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The backward phase flow method for the Eulerian finite time Lyapunov
exponent computations

Shingyu Leunga)

Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

(Received 21 November 2012; accepted 29 November 2013; published online 12 December 2013)

We propose a simple Eulerian approach to compute the moderate to long time flow map for

approximating the Lyapunov exponent of a (periodic or aperiodic) dynamical system. The idea is

to generalize a recently proposed backward phase flow method which is specially designed for long

time level set propagation. Unlike the original phase flow method or the backward phase flow

method, which is applicable only to autonomous systems, the current approach can also be applied

to any time-dependent (periodic or aperiodic) flow. We will discuss the stability of the proposed

method. Numerical examples will be given to demonstrate the effectiveness of the algorithm.
VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4847175]

Finite-time Lyapunov exponent (FTLE) is a widely used

quantity for visualizing the Lagrangian coherent structure

(LCS) in a complex dynamical system. Unfortunately, typ-

ical numerical approaches to FTLE are computationally

very expansive. In this work, we further develop an

Eulerian approach to this Lagrangian quantity and pro-

pose a partial differential equation (PDE) based phase

flow approach to speed up the overall computations, even

for aperiodic flows. This numerical method can efficiently

compute the moderate to long time flow map for approxi-

mating the Lyapunov exponent of a dynamical system.

I. INTRODUCTION

LCS are a tool to visualize and to study a complex

dynamical system. For example, it has been recently applied

to study flow data in oceans,15,27 hurricane,26 flight data,4,32

gravity wave propagation,33 some bio-inspired fluid

flows,10,19,21 etc. The idea is to partition the space-time do-

main into different regions according to a Lagrangian quan-

tity advected along with passive tracers. One of many

possible Lagrangian quantities is the LE. Numerically, one

has to truncate the infinite time limit by a fixed period of

time and to obtain the so-called FTLE.11–13,16,27 This quan-

tity measures the rate of separation between adjacent par-

ticles over a finite time interval, with an infinitesimal

perturbation in the initial location. In practice, the first step

to compute the FTLE is to move particles in the flow for a

period of time and obtain the flow map which takes the ini-

tial particle location to its arrival location. Mathematically,

the motion of these particles in the extended phase space sat-

isfies the ordinary differential equation (ODE)

_xðtÞ¼ uðxðtÞ; tÞ; (1)

with a given Lipschitz velocity field u: Rd �R ! Rd and

an initial condition x(t0)5 x0. We define the flow map UT
to :

Rd ! Rd to be the mapping, which takes the point x0 to

the particle location at the final time t¼ t0þT, i.e.,

UT
t0
ðx0Þ ¼ xðt0 þ TÞ with xðtÞ satisfies Eq. (1). Then the

FTLE is computed from the Jacobian of the resulting flow

map.

In a recent work,17 we have proposed an Eulerian for-

mulation to compute the FTLE. The idea is to embed the

flow map using a Liouville equation (see Sec. II A). This

converts the Lagrangian formulation into an Eulerian formu-

lation, which can be handled using simply a uniform mesh.

In this work, we are interested in developing numerical

methods for moderate to long time FTLE computations,

leading to more efficient extraction of the LCS. We first con-

sider an autonomous or a period flow and propose a back-

ward phase flow method for constructing the corresponding

flow map between two time levels with a very large separa-

tion, i.e., T � 1. The idea is to iterate the flow map, using a

monotone interpolation scheme (see Sec. II B). This gives an

efficient method to approximate the FTLE on one single

time level. One property of the proposed algorithm is that

the computed FTLE on a single time level converges to the

LE exponentially fast in the number of flow map interpola-

tions. Stability of this algorithm will also be discussed.

Further, we propose an Eulerian method to compute the LE

at all time levels based on the property that the Lyapunov

exponent is invariant along particle trajectories. Finally, we

extend these methods to aperiodic velocity fields. Such

approach turns to be useful in computations of high fre-

quency wave propagations.

These methods share some similarities with some other

recent fast algorithms. An interesting algorithm2 has been

recently suggested to speed up the time for computing the

flow map between two arbitrary time levels. The idea is to

decompose the flow map into a composition of maps of

smaller time steps and then recycle these maps in computing

the FTLE at later times. Our approach applied to autono-

mous flows can be interpreted as an extension of the latter

approach, where, however, we compute only one single flow

map and then iterate it to obtain a flow map for two distant

time levels. Comparing to the original phase flow method,3a)Electronic mail: masyleung@ust.hk
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our algorithm solves partial differential equations (PDE) for-

ward in time to construct the backward flow map. The origi-

nal phase flow method is designed for ODE, while our

backward phase flow method is especially designed for

Eulerian computations. Comparing to the original backward

phase flow method developed in the context of high fre-

quency wave propagation,18 the present method employs the

techniques of iterating the flow map in order to reduce the

computational time. However, in the current implementation,

we also incorporate the concept of time-doubling, a property

giving rise to an exponentially converging algorithm to the

LE. Moreover, the phase flow method3 and the backward

phase flow method18 were originally developed for autono-

mous (time-independent) evolutions, since the fundamental

idea depends heavily on the phase flow property of an auton-

omous ODE.

