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Abstract

Kontsevich and Soibelman defined Donaldson-Thomas invariants of a 3d Calabi-Yau cat-
egory C equipped with a stability condition [KS1]. Any cluster variety gives rise to a family
of such categories. Their DT invariants are encapsulated in a single formal automorphism
of the cluster variety, called the DT-transformation.

Let S be an oriented surface with punctures, and a finite number of special points on the
boundary considered modulo isotopy. It give rise to a moduli space XPGLm,S, closely related
to the moduli space of PGLm-local systems on S, which carries a canonical cluster Poisson
variety structure [FG1]. For each puncture of S, there is a birational Weyl group action on
the space XPGLm,S. We prove that it is given by cluster Poisson transformations. We prove
a similar result for the involution ˚ of XPGLm,S provided by dualising a local system on S.

Let µ be the total number of punctures and special points, and gpSq the genus of S. We
assume that µ ą 0. We say that S is admissible if gpSq ` µ ě 3 and µ ą 1 if S has only
punctures, and also when S is an annulus with a special point on each boundary circle.

Using a combinatorial characterization of a class of DT transformations due to B. Keller
[K13], we calculate the DT-transformation of the space XPGLm,S for any admissible S.

We show that the Weyl group and the involution ˚ act by cluster transformations of the
dual moduli space ASLm,S, and calculate the DT-transformation of the space ASLm,S.

If S admissible, combining the results above with the results of Gross, Hacking, Keel
and Kontsevich [GHKK], we get a canonical basis in the space of regular functions on the
cluster variety XPGLm,S, and in the Fomin-Zelevinsky upper cluster algebra with principal
coefficients [FZIV] related to the pair pSLm, Sq, as predicted by Duality Conjectures [FG2].

1 Introduction

1.1 Summary

A decorated surface S is an oriented topological surface with n punctures inside and a finite
number of special points on the boundary, considered modulo isotopy. We assume that each
boundary component has at least one special point, see Figure 1. We define marked points as
either punctures or special points. Denote by µ the number of marked points. We assume that
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µ ą 0. Filling the punctures by points, and the holes by discs, we get a compact closed surface.
The genus gpSq of S is its genus. Denote by ΓS the mapping class group of S.

Figure 1: A decorated surface with three special points on the boundary and two punctures.

Let G be a split semi-simple group over Q. A pair pG,Sq gives rise to a Poisson moduli space
XG,S, closely related to the moduli spaces of G-local systems on S. If the center of G is trivial,
the space XG,S has a natural cluster Poisson structure, defined for G “ PGLm in [FG1].

There are three groups acting on the moduli space XG,S:
1. The mapping class group ΓS acts by automorphisms of the moduli space XG,S.
2. The group OutpGq of outer automorphisms of G acts by automorphisms of XG,S.
3. The Weyl group W n acts by birational automorphisms of the space XG,S.
The actions of these three groups commute by the very definition.
When do these groups act by cluster transformations of the space XPGLm,S? It was proved

in [FG1] that the action of the group ΓS is cluster if S satisfies the following condition:

i) One has gpSq ` µ ě 3, or S is an annulus with two special points.

We prove that the action of the group OutpPGLmq is cluster under the same assumptions,
and that the action of the group W n is cluster if, in addition to i), S has the following property:1

ii) If S has no special points, then it has more than one puncture.

Definition 1.1. A decorated surface S is admissible, if it satisfies conditions iq and iiq.

We introduce a birational action of the group W n on the dual moduli space ASLm,S.

Theorem 1.2. If S is admissible, and not a sphere with three punctures if G is of type A1, then
the action of the group ΓS ˆ W n ˆ OutpGq on the spaces XPGLm,S and ASLm,S is cluster.

If S has just one puncture, the W -action is not cluster at least if G “ PGL2.

We use Theorem 1.2 in a crucial way to study the Donaldson-Thomas transformations.
Kontsevich and Soibelman [KS1] defined Donaldson-Thomas invariants of a 3d Calabi-Yau

category equipped with a stability condition. Any cluster variety gives rise to a family of such
categories. Their DT invariants are encapsulated in single formal automorphism of the cluster
variety, called the DT-transformation.

Let w0 P W n be the longest element, and r the clockwise rotation of the special points on
each boundary component of S by one. The group OutpGq contains a canonical involution ˚.

Theorem 1.3. Let S be an admissible decorated surface. Then the DT-transformation DTPGLm,S

of the space XPGLm,S is a cluster transformation. It is given by

DTPGLm,S “ ˚ ˝ w0 ˝ r. (1)

The cluster transformation (1) is a cluster DT-transformation in the sense of Definition 1.15.

