2k, e2k´1s contains order N of γj ’s.
We define the classical number of eigenvalues to the left of the edge ek, 1 ď k ď 2L, as

Nk :“

R

N

ż ek

0

ρ2cpxq

V

. (2.57)

Note that N2L “ 0, N1 “ N and N2k`1 “ N2k, 1 ď k ď L´ 1.

Lemma 2.22 (Singular value rigidity). Fix a small ε ą 0.

(i) If the averaged local law holds with parameters pT,X, z,Dpζ,Nq X pDpζ,Nqq for arbitrarily
small ζ, then the following estimates hold. For any e2k ą 0 and N2k`N

1{2`ε ď j ď N2k´1´N
1{2`ε,

|λj ´ γj |

γj
ă

ˆ

min

"

j ´N2k

N
,
N2k´1 ´ j

N

*˙´1{3

N´1{2. (2.58)

In the case |z|2 ď 1´ τ with e2L “ 0, we have for any N2L `N
1{2`ε ď j ď N2L´1 ´N

1{2`ε,

|λj ´ γj |

γj
ă j´1

ˆ

N2L´1 ´ j

N

˙´1{3

N1{2. (2.59)

Moreover, if 1` τ ď |z|2 ď 1` τ´1, then for any fixed 0 ă c ă e2L,

#tj : 0 ă λj ă cu ă 1. (2.60)
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(ii) If the averaged local law holds with parameters pT,X, z,Dpζ,Nqq for arbitrarily small ζ, then
the following estimates hold. For any e2k ą 0 and N2k `N

ε ď j ď N2k´1 ´N
ε,

|λj ´ γj |

γj
ă

ˆ

min

"

j ´N2k

N
,
N2k´1 ´ j

N

*˙´1{3

N´1. (2.61)

In the case |z|2 ď 1´ τ with e2L “ 0, we have for any N2L `N
ε ď j ď N2L´1 ´N

ε,

|λj ´ γj |

γj
ă j´1

ˆ

N2L´1 ´ j

N

˙´1{3

. (2.62)

Proof. The proof is similar to the proof of [7, Lemma 5.1]. See also [4, Theorem 2.10] or [14, Theorem
7.6]

Using (2.58) and (2.59), we get that

ÿ

N2k`N1{2`εďjďN2k´1´N1{2`ε

|log λj ´ log γj | ă
ÿ

N2k`N1{2`εďjďN2k´1´N1{2`ε

|λj ´ γj |

γj
ă N1{2. (2.63)

Through a standard large deviation estimate, we have the following bound (see e.g. [9, 27, 33]),

Pp}X} ą tq ď e´c0t
2N for t ą C0, (2.64)

where c0, C0 ą 0 are constants. Thus we have

λj ď }Y }
2 ď p}T }}X} ` |z|q2 ă 1, 1 ď j ď N. (2.65)

Together with Lemma 2.23 concerning the smallest singular value of TX ´ z, we get

2L
ÿ

k“1

ÿ

|j´ek|ăN1{2`ε

|log λj | ă N1{2`ε. (2.66)

Since |log γj | ă 1 by Proposition 2.14, we conclude

2L
ÿ

k“1

ÿ

|j´ek|ăN1{2`ε

|log λj ´ log γj | ă N1{2`ε. (2.67)

Combining (2.63)-(2.67), we get for any ε ą 0,

ÿ

1ďjďN

|log λj ´ log γj | ă N1{2`ε (2.68)

for large enough N . This implies (2.56) for b “ 1{2. If in addition the assumption (2.23) holds, the
averaged local law holds with parameters pT,X, z,Dpζ,Nqq for arbitrarily small ζ by Theorem 2.19.
Then we can prove (2.56) for b “ 0 using the better bounds (2.61) and (2.62).

Finally we prove that when |z0|
2 ě 1` τ , with the bounds (2.58) we can still prove the estimate

(2.56) for b “ 0. By the averaged local law and the definition of γj in (2.54), we have

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

j“1

1

λj ´ iη
´

N
ÿ

j“1

1

γj ´ iη

ˇ

ˇ

ˇ

ˇ

ˇ

ă
1

η
, (2.69)
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uniformly in N´1{2`ε ď η ď N1{2. Taking integral of (2.69) over η from N´1{2`ε to N1{2, we get
ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

j“1

log

ˆ

λj ´ iN
´1{2`ε

γj ´ iN´1{2`ε

˙

´

N
ÿ

j“1

log

ˆ

λj ´ iN
1{2

γj ´ iN1{2

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ă 1. (2.70)

Then we use (2.58) and the bound (2.65) to estimate that
ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

j“1

log

ˆ

λj ´ iN
1{2

γj ´ iN1{2

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ă

N
ÿ

j“1

ˇ

ˇ

ˇ
pλj ´ γjqN

´1{2
ˇ

ˇ

ˇ
ă N ε.

Thus we conclude
ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

j“1

log

ˆ

λj ´ iN
´1{2`ε

γj ´ iN´1{2`ε

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ă N ε. (2.71)

Using γj „ 1, (2.60) and (2.73), we get

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

j“1

log

ˆ

λj ´ iN
´1{2`ε

γj ´ iN´1{2`ε

˙

´

N
ÿ

j“1

log
λj
γj

ˇ

ˇ

ˇ

ˇ

ˇ

ă 1`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

λjěc

log

ˆ

λj ´ iN
´1{2`ε

γj ´ iN´1{2`ε

˙

´
ÿ

λjěc

log
λj
γj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ă 1`
ÿ

λjěc

ˇ

ˇ

ˇ
pλj ´ γjqN

´1{2`ε
ˇ

ˇ

ˇ
ă N2ε. (2.72)

Combing (2.71) and (2.72), we conclude (2.56) for b “ 0.

Lemma 2.23 (Lower bound on the smallest singular value). If N ă M and the entries of X have
a density bounded by NC3 for some C3 ą 0, then

| log λ1pzq| ă 1 (2.73)

holds uniformly for z in any fixed compact set. If N “ M , the bounded density condition is not
necessary.

Proof. To prove (2.73), we need to prove that

P
´

λ1pzq ď e´N
ε
¯

ď N´C (2.74)

for any ε, C ą 0. In the case N “ M without the bounded density assumption, we have λ1pzq ě
τλ11pzq, where λ11pzq is the smallest singular values of X´T´1z. Following [32] or [36, Theorem 2.1],
we have | log λ11pzq| ă 1, which further proves (2.73).

Now we turn to the case N ăM with the bounded density assumption. By (2.49) we have that

TX ´ z “ UDpV1X ´D
´1U´1zq “: UDỸ pzq.

Hence it suffices to control the smallest singular value of Ỹ pzq, call it λ̃1pzq. Notice the columns
Ỹ1, . . . , ỸN of Ỹ pzq are independent vectors. From the variational characterization

λ̃1pzq “ min
|u|“1

}Ỹ pzqu}2,

we can easily get

λ̃1pzq
1{2 ě N´1{2 min

1ďkďN
dist

´

Ỹk, spantỸl, l ‰ ku
¯

“ N´1{2 min
1ďkďN

ˇ

ˇ

ˇ
xỸk, uky

ˇ

ˇ

ˇ
, (2.75)
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where uk is the unit normal vector of spantỸl, l ‰ ku and hence is independent of Ỹk. By conditioning
on uk, we get immediately

Ppλ̃1pzq ď N´C0q ď CN´C0{2`C3`3{2, (2.76)

which is a much stronger result than (2.74). Here we have used Theorem 1.2 of [34] to conclude that
xȲk, uky for fixed uk has density bounded by CNC3 .

2.5 Outline of the paper

The rest of this paper is devoted to the proof of Theorems 2.18 and 2.19. In Section 3, we collect the
basics tools that we shall use throughout the proof. In Section 4, we perform step (A) of the proof by
proving the entrywise local law and averaged local law in Theorem 2.18 under the assumption that
T is diagonal. We first prove a weak version of the entrywise local law in Sections 4.1-4.3, and then
improve the weak law to the strong entrywise local law and averaged local law in Sections 4.4-4.5.
In Section 5, we perform step (B) of the proof by proving the anisotropic local law in Theorem 2.18
using the entrywise local law proved in Section 4. Finally in Section 6 we finish the step (C) of the
proof, where using Theorem 2.18, we prove Theorem 2.19 with a self-consistent comparison method.

The first part of Appendix A establishes the basic properties of ρ1,2c stated in Lemma 2.3 and
Proposition 2.14. In Sections A.2 and A.3, we establish some key estimates on m1,2c and the stability
of the self-consistent equation (2.11) on regular domains.

3 Basic tools

In this preliminary section, we collect various identities and estimates that we shall use throughout
the following.

Definition 3.1 (Minors). For J Ă I, we define the minor HpJq :“ tHst : s, t P IzJu, and
correspondingly GpJq :“ pHpJqq´1. Let rJs :“ ts P I : s P J or s̄ P Ju. We also denote
HrJs :“ tHst : s, t P IzrJsu and GrJs :“ pHrJsq´1. We abbreviate ptsuq ” psq, pts, tuq ” pstq,
rtsus ” rss and rts, tus “ rsts.

Notice that by the definition, we have H
pJq
st “ 0 and G

pJq
st “ 0 if s P J or t P J .

Lemma 3.2. (Resolvent identities).

(i) For i P I1 and µ P I2, we have

1

Gii
“ ´w ´ w

´

Y GpiqY :
¯

ii
,

1

Gµµ
“ ´w ´ w

´

Y :GpµqY
¯

µµ
. (3.1)

For i ‰ j P I1 and µ ‰ ν P I2, we have

Gij “ wGiiG
piq
jj

´

Y GpijqY :
¯

ij
, Gµν “ wGµµG

pµq
νν

´

Y :GpµνqY
¯

µν
. (3.2)

(ii) For i P I1 and µ P I2, we have

Giµ “ GiiG
piq
µµ

ˆ

´w1{2Yiµ ` w
´

Y GpiµqY
¯

iµ

˙

, (3.3)

Gµi “ GµµG
pµq
ii

ˆ

´w1{2Y :µi ` w
´

Y :GpµiqY :
¯

µi

˙

. (3.4)
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(iii) For r P I and s, t P Iztru,

G
prq
st “ Gst ´

GsrGrt
Grr

,
1

Gss
“

1

G
prq
ss

´
GsrGrs

GssG
prq
ss Grr

. (3.5)

(iv) All of the above identities hold for GpJq instead of G for J Ă I.

Proof. All these identities can be proved using Schur’s complement formula. They have been previ-
ously derived and summarized e.g. in [14, 15, 17].

Lemma 3.3. (Resolvent identities for Grijs groups).

(i) For i P I1, we have

G´1
riis “ Hriis ´

ÿ

k,l‰i

HriksG
ris
rklsHrlis. (3.6)

For i ‰ j P I1, we have

Grijs “ ´Griis
ÿ

k‰i

HriksG
ris
rkjs “ ´

ÿ

k‰j

G
rjs
riksHrkjsGrjjs (3.7)

“ ´GriisHrijsG
ris
rjjs `Griis

ÿ

k,lRti,ju

HriksG
rijs
rklsHrljsG

ris
rjjs. (3.8)

(ii) For k P I1 and i, j P I1ztku,

G
rks
rijs “ Grijs ´GriksG

´1
rkksGrkjs, (3.9)

and

G´1
riis “

´

G
rks
riis

¯´1

´G´1
riisGriksG

´1
rkksGrkis

´

G
rks
riis

¯´1

. (3.10)

(iii) All of the above identities hold for GrJs instead of G for J Ă I.

Proof. These identities can be proved using Schur’s complement formula. The details are left to the
reader.

Next we introduce the spectral decomposition of G. Let

Y “
N
ÿ

k“1

a

λkξkζ
:

k̄

be the singular decomposition of Y , where λ1 ě λ2 ě . . . ě λN ě 0 and tξku
N
k“1 and tζk̄u

N
k“1 are

orthonormal bases of CI1 and CI2 respectively. Then by (2.30), we have

G pwq “
N
ÿ

k“1

1

λk ´ w

˜

ξkξ
:

k w´1{2
?
λkξkζ

:

k̄

w´1{2
?
λkζk̄ξ

:

k ζk̄ζ
:

k̄

¸

. (3.11)

Definition 3.4 (Generalized entries). For v,w P CI , s P I and an IˆI matrix A, we shall denote

Avw :“ xv, Awy, Avs :“ xv, Aesy, Asw :“ xes, Awy, (3.12)

where es is the standard unit vector.
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Given vectors v P CI1 and w P CI2 , we always identify them with their natural embeddings
ˆ

v
0

˙

and

ˆ

0
w

˙

in CI . The exact meanings will be clear from the context.

Lemma 3.5. Fix τ ą 0. The following estimates hold uniformly for any w P Dpτ,Nq. We have

}G} ď Cη´1, }BwG} ď Cη´2. (3.13)

Let v P CI1 and w P CI2 , we have the bounds

ÿ

µPI2

|Gwµ|
2
“

ÿ

µPI2

|Gµw|
2
“

ImGww

η
, (3.14)

ÿ

iPI1

|Gvi|
2
“

ÿ

iPI1

|Giv|
2
“

ImGvv

η
, (3.15)

ÿ

iPI1

|Gwi|
2
“

ÿ

iPI1

|Giw|
2
“ |w|

´1
Gww ` w̄ |w|

´1 ImGww

η
, (3.16)

ÿ

µPI2

|Gvµ|
2
“

ÿ

µPI2

|Gµv|
2
“ |w|

´1
Gvv ` w̄ |w|

´1 ImGvv

η
. (3.17)

All of the above estimates remain true for GpJq instead of G for J Ă I.

Proof. The estimates in (3.13) follow from (3.11). For any unit vectors x,y P CI1 , we have

|xx, Gyy| ď
N
ÿ

k“1

|xx, ξky|
ˇ

ˇ

ˇ
xξ:k,yy

ˇ

ˇ

ˇ

|λk ´ w|
ď

1

η

«

N
ÿ

k“1

|xx, ξky|
2

ff1{2 « N
ÿ

k“1

ˇ

ˇ

ˇ
xξ:k,yy

ˇ

ˇ

ˇ

2
ff1{2

“
1

η
.

For any unit vectors x P CI1 and y P CI2 , we have

|xx, Gyy| ď |w|
´1{2

N
ÿ

k“1

?
λk |xx, ξky|

ˇ

ˇ

ˇ
xζ:
k̄
,yy

ˇ

ˇ

ˇ

|λk ´ w|
ď

N
ÿ

k“1

1

2η

ˆ

|xx, ξky|
2
`

ˇ

ˇ

ˇ
xζ:
k̄
,yy

ˇ

ˇ

ˇ

2
˙

“
1

η
,

where we have used that for w “ E ` iη, |w|
´1{2?

λk{|λk ´ w| ď η´1. For the other two blocks of
G, we can prove similar estimates. This implies (3.13). It is trivial to generalize the proof to BwG,
where η´2 comes from the pλk ´ wq

´2 factor of BwG. For (3.14), we observe that

ImGww

η
“

1

η
Im

N
ÿ

k“1

xw, ζk̄y xζ
:

k̄
,wy

λk ´ w
“

N
ÿ

k“1

|xw, ζky|
2

pλk ´ Eq
2
` η2

and by (2.30)

ÿ

µPI2

|Gwµ|
2
“

ÿ

µPI2

xw, GReµy xeµ, G
:

Rwy “
A

w, GRG
:

Rw
E

“

N
ÿ

k“1

|xw, ζky|
2

pλk ´ Eq
2
` η2

. (3.18)

Similarly, we can prove the identity for
ř

µPI2

|Gµw|
2

and (3.15). For identity (3.16), first we can prove

ř

iPI1

|Gwi|
2
“

ř

iPI1

|Giw|
2

using (3.11). Then we use (2.30) and (3.18) to get

ÿ

iPI1

|Gwi|
2
“ |w|

´1
´

GRY
:Y G:R

¯

ww
“ |w|

´1
”

GR
`

Y :Y ´ w̄
˘

G:R

ı

ww
` w̄ |w|

´1
´

GRG
:

R

¯

ww
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“ |w|
´1
Gww ` w̄ |w|

´1
´

GRG
:

R

¯

ww
“ |w|

´1
Gww ` w̄ |w|

´1 ImGww

η
. (3.19)

Identity (3.17) can be proved in a similar way.

The following Lemma give useful large deviation bounds. See Theorem B.1 and Lemmas B.2-B.4
in [13] for the proof. See also Theorem C.1 of [14].

Lemma 3.6. (Large deviation bounds) Let pX
pNq
i q, pY

pNq
i q be independent families of random vari-

ables and pa
pNq
ij q, pb

pNq
i q be deterministic. Suppose all entries X

pNq
i and Y

pNq
i are independent and

satisfies (2.2) and (2.3). Then we have the following bounds:

ÿ

i

biXi ă

ˆ

ř

i

|bi|
2

˙1{2

?
N

,
ÿ

i,j

aijXiYj ă

˜

ř

i,j

|aij |
2

¸1{2

N
,

ÿ

i‰j

aijXiYj ă

˜

ř

i‰j

|aij |
2

¸1{2

N
. (3.20)

If the coefficients pa
pNq
ij q and pb

pNq
i q depend on some parameter u, then all of the above estimates are

uniform in u.

We have stated some basic properties of ρ1,2c and m1,2c in Lemma 2.3 and Proposition 2.14.
Now we collect more estimates for m1,2c that will be used in the proof. The next lemma is proved
in Appendix A.2. For w “ E ` iη P D, we define the distance to the spectral edge through

κ ” κpEq :“ min
1ďkď2L,eką0

|E ´ ek|. (3.21)

Notice in the |z| ă 1 case, we do not take into consideration the edge at e2L “ 0.

Lemma 3.7. Fix τ ą 0 and suppose τ ď ||z|2 ´ 1| ď τ´1. We denote w “ E ` iη.

Case 1 Fix τ 1 ą 0. Suppose the bulk component re2k, e2k´1s is regular in the sense of Definition 2.4.
Then for w P Db

kpζ, τ
1, Nq, we have

|1`m1c| „ Imm1c „ 1, |m2c| „ Imm2c „ 1. (3.22)

Case 2 Fix τ 1 ą 0. Then for w P Dopζ, τ 1, Nq, we have

Imm1,2c „ η, |1`m1c| „ 1, |m2c| „ 1. (3.23)

Case 3 Suppose ek ‰ 0 is a regular edge. Then for w P De
kpζ, τ

1, Nq, if τ 1 ą 0 is small enough,

Imm1,2c „

#?
κ` η if E P supp ρ1,2c

η{
?
κ` η if E R supp ρ1,2c

, |1`m1c| „ 1, |m2c| „ 1. (3.24)

Case 4 Suppose |z|2 ď 1 ´ τ . We take e2L “ 0 and τ 1 ą 0 to be small enough. Then for w P

De
2Lpζ, τ

1, Nq, if Imw ě τ 1, we have

|1`m1c| „ Imm1c „ 1, |m2c| „ Imm2c „ 1; (3.25)

if |w| ď 2τ 1, we have

m1c “ i

?
t

?
w
`Op1q, m2c “

i
?
t

?
wpt` |z|2q

`Op1q, (3.26)

for some constant t ą 0, and
Imm1,2c „ |w|

´1{2. (3.27)
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Case 5 For w P DLpζq, we have

|m1c| „ Imm1c „
1

η
, |m2c| „ Imm2c „

1

η
. (3.28)

In Cases 1-4, we have
ˇ

ˇ

ˇ
w p1` sim2cq p1`m1cq ´ |z|

2
ˇ

ˇ

ˇ
ě c, (3.29)

where c ą 0 is some constant that may depend on τ and τ 1. In Case 5, we have

ˇ

ˇ

ˇ
w p1` sim2cq p1`m1cq ´ |z|

2
ˇ

ˇ

ˇ
ě η, (3.30)

Note that the uniform bounds (3.29) and (3.30) guarantee that the matrix entries of Πpwq remain
bounded. We have the following Lemma, which is prove in Appendix A.2.

Lemma 3.8. In Cases 1-4 of Lemma 3.7, we have

}πrisc} ď C|w|´1{2,
›

›

›

`

πrisc
˘´1

›

›

›
ď C|w|1{2, (3.31)

and in Case 5 of Lemma 3.7, we have

}πrisc} ď Cη´1,
›

›

›

`

πrisc
˘´1

›

›

›
ď Cη. (3.32)

For all the cases in Lemma 3.7,

Im Πvv ď CImpm1c `m2cq, (3.33)

uniformly in w and any deterministic unit vector v P CI .

The self-consistent equation (2.11) can be written as

Υpw,m1q “ 0, (3.34)

where

Υpw,m1q “ m1 `
1

N

n
ÿ

i“1

lisip1`m1q

«

w

˜

1` si
1`m1

´wp1`m1q
2 ` |z|

2

¸

p1`m1q ´ |z|
2

ff´1

. (3.35)

The stability of (3.34) roughly says that if Υpw,m1q is small and m1pw
1q ´ m1cpw

1q is small for
w1 :“ w` iN´10, then m1pwq ´m1cpwq is small. For an arbitrary w P D, we define the discrete set

Lpwq :“ twu Y tw1 P D : Rew1 “ Rew, Imw1 P rImw, 1s X pN´10Nqu, (3.36)

Thus, if Imw ě 1 then Lpwq “ twu, and if Imw ă 1 then Lpwq is a 1-dimensional lattice with
spacing N´10 plus the point w. Obviously, we have |Lpwq| ď N10.

Definition 3.9 (Stability of (3.34)). We say that (3.34) is stable on D if the following holds.
Suppose that N´2|m1c| ď δpwq ď plogNq´1|m1c| for w P D and that δ is Lipschitz continuous with
Lipschitz constant ď N4. Suppose moreover that for each fixed E, the function η ÞÑ δpE ` iηq is
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non-increasing for η ą 0. Suppose that u1 : D Ñ C is the Stieltjes transform of a positive integrable
function. Let w P D and suppose that for all w1 P Lpwq we have

|Υpw, u1q| ď δpwq. (3.37)

Then

|u1pwq ´m1cpwq| ď
Cδ

?
κ` η ` δ

, (3.38)

for some constant C ą 0 independent of w and N .
We say that (3.34) is stable on DL if for 0 ď δpwq ď plogNq´1|m1c|, (3.37) implies

|u1pwq ´m1cpwq| ď Cδ, (3.39)

for some constant C ą 0 independent of w and N .

This stability condition has previously appeared in [4, 7, 24]. In [24], for example, the stability
condition was established under various regularity assumptions. In the following lemma, we establish
the stability on each regular domain. The proof is presented in Appendix A.3. This lemma leaves
the case |w|1{2 ` |z|2 “ op1q alone. We will handle this case in a different way in Section 4.5.

Lemma 3.10. Fix τ ą 0 and let τ 1 ą 0 be sufficiently small depending on τ . Let τ ď ||z|2´1| ď τ´1.

Case 1 Suppose the bulk component re2k, e2k´1s is regular in the sense of Definition 2.4. Then (3.34)
is stable on Db

kpζ, τ
1, Nq in the sense of Definition 3.9.

Case 2 (3.34) is stable on Dopζ, τ 1, Nq in the sense of Definition 3.9.

Case 3 Suppose ek ‰ 0 is a regular edge in the sense of Definition 2.4. Then (3.34) is stable on
De
kpζ, τ

1, Nq in the sense of Definition 3.9.

Case 4 Suppose |z|2 ď 1´ τ and e2L “ 0. If |w|1{2 ` |z|2 ě ε for some constant ε ą 0, then (3.34) is
stable on De

2Lpζ, τ
1, Nq in the sense of Definition 3.9.

Case 5 (3.34) is stable on DLpζq in the sense of Definition 3.9.

4 Entrywise local law when T is diagonal

In this section we prove the entrywise local law and averaged local law in Theorem 2.18 when T is
diagonal. The proof is similar to the previous proofs of entrywise locals laws in e.g. [4, 5, 7, 24]. We
basically follow the ideas in [7], and we will provide necessary details for the parts that are different
from the previous proofs.