The paper is organized as follows. To make the paper

self-contained, in Sec. II A, we first summarize and discuss

the Eulerian approach in our earlier work17 to construct the

flow map. We refer interested reader to the original paper

for a detailed description. Then in Sec. II B, we introduce

the backward phase flow method for autonomous and peri-

odic evolutions, so that we would be able to determine the

flow map between two time levels, in which the difference

T grows exponentially in the number flow map interpola-

tions. In Sec. II C, we use the long-time flow map for com-

puting the FTLE. In Sec. III, we discuss several properties

of the proposed numerical approach and will give an exten-

sion of the method. In Sec. III A, we discuss the influence

of the boundary condition on the backward flow method.

We will study the computational complexity of the algo-

rithm in Sec. III B. For T ! 1, FTLE converges to LE

and it becomes invariant along particle characteristics.

Using this property, in Sec. III C, we discuss an Eulerian

approach to recover the FTLE for all intermediate time.

We will also propose a generalization of the approach to

aperiodic flows in Sec. III D. Finally, in Sec. IV, we give

numerical examples demonstrating the efficiency of the

proposed approach.

II. THE PROPOSED METHOD

A. An Eulerian method for short-time flow maps

We define a vector-valued function W ¼ ðW1;W2…;
WdÞ : X � R ! Rd: At t¼ 0, we initialize these functions by

Wðx; 0Þ¼ x ¼ ðx1; x2;… xdÞ: (2)

These functions provide a labeling for any particle in the

phase space at t¼ 0. In particular, any particle initially

located at ðx; 0Þ¼ ðx10; x20;…xd0; 0Þ in the extended phase

space can be implicitly represented by the intersection of d

codimension-1 surfaces represented by \d
i¼1fWiðx; 0Þ ¼ xi0g

in Rd. Following the particle trajectory with x¼ x0 as the

initial condition in a given velocity field, any particle identity

should be preserved in the Lagrangian framework, and this

implies that the material derivative of these level set func-

tions is zero, i.e.,

DWðx; tÞ
Dt

¼ 0:

This implies the following level set equations or the

Liouville equations:

@Wðx; tÞ
@t

þ ðu � rÞWðx; tÞ ¼ 0; (3)

with the initial condition (2).

The above implicit representation embeds all path lines

in the extended phase space. For instance, the trajectory of

a particle initially located at (x0, 0) can be found by deter-

mining the intersection of d codimension-1 surfaces repre-

sented by \d
i¼1fWiðx; tÞ ¼ xi0g in the extended phase space.

Furthermore, the forward flow map at a grid location x5 x0
from t¼ 0 to t¼T is given by UT

0 ðx0Þ ¼ y, where y satisfies

Wðy; 0þ TÞ ¼ Wðx0; 0Þ � x0: Note that, in general, y is a

non-mesh location. The typical two dimensional scenario is

illustrated in Figure 1(a).

The solution to Eq. (3) contains much more information

than what was referred to above. Consider a given mesh

location, y, in the phase space at the time t¼T, as shown in

Figure 1(b), i.e., (y, T) in the extended phase space. As

FIG. 1. Lagrangian and Eulerian interpretations of the function W. (a)

Lagrangian ray tracing from a given grid location x at t¼ 0. Note that y

might be a non-grid point. (b) Eulerian values of W at a given grid location y
at t¼T gives the corresponding take-off location at t¼ 0. Note the take-off

location might not be a mesh point.
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discussed in our previous work, these level set functions,

W (y, T), defined on a uniform Cartesian mesh, in fact, give

the backward flow map from t¼T to t¼ 0, i.e.,

UT
0 ðyÞ ¼ Wðy; TÞ. Moreover, the solution to the level set

equations (3) for t � (0, T) provides also backward flow

maps for all intermediate times, i.e., UT
0 ðyÞ ¼ Wðy; tÞ.

In order, now, to produce a forward flow map, we sim-

ply reverse the above process by initializing the level set

functions at t¼ T by W(x, T)¼ x and solving the correspond-

ing level set equations (3) backward in time.