1There is one more minor exception: G “ PGL2 and S is a sphere with three punctures. However in this case
the longest element p1, 1, 1q P pZ{2Zq3 still acts by a cluster transformation.
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This implies that the DT-transformation coincides with Gaiotto-Moore-Neitzke spectral gen-
erator, which encodes the count of BPS states in 4d N “ 2 SUYM theories [GMN1]-[GMN5].
Thus, at least in certain cases, the DT-invariants coincide with the GMN count of BPS states.
We prove Theorem 1.3 in Section 10.

When S is a triangle, we identify the tropicalized involution ˚ on the tropicalised space
ASLm,S with the Schützenberger involution.

An application to Duality Conjectures. For any admissible S, Theorems 1.2 and 1.3,
combined with Theorem 0.10 of Gross, Hacking, Keel and Kontsevich [GHKK], deliver a canon-
ical ΓS ˆ W n ˆ OutpGq-equivariant linear basis in the space of regular functions on the cluster
Poisson variety XPGLm,S, as predicted by Duality Conjectures [FG2].

Precisely, the cluster Poisson variety structure on the moduli space XPGLm,S gives rise to a
ΓS-equivariant algebra OclpXPGLm,Sq of regular functions on the corresponding cluster variety.2

On the other hand, the cluster A-variety structure on the moduli space ASLm,S [FG1] gives rise
a ΓS-equivariant set ASLm,SpZtq of the integral tropical points.

A cluster A-variety A has a deformation Aprin over a torus. The algebra of regular function
OclpAprinq is the Fomin-Zelevinsky upper cluster algebra with principal coefficients [FZIV]. We
denote by OclpAprinpSLm,Sqq the one related to the pair pSLm,Sq.

Theorem 1.4. Let S be an arbitrary admissible decorated surface. Then:
i) There is a canonical ΓS ˆW n ˆOutpGq-equivariant linear basis in the space OclpXPGLm,Sq

of regular functions on the cluster variety XPGLm,S, parametrized by the set ASLm,SpZtq.
ii) There is a canonical ΓSˆW nˆOutpGq-equivariant linear basis in the space OclpAprinpSLm,Sqq.

A canonical basis in OclpXPGLm,Sq parametrized by the set ASLm,SpZtq just means that we
have a canonical pairing

I : ASLm,SpZtq ˆ XPGLm,S ÝÑ A1.

It assigns to a tropical point l P ASLm,SpZtq a function on XPGLm,S, given by the basis vector
parametrized by l. The equivarianace means that the pairing is ΓS ˆ W n ˆ OutpGq-invariant.

Theorem 1.4 follows immediately from Theorems 1.2, 1.3 and 1.17.
A canonical basis in OclpXPGL2,Sq was defined by a different method in [FG1, Section 12].

1.2 Definitions

The Poisson moduli space XG,S. The space XG,S parametrises G-local systems on S with
an additional data: a reduction to a Borel subgroup near every marked point, called a framing.
As the name suggests, it comes with additional structures: a ΓS-equivariant Poisson structure.

A birational automorphism CG,S of the moduli space XG,S. A decorated surface has
punctures and boundary components. We assume that each boundary component has at least
one special point.

We introduce three types of (birational) automorphisms of the spaces XG,S.

2We abuse notation denoting a moduli space and the corresponding cluster variety the same way, although
these are different geometric objects. The notation OclpYq emphasises that we deal with the algebra of functions
on a cluster variety Y.
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1. Punctures. For each puncture on S there is a birational action of the Weyl group W of
G on the space XG,S, defined in [FG1]. Namely, given a generic regular element g P G, the
set of Borel subgroups containing g is a principal homogeneous set of the Weyl group. So,
given a puncture p and a generic G-local system L on S, the Weyl group acts by altering
the reduction of L to a Borel subgroup near p, leaving the G-local system intact.

For example, for a generic SLm-local system on S the monodromy around p has m eigen-
lines. A reduction to Borel subgroup near p just means that we order them. The symmetric
group Sm acts on the orderings.

The actions at different punctures commute. So the group W n acts birationally on XG,S.

2. Boundary components. For each boundary component h on S, consider an isomorphism
rS,h of the moduli space XG,S provided by the rotation by one of the special points on h in
the direction prescribed by the orientation of S. Namely, we rotate the surface near the
boundary component, moving each special point to the next one, transporting framings.

