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CHERN-WEIL MASLOV INDEX

AND ITS ORBIFOLD ANALOGUE

CHEOL-HYUN CHO, HYUNG-SEOK SHIN

Abstract. We give Chern-Weil definitions of the Maslov indices of bundle
pairs over a Riemann surface Σ with boundary, which consists of symplectic
vector bundle on Σ and a Lagrangian subbundle on ∂Σ as well as its gen-
eralization for transversely intersecting Lagrangian boundary conditions. We
discuss their properties and relations to the known topological definitions. As
a main application, we extend Maslov index to the case with orbifold inte-
rior singularites, via curvature integral, and find also an analogous topological
definition in these cases.

1. Introduction

Maslov index, which plays important roles in several contexts of geometry and
analysis, has been extensively studied in the literature such as in [Ar],[GS],[M],[SZ]
to name a few. For an excellent review, we refer readers to Cappell, Lee and Miller
[CLM].

The Maslov index, which we consider in this paper, is associated to a bundle pair
over a Riemann surface with boundary( or with boundary and boundary punctures).
By bundle pair (E,L) over Σ, we mean a symplectic vector bundle E → Σ equipped
with compatible complex structure, together with Lagrangian subbundle L → ∂Σ
over the boundary of Σ. In this paper, we give another definition of the Maslov
index via curvature integral of orthogonal connections. This is analogous to the
case of c1, which can be defined via Chern-Weil theory as a curvature integral of
connections.

As we work with maps from Riemann surfaces with boundary and Lagrangian
boundary condition on them, we require the certain orthogonal condition(to pre-
serve the Lagrangian bundle data) of the connection on the boundary ∂Σ to define
the index. This is somewhat opposite to the topological definition of the Maslov
index. Namely, Maslov index can be defined by taking a trivialization of E over
Σ and measure how the Lagrangian subbundle data is twisted along the boundary.
But in Chern-Weil definition, we require the orthogonal condition on the boundary
and measure how much the connection is twisted over the interior of Σ by taking
an integral of its curvature. We provide two proofs of the equality of the pro-
posed Chern-Weil Maslov index and the standard Maslov index which is defined as
winding number in Lagrangian grassmanian.

We also consider its generalization, arising from the maps with boundary on
transversely intersecting Lagrangian submanifolds, as in the definition of Fukaya
category(see [Fu] for example). Chern-Weil definition of the Maslov index also
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works in this case, and we will find a relation of such an index with the Fredholm
index of the related Cauchy-Riemann operator.

The main motivation for us to develop the Chern-Weil definition of Maslov index
is to extend the Maslov index to the orbifold setting. In the last section, we discuss
the case with interior orbifold singularites. Namely, we will consider bundle pairs
over Riemann surface Σ with boundaries and interior orbifold singularities. In this
case, we consider not vector bundles but orbi-bundles, and the standard topological
definition is not available since orbi-bundles are not trivial bundles over Σ. But the
Chern-Weil definition which we give in this paper, can be easily extended to this
setting.

Alternative approach to define Maslov index in this orbifold case is to take branch

covering br : Σ̃ → Σ by a smooth Riemann surface Σ̃ with boundary, and define

the Maslov index to be that of the pull-back bundle over Σ̃ divided by the degree
of the branch covering map br. We use Chern-Weil definition to prove that such
an index is independent of the choice of a branch covering map, and prove that it
is the same as Chern-Weil Maslov index.

We also discuss the relationship with the desingularized Maslov index which is
defined by the first author and Poddar in [CP] (following the desingularization of
Chen and Ruan [CR])

Here is the outline of the paper. In section 2, we give a Chern-Weil definition
of the Maslov index of a bundle pair, and in section 3, we gives two proofs of the
theorem that Chern-Weil index equals the usual topological Maslov index. The first
proof is easier, but the second proof extends to the case of orbifolds. In section 4, we
show properties of Chern-Weil index such that the definition does not depend on the
choice of orthogonal connection or an complex structure. In section 5, we consider
the case of transversely intersecting Lagrangian boundary condition and compare
it to the Fredholm index of related Cauchy-Riemann operator. In section 6, we
extend the above definition to the orbifold case, establish a topological definition
using branch covering maps, and find a relation to the desingularized Maslov index.

2. Maslov index via orthogonal connection

In this section, we define an L-orthogonal connection( c.f. [V]) of a bundle pair
to give a Chern-Weil definition of its Maslov index.

We recall the well-known definition of c1(E) of a complex line bundle E via
curvature integral.

2.1. Chern-Weil definition of the first chern class. Let ∇ be a connection of
a complex line bundle E over a closed surface Σ, and denote by F∇ its curvature.
The following theorem is well-known

Theorem 2.1. The curvature F∇ satisfies the following:

(1) dF∇ = 0
(2) If ∇ and ∇′ are two connections of E, then ∇ = ∇′+ η for a 1-form η and

F∇ = F∇′ + dη
(3) The first chern number c1(E)([Σ]) is given by

(1) c1(E)([Σ]) =

√
−1

2π

∫

Σ

F∇,

and it is independent of the choice of a connection.
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In fact, η is a End(E)-valued 1-form. However, since End(E) is a trivial line
bundle, we can consider the η as a 1-form on Σ after fixing a trivialization of
End(E). Note that the difference of curvature integrals for two connections ∇ and
∇′ is ∫

Σ

F∇ −
∫

Σ

F∇′ =

∫

Σ

dη =

∫

∂Σ

η = 0.

But for the case with Riemann surfaces with boundary, and the invariance of the
curvature integrals does not hold for arbitrary connections since ∂Σ 6= 0.

To obtain an invariant curvature integrals for the case with boundaries, we in-
troduce the notion of an orthogonal connection.

2.2. Orthogonal connection for a bundle pair. We first recall a definition of
bundle pair. Let Σ be a Riemann surface with boundary ∂Σ.

Definition 2.2. We denote by a bundle pair (E,L) → (Σ, ∂Σ), a symplectic vector
bundle (E,ωE) over Σ, a Lagrangian subbundle L over ∂Σ.

We also consider a compatible complex structures J of (E,L) which makes E a
complex vector bundle with an induced inner product g(·, ·) = ω(·, J ·). Denote by
gC = g +

√
−1ω the induced hermitian inner product of E. A connection ∇ is said

to be unitary if ∇ is compatible with the metric gC, or equivalently, the holonomy
of ∇ lies in U(n).

Definition 2.3. Let ∇ be a unitary connection on E → Σ. Then, ∇ is called L-
orthogonal if the parallel transport along ∂Σ via ∇ preserves Lagrangian subbundle
L → ∂Σ.