Algorithm 1: Computing the forward flow map UT
0 (x):

1. Discretize the computational domain to get xi, yj, tk.
2. Initialize the level set functions on the last time level

t¼ tk

W1ðxi; yj; tkÞ ¼ xi;
W2ðxi; yj; tkÞ ¼ yj:

3. Solve the Liouville equations for each individual level set

function l¼ 1, 2

@Wl

@t
þ ðu � rÞWl ¼ 0;

from t¼ tk�1 down to t¼ 0 using any well-developed high

order numerical methods like WENO5-TVDRK2 (Refs.

9, 20, and 28) with the boundary conditions

Wðx; tÞjx2@X ¼ x if n � u < 0; (4)

n � rWlðx; tÞjx2@X ¼ x if n � u < 0; (5)

where n is the outward normal of the boundary.

4. Assign UT
0 ðxi; yjÞ ¼ Wðxi; yj; 0Þ:

B. A backward phase flow method for long-time
flow maps

For a given t¼ 0, a Lagrangian method has to solve the

system of ODEs for many different initial conditions, in

order to compute the flow map. For computing the FTLE at

the next time step t ¼ t1 ¼ Dt, however, those rays obtained

on the previous time step t¼ 0 are all discarded. This process

actually throws away much useful information on the flow

map.2 To improve the computational efficiency, one interest-

ing method is to recycle part of the information obtained in

earlier steps.2 The idea is to decompose the flow map UT
0

into a composition of maps UT
0 ¼ UtN

tN�1
� � � � �Ut2

t1
oUt1

0 ,

where tk ¼ kT=N ¼ kDt for k ¼ 0; 1;…;N: Numerically,

since each map Utkþ1
tk is still computed using Lagrangian ray

tracing, interpolation has to be done on each step to match

ray trajectories at different time level. Defining the interpola-

tion operator by I , we have UT
0 ¼ UtN

tN�1
� � � � � IUt2

t1
� IUt1

0 .

This approach is computational efficient, since the flow map

Ut1þT
t1

can be decomposed into Ut1þT
t1

¼ IUtNþ1
tN � � � � �

IUt3
t2
� Ut2

t1
. If the maps for k¼ 1,…,N are all stored once they

are computed, we can form Ut1þT
t1

by determining only UtNþ1
tN .

However, the memory requirement for such implementation

could be extremely large if N � 1. This could be problem-

atic in high dimensional high resolution simulations.

Now, if the flow is autonomous, we note that Utkþ1
tk

¼ Ut1
t0
for k¼ 1,…,N, and so the method can be interpreted

as a simple case of the phase flow method.3 The original

phase flow method was developed in the context of obtain-

ing geometrical optics approximation to the wave equation

in the Lagrangian ODE formulation. The idea is to first

construct the phase flow map for a fixed-small-step size,

Dt, and then apply it iteratively by virtue of the group prop-

erty of the phase flow. For instance, one obtains the map

from t¼ 0 to t1, U
Dt
0 . Thus, the value of the phase flow map

(the arrival location of a bicharacteristic) at t2¼ 2Dt can be

computed by

U2Dt
0 ¼ U2Dt

Dt � UDt
0 ¼ UDt

0 � UDt
0 ¼ ðUDt

0 Þ2:

Indeed, the phase flow method is very efficient. One can

obtain the solution for large t by first constructing the flow

map for a small Dt (as an overhead) and then marching for-

ward by interpolation, since the flow map is defined on an

invariant manifold. Most of the computational overheads

occur during the pre-processing step. The interpolation can

be easily done. To make the propagation even faster, one can

use the fact that

U2kDt
0 ¼ ðU2k�1Dt

0 Þ2 ¼ ððU2k�2Dt
0 Þ2Þ2 ¼ � � � ;

to make long time computation feasible. A detailed error

analysis of the method can be found in the original paper of

the phase flow method,3 and we refer interested readers to the

paper for a complete description of the original algorithm.

The original idea in the phase flow method3 is based on

the Lagrangian ODE ray tracing, which might be problem-

atic for flows in a bounded domain.36 In a recent paper,18 we

have proposed a backward phase flow method for Eulerian

flow map construction, which is based on an Eulerian PDE

formulation. This formulation provides a more natural way

to handle the boundary condition. Solving the level set func-

tion W forward in time, we obtain the backward flow map.

Here, we develop an Eulerian method for the forward flow

map construction by applying the phase flow method back-

ward in time. Mathematically, we obtain the backward flow

map from t¼T to T � Dt, UT�Dt
T , for some Dt> 0 by solving

the Liouville equation for W forward in time from t ¼ T �Dt
to t¼T. Thus, the value of the flow map (the take off loca-

tion of a bicharacteristic) at t¼T – 2Dt with a terminate con-

dition x¼ xi at t¼T can be computed by

UT�2Dt
T ¼ UT�2Dt

T�Dt � UT�Dt
T

¼ UT�Dt
T � UT�Dt

T ¼ ðUT�Dt
T Þ2:

Since that particular application17 requires to recompute

other physical quantities along with the backward flow map,

we have not studied, in detail, the map size doubling tech-

nique to speedup the long time flow map computations.