The isomorphisms rS,h at different boundary components commute. We take their product
over all boundary components:

rS :“
ź

h

rS,h.

Figure 2: The rotation operator on a disc with four special points.

3. The involution ˚. We define an involution ˚ acting on the space XG,S. If G “ SLm, it
amounts to dualising a local system on S, as well as the framings at the marked points.

For any group G it is provided by an outer automorphism of the group G defined as follows.
Let αi pi P Iq be simple positive roots. Let i Ñ i˚ be a Dynkin diagram automorphism
such that αi˚ “ ´w0pαiq. Choose a pinning of G. It provides us with a Cartan subgroup
H P G and one parametric subgroups xipaq and yipaq, i P I. These subgroups generate G.
It also provides a lift of the Weyl group W to G, w ÞÝÑ w, lifting the generator of each

standard SL2 to the element

ˆ
0 1

´1 0

˙
. Then there is an involution ˚ : G ÝÑ G:

˚ : G ÝÑ G, xipaq ÞÝÑ xi˚paq, yipaq ÞÝÑ yi˚paq, h ÞÝÑ h˚ “ w´1
0 h´1w0, @h P H.

(2)
For example, if G “ GLm, then ˚pgq “ w0 ¨ pgtq´1 ¨ w´1

0 , where gt is the transpose of g.
The involution ˚ preserves the Borel subgroup B generated by H and txipaquiPI . So it
induces an involution of the flag variety B

„
“ G{B. Hence it acts on the moduli space XG,S.

Abusing notation, all of them are denoted by ˚.

Definition 1.5. Let w0 “ pw0, ..., w0q be the longest element of the Weyl group W n. We set

CG,S :“ rS ˝ ˚ ˝ w0. (3)
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Theorem 1.6 below asserts that the transformation CPGLm,S is a cluster transformation when
S is an admissible decorated surface. We observe that this is not the case when S has a single
puncture. Theorem 1.6 is our main tool to study DT-invariants. To state it properly, let us
review the background.

1.3 Cluster nature of the Weyl group action and of the ˚-involution

Quivers and quantum cluster varieties. In this paper a quiver is an oriented graph without
loops or 2-cycles, whose vertices are labelled by a set I “ t1, . . . , Nu. See Figure 3.

Figure 3: Graph Q1 has a 2-cycle pα, βq and a loop γ. It is not a quiver. Graph Q2 is a quiver.

A quiver determines a triple
pΛ, tevu, p˚, ˚qq,

where Λ is a lattice generated by the vertices tvu of the quiver, tevu is the basis parametrised
by the vertices, and p˚, ˚q is a skewsymmetric integral bilinear form on Λ, uniquely defined by

pev , ewq :“ #tarrows from v to wu ´ #tarrows from w to vu.

Vice verse, such a triple pΛ, tevu, p˚, ˚qq determines a quiver, whose vertices are the basis vectors
ev, and vertices v,w are related by an arrow with multiplicity pev , ewq if and only if pev , ewq ą 0.

Any lattice Λ with a bilinear skewsymmetric Z-valued form p˚, ˚q gives rise to a quantum
torus algebra TΛ. It is an algebra over the ring of Laurent polynomials Zrq, q´1s in q given by
a free Zrq, q´1s-module with a basis Xv, v P Λ, with the product relation

Xv1Xv2 “ qpv1,v2qXv1`v2 .

Therefore a quiver q provides us with a quantum torus algebra Tq. We think about it
geometrically, as of the algebra of functions on a non-commutative space - a quantum torus Tq.

Any basis vector ew provides a mutated in the direction ew quiver q1. The quiver q1 is defined
by changing the basis tevu only. The lattice and the form stay intact. The new basis te1

vu is
defined via halfreflection of the basis tevu along the hyperplane pew, ¨q “ 0:

e1
v :“

"
ev ` pev, ewq`ew if v ­“ w

´ew if v “ w.
(4)

Here α` :“ α if α ě 0 and α` :“ 0 otherwise. Quiver mutations in a coordinate form were
introduced by Seiberg [Se95], and independently by Fomin-Zelevinsky [FZI].

6



A quiver q gives rise to a dual pair pA,X q of cluster varieties [FG2]. Their cluster coordinate
systems are parametrised by the quivers obtained by mutations of the quiver q. The algebra of
regular functions on the cluster K2-variety A is Fomin-Zelevinsky’s upper cluster algebra [FZI].

The cluster Poisson variety X has a deformation, called quantum cluster variety, which
depends on a parameter q. The quantum cluster coordinate systems of the quantum cluster
variety are related by the quantum cluster transformations.