The main novel observation of this section is that the self-consistent equations (2.9) and (2.10)
can be “derived” from the random matrix model by an application of Schur’s complement formula.
It is helpful to give a heuristic argument here. We introduce the conditional expectation

Erisr¨s :“ Er¨ | Hriss,

i.e. the partial expectation in the randomness of the i and ī-th rows and columns of H. For the
diagonal Griis group, we ignore formally the random fluctuations in (3.6) to get that

G´1
riis « ErisHriis ´

ÿ

k,l‰i

Eris
´

HriksG
ris
rklsHrlis

¯

“

ˆ

´w ´w1{2z

´w1{2z̄ ´w

˙

´
w

N

ÿ

k

˜

|di|
2G

ris

k̄k̄
0

0 |dk|
2G

ris
kk

¸
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“

ˆ

´w ´w1{2z

´w1{2z̄ ´w

˙

´ w

ˆ

|di|
2m2 0
0 m1

˙

, (4.1)

where we use the definition of m1 and m2 in (2.34). The 11 entry of (4.1) gives the equation

Gii «
´1´m1

w p1` |di|2m2q p1`m1q ´ |z|
2 , (4.2)

from which we get that

Gii

„

´w
`

1` |di|
2m2

˘

`
|z|2

1`m1



« 1.

Summing over i and using that N´1
ř

iGii “ N´1
ř

µGµµ “ m2, the above equation becomes

´w pm2 `m1m2q `
|z|2m2

1`m1
« 1,

which gives (2.9). Multiplying (4.2) with |di|
2 and summing over i, we get the self-consistent equation

(2.10). In this section we give a justification of these approximations.
Before we start the proof, we make the following remark. In this section we mainly focus on

the domain D. On the domain DL, the proofs are much simpler and we only describe them briefly.
The parameter z can be either inside or outside of the unit circle. Recall Lemmas 3.7 and 3.10, the
domain D of w can be divided roughly into four cases: w near a nonzero regular edge, w Ñ 0, w in
the bulk, or w outside the spectrum. In this section we will only consider the case |z|2 ď 1´ τ since
it covers all four different behaviors. Notice in this case |m1,2cpwq| „ |w|

´1{2 for w in any compact
set of C` by Proposition 2.15. Also due to the remark above Lemma 3.10, in Sections 4.1-4.4, we
assume |w|1{2 ` |z|2 ě c for some c ą 0. We will handle the |w|1{2 ` |z|2 “ op1q case in Section 4.5.

4.1 The self-consistent equations

To begin with, we prove the following weak version of the entrywise local law.

Proposition 4.1 (Weak entrywise law). Fix |z|
2
ď 1 ´ τ and a small constant c ą 0. Suppose

Assumption 2.1 holds, N “M and T ” D :“ diagpd1, ..., dN q. Then for any regular domain S Ă D,

max
i,jPI1

›

›

›
pGpwq ´Πpwqqrijs

›

›

›
ă

1

|w|1{2

ˆ

|w|1{2

Nη

˙1{4

(4.3)

for all w P S such that |w|1{2 ` |z|2 ě c. For w P DL, we have

max
i,jPI1

›

›

›
pGpwq ´Πpwqqrijs

›

›

›
ă

1

η

c

1

N
. (4.4)

For the purpose of proof, we define the following random control parameters.

Definition 4.2 (Control parameters). Suppose N “M and T ” D :“ diagpd1, ..., dN q. We define

Λ :“ max
i,jPI1

›

›

›
pG´Πqrijs

›

›

›
, Λo :“ max

i‰jPI1

›

›

›
pG´Πqrijs

›

›

›
. (4.5)

For J Ď I, define the averaged variables m
pJq
1,2 (m

rJs
1,2) by replacing G in (2.34) with GpJq (GrJs), i.e.

m
pJq
1 :“

1

N

ÿ

iRJ

|di|
2G

pJq
ii , m

pJq
2 :“

1

N

ÿ

µRJ

GpJqµµ . (4.6)
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The averaged error and the random control parameter are defined as

θ :“ |m1 ´m1c| ` |m2 ´m2c|, Ψθ :“

d

Im pm1c `m2cq ` θ

Nη
`

1

Nη
. (4.7)

Remark: By (2.4), we immediately get that

τ Imm
pJq
1 ď Imm

pJq
2 ď τ´1Imm

pJq
2 , (4.8)

and θ “ OpΛq, since |m1 ´m1c| ď τ´1Λ, |m2 ´m2c| ď Λ.

We introduce the Z variables

Z
rJs
ris :“ p1´ Erisq

´

G
rJs
riis

¯´1

.

By the identity (3.6) we have

G´1
riis “ ErisG´1

riis ` Zris “

˜

´w ´ w |di|
2
m
ris
2 ´w1{2z

´w1{2z̄ ´w ´ wm
ris
1

¸

` Zris, (4.9)

where

Zris “ w

˜

|di|
2m

ris
2 ´ |di|

2
`

XGrisX:
˘

ii
w´1{2diXīi ´

`

DXGrisDX
˘

īi

w´1{2d̄iX
:

īi
´
`

X:D:GrisX:D:
˘

īi
m
ris
1 ´

`

X:D:GrisDX
˘

ī̄i

¸

. (4.10)

Lemma 4.3. For J Ď I1, the following crude bound on the difference between ma and m
rJs
a (a “ 1, 2)

holds:
ˇ

ˇ

ˇ
ma ´m

rJs
a

ˇ

ˇ

ˇ
ď
C |J |

Nη
, a “ 1, 2, (4.11)

where C “ Cpτq is a constant depending only on τ .

Proof. For i P I1, we have

|m1 ´m
piq
1 | “

1

N

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

kPI1

|dk|
2GkiGik

Gii

ˇ

ˇ

ˇ

ˇ

ˇ

ď
τ´1

N |Gii|

ÿ

kPI1

|Gik|
2 “

τ´1

Nη

ImGii
|Gii|

ď
τ´1

Nη
(4.12)

where in the first step we use (3.5), in the second and third steps the equality (3.15). Similarly,
using (3.5) and (3.16) we get

|m
piq
1 ´m

pīiq
1 | “

1

N

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

kPI1

|dk|
2
G
piq

kī
G
piq

īk

G
piq

ī̄i

ˇ

ˇ

ˇ

ˇ

ˇ

ď
τ´1

N |G
piq

ī̄i
|

˜

G
piq

ī̄i

|w|
`

w̄

|w|

ImG
piq

ī̄i

η

¸

ď
2τ´1

Nη
.

By induction on the indices in rJs, we can prove (4.12). The proof for m2 is similar.

Lemma 4.4. Suppose |z|2 ď 1´ τ . For i P I1, we have

|
`

Zris
˘

11
| ă |w|

d

Imm
ris
2

Nη
, |

`

Zris
˘

22
| ă |w|

d

Imm
ris
1

Nη
, (4.13)
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|
`

Zris
˘

st
| ă |w|

¨

˝

|w|
´1{2

?
N

`

d

|m
ris
1 |

N |w|
`

d

Imm
ris
1

Nη

˛

‚ for s ‰ t P t1, 2u, (4.14)

uniformly in w P DYDL. In particular, these imply that

Zris ă |w|Ψθ, (4.15)

uniformly in w P D, and
Zris ă |w|pNηq´1{2, (4.16)

uniformly in w P DL.

Proof. Apply the large deviation Lemma 3.6 to Zris in (4.10), we get that

ˇ

ˇ

ˇ

ˇ

ˇ

`

Zris
˘

11

w

ˇ

ˇ

ˇ

ˇ

ˇ

ă
1

N

»

–

˜

ÿ

µ

ˇ

ˇ

ˇ
Grisµµ

ˇ

ˇ

ˇ

2
¸1{2

`

˜

ÿ

µ‰ν

ˇ

ˇ

ˇ
Grisµν

ˇ

ˇ

ˇ

2
¸1{2

fi

fl ď
C

N

˜

ÿ

µ,ν

ˇ

ˇ

ˇ
Grisµν

ˇ

ˇ

ˇ

2
¸1{2

“
C

N

˜

ÿ

µ

ImG
ris
µµ

η

¸1{2

“ C

d

Imm
ris
2

Nη
.

where in the third step we use the equality (3.14). Similarly we can prove the bound for
`

Zris
˘

22

using Lemma 3.6 and (3.15). Now we consider
`

Zris
˘

12
. First, we have Xīi ă N´1{2 by (2.3). For

the other part, we use Lemma 3.6 and (3.17) to get that

ˇ

ˇ

ˇ

´

DXGrisDX
¯

īi

ˇ

ˇ

ˇ
ă

1

N

˜

ÿ

j,µ

|dj |
2
ˇ

ˇ

ˇ
G
ris
µj

ˇ

ˇ

ˇ

2
¸1{2

“
1

N

«

ÿ

j

|dj |
2

˜

|w|
´1
G
ris
jj `

w̄

|w|

ImG
ris
jj

η

¸ff1{2

ď

«

|m
ris
1 |

N |w|
`

Imm
ris
1

Nη

ff1{2

ď C

¨

˝

d

|m
ris
1 |

N |w|
`

d

Imm
ris
1

Nη

˛

‚. (4.17)

Similarly we can prove the estimate for
`

Zris
˘

21
.

Now we prove (4.15). By the definitions (4.7) and using (4.11), we get that

ˇ

ˇ

`

Zris
˘

11

ˇ

ˇ ă |w|

d

Imm
ris
2

Nη
“ |w|

g

f

f

e

Imm2c ` Im
´

m
ris
2 ´m2

¯

` Im pm2 ´m2cq

Nη
ď C|w|Ψθ. (4.18)

We can estimate
`

Zris
˘

22
and the third term in (4.14) in a similar way. For the Cases 1-4 in Lemma

3.7, we have |m1c| „ 1 for |w| „ 1, Imm1c „ |w|
´1{2 „ |m1c| for |w| Ñ 0, and η ď CImm1c. Thus

d

|m1c|

N |w|
ď

C
?
N
ď CΨθ for |w| „ 1,

d

|m1c|

N |w|
ď C

d

Imm1c

Nη
ď CΨθ for |w| Ñ 0.

Then for the second term in (4.14), we have that
d

|m
ris
1 |

N |w|
ď C

˜

1

Nη
`

d

θ

Nη
`

d

|m1c|

N |w|

¸

ď CΨθ.

This concludes (4.15). Finally, the estimate (4.16) follows directly from (4.13), (4.14) and (3.13).
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Lemma 4.5. Suppose |z|2 ď 1´ τ . Define the w-dependent event Ξpwq :“ tθ ď |w|´1{2plogNq´1u.
Then we have that for w P D,

1pΞqm2 “ 1pΞq

«

1`m1

´w p1`m1q
2
` |z|2

`OăpΨθq

ff

, 1pΞqΥpw,m1q ă 1pΞqΨθ, (4.19)

where Υ is defined in (3.35). For w P DL, we have

m2 “
1`m1

´w p1`m1q
2
` |z|2

`Oă

´

η´1pNηq´1{2
¯

, Υpw,m1q ă η´1 pNηq
´1{2

. (4.20)

Proof. Using (4.9), we get
G´1
riis “ π´1

ris ` εris, (4.21)

where πris is defined in (2.36) and

εris “ w

˜

|di|
2
´

m2 ´m
ris
2

¯

0

0 m1 ´m
ris
1

¸

` Zris.

By (4.11) and (4.15), we get that εris ă |w|Ψθ. Let Bi “ π´1
ris ´ π

´1
risc, where πrisc is defined in (2.32).

By (3.31) and the definition of Ξ, we have 1pΞq}Biπrisc} ď CplogNq´1. Thus we have the expansion

1pΞqπris “ 1pΞqpπ´1
risc `Biq

´1 “ 1pΞqπrisc
`

1´Biπrisc ` pBiπriscq
2 ` . . .

˘

“ 1pΞqpπrisc ` εaq, (4.22)

where εa can be estimated as 1pΞq}εa} ď 1pΞqC|w|´1{2plogNq´1. This shows that 1pΞq}πris} “

1pΞqOp|w|´1{2q, and so 1pΞq
›

›εrisπris
›

› ă 1pΞq|w|1{2Ψθ ď 1 pΞqCN´ζ{2 by the definition of D in
(2.39). Again we do the expansion for (4.21),

1pΞqGriis “ 1pΞq
´

π´1
ris ` εris

¯´1

“ 1pΞqπris

˜

1`
8
ÿ

l“1

`

´εrisπris
˘l

¸

“ 1pΞq
`

πris ` εb
˘

, (4.23)

where 1pΞq}εb} ă 1pΞqΨθ. Now the 11 entry of (4.23) gives that

1pΞqGii “ 1pΞq
´1´m1

w p1` |di|2m2q p1`m1q ´ |z|
2 ` 1pΞqOă pΨθq , (4.24)

from which we get that

1pΞqGii

„

´w
`

1` |di|
2m2

˘

`
|z|2

1`m1



“ 1pΞq
”

1`Oă

´

|w|1{2Ψθ

¯ı

. (4.25)

Here we use that

1pΞq

„

´w
`

1` |di|
2m2

˘

`
|z|2

1`m1



“ Op|w|1{2q,

which follows from Proposition 2.15 and the definition of Ξ. Summing (4.25) over i,

1pΞq

„

´w pm2 `m1m2q `
|z|2m2

1`m1



“ 1pΞq
”

1`Oă

´

|w|1{2Ψθ

¯ı

,
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which gives

1pΞqm2 “ 1pΞq
1`m1

´w p1`m1q
2
` |z|2

` 1pΞqOă pΨθq . (4.26)

Now plug (4.26) into (4.24), multiply with |di|
2 and sum over i, we get

1pΞqm1 “ 1pΞq

»

–

1

N

n
ÿ

i“1

lisi
´1´m1

w
´

1` si
1`m1

´wp1`m1q
2`|z|2

¯

p1`m1q ´ |z|
2
`Oă pΨθq

fi

fl , (4.27)

where we use (3.29) and 1pΞqp1`m1q “ 1pΞqOp|w|´1{2q. This concludes the proof.
Similarly, when w P DL, it is easy to prove (4.20) using the estimates (4.16) and (3.13). Note that

|m1,2| “ Opη´1q by (3.13), which implies immediately the bounds }πris} “ Opη´1q and }
`

πris
˘´1

} “

Opηq. Hence without introducing the event Ξ, we can obtain directly

Griis “ πris `Oăpη
´1pNηq´1{2q. (4.28)

The rest of the proof is essentially the same.

Notice that applying Lemma 3.10 to (4.20), we obtain |m1,2 ´m1,2c| ă η´1pNηq´1{2. Plugging
it into (4.28), we get immediately (4.4) for w P DL. This proves the entrywise law on DL, since
η´1N´1{2 ď CΨ by the definition (2.45) and the estimate (3.28).

4.2 The large η case

It remains prove Proposition 4.1 on domain D. We would like to fix E and then apply a continuity
argument in η by first showing that the rough bound Λ ď |w|´1{2plogNq´1 in Lemma 4.5 holds for
large η. To start the argument, we first need to establish the estimates on G when η „ 1. The next
lemma is a trivial consequence of (3.13).

Lemma 4.6. For any w P D and η ě c for fixed c ą 0, we have the bound

max
s,t

|Gst pwq| ď C (4.29)

for some C ą 0. This estimate also holds if we replace G with GpJq for J Ă I.

Lemma 4.7. Fix c ą 0 and |z|2 ď 1´ τ . We have the following estimate

max
wPD,ηěc

Λ pwq ă N´1{2. (4.30)

Proof. By the previous lemma, we have |m
ris
1,2| “ Op1q. So by Lemma 4.4, }Zris} ă N´1{2 uniformly

in η ě c. Then as in (4.21),

Griis “
´

π´1
ris ` εris

¯´1

, (4.31)

where }π´1
ris } “ Op1q and }εris} ă N´1{2. Notice since Griis “ Op1q, we have the estimate

πi “
´

G´1
riis ´ εris

¯´1

“ Griis
`

1´ εrisGriis
˘´1

“ Oăp1q.
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Then we can expand (4.31) to get that

Griis “ πi `Oă

´

N´1{2
¯

. (4.32)

The 11 and 22 entries of (4.32) leads to the equations

m1 “
1

N

N
ÿ

i“1

|di|
2

«

´w
`

1` |di|
2m2

˘

`
|z|

2

1`m1

ff´1

`Oă

´

N´1{2
¯

, (4.33)

m2 “
1

N

N
ÿ

i“1

«

´w p1`m1q `
|z|

2

1` |di|2m2

ff´1

`Oă

´

N´1{2
¯

. (4.34)

Our goal is to prove that Imm1,2 ě CplogNq´1 with high probability for some C ą 0.
Using the spectral decomposition (3.11), we note that for l ą 1,

1

N

ÿ

|λk´E|ělη

|E ´ λk|

pλk ´ Eq2 ` η2
ď

1

lη
,

1

N

ÿ

|λk´E|ďlη

|E ´ λk|

pλk ´ Eq2 ` η2
ď

1

N

ÿ

|λk´E|ďlη

lη

pλk ´ Eq2 ` η2
ď lImm2.

Summing up these two inequalities and optimizing l, we get

|Rem2| ď 2

d

Imm2

η
. (4.35)

Assume that Imm2 ď CplogNq´1, then by (4.8) we also have Imm1 ď Cτ´1plogNq´1. From (4.35),
we get |m2| ď CplogNq´1{2. Together with Imw “ η ě c and Imr|z|2{p1`m1qs ă 0, (4.33) gives

|m1| ď
1

N

ÿ

i

|di|
2

ˇ

ˇ

ˇ

ˇ

ˇ

Im

«

´w
`

1` |di|
2m2

˘

`
|z|

2

1`m1

ff
ˇ

ˇ

ˇ

ˇ

ˇ

´1

` op1q ď C (4.36)

with high probability. Using the above estimate and |m2| ď CplogNq´1{2 we get
ˇ

ˇ

ˇ

ˇ

ˇ

´w p1`m1q `
|z|

2

1` |di|2m2

ˇ

ˇ

ˇ

ˇ

ˇ

ď C with high probability.

On the other hand

Im

«

´w p1`m1q `
|z|

2

1` |di|2m2

ff

ď ´Imw “ ´η, (4.37)

where we use Imr|z|2{p1` |di|
2m2qs ă 0 and

Impwm1q “ Im

«

1

N

N
ÿ

k“1

|di|
2|ξkpiq|

2

ˆ

´1`
λk

λk ´ w

˙

ff

ě 0.

Hence (4.34) implies Imm2 ě c with high probability for some c ą 0. This contradicts Imm2 ď

CplogNq´1. Thus Imm2 ě CplogNq´1 with high probability for some C ą 0 , which also implies
Imm1 ě CplogNq´1 by (4.8).
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Now we can proceed as in Lemma 4.5 and get that

m2 “
1`m1

´w p1`m1q
2
` |z|2

`Oă

´

N´1{2
¯

, Υpw,m1q ă N1{2. (4.38)

We omit the details. Applying Lemma 3.10 to (4.38), we conclude |m1,2´m1,2c| ă N´1{2 uniformly
in η ě c. By (4.32), we get }pG´Πqriis} ă N´1{2 uniformly in η ě c and i P I1. Finally using (3.8)
and Lemmas 3.5-3.6, we can prove the off-diagonal estimate (see (4.51)).

4.3 Proof of the weak entrywise local law

In this subsection, we finish the proof of Proposition 4.1 on domain D. We shall fix the real part
E of w “ E ` iη and decrease the imaginary part η. Recall Lemma 4.5 is based on the condition
Λ ď |w|´1{2plogNq´1 (i.e. event Ξ). So far this is only established for large η in (4.30). We want to
show this condition for small η also by using a continuity argument.

It is convenient to introduce the random function

vpwq “ max
w1PLpwq

θpw1q|w1|1{2
ˆ

N Imw1

|w1|1{2

˙1{4

,

where Lpwq is defined in (3.36). Fix a regular domain S, an ε ă ζ{4 and a large D ą 0. Our goal is
to prove that with high probability there is a gap in the range of v, i.e.

P
´

vpwq ď N ε, vpwq ą N3ε{4
¯

ď N´D`21 (4.39)

for all w P S and large enough N ě Npε,Dq.
Suppose vpwq ď N ε, then it is easy to verify

θpw1q ď C|w1|´1{2plogNq´1 (4.40)

for all w1 P Lpwq. Hence tvpwq ď N εu Ă Ξpw1q for all w1 P SX Lpwq. Then by (4.19), we have that
for all w1 P SXLpwq, there exists an N0 ” N0pε,Dq such that

P

¨

˝vpwq ď N ε,Υpw1q ą
N ε

|w1|1{2

d

|w1|
1{2

N Imw1

˛

‚ď N´D, (4.41)

for all N ą N0. Taking the union bound we get

P

˜

vpwq ď N ε, max
w1PLpwq

Υpw1q

d

N Imw1

|w1|
´1{2

ą N ε

¸

ď N´D`10. (4.42)

Now consider the event

Ξ1 :“

#

vpwq ď N ε, max
w1PLpwq

Υpw1q

d

N Imw1

|w1|
´1{2

ď N ε

+

. (4.43)

Then 1pΞ1qΥpw
1q ď δ pw1q for all w1 P Lpwq with δ pw1q “ Nε

|w1|1{2

b

|w1|1{2

NImw1 . We now apply Lemma

3.10. If κ ! 1 (recall (3.21)), then |w| „ 1 and we have

1pΞ1q|m1pw
1q ´m1cpw

1q| ď C
a

δpw1q ď CN ε{2

ˆ

1

N Imw1

˙1{4

30



for all w1 P Lpwq; if κ ě c ą 0 for some constant c ą 0, then

1pΞ1q|m1pw
1q ´m1cpw

1q| ď Cδpw1q ď C
N ε

|w1|1{2

˜

|w1|
1{2

N Imw1

¸1{2

for all w1 P Lpwq. Combining these two cases we get

1pΞ1q|m1pw
1q ´m1cpw

1q| ď C
N ε{2

|w1|
1{2

˜

|w1|
1{2

N Imw1

¸1{4

(4.44)

for all w1 P Lpwq. By (4.19), we have

1pΞ1q|m2pw
1q ´m2cpw

1q| ă 1pΞ1q|m1pw
1q ´m1cpw

1q| ` 1pΞ1qΨθ ă
N ε{2

|w1|
1{2

˜

|w1|
1{2

N Imw1

¸1{4

,

for all w1 P SXLpwq. Combining this bound with (4.44), we see there is N1 ” N1pε,Dq such that

P

¨

˝vpwq ď N ε, max
w1PLpwq

Υpw1q

d

N Imw1

|w1|
´1{2

ď N ε, max
w1PLpwq

θpw1q|w1|1{2

˜

N Imw1

|w1|
1{2

¸1{4

ą N3ε{4

˛

‚ď N´D

(4.45)
for N ě maxtN0, N1u. Adding (4.42) and (4.45), we get

P

¨

˝vpwq ď N ε, max
w1PLpwq

θpw1q|w1|1{2

˜

N Imw1

|w1|
1{2

¸1{4

ą N3ε{4

˛

‚ď N´D`11.

Taking the union bound over Lpwq we get (4.39) for all N ě maxtN0, N1u.
Now we conclude the proof of Proposition 4.1 by combining (4.39) with the large η estimate

(4.30). We choose a lattice ∆ Ă S such that |∆| ď N20 and for any w P S there is a w1 P ∆ with
|w1 ´ w| ď N´9. Taking the union bound we get

P
´

Dw P ∆ : vpwq P pN3ε{4, N εs

¯

ď N´D`41. (4.46)

Since v has Lipshcitz constant bounded by, say, N6, then we have

P
´

Dw P S : vpwq P p2N3ε{4, N ε{2s
¯

ď N´D`41. (4.47)

Combining with (4.30), we see that there exists N2 ” N2pε,Dq such that for N ą N2,

P
´

@w P S : vpwq ď 2N3ε{4
¯

ě 1´ 2N´D`41.