Therefore, we have implemented only the simple version of

the backward flow map method, which requires UT�kDt
T

¼ ðUT�Dt
T Þk. Also, these two methods are proposed for
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autonomous systems in which the velocity model is inde-

pendent of time. Therefore, Dt can be chosen arbitrarily.

We first extend the above approaches from autonomous

to periodic flows. The idea is to develop a map doubling phase

flow method for long time flow map computations. We first

construct the solution Wðx; T�Þ by solving the Liouville equa-

tion (3) forward in time from t¼ 0 to t¼T* for some time dif-

ference T*. For autonomous flows, one can simply pick T* to

be a small time step size Dt. For periodic flows, instead, T* is

chosen to be one period of the flow. Now, to determine

Wðx; 2T�Þ, we use the phase flow property and obtain

Wðx; T�Þ ¼ WðWðx; T�Þ; T�Þ ¼ W � Wðx; T�Þ. In general,

once we have obtained the solution W(x, 2k�1 T*), we can

obtain W(x, 2kT*)¼W(W(x, 2k�1 T*), 2k�1T*). Finally, if we
take T¼ 2mT*, the backward flow map, U0

2mT�(x), is given by

U0
2mT� (x)¼W(x, T).

The idea to compute the forward flow map is simple.

We just need to reverse the time direction in the previous

algorithm. For example, to compute the flow map from 0 to

T, we solve the Liouville equation backward in time from

t¼T to t¼ T�T*. Then we iterate the map k-times to get the

overall flow map forward in time from t¼ 0 to t¼T¼T* 2k.

Here, we summarize the backward phase flow method for

forward flow map computation.

Algorithm 2: Computing the forward flow map U2mT�
0 (x)

for a T*-periodic flow with T¼ 2mT*:

1. Construct Wðx; ð2m � 1ÞT�Þ as in Algorithm 1, which

gives U0
ð2m�1ÞT� (x).

2. For k¼ 1, …,m, interpolate

y ¼ Wðx; ð2m � 2k�1ÞT�Þ;
Wðx; ð2m � 2kÞT�Þ ¼ Wðy; ð2m � 2k�1ÞT�Þ;

using any monotone interpolating scheme.6,14,24,31

3 Set U2mT�
0 (x)¼W(x, 0).

C. FTLE

With the backward flow map defined on a uniform mesh

at t¼ T, we first compute the deformation tensor

D0
TðxÞ ¼ ½DU0

TðxÞ	�DU0
TðxÞ;

where DU is the Jacobian of the flow map U and [�]* denotes
the transpose of the matrix. Then the backward FTLE

r�T(x,T) is computed according to

r�Tðx; TÞ ¼ 1

jTj ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmax½D0

TðxÞ	
q

:

Numerically, the derivatives in the Jacobian are approxi-

mated using simple finite differences.

Similarly, for the forward FTLE at t¼ 0, we first

determine the Jacobian of the resulting flow map and then

compute the largest eigenvalue of the deformation tensor

UT
0 (x). Then, the forward FTLE is formed using a similar

expression.

III. SOME PROPERTIES AND FURTHER EXTENSIONS

A. Boundary condition and the interpolation scheme

As in the previous paper,17 we impose the boundary con-

dition (4) on the in-flow boundary condition to the Liouville

equation for computing the backward flow map by solving the

time-dependent PDE forward in time, i.e., we fix the inflow

boundary condition on @Xi ¼ fx 2 @X : n � uðxÞ < 0g, where
n is the outward normal of the domain X. With this treatment,

we have

Lemma 1. With the boundary condition (4) on the inflow

boundary, the exact solution W ¼ W1;W2
� �

satisfies

W1ðx; y; tÞ 2 ½xmin; xmax	;
W2ðx; y; tÞ 2 ½ymin; ymax	;

(6)

for all ðx; yÞ 2 X and t 2 [0, T].
This lemma can be easily proven because both the initial

condition and the inflow boundary condition satisfy Eq. (6),

with the property that the solution to the linear advection

equation is constant along any characteristics.