The crucial part in their definition [FG2] plays the quantum dilogarithm formal power series:

Ψqpxq :“
1

p1 ` qxqp1 ` q3xqp1 ` q5xqp1 ` q7xq . . .
. (5)

It is the unique formal power series starting from 1 and satisfying a difference relation

Ψqpq2xq “ p1 ` qxqΨqpxq. (6)

It has the power series expansion, easily checked by using the difference relation:

Ψqpxq “
8ÿ

n“0

qn
2

xn

|GLnpFq2q|
. (7)

The logarithm of the power series Ψqpxq is the q-dilogarithm power series:

log Ψqpxq “
ÿ

ně1

p´1qn`1

npqn ´ q´nq
xn. (8)

Indeed, it suffices to show that the difference relation (6) holds for the right hand side:

ÿ

ně1

p´1qn`1pq2xqn

npqn ´ q´nq
´

ÿ

ně1

p´1qn`1xn

npqn ´ q´nq
“

ÿ

ně1

p´1qn`1pq2n ´ 1qxn

npqn ´ q´nq
“

ÿ

ně1

´p´qxqn

n
“ logp1 ` qxq.

In particular, in the quasiclassical limit we recover the classical dilogarithm power series:

lim
qÑ1

pq ´ q´1qlog Ψqpxq “ ´
ÿ

ně1

p´xqn

n2
“ ´Li2p´xq. (9)

The quantum cluster transformations are automorphisms of the non-commutative fraction
field of the quantum torus algebra TΛ, given by the conjugation by quantum dilogarithms.
Inspite of the fact that the quantum dilogarithms are power series, the conjugation is a rational
transformation due to the difference relation (6). The quasiclassical limit when q Ñ 1 of the
quantum cluster variety is the cluster Poisson variety X . We carefully review the definition of
quantum cluster varieties in Section 2.

There is a natural cluster Poisson structure on the space XPGLm,S, introduced in [FG1]. The
group ΓS acts by cluster transformations of XPGLm,S, provided that

(i) gpSq ` µ ě 3, or that S is an annulus with 2 special points.

In particular, the rotation rS,h is a cluster transformation. See Section 10.1.
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Theorem 1.6 (Theorems 9.1, 8.2). 1) Assuming piq, the involution ˚ acts by a cluster trans-
formation of XPGLm,S.

2) Let us assume piq, exclude surfaces with n “ 1 puncture and no special points, and if G is
of type A1, exclude a sphere with 3 punctures. Then the group W n acts by cluster transformations
of the space XPGLm,S.

Let us recall the moduli space AG,S. The group ΓS and the involution ˚ act naturally on
the space AG,S. In Section 4 we introduce an action of the Weyl group W n by birational
automorphisms of the space AG,S. The space ASLm,S has a natural cluster structure of different
kind, called a cluster K2-structure, or cluster A-variety structure; the group ΓS acts by cluster
transformations of the space ASLm,S under the same assumptions as for the space XPGLm,S [FG1].

Theorem 1.7. The involution ˚ and the Weyl group W n act on the space ASLm,S by cluster
transformations under the same assumptions as in the parts 1) and 2) of Theorem 1.6.

Our main result determines the DT-transformation of the moduli space XPGLm,S when S is
an admissible decorated surface. Let us formulate the question in the next subsection.

1.4 Donaldson-Thomas transformations

Kontsevich and Soibelman [KS1], generalizing the original Donaldson-Thomas invariants [DT],
defined Donaldson-Thomas invariants of a 3d Calabi-Yau category C equipped with a stability
condition. An important class of 3d CY categories is provided by quivers with potentials. First
we briefly recall the definitions and results following [KS1, KS2].

A quiver q with a generic potential W gives rise to a 3d CY category Cpq,W q, defined as
the derived category of certain representations of the Ginzburg DG algebra [Gin] of the quiver
with potential pq,W q. See [K12, Sect.7], [N10] for details.

The category Cpq,W q has a collection of spherical generators tSvu, parametrized by the
vertices of the quiver q, called a cluster collection. Their classes rSvs form a basis of the
Grothendieck group K0pCpq,W qq. See [KS1, Sect.8.1].

For any 3d CY category C, the lattice K0pCq has a skew-symmetric integral bilinear form:

prAs, rBsqEuler :“ ´
3ÿ

i“0

p´1qirk ExtipA,Bq, rAs, rBs P K0pCq.

The original quiver q is identified with the quiver assigned to the triple
´
K0pCpq,W qq, rSvs, p˚, ˚qEuler

¯
.