To construct such an L-orthogonal connection of a bundle pair (E,L) → (Σ, ∂Σ),
we can proceed as follows. Given a g-orthogonal metric connection ∇ for L, by
defining ∇Je = J∇e for any local section e of L, we can extend the connection
to E → ∂Σ, and by trivially extending to the neighborhood of ∂Σ and using the
partition of unity, we can extend it to a unitary connection to E → Σ.

Remark 2.4. The name, orthogonal connection is given following the work of Vais-
man, who considered orthogonal unitary connection in [V]. He considered principal
Sp(2n)-bundles and related principle U(n) subbundle (by choosing an complex struc-
ture), and a unitary connection preserving certain principal O(n)-subbundle ( which
is defined from a real unitary frame of Lagrangian subbundle) was called orthogo-
nal unitary connection. He considered the case that the Lagrangian subbundle is
defined everywhere(not just on the boundary) and hence, the Maslov index vanishes
in these cases. He used orthogonal unitary connections and Chern-Weil theory to
study secondary invariants.

Note that we only require orthogonality along ∂Σ. Another natural (and more
restrictive) assumption would be to take a tubular neighborhood of ∂Σ and require
the connection to be a product form, i.e. it is a pullback of the orthogonal con-
nection on ∂Σ along normal direction. But we remark that the resulting curvature
integral will be the same, which can be proved as in the proof of the proposition
4.1

Example 2.5. Consider a Lagrangian submanifold L = S1 ⊂ C, where C is
equipped with standard symplectic structure ω0 = dx ∧ dy. Consider inclusion of a
unit disc u : D2 ⊂ C (so that u(∂D2) = L).
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Consider the pull-back bundle u∗TC ∼= D2 × C and its Lagrangian subbundle
u|∗∂D2TL. Consider the trivialization of u∗TC as above and denote by (r, θ) the

polar coordinate of D2. For the complex frame {ǫ(r, θ) := ∂
∂x

∣∣
(r,θ)

} of u∗TC , we

define a connection
∇ := d−

√
−1rdθ,

In this trivialization,
√
−1e

√
−1θǫ(1, θ) defines a real frame of L and one can

check that

∇ ∂
∂θ

√
−1e

√
−1θǫ(1, θ) =

(
(d−

√
−1rdθ)

√
−1e

√
−1θ

)
(
∂

∂θ
)ǫ(1, θ) = 0.

Therefore the connection ∇ is an L-orthogonal unitary connection.

2.3. Maslov index. Recall the definition of a Maslov index for a bundle pair
(E,L) → Σ, where E is a symplectic vector bundle over Σ, and L is a Lagrangian
subbundle over ∂Σ. Let J be a compatible complex structure on E, and consider
E as a complex vector bundle.

Recall the following well-known lemma.

Lemma 2.6 ([Oh]). Consider the subset

Ũ(n) = {A ∈ U(n,C)|A = At}.
Then the map

B : Λ(n) = U(n)/O(n) → Ũ(n);A 7→ AĀ−1

is a diffeomorphism.

The Maslov index µ(γ) of an oriented loop γ : S1 → Λ(n) is defined to be the
winding number of

det ◦B ◦ γ : S1 → C\{0}.
Now given a bundle pair (E,L) → Σ, if ∂Σ 6= ∅, then vector bundle E → Σ can

be trivialized. We fix a symplectic trivialization Φ : E ∼= Σ×Cn, and let R1, ..., Rh

be the connected components of ∂Σ, with orientation induced by the orientation
Σ. Then Φ(L|Ri

) gives a loop γi : S
1 → Λ(n). Let us denote µ(Φ, Ri) := µ(γi).

Definition 2.7. The Maslov index of the bundle pair (E,L) is defined by

µ(E,L) =

h∑

i=1

µ(Φ, Ri)

where Φ : E → Σ× Cn is any trivialization.

The Maslov index is independent of the choice of trivialization Φ, and the choice
of an complex structure J . (see [KL] for example.)

2.4. Chern-Weil Maslov index. The main objective of this paper is to give
another definition of the Maslov index µCW for the bundle pair (E,L) → Σ in
terms of curvature integral:

Definition 2.8. Let ∇ be a connection on E which restricts, on the boundary of
Σ, to an L-orthogonal unitary connection on (E|∂Σ, J). The Maslov index of the
bundle pair (E,L) is defined by

µCW (E,L) =

√
−1

π

∫

Σ

tr(F∇)

where F∇ ∈ Ω2(Σ, End(E)) is the curvature induced by ∇.
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Remark 2.9. Note that the denominator of (1) is 2π.

We consider the example 2.5.

Example 2.10. For the connection ∇ defined in example 2.5, we have

F∇ = d(−
√
−1rdθ) = −

√
−1dr ∧ dθ

Hence, √
−1

π

∫

D2

tr(F∇) = 2.

This shows that µCW = 2 and it is equal to the topological Maslov index.

In the following section, we prove that µCW (E,L) is independent of the choice
of the orthogonal connection and equal the topological Maslov index µ(E,L).

3. Equivalence of two Maslov indices

We will give two proofs of equivalence of two Maslov indices.

Theorem 3.1. Given a bundle pair (E,L), topological Maslov index equals Chern-
Weil Maslov index:

µ(E,L) = µCW (E,L).

The first proof in subsection 3.1 is easier, but the second proof in subsection 3.2
using doubling construction can be extended to the case of orbifolds, and will be
used in a later section.

3.1. First proof of µ = µCW .

Proof. Consider a bundle pair (E,L) with orthogonal connection ∇. We fix an
complex structure J of E and regard E as a complex vector bundle. Consider

ΛnE the top exterior bundle of E, with an induced connection ∇̃. We have a
trivialization Φ : E → Σ × Cn as a complex vector bundle since ∂Σ 6= 0. With
respect to the standard frame {ǫ1, · · · , ǫn} of Σ × Cn, we can write ∇ = d + A
for some n × n-matrix-valued one form A = (aij). Then it is easy to see that

∇̃ = d+ tr(A) with respect to the frame{ǫ := ǫ1 ∧ · · · ∧ ǫn}.
Recall that the curvature of ∇ and ∇̃ is given as

F∇ = dA+A ∧ A, F∇̃ = d(tr(A)).

Lemma 3.2. ∫

Σ

tr(F∇) =

∫

Σ

tr(F∇̃).

Proof.

tr(A ∧ A) =
∑

i,j

aij ∧ aji =
∑

i

aii ∧ aii = 0.

Second equality follows from cancelation of aij ∧ aji with aji ∧ aij = −aij ∧ aji for
i 6= j. �

Now, we recall the standard relation between holonomy and curvature integral
for line bundles. Given a complex line bundle L over a manifoldM and a connection
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∇′ on L, the holonomy along a contractible loop γ (which is bounded by the 2-
dimensional contractible domain D ⊂ M) is given by

Holγ(L,∇′) = exp(−
∫

D

F∇′).