Since ε and D are arbitrary, the above inequality shows that vpwq ă 1 uniformly in w P S, or

θpwq ă
1

|w|1{2

ˆ

|w|1{2

Nη

˙1{4

. (4.48)

In particular we see that for all w P S, the event Ξ holds with high-probability.
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Now using (4.23) and (4.48), we get

›

›Griis ´ πrisc
›

› ď
›

›Griis ´ πris
›

›`
›

›πris ´ πrisc
›

› ă Ψθ ` θ ă
1

|w|1{2

ˆ

|w|1{2

Nη

˙1{4

. (4.49)

To conclude Proposition 4.1, it remains to prove the estimate for the off-diagonal entries. By (4.11),
it is not hard to see that

›

›

›
G
rJs
riis ´ πrisc

›

›

›
ă

1

|w|1{2

ˆ

|w|1{2

Nη

˙1{4

(4.50)

for any |J | ď l with l P N fixed. Thus we have G
rJs
riis “ O

`

|w|´1{2
˘

and
´

G
rJs
riis

¯´1

“ O
`

|w|1{2
˘

with

high probability. Let i ‰ j P I1, using (3.8) and the above diagonal estimates, we get that

›

›Grijs
›

› ă |w|´1 |w|
1{2

?
N

` |w|´1

›

›

›

›

›

›

ÿ

k,lRti,ju

HriksG
rijs
rklsHrljs

›

›

›

›

›

›

ă Ψθ ă
1

|w|1{2

ˆ

|w|1{2

Nη

˙1{4

, (4.51)

where, as in the proof of Lemma 4.4, we use Lemmas 3.5 and 3.6 to obtain that

|w|´1

›

›

›

›

›

›

ÿ

k,lRti,ju

HriksG
rijs
rklsHrljs

›

›

›

›

›

›

“

›

›

›

›

›

˜

ř

k,lRti,juXik̄G
rijs

k̄l̄
X:
l̄j

ř

k,lRti,juXik̄G
rijs

k̄l
Xlj̄

ř

k,lRti,juX
:

īk
G
rijs

kl̄
X:
l̄j

ř

k,lRti,juX
:

īk
G
rijs
kl Xlj̄

¸
›

›

›

›

›

ă Ψθ. (4.52)

4.4 Proof of the strong enterywise local law

In this section, we finish the proof of the (strong) entrywise local law in Theorem 2.18 on domain
D and under the condition |w|1{2` |z|2 ě c. In Lemma 4.5, we have proved an error estimate of the
self-consistent equations of m1,2 linearly in Ψθ. The core part of the proof is to improve this estimate
to quadratic in Ψθ. For the sequence of random variables Zris, we define the averaged quantities

rZs “
1

N

N
ÿ

i“1

πrisZrisπris, xZy “
1

N

N
ÿ

i“1

|di|
2πrisZrisπris.

The following Lemma is an improvement of Lemma 4.5.

Lemma 4.8. Fix |z|
2
ď 1´ τ . Then for w P D,

m2 “
1`m1

´w p1`m1q
2
` |z|2

`Oăp|w|
1{2Ψ2

θ ` }rZs} ` }xZy}q, (4.53)

and
Υpw,m1q ă |w|1{2Ψ2

θ ` }rZs} ` }xZy}. (4.54)

For w P DL,

m2 “
1`m1

´w p1`m1q
2
` |z|2

`Oă

`

pNηq´1 ` }rZs} ` }xZy}
˘

, (4.55)

and
Υpw,m1q ă pNηq´1 ` }rZs} ` }xZy}. (4.56)
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Proof. The proof is almost the same as the one in Lemma 4.5, we only lay out the difference. We
first consider the case w P D. By Proposition 4.1, the event Ξ holds with high probability. Hence
without loss of generality, we may assume Ξ holds throughout the proof. Using (3.9), we get

1

N

ÿ

kPI1

ˆ

|dk|
2 0

0 1

˙

´

Grkks ´G
ris
rkks

¯

“

ˆ

|di|
2 0

0 1

˙

Griis

N
`

1

N

ÿ

k‰i

ˆ

|dk|
2 0

0 1

˙

GrkisG
´1
riisGriks.

(4.57)
By Proposition 4.1, (3.31) and (4.51), we have

›

›

›
GrkisG

´1
riisGriks

›

›

›
ă |w|1{2Ψ2

θ.

By Lemma 3.7, it is easy to verify that
›

›Griis{N
›

› ď C|w|1{2Ψ2
θ. Plug it into (4.57), we get

ˇ

ˇ

ˇ
m
ris
1,2 ´m1,2

ˇ

ˇ

ˇ
ă |w|1{2Ψ2

θ. (4.58)

Using (4.15) and (4.58), the error εb in p4.23q is

εb “ Oăp|w|
1{2Ψ2

θq ´ πrisZrisπris

”

1`Oăp|w|
1{2Ψθq

ı

“ Oăp|w|
1{2Ψ2

θq ´ πrisZrisπris.

Then following the arguments in Lemma 4.5, we can obtain the desired result on Ξ. For w P DL,
the proof is similar by using (4.4).

In the following lemma we prove stronger bounds on rZs and xZy by keeping track of the can-
cellation effects due to the average over the index i. The proof is given in Appendix B.

Lemma 4.9. (Fluctuation averaging) Fix |z|2 ď 1´τ . Suppose Φ and Φo are positive, N -dependent
deterministic functions satisfying N´1{2 ď Φ,Φo ď N´c for some constant c ą 0. Suppose moreover
that Λ ă |w|´1{2Φ and Λo ă |w|´1{2Φo. Then for w P D,

}rZs} ` }xZy} ă |w|
´1{2

Φ2
o. (4.59)

Now we finish the proof of the entrywise local law and averaged local law on the domain D. By
Proposition 4.1, we can take in Lemma 4.9

Φo “ |w|
1{2

d

Impm1c `m2cq ` |w|´3{8pNηq´1{4

Nη
, Φ “

ˆ

|w|1{2

Nη

˙1{4

,

with Λo ă Ψθ ă |w|´1{2Φo and Λ ă θ ă |w|´1{2Φ. Then (4.54) gives

Υpw,m1q ă
|w|1{2Impm1c `m2cq ` |w|

1{4pNηq´1{4

Nη
.

Then using the stability Lemma 3.10,

|m1 ´m1c| ă
|w|1{2Impm1c `m2cq

Nη
?
κ` η

`
|w|1{8

pNηq5{8
ă

1

Nη
`

|w|1{8

pNηq5{8
ă |w|´1{2

ˆ

|w|1{2

Nη

˙1{2`1{8

.

Here if
?
κ` η ě plogNq´1, we use

|w|1{2Impm1c `m2cq

Nη
?
κ` η

ď
C logN

Nη
ă

1

Nη
,
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while if
?
κ` η ď plogNq´1, we have Impm1c `m2cq “ Op

?
κ` ηq, which also gives that

|w|1{2Impm1c `m2cq

Nη
?
κ` η

ă
1

Nη
.

We then use (4.53) to get that

θ ă |m1 ´m1c| `
|w|1{2Impm1c `m2cq ` |w|

1{4pNηq´1{4

Nη
ă |w|´1{2

ˆ

|w|1{2

Nη

˙1{2`1{8

. (4.60)

Repeating the previous steps with the new estimate (4.60), we get the bound

θ ă |w|´1{2

ˆ

|w|1{2

Nη

˙

řl
k“1 1{2k`1{2l`2

after l iterations. This implies the averaged local law θ ă pNηq´1 since l can be arbitrarily large.
Finally as in (4.49) and (4.51), we have for i ‰ j

›

›Griis ´ πrisc
›

›`
›

›Grijs
›

› ă Ψθ ` θ ă

d

Impm1c `m2cq

Nη
`

1

Nη
.

This concludes the entrywise local law and averaged local law in Theorem 2.18 when |w|1{2`|z|2 „ 1.
When w P DL, we have proved the entrywise law (see the remark after (4.28)). Also we can

prove a similar result as Lemma 4.9, which implies

m2 “
1`m1

´w p1`m1q
2
` |z|2

`Oă

`

pNηq´1
˘

, Υpw,m1q ă pNηq´1. (4.61)

The averaged local law then follows from Lemma 3.10. We leave the details to the reader.

4.5 Proof of Theorem 2.18 when |z| and |w| are small

In the previous proof, we did not include the case where |w|1{2 ` |z|2 ď ε for some sufficiently small
constant ε ą 0. The only reason is that Lemma 3.10 does not apply in this case. In this section, we
deal with this problem.

The main idea of this subsection is to use a different set of self-consistent equations, which has
the desired stability when |w| and |z| are small. Multiplying (4.24) with |di|

2 and summing over i,

1pΞqm1 “ 1pΞq

«

1

N

n
ÿ

i“1

lisi
´1´m1

w p1` sim2q p1`m1q ´ |z|
2 `Oă pΨθq

ff

. (4.62)

Recall that Σ :“ DD: “ D:D. We introduce a new matrix

H̃pwq :“

ˆ

´wΣ´1 w1{2pX ´D´1zq

w1{2pX ´D´1zq: ´wI

˙

, (4.63)

and define G̃ :“ H̃´1. By Schur’s complement formula, the upper left block of G̃ is

G̃L “
“

pX ´D´1zqpX ´D´1zq: ´ wΣ´1
‰´1

,
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and the lower right block is equal to

G̃R “
“

pX ´D´1zq:ΣpX ´D´1zq ´ w
‰´1

“
“

pDX ´ zq:pDX ´ zq ´ w
‰´1

“ GR.

Now we write m1,2 in another way as

m1 “
1

N
Tr

”

D:
`

Y Y : ´ w
˘´1

D
ı

“
1

N
Tr G̃L, (4.64)

m2 “
1

N
Tr G̃R “

1

N
Tr

“

pX ´D´1zq:ΣpX ´D´1zq ´ w
‰´1

“
1

N
Tr

“

pX ´D´1zqpX ´D´1zq:Σ´ w
‰´1

“
1

N
Tr

´

Σ´1G̃L

¯

. (4.65)

We apply the arguments in the proof of Lemma 4.5 to H̃, and get that

G̃´1
riis “

ˆ

´w|di|
´2 ´ wm2 ´w1{2zd´1

i

´w1{2z̄d̄´1
i ´w ´ wm1

˙

`Oăp|w|Ψθq, (4.66)

from which we get that

1pΞqG̃ii “ 1pΞq

„

´1´m1

wp|di|´2 `m2qp1`m1q ´ |z|2|di|´2
`OăpΨθq



.

Plugging this into (4.65), we get

1pΞqm2 “ 1pΞq

«

1

N

n
ÿ

i“1

li
si

´1´m1

wps´1
i `m2qp1`m1q ´ |z|2s

´1
i

`OăpΨθq

ff

. (4.67)

We take the equations in (4.62) and (4.67) as our new self-consistent equations, namely,

1pΞqf1pm1,m2q “ 1pΞqOpΨθq, 1pΞqf2pm1,m2q “ 1pΞqOpΨθq, (4.68)

where

f1pm1,m2q :“ m1 `
1

N

ÿ

i

lisi
1`m1

w p1` sim2q p1`m1q ´ |z|
2 , (4.69)

f2pm1,m2q :“ m2 `
1

N

ÿ

i

li
1`m1

wp1` sim2qp1`m1q ´ |z|2
. (4.70)

According to the following lemma, this system of self-consistent equations are stable when |w| and
|z|2 are small enough .

Lemma 4.10. Suppose that N´2|w|´1{2 ď δpwq ď plogNq´1|w|´1{2 for w P D. Suppose u1,2 : D Ñ

C are Stieltjes transforms of positive integrable functions such that

max t|f1pu1, u2qpwq| , |f2pu1, u2qpwq|u ď δpwq.

Then there exists an ε ą 0 such that if |w|
1{2
` |z|2 ď ε, we have

|u1pwq ´m1cpwq| ` |u2pwq ´m2cpwq| ď Cδ, (4.71)

for some constant C ą 0 independent of w, z and N .
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Proof. The proof depends on the estimate of the Jacobian at pm1c,m2cq. By (3.26) and (A.35),

m1c “
i
?
t0 `Op|w|

1{2 ` |z|2q
?
w

, m2c “
it
´1{2
0 `Op|w|1{2 ` |z|2q

?
w

,

where t0 “ pN
´1

řn
i“1 li{siq

´1. Then we can calculate that

det

ˆ

B1f1 B2f1

B1f2 B2f2

˙

u1,2“m1,2c

“ det

ˆ

1`Op|z|2q t0 `Op|w|
1{2 ` |z|2q

Op|z|2q 2`Op|w|1{2 ` |z|2q

˙

“ 2`Op|w|1{2 ` |z|2q.

We can conclude the stability by expanding f1,2pu1, u2q around pm1c,m2cq and using a fixed point
argument as in the proof of Lemma 3.10 in Section A.3.

With this stability lemma, we can repeat all the arguments in the previous subsections to prove

the entrywise local law and averaged local law when |w|
1{2
` |z|2 ď ε.

5 Anisotropic local law when T is diagonal

In this section we prove the anisotropic local law in Theorem 2.18 when T is diagonal. The basic
ideas of the proof follow from [4, section 5], and the core part of our proof is a novel way to perform
the combinatorics. By the Definition 2.17 (ii) and the definition of matrix norm, it suffices to prove
the following proposition for generalized entries of G.

Proposition 5.1. Fix |z|
2
ď 1´ τ and suppose that the assumptions of Theorem 2.18 hold. Then

for any regular domain S,
|xu, pGpwq ´Πpwqqvy| ă Ψ (5.1)

uniformly in w P S and any deterministic unit vectors u,v P CI .

It is equivalent to show that

ÿ

i,jPI1

u:
ris

`

Grijs ´Πrijs
˘

vrjs ă Ψ, uris :“

ˆ

ui
uī

˙

, vrjs :“

ˆ

vj
vj̄

˙

. (5.2)

By the entrywise local law,
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i,j

u:
ris

`

Grijs ´Πrijs
˘

vrjs

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

i

∥∥Griis ´Πriis
∥∥ ˇˇurisˇˇ ˇˇvrisˇˇ`

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i‰j

u:
risGrijsvrjs

ˇ

ˇ

ˇ

ˇ

ˇ

ă Ψ`

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i‰j

u:
risGrijsvrjs

ˇ

ˇ

ˇ

ˇ

ˇ

.

Thus to show (5.2), it suffices to prove
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i‰j

u:
risGrijsvrjs

ˇ

ˇ

ˇ

ˇ

ˇ

ă Ψ. (5.3)

Notice from the entrywise law, we can only get
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i‰j

u:
risGrijsvrjs

ˇ

ˇ

ˇ

ˇ

ˇ

ă Ψ}u}1}v}1 ď NΨ,

using }u}1 ď N1{2}u}2 and }v}1 ď N1{2}v}2. In particular, this estimate of the `1 norm is sharp
when u,v are delocalized, i.e. their entries have size of order N´1{2.

The estimate (5.3) follows from the Chebyshev’s inequality if we can prove the following lemma.
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Lemma 5.2. Suppose the assumptions in Proposition 5.1 hold. For any even p P 2N, there exists a
constant Cp which is independent of N such that

E

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i‰j

u:
risGrijsvrjs

ˇ

ˇ

ˇ

ˇ

ˇ

p

ď CpΨ
p.

The proof of Lemma 5.2 is based on the polynomialization method developed in [4, section 5].
Again we only give the proof for w P D. When w P DL, the proof is almost the same.

5.1 Rescaling and partition of indices

For our purpose, it is convenient to define the rescaled matrix

RpJq :“ w1{2GpJq, (5.4)

for any J Ă I and |J | ď l for some fixed l. Consequently we define the control parameter Φ

Φ “ |w|
1{2

Ψ. (5.5)

By the entrywise law, for w P D,

R
pJq
riis “ Oăp1q,

´

R
pJq
riis

¯´1

“ Oăp1q, R
pJq
rijs “ OăpΦq for i ‰ j (5.6)

under the above scaling. Now to prove Lemma 5.2, it is equivalent to prove

E

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i‰j

u:
risRrijsvrjs

ˇ

ˇ

ˇ

ˇ

ˇ

p

ď CpΦ
p. (5.7)

We expand the product in (5.7) as

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i‰j

u:
risRrijsvrjs

ˇ

ˇ

ˇ

ˇ

ˇ

p

“
ÿ

ik‰jkPI1

p{2
ź

k“1

u:
riks

Rrikjksvrjks ¨
p
ź

k“p{2`1

u:
riks

Rrikjksvrjks.

Formally, we regard ti1, ..., ip, j1, ..., jpu as the set of 2p (index) variables that take values in I1. Let
Bp be the collection of all partitions of ti1, ..., ip, j1, ..., jpu such that ik, jk are not in the same block
for all k “ 1, ..., p. For Γ P Bp, let npΓq be the number of its blocks and define a set of I1-valued
variables as

LpΓq :“ tb1, ..., bnpΓqu. (5.8)

Now it is convenient to regard Γ as a symbol-to-symbol function

Γ : ti1, ..., ip, j1, ..., jpu Ñ LpΓq, (5.9)

such that each Γ´1 pbkq is a block of the partition. Then we can rewrite the sum as

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i‰j

u:
risRrijsvrjs

ˇ

ˇ

ˇ

ˇ

ˇ

p

“
ÿ

ΓPBp

ÿ̊

blPI1,
l“1,...,npΓq

p{2
ź

k“1

u:
rΓpikqs

RrΓpikqΓpjkqsvrΓpjkqs ¨
p
ź

k“p{2`1

u:
rΓpikqs

RrΓpikqΓpjkqsvrΓpjkqs,

(5.10)
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where Σ˚ denote the summation subject to the condition that the values of b1, ...bn are ordered as
b1 ă b2 ă . . . ă bn. We pick one term from the above summation and denote

∆pΓq :“

p{2
ź

k“1

u:
rΓpikqs

RrΓpikqΓpjkqsvrΓpjkqs ¨
p
ź

k“p{2`1

u:
rΓpikqs

RrΓpikqΓpjkqsvrΓpjkqs. (5.11)

Notations: For any bk P L, we can define a corresponding I2-valued variable b̄k in the obvious way,
and we denote

rLs :“ tb1, ..., bn, b1, ..., bnu. (5.12)

For notational convenience, we will also use letters i, j, k, l to denote the symbols in L.

5.2 String and string operators

During the proof we will frequently use the following resolvent identities for rescaled matrix R. They
follows immediately from Lemma 3.3.

Lemma 5.3 (Resolvent identities for Rrijs groups). For k R J and i, j P I1zJ Y tku, we have

R
rJs
rijs “ R

rJks
rijs `R

rJs
riks

´

R
rJs
rkks

¯´1

R
rJs
rkjs, (5.13)

´

R
rJs
riis

¯´1

“

´

R
rJks
riis

¯´1

´

´

R
rJs
riis

¯´1

R
rJs
riks

´

R
rJs
rkks

¯´1

R
rJs
rkis

´

R
rJks
riis

¯´1

, (5.14)

´

R
rJs
riis

¯´1

“ w´1{2H
rJs
riis ´ w

´1
ÿ

l,l1RJYtiu

H
rJs
rilsR

rJis
rll1sH

rJs
rl1is. (5.15)

Furthermore, for i ‰ j and L defined in (5.8), we have

R
rLztijus
rijs “ R

rLztijus
riis SrijsR

rLztjus
rjjs , with Srijs “ ´w

´1{2Hrijs ` w
´1

ÿ

k,lRL

HriksR
rLs
rklsHrljs. (5.16)

In this section, we expand the R variables in ∆pΓq using the identities in Lemma 5.3. During
the expansion, we need to distinguish carefully between an algebraic expression and its values as a
random variable.

Definition 5.4 (Strings). Let A be an alphabet containing all symbols that may appear during the

expansion, such as R
rJs
rijs,

´

R
rJs
rijs

¯´1

, Srijs, u
:

ris and vrjs for i, j, J Ă LpΓq. We define a string s

to be a formal expression consisting of the symbols from A, and denote by JsK the random variable
represented by it. Let M be the collection of all possible strings. We denote an empty string by H.

Given a string s, after an expansion of R’s in it, we will get a different string s1. However they
represent the same random variable JsK “ Js1K. During the proof, we will identify more elements of
A (see the symbols in (5.32)).

To perform the expansions in a systematical way, we define the following operators acting on

strings. We call the symbols R
rJs
rijs,

´

R
rJs
rijs

¯´1

to be maximally expanded if J Y ti, ju “ L. We call a

string s to be maximally expanded if all the R symbols in s is maximally expanded.
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Definition 5.5 (String operators). (i) Define an operator τ
pkq
0 for Ω P M, in the following sense.

Find the first R
rJs
rijs in Ω such that k R J Yti, ju, or the first

´

R
rJs
riis

¯´1

such that k R J Ytiu. If R
rJs
rijs

is found, replace it with R
rJks
rijs ; if

´

R
rJs
riis

¯´1

is found, replace it with
´

R
rJks
riis

¯´1

; if neither is found,

τ
pkq
0 pΩq “ Ω and we say that τ

pkq
0 is trivial for Ω.

(ii) Define an operator τ
pkq
1 for Ω P M, in the following sense. Find the first R

rJs
rijs in Ω such

that k R J Y ti, ju, or the first
´

R
rJs
riis

¯´1

such that k R T Y tiu. If R
rJs
rijs is found, replace it with

R
rJs
riks

´

R
rJs
rkks

¯´1

R
rJs
rkjs; if

´

R
rJs
riis

¯´1

is found, replace it with ´
´

R
rJs
riis

¯´1

R
rJs
riks

´

R
rJs
rkks

¯´1

R
rJs
rkis

´

R
rJks
riis

¯´1

;

if neither is found, τ
pkq
1 pΩq “ H and we say that τ

pkq
1 is null for Ω.

(iii) Define an operator ρ for Ω P M, in the following sense. Find each maximally expanded

R
rLztijus
rijs in Ω and replace it with R

rLztijus
riis SrijsR

rLztjus
rjjs . If nothing is found, ρpΩq “ Ω.

According to Lemma 5.3, for any Ω PM we have
r´
τ
pkq
0 ` τ

pkq
1

¯

pΩq
z
“ JΩK , JρpΩqK “ JΩK (5.17)

Definition 5.6. Define the function Fd´max : M Ñ N (where the subscript “d-max” stands for
“distance to being maximally expanded”) through

Fd´max

´

R
rJs
rijs

˚
¯

“ |Lz pJ Y ti, juq| ,

where ˚ could be 1 or ´1, and

Fd´maxpΩq “
ÿ

R variables in Ω

Fd´maxpRq.

Define another function Foff : MÑ N with FoffpΩq being the number of off-diagonal symbols in Ω.

By off-diagonal symbols, we mean the terms of the form Ast with s R tt, t̄u or Arijs with i ‰ j, e.g.

R
rJs
rijs and Srijs with i ‰ j. Later we will define other types of off-diagonal symbols (see (5.32)). Note

that a R symbol is maximally expanded if and only if Fd´maxpRq “ 0 and a string Ω is maximally
expanded if and only if Fd´maxpΩq “ 0. The next two lemmas are almost trivial by Definition 5.5.

Lemma 5.7. If τ
pkq
0 pΩq “ Ω and τ

pkq
1 pΩq “ H,

Fd´max

´

τ
pkq
0 pΩq

¯

“ Fd´maxpΩq, Fd´max

´

τ
pkq
1 pΩq

¯

“ 0; (5.18)

otherwise,

Fd´max

´

τ
pkq
0 pΩq

¯

“ Fd´maxpΩq ´ 1, Fd´max

´

τ
pkq
1 pΩq

¯

ď Fd´maxpΩq ` 4npΓq. (5.19)

For ρ, we have
Fd´max pρpΩqq “ Fd´maxpΩq ` a, (5.20)

where a is the number of maximally expanded off-diagonal R’s in Ω.