There is an open domain Hq in the space of stability conditions on the category Cpq,W q,
described as follows. Let us consider a “punctured upper halfplane”

H “ tz P C | z “ reiϕ, 0 ă ϕ ď π, r ą 0u.

The domain Hq is identified with the product of H’s over the set of vertices of the quiver q:

Hq :“
ź

v

H “ tzv P Hu.
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The central charge of a stability condition s P Hq is given by a group homomorphism

Z : K0pCpq,W qq ÝÑ C, rSvs ÞÝÑ zv.

Define the positive cone of the lattice K0pCpq,W qq generated by the basis

Λ`
q :“ ‘vZě0rSvs.

A central charge Z is called generic if there are no two Q-independent elements of Λ`
q which are

mapped by Z to the same ray.

Quantum DT-series. Consider a unital algebra over the field Qppqqq of Laurent power series
in q, given by the q-commutative formal power series in Xv, where v is in the positive cone:

xAq :“ QppqqqrrXv , v P Λ`
q | XvXw “ qpv,wqXv`wss.

Kontsevich-Soibelman [KS1, Sect.8.3] assigned to the 3d CY category Cpq,W q is a formal
power series, called the quantum DT-series of the category:

Eq “ 1 ` higher order terms P xAq. (10)

For a generic potential W , the series Eq depends on the quiver q only.
The following useful Lemma 1.8, due to [KS, Th.6] see also [MMNS, Lemma 1.12], expresses

the series Eq as a product, possibly infinite, of the “q-powers” of the quantum dilogarithm power
series ΨqpXq. Namely, given a formal Laurent series Ωpqq P Qppqqq, let us set

ΨqpXq˝Ωpqq “ exp
´ ÿ

ně1

p´1qn`1Ωpqnq

npqn ´ q´nq
Xn

¯
. (11)

If Ωpqq is just an integer Ω, then (11) is the usual power ΨqpXqΩ, as is clear from the formula
(8) relating the logarithm of the power series ΨqpXq to the q-dilogarithm power series.

Lemma 1.8. Given a stability condition s with a generic central charge Z, there exists a unique
collection of rational functions Ωs

γpqq P Qpqq, parametrized by the positive cone vectors γ P
Λ`
q ´ t0u with Zpγq P H, such that the quantum DT series Eq are factorized as

Eq “
ñź

lĂH

Ψl, Ψl :“
ź

γ

ΨqpXγq˝Ωs
γ pqq. (12)

Here the first product is over all rays l Ă H in the clockwise order;
The second product is over positive lattice vectors γ P Λ`

q ´ t0u such that Zpγq P l.

In particular, if Ωs
γpqq are all integers, then Eq is a product of quantum dilogarithm series.

The rational functions Ωs
γpqq are called the quantum (or refined) DT-invariants assigned to

the stability condition s, and the element γ [KS2, Def.6.4]. So all the quantum DT-invariants
are packaged into the single quantum DT-series Eq. They are uniquely determined by the Eq.

Evaluating at q “ ´1, we obtain the numerical DT-invariant Ωs
γp´1q. Roughly speaking, the

numerical DT-invariant is the weighted Euler characteristic of the moduli space of all semistable
objects for the stability condition s with a given class γ in K0 (cf. [KS1]).
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The integrality conjecture [KS1, Sect.7.6, Conj.6] asserts that the numerical DT-invariants
are integers for all generic s. Konstevich-Soibelman [KS2, Sect.6.1] proved that if Eq is quantum
admissible (in the sense of [loc.cit. Definition 6.3]), then Ωs

γpqq is a Laurent polynomial with
integral coefficients. The integrality conjecture follows directly then.

Conversely, if for a given generic s we have Ωs
γpqq P Zrq, q´1s for all γ P Λ`

q , then Eq is
quantum admissible. Therefore Ωs

γpqq P Zrq, q´1s for all generic s.

DT-transformations. Define the algebra of formal power series along the negative cone

|Aq :“ QppqqqrrX´v , v P Λ`
q | X´vX´w “ qpv,wqX´v´wss.

The conjugation AdEq by the Eq is a formal power series transformation of xAq. Being composed
with the reflection map Σ acting by

ΣpXvq “ X´v @v P K0pCpq,W qq,

we get a formal power series transformation, called DT-transformation:

DTq :“ AdEq ˝ Σ : |Aq ÝÑ xAq.