Numerically, step 2 in Algorithm 2 has to be done with

care. If the underlying flow map function is not smooth

enough (for example if the derivative of the underlying func-

tion exhibits jumps, i.e., the function exhibits kinks), the

widely used bicubic spline interpolation schemes might gen-

erate spurious oscillations. In the application to geometrical

optics or high frequency wave propagations, such overshoot-

ing or undershooting in the interpolant will create artificial

caustics, since the ordering of rays cannot be preserved after

implementing the interpolation step. This effect is not so im-

portant in applications, because such perturbation occurs only

in small, not easily recognizable, regions. In the current appli-

cation, however, these oscillations could lead to a serious

problem in the implementation. In particular, such overshoot-

ing or undershooting may violate Lemma 1, and therefore,

one might not be able to evaluate WðWðx; T � T�Þ; T � T�Þ.
To obtain a stable evolution in the flow map construc-

tions, we require the interpolation scheme to be monotone,

i.e., the interpolation scheme should preserve the monotonic-

ity of the given data points. Note that this monotonicity pre-

serving condition is imposed on the interpolation scheme,

rather than on the numerical scheme for solving the PDE for

stability consideration. Mathematically, we call an interpola-

tion scheme “monotone,” if the constructed interpolating

polynomial p(x) is monotone on x 2 ½x1; xN	 for any mono-

tonic input data fðxi; piÞ; i ¼ 1; 2;…Ng: For example, usual

cubic spline or high order polynomial interpolation is

unfortunately not monotone. The simplest monotone interpo-

lation scheme is bilinear interpolation. However, such simple

scheme might give low order accurate flow map solution,

which will smooth out the resulting Lyapunov exponent after

several flow map iterations. In practice, there are many pos-

sible choices of high order monotone interpolating

schemes.6,14,24,31 In this paper, we use the piece-wise bicubic

Hermite interpolation method,7 implemented using the

MATLAB function pchip. With the monotonicity constraint

imposed on the interpolation scheme, we have the following

important property, guaranteeing the availability of sufficient
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data of the interpolation, which would lead to the robustness

in the phase flow method.

Lemma 2. If the flow map W¼ðW1;W2Þ constructed in

step 1 of Algorithm 2 satisfies

xmin 
 W1ðxi; yj; ð2m � 1ÞT�Þ 
 xmax;

ymin 
 W2ðxi; yj; ð2m � 1ÞT�Þ 
 ymax;

and if the interpolation scheme is monotone, we have

xmin 
 W1ðxi; yj; ð2m � 2kÞT�Þ 
 xmax;

ymin 
 W2ðxi; yj; ð2m � 2kÞT�Þ 
 ymax;

for all i¼ 1, 2, …, I, j¼ 1, 2, …, J, and k¼ 1,2, …, m.

B. Computational complexity

In this subsection, we discuss the computational com-

plexity of our algorithm as regards the determination of the

FTLE for a two dimensional periodic flow. Generalization to

higher dimensions is straight-forward. As discussed in the

previous paper,17 the computational complexity for step 1 in

Algorithm 2 is O(N2M), where N is the number of mesh points

in each spatial dimension and M is the number of mesh points

in the time dimension. Because the Eulerian approach requires

solving hyperbolic equations, the Courant–Friedrichs–Lewy

(CFL) stability condition implies M¼O(N), i.e., step 1

requires O(N3) operations for a fixed T*.
Now, in step 2 of Algorithm 2, we perform two-

dimensional interpolations. A one-dimensional Hermite inter-

polation requires O(N) operations to obtain all piecewise pol-

ynomials. For bi-dimensional interpolations at a given point

(x*,y*), we first compute all one-dimensional piecewise poly-

nomials. This requires O(N2) operations. Note that since these

polynomials can be re-used for all interpolation locations, we

store all these values in the memory, in order to reduce the

overall computational complexity. Now, the first step is to

evaluate these polynomials at x¼ x* along each y¼ yj for
j¼ 1, 2, …, J¼O(N). This needs O(N) operations. Once we

obtain the values at (x, yj), we perform another

one-dimensional Hermite interpolation, which requires addi-

tional O(N) operations. Therefore, the total number of opera-

tions in step 2 is O(N2)þO(N2) � [O(N)þO(N)]¼O(N3).

Let T*¼MDt be the period of the flow, Dt is the step

size in the time-marching and T¼T*�2k. To summarize, the

overall computational complexity of a typical Lagrangian

approach and the original Eulerian approach17 are O(N2M2k)
and O(N32k), respectively, while the current proposed algo-

rithm has the complexity O(N3)þ k�O(N3)¼O(kN3), which

is significantly smaller.

C. Time evolution of the FTLE

Following a similar approach as in our previous work,17

we now propose a way to compute the FTLE at various time

levels. Since the Lyapunov exponent a is constant along par-

ticle trajectories, it satisfies the following equation along the

trajectory D
Dtr(x,t)¼ 0 or the following partial differential

equation in the Eulerian framework

@rðx; tÞ
@t

þ u � rrðx; tÞ ¼ 0: (7)

In our previous approach,17 we have proposed to use Eq.