Note that if ∇′ = d+A is a unitary connection on D, then A satisfies A = −A
t
.

Therefore for a complex line bundle, A is the purely imaginary connection 1-form.

Since ξ(t) = e−
∫

t

0
A(γ̇(s))dsξ(0) is a parallel transformation of ξ(0), the integral

− 1√
−1

∫
D
F∇′ =

√
−1

∫
D
F∇′ gives the rotation angle of a parallel section along γ.

Note that
∫
γ
A =

∫
D
F∇′ by Stokes’ theorem in this case.

In general, the above relation for D extends to the case of Riemann surface Σ
with boundary ∂Σ. Namely, the integral

√
−1

∫
Σ F∇′ gives the sum of rotation

angles of parallel sections along boundaries ∂Σ with the induced orientations from
Σ.

Now we apply this to ΛnE and ∇̃. Note that, by the definition of L-orthogonal
unitary connection, parallel transformation in E preserves frame vectors of L. More
precisely, if {e1(t), · · · , en(t)} is a horizontal sections of E along γ(t) ⊂ ∂Σ and
{e1(t0), · · · , en(t0)} is a real orthogonal frame of Lt0 at some moment t0, then
{e1(t), · · · , en(t)} would be a real orthogonal frame of Lt for all t.

Define a matrix u(t) := (e1(t), · · · , en(t)) ∈ U(n) using the frame as column
vectors. Then, we have (for the standard frame {ǫ1, · · · , ǫn})

e1(t) ∧ · · · ∧ en(t) = det(u(t))ǫ1 ∧ · · · ∧ ǫn.

So det(u(t)) is a frame of the Lagrangian subbundle ΛnL ⊂ ΛnE. In the trivial-
ization det(Φ) : ΛnE → Σ× C, we have det(u(t)) ∈ U(1).

Observe that the det(u(t)) gives a horizontal section. Hence the
√
−1

∫
Σ
F∇̃

measures the rotating angle of det(u(t)) in U(1).
As topological Maslov index µ corresponds to the rotation number of det2(u(t))

in U(1), hence it is equal to √
−1

π

∫

Σ

F∇̃.

�

3.2. Second proof of µ = µCW . We will use the doubling construction (and the
equivalence between the topological and Chern-Weil definition of the first Chern
class).

To explain the doubling construction, we recall the following well-known theorem
(see [AG]).

Theorem 3.3. Let Σ be a bordered Riemann surface. There exists a double cover
π : ΣC → Σ of Σ by a compact Riemann surface ΣC and an antiholomorphic
involution σ : ΣC → ΣC such that π ◦ σ = π. There is a holomorphic embedding
i : Σ → ΣC such that π ◦ i is the identity map. The triple (ΣC, π, σ) is unique up to
isomorphism.

Definition 3.4. We call the triple (ΣC, π, σ) in Theorem 3.3 the complex double
of Σ, and Σ = σ(i(Σ)) the complex conjugate of Σ.

We recall the following theorem 3.3.8 of [KL] and its proof for reader’s conve-
nience.



CHERN-WEIL MASLOV INDEX AND ITS ORBIFOLD ANALOGUE 7

Theorem 3.5. Let (E,L) be a bundle pair over a bordered Riemann surface Σ.
Then there is a complex vector bundle EC on ΣC together with a conjugate linear
involution σ̃ : EC → EC covering the antiholomorphic involution σ : ΣC → ΣC such
that EC|Σ = E (where Σ is identified with its image under i in ΣC) and the fixed
locus of σ̃ is L → ∂Σ. Moreover, we have

degEC = µ(E,L).

Proof. Let R1, . . . , Rh be the connected components of ∂Σ, and let Ni
∼= Ri× [0, 1)

be a neighborhood of Ri in Σ such that N1, . . . , Nh are disjoint. Then (Ni)C =
Ni ∪ N i is a tubular neighborhood of Ri in ΣC, and N ≡ ∪h

i=1(Ni)C is a tubular
neighborhood of ∂Σ in ΣC. Let U1 = Σ ∪N , U2 = Σ ∪N , so that U1 ∪ U2 = ΣC

and U1 ∩ U2 = N .
Fix a trivialization Φ : E ∼= Σ × Cn, where n is the rank of E. Then Φ(L|Ri

)

gives rise to a loop Bi : Ri → R̃n ⊂ GL(n,C). To construct EC → ΣC, we
glue trivial bundles U1 × Cn → U1 and U2 × Cn → U2 along N by identifying
(x, u) ∈ (Ni)C × Cn ⊂ U1 × Cn with (x,B−1

i ◦ pi(x)u) ∈ (Ni)C × Cn ⊂ U2 × Cn,
where pi : (Ni)C ∼= Ri × (−1, 1) → Ri is the projection to the first factor and

B−1
i : Ri → R̃n denotes the map B−1

i (x) = (Bi(x))
−1. There is a conjugate linear

involution σ̃ : EC → EC given by (x, u) ∈ U1 × C
n 7→ (σ(x), ū) ∈ U2 × C

n and
(y, v) ∈ U2 × Cn 7→ (σ(y), v̄) ∈ U1 × Cn. It is clear from the above construction
that σ̃ : EC → EC covers the antiholomorphic involution σ : ΣC → ΣC, and the
fixed locus of σ̃ is L → ∂Σ.

Proof of [MS] Theorem 2.69 shows that deg(EC), which is (c1(EC) ∩ΣC) can be
defined by winding number (degree) of the overlap map from trivializations of EC

over Σ to that of Σ. But in our setting, this map is given by Bi whose winding
number defines the Maslov index µ(E,L). This proves the desired identity.

�

Now, given an orthogonal connection ∇ on a bundle pair (E,L), let us assume
that it has a product form near the boundary. More precisely, on the normal neigh-
borhoodN := ∂Σ×[0, 1), we have∇|∂Σ×[0,ǫ) = π∗(∇|∂Σ) where π : ∂Σ×[0, ǫ) → ∂Σ
is the projection map. It is easy to see that such an orthogonal connection always
exists.

We construct a connection ∇C on the complex double EC from the orthogonal
connection ∇ on a bundle pair (E,L). Fix a trivialization Φ : E ∼= Σ× Cn and let
{ǫ1, · · · , ǫn} be the frame of E, where ǫj =

∂
∂xj

, with xj+i·yj the j-th coordinate of

Cn. By deforming the frame near the boundaries, we may assume that ǫj |∂Σ×[0,ǫ) =
π∗(ǫj |∂Σ). Then ∇ = d + A where A is an End(E)-valued 1-form on Σ, which is
defined by

(2) ∇ǫi(z) =
∑

i

(A)ji(z) · ǫj(z)

for the standard hermitian metric h. Define a connection on Σ × Cn → Σ by
∇ := d+A, i.e.,

(3) (A)ij(z) := (A)ij(σ(z))

where σ : ΣC → ΣC is the involution map.
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Proposition - Definition 3.6. We define a connection ∇C on EC which restrict
to ∇C|Σ ≡ ∇ and ∇C|Σ ≡ ∇. Namely, A is compatible to A on the tubular neigh-
borhood N of ∂Σ.