Note that DTq is an invariant of the quiver q. It is an “infinite” cluster transformation.
The conjugation AdEq by the Eq is not necessarily rational. If it is rational, then the DT-

transformation of the quantum torus Tq is defined as

DTq :“ AdEq ˝ Σ : Tq ÝÑ Tq, (13)

where Tq :“ FracpTqq is the non-commutative field of fractions of Tq.

DT-invariants from DT-transformations. Consider the symplectic double pΛP , x˚, ˚yP q of
the original lattice Λ with the form p˚, ˚q, given by

ΛP :“ Λ ‘ HompΛ,Zq, xpv1, f1q, pv2, f2qyP :“ pv1, v2q ´ pf1, v2q ´ pf2, v1q.

Since Λ Ă ΛP , one can defined the DT-transformation DTP,q of the quantum torus algebra
related to the pair pΛP , x˚, ˚yP q by the same formula (13):

DTP,q :“ AdEq ˝ ΣP , ΣP : Xv ÞÝÑ X´v @v P ΛP . (14)

Remarkably, the DT-series Eq and therefore all DT-invariants Ωs
γ are recovered from the DT-

transformation (14). They are recovered from the DT-transformation (13) if the form p˚, ˚q is
non-degenerate.

Remark. Quantum cluster transformations were defined in [FG2] by the conjugation by the
quantum dilogarithm power series ΨqpXq. The crucial fact that they are rational transforma-
tions follows from difference relation (6), characterizing the power series ΨqpXq.

On the other hand, the quantum dilogarithm ΨqpXq appeared in [KS] story due to formula
(8), as well as thanks to its power series expansion (7): the coefficient in xn in (7) reflects
counting the number of points of the stack X‘n{AutpX‘nq over Fq2 for a simple object X.
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The quantum dilogarithm power series (5) are convergent if |q| ă 1, but hopelessly divergent
if |q| “ 1. The most remarkable feature of the quantum dilogarithm is that its “modular double”

Φ~pxq :“
Ψqpexq

Ψq_pex{~q
, q “ exppiπ~q, q_ “ exppiπ{~q (15)

has wonderful analytic properties at all q, e.g. |q| “ 1. It has a beautiful integral presentation

Φ~pxq “ exp
´

´
1

4

ż

Ω

eipxdp

shpπpqshpπ~pqp

¯
.

The quantum dilogarithm function Φ~pxq is crucial in the quantization of cluster Poisson vari-
eties, given by a ˚-representation in a Hilbert space of the q-deformed algebra of functions [FG2,
version 1], [FG4]. Yet so far the function Φ~pxq has no role in the DT theory.

Mutations of quivers with potentials. Mutations of quivers with potentials were studied
by Derksen-Weyman-Zelevinsky [DWZ]. The mutation µk at the direction k gives rise to a pair
pq1,W 1q “ µkpq,W q. The domains Hq for the quivers with potentials obtained by mutations of
the original quiver q form a connected open domain in the space of all stability conditions on the
category Cpq,W q. Moving in this domain, and thus mutating a quiver, we get a different DT-
transformation of the same quantum torus. The Kontsevich-Soibelman wall crossing formula
tells how quantum DT-series changes under quiver mutations, see [KS1, Sect.8.4, Property 3].

Indeed, let q “ pΛ, teiu, p˚, ˚qq. The mutated quiver µkpqq is isomorphic to

q1 :“ pΛ, te1
iu, p˚, ˚qq, where e1

i “

"
´ek if i “ k

ei ` rpei, ekqs`ek otherwise.

Note that it only changes the basis. The lattice and the form stay intact. Therefore one can
identify the quantum tori

Tq
„
“ TΛ

„
“ Tq1 . (16)

Consider the intersection

xAq X yAq1 “ QppqqqrrXv , v P Λ`
q X Λ`

q1 | XvXw “ qpv,wqXv`wss.

Theorem 1.9 ([KS1, p.138]). Under the identification (16), we have

ΨqpXekq´1Eq “ Eq1ΨqpXe1
k
q´1 P xAq X xA1

q. (17)

Compatibility with cluster mutations. The quantum cluster mutation

Φpµkq “ AdΨqpXek
q ˝ i : Tq1 ÝÑ Tq (18)

is the composition of the isomorphism i : Tq1 Ñ Tq under (16) and the conjugation AdΨqpXek
q.

The following result is a direct consequence of Theorem 1.9. See also [KS1, p.143].