(7) in order to approximate the finite time Lyapunov expo-

nent rTðx; T þ SÞ for some S > 0 using rTðx; TÞ with an

error growing linearly in S. In this paper, since k iterations of

the flow map already gives the flow map for a period of time

t ¼ T ¼ T� � 2k (which grows exponentially in k), we are

using the solution of Eq. (7) to approximate directly the

Lyapunov exponent. Since the error is of order O(1/T),27 our
solution converges to the Lyapunov exponent by an error

O(2–k), i.e., exponentially fast in the number of flow map

iterations.

D. Extension to aperiodic flows

If the flow field depends on time and is not periodic, one

cannot directly apply the approach in Sec. II B to iteratively

interpolate the obtained flow map for long time propagation

because, in general, Utk
tk�1

6¼ Utkþ1
tk : Here, we propose a simple

way to extend the phase flow method to aperiodic flows. For

simplicity, we will consider the Eulerian formulation for the

backward FTLE construction, so that we solve the Liouville

equation forward in time. The method can be easily general-

ized to compute the forward FTLE by reversing the time

direction.

To apply the backward phase flow method to an aperi-

odic flow, we convert the flow field into an autonomous field

by introducing a new variable “s,” so that the ODE system

becomes

_xðtÞ ¼ uðx; sÞ;
_sðtÞ ¼ 1:

Now, in the ODE framework, one can directly apply the

phase flow method to the x�s space (which is one dimension

higher than the original physical space). In this paper, we do

not discuss this Lagrangian approach in detail but will con-

centrate on its Eulerian counterpart. We consider the corre-

sponding Liouville equations

@Wðx; s; tÞ
@t

þ u � r þ @

@s

� �
Wðx; s; tÞ ¼ 0;

in the computational domain ½x; s; t	 2 X � ½0; T	 � ½0; T	
with the initial condition W1ðx; s; 0Þ ¼ x1;…;Wdðx; s; 0Þ
¼ xd, and Wdþ1ðx; s; 0Þ ¼ s, where Wk is the k-th component

of the vector function W and xk is the k-th dimension of x.

Since the velocity field is now independent of time, we can

solve for W(x, s, T*) for an arbitrary T*> 0 to construct the

initial flow map U0
T� : ðxðT�Þ; sðT�ÞÞ ! ðxð0Þ; sð0ÞÞ: Then,

following an algorithm similar to Algorithm 2, we obtain the

long time flow map U0
T� : ðxðTÞ; sðTÞÞ ! ðxð0Þ; sð0ÞÞ by

interpolation

U0
T ¼ U0

2kT� ¼ U0
2k�1T� � U2k�1T�

2kT� ¼ ðU2k�1T�
2kT� Þ2:

With the backward flow map U0
T , we get the backward FTLE

r�T(x,T).
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Finally, we point out that all intermediate solutions W(x,

s, t) also contain useful information. Mathematically, these

functions provide all flow maps, Us�t
s (x), which yield the ini-

tial location of the particles at the takeoff time (s – t) when
the particle arrives at the physical location x at time s. In

view of this, the current approach can also be regarded as a

systematic Eulerian generalization of the Lagrangian method

proposed earlier.2

IV. EXAMPLES

In this section, we consider two examples to demon-

strate the effectiveness of the algorithm. Since some cases of

the following systems are integrable, the FTLE tends to zero

as T ! 1. Therefore, instead of showing the FTLE directly,

we have scaled the quantity by T (i.e., we are showing TrT

or Tr-T), so that all computed solutions can be depicted in a

suitable color scale.

A. Double-gyre flow

The example is based on the flow taken from Shadden

et al.27 to describe a periodically varying double-gyre. The

flow is modeled by the following stream-function

wðx; y; tÞ ¼ A sin½p f ðx; tÞ	sinðpyÞ; where f ðx; tÞ ¼ aðtÞx2
þ bðtÞx; aðtÞ ¼ �sinðxtÞ, and bðtÞ ¼ 1� 2 2 sinðxtÞ: The

velocity field can be obtained by uðx; yÞ ¼ �@w=@y and

vðx; yÞ ¼ @w=@x: In this example, we follow the original

paper27 and use A¼ 0.1 and x ¼ 2p=10: The parameter

� models the magnitude of the periodic perturbation.