Lemma 5.8. For any Ω PM, we have

Foff

´

τ
pkq
0 pΩq

¯

“ FoffpΩq, Foff pρpΩqq “ FoffpΩq, (5.21)

and
FoffpΩq ` 1 ď Foff

´

τ
pkq
1 pΩq

¯

ď FoffpΩq ` 2 if τ
pkq
1 pΩq ‰ H. (5.22)
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5.3 Expansion of the strings

For simplicity of notations, throughout the rest of this section we omit the complex conjugates on
the right hand side of (5.11) (if we keep the complex conjugates, the proof is the same but with
slightly heavier notations). Suppose the right hand side of (5.11) is represented by a string Ω∆.
Given a binary word w “ a1a2...am with ai P t0, 1u, we define the operation

pΩ∆qw “ ρτ pbmqam ¨ ¨ ¨ ρτ pb2qa2
ρτ pb1qa1

pΩ∆q (5.23)

where bqn`r :“ br (recall (5.8)) for any 1 ď r ď n and q P N. So a binary words w uniquely
determines an operator composition. By (5.17), JpΩ∆qw0K` JpΩ∆qw1K “ JpΩ∆qwK and so we get

ÿ

|w|“m

JpΩ∆qwK “ JΩ∆K

for any m ě 1, where |w| is the length of w.

Lemma 5.9. Given any w such that |w| “ pn2`1qpp`6l0q and pΩ∆qw ‰ H, either FoffppΩ∆qwq ě

l0 :“ p8{ζ ` 2q p, or pΩ∆qw is maximally expanded.

Proof. We use m0 to denote the number of 0’s in w, and m1 to denote the number of 1’s. Further-

more, we use m
p0q
0 to denote the number of 0’s corresponding to the trivial τ0’s, and m

p1q
0 to denote

the number of 0’s corresponding to the non-trivial τ0’s. Assume FoffppΩ∆qwq ă l0 and pΩ∆qw is not
maximally expanded. By (5.21)-(5.22), m1 ď l0 ´ p ď l0. By (5.18)-(5.20),

Fd´maxppΩ∆qwq ď Fd´maxpΩ∆q ` l0 ` 4nm1 ´m
p1q
0 .

Using Fd´maxpΩ∆q “ np, we get a rough estimate m
p1q
0 `m1 ă npp` 6l0q. By pigeonhole principle,

there are at least n 0’s in a row in w that correspond to trivial τ0’s. This indicates that pΩ∆qw is
maximally expanded, which gives a contradiction.

Lemma 5.10. There exists constants Cp,l0 , Cp,ζ ą 0 such that

ÿ

ΓPBp

ÿ̊

blPI1,
l“1,...,npΓq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
ÿ

|w|“pn2
`1qpp`6l0q,

Foff ppΩ∆pΓqqwqěl0

q
pΩ∆pΓqqw

y

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cp,l0N
2pΦl0 ď Cp,ζΦ

p. (5.24)

Proof. The first bound is due to the fact that each summand is bounded by CΦl0 and there are at
most N2p of them. For the second bound, we used Φ ď CN´ζ{2.

This lemma shows that all the strings with sufficiently many off-diagonal symbols contributes at
most Φp. It only remains to handle the maximally expanded strings. Define a diagonal symbol as

Sriis :“ ´

ˆ

0 diXīi

d̄iX
:

īi
0

˙

` w´1
ÿ

k,lRL

HriksR
rLs
rklsHrlis, (5.25)

such that
´

R
rLztius
riis

¯´1

“

ˆ

´w1{2 ´z

´z̄ ´w1{2

˙

´ Sriis. (5.26)
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Notice all the R symbols in a maximally expanded string is diagonal. We taylor expand R
rLztius
riis as

R
rLztius
riis “

”

w´1{2π´1
risc `

`

Sriis ´Bi
˘

ı´1

“

l0´1
ÿ

k“0

π̃ic
“`

Sriis ´Bi
˘

π̃ic
‰k
`Oă

`

Φl0
˘

, (5.27)

where π̃risc “ w1{2πrisc, Bi “

ˆ

w1{2|di|
2m2c 0

0 w1{2m1c

˙

, and for the error term,

Sriis ´Bi “ w´1{2Z
rLztius
ris ` w1{2

˜

|di|
2pm2c ´m

rLs
2 q 0

0 m1c ´m
rLs
1

¸

ă Φ

by (4.15) and the averaged local law. Now for all maximally expanded pΩ∆qw with |w| “ pn2 `

1qpp` 6l0q, denote by σ JpΩ∆qwK the expression after plugging in (5.26) and (5.27) without the tail
terms. Similar to Lemma 5.10, we have

ÿ

ΓPBp

ÿ̊

blPI1,
l“1,...,npΓq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
ÿ

|w|“pn2
`1qpp`6l0q,

pΩ∆qw maximally expanded

`q
pΩ∆pΓqqw

y
´ σ

q
pΩ∆pΓqqw

y˘

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cp,ζΦ
p.

From the above bound and Lemmas 5.9, 5.10, we see that to prove (5.7), it suffices to show

ÿ

ΓPBp

ÿ̊

blPI1,
l“1,...,npΓq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
ÿ

|w|“pn2
`1qpp`6l0q,

pΩ∆qw maximally expanded

σ
q
pΩ∆pΓqqw

y

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cp,ζΦ
p. (5.28)

We write σ JpΩ∆qwK as a sum of monomials in terms of Srijs,

σ JpΩ∆qwK “
ÿ

i

Mpw,∆pΓq, iq, (5.29)

where i is an index to label these monomials. Notice that after plugging (5.29) into (5.28), the
number of summands Mpw,∆pΓq, iq inside the expectation only depends on p and ζ. Thus to show
(5.28), it suffices to prove the following lemma.

Lemma 5.11. Fix any Γ P Bp and binary word w with |w| “ pn2 ` 1qpp` 6l0q. Suppose pΩ∆qw is
maximally expanded. Let Mpw,∆pΓqq be an monomial in σ

q
pΩ∆pΓqqw

y
. We have

ÿ̊

blPI1,l“1,...,npΓq

|EMpw,∆pΓqq| ď Cp,ζΦ
p (5.30)

for some constant Cp,ζ that only depends on p and ζ.

For the rest of this section, we fix a Γ P Bp and a maximally expanded pΩ∆pΓqqw with |w| “

pn2`1qpp`6l0q. Then we fix a monomial Mpw,∆pΓqq in σ
q
pΩ∆pΓqqw

y
. Let ΩM be the string form

of Mpw,∆pΓqq in terms of Srijs. It is not hard to see that

Foff pΩM q “ Foff ppΩ∆qwq . (5.31)
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Now we decompose Srijs as

Srijs “ SXij̄ ` S
X
īj ` S

R
ij̄ ` S

R
ij ` S

R
īj̄ ` S

R
īj , (5.32)

where we define the following symbols in A:

SXij̄ :“ diXij̄

ˆ

0 1
0 0

˙

, SXīj :“ d̄iX
:

īj

ˆ

0 0
1 0

˙

, (5.33)

SRij̄ :“
ÿ

k,lRL

didlXik̄Xlj̄

ˆ

0 R
rLs

k̄l
0 0

˙

, SRij :“
ÿ

k,lRL

did̄lXik̄X
:

l̄j

ˆ

R
rLs

k̄l̄
0

0 0

˙

, (5.34)

SRīj̄ :“
ÿ

k,lRL

d̄idlX
:

īk
Xlj̄

ˆ

0 0

0 R
rLs
kl

˙

, SRīj :“
ÿ

k,lRL

d̄id̄lX
:

īk
X:
l̄j

ˆ

0 0

R
rLs

kl̄
0

˙

. (5.35)

We expand Srijs’s of Mpw,∆pΓqq as in (5.32), and write Mpw,∆pΓqq as a sum of monomials in

terms of SXst and SRst,

Mpw,∆pΓqq “
ÿ

i

Qpw,∆pΓq, iq, (5.36)

where i is an index to label these monomials. Again it is not hard to see that

Foff pΩQq “ Foff pΩM q “ Foff ppΩ∆qwq . (5.37)

Since the number of summands in (5.36) is independent of N , to prove (5.30) it suffices to show

ÿ̊

blPI1,l“1,...,npΓq

|EQpw,∆pΓqq| ď Cp,ζΦ
p (5.38)

for any monomial Qpw,∆pΓqq in (5.36). Throughout the following, we fix a Qpw,∆pΓqq with nonzero
expectation, and denote by ΩQ the string form of Qpw,∆pΓqq in terms of SXst and SRst. Notice the
R variables in SRst are maximally expanded. As a result, the SXst variables are independent of SRst
variables in Qpw,∆pΓqq. Therefore we make the following observation: if SXst appears as a symbol
in ΩQ, then ΩQ contains at least two of them.

Definition 5.12. Recall Γ defined in (5.9). Let h be the number of blocks of Γ whose size is 1, i.e.

h :“

npΓq
ÿ

l“1

1
`
ˇ

ˇΓ´1pblq
ˇ

ˇ “ 1
˘

. (5.39)

For l “ 1, ..., n, define

Il :“
ˇ

ˇti1, . . . , ipu X Γ´1pblq
ˇ

ˇ , Jl :“
ˇ

ˇtj1, . . . , jpu X Γ´1pblq
ˇ

ˇ .

Lemma 5.13. Suppose for any b1, ..., bn taking distinct values in I1,

|EQpw,∆pΓqq| ď CN´h{2Φp
n
ź

l“1

ˇ

ˇurbls
ˇ

ˇ

Il
ˇ

ˇvrbls
ˇ

ˇ

Jl (5.40)

holds for some constant C independent of N . Then the estimate (5.38) holds.
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Proof. By Cauchy-Schwarz inequality,

N
ÿ

k“1

ˇ

ˇurks
ˇ

ˇ

a ˇ
ˇvrks

ˇ

ˇ

b
ď

#

N1{2 if a` b “ 1

1 if a` b ě 2
.

Then using h “
n
ř

l“1

1 pIl ` Jl “ 1q , we get

ÿ̊

blPI1,l“1,...,npΓq

|EQpw,∆pΓqq| ď CΦpN´h{2
n
ź

l“1

ÿ

blPI1

ˇ

ˇurbls
ˇ

ˇ

Il
ˇ

ˇvrbls
ˇ

ˇ

Jl
ď CΦp.

Hence it suffices to prove (5.40). The key is to extract the N´h{2 factor from EQpw,∆pΓqq. For
this purpose, we need to keep track of the indices in L during the expansion.

Definition 5.14. Define a function Fin : L ˆM Ñ N with Finpl,Ωq giving the number of times l
or l̄ appears as an index of off-diagonal R or S in Ω.

The following lemma follows immediately from Definition 5.5 and the expansions we have done
to obtain ΩQ from pΩ∆qw.

Lemma 5.15. (1) For any string Ω, if τ
pkq
0 is not trivial for Ω, then

Fin

´

l, τ
pkq
0 pΩq

¯

“ Finpl,Ωq, Fin

´

l, τ
pkq
1 pΩq

¯

“ Finpl,Ωq ` 2δkl. (5.41)

(2) For any string Ω,
Fin pl, ρpΩqq “ Finpl,Ωq. (5.42)

(3) For any maximally expanded pΩ∆qw,

Finpl,ΩQq “ Finpl, pΩ∆qwq. (5.43)

Let ΩXQ be the substring of ΩQ containing only SX symbols, and ΩRQ be the substring of ΩQ
containing only SR symbols. Define

V :“ tl P L| Finpl,Ω∆q “ 1u, (5.44)

and
V0 :“ tl P L| Finpl,Ω∆q “ 1 and Finpl,Ω

X
Q q “ 0u, (5.45)

V1 :“ tl P L| Finpl,Ω∆q “ 1 and Finpl,Ω
X
Q q ě 2u. (5.46)

Recall the observation above Definition 5.12, V “ V0 Y V1 and

h “ |V| “ |V0| ` |V1|.

Let nX be the number of off-diagonal SX symbols in ΩXQ and nR be the number of off-diagonal SR

symbols in ΩRQ. Notice that no :“ nX ` nR is the total number of off-diagonal symbols in ΩQ.
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5.4 Introduction of graphs and conclusion of the proof

We introduce the graphs to conclude the proof of (5.40). We use a connected graph to represent
the string ΩQ, call it by GQ0. The indices in rLs are represented by black nodes in GQ0. The SXst
or SRst symbols in ΩQ are represented by edges connecting the nodes s and t. We also define colors
for the nodes and edges, where the color set for nodes is tblack, whiteu and the color set for edges
is tSX , SR, X,Ru. In GQ0, all the nodes are black, all SX edges are assigned SX color and all SR

edges are assigned SR color. We show a possible graph in Fig. 3. In this subsection, we identify an
index with its node representation, and a symbol with its edge representation.

Definition 5.16. Define function deg on the nodes set rLs, where degplq is the number of SR edges
connecting to the node l.

By Lemma 5.15, we see that for any l P V0,

Finpl,ΩQq ” degplq ` degpl̄q ” 1 pmod 2q. (5.47)

Hence

|V0| “
ÿ

lPV0

rFin pl,ΩQq mod 2s ď
ÿ

lPV0

“

pdegplq mod 2q `
`

degpl̄q mod 2
˘‰

. (5.48)

Now we expand the SR edges. Take the SR
ij̄

edge as an example (recall (5.34)). We replace the

SR
ij̄

edge with an R-group, defined as following. We add two white colored nodes to represent the

summation indices k̄, l R rLs, two X-colored edges to represent Xik̄ and Xlj̄ , and a R-colored edge

connecting k̄ and l to represent

ˆ

0 R
rLs

k̄l
0 0

˙

. We call the subgraph consisting of the three new edges

and their nodes an R-group. If i “ j, we call it a diagonal R-group; otherwise, call it an off-diagonal
R-group. We expand all SR edges in GQ0 into R-groups and call the resulting graph GQ1. For
example, after expanding the SR edges in Fig. 3, we get the graph in Fig. 4. In the graph GQ1,
the R edges, X edges and SX edges are mutually independent, since the R symbols are maximally
expanded, and the white nodes are different from the black nodes.

b1

b1

b2

b2

b3

b3

SR

Figure 3: An example of the graph GQ0.

Notice that each white node represents a summation index. As we have done for the black nodes,
we first partition the white nodes into blocks and then assign values to the blocks when doing the
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b1

b1

b2

b2

b3

b3

R

Figure 4: The resulting graph GQ1 after expanding each SR in Fig. 3 into R-groups.

summation. Let W be the set of all white nodes in GQ1, and let W be the collection of all partitions
of W . Fix a partition γ P W and denote its blocks by W1, ...,Wmpγq. If two white nodes of some
off-diagonal R-group happen to lie in the same block, then we merge the two nodes into one diamond

white node (Fig. 5a). All the other white nodes are called normal (Fig. 5b). Let n
pdq
R be the number

of diamond nodes (ď the number of diagonal R-edges in GQ1). Then we trivially have

# of white nodes “ ´n
pdq
R `

n
ÿ

k“1

“

deg pbkq ` degpb̄kq
‰

. (5.49)

(a) Diamond white node.

(b) Normal white nodes.

Figure 5: Two types of white nodes

By (5.48), there are |V0| black nodes with odd deg in rV0s (where rV0s is defined in the obvious
way). WLOG, we assume these nodes are b1, ..., b|V0|. To have nonzero expectation, each white
block must contain at least two white nodes. Therefore for each k “ 1, ..., |V0|, there exists a block
connecting to bk which contains at least 3 white nodes. Call such a block W pbkq, and denote by
Apbkq the set of the adjacent white nodes to bk in W pbkq. (Note that the W pbkq’s or Apbkq’s are not
necessarily distinct.) WLOG, let W1, ...,Wd be the distinct blocks among all W pbkq’s. Define

V00 :“ tbk| Apbkq has no normal white nodes, 1 ď k ď |V0|u,
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and
V01 :“ tbk| Apbkq has at least one normal white node, 1 ď k ď |V0|u.

The following lemma gives the key estimates we need.

Lemma 5.17. For any partition γ PW,

mpγq ď
´|V00| ´ |V01|{2´ n

pdq
R `

řn
k“1

“

deg pbkq ` degpb̄kq
‰

2
, (5.50)

and
nX ` nR ě p` |V1| ` |V00|, nX ě |V1|, n

pdq
R ě |V00|. (5.51)

Proof. The second inequality of (5.51) can be proved easily through

|V1| ď
ˇ

ˇtk P L|Finpk,Ω
X
Q q ě 2u

ˇ

ˇ ď nX .

Notice for bk P V0, Apbkq contains at least three diamond white nodes, while each of the white node

is share by another bl. Thus we trivially have |V00| ď n
pdq
R .

Now we prove (5.50). A diamond white node is connected to two black nodes and a normal white
node is connected to one black node. Hence a diamond white node belongs to two sets Apbk1

q, Apbk2
q,

and a normal white node belongs to exactly one set Apbkq. Therefore for each i “ 1, ..., d, if Wi

contains exactly one Apbkq then

|Wi| ě 3 ě 2` 1V01
pbkq `

1V00pbkq

2
.

Otherwise if Wi contains more than one Apbkq, then

|Wi| ě
ÿ

bk:ApbkqĎWi

ˆ

2 ¨ 1V01pbkq `
3

2
¨ 1V00pbkq

˙

ě 2`
ÿ

bk:ApbkqĎWi

ˆ

1V01pbkq `
1V00pbkq

2

˙

.

Here the first inequality can be understood as following. For each black node bk with Apbkq Ď Wi,
we count the number of white nodes in Apbkq and add them together. During the counting, we
assign weight-1 to a normal white node and weight-1{2 to a diamond white node (since it is shared
by two different black nodes). If bk P V00, there are at least three diamond white nodes in Apbkq
with total weight ě 3{2; if bk P V01, there are at least one normal white node and two other white
nodes in Apbkq with total weight ě 2. Thus

ř

bk:ApbkqĎWi

`

2 ¨ 1V01pbkq `
3
2 ¨ 1V00pbkq

˘

is smaller than

the number of white nodes in Wi. Then summing |Wi| over i, we get

d
ÿ

i“1

|Wi| ě 2d` |V01| `
|V00|

2
.

For the other m´ d blocks, each of them contains at least two white nodes. Therefore

2m` |V01| `
|V00|

2
ď

d
ÿ

i“1

|Wi| ` 2pm´ dq ď ´n
pdq
R `

n
ÿ

k“1

“

deg pbkq ` degpb̄kq
‰

,

where we use (5.49) in the last step. This proves (5.50).
For bk P V00, Apbkq contains at least three white nodes from off-diagonal R-groups,

V00 Ďtbk P L| Finpbk,Ω∆q “ 1 and Finpbk,Ω
R
Qq ě 3u “: V2.
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Recall (5.41)-(5.42), only τ
pkq
1 may increase Fin. Thus w contains τ

pbkq
1 for each bk P V1 Y V2 (recall

the definition of V1 in (5.46)). Therefore by (5.22), (5.37) and the fact that V00 and V1 are disjoint,

nX ` nR “ FoffppΩ∆qwq ěFoffpΩ∆q ` |V1 Y V2| ě p` |V1| ` |V00|.

This proves the first inequality of (5.51).

By (2.3) and (5.6), a diagonal R edge contributes 1, an off-diagonal R edge contributes Φ, and
SX or X edge contributes N´1{2. Denote

U “
n
ź

l“1

ˇ

ˇurbls
ˇ

ˇ

Il
ˇ

ˇvrbls
ˇ

ˇ

Jl .

Then using Lemma 2.21, we get

|EQpw,∆pΓqq| ď CU
´

N´1{2
¯nX ÿ

γPW

ÿ̊

γpW1q,...,γpWmqPI zL

ΦnR´n
pdq
R

n
ź

k“1

´

N´1{2
¯degpbkq`degpb̄kq

ď CUN´nX{2
ÿ

γPW
Nm´

n
ř

k“1
degpbkq`degpb̄kq

2 ΦnR´n
pdq
R

ď CUN´nX{2
ÿ

γPW
N

´|V01|´|V00|{2´n
pdq
R

2 ΦnR´n
pdq
R

ď CUN´h{2
ÿ

γPW
N´pnX´|V1|q{2N´pn

pdq
R ´|V00|q{2ΦnR´n

pdq
R

ď CUN´h{2
ÿ

γPW
ΦnX`nR´|V1|´|V00| ď CUN´h{2Φp,

where in the third step we used (5.50), in the fourth step h “ |V| “ |V1| ` |V00| ` |V01|, in the fifth
step N´1{2 ď Φ and (5.51), and in the last step (5.51). Thus we have proved (5.40), which concludes
the proof of Proposition 5.1.

6 Anisotropic local law: self-consistent comparison

In this section we prove Theorem 2.19. We first prove the anisotropic and averaged local laws under
the vanishing third moment assumption (2.23). When η ě N´1{2`ζ |m2c|

´1, the anisotropic and
averaged local laws can be established without assuming (2.23). For convenience, we only consider
the case w P D and |z|2 ď 1´ τ in this section. The proof for other cases is almost the same.

Following the notations in the arguments between Theorems 2.18 and 2.19,

HpTX ´ z, wq “ T

ˆ

´wpD:Dq´1 w1{2pV1X ´ pUDq
´1zq

w1{2pV1X ´ pUDq
´1zq: ´wI

˙

T
:
, T :“

ˆ

UD 0
0 I

˙

.

(6.1)

Now we define

Gpwq :“ |w|1{2

˜

´wpD:Dq´1 w1{2
`

V1X ´ pUDq
´1z

˘

w1{2
`

V1X ´ pUDq
´1z

˘:
´wI

¸´1

“ |w|1{2T
:
GT. (6.2)
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Since T is invertible and }T }` }T´1} ď τ´1 by (2.4), to prove the anisotropic law in Theorem 2.19,
it suffices to show

}Gpwq ´ rΠpwq} ă Φpwq (6.3)

where
rΠpwq :“ |w|1{2T

:
ΠpwqT , Φpwq :“ |w|1{2Ψpwq. (6.4)

Notice we have }rΠ} “ Op1q by (3.31). By the remark around (2.50), if X “ XGauss is Gaussian,
then (6.3) holds. Hence for a general X, it suffices to prove that

}GpX,wq ´ GpXGauss, wq} ă Φpwq. (6.5)

Similar to Lemma 3.5, it is easy to prove the following estimates for G.

Lemma 6.1. For i P IM1 , we define vi “ V1ei P RI1 , i.e. vi is the i-th column vector of V1. Let
u P RI1 and w P RI2 , then we have for some constant C ą 0,

ÿ

µPI2

|Gwµ|
2
“ |w|1{2

ImGww

η
, (6.6)

ÿ

iPIM1

|Guvi |
2
ď C|w|1{2

ImGuu

η
, (6.7)

ÿ

iPIM1

|Gwvi |
2
ď C

ˆ

|w|
´1{2 Gww ` w̄ |w|

´1{2 ImGww

η

˙

, (6.8)

ÿ

µPI2

|Guµ|
2
ď C

ˆ

|w|
´1{2 Guu ` w̄ |w|

´1{2 ImGuu

η

˙

, (6.9)

6.1 Self-consistent comparison

Our proof basically follows the arguments in [24, Section 7] with some minor modifications. Thus
we will not write down all the details for the proof. By polarization, it suffices to show the following
proposition.

Proposition 6.2. Fix |z|
2
ď 1 ´ τ and suppose that the assumptions of Theorem 2.19 hold. If

(2.23) holds or η ě N´1{2`ζ |m2c|
´1, then for any regular domain S Ď D,
A

v,
´

Gpwq ´ rΠpwq
¯

v
E

ă Φpwq (6.10)

uniformly in w P S and any deterministic unit vectors v P CI .

We first assume that (2.23) holds. Then we will show how to modify the arguments to prove the
η ě N´1{2`ζ |m2c|

´1 case. The proof consists of a bootstrap argument from larger scales to smaller
scales in multiplicative increments of N´δ, where

δ P

ˆ

0,
ζ

2C0

˙

, (6.11)

with C0 ą 0 being a universal constant that will be chosen large enough in the proof. For any
η ě |m1c|

´1
N´1`ζ , we define

ηl :“ ηNδl for l “ 0, ..., L´ 1, ηL :“ 1. (6.12)
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where L ” Lpηq :“ max
 

l P N| ηNδpl´1q ă 1
(

. Note that L ď 2δ´1.