Proof. On ∂Σ, we fix a starting point z ∈ Ri ⊂ ∂Σ and parameterize Ri by γ :
[0, 1] → Ri with γ(0) = γ(1) = z. Image of Lagrangian subbundle Lγ(t) under the
map Φ can be written as u(t)·Rn ⊂ C

n. In fact, we choose u(t) as follows: Consider
u(0) with its column vectors (e1(0), · · · , en(0)). Using ∇ on (E,L), denote parallel
transport of ej(0) at γ(t) by ej(t). We have ∇ej(t) = 0 on Ri. And u(t) with
its column vectors (e1(t), · · · , en(t)), is a unitary matrix with Φ(Lγ(t)) = u(t) ·Rn.
Denote entries of u(t) as (eij(t)). Since u(t)u(t)∗ = I,

(4) ǫi(t) = ei1(t)e1(t) + · · ·+ ein(t)en(t).

∇ǫi(t) = ∇(

n∑

j=1

eij(t)ej(t))(5)

=
∑

j

deij ⊗ ej + eij∇ej(6)

=
∑

j

deij ⊗ ej(7)

From the equation (2) on Σ, if we representA with respect to the frame {ǫ1, · · · , ǫn},
the i-th column of A(t) is equal to ∇ǫi(t) and it is a linear combination of ej’s with
coefficients (dei1, · · · , dein) by last equation. Since this coefficient vector is i-th row

of du(t), we have

A(t) = u(t) · ∂u(t)
T

∂t
dt, on γ(t) ∈ ∂Σ.

Note that since ∇ is a product form near the boundary, A(t, r) = A(t) on N ,
where r is the normal coordinate, i.e., (t, r) ∈ ∂Σ× [0, ǫ) = N . Recall that, in the
construction of EC, the transition map was given by the inverse of Bi. Note that
Bi(γ(t)) = u(t) · u(t)T . Hence, under the transition map, the connection 1-form A
is transformed to

˜A(t, r) := B(t)−1 · dB(t) +B(t)−1 · A(t) · B(t)(8)

= u(t) · u(t)Td(u(t) · u(t)T ) + u(t) · u(t)T ·A(t) · u(t) · u(t)T(9)

= [u(t) · u(t)T ∂u(t)

∂t
u(t)T + u(t) · ∂u(t)

T

∂t
+ u(t)

∂u(t)
T

∂t
u(t)u(t)T ]dt(10)

= [u(t)
∂

∂t
{u(t)Tu(t)}u(t)T + u(t) · ∂u(t)

T

∂t
]dt(11)

= u(t) · ∂u(t)
T

∂t
dt(12)

= A(t, r)(13)

Hence the connection ∇ and ∇ can be pasted near ∂Σ. �

Now we start the second proof of Theorem 3.1.
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Proof. We first consider the case that orthogonal connection ∇ is of product form
near the boundary. Later, we prove that µCW is independent of the choice of
orthogonal connection.

Note that F∇ ◦ σ = dA + A ∧ A = dA+A ∧ A = F∇. Since ∇ is unitary
connection, tr(F∇) is purely imaginary. Hence

(14) tr(F∇) + tr(F∇ ◦ σ) = tr(F∇) + tr(F∇) = 0.

Recall that the holomorphic structure of Σ is given by antiholomorphic structure
of Σ, hence the orientation of Σ is reversed to the one of Σ.

(15)

∫

Σ

tr(F∇) = −
∫

Σ

tr(F∇ ◦ σ) =
∫

Σ

tr(F∇).

Since the first Chern number of doubling EC gives the Maslov index of (E,L),

(16)

√
−1

π

∫

Σ

tr(F∇) =

√
−1

2π

∫

ΣC

tr(F∇C
) = c1(EC)([ΣC]) = µ(E,L).

Therefore we can conclude that

µCW (E,L) =

√
−1

π

∫

Σ

tr(F∇) = µ(E,L),

for a connection which is a product form near the boundary. This proves the theo-
rem 3.1 together with the following lemma proposition which claims that µCW (E,L)
is the same for any L-orthogonal unitary connection. �

4. Properties of Chern-Weil Maslov index

In this section, we prove several properties of µCW . We prove that µCW is
independent of the choices of orthogonal connection and of compatible complex
structures. Although this follows from the equivalence which is proved in the previ-
ous section, but the proofs given here will naturally extend to the case of orbifolds.

We also give a couple of examples to demonstrate that it is important to have
unitary condition in the definition of orthogonal connection at the end of the section.

4.1. Independence of µCW .

Proposition 4.1.
∫
Σ tr(F∇) is independent of the choice of an L-orthogonal uni-

tary connection ∇.

Proof. Let ∇1 and ∇2 are L-orthogonal unitary connections. Then ∇1 − ∇2 = A
for some A ∈ Ω1(Σ)⊗ End(E), and we have

tr(F∇1 )− tr(F∇2 ) = d(tr(A)).

To prove the lemma, it is enough to show that
∫
Σ
d(tr(A)) =

∫
∂Σ

tr(A) = 0. After
fixing a compatible complex structure J and a trivialization Φ : E → Σ × Cn, let
{e1, · · · , en} be an real orthonormal frame of L. Then

(∇1 −∇2) ∂
∂t
ei =

∑

j

Aji(
∂

∂t
)ej

where t is a local coordinate of ∂Σ. Note that Aji(
∂
∂t )s are real-valued functions

over ∂Σ since ∇k(k = 1, 2) preserves L. Hence
∫
∂Σ tr(A) is real-valued and it

vanishes since tr(F∇k ) are imaginary.
�
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One can define the notion of isomorphism between two bundle pairs over Σ, and
it is easy to show that isomorphic bundle pairs have the same Maslov index. If
the bundle pair is defined from a smooth map u : (Σ, ∂Σ) → (M,L) to symplectic
manifolds via pulling back tangent bundles, then homotopic maps define isomorphic
bundle pairs, hence has the same Maslov index.

The following corollary also follows from the equivalence µ = µCW , but we give
a direct proof.

Corollary 4.2. The Maslov index µCW (E,L) of a bundle pair (E,L) does not
depend on a compatible complex structure J .

Proof. Suppose we have a symplectic vector bundle E → Σ and Lagrangian sub-
bundle L → ∂Σ. Let J0, J1 be two compatible complex structures of E. It is
well-known that the set of compatible complex structures are path connected, and
take Jt connecting J0 and J1.