We will consider two different cases for this flow. The

first case is an autonomous flow, where we turn off the peri-

odic perturbation in the x-direction by setting �¼ 0, i.e.,

wðx; yÞ ¼ AsinðpxÞsinðpyÞ. Therefore, we are allowed to

apply the backward phase flow method for long term compu-

tation using any T in constructing the initial flow map. In this

case, we choose T*¼ 0.1 and iterate the map for 15 times,

which gives the flow map for time period t¼ T¼ T*
215¼ 3276.8. For comparison, since uyvx � uxvy ¼ 1

2
A2p4

ðcos 2pxþ cos 2pyÞ, the condition for absolute stability

using RK4 is approximately bounded by 3=ðAp2Þ ’ 3, which

implies the number of time levels needed for a Lagrangian

method is over 1000. For the proposed Eulerian method with

max
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p ¼ pA, using the CFL number of 0.5, the num-

ber of time levels is only approximately 8þ 15¼ 23 for the

case with Dx¼ 1/128, and 16þ 15¼ 31 for the case with

Dx¼ 1/256. Figures 2(a)–2(c) show the FTLE obtained using

a computational mesh of Dx¼Dy¼ 1/256. Once we have

obtained the forward flow map from t¼ 0 to t¼T, we con-

struct the corresponding forward FTLE on t¼ 0 and then

propagate it to t¼ T. The solutions are shown in Figure 2(d).

We have also plotted several ray trajectories correspond-

ing to Figure 2(a) in Figure 3. Near the region x¼ 1 and y
close to zero, The computed FTLE is relatively large, and

this implies that a small perturbation in the initial condition

leads to a relatively large change in the final location at

t¼ 25T*¼ 3.2. In Figure 3, we have plotted three initial

points at (0.95, 0.1), (1, 0.1), and (1.05, 1) in red squares and

we can clearly see that their paths are very different. On the

other hand, the FTLE near the region (0.5, 0.5) is close to

zero and therefore, as expected, particles started in that

region (the remaining five points in Figure 3) tend to travel

together as a patch.

The second case is a flow with periodic perturbation,

i.e., �¼ 0.1. The x-directional perturbation has a period

2p/w¼ 10. Figure 4 shows the solution obtained by a typical

Lagrangian method, where the ODE system is solved using a

fixed-step fourth-order Runge-Kutta method (RK4) with spa-

tial resolution 1/64 and 1/128. The total computational time

for obtaining these solutions are approximately 131 min and

504 min, which approximately follow the computational

complexity of O(N2M), where N is the number of mesh

points in each spatial direction and M is the total number of

FIG. 2. (Section IVA with �¼ 0.0) The scaled forward FTLE using the pro-

posed backward phase flow method, i.e., TrT: Dx¼ 1/256, T*¼ 0.1. We

apply the backward phase flow method to obtain the scaled FTLE at (a)–(c)

t¼T* �(215 – 25k) for k¼ 1, 2, and 3 with T¼T*25k. (d) Once we have

obtained 3276.8 r3276.8(x, 0), we propagate the solution to obtain 3276.8

r3276.8(x, 3276.8).
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time steps in the ODE integrator. In this computation, we

simply pick a fix Dt¼ 0.1.

To construct the initial flow map at T*¼ 10 using our

proposed backward phase flow method, we solve the

Liouville equation up to T*¼ 10. Then we apply the back-

ward phase flow idea to get the flow map at time T*�
25¼ 320. In Figure 5, we discretize the domain [0, 2] � [0,1]

using Dx¼Dy¼ 1/256 and we show the forward FTLE at

t¼ 0 using Dx¼Dy¼ 1/256. After 5 flow map iterations, we

obtain the forward FTLE from t¼ 0 to t¼ tf¼ 10� 25¼ 320,

as shown in Figure 5(c). Once we have obtained this solu-

tion, we propagate it forward in time to get an approximation

to the Lyapunov exponent at various time levels, as shown in

Figure 5(d). The total computational time needed to obtain

these results is 47 min. The corresponding computational

time for some coarser meshes Dx¼Dy¼ 1/64 and

Dx¼Dy¼ 1/128 are approximately 1 min and 7 min, respec-

tively. Since the backward FTLE is no more difficult to

FIG. 3. (Section IVA with �¼ 0.0)

Trajectories of several particles corre-

sponding to Figure 2(a). Initial loca-

tions are plotted in (red) square, and

final locations are plotted in (blue)

circle.

FIG. 4. (Section IVA with �¼ 0.1) The scaled forward FTLE at t¼ 0 using

the Lagrangian approach, i.e., TrT: T¼ 320, Dx¼ 1/64, and 1/128,

respectively.

FIG. 5. (Section IVA with �¼ 0.1) The scaled forward FTLE using the pro-

posed backward phase flow method, i.e., TrT: Dx¼ 1/256, T*¼ 10. (a)–(c)

We apply the backward phase flow method to obtain the scaled FTLE’s tk r
tk

(x, 0) for tk¼T* • 25 • k/5 and k¼ 1, 2, and 5. (d) Once we have obtained

320r320(x, 0), we propagate it to obtain 320r320(x, 320).