By (3.13), the function w ÞÑ Gpwq ´ rΠpwq is Lipschitz continuous in S with Lipschitz constant
bounded by CN3. Thus to prove (6.10) for all w P S, it suffices to show (6.10) holds for all w in

some discrete but sufficiently dense subset pS Ă S. We will use the following discretized domain pS.

Definition 6.3. Let pS be an N´10-net of S such that |pS| ď N20 and

E ` iη P pS ñ E ` iηl P pS for l “ 1, ..., Lpηq.

The bootstrapping is formulated in terms of two scale-dependent properties (Am) and (Cm)
defined on the subsets

pSm :“
!

w P pS | Imw ě N´δm
)

.

pAmq For all w P pSm, all deterministic unit vector v, and all X satisfying (2.2)-(2.3), we have

ImGvvpwq ă |w|1{2Im rm1cpwq `m2cpwqs `N
C0δΦpwq. (6.13)

pCmq For all w P pSm, all deterministic unit vector v, and all X satisfying (2.2)-(2.3), we have

ˇ

ˇ

ˇ
Gvvpwq ´ rΠvvpwq

ˇ

ˇ

ˇ
ă NC0δΦpwq. (6.14)

It is trivial to see that property pA0q holds. Moreover, it is easy to observe the following result.

Lemma 6.4. For any m, property pCmq implies property pAmq.

Proof. This result follows from (3.33).

The key step is the following induction result.

Lemma 6.5. For any 1 ď m ď 2δ´1, property pAm´1q implies property pCmq.

Combining Lemmas 6.4 and 6.5, we conclude that (6.14) holds for all w P pS. Since δ can be

chosen arbitrarily small under the condition (6.11), we conclude that (6.10) holds for all w P pS, and
Proposition 6.2 follows. What remains now is the proof of Lemma 6.5. Denote

FvpX,wq “
ˇ

ˇ

ˇ
GvvpX,wq ´ rΠvvpwq

ˇ

ˇ

ˇ
. (6.15)

By Markov’s inequality, it suffices to prove the following lemma.

Lemma 6.6. Fix p P 2N and m ď 2δ´1. Suppose that the assumptions of Proposition 6.2, (2.23)
and property pAm´1q hold. Then we have

EF pv pX,wq ď
`

NC0δΦpwq
˘p

(6.16)

for all w P pSm and all deterministic unit vector v.

In the following, we prove Lemma 6.6. First, in order to make use of the assumption pAm´1q,

which has spectral parameters in pSm´1, to get some estimates for spectral parameters in pSm, we
shall use the following rough bounds for Gxy.
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Lemma 6.7. For any w “ E ` iη P S and x,y P CI , we have

ˇ

ˇ

ˇ
Gxypwq ´ rΠxypwq

ˇ

ˇ

ˇ
ăN2δ

Lpηq
ÿ

l“1

rImGx1x1
pE ` iηlq ` ImGx2x2

pE ` iηlq

`ImGy1y1pE ` iηlq ` ImGy2y2pE ` iηlqs ` |x||y|,

where x “

ˆ

x1

x2

˙

and y “

ˆ

y1

y2

˙

for x1,y1 P CI1 and x2,y2 P CI2 .

Proof. The proof is similar to the one for [24, Lemma 7.12].

Lemma 6.8. Suppose pAm´1q holds, then

Gpwq ´ rΠpwq “ OăpN
2δq (6.17)

and
ImGvv ď N2δ

”

|w|1{2Im pm1cpwq `m2cpwqq `N
C0δΦpwq

ı

(6.18)

for all w P pSm and all deterministic unit vector v

Proof. Let w “ E ` iη P pSm. Then E ` iηl P pSm´1 for l “ 1, . . . , Lpηq, and (6.13) gives
ImGvvpwq ă 1. The estimate (6.17) now follows immediately from Lemma 6.7. To prove (6.18),
we remark that if spwq is the Stieltjes transform of any positive integrable function on R, the map
η ÞÑ ηIm spE ` iηq is nondecreasing and the map η ÞÑ η´1Im spE ` iηq is nonincreasing. We apply

them to |w|´1{2Im GvvpE ` iηq and Imm1,2cpE ` iηq to get for w1 “ E ` iη1 P pSm´1,

ImGvvpwq ď Nδ |w|
1{2

|w1|
1{2

ImGvvpw1q ă Nδ

„

|w|1{2Im pm1cpw1q `m2cpw1qq `N
C0δ

|w|1{2

|w1|
1{2

Φpw1q



ď N2δ
”

|w|1{2Im pm1cpwq `m2cpwqq `N
C0δΦpwq

ı

,

where we use Φpwq :“ |w|1{2Ψpwq and the fact that η ÞÑ ΨpE ` iηq is nonincreasing, which is clear
from the definition (2.45).

Now we apply the self-consistent comparison method presented in [24, Section 7] to prove Lemma
6.6. To organize the proof, we divide it into two small subsections.

6.1.1 Interpolation and expansion

Definition 6.9 (Interpolating matrices). Introduce the notation X0 :“ XGauss and X1 :“ X. Let
ρ0
iµ and ρ1

iµ be the laws of X0
iµ and X1

iµ, respectively, for i P IM1 and µ P I2. For θ P r0, 1s, we define
the interpolated law

ρθiµ :“ p1´ θqρ0
iµ ` θρ

1
iµ.

We shall work on the probability space consisting of triples pX0, Xθ, X1q of independent IM1 ˆ I2

random matrices, where the matrix Xθ “ pXθ
iµq has law

ź

iPIM1

ź

µPI2

ρθiµpdX
θ
iµq. (6.19)
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For λ P R, i P IM1 and µ P I2, we define the matrix Xθ,λ
piµq through

´

Xθ,λ
piµq

¯

jν
:“

#

Xθ
iµ if pj, νq ‰ pi, µq

λ if pj, νq “ pi, µq
.

We also introduce the matrices

Gθpwq :“ G
`

Xθ, w
˘

, Gθ,λ
piµqpwq :“ G

´

Xθ,λ
piµq, w

¯

,

according to (6.2) and the Definition 2.11.

We shall prove Lemma 6.6 through interpolation matrices Xθ between X0 and X1. It holds for
X0 by the the anisotropic law (6.3) (see the remark above (6.5)).

Lemma 6.10. Lemma 6.6 holds if X “ X0.

Using (6.19) and fundamental calculus, we get the following basic interpolation formula.

Lemma 6.11. For F : RIM1 ˆI2 Ñ C we have

d

dθ
EF pXθq “

ÿ

iPIM1

ÿ

µPI2

„

EF
ˆ

X
θ,X1

iµ

piµq

˙

´ EF
ˆ

X
θ,X0

iµ

piµq

˙

(6.20)

provided all the expectations exists.

We shall apply Lemma 6.11 with F pXq “ F pv pX,wq for FvpX,wq defined in (6.15). The main
work is devoted to prove the following self-consistent estimate for the right-hand side of (6.20).

Lemma 6.12. Fix p P 2N and m ď 2δ´1. Suppose (2.23) and pAm´1q holds, then we have

ÿ

iPIM1

ÿ

µPI2

„

EF pv
ˆ

X
θ,X1

iµ

piµq

˙

´ EF pv
ˆ

X
θ,X0

iµ

piµq

˙

“ O
`

pNC0δΦqp ` EF pv pXθ, wq
˘

(6.21)

for all θ P r0, 1s, all w P pSm, and all deterministic unit vector v.

Combining Lemmas 6.10, 6.11 and 6.12 with a Grönwall argument, we can conclude the proof of
Lemma 6.6 and hence Proposition 6.2.

In order to prove Lemma 6.12, we compare X
θ,X0

iµ

piµq and X
θ,X1

iµ

piµq via a common Xθ,0
piµq, i.e. under

the assumptions of Lemma 6.12, we will prove

ÿ

iPIM1

ÿ

µPI2

”

EF pv
´

X
θ,Xuiµ
piµq

¯

´ EF pv
´

Xθ,0
piµq

¯ı

“ O
`

pNC0δΦqp ` EF pv pXθ, wq
˘

(6.22)

for all u P t0, 1u, all θ P r0, 1s, all w P pSm, and all deterministic unit vector v.
Underlying the proof of (6.22) is an expansion approach which we will describe below. Through-

out the rest of the proof, we suppose that pAm´1q holds. Also the rest of the proof is performed at

a single w P pSm. Define the I ˆ I matrix ∆λ
piµq through

´

∆λ
piµq

¯

st
:“ λδisδµt ` λδitδµs. (6.23)
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Then we have for any λ, λ1 P R and K P N,

Gθ,λ
1

piµq “ Gθ,λ
piµq`

K
ÿ

k“1

αk Gθ,λ
piµq

´

V∆λ´λ1

piµq V
: Gθ,λ
piµq

¯k

` αK`1 Gθ,λ
1

piµq

´

V∆λ´λ1

piµq V
: Gθ,λ
piµq

¯K`1

, (6.24)

where V :“

ˆ

V1 0
0 I

˙

and α :“ w1{2

|w|1{2
. The following result provides a priori bounds for the entries

of Gθ,λ
piµq.

Lemma 6.13. Suppose that y is a random variable satisfying |y| ă N´1{2. Then

Gθ,y
piµq´

rΠ “ OăpN
2δq (6.25)

for all i P IM1 and µ P I2.

Proof. See [24, Lemma 7.14].

In the following, for simplicity of notations we introduce fpiµqpλq :“ F pv pX
θ,λ
piµqq. We use f

pnq
piµq to

denote the n-th derivative of fpiµq. By Lemma 6.13 and expansion (6.24) we get the following result.

Lemma 6.14. Suppose that y is a random variable satisfying |y| ă N´1{2. Then for fixed n P N,
ˇ

ˇ

ˇ
f
pnq
piµqpyq

ˇ

ˇ

ˇ
ă N2δpn`pq. (6.26)

By this lemma, the Taylor expansion of fpiµq gives

fpiµqpyq “
4p
ÿ

n“0

yn

n!
f
pnq
piµqp0q `OăpΦ

pq, (6.27)

provided C0 is chosen large enough in (6.11). Therefore we have for u P t0, 1u,

EF pv
´

X
θ,Xuiµ
piµq

¯

´ EF pv
´

Xθ,0
piµq

¯

“E
“

fpiµq
`

Xu
iµ

˘

´ fpiµqp0q
‰

“E fpiµqp0q `
1

2N
E f p2q

piµqp0q `
4p
ÿ

n“4

1

n!
E f pnq

piµqp0qE
`

Xu
iµ

˘n
`OăpΦ

pq,

where we used that Xu
iµ has vanishing first and third moments and its variance is 1{N . Thus to

show (6.22), we only need to prove for n “ 4, 5, ..., 4p,

N´n{2
ÿ

iPIM1

ÿ

µPI2

ˇ

ˇ

ˇ
E f pnq

piµqp0q
ˇ

ˇ

ˇ
“ O

`

pNC0δΦqp ` EF pv pXθ, wq
˘

, (6.28)

where we have used (2.3). In order to get a self-consistent estimate in terms of the matrix Xθ on

the right-hand side of (6.28), we want to replace Xθ,0
piµq in fpiµqp0q :“ F pv pX

θ,0
piµqq with Xθ “ X

θ,Xθpiµq
piµq .

Lemma 6.15. Suppose that

N´n{2
ÿ

iPIM1

ÿ

µPI2

ˇ

ˇ

ˇ
E f pnq

piµqpX
θ
iµq

ˇ

ˇ

ˇ
“ O

`

pNC0δΦqp ` EF pv pXθ, wq
˘

(6.29)

holds for n “ 4, ..., 4p, Then (6.28) holds for n “ 4, ..., 4p.
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Proof. From (6.27) we can get

f
plq
piµqp0q “ f

plq
piµqpyq ´

4p´l
ÿ

n“1

yn

n!
f
pl`nq
piµq p0q `OăpN

l{2Φpq. (6.30)

The result follows by repeatedly applying (6.30). The details can be found in [24, Lemma 7.16].

6.1.2 Conclusion of the proof with words

What remains now is to prove (6.29). In order to exploit the detailed structure of the derivatives
on the left-hand side of (6.29), we introduce the following algebraic objects.

Definition 6.16 (Words). Given i P IM1 and µ P I2. Let W be the set of words of even length
in two letters ti,µu. We denote the length of a word w P W by 2npwq with npwq P N. We use
bold symbols to denote the letters of words. For instance, w “ t1s2t2s3 ¨ ¨ ¨ tnsn`1 denotes a word of
length 2n. Define Wn :“ tw P W : npwq “ nu to be the set of words of length 2n. We require that
each word w PWn satisfies that tlsl`1 P tiµ,µiu for all 1 ď l ď n.

Next we assign each letter ˚ its value r˚s through ris :“ vi, rµs :“ µ, where vi P CI1 is defined
in Lemma 6.1 and is regarded as a summation index. Note that it is important to distinguish the
abstract letter from its value, which is a summation index. Finally, to each word w we assign a
random variable Av,i,µpwq as follows. If npwq “ 0 we define

Av,i,µpW q :“ Gvv´rΠvv.

If npwq ě 1, say w “ t1s2t2s3 ¨ ¨ ¨ tnsn`1, we define

Av,i,µpW q :“ Gvrt1s Grs2srt2s ¨ ¨ ¨Grsnsrtns Grsn`1sv . (6.31)

Notice the words are constructed such that, by (6.24),
ˆ

B

BXiµ

˙n
´

Gvv ´ rΠvv

¯

“ p´αqnn!
ÿ

wPWn

Av,i,µpwq

for n “ 0, 1, 2, . . ., which gives that

ˆ

B

BXiµ

˙n

F pv pXq “ p´αq
nn!

ÿ

n1`¨¨¨`np“n

p{2
ź

r“1

1

nr!nr`p{2!

ˆ

¨

˝

ÿ

wrPWnr

ÿ

wr`p{2PWnr`p{2

Av,i,µpwrqAv,i,µpwr`p{2q

˛

‚.

Then to prove (6.29), it suffices to show that

N´n{2
ÿ

iPIM1

ÿ

µPI2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
p{2
ź

r“1

Av,i,µpwrqAv,i,µpwr`p{2q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ O
`

pNC0δΦqp ` EF pv pXθ, wq
˘

(6.32)

for 4 ď n ď 4p and all words w1, ..., wp P W satisfying npw1q ` ¨ ¨ ¨ ` npwpq “ n. To avoid the
unimportant notational complications coming from the complex conjugates, we in fact prove that

N´n{2
ÿ

iPIM1

ÿ

µPI2

ˇ

ˇ

ˇ

ˇ

ˇ

E
p
ź

r“1

Av,i,µpwrq

ˇ

ˇ

ˇ

ˇ

ˇ

“ O
`

pNC0δΦqp ` EF pv pXθ, wq
˘

, (6.33)
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and the proof of p6.32q is essentially the same but with slightly heavier notations. Treating empty
words separately, we find it suffices to prove

N´n{2
ÿ

iPIM1

ÿ

µPI2

E

ˇ

ˇ

ˇ

ˇ

ˇ

Ap´qv,i,µpw0q

q
ź

r“1

Av,i,µpwrq

ˇ

ˇ

ˇ

ˇ

ˇ

“ O
`

pNC0δΦqp ` EF pv pXθ, wq
˘

(6.34)

for 4 ď n ď 4p, 1 ď q ď p, and wr such that npw0q “ 0,
ř

r npwrq “ n and npwrq ě 1 for r ě 1.
To estimate (6.34) we introduce the quantity

Rs :“ |Gvvs | ` |Gvsv|. (6.35)

for s P I, where as a convention we let vµ “ eµ for µ P I2.

Lemma 6.17. For w PW we have the rough bound

|Av,i,µpwq| ă N2δpnpwq`1q. (6.36)

Furthermore, for npwq ě 1 we have

|Av,i,µpwq| ă pR2
i `R2

µqN
2δpnpwq´1q. (6.37)

For npwq “ 1 we have better bound

|Av,i,µpwq| ă RiRµ. (6.38)

Proof. (6.36) follows immediately from the rough bound (6.17) and definition (6.31). For (6.37) we
break Av,i,µpwq into Gvrt1spGrs2srt2s ¨ ¨ ¨Grsnsrtnsq1{2 times pGrs2srt2s ¨ ¨ ¨Grsnsrtnsq1{2 Grsn`1sv and use
Cauchy-Schwarz inequality. (6.38) follows from the constraint t1 ‰ s2 in the definition (6.31).

By pigeonhole principle, if n ď 2q ´ 2 there exists at least two words wr with npwrq “ 1.
Therefore by Lemma 6.17 we have
ˇ

ˇ

ˇ

ˇ

ˇ

Ap´qv,i,µpw0q

q
ź

r“1

Av,i,µpwrq

ˇ

ˇ

ˇ

ˇ

ˇ

ă N2δpn`qqF p´qv pXq
`

1pn ě 2q ´ 1qpR2
i `R2

µq ` 1pn ď 2q ´ 2qR2
iR2

µ

˘

.

(6.39)
Then by Lemma 6.1,

1

N

ÿ

iPIM1

R2
i `

1

N

ÿ

µPI2

R2
µ ă

|w|1{2ImGvv`η|w|
´1{2 Gvv

Nη

ă N2δ |w|Impm1c `m2cq ` |w|
1{2NC0δΦ

Nη
ă N pC0`2qδΦ2, (6.40)

where in the second step we used the two bounds in Lemma 6.8, |w|´1{2η “ Op|w|Imm1cq by Lemma
3.7, and in the last step the definition of Φ. Using the same method we can get

1

N2

ÿ

iPIM1

ÿ

µPI2

R2
iR2

µ ă

´

N pC0`2qδΦ2
¯2

. (6.41)

Plugging (6.40) and (6.41) into (6.39), we get that the left-hand side of (6.34) is bounded by

N´n{2`2N2δpn`q`2q EF p´qv pXq

ˆ

1pn ě 2q ´ 1q
´

NC0δ{2Φ
¯2

` 1pn ď 2q ´ 2q
´

NC0δ{2Φ
¯4
˙

.
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Using Φ ě cN´1{2, we find that the left hand side of (6.34) is bounded by

N2δpn`q`2q EF p´qv pXq

ˆ

1pn ě 2q ´ 1q
´

NC0δ{2Φ
¯n´2

` 1pn ď 2q ´ 2q
´

NC0δ{2Φ
¯n

˙

ď EF p´qv pXq

ˆ

1pn ě 2q ´ 1q
´

NC0δ{2`12δΦ
¯n´2

` 1pn ď 2q ´ 2q
´

NC0δ{2`12δΦ
¯n

˙

where we used that q ď n and n ě 4. Choose C0 ě 25, then by (6.11) we have NC0δ{2`12δ ď Nζ{2

and hence NC0δ{2`12δΦ ď 1. Moreover, if n ě 4 and n ě 2q ´ 1, then n ě q ` 2. Therefore we
conclude that the left-hand side of p6.34q is bounded by

EF p´qv pXq
`

NC0δΦ
˘q
. (6.42)

Now (6.34) follows from Holder’s inequality. This concludes the proof of (6.29), and hence of (6.22),
and then of Lemma 6.5. This finishes the proof of Proposition 6.2 under the assumption (2.23).

In the rest of this section, we prove Proposition 6.2 when η ě N´1{2`ζ |m2c|
´1. In this case, we

can verify that
Φ ď N´1{4´ζ{2. (6.43)

Following the previous arguments, we see that it suffices to prove the estimate (6.29) for n “ 3. In
other words, we need to prove the following lemma.

Lemma 6.18. Fix 1 ď m ď 2δ´1 and p P 2N. Let w P pSm X pD (recall (2.44)) and suppose pAm´1q

holds. Then we have

N´3{2
ÿ

iPIM1

ÿ

µPI2

ˇ

ˇ

ˇ
E f p3q

piµqpX
θ
iµq

ˇ

ˇ

ˇ
“ O

`

pNC0δΦqp ` EF pv pXθ, wq
˘

. (6.44)

Proof. The main new ingredient of the proof is a further iteration step at a fixed w. Suppose

G ´ Π̃ “ OăpN
2δφq (6.45)

for some φ ď 1. By the a priori bound (6.17), (6.45) holds for φ “ 1. Assuming (6.45), we shall
prove a self-improving bound of the form

N´3{2
ÿ

iPIM1

ÿ

µPI2

ˇ

ˇ

ˇ
E f p3q

piµqpX
θ
iµq

ˇ

ˇ

ˇ
“ O

´

pNC0δΦqp ` pN´ζ{4φqp ` EF pv pXθ, wq
¯

. (6.46)

Once (6.46) is proved, we can use it iteratively to get an increasingly accurate bound for the left
hand side of (6.14). After each step, we obtain a better a priori bound (6.45) where φ is reduced by
N´ζ{4. Hence after Opζ´1q iterations we can get (6.44).

As in Section 6.1.2, to prove (6.46) it suffice to show

N´3{2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPIM1

ÿ

µPI2

Ap´qv,i,µpw0q

q
ź

r“1

Av,i,µpwrq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ă F p´qv pXqpN pC0´1qδΦ`N´ζ{2φqq, (6.47)

which follows from

N´3{2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPIM1

ÿ

µPI2

q
ź

r“1

Av,i,µpwrq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ă pN pC0´1qδΦ`N´ζ{2φqq. (6.48)

Each of the three cases q “ 1, 2, 3 can be proved as in [24, Lemma 12.7], and we leave the details
to the reader. This concludes Lemma 6.18.
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6.2 Averaged local law for TX

In this section we prove the averaged local law in Theorem 2.19. Again for convenience, we only
consider the case w P D and |z|2 ď 1 ´ τ . First we assume (2.23) holds. The anisotropic local law
proved in the previous section gives a good a priori bound. In analogy to (6.15), we define

rF pX,wq : “ |w|1{2|m2pwq ´m2cpwq| “

ˇ

ˇ

ˇ

ˇ

ˇ

1

N

ÿ

νPI2

Gννpwq ´ |w|1{2m2cpwq

ˇ

ˇ

ˇ

ˇ

ˇ

.

Since Φ2 “ Op|w|1{2{pNηqq, it suffices to show that rF ă Φ2. Following the argument in Section 6.1,
analogous to (6.29), we only need to prove that

N´n{2
ÿ

iPIM1

ÿ

µPI2

ˇ

ˇ

ˇ

ˇ

E
ˆ

B

BXiµ

˙n

rF ppXq

ˇ

ˇ

ˇ

ˇ

“ O
´

pNδΦ2qp ` E rF ppXq
¯

(6.49)

for all n “ 4, ..., 4p. Here δ ą 0 is an arbitrary positive constant. Analogously to (6.33), it suffices
to prove that for n “ 4, ..., 4p,

N´n{2
ÿ

iPIM1

ÿ

µPI2

ˇ

ˇ

ˇ

ˇ

ˇ

E
p
ź

r“1

˜

1

N

ÿ

νPI2

Aeν ,i,µpwrq

¸
ˇ

ˇ

ˇ

ˇ

ˇ

“ O
´

pNδΦ2qp ` E rF ppXq
¯

(6.50)

for
ř

r npwrq “ n. The only difference in the definition of Av,i,µpwq is that when npwq “ 0, we define

Av,i,µpwq :“ Gvv´|w|
1{2m2c.

Similar to (6.35) we define
Rν,s :“ |Gνvs | ` |Gvsν |. (6.51)

By the anisotropic local law, G´rΠ “ OăpΦq. Hence combining with Lemma 6.1 and (3.33), we get

1

N

ÿ

νPI2

R2
ν,s ă

|w|1{2ImGvsvs

Nη
ă
|w|Impm1c `m2cq ` |w|

1{2Φ

Nη
“ OpΦ2q. (6.52)

Using the anisotropic local law again, we get G “ Oăp1q. Then we have

ˇ

ˇ

ˇ

ˇ

ˇ

1

N

ÿ

νPI2

Aeν ,i,µpwq

ˇ

ˇ

ˇ

ˇ

ˇ

ă
1

N

ÿ

νPI2

`

R2
ν,i `R2

ν,µ

˘

ă Φ2 for npwq ě 1. (6.53)

Following (6.53), for n ě 4, the left-hand side of (6.50) is bounded by

E rF p´qpXqpΦ2qq.

