New results on the geometry of the moduli space of Riemann surfaces

ArticleinScience in China Series A Mathematics 51(4):632-651 · April 2008with 37 Reads 
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
Cite this publication
We briefly survey our recent results about the Mumford goodness of several canonical metrics on the moduli spaces of Riemann surfaces, including the Weil-Petersson metric, the Ricci metric, the Perturbed Ricci metric and the Kahler-Einstein metric. We prove the dual Nakano negativity of the Weil-Petersson metric. As applications of these results we deduce certain important results about the L 2-cohomology groups of the logarithmic tangent bundle over the compactified moduli spaces.

Do you want to read the rest of this article?

Request Full-text Paper PDF
  • Article
    Full-text available
    Incomplete cusp edges model the behavior of the Weil-Petersson metric on the compactified Riemann moduli space near the interior of a divisor. Assuming such a space is Witt, we construct a fundamental solution to the heat equation, and using a precise description of its asymptotic behavior at the singular set, we prove that the Hodge-Laplacian on differential forms is essentially self-adjoint, with discrete spectrum satisfying Weyl asymptotics. We go on to prove bounds on the growth of $L^2$-harmonic forms at the singular set and to prove a Hodge theorem, namely that the space of $L^2$-harmonic forms is naturally isomorphic to the middle-perversity intersection cohomology. Moreover, we develop an asymptotic expansion for the heat trace near $t = 0$.
  • Article
    We survey our recent new results on the geometry of Teichmuller and moduli spaces of Riemann surfaces and Calabi-Yau manifolds.
  • Article
    In this note we discuss various canonical metrics on complex manifolds. A generalization of the Bergman metric is proposed and the relations of metrics on moduli spaces are commented. At last, we review some existence theorems of solutions to the Strominger system. Keywordsintrinsic metrics-generalized Bergman metrics-Weil-Petersson metric-Strominger system MSC(2000)53C55
  • Article
    An expansion is developed for the Weil-Petersson Riemann curvature tensor in the thin region of the Teichm\"{u}ller and moduli spaces. The tensor is evaluated on the gradients of geodesic-lengths for disjoint geodesics. A precise lower bound for sectional curvature in terms of the surface systole is presented. The curvature tensor expansion is applied to establish continuity properties at the frontier strata of the augmented Teichm\"{u}ller space. The curvature tensor has the asymptotic product structure already observed for the metric and covariant derivative. The product structure is combined with the earlier negative sectional curvature results to establish a classification of asymptotic flats. Furthermore, tangent subspaces of more than half the dimension of Teichm\"{u}ller space contain sections with a definite amount of negative curvature. Proofs combine estimates for uniformization group exponential-distance sums and potential theory bounds.