043132-7 Shingyu Leung Chaos 23, 043132 (2013)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  143.89.106.12 On: Thu, 03 Nov
2016 09:06:03



compute than the forward FTLE, we have skipped the nu-

merical solutions here.

Next, we compute the backward FTLE of an aperiodic

dynamical system. We modify the stream-function by replac-

ing the periodic functions a(t) and b(t) by

aðtÞ ¼ �sin½xtð1þ sin t=2Þ	;
bðtÞ ¼ 1� 2�sinðxtð1þ sin t=2ÞÞ; (8)

with the same parameters �¼ 0.1, A¼ 0.1, and x¼ 2p/10.
Figure 6 shows our computed results of various back-

ward FTLE at t¼ 10 using a mesh of 257 � 129 � 129 in

[0,2] � [0,1] � [0,10]. We use the backward phase flow

method by first constructing a flow map of size T*¼ 10/212.

Then we iterate the map for 12 times to obtain the backward

FTLE r�212T� ðx; 10Þ ¼ r�10ðx; 10Þ; as shown in Figure 6(d).

Note that all intermediate solutions Wðxi; yj; sk; T�Þ define

the flow maps ðxi; yj; skÞ ! ðxðsk � T�Þ; yðsy � T�Þ; sk � T�Þ,
and so we can use them to compute the backward FTLE

r�T� ðxi; yj; skÞ: Figure 6 shows the solutions at sk¼ 10 for

T*¼ 2pT* for p¼ 3, 6, 9, and 12.

B. Point vortex flow on a sphere

In this last example, we consider an advection motion in

a field of two point vortices on a sphere of radius 1, centered

at the origin.23 The velocity of a particle on the manifold sat-

isfies the motion

x0 ¼ 1

2p

X2
i¼1

xi � x

2ð1� xi � xÞ;

with two point vortices placed at (–1, 0, 0) and (0, –1, 0). We

follow the same Eulerian idea proposed earlier17 to represent

the sphere inR3, implicitly, using a level set function. Then the

flow map is computed on the uniform Cartesian mesh without

explicitly triangulating the surface. Figure 7 shows the back-

ward FTLE solutions computed using the proposed backward

phase flow method at t¼ 2 and t¼ 64 on an underlying uniform

mesh of size Dx¼Dy¼Dz¼ 3/128. We first compute the flow

map at t¼ T*¼ 2�4 and then iterate the map 10 times to obtain

the final flow map at t¼T* � 210¼ 64. The LCS is clearly

observed on the back of the sphere in Fig. 7(b).

V. ADVANTAGES, LIMITATIONS, AND FUTURE WORK

Based on the backward phase flow method, we develop

an efficient numerical approach to compute the long-time

flow map in aperiodic flows. The algorithm can be used to

approximate directly the Lyapunov exponent of autonomous,

periodic, or even aperiodic dynamical systems. Because of

the time doubling property of the method, the FTLE con-

verges to the LE exponentially fast in the number of flow

map iterations. Another advantage of the proposed Eulerian

approach is that we require the velocity field to be defined

only on the underlying mesh. No interpolation of the velocity

field is necessary. Also, the Eulerian approach gives a more

natural way to impose the boundary condition in the bounded

computational domain.

For aperiodic flows, computation is performed in the x –
s – t space, which is one dimension higher than that of the

physical space. Therefore, one limitation of the proposed

approach is the extra requirement in memory. This extra

dimension poses severe barrier for long time FTLE computa-

tions, such as r�320(x, 320) in Figure 6.

Besides the FTLE, there are other important quantities

used in the study of the chaotic behavior of dynamical

sytems.22,29 For example, other possible indicators include

the invariant spectra,34,35 the finite size Lyapunov exponent

(FSLE),1 the mean exponential growth factor of nearby

orbits (MEGNO),5 the fast Lyapunov indicator,8 the relative

Lyapunov indicator,25 the generalized alignment index

(GALI) method,30 etc. We propose, as future works, to

extend our current method in order to incorporate some of

these indicators of chaos detection.

FIG. 6. (Section IVA with an aperiodic perturbation (8)) The scale back-

ward FTLE for an aperiodic flow using the proposed backward phase flow

method, i.e., Tr�T: Dx¼Dy¼ 1/256, Dz¼ 10/128, and T*¼ 10/212. We iter-

ate the obtained flow map for (a) 3, (b) 6, (c) 9, and (d) 12 times to obtain

the scaled backward FTLE (a) 23 r�23T�
(x, 10), (b) 26T*r�26T�

(x, 10), (c)

29T* r�29T�
(x, 10), and (d) 212t* r�212T�

(x, 10).
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