Now, consider a symplectic bundle Ẽ = E×I → Σ×I and Lagrangian subbundle
L× I → ∂Σ× I.

We can choose an (L×I)-orthogonal unitary connection ∇̃ on the complex vector

bundle Ẽ with complex structure {Jt}. Here, (L×I)-orthogonal unitary connection
means a unitary connection which preserves (L× I)-subbundle along ∂Σ× I. Then

∇̃ restricts to an (L× {t})-orthogonal unitary connection ∇̃t on

Ẽt = E × {t} → Σ× {t}.
It is enough to show that

∫

Σ

tr(F∇̃0

) =

∫

Σ

tr(F∇̃1

).

As we have

(17) 0 =

∫

Σ×I

tr(dF∇̃) =

∫

Σ×{1}
tr(F∇̃0

)−
∫

Σ×{0}
tr(F∇̃1

) +

∫

∂Σ×I

tr(F∇̃)

it is enough to show that imaginary part of
∫
∂Σ×I tr(F∇̃) vanishes.

Note that over ∂Σ× I, the bundle E× I with {Jt} is isomorphic to the complex-
ification of real bundle L× I. Using a similar argument in the Proposition 4.1, it is
easy to show that tr(F∇̃)|∂Σ×I is indeed real-valued. This proves the corollary. �

4.2. On the unitary condition. Note that the property of the L-orthogonal
unitary ∇ which preserving the hermitian product along the ∂Σ is important in
the above proof. The hermitian property guarantee that the induced connection

∇̃ on the determinant line bundle det(E)|∂Σ can be identified with one of U(1)-
principal line bundle over ∂Σ. If we drop the such condition from connection and
choose a connection which preserves only the Lagrangian subbundle data over ∂Σ,
the Chern-Weil definition of Maslov index fails. It is because the curvature integral
captures not only the rotations of horizontal sections, but also the change of norm
of them. See the following example.

Example 4.3. Consider a bundle pair E := D2×C → D2 with a trivial Lagrangian
sunbundle L := ∂D2 × R. Define a connection ∇ := d + rdθ with respect to the
standard complex frame {ǫ} of E. Then ∇ preserves the Lagrangian structure, since

∇ ∂
∂θ
fǫ = 0 ⇔ f(θ) = f(θ0)e

θ0e−θ.(18)
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Note that ∫

D2

F∇ =

∫

D2

dr ∧ dθ(19)

= 2π(20)

Note that the 2π measures the ratio of the change of the norm of parallel sections
along D2.

5. The case with boundary condition on transversely intersecting

Lagrangian submanifolds

Recall that to define Fukaya category, J-holomorphic maps from holomorphic
polygons with boundary on several Lagrangian submanifolds (which intersects trans-
versely) are used. There exist a Maslov index attached to such a map, which de-
termines the virtual dimension of the moduli spaces of such maps. In general, one
can consider maps from Riemann surfaces with boundary with boundary condition
on transversely intersecting Lagrangian submanifolds. In this section, we give a
Chern-Weil definition of the Maslov index of a bundle pair arising from such maps,
and find a relation with the virtual dimension of the related moduli spaces.

For simplicity of exposition, we assume that Riemann surface Σ has a boundary
∂Σ which is connected. (In the general case, the same thing holds by taking the
Maslov index in the sense of Definition 2.7.) We consider marked points (or punc-
tures) v0, · · · , vk ∈ ∂Σ placed in a cyclic order for the induced orientation of ∂Σ.
Holomorphic polygons are genus 0 cases.

5.1. Orthogonal connection on a bundle pair in transversal case. Let Σ be
a Riemann surface with boundary with vertices labeled as {v0, · · · , vk} and with
k+1 edges labeled as {l0, l1, · · · , lk} such that vi = li∩ li+1 for i = 0, · · · , k modulo
k + 1. For each i, we fix a small closed neighborhood Ui of vi and a conformal
isomorphism

Ui\{vi} → (−∞, 0]× [0, 1].

Let (M,ω) be a symplectic manifold with a compatible almost complex structure
J and L0, · · · , Lk be Lagrangian submanifolds intersecting transversely in M . Sup-
pose pi ∈ Li ∩ Li+1 for i = 0, · · · , k modulo k + 1.

Let u : Σ → M be a J-holomorphic map with boundary condition u(lj) ⊂ Lj

and asymptotic condition limz→viu(z) = pi. By pulling back via u the tangent
bundles, we obtain the following notion of bundle pair.

Definition 5.1. We denote by a bundle pair (E,L) → Σ, a symplectic vector
bundle E over Σ with Lagrangian subbundles L := {L0, L1, · · · , Lk} over the edges
{l0, l1, · · · , lk} of Σ with J a compatible complex structure of E . At vi, Lagrangian
subbundles Li|vi and Li+1|vi are assumed to intersect transversely.

We give a definition of L-orthogonal unitary connection for the bundle pair
(E,L) over Σ.

Definition 5.2. Let (E,L) be a bundle pair over Σ as above with J . A unitary
connection ∇ on E is called L-orthogonal unitary connection of (E,L) if the con-
nection ∇li on E|li , which is obtained by restriction, is Li-orthogonal on li, for
each i = 0, 1, · · · , k.
Lemma 5.3. Given a bundle pair (E,L) over Σ, an orthogonal connection exists.
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Proof. It is enough to show that such connection exists in a neighborhood of vi.
Since then, one can obtain the global one via partition of unities.

For convenience, we identify a neighborhood of vi ∈ Σ with

(21) Zo := {(x, y) ∈ R
2|x2 + y2 < 1, x ≥ 0, y ≥ 0}

where vi corresponds to 0.
Recall from [MS] that we can take unitary trivialization of E over Zo, Φ : E →

Zo × Cn. Here Cn is equipped with the standard complex structure J0 and the
standard symplectic form ω0, and Φ∗ω0 = ω and Φ∗J0 = J . On the real (resp.
imaginary) axis R ⊂ Zo (resp. I ⊂ Zo), we have Lagrangian subbundle Li+1 (resp.
Li) of E. By modifying the trivialization Φ ( by multiplying elements of U(n), in
the neighborhood of R and I), we may assume that the image of Li and Li+1 under
Φ is constant along R and I in Cn.

Now choose a trivial connection on Zo × Cn and pull back via Φ to obtain an
orthogonal connection of E on Zo. �

Now, we associate Chern-Weil Maslov index to the above bundle pair as before.

Definition 5.4. Let ∇ be an L-orthogonal unitary connection of (E,L). The
Maslov index of the bundle pair (E,L) is defined by

(22) µCW (E,L) :=

√
−1

π

∫

Σ

tr(F∇)

As in the previous case, we have

Proposition 5.5. µCW (E,L) is independent of the choice of L-orthogonal unitary
connection ∇. It is also independent of the choice of an complex structure.