Theorem 1.10. If AdEq is rational, then the following diagram is commutative:

Tq1
Φpµkq //

DTq1

��

Tq

DTq

��
Tq1

Φpµkq // Tq

11



Proof. By Theorem 1.9, we have AdΨqpXek
q´1 ˝ AdEq ˝ i “ i ˝ AdEq1 ˝ AdΨqpXe1

k
q´1 . Therefore

AdEq ˝ i ˝ AdΨqpXe1
k

q “ AdΨqpXek
q ˝ i ˝ AdEq1 . (19)

Note that ipXe1
k
q “ X´ek . Therefore

i ˝ AdΨqpXe1
k

q ˝ Σ “ AdΨqpX´ek
q ˝ i ˝ Σ “ Σ ˝ AdΨqpXek

q ˝ i. (20)

Therefore

Φpµkq ˝ DTq1 “ AdΨqpXek
q ˝ i ˝ AdEq1 ˝ Σ

(19)
“ AdEq ˝ i ˝ AdΨqpXe1

k
q ˝ Σ

(20)
“ AdEq ˝ Σ ˝ AdΨqpXek

q ˝ i “ DTq ˝ Φpµkq. (21)

There is a similar interpretation of the DT-transformations DTP,q, see (14), via the quantum
cluster variety Aprin,q, discussed in the end of Section 2.

Theorem 1.10 implies that the multitude of DT-transformations assigned to quivers obtained
by mutations of an initial quiver q are nothing but a single formal, i.e. given by formal power
series, automorphism DT of the quantum cluster variety, written in different cluster coordinate
systems assigned to these quivers.

So a natural question arises:

How to determine the DT-transformation of a given (quantum) cluster variety? (22)

1.5 DT-transformations for moduli spaces of local systems

Cluster DT-transformation. Keller [K11, K12, K13] using the work of Nagao [N10], pro-
posed a simpler and more accessible, but much more restrictive combinatorial version of DT-
transformation. It is a cluster transformation, which may not be defined, but when it does, it
coincides with the Kontsevich-Soibelman DT-transformation [K12, Th 6.5]. We call it cluster
DT-transformation. It acts on any type of cluster variety, e.g. on the quantum cluster variety.
We postpone a definition of cluster DT-transformations till Section 1.6.

If DTq is a cluster DT-transformation, then Theorem 1.10 follows directly from Theorem
3.6 of the present paper. Furthermore, its quantum DT-series Eq can be presented as a finite
product of quantum dilogarithm power series. As a Corollary of [KS2, Prop 6.2], we have

Proposition 1.11. If DTq is a cluster DT-transformation, then Eq is quantum admissible.
Therefore for arbitary generic stability condition s, the quantum DT-invariants Ωs

γpqq P Zrq, q´1s.

Conjecturally, Ωs
γpqq has non-negative coefficients in this case.

Even if a DT-transformation of a cluster variety is rational, it may not be a cluster trans-
formation. In Section 1.6, elaborated in Section 3.4, we give a conjectural elementary charac-
terization of rational DT-transformations of cluster varieties. It does not refer to Kontsevich-
Soibelman theory.
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Main result. Moduli spaces XG,S are important examples of cluster Poisson varieties. So there
is a DT-transformation acting as a single (formal, or if we are lucky, rational) transformation of
a moduli space XG,S, encapsulating the Donaldson-Thomas invariants of the corresponding 3d
CY categories. This leads to the following questions:

What are the DT-transformations of the moduli spaces XG,S? Are they rational? (23)

We use Theorem 1.6 and Keller’s characterization of cluster DT-transformations to determine
the DT-transformation DTG,S of the space XG,S for G “ PGLm.

Theorem 1.12. Let G “ PGLm. If S is admissible in the sense of Definition 1.1, then the
DT-transformation DTG,S is a cluster transformation. It is given by the following formula:

DTG,S “ CG,S. (24)

The cluster transformation (24) is a cluster DT-transformation in the sense of Definition 1.15.

Conjecture 1.13. Formula (24) is valid for any pair pG,Sq.

Example. The W -action is not cluster if S has a single puncture, no holes, and G “ PGL2.
The cluster DT transformation in this case is not defined. Yet when G “ PGL2 and S is a
punctured torus the formula DTG,S “ CG,S “ w0 was proved by Kontsevich.

For surfaces with n ą 2 punctures a proof for G “ PGL2 follows from the results of Bucher
and Mills [Bu], [BuM] who found green sequences of cluster transformations in these cases.