Applying Holder’s inequality, we conclude the proof.
Then we prove the averaged local law when η ě N´1{2`ζ |m2c|

´1. It suffices to prove

N´3{2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPIM1

ÿ

µPI2

E
ˆ

B

BXiµ

˙3

rF ppXq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ O

˜

ˆ

|w|1{2

Nη

˙p

` E rF ppXq

¸

. (6.54)
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Analogous to (6.50), it is reduced to show that

N´3{2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPIM1

ÿ

µPI2

E
q
ź

r“1

˜

1

N

ÿ

νPI2

Aeν ,i,µpwrq

¸

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ O

˜

ˆ

|w|1{2

Nη

˙q

` E rF qpXq

¸

(6.55)

where q is the number of words with nonzero length. Again we can prove the three cases q “ 1, 2, 3
as in [24, Lemma 12.8], and we leave the details to the reader. This concludes the averaged law.

A Properties of ρ1,2c and Stability of (2.11)

A.1 Proof of Lemma 2.3 and Proposition 2.14

We now prove Lemma 2.3. First is a technical lemma for f defined in (2.15).

Lemma A.1. For w ą 0 and |z| ą 0, f can be written as

fp
?
w,mq “ ´

?
w `m` w´1{2 `

1

N

n
ÿ

i“1

lisi

ˆ

Ai
m´ ai

`
Bi

m´ bi
`

Ci
m` ci

˙

, (A.1)

where we have the following estimates for the poles and the coefficients,

max

ˆ

|z|,
si ` |z|

2

?
w

˙

ă ai ă
si ` |z|

2

?
w

` |z|, an ă an´1 ă . . . ă a1, (A.2)

0 ă b1 ă b2 ă . . . ă bn ă min

ˆ

|z|,
|z|2
?
w

˙

, (A.3)

´psi ` |z|
2q `

a

psi ` |z|2q2 ` 4w|z|2

2
?
w

ă ci ă |z|, c1 ă c2 ă . . . ă cn, (A.4)

and

0 ă Ai ď 2
si ` |z|

2 `
?
w|z|

w
, 0 ă Bi ď 2

si ` |z|
2 `

?
w|z|

w
, 0 ă Ci ď

si ` |z|
2 `

?
w|z|

w
. (A.5)

Proof. The proof is based on basic algebraic arguments. Let

pi “
?
wm3 ´ psi ` |z|

2qm2 ´
?
w|z|2m` |z|4.

It is easy to verify that

∆ “ 18psi ` |z|
2qw|z|6 ` 4psi ` |z|

2q3|z|4 ` psi ` |z|
2q2w|z|4 ` 4w2|z|6 ´ 27w|z|8 ą 0.

Thus pi has three distinct real roots. By the form of pi, we see that there are two positive roots and
one negative root, call them ai ą bi ą 0 ą ´ci. Now we perform the partial fraction expansion for
the rational functions in (2.15),

m2 ´ |z|2
?
wm3 ´ psi ` |z|2qm2 ´

?
w|z|2m` |z|4

“
A1i

m´ ai
`

B1i
m´ bi

´
C 1i

m` ci
, (A.6)

where

A1i “
a2
i ´ |z|

2

?
wpai ´ biqpai ` ciq

, B1i “
b2i ´ |z|

2

?
wpbi ´ aiqpbi ` ciq

, C 1i “
´c2i ` |z|

2

?
wpci ` aiqpci ` biq

. (A.7)
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We take si “ 0 in pi and call the resulting polynomial as

p0 “
?
wm3 ´ |z|2m2 ´

?
w|z|2m` |z|4 “

?
w

ˆ

m´
|z|2
?
w

˙

`

m2 ´ |z|2
˘

,

which has roots m “ ˘|z|, |z|2{
?
w. By (2.7), we have p1 ă p2 ă . . . ă pn ă p0 for all m ‰ 0.

Comparing the graphs of pi’s (as cubic functions of m) for 0 ď i ď n, we get that

max

ˆ

|z|,
|z|2
?
w

˙

ă an ă an´1 ă . . . ă a1, 0 ă b1 ă b2 ă . . . ă bn ă min

ˆ

|z|,
|z|2
?
w

˙

, (A.8)

and
0 ă c1 ă c2 ă . . . ă cn ă |z|. (A.9)

Thus we get (A.3). By these bounds, we see that a2
i ´ |z|

2 ą 0, b2i ´ |z|
2 ă 0 and ´c2i ` |z|

2 ą 0,
which, by (A.7), give that A1i ą 0, B1i ą 0 and C 1i ą 0. Plugging (A.6) into f , we get immediately
(A.1) for Ai “ A1iai, Bi “ B1ibi and Ci “ C 1ici.

Now we compare pi with p1i :“
?
wm3 ´ psi ` |z|

2qm2 ´
?
w|z|2m, which has roots

m “ 0,
psi ` |z|

2q ˘
a

psi ` |z|2q2 ` 4w|z|2

2
?
w

.

Since p1i ă pi for all m, we get

ai ă
psi ` |z|

2q `
a

psi ` |z|2q2 ` 4w|z|2

2
?
w

ă
si ` |z|

2

?
w

` |z|, (A.10)

and

ci ą
´psi ` |z|

2q `
a

psi ` |z|2q2 ` 4w|z|2

2
?
w

. (A.11)

From (A.9) and (A.11), we get (A.4). Then we compare pi with p2i :“
?
wm3´ psi` |z|

2qm2, which
has roots w “ 0, psi ` |z|

2q{
?
w. Notice p2i ą pi for m ą |z|2{

?
w and ai ą |z|2{

?
w, so we get

ai ą psi ` |z|
2q{
?
w. Combining this bound with (A.8) and (A.10), we get (A.2).

Finally we estimate the coefficients Ai, Bi and Ci. Using (A.7) and (A.2)-(A.4), we first can
estimate that

A1i “
pai ´ |z|qpai ` |z|q
?
wpai ´ biqpai ` ciq

ď
ai ` |z|

?
wpai ` ciq

ď
2
?
w
,

B1i “
p|z| ` biqp|z| ´ biq
?
wpai ´ biqpbi ` ciq

ď
|z| ` bi

?
wpbi ` ciq

ď 2
si ` |z|

2 `
?
w|z|

w|z|
,

C 1i “
p|z| ´ ciqpci ` |z|q
?
wpci ` aiqpci ` biq

ď
|z| ´ ci

?
wpci ` biq

ď
si ` |z|

2 `
?
w|z|

w|z|
,

from which we get that

Ai “ A1iai ď
2
?
w

ˆ

si ` |z|
2

?
w

` |z|

˙

“ 2
si ` |z|

2 `
?
w|z|

w
, (A.12)

Bi “ B1ibi ď 2
si ` |z|

2 `
?
w|z|

w|z|
|z| “ 2

si ` |z|
2 `

?
w|z|

w
, (A.13)

Ci “ C 1ici ď
si ` |z|

2 `
?
w|z|

w|z|
|z| “

si ` |z|
2 `

?
w|z|

w
. (A.14)
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In (A.1), it is sometimes convenient to reorder the terms and rename the constants to write f as

fpmq “ ´
?
w `m` w´1{2 `

1

N

2n
ÿ

k“1

C`k
m´ xk

`
1

N

n
ÿ

l“1

C´l
m` yl

. (A.15)

where all the constants C`k and C´l are positive, and we choose the order such that

0 ă x1 ă x2 ă . . . ă x2n, 0 ă y1 ă y2 ă . . . ă yn. (A.16)

Clearly, f is smooth on the 3n` 1 open intervals of R defined by

I´n :“ p´8,´ynq, I´k :“ p´yk`1,´ykq pk “ 1, . . . , n´ 1q, I0 :“ p´y1, x1q,

Ik :“ pxk, xk`1q pk “ 1, . . . , 2n´ 1q, I2n :“ px2n,`8q.

Next, we introduce the multiset C of critical points of f (as a function of m), using the conventions
that a nondegenerate critical point is counted once and a degenerated critical point twice. First we
will prove the following elementary lemma about the structure of C (see Fig. 6 and 7).

Lemma A.2. (Critical points) We have |C X I´n| “ |C X I2n| “ 1 and |C X Ik| P t0, 2u for k “
´n` 1, . . . , 2n´ 1.

Proof. We omit the dependence of f on w for now. By (A.15) we have

f 1pmq “ 1´
1

N

2n
ÿ

k“1

C`k
pm´ xkq

2 ´
1

N

n
ÿ

l“1

C´l
pm` ylq

2 , f
2pmq “

1

N

2n
ÿ

k“1

2C`k
pm´ xkq

3 `
1

N

n
ÿ

l“1

2C´l
pm` ylq

3 .

We see that f2 is decreasing on all the intervals Ik for k “ ´n ` 1, . . . , 2n ´ 1. Thus there is at
most one point m P Ik such that f2pmq “ 0. We conclude that f has at most two critical points on
Ik. By the boundary conditions of f 1 on BIk, we get |C X Ik| P t0, 2u for k “ ´n ` 1, . . . , 2n ´ 1.
For m ă ´yn, we have f2pmq ă 0, while for m ą x2n, we have f2pmq ą 0. By the boundary
conditions of f 1 on BI´n and BI2n, we see that f 1 decreases from 1 to ´8 when m increases
from ´8 to ´yn, while f 1 increases from ´8 to 1 when m increases from x2n to `8. Hence
we conclude that each of the intervals p´8,´ynq and px2n,`8q contains a unique critical point in
it, i.e. |C X I´n| “ |C X I2n| “ 1.

From this lemma, we deduce that |C| “ 2p is even. We denote by z2p the critical point in I´n, z1

the critical point in I2n, and z2 ě . . . ě z2p´1 the 2p´ 2 critical points in I´n`1 Y . . .Y I2n´1. For
k “ 1, . . . , 2p, we define the critical values hk :“ fpzkq. The next lemma is crucial in establishing
the basic properties of ρ1c (see e.g. Fig. 6).

Lemma A.3. (Orderings of the critical values) The critical values are ordered as h1 ě h2 ě

. . . ě h2p. Furthermore, there is an absolute constant C0 ą 0 independent of τ such that hk P
r´C0pτ

´1|w|´1{2 ` |z|q ´
?
w,C0pτ

´1|w|´1{2 ` |z|q ´
?
ws for k “ 1, . . . , 2p.

Proof. Notice for the equation (2.14), if we multiply both sides with the product of all denominators
in f , we get a polynomial equation Pwpmq “ 0 with Pw being a polynomial of degree 3n ` 1. An
immediate consequence is that for any fixed w ą 0 and E P R, fp

?
w,mq “ E can have at most

3n` 1 roots in m. This fact is useful in the proof of this lemma and Lemma 2.3.
For i “ ´n, . . . , 2n, define the subset Jipwq :“ tm P Ii : Bmfp

?
w,mq ą 0u. From Lemma A.2,

we deduce that if i “ ´n` 1, . . . , 2n´ 1, then Ji ‰ H if and only if Ii contains two distinct critical
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points of f , in which case Ji is an interval. Moreover, we have J´n “ p´8, z2pq and J2n “ pz1,`8q.
Next, we observe that for any ´n ď i ă j ď 2n, we have fpJiq X fpJjq “ H. Otherwise if there
were E P fpJiq X fpJjq, we would have |tx : fpxq “ Eu| ą 3n` 1. We hence conclude that the sets
fpJiq, ´n ď i ď 2n can be strictly ordered. The claim h1 ě h2 ě . . . ě h2p is now reformulated as

fpJiq ă fpJjq whenever i ă j and Ji, Jj ‰ H. (A.17)

To prove (A.17), we use a continuity argument. Let t P p0, 1s and introduce

f tpmq “ ´
?
w `m` w´1{2 `

t

N

2n
ÿ

k“1

C`k
m´ xk

`
t

N

n
ÿ

l“1

C´l
m` yl

.

It is easy to check (A.17) holds for small enough t ą 0. We claim that

Ji ‰ Hñ J ti ‰ H for all t P p0, 1s. (A.18)

This is trivial for i “ ´n, 2n. Recall that for ´n ` 1 ď i ď 2n ´ 1, J ti ‰ H is equivalent to Ii
containing two distinct critical points. Moreover, BtBmf

tpmq ă 0 in I´n`1Y . . .Y I2n´1, from which
we deduce that the number of distinct critical points in each Ii, i “ ´n ` 1, . . . , 2n ´ 1, does not
decreases as t decreases. This proves (A.18).

Next, suppose that there exist i ă j such that Ji, Jj ‰ H and fpJiq ą fpJjq. From (A.18), we
deduce that J ti , J

t
j ‰ H for all t P p0, 1s. By a simple continuity argument, we get that f tpJ ti q ą

f tpJ tj q for all t P p0, 1s. However, this is impossible for small enough t as explained before (A.18).
This concludes the proof of (A.17).

To prove the second statement of Lemma A.3, we only need to show that h1 ď C0pτ
´1|w|´1{2 `

|z|q ´
?
w and h2p ě ´C0pτ

´1|w|´1{2 ` |z|q ´
?
w for some absolute constant C0. We only give the

proof for h1; the proof for h2p is similar. At z1, we have

fpz1q `
?
w ď pz1 ` ynq

«

1`
1

N

2n
ÿ

k“1

C`k
pz1 ´ xkq

2 `
1

N

n
ÿ

l“1

C´l
pz1 ` ylq

2

ff

` w´1{2 “ 2pz1 ` ynq ` w
´1{2,

where we use

0 “ f 1pz1q “ 1´
1

N

2n
ÿ

k“1

C`k
pz1 ´ xkq

2 ´
1

N

n
ÿ

l“1

C´l
pz1 ` ylq

2 . (A.19)

Now we would like to estimate z1 ` yn. Again using (A.19), we have that

1

N

2n
ÿ

k“1

C`k
pz1 ´ x2nq

2 `
1

N

n
ÿ

l“1

C´l
pz1 ´ x2nq

2 ě 1.

Then by (A.5) we get

z1 ´ x2n ď

g

f

f

e

1

N

2n
ÿ

k“1

C`k `
1

N

n
ÿ

l“1

C´l ď

c

5
τ´1 ` |z|2 `

?
w|z|

w
.

Using the above estimates and (A.2)-(A.4), we obtain that

fpz1q ď 2

˜
c

5
τ´1 ` |z|2 `

?
w|z|

w
`
s1 ` |z|

2

?
w

` 2|z|

¸

` w´1{2 ´
?
w ď C0pτ

´1|w|´1{2 ` |z|q ´
?
w.

for some constant C0 ą 0 that does not depend on τ .
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Figure 6: The graphs of fp
?
w,mq for the example from Figure 1, i.e. ρΣ “ 0.5δ?

2{17
` 0.5δ

4
?

2{17
.

We take |z| “ 1.5, and w “ 10 and 0.01 in the upper and lower graphs, respectively. In the lower
graph, we only plot the five branches near m “ 0. The remaining two branches are far away.

Proof of Lemma 2.3. Let Jpwq :“
Ť2n
i“´n Jipwq. Given w ą 0 such that 0 P fpJpwqq, then the set

tm P R : fp
?
w,mq “ 0u has 3n ` 1 points. Since fp

?
w,mq “ 0 has at most 3n ` 1 solutions in

m, we deduce that mcpwq is real and hence m1cpwq is also real. Since m1c is the Stieltjes transform
of ρ1c, we conclude that w R supp ρ1c. On the other hand, suppose w ą 0 and 0 R f pJpwqq. Then
the set of preimages tm P R : fp

?
w,mq “ 0u “ tm P R : Pwpmq “ 0u has 3n ´ 1 points. Since

Pwpmq is a degree 3n` 1 polynomial with real coefficients, we conclude that Pw has a unique root
with positive imaginary part. By the uniqueness of the solution of Pw`iη in C` (Lemma 2.2) and
the continuity of the roots of Pw`iη in η, we conclude that Immcpwq ą 0 and Imm1cpwq ą 0 by
taking η Œ 0, i.e. w P supp ρ1c. In sum, we get

supp ρ1c “ tw ą 0 : 0 R f pJpwqqu. (A.20)

From Lemma A.3, we see that there exists an absolute constant C1 ą 0 such that if w ě C1τ
´1,

then h1pωq ď C0pτ
´1|w|´1{2 ` |z|q ´

?
w ă 0. Hence fix w ě C1τ

´1, we have 0 P fpJ2npwqq and
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Figure 7: The graphs of fp
?
w,mq for the example from Figure 1, i.e. ρΣ “ 0.5δ?

2{17
` 0.5δ

4
?

2{17
.

We take |z| “ 0.5, and w “ 6 and 0.01 in the upper and lower graphs, respectively. In the lower
graph, we only plot the five branches near m “ 0. The remaining two branches are far away.

w R supp ρ1c (see the upper graphs in Fig. 6 and 7). This shows that ρ1c is compactly supported in
r0, C1τ

´1s. Now we decrease w so that w ă s1 ` |z|
2 ` 1, then using (A.2),

h1pwq ą z1 ` w
´1{2 ´

?
w ą

s1 ` |z|
2 ` 1´ w
?
w

ą 0.

By continuity, there must be some 0 ă w ă Cτ´1 such that 0 R f pJpwqq. Thus supp ρ1c ‰ H. By
(A.20), it is not hard to see that supp ρ1c is a disjoint union of (countably many) closed intervals,

supp ρ1c “
ď

k

re2k, e2k´1s, (A.21)

where C1τ
´1 ě e1 ě e2 ě . . .. Furthermore, for ei to be a boundary point, we must have that 0 is

a critical value of fp
?
ei,mq, i.e. there is a unique critical point m “ mcpeiq such that

fp
?
ei,mcpeiqq “ 0, Bmfp

?
ei,mcpeiqq “ 0. (A.22)
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Notice the two equations in (A.22) are equivalent to two polynomial equations in p
?
w,mq with

order 3n ` 1 and 6n, respectively. By Bézout’s theorem, there are at most finitely many solutions
to (A.22). Hence there are finitely many ei’s, call them e1 ě e2 ě . . . ě e2L, where L ” Lpnq P N.
To prove the statement about e2L, we use Lemma A.4 below. This concludes Lemma 2.3.

Lemma A.4. If 1 ` τ ď |z|2 ď 1 ` τ´1, there is a constant εpτq ą 0 so that e2L ě εpτq. If
|z|2 ď 1´ τ , e2L “ 0 and ρ1cpxq „ x´1{2 when xŒ 0.

Proof. By this lemma, the behavior of the leftmost edge e2L changes essentially when z crosses the
unit circle. From the following proof, we see that the singularity happens at |z|2 “ N´1

řn
i“1 lisi.

Thus the fact that the singular circle has radius 1 comes from our normalization (2.5) for T .
We first study equation (2.14) when w Œ 0 in the case 1` τ ď |z|2 ď 1` τ´1. We calculate the

derivative of f as

Bmfp
?
w,mq “ 1`

1

N

n
ÿ

i“1

lisi
m2 ´ |z|2

?
wm3 ´ psi ` |z|2qm2 ´

?
w|z|2m` |z|4

´
m

N

n
ÿ

i“1

lisi

?
w
`

m2 ´ |z|2
˘2
` 2si|z|

2m

r
?
wm3 ´ psi ` |z|2qm2 ´

?
w|z|2m` |z|4s

2 . (A.23)

It is easy to see that J0 ‰ H for all w ą 0, since Bmfp
?
w, 0q “ 1 ´ |z|´2 ą 0 (see the lower graph

in Fig. 6). Call the end points of J0 as zkpwq ą 0 and zk`1pwq ă 0. By the definition of I0, we have
zk ă b1 ă |z|. Suppose zk “ op|z|q as w Ñ 0, then (A.23) gives that 0 “ 1 ´ |z|´2 ` op1q, which
gives a contradiction. Thus zk „ |z| as w Ñ 0. Now using Bmfp

?
w, zkq “ 0, we can estimate that

fp
?
w, zkq “ ´

?
w `

z2
k

N

n
ÿ

i“1

lisi

?
w
`

z2
k ´ |z|

2
˘2
` 2si|z|

2zk

r
?
wz3

k ´ psi ` |z|
2qz2

k ´
?
w|z|2zk ` |z|4s

2

ě ´
?
w `

1

N

n
ÿ

i“1

lisi
2si|z|

2z3
k

|z|8
ě c´

?
w (A.24)

for some C ą 0 independent of w, where in the second step we use that

?
wz3

k ´ psi ` |z|
2qz2

k ´
?
w|z|2zk ` |z|

4 ą 0, and
?
wz3

k ´ psi ` |z|
2qz2

k ´
?
w|z|2zk ă 0

which come from that 0 ă zk ă bi for all 1 ď i ď n. By (A.24), we can find ε small enough such that
fp
?
w, zkq ą 0 for all 0 ă w ď ε. In this case 0 P fpJ0pwqq and hence w R supp ρ1c. In fact, it is not

hard to see that there is a solution m0 “
?
w|z|2{p|z|2 ´ 1q ` op

?
wq P I0 such that fp

?
w,m0q “ 0

and Bmfp
?
w,m0q ą 0. This proves the first statement of Lemma A.4.

Now we study equation (2.14) when |z|2 ď 1 ´ τ and w Ñ 0. For later purpose, we allow w to
be complex and prove a more general result than what we need for this lemma. Let w “ 0 in the
equation (2.14), we get m “ 0 or

0 “ 1`
1

N

n
ÿ

i“1

lisi
m2 ´ |z|2

´psi ` |z|2qm2 ` |z|4
. (A.25)

We define

gpxq “ 1`
1

N

n
ÿ

i“1

lisi
x´ |z|2

´psi ` |z|2qx` |z|4
“
|z|2

N

n
ÿ

i“1

li
´x` |z|2 ´ si

´psi ` |z|2qx` |z|4
. (A.26)
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It is easy to see that g is smooth and decreasing on the intervals defined through

K1 :“

ˆ

´8,
|z|4

s1 ` |z|2

˙

, Ki :“

ˆ

|z|4

si´1 ` |z|2
,

|z|4

si ` |z|2

˙

pi “ 2, . . . , nq, Kn`1 :“

ˆ

|z|4

sn ` |z|2
,8

˙

.

By the boundary values of g on these intervals, we see that gpxq has exactly one zero on intervals
Ki for i “ 1, . . . , n, and has no zero on Kn`1. Since gpxq “ 0 is equivalent to a polynomial equation
of order n, it has at most n solutions. We conclude that all of its solutions are real. Obviously the
zeros on the intervals Ki are positive for i “ 2, . . . , n. Now we study the zero on K1. Observe that
gp0q “ 1´|z|´2 ă 0 (as |z|2 ď 1´ τ), the zero on K1 is negative, call it ´t. Moreover, we can verify
that gp´τ´1q ą 0 by (A.26), so t ă τ´1. If |z|2 ě τ{2, then by the concavity of g on the K1, we get

t ě
gp0q

g1p0q
ě
|z|4p1´ |z|2q

s1
ě
τ4

4
. (A.27)

In the case |z|2 ď τ{2, we have |z|2 ´ sn ď ´τ{2 and gp|z|2 ´ snq ď 0 by (A.26). Hence we have

´ t ď |z|2 ´ sn ď ´τ{2. (A.28)

Combining (A.27) and (A.28), we get that cτ4 ď t ď τ´1 for some constant c ą 0.
Now we return to the self-consistent equation (2.14). The previous discussions show that

fp0, i
?
tq “ 0, t ě cτ4.