Proof. The proof is similar to that of Proposition 4.1. �

Note that we can choose a compatible complex structure J satisfying

J · Li|vi = Li+1|vi
at the marked point vi = li ∩ li+1 for each i = 0, 1, · · · , k. We will use such a J in
the following discussions.

We recall the usual topological Maslov index associated to the bundle pair (E,L).
First, given two Lagrangian subspaces L0 and L1 which intersects transversely in
V , there exist a path from L0 to L1 that moves in the positive definite direction
(which is unique up to fixed end points). If L1 = J · L0, then such a path can be
taken to be t 7→ eπJt/2L0. For example, a loop in Lagrangian grassmanian obtained
by joining positive definite paths from L0 to L1 and from L1 to L0 has Maslov index
n = dim(L0).

The topological Maslov index of the bundle pair (E,L) can be defined by first
taking a trivialization of E and taking a loop of Lagrangian subspaces along the
boundary, by gluing the Lagrangian subbundle data of the edges at each marked
point vi via positive definite direction path from Li to Li+1. Denote this path by
Lloop. The winding number of Lloop defines Maslov index µtop(E,L).

We also recall how the Fredholm index arises in this setting. For a fixed p > 2,
consider a Banach manifold P of W 1,p maps Σ → M with boundary condition
u(lj) ⊂ Lj and asymptotic condition limz→viu(z) = pi. Then the moduli space of
J-holomorphic maps from Σ to M can be identified with a zero set of a smooth
section ∂J : P → E for a Banach bundle E . More precisely, the fiber of E at u
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is the space Lp(A0,1
⊗

u∗TM), and the section ∂J is the antiholomorphic part

of du with respect to J . If we linearize the ∂J at u ∈ ∂
−1

J (0) and composite it
with the projection map from TuE to the fiber Eu, we have a Fredholm operator
Du∂J : W 1,p(Σ, u∗TM) → Lp(A0,1(Σ)

⊗
u∗TM). The virtual dimension of the

component of ∂
−1

J (0) containing u is defined by the Fredholm index of Du∂J . We
denote the linearized Fredholm operator as ∂E,L.

Now, we plan to compare the Fredholm index of ∂E,L with µCW (E,L), µtop(E,L).

Proposition 5.6. We have

Ind(∂̄E,L) + (k + 1)
n

2
= µCW (E,L) + nχ(Σ)(23)

Ind(∂̄E,L) + (k + 1)n = µtop(E,L) + nχ(Σ).(24)

Proof. From [KL] Theorem 3.4.2, we have

Ind(∂̄E,L) = µ(E,L) + nχ(Σ),

where χ(Σ) is the Euler characteristic of Σ.
The case of boundary condition on transversally intersecting Lagrangian sub-

manifolds (with k + 1 marked points), can be seen from the gluing principle of
indices: At each marked point vi, consider

Z− = {z ∈ C||z| ≤ 1} ∪ {z ∈ C|Re z ≥ 0, |Im z| ≤ 1}.
and consider Z−×E|vi and Lagrangian boundary condition for Im z = −1 is Li+1|vi
and for Im z = +1 is Li|vi and Lagrangian boundary condition on the arc (left side
of the unit circle) is given by a path of positive definite direction from Li|vi to
Li+1|vi . Denote by λ the above Lagrangian bundle data. Recall from [FOOO] that
the index of ∂̄λ,Z−

of weighted Cauchy-Riemann operator is n. By gluing Z− at
each marked point, we obtain the equation (24). (We refer readers to [FOOO] for
more details on this argument).

To prove the first identity, we find a relation between µtop(E,L) and µCW (E,L)
by studying the index of a basic piece. Instead of Z−, we consider the following
domain Z to compute µCW in an easier way.

(25) Z := {(x, y) ∈ R
2|x2 + y2 ≤ 1, x ≥ 0, y ≥ 0}

We consider the following bundle pair on Z. Consider Z × Cn → Z equipped
with the standard symplectic structure, and we describe Lagrangian subbundle on
∂Z. Note that the boundary ∂Z consists of three parts, R, I,A which are real axis,
imaginary axis and arc respectively.

By identifying Evi
∼= Cn (so that ω, J becomes ω0, J0), denote by Λ (resp. Λ′)

the Lagrangian subspace of Cn corresponding to Li|vi (resp. Li+1|vi). Note that
J0Λ = Λ′.

We define the Lagrangian subbundle over R to be the constant R×Λ ⊂ R×Cn,
over I to be the constant I × Λ′ ⊂ I × Cn and over A in the counterclockwise
direction, to be a positive definite direction path in Lagrangian grassmanian from
Λ to Λ′. We assume that the path on A is constant near the axis I or R. We may
denote this Lagrangian subbundle on ∂Z by Λ.

Now, we compute µCW (Z×Cn,Λ). Now we can take an Λ-orthogonal connection
as follows. We choose a map γ : [0, 1] → U(n) whose column vectors form a unitary
frame of Λ on the arc A ⊂ ∂Z such that

γ(1) = eπi/2 · γ(0),
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and constant in U(n) near end points 0 and 1. We may take a connection ∇ on the
bundle satisfying ∇(γ · ǫj) ≡ 0 (for j = 1, · · · , n) near the arc, and ∇ ≡ d near the
real axis and imaginary axis. This defines a Λ-orthogonal connection and we define

µCW (Z × C
n,Λ) :=

√
−1

π

∫

Z

tr(F∇).

Lemma 5.7. µCW (Z ×Cn,Λ) is equal to n
2 which is the half of topological Maslov

index of loop γ ∗ (eπi/2 · γ) in L(n), where γ ∗ (eπi/2 · γ) is a smooth function from
[0,2] to U(n) defined by

γ ∗ (eπi/2 · γ)(t) :=
{
γ(t) if t ∈ [0, 1]

eπi/2 · γ(t− 1) if t ∈ [1, 2]
(26)

Proof. Consider a (trivial) complex vector bundle on D2. Consider a Lagrangian
subbundle LΓ over ∂D2 by concatenating four paths Γ := γ ∗ (eπi/2 · γ) ∗ (eπi · γ) ∗
(e3πi/2 · γ) as in (26). Note that, since e3πi/2 · γ(1) = γ(0), this path Γ is a loop in

U(n) and hence loop in L(n). Thus if∇ is an orthogonal connection,
√
−1
π

∫
D
tr(F∇)

gives the topological Maslov index of (D2 × Cn, LΓ) from the Theorem 3.1.
Now, we construct an orthogonal connection ∇ on D2 from that of Z. Note

that the ∇ constructed on Z induces a connection on D2 by pullback of the map

mk : D2 → D2, z 7→ e
kπi
2 · z for k = 0, 1, 2, 3. Then, since ∇ ≡ d near the real axis

and imaginary axis, the pullback connection on each e
kπi
2 · Z (k = 0, 1, 2, 3) can be

glued to give a connection on D. It is easy to see that this connection is indeed
orthogonal connection for the pair (D2 ×Cn, LΓ). Note that the curvature integral
on each quadrant of D2 are the same:

∫

Z

tr(F∇) =

∫

m−1

k
(Z)

tr(m∗
kF∇) =

∫

m−1

k
(Z)

tr(Fm∗

k
∇).

Hence we have√
−1

π

∫

Z

tr(F∇) =
1

4

√
−1

π

∫

D2

tr(F∇)(27)

=
1

4
(topological Maslov index of Γ in L(n))(28)

=
1

2
(topological Maslov index of γ ∗ (i · γ) in L(n))(29)

=
n

2
(30)

The last identity follows from the fact that since each γ is chosen to be positive
definite, γ ∗ (eπi/2 · γ) is a positive definite loop whose Maslov index is equal to n,
which is the dimension of Lagrangian subspace. �

Now, as before, we attach bundle pair over Z to that over Σ at each marked
point. After attaching (k+1) copies of bundle data on Z, the resulting Lagrangian
subbundle along the boundary is obtained by connecting Li and Li+1 by positive
definite direction paths and it becomes Lloop which defines µtop. Thus we have the
following identity.

(31) µtop(E,L) = µCW (E,L) +

k∑

i=0

µCW (Z × C
n,Λ) = µCW (E,L) +

(k + 1)n

2
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Combining with the equation (24), we obtain the equation (23). This finishes the
proof of the proposition. �

When k = 0, and Σ is a bi-gon, Ind(∂̄E,L) which equals µtop(E,L)− n, is called
the Maslov-Viterbo index. Thus we obtain the following corollary.

Corollary 5.8.

(32) Maslov-Viterbo index = Ind(∂̄E,L) = µCW (E, {L0, L1})

6. Orbifold Maslov Index

In this section, we extend the definition of Maslov index to the case of orbifolds.
Namely, consider an orbi-bundle over a bordered orbifold Riemann surface with
interior singularities, and a Lagrangian subbundle along the boundary. Note that
orbi-bundles in these cases are not trivial bundles, and hence topological definition
of Maslov index is not directly extended to these cases.

But Chern-Weil definition extends naturally by requiring the connection to be
invariant under local group actions near orbifold singularities. Using the Chern-
Weil definition, we show that there is a well-defined topological definition of orbifold
Maslov index.

At the end of this section, we show a relation of orbifold Maslov index and
desingularized Maslov index introduced by Poddar and the first author [CP], using
the desingularization procedure introduced by Chen and Ruan [CR].

6.1. Orbifold Chern-Weil Maslov index. We first recall the definition of bor-
dered orbifold Riemann surface and J-holomorphic maps to almost complex orb-
ifolds. We denote z = (z1, · · · , zk),m = (m1, · · · ,mk) in the following.

Definition 6.1. Let Σ be a bordered Riemann surface with complex structure j.
(Σ, z,m) is called a bordered orbifold Riemann surface with interior singularities
if z are distinct interior of Σ, and if a disc neighborhood of each zi is uniformized
by a branched covering map z 7→ zmi .

Thus the disc neighborhood Ui of zi is understood as a quotient space of D2 by
the standard rotation action of the local group Z/miZ. We denote byΣ = (Σ, z,m)
the orbifold bordered Riemann surface.

In our case, we can also consider a smooth Riemann surface Σ̃ with a branch

covering map π : Σ̃ → Σ such that the orbifold Σ is obtained as the quotient of Σ̃
by the action of deck transformation group G of π ( i.e. Σ is good orbifold).

Such Σ̃ can be obtained as follows. Consider two copies of Σ labelled as Σ1,Σ2,
and glue Σ1 with Σ2(opposite orientation) to obtain Σdouble, which becomes a

good orbifold. Hence it has a smooth Riemann surface Σ̃double with branch covering

π : Σ̃double → Σdouble. By considering only Σ̃ := π−1(Σ1), we obtain the desired

Riemann surface with boundary Σ̃.
Now, consider an orbifold vector bundle E → Σ. (see for example [CR]). On the

neighborhood Ui of zi above, orbifold vector bundle E|Ui
→ Ui has a uniformizing

chart D2 × Rn → D2 together with Z/miZ-action compatible with the orbifold

structure of Ui. This may be understood as a genuine vector bundle Ẽ → Σ̃ with

an action of deck transformation group G, which is compatible with that of Σ̃.
Also recall that a connection ∇ on orbifold vector bundle E → Σ is defined to

be invariant under local group action.
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We define a bundle pair over (Σ, ∂Σ).

Definition 6.2. We denote by a bundle pair (E,L) → (Σ, ∂Σ), an orbifold sym-
plectic vector bundle E over Σ and a Lagrangian subbundle L over ∂Σ.

We choose a compatible complex structure J of E. The bundle data in the
orbifold case arises is obtained by a good map from (Σ, z,m) to a symplectic
orbifold with Lagragnian boundary condition. The notion of a good map was
introduced by Chen and Ruan (which we refer readers to [CR]), which enables one
to pull-back bundles. Given a J-holomorphic map which is a good map, we obtain
a bundle pair by pull-back tangent bundles.

We define L-orthogonal connection of a bundle pair as follows

Definition 6.3. Let (E,L) be a bundle pair over (Σ, ∂Σ). A unitary connection
∇ on E is called orthogonal connection if the parallel transport along ∂Σ via ∇
preserves Lagrangian subbundle L → ∂Σ.

Now, we give a definition of the Maslov index µCW for (E,L) → (Σ, z,m) in
terms of curvature integral:

Definition 6.4. Let ∇ be an orthogonal connection of a bundle pair (E,L) →
(Σ, ∂Σ). We define the Maslov index of the bundle pair (E,L) as

µCW (E,L) =
i

π

∫

Σ

tr(F∇)

where F∇ ∈ Ω2(Σ, End(E)) is the curvature induced by ∇.

As in the previous cases, we have

Proposition 6.5. µCW (E,L) in Definition 6.4 is independent of the choice of L-
orthogonal connection ∇. It is also independent of the choice of a complex structure
J .

Proof. The proof is similar to that of Proposition 4.1, using Stoke’s theorem in the
orbifold setting. �

6.2. Topological definition of orbifold Maslov index. One possible approach
to define Maslov index topologically in the orbifold case is as follows.

Definition 6.6. Consider a bundle pair (E,L) → (Σ, ∂Σ). Take branch covering

π : Σ̃ → Σ by a smooth Riemann surface Σ̃ with boundary, and consider pull-back

bundles (π∗E, π∗L) which becomes a smooth bundle pair on (Σ̃, ∂Σ̃).
We define

µπ(E,L) =
1

|G|µ(π
∗E, π∗L)

where |G| is the degree of the branch covering map br.