It is easy to see that there exists constants c1, τ
1 ą 0 such that

ˇ

ˇ´psi ` |z|
2qm2 ` |z|4 `

?
w
`

m3 ´ |z|2m
˘
ˇ

ˇ ě c1 for |m´ i
?
t| ď τ 1. (A.29)

First we consider the case |z| ě ε ą 0. Expanding fp
?
w,mq around p0, i

?
tq and using (A.29),

0 “ B?wfp0, i
?
tq
?
w ` Bmfp0, i

?
tqpm´ i

?
tq ` op

?
wq ` opm´ i

?
tq. (A.30)

By (A.23),

B?wfp
?
w,mq “ ´1´

m2

N

n
ÿ

i“1

lisi

`

m2 ´ |z|2
˘2

r´psi ` |z|2qm2 ` |z|4 `
?
w pm3 ´ |z|2mqs

2 , (A.31)

and (A.29), we get
ˇ

ˇB?wfp0, i
?
tq
ˇ

ˇ ď C and

Bmfp0, i
?
tq “

t

N

n
ÿ

i“1

lisi
2si|z|

2

rpsi ` |z|2qt` |z|4s
2 ě c2 (A.32)

for some c2 ą 0. Using (A.32), we get from (A.30) that

m´ i
?
t “ Op

?
wq, if |z| ě ε. (A.33)

In particular, this shows that |m| « Imm „ 1 as w Ñ 0.
Then assume that |z|2 ă ε, for sufficiently small ε. From gp´tq “ 0 and (A.26), we get that

1

N

n
ÿ

i“1

li
t` |z|2 ´ si

psi ` |z|2qt` |z|4
“ 0. (A.34)
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From the leading order term, we get t´1 “ t´1
0 `Op|z|2q, where t0 :“

`

N´1
ř

i li{si
˘´1

. Expanding
(A.34) to the first order term of |z|2, we get

t “ t0 `

˜

t20
N

ÿ

i

li
s2
i

´ 2

¸

|z|2 `Op|z|4q. (A.35)

Now we write equation (2.14) as
F p
?
w,mq “ 0, (A.36)

where F p
?
w,mq :“ fp

?
w,mq{m. Expanding F around p0, i

?
tq and using (A.29), we get

0 “B?wF p0, i
?
tq
?
w ` BmF p0, i

?
tqpm´ i

?
tq ` BmB?wF p0, i

?
tqpm´ i

?
tq
?
w

`
1

2
B2?

wF p0, i
?
tqw `

1

2
B2
mF p0, i

?
tqpm´ i

?
tq2 ` opw, |m´ i

?
t|2, |m´ i

?
t|
?
wq. (A.37)

We can calculate that (the partial derivatives of F can be obtained using (A.23) and (A.31))

BmF p
?
w, i
?
tq “ ´

2i|z|2 ` 2
?
wt0

t
3{2
0

` op|z|2,
?
wq, (A.38)

B?wF p
?
w, i
?
tq “

`

i|z|2 ` 2
?
wt0

˘

?
t0
N

n
ÿ

j“1

lj
s2
j

` op|z|2,
?
wq. (A.39)

From (A.38) and (A.39), we get that

BmF p0, i
?
tq “ ´

2i|z|2

t
3{2
0

` op|z|2q, B?wF p0, i
?
tq “

i|z|2
?
t0

N

n
ÿ

j“1

lj
s2
j

` op|z|2q,

BmB
?
wF p0, i

?
tq “ ´

2

t0
`Op|z|2q, B2?

wF p0, i
?
tq “

2t0
N

n
ÿ

j“1

lj
s2
j

`Op|z|2q, B2
mF p0, i

?
tq “ Op|z|2q.

Plugging the above results into (A.37), we get that

0 “

«

i|z|2
?
t0 `

?
wt0

N

n
ÿ

j“1

lj
s2
j

` op|z|2q

ff

?
w `

«

´2
i|z|2 `

?
wt0

t
3{2
0

` op|z|2q

ff

pm´ i
?
tq

` opw, |m´ i
?
t|2, |m´ i

?
t|
?
wq. (A.40)

Observing that
ˇ

ˇi|z|2
?
t0 `

?
wt0

ˇ

ˇ „ |z|2 `
a

|w|, we get

m´ i
?
t “

«

t20
2N

n
ÿ

j“1

lj
s2
j

`Op|w|1{2 ` |z|2q

ff

?
w, if |z| ă ε. (A.41)

Combing (A.33) and (A.41), we get that if |z|2 ă 1 ´ τ , m “ i
?
t ` Op

?
wq when w Ñ 0. In

particular, this shows that |m| « Imm „ 1 when w Ñ 0. Finally we conclude the proof of Lemma
A.4 by using that m1cpwq “ mcpwqw

´1{2 ´ 1.

To prove Proposition 2.14, we need the following lemma, which is a consequence of the edge
regularity conditions (2.18) and (2.19).
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Lemma A.5. Suppose ek ‰ 0 is a regular edge. Then |m1cpwq ´m1cpekq| „ |w ´ ek|
1{2 as w Ñ ek

and minl‰k |el ´ ek| ě δ for some constant δ ą 0.

Proof. Denote mk :“ mcpekq and let w Ñ ek. Notice by Lemma 2.3, if ek ‰ 0, we have

ε ď ek ď Cτ´1. (A.42)

Then we expand f around p
?
ek,mkq to get that

0 “B?wfp
?
ek,mkqp

?
w ´

?
ekq `

1

2
B2
mfp

?
ek,mkqpmcpwq ´mkq

2

`O
“

|
?
w ´

?
ek|

2 ` |mcpwq ´mk|
3 ` |

?
w ´

?
ek||mcpwq ´mk|

‰

, (A.43)

where by (A.31),

B?wfp
?
ek,mkq “ ´1´

m2
k

N

n
ÿ

i“1

lisi

`

m2
k ´ |z|

2
˘2

ekpmk ´ aiq2pmk ´ biq2pmk ` ciq2
, (A.44)

and by (A.1),

B2
mfp

?
ek,mkq “

2

N

n
ÿ

i“1

lisi

„

Ai
pmk ´ aiq3

`
Bi

pmk ´ biq3
`

Ci
pmk ` ciq3



, (A.45)

Applying (A.2)-(A.5), (A.42) and the conditions (2.18)-(2.19) to (A.44) and (A.45), we get that

1 ď
ˇ

ˇB?wfp
?
ek,mkq

ˇ

ˇ ď C1, ε ď
ˇ

ˇB2
mfp

?
ek,mkq

ˇ

ˇ ď C2 (A.46)

for some C1, C2 ą 0. Similarly, if |w´ ek| ď τ 1 and |mcpwq´mk| ď τ 1 for some sufficiently small τ 1,
using the condition (2.18) we can get that

max
!

ˇ

ˇB3
mfp

?
w,mcpwqq

ˇ

ˇ ,
ˇ

ˇ

ˇ
B2?

wfp
?
w,mcpwqq

ˇ

ˇ

ˇ
,
ˇ

ˇBmB
?
wfp

?
w,mcpwqq

ˇ

ˇ

)

ď C3. (A.47)

Plug them into equation (A.43), for |w ´ ek| ď τ 1 and |mcpwq ´mk| ď τ 1, we get |mcpwq ´mk| „

|
?
w ´

?
ek|

1{2 and

´ B?wfp
?
ek,mkqp

?
w ´

?
ekq `Op|

?
w ´

?
ek|

3{2q “
1

2
B2
mfp

?
ek,mkqpmcpwq ´mkq

2. (A.48)

By (A.42), we immediately get that |
?
w´

?
ek| „ |w´ ek| and |mcpwq´mk| „ |m1cpwq´m1cpekq|,

which proves the first part of the lemma. By (A.48), if w is real and |w ´ ek| ď τ 1, we have that

mcpwq ´mk “

„

´2B?wfp
?
ek,mkq

B2
mfp

?
ek,mkq

`Op|
?
w ´

?
ek|

1{2q

1{2
`?
w ´

?
ek
˘1{2

. (A.49)

Thus on a sufficiently small interval U “ rek ´ δ, ek ` δs, mcpwq has positive imaginary part for w
on one side of ek and mcpwq is real for w on the other side. Hence U does not contain another edge.
This shows that minl‰k |el ´ ek| ě δ.

Proof of Proposition 2.14. The properties of ρ1c have been proved in Lemmas 2.3, A.4 and A.5, and
included in the Definition 2.4. Since supp ρ2c “ supp ρ1c by the discussions after Lemma 2.2, we
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immediately get property (i) for ρ2c. The conclusion ρ2c being a probability measure is due to the
definition of m2 in (2.34) and the fact that m2c is the almost sure limit of m2.

The properties (ii) and (iv) for ρ2c can be easily obtained by plugging m1c into (2.9). To prove
the property (iii) for ρ2c, we need to know the behavior of Imm2cpwq when w Ñ ej along the real
line. By (2.9), it suffices to prove that if |x´ ej | ď τ 1 for some small enough τ 1 ą 0, then

ˇ

ˇ´wp1`m1cq
2 ` |z|2

ˇ

ˇ “
ˇ

ˇm2
c ´ |z|

2
ˇ

ˇ ě ε

for some constant ε ą 0. Suppose that
ˇ

ˇm2
cpwq ´ |z|

2
ˇ

ˇ “ op1q. Plugging mc into Bmfp
?
w,mcq in

(A.23), and using condition (2.18) and Lemma A.5, we get that

Bmfp
?
w,mcpwqq “ ´1`Op|m2

c ´ |z|
2|q. (A.50)

Again using condition (2.18) and Lemma A.5, we can bound B?wBmfp
?
w,mcpwqq and B2

mfp
?
w,mcpwqq

for w near ej . Thus we shall have that

0 “ Bmfp
?
ej ,mcpejqq “ Bmfp

?
w,mcpwqq`Op|w´ej |

1{2q “ ´1`Op|m2
c´|z|

2|`|w´ej |
1{2q. (A.51)

This gives a contradiction. Thus we must have a lower bound for
ˇ

ˇm2
c ´ |z|

2
ˇ

ˇ.

Remark: Here we add a small remark on Example 2.8. Given the assumptions in Example 2.8, it
is easy to see that f can only take critical values on intervals I´n, I0, In and I2n, since maxt|ai ´
ai´1|, |bi´ bi´1|, |ci´ ci´1|u Ñ 0 in this case. Thus the number of connected components of supp ρ1c

is independent of n, and all the edges and the bulk components are regular as in Example 2.7.

A.2 Proof of Lemmas 3.7 and 3.8

We first prove Lemma 3.7. We consider the five cases separately.

Case 1: For w “ E ` iη P Db
kpζ, τ

1, Nq, we have

m1cpwq “

ż

R

ρ1cpxq

x´ pE ` iηq
dx, Imm1cpwq “

ż

R

ρ1cpx, zqη

px´ Eq2 ` η2
dx. (A.52)

By the regularity condition of Definition 2.4 (ii), we get immediately Imm1c „ 1. Since Imm1c ď

|1`m1c| ď C by Proposition 2.15, we get |1`m1c| „ 1. Notice wm1c can be expressed as

wm1cpwq “

ż

R

wρ1cpx, zq

x´ w
dx “ ´

ż

R
ρ1cpx, zqdx`

ż

R

xρcpx, zq

x´ w
dx.

By the same argument as above and using the fact that x ě τ 1 for x P re2k ` τ
1, e2k´1 ´ τ

1s, we get

Impwm1cq “ Im

ż

R

xρ1cpx, zq

x´ w
dx „ 1.

Since the imaginary parts of ´w and |z|2{p1`m1cq are both negative, we get

Im

„

´wp1`m1cq `
|z|2

1`m1c



ď ´Impwm1cq. (A.53)

Using the bounds for m1c and Imm1c proved above, it is easy to see
ˇ

ˇ

ˇ

ˇ

´wp1`m1cq `
|z|2

1`m1c

ˇ

ˇ

ˇ

ˇ

“ Op1q. (A.54)
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Equations (A.53) and (A.54) together give that Imm2c „ 1 and |m2c| „ 1. Similarly, we can also
prove that

wm2c “

«

´p1`m1cq `
|z|

2

wp1`m1cq

ff´1

P C`

and Impwm2cq „ 1. Now (3.29) follows from

Im

˜

w ` siwm2c ´
|z|

2

1`m1c

¸

ě siImpwm2cq.

Case 2: For w “ E ` iη P Dopζ, τ 1, Nq, using (A.52) and distpE, supp ρ1,2cq ě τ 1, we immediately
get Imm1,2c „ η. Now we prove the other estimates.

We first prove (3.29). If η „ 1, the proof is exactly the same as in Case 1. Hence we assume
η ď c1, where c1 ” c1pτ, τ 1q ą 0 is sufficiently small. We separate it into two cases.

(i) Suppose E „ 1. We shall prove that

min
i
t|mcpwq ´ aipwq|, |mcpwq ´ bipwq|, |mcpwq ` cipwq|u ě ε1, (A.55)

for some constant ε1. This leads immediately to (3.29) since

ˇ

ˇ

ˇ

ˇ

ˇ

w

˜

1` si
1`m1c

´wp1`m1cq
2 ` |z|

2

¸

p1`m1cq ´ |z|
2

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

?
wpmc ´ aiqpmc ´ biqpmc ` ciq

´m2
c ` |z|

2

ˇ

ˇ

ˇ

ˇ

ˇ

. (A.56)

For pi “
?
Em3 ´ psi ` |z|

2qm2 ´
?
E|z|2m` |z|4, it is not hard to prove that its roots aipEq, bipEq

and ´cipEq decrease as E increase. Since E R supp ρ1c, we have m1cpEq P R and

dm1cpEq

dE
“

ż

R

ρ1cpx, zq

px´ Eq2
dx ě 0.

So m1cpEq (and hence mcpEq) increases as E increases. If ek is the smallest edge that is bigger than
E, then for aipEq bigger than mcpEq, we have that

aipEq ´mcpEq ě aipekq ´mcpekq ` εpτ
1q ě εpτ 1q, (A.57)

by using |E ´ ek| ě τ 1 (see (2.42)). On the other hand, If ek´1 is the largest edge value that is
smaller than E, then for aipEq smaller than mcpEq, we have that

mcpEq ´ aipEq ě mcpek´1q ´ aipek´1q ` εpτ
1q ě εpτ 1q. (A.58)

Applying the same arguments to bipEq and ´cipEq, we get

min
i
t|mcpEq ´ aipEq|, |mcpEq ´ bipEq|, |mcpEq ` cipEq|u ě ε (A.59)

for E P pe2k´1, e2kq for some k. Now we are only left with the case E ă e2L, the rightmost edge,
when |z|2 ě 1`τ . In this case, we have seen that 0 ă mcpEq ă bipEq for all i in the proof of Lemma
A.4. Thus we can use (A.57) to get lower bounds for |mcpEq ´ aipEq| and |mcpEq ´ bipEq|. Since
cipEq „ 1 in this case (e.g. by (A.4) and using E, |z| „ 1), |mcpEq ` cipEq| ě ε is trivial. Again we
get the estimate (A.59).
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Then we consider w “ E ` iη with η ď c1. First it is easy to check that aipE ` iηq, bipE ` iηq
and cipE ` iηq are continuous in η. On the other hand for mcpE ` iηq, we have

Bwm1cpwq “

ż

R

ρ1cpx, zq

px´ wq2
dx ď C (A.60)

by the condition distpE, supp ρ1cq ě τ 1. Thus we immediately get |mcpE ` iηq ´mcpEq| “ Opηq.
Hence as long as c1 is small enough, (A.55) is true, which further gives (3.29).

(ii) Suppose w “ E ` iη Ñ 0, in which case we must have |z|2 ě 1 ` τ and E ă e2L. Using
|m1,2cpwq| „ 1 by Proposition 2.15, we can calculate directly that

ˇ

ˇ

ˇ
w p1` sim2cq p1`m1cq ´ |z|

2
ˇ

ˇ

ˇ
“
ˇ

ˇ|z|2 `Opwq
ˇ

ˇ ě c.

This concludes the proof of (3.29).
Then we show that |1`m1c| „ 1 for w P Do and η ď c1. We again divide it into two cases. First

suppose |w| „ 1. If |mc| can be arbitrarily small, then by (3.29) we get that

fp
?
w,mcq “ ´

?
w `Opmcq ‰ 0,

which gives a contradiction. Then suppose w “ E ` iη Ñ 0 when |z|2 ě 1 ` τ and E ă e2L. We
have seen in the proof of Lemma A.4 that

mcpEq “
?
E

|z|2

|z|2 ´ 1
` o

´?
E
¯

ñ 1`m1cpEq “
|z|2

|z|2 ´ 1
` op1q.

Then using (A.60), we get

|1`m1cpE ` iηq| “

ˇ

ˇ

ˇ

ˇ

|z|2

|z|2 ´ 1
` op1q `Opηq

ˇ

ˇ

ˇ

ˇ

„ 1.

Finally we have |m2c| „ 1 for w P Do and η ď c1 by Proposition 2.15.

Case 3: For regular edge ek ‰ 0, we always have ek ě ε for some ε ą 0 by Lemma A.4. Thus we
always have |w| „ 1 for w “ E ` iη P De

kpζ, τ
1, Nq as long as τ 1 is sufficiently small. If η „ 1, then

?
κ` η „ η{

?
κ` η „ 1 and the proof is exactly the same as in Case 1. Now we pick τ 1 small and

consider the case η ď τ 1. By the regularity assumption (2.18) and Lemma A.5, we have

min
1ďiďn

t|mcpwq ´ aipwq|, |mcpwq ´ bipwq|, |mcpwq ` cipwq|u ě ε{2 (A.61)

uniformly in w P tw P De
kpζ, τ

1, Nq : κpwq ` ηpwq ď 2τ 1u, provided τ 1 is sufficiently small. The
above bound implies (3.29). If mcpwq Ñ 0, then using (3.29) we get from fp

?
w,mcq “ 0 that

´
?
w`Opmcq “ 0, which gives a contradiction. Thus we must have |1`m1c| „ |mc| „ 1. To show

|m2c| „ 1, we can use Proposition 2.15.
We still need to prove the estimates for Imm1,2c when η ď τ 1. Recall the expansion (A.48)

around ek and equation (A.49). Notice both B?wfp
?
ek,mkq and B2

mfp
?
ek,mkq are real (as ek and

mk are real). Suppose k is odd, then ImmcpEq “ 0 for E Œ ek (i.e. E R suppρc) and ImmcpEq ą 0
for E Õ ek (i.e. E P suppρc). Thus (A.49) gives

mcpwq ´mk “ Ckpwqpw ´ ekq
1{2 `Dkpwq,
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with Ck ą 0, Ck „ 1, |Dk| “ Op|w ´ ek|q and ImDk „ η. Then for E ě ek, we have

ImmcpE ` iηq „ Impκ` iηq1{2 `Opηq „
η

?
κ` η

,

and for E ď ek, we have

ImmcpE ` iηq „ Imp´κ` iηq1{2 `Opηq „
?
κ` η.

If k is even, the proof is the same except that in this case

mcpwq ´mk “ Ckpwqpek ´ wq
1{2 `Dkpwq.

For m1cpwq and m2cpwq, we get the conclusion by noticing w « ek and

Imm1c “ Im
´

w´1{2mc

¯

„ Immcpwq, Imm2c “ Im

„

mc
?
wp´m2

c ` |z|
2q



„ Immcpwq.

Case 4: Again if η „ 1, the proof is the same as in Case 1. If |w| ď 2τ 1 for small enough τ 1, in the
proof of Lemma A.4, we have seen that mc “ i

?
t`Op

?
wq, which gives the first equation in (3.26).

Plugging it into (2.9), we get the second equation in (3.26). Taking the imaginary part, we obtain
(3.27). Finally using (3.26), we get (3.29) easily.

Case 5: For w “ E ` iη P DLpζ,Nq, the bounds for m1,2 and Imm1,2 in (3.28) follows from (A.52)
directly.

Finally we prove Lemma 3.8. The estimates (3.31) and (3.32) follow immediately from (2.32),
(3.29) and (3.30). For (3.33), we can write

Πvv “

B

v,

ˆ

U 0
0 U

˙

Πd

ˆ

U : 0
0 U :

˙

v

F

“ pΠdquu “

N
ÿ

i“1

@

uris, πriscuris
D

,

where

u :“

ˆ

U : 0
0 U :

˙

v, uris :“

ˆ

ui
uī

˙

.

To control Im Πvv, it is enough to bound
@

uris, πriscuris
D

for each i.
We first consider Cases 1-4 of Lemma 3.7. By the definition of πrisc in (2.32), we get

Imπii,c “ |ui|
2Im

„

´wp1` |di|
2m2cq `

|z|2

1`m1c

´1

ď
C

|w|
Im

„

wp1` |di|
2m2cq ´

|z|2

1`m1c



“
C

|w|

„

p1` |di|
2Rem2cqImw ` |di|

2pRewqImm2c `
|z|2

|1`m1c|
2

Imm1c



,

where in the second step we use (3.29) and |1 `m1c| „ |w|
´1{2. In the first three cases of Lemma

3.7, we have |w| „ 1 and Imw “ OpImm1cq, which give that Imπii,c ď CImpm1c `m2cq. In case
4 of Lemma 3.7, we use |Imw| ` |Rew| ` |1`m1c|

´2 “ Op|w|q and Imm1,2c „ |w|
´1{2 to get that

Imπii,c ď CImpm1c `m2cq. Similarly we have the bound Imπī̄i,c ď CImpm1c `m2cq. Finally we
can estimate the following term using similar methods,

Im
`

ūīuiπīi,c ` ūiuīπīi,c
˘

“ 2Re pūiuīzq Im
!

w´1{2
“

wp1` |di|
2m2cqp1`m1cq ´ |z|

2
‰´1

)

ď CRe pūiuīzq Impm1c `m2cq ď C
`

|ui|
2 ` |uī|

2
˘

Impm1c `m2cq.

Combining the above estimates we get Im
@

uris, πriscuris
D

ď C|uris|
2Impm1c ` m2cq, which implies

(3.33). For the Case 5 of Lemma 3.7, we use (3.28) and (3.32) to get

Im
@

uris, πriscuris
D

ď |uris|
2}πrisc} ď C|uris|

2Impm1c `m2cq.
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A.3 Proof of Lemma 3.10 and Lemma 2.2

We first prove Lemma 3.10. During the proof, we also use the following equivalent definition of
the stability expressed in terms of m “

?
wp1 ` m1q, u “

?
wp1 ` u1q and fp

?
w,mq. Suppose

the assumptions in Definition 3.9 holds. Let w P D and suppose that for all w1 P Lpwq we have
|fp
?
w, uq| ď |w|1{2δpwq. Then

|upwq ´mcpwq| ď
C|w|1{2δ
?
κ` η ` δ

. (A.62)

Case 1: We take over the notations in Definition 3.9 and abbreviate R :“ fp
?
w, uq, so that |R| ď

|w|1{2δ. Then we write the equation fp
?
w, uq ´ fp

?
w,mcq “ R as

αpu´mcq
2 ` βpu´mcq “ R, (A.63)

where using (A.1), α and β can be expressed as

α :“
1

N

n
ÿ

i“1

lisi

„

Ai
pu´ aiqpmc ´ aiq2

`
Bi

pu´ biqpmc ´ biq2
`

Ci
pu` ciqpmc ` ciq2



, (A.64)

and

β :“ 1´
1

N

n
ÿ

i“1

lisi

„

Ai
pmc ´ aiq2

`
Bi

pmc ´ biq2
`

Ci
pmc ` ciq2



“ Bmfp
?
w,mcq. (A.65)

We shall prove that
|α| ` |Buα| ď C, |β| „ 1, (A.66)

for w P Db
k and u satisfying |u´mc| ď plogNq´1{3. If |u´mc| ď plogNq´1{3, we also have Imu „ 1.

By (3.29),
min
i
t|mc ´ ai|, |mc ´ bi|, |mc ` ci|u ě ε (A.67)

for some ε ą 0. Replacing the mc in (3.29) with u, we also get that

min
i
t|u´ ai|, |u´ bi|, |u` ci|u ě ε1 (A.68)

for some ε1 ą 0. Using (A.67) and (A.68), we get immediately that |α| ` |Buα| ` |β| ď C. What
remains is the proof of the lower bound |β| ě c. If Imw ě ε for some constant ε ą 0, the lower
bound follows from Lemma A.6 below. If Imw ď ε for a sufficiently small ε, the lower bound follows
from Lemma A.7 below. Now given the bound (A.66), it is easy to prove (A.62) with a fixed point
argument. This proves the stability of (3.34)

Lemma A.6. Suppose that Imw „ 1 and |mc| „ Immc „ 1. Then |Bmfp
?
w,mcq| ě c for some

constant c ą 0.