A priori, it is not clear (at least for the authors) if µπ(E,L) is independent of
the choice of the branch covering map π. But we use Chern-Weil definition of
Maslov index to prove that such a topological index is independent of the choice of
a branch covering map, and prove that it is the same as Chern-Weil Maslov index.
This should be useful in actual computations of Maslov indices.
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Proposition 6.7. We have

µπ(E,L) = µCW (E,L).

In particular, µπ(E,L) is independent of the choice π of the branch covering map.

Proof. Let ∇ be an L-orthogonal connection on an orbifold vector bundle pair
(E,L) → (Σ, ∂Σ). Let π∗∇ be a pull-back connection on π∗E, which becomes a
L-orthogonal connection of bundle pair (π∗E, π∗L)

By theorem 3.1, we have µ(π∗E, π∗L) = µCW (π∗E, π∗L). Therefore, we have

µ(π∗E, π∗L) = µCW (π∗E, π∗L) =

∫

Σ̃

Fπ∗∇ = |G|
∫

Σ

F∇ = |G|µCW (E,L).

�

In fact, one may observe that the above argument works for branch coverings
between two smooth bundle pairs also.

Consider a branched covering φ : Σ1 → Σ2 of degree m for bordered Riemann
surfaces Σ1,Σ2. (Here we assume that the branching locus lies in the interior of
Σ2) Then, given a smooth map u : (Σ2, ∂Σ2) → (M,L) for a symplectic manifold
M and Lagrangian submanifold L, we obtain by composition another map u ◦ φ :
(Σ1, ∂Σ1) → (M,L).

Define the Maslov index of u to be µ(u∗TM, u|∗∂Σ2
TL), and similarly for u ◦ φ.

Then, the same argument as in the above proposition proves that we have

µ(u ◦ φ) = m · µ(u).

6.3. Relation to desingularization. In the rest of the paper, we recall, what is
called the desingularization of orbi-bundle from [CR], and recall the desingularized
Maslov index from [CP]. Then, we will find a relation between the desingularized
Maslov index and the Maslov index defined in this paper.

We recall the desingularization of orbi-bundle on an orbifold Riemann surface
by Chen and Ruan ([CR]). Consider Σ = (Σ, z,m) as before. Let E be a complex
orbifold bundle of rank n over Σ. Then at each singular point zi, E determines a
representation ρi : Zmi

→ Aut(Cn) so that over a disc neighborhood Di of zi, E is
uniformized by (Di × Cn,Zmi

, π) where the action of Zmi
on Di × Cn is given by

(33) e2πi/mi · (z, w) =
(
e2πi/miz, ρi(e

2πi/mi)w
)

for any w ∈ C
n. Each representation ρi is uniquely determined by a n-tuple of

integers (mi,1, · · · ,mi,n) with 0 ≤ mi,j < mi, as it is given by matrix

(34) ρi(e
2πi/mi) = diag(e2πimi,1/mi , · · · , e2πimi,n/mi

)
.

Over the punctured disc Di \ {0} at zi, E inherits a specific trivialization from
(Di×Cn,Zmi

, π) as follows: We define a Zmi
-equivariant map Ψi : D \{0}×Cn →

D \ {0} × Cn by

(35) (z, w1, w2, · · · , wn) → (zmi , z−mi,1w1, · · · , z−mi,nwn),

where Zmi
acts trivially on the secondD\{0}×Cn. Hence Ψi induces a trivialization

Ψi : EDi\{0} → Di \ {0}×Cn. We extend the smooth complex vector bundle EΣ\z
over Σ \ z to a smooth complex vector bundle over Σ by using these trivializations
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Ψi for each i. The resulting complex vector bundle is called the desingularization
of E and denoted by |E|. The essential point as observed in [CR] is that the sheaf
of holomorphic sections of the desingularized orbi-bundle and the orbibundle itself
are the same.

We recall Chen-Ruan’s index formula:

Proposition 6.8. The Chern number of orbi-bundle and that of its de-singularization
satisfies (Proposition 4.2.1 [CR])

c1(E)([Σ]) = c1(|E|)([Σ]) +
k∑

i=1

n∑

j=1

mi,j

mi
.

Now, as the local group action on the fibers of the desingularized orbi-bundle |E|
is trivial, one can think of it as a smooth vector bundle on Σ which is analytically
the same as E (In other words, there exist a canonically associated vector bundle
|E| over the smooth Riemann surface Σ). Hence, for the bundle |E|, the ordinary
index theory can be applied, which provides the required index theoretic tools for
the orbibundle E.

Now, we recall a definition of the desingularized Maslov index, which determines
the virtual dimension of the moduli space of J-holomorphic orbi-discs from [CP]
Let X be a symplectic orbifold and N be a Lagrangian submanifold (which do
not contain any orbifold singularity). Let Σ be an orbi-disc with interior orbifold
singularity (z1, · · · , zk). Let u : (Σ, ∂Σ) → (X,N) be an orbifold J-holomorphic
disc with Lagrangian boundary condition. Then, E := u∗TX is a complex orbi-
bundle over Σ, with Lagrangian subbundle L := u|∗∂ΣTN at ∂Σ.

Definition 6.9. Let |E| be the desingularized bundle over Σ( or Σ), which still
have the Lagrangian subbundle at the boundary from L. The Maslov index of the
bundle pair (|E|, L) over (Σ, ∂Σ) is called the desingularized Maslov index of (E,L),
and denoted as µde(E,L).

We find a relation of the desingularized Maslov index of [CP] and the Maslov
index in this paper.

Proposition 6.10. We have

µCW (E,L) = µde(E,L) + 2

k∑

i=1

n∑

j=1

mi,j

mi
.

Proof. We first consider the double EC of the bundle pair (E,L) for bordered
Riemann surface with interior orbifold singularities. Then we have from Chen-
Ruan’s formula that

c1(EC)([ΣC]) = deg(EC) = c1(|EC|)([ΣC]) + 2

k∑

i=1

n∑

j=1

mi,j

mi
.

Note that from [KL], we have µde(E,L) = c1(|E|C)([ΣC]), and as |EC| = |E|C
holds, we have µde(E,L) = c1(|EC|)([ΣC]).

Note that given an orthogonal connection ∇ on (E,L) over (Σ, z,m), we can
find a connection ∇C on EC as in the section 3.2. From the Chern-Weil definition
of Maslov index µCW (E,L) over (Σ, z,m), we find that

µCW (E,L) =
i

π

∫ orb

Σ

tr(F∇) =
i

2π

∫ orb

ΣC

tr(F∇C
) = c1(EC)([ΣC]).
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Hence, we obtain the proposition. �
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