Proof. Using (2.13), mc “
?
wp1`m1cq and the conditions Imw „ 1, Immc „ 1, we can get that

ˇ

ˇ

ˇ

ˇ

B?wfp
?
w,mcq

Bmfp
?
w,mcq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

Bmc

B
?
w

ˇ

ˇ

ˇ

ˇ

ď C ñ
ˇ

ˇB?wfp
?
w,mcq

ˇ

ˇ ď C
ˇ

ˇBmfp
?
w,mcq

ˇ

ˇ , (A.69)
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for some constant C ą 0. Now we assume that |Bmfp
?
w,mcq| can be arbitrarily small. Then

ˇ

ˇB?wfp
?
w,mcq

ˇ

ˇ can also be arbitrarily small. Denote a :“ Bmfp
?
w,mcq and b :“ B?wfp

?
w,mcq.

Using (A.23) and (A.31), we get that

a “

?
w

mc
´
mc

N

n
ÿ

i“1

lisi

?
w
`

m2
c ´ |z|

2
˘2
` 2si|z|

2mc

r´psi ` |z|2qm2
c ` |z|

4 `
?
w pm3

c ´ |z|
2mcqs

2 (A.70)

and

b “ ´1´
m2
c

N

n
ÿ

i“1

lisi

`

m2
c ´ |z|

2
˘2

r´psi ` |z|2qm2
c ` |z|

4 `
?
w pm3

c ´ |z|
2mqs

2 . (A.71)

Using (A.70) and (A.71), we can get that

p
?
wmc ´ |z|

2q|z|2

mc
b´

1

2
pm2

c ´ |z|
2qpmca´

?
wbq “

p|z|2 ´
?
wmcqpm

2
c ` |z|

2q

mc
, (A.72)

where we use the equation fp
?
w,mcq “ 0 in the derivation. By our assumption, the left-hand

side of (A.72) can be arbitrarily small. For the right-hand side of (A.72), we have |mc| „ 1 and
|
?
wmc ´ |z|

2| „ 1 (because Im p
?
wmcq “ Im pw ` wm1cq „ 1). Thus if |mc ´ i|z|| ě c1 for some

constant c1 ą 0, we have |m2 ` |z|2| „ 1, and
ˇ

ˇ

ˇ

ˇ

p
?
wmc ´ |z|

2q|z|2

mc
b´

1

2
pm2

c ´ |z|
2qpmca´

?
wbq

ˇ

ˇ

ˇ

ˇ

„ 1,

which gives a contradiction. Thus we must have a lower bound |Bmfp
?
w,mcq| ě c if |m´ i|z|| ě c1.

We still need to deal with the case where |mc ´ i|z|| ď c1 for some sufficiently small c1. Notice
|z| „ 1 in this case. Then we have

Bf

B
?
w
p
?
w, i|z|q “ ´1`

|z|2

N

n
ÿ

i“1

lisi
4|z|4

rpsi ` |z|2q|z|2 ` |z|4 ´ 2i
?
w|z|3s

2 . (A.73)

Denote Li :“ psi ` |z|
2q|z|2 ` |z|4 ´ 2i

?
w|z|3. Since i

?
w “ ipx ` iyq “ ix ´ y with x, y ą 0 and

x, y „ 1, we have ReLi ą 0, ImLi ă 0 and |ReLi|, |ImLi| „ 1. Furthermore, ImL2
i ă 0 and

|ImL2
i | „ 1. Thus each fraction 4|z|4{L2

i in (A.73) has positive imaginary part and all the imaginary
have order 1. Therefore

ˇ

ˇ

ˇ

ˇ

Bf

B
?
w
p
?
w, i|z|q

ˇ

ˇ

ˇ

ˇ

ě Im

„

Bf

B
?
w
p
?
w, i|z|q



„ 1.

Then by (A.69), we get that |Bmfp
?
w, i|z|q| ě c for some c ą 0. Using (3.29), it is easy to see that

Bmfp
?
w,mcq “ Bmfp

?
w, i|z|q `Op|mc ´ i|z||q.

Thus in the case |mc ´ i|z|| Ñ 0, we still can find c ą 0 such that |Bmfp
?
w,mcq| ě c.

Lemma A.7. Suppose that w P Db
k and Imw ď ε. Then for sufficiently small ε ą 0, we have

|Bmfp
?
w,mcq| „ 1.

Proof. By (3.22) and (3.29), if |w| „ 1 and Imm „ 1, we have B?wBmfpw,mcq “ Op1q and
B2
mfpw,mcq “ Op1q. Denote w “ E ` iη. Taking the imaginary part of the following equation

0 “ fp
?
E,mcpEqq “ ´

?
E `mc ` E

´1{2 `
1

N

n
ÿ

i“1

lisi

ˆ

Ai
mc ´ ai

`
Bi

mc ´ bi
`

Ci
mc ` ci

˙

, (A.74)
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and noticing that Ai, Bi, Ci and ai, bi, ci are all positive real numbers for real E, we get

1

N

n
ÿ

i“1

lisi

ˆ

Ai
|mc ´ ai|2

`
Bi

|mc ´ bi|2
`

Ci
|mc ` ci|2

˙

“ 1. (A.75)

Using the above equation, we get

Bmfp
?
E,mcpEqq “ 1´

1

N

n
ÿ

i“1

lisi

„

Ai
pmc ´ aiq2

`
Bi

pmc ´ biq2
`

Ci
pmc ` ciq2



“
1

N

n
ÿ

i“1

lisi

„

Ai
|mc ´ ai|2

´
Ai

pmc ´ aiq2
`

Bi
|mc ´ bi|2

´
Bi

pmc ´ biq2
`

Ci
|mc ` ci|2

´
Ci

pmc ` ciq2



.

(A.76)

We look at, for example, the term

Ai
|mc ´ ai|2

´
Ai

pmc ´ aiq2
“

Ai
|mc ´ ai|2

p1´ e´2iθiq,

where mc ´ ai :“ |mc ´ ai|e
iθi . Using Immc „ 1, it is easy to see that Rep1´ e´2iθiq ě c1 for some

constant c1 ą 0. Applying the same estimates to the B,C terms in (A.76), we get

ˇ

ˇ

ˇ
Bmfp

?
E,mcpEqq

ˇ

ˇ

ˇ
ě Re

”

Bmfp
?
E,mcpEqq

ı

ě c (A.77)

for some constant c ą 0.
Now for w “ E ` iη with η ď ε, we can expand Bmfp

?
w,mcpwqq around Bmfp

?
E,mcpEqq,

Bmfp
?
w,mcpwqq “ BmfpE,mcpEqq `Opηq,

where we use (3.29). Combing with (A.77), we see that |Bmfpw,mcpwqq| „ 1 for small enough ε.

Case 2: We mimic the argument in the proof of Case 1. We see that it suffices to prove |α|`|Buα| ď C
and |β| „ 1 for α, β defined in (A.64) and (A.65) and |u ´mc| ď plogNq´1{3. Using (3.29), it is
not hard to prove that |α| ` |Buα| ` |β| ď C. What remains is the proof of the lower bound |β| ě c.
For the case Imw „ 1, it follows from Lemma A.6. If w Ñ 0 in the case |z|2 ě 1 ` τ , then
mcpwq “ Op

?
wq Ñ 0 by (3.23). Thus we can use (A.23) to get directly that

Bmfp
?
w,mcq “ 1´ |z|´2 `Op

?
wq ě c.

Finally, we are left with the case E “ Rew „ 1 and η “ Imw Ñ 0. Using (2.13), mc “
?
wp1`m1cq,

|w| „ 1 and distpE, supp ρ1cq ě τ 1, we can get that

ˇ

ˇ

ˇ

ˇ

B?wfp
?
w,mcq

Bmfp
?
w,mcq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

Bmc

B
?
w

ˇ

ˇ

ˇ

ˇ

ď C

for some constant C ą 0. Thus it suffices to prove that
ˇ

ˇB?wfp
?
w,mcq

ˇ

ˇ has a lower bound. Using
(A.31) and noticing that mcpEq P R, we get

B?wfp
?
E,mcpEqq “ ´1´

m2
c

N

n
ÿ

i“1

lisi

`

m2
c ´ |z|

2
˘2

“

´psi ` |z|2qm2
c ` |z|

4 `
?
E pm3

c ´ |z|
2mcq

‰2 ď ´1.
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Expanding B?wfp
?
w,mcpwqq around B?wfp

?
E,mcpEqq, using (3.29) and |mcpE`iηq´mcpEq| „ η,

we get for η small
ˇ

ˇB?wfp
?
w,mcq

ˇ

ˇ ě 1`Opηq ě c.

Case 3: The case Imw ě τ 1 can be proved with the same method as in the proof of case 1. Hence
we only consider the case |w ´ ek| ď 2τ 1 in the following. Note that |w| „ 1 in this case. Suppose

|w ´ ek| ď 2τ 1, |u´mc| ď plogNq´1{3. (A.78)

Then we claim that
|α| „ 1, |β| „

?
κ` η (A.79)

for small enough τ 1. Using (A.78), (3.29), (2.19) and Lemma A.5, we can get that

α “
1

2
B2
mfp

?
ek,mcpekqq `Op|w ´ ek|

1{2 ` plogNq´1{3q „ 1.

To prove the estimate for β, we use (2.17), (3.29) and Lemma A.5, to get

β “

ż w

ek

d

dw1
Bmfp

?
w1,mcpw

1qqdw1 “

ż w

ek

B?w1Bmfp
?
w1,mcpw

1qq

2
?
w1

dw1 `

ż w

ek

B2
mfp

?
w1,mcpw

1qq
dmcpw

1q

dw1
dw1

“

ż w

ek

B?wBmfp
?
ek,mcpekqq `Op|w ´ ek|

1{2q

2
?
w1

dw1 `

ż mcpwq

mcpekq

”

B2
mfp

?
ek,mcpekqq `Op|w ´ ek|

1{2q

ı

dm

“ B2
mfp

?
ek,mkqpmcpwq ´mcpekqq `Op|w ´ ek|q. (A.80)

Thus we conclude for small enough τ 1 that

|β| „ |w ´ ek|
1{2 „

?
κ` η.

With the estimate (A.79), we now proceed exactly as in the proof of [4, Lemma 4.5], by solving
the quadratic equation (A.63) for u ´mc explicitly. We select the correct solution by a continuity
argument using that (A.62) holds by assumption at z ` iN´10. The second assumption of (A.78) is
obtained by continuity from the estimate on |u´mc| at the neighboring point z ` iN´10. We refer
to [4, Lemma 4.5] for the full details. This concludes the proof.

Case 4: The case when Imw ě τ 1 can be proved using the same method as in the proof of Case 1.
Now we are left with the case |w| ď 2τ 1 for some sufficiently small τ 1. First we assume |z| ě c ą 0
for some small c ą 0. Then mimicking the argument in the proof of Case 1, we see that it suffices
to prove |α| ` |Buα| ď C and |β| „ 1 when |u ´mc| ď plogNq´1{3. Using (3.29), it is not hard to
prove that |α| ` |Buα| ` |β| ď C. The lower bound |β| ě c can be obtained easily from (A.32).

Then suppose |z|2 ă c, but |w|1{2`|z|2 ě ε. According to (A.38) and using that
ˇ

ˇi|z|2 `
?
wt0

ˇ

ˇ „

|w|1{2 ` |z|2, we can verify that

β “ Bmfp
?
w,mcpwqq „ |w|

1{2 ` |z|2 „ 1.

It is also easy to verify that

B2
mfp

?
w,mcpwqq “ Op|w|1{2 ` |z|2q, B3

mfp
?
w,mcpwqq “ Op|w|1{2 ` |z|2q.

Hence if |u´mc| ď plogNq´1{3, we have

α “
1

2
B2
mfp

?
w,mcpwqq `O

´

B3
mfp

?
w,mcpwqqplogNq´1{3

¯

“ Op|w|1{2 ` |z|2q.
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With a fixed point argument, we get (A.62).

Case 5: Again we following the arguments in the proof of Case 1. However, instead of fp
?
w,mq, we

shall study Υpw,m1q in (3.35) directly. We take over the notations in Definition 3.9 and abbreviate
R :“ Υpw, u1q, so that |R| ď δ. Then we write the equation Υpw, u1q ´Υpw,m1cq “ R as

αpu1qpu1 ´m1cq
2 ` βpu1 ´m1cq “ R, (A.81)

where we use the same symbol as in (A.63) for notational convenience. As in Case 1, we have
β “ Bm1Υpw,m1cq, and we can evaluate that |α| ` |Bu1α| ď C for w P DL and u1 satisfying
|u1 ´m1c| ! |m1c|. Now to conclude (3.39), it suffices to prove |β| „ 1 for w P DL. In fact using
(3.35), we obtain that

β “ 1`O
`

η´1
˘

„ 1,

for η ě ζ´1. This concludes the proof.

Proof of Lemma 2.2. The fact that ρ1c has compact support follows from Lemma 2.3; ρ1c being
integrable follows from Lemma A.4. Note that in proving Lemmas 2.3 and A.4, we do not make
the regularity assumptions in Definition 2.4. It remains to show that for fixed w P C` and |z| ‰ 1,
there exists a unique m1cpwq P C` satisfying equation (2.11). This follows from the η „ 1 case in
the proof of Case 1 in this section.

Remark: The estimate (3.29) has been used repeatedly during the proof of Lemma 3.10. Here we re-
mark that it also gives the stability of the regularity conditions in Definition 2.4 under perturbations
of |z| and ρΣ. For example, we define the shifted empirical spectral density

ρΣ,t :“
1

N ^M

N^M
ÿ

i“1

δσi`t, (A.82)

and the associated mcpw, tq and function fp
?
w,m, tq. Given a regular edge ek, it satisfies that

fp
?
ek,mk, t “ 0q “ 0, Bmfp

?
ek,mk, t “ 0q “ 0.

where we denote mk :“ mcpekq. We have the Jacobian

J :“ det

ˆ

B?wf Bmf
B?wBmf B2

mf

˙

p
?
w,m,tq“p

?
ek,mk,0q

“ B?wfp
?
ek,mk, 0qB

2
mfp

?
ek,mk, 0q.

By (A.31), we have
ˇ

ˇB?wfp
?
ek,mk, 0q

ˇ

ˇ ě 1. Combining with (2.19), we get |J | ě ε. Using (3.29),
we can verify that Btfp

?
ek,mk, 0q “ Op1q and BtBmfp

?
ek,mk, 0q “ Op1q. Thus if we regard ek

and mk as functions of t, then Btmkpt “ 0q “ Op1q and Btekpt “ 0q “ Op1q by the implicit function
theorem. Then it is easy to verify

B2
mfp

a

ekptq,mcpek, tqq “ B
2
mfp

?
ek,mcpekqq `Optq,

|mcpek, tq ´ aipek, tq| “ |mcpekq ´ aipekq| `Optq,

and the similar estimates for |mc ´ bi| and |mc ` ci|. Thus if Definition 2.4 (i) holds for some ρΣ,
then it holds for all ρΣ,t provided that t is small enough.

Now given a regular bulk component re2k, e2k´1s and E P re2k ` τ 1, e2k´1 ´ τ 1s. Differentiating
the equation fp

?
E,mcpE, tq, tq “ 0 in t yields

BtmcpE, tq “ ´
Btfp

?
E,mcpE, tq, tq

Bmfp
?
E,mcpE, tq, tq

.
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By (3.29), we find that Btfp
?
E,mcpEq, 0q “ Op1q, while by (A.66), |Bmfp

?
E,mcpEq, 0q| “ β „ 1.

Thus BtmcpE, 0q “ Op1q. A simple extension of this argument shows that mcpE, tq “ mcpEq `Optq
and hence ImmcpE, tq is bounded from below by some c1 “ c1pτ, τ 1q. Thus we conclude that if
Definition 2.4 (ii) holds for some ρΣ, then it holds for all ρΣ,t with t in some fixed small interval
around zero. Obviously, the above arguments also work for the perturbation of |z|.

B Proof of Lemma 4.9

Our proof of (4.59) is an extension of [4, Lemma 4.9], [7, Lemma 7.3] and [14, Theorem 4.7]. Here
we only prove the bound for }rZs}. The proof for }xZy} is exactly the same. For i P I1, we define
Pi “ Eris and Qi “ 1´ Pi. Recall that Zris “ QiG

´1
riis, we need to prove that

rZs “
1

N

N
ÿ

i“1

πris

´

QiG
´1
riis

¯

πris ă |w|
´1{2

Φ2
o,

for w P D. For J Ă I, we define π
rJs
ris by replacing m1,2 in (2.36) with m

rJs
1,2 defined in (4.6). As in

(4.58), we can prove that |m
ris
1,2 ´m1,2| ă |w|

´1{2
Φ2
o, which further gives that

rZs “
1

N

N
ÿ

i“1

π
ris
ris

´

QiG
´1
riis

¯

π
ris
ris `Oă

´

|w|
´1{2

Φ2
o

¯

“
1

N

N
ÿ

i“1

Qi

´

π
ris
risG

´1
riisπ

ris
ris

¯

`Oă

´

|w|
´1{2

Φ2
o

¯

.

Thus if we abbreviate Bi :“ |w|1{2Qi

´

π
ris
risG

´1
riisπ

ris
ris

¯

, it suffices to prove that B :“ N´1
ř

iBi ă Φ2
o.

We estimate B by bounding the p-th moment of its norm by Φ2p
o for p “ 2n with n P N, i.e.

E}B}p ă Φ2p
o . The lemma then follows from the Chebyshev’s inequality. Using }KK:} “ }K}2 for

any square matrix K, we get that for p “ 2n,

TrpBB:qn ě
›

›BB:
›

›

n
“ }B}

2n
.

Thus it suffices to prove that

ETrpBB:qp{2 ă Φ2p
o , for p “ 2n. (B.1)

This estimate can be proved with the same method in [14, Appendix B], with the only complication
being that πris is random and depends on i. In principle, this can be handle by using (3.9) and
(3.10) to put any indices j, k, ... P I1 (that we wish to include) into the superscripts of πris. This
leads to a minor modification of the proof in [14, Appendix B]. Here we describe the basic ideas of
the proof, without writing down all the details.

The proof is based on a decomposition of the space of random variables using Ps and Qs. It is
evident that Ps and Qs are projections, Ps`Qs “ 1 and all of these projections commute with each
other. For a set J Ă I, we denote PJ :“

ś

sPJ Ps and QJ :“
ś

sPJ Qs. Let p “ 2n and introduce

the shorthand notation B̃ks :“ Bks for s ď p odd and B̃ks :“ B:ks for s ď p even. Then we get

ETrpBB:qp{2 “
1

Np

ÿ

k1,k2,...,kp

ETr
p
ź

s“1

B̃ks “
1

Np

ÿ

k1,k2,...,kp

ETr
p
ź

s“1

˜

p
ź

r“1

pPkr `Qkr qB̃ks

¸

. (B.2)
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Introducing the notations k “ pk1, k2, . . . , kpq and tku “ tk1, k2, . . . , kpu, we can write

ETrpBB:qp{2 “
1

Np

ÿ

k

ÿ

I1,...,IpĂtku

ETr
p
ź

s“1

´

PIcsQIsB̃ks

¯

. (B.3)

Following [14, Appendix B], we claim that to conclude (B.1) it suffices to prove that for k P I

}QIBk} ă Φ|I|o . (B.4)

As in [14, Appendix B], it is not hard to prove for k P I,

|w|´1{2
›

›

›
QIG

´1
rkks

›

›

›
ă Φ|I|o . (B.5)

Now we extend the proof to obtain the estimate (B.4). For the case |I| “ 1 (i.e. I “ tku),

}Bk} “ |w|
1{2}π

ris
risZrksπ

ris
ris} ď |w|

´1{2}Zrks} ă Φo,

where we can prove }Zrks} ă |w|1{2Φo by modifying the proof in Lemma 4.4. For the case |I| ě 2,
WLOG, we may assume k “ 1 and I “ t1, . . . , tu with t ě 2. It is enough to prove that

|w|
1{2

›

›

›
Qt . . . Q2π

r1s
r1sG

´1
r11sπ

r1s
r1s

›

›

›
ă Φto. (B.6)

We take the t “ 3 as an example to describe the ideas for the proof of (B.6). Using (3.9), we get

π
r1s
r1s “ π

r12s
r1s ` |w|

1{2ε
r1s
11 π

r12s
r1s A1π

r12s
r1s ` |w|

1{2ε
r1s

1̄1̄
π
r12s
r1s A2π

r12s
r1s ` error1,2, (B.7)

where ε
r1s
11 and ε

r1s

1̄1̄
are entries of

ε
r1s
r1s :“ |w|1{2

¨

˝

G
r1s
r22s

N
`

1

N

ÿ

kRt1,2u

G
r1s
rk2s

´

G
r1s
r22s

¯´1

G
r1s
r2ks

˛

‚ă Φ2
o,

A1,2 are deterministic matrices with operator norm Op1q, and }error1,2} ă |w|´1{2Φ4
o. Then we get

π
r1s
r1sG

´1
r11sπ

r1s
r1s “ π

r12s
r1s G

´1
r11sπ

r12s
r1s ` |w|

1{2ε
r1s
11 π

r12s
r1s A1π

r12s
r1s G

´1
r11sπ

r12s
r1s ` |w|

1{2ε
r1s

1̄1̄
π
r12s
r1s A2π

r12s
r1s G

´1
r11sπ

r12s
r1s

` |w|1{2π
r12s
r1s G

´1
r11sε

r1s
11 π

r12s
r1s A1π

r12s
r1s ` |w|

1{2π
r12s
r1s G

´1
r11sε

r1s

1̄1̄
π
r12s
r1s A2π

r12s
r1s `Oăp|w|

´1{2Φ4
oq. (B.8)

We first handle the π
r12s
r1s G

´1
r11sπ

r12s
r1s term. By (B.5)

Q2π
r12s
r1s G

´1
r11sπ

r12s
r1s “ π

r12s
r1s

´

Q2G
´1
r11s

¯

π
r12s
r1s ă |w|´1{2Φ2

o.

For the remaining term, we first expand π
r12s
r1s “ π

r123s
r1s `Oăp|w|

´1{2Φ2
oq and use (B.5) to get

Q3Q2π
r12s
r1s G

´1
r11sπ

r12s
r1s “ π

r123s
r1s

´

Q3Q2G
´1
r11s

¯

π
r123s
r1s `Oă

´

|w|´1{2Φ4
o

¯

ă |w|´1{2Φ3
o.

Then we deal with the second terms in (B.8). We first expand ε
r1s
r1s “ e

r3s
r1s `OăpΦ

3
oq, where

e
r3s
r1s :“ |w|1{2

¨

˝

G
r13s
r22s

N
`

1

N

ÿ

kRt1,2,3u

G
r13s
rk2s

´

G
r13s
r22s

¯´1

G
r13s
r2ks

˛

‚.
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Using the similar arguments as above, we have

Q3|w|
1{2e

r3s
11 π

r12s
r1s A1π

r12s
r1s G

´1
r11sπ

r12s
r1s “ |w|

1{2e
r3s
11 π

r123s
r1s A1π

r123s
r1s

´

Q3G
´1
r11s

¯

π
r123s
r1s `Oăp|w|

´1{2Φ4
oq

ă |w|´1{2Φ4
o.

Thus we have
Q2Q3|w|

1{2ε
r1s
11 π

r12s
r1s A1π

r12s
r1s G

´1
r11sπ

r12s
r1s ă |w|´1{2Φ3

o.

Obviously this estimate works for the rest of the terms in (B.8). This proves (B.6) when t “ 3.
We can continue in this manner for a general t. At the l-th step, we expand the leading order

terms using (3.9) and (3.10), and after applying Ql . . . Q3Q2 on them, the number of Φo factors
increases by one at each step by (B.5). Trough induction we can prove (B.6). In fact the expansions
can be performed in a systematic way using the method in [14, Appendix B], and we leave the details
to the reader. Also we remark that similar techniques are used in the proof in Section 5, and we
choose to present the details there (in fact the proof here is much easier than the one in Section 5).
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semicircle law. Ann. Probab., 41(3B):2279–2375, 2013.
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