For G “ PGL2 we give two transparent geometric proofs of formula (24):
i) The first proof, presented in Section 5.1, is based on the interpretation of integral trop-

ical points of the moduli space XG,S as integral laminations [FG1, Section 12]. It requires a
calculation of the tropicalization of the w0-action at the puncture given in [FG1, Lemma 12.3].

ii) The second proof, presented in Section 5.2, does not require any calculations at all. It
uses an interpretation of integral tropical points as explicitly constructed divisors at infinity of
the moduli space XG,S [FG3]. We worked out the details when S has no punctures.

None of them require a decomposition of the map CPGL2,S into a composition of mutations.
However we do not know how to generalise these proofs to the higher rank groups. To find such
generalizations is a very important problem.

For G “ PGLm we give another, high precision proof, based on an explicit decomposition
of the cluster transformation CG,S into a composition of mutations. This decomposition looks
pretty complicated, but it reveals a lot of valuable information about the DT-invariants Ωs

γ .

1.6 DT-transformations of cluster varieties and Duality Conjectures

The definition of DT-transformations is complicated. It uses generic potentials, but in the end
the DT-transformation does not depend on it. So one wants an intrinsic definition of DT-
transformations of cluster varieties, given just in terms of cluster varieties.

We state a conjecture relating DT-transformations of cluster varieties to Duality Conjectures.
It implies an alternative conjectural definition of the DT-transformations of cluster varieties,
which characterizes them uniquely, and makes transparent their crucial properties.
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Duality Conjectures [FG2]. Recall that a quiver gives rise to a dual pair pA,X q of cluster
varieties of the same dimension, as well as a Langlands dual pair of cluster varieties pA_,X_q.
The cluster modular group Γ acts by their automorphisms.

The following objects, equipped with a Γ-action, are assigned to any cluster variety Y:

• The algebra OpYq (respectively pOpYq) of regular (respectively formal) functions on Y.

• A set YpZtq of the integral tropical points of Y.

The set YpZtq is isomorphic, in many different ways, to Zn, where n “ dimY.
As was shown in [GHK], the algebra OpX q could have smaller dimension then X .
Duality Conjectures [FG2, Section 4] predict a deep multifacet duality between cluster vari-

eties A and X_. In particular, one should have canonical Γ-equivariant pairings

IA : ApZtq ˆ X_ ÝÑ A1, IX : A ˆ X_pZtq ÝÑ A1. (25)

This means that each l P ApZtq, and each m P X_pZtq, give rise to functions

IAplq :“ IApl, ˚q on X_, and IX pmq :“ IX pm, ˚q on A_.

In particular, in the formal setting we should have a pair of canonical Γ-equivariant maps

IA : ApZtq ÝÑ pOpX_q, IX : X pZtq ÝÑ pOpA_q. (26)

Each map should parametrise a linear basis in its image on the space of function on the target.

The involutions iA and iX [FG4, Lemma 3.5]. Denote by pA˝,X ˝q the dual pair of cluster
varieties assigned to the opposite quiver, obtained by changing the sign of the form. Then there
are isomorphisms of cluster varieties

iA : A ÝÑ A˝, iX : X ÝÑ X ˝ (27)

which in any cluster coordinate systems tAiu on A and tXiu on X act as follows:

i˚A : A˝
i ÞÝÑ Ai, i˚X : X˝

i ÞÝÑ X´1
i . (28)

DT-transformations and Duality Conjectures. Our point is that the dualityA ÐÑ X_ is
not compatible with the isomorphisms iA and iX_ ! Furthermore, Conjecture 1.14 suggests that
the DT-transformations DTX and DTA of the cluster varieties X and A respectively measure
the failure of the isomorphisms iA and iX to be compatible with the duality. Namely, set

DA :“ iA ˝ DTA, DX :“ iX ˝ DTX . (29)

We show that these maps are involutions: DA˝ ˝ DA “ IdA, DX ˝ ˝ DX “ IdX . Then the duality
should intertwine DA with iX_ , and iA with DX_ . So we should have diagrams

A oo //

DA

��

X_

iX_

��
A˝ oo // X_˝

A oo //

iA
��

X_

DX_

��
A˝ oo // X_˝

They should give rise to commutative diagrams when one of the columns is tropicalised, and
the other is replaced by the induced map of algebras of functions. The horizontal arrows become
the canonical maps. Here is a precise statement.
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Conjecture 1.14. 3 Let pA,X q be a dual pair of cluster varieties. Then:
i) There are commutative diagrams

X pZtq
IX //

it
X

��

pOpA_q

D˚
A_˝

��

X ˝pZtq
IX˝ // pOpA_˝q

ApZtq
IA //

it
A

��

pOpX_q

D˚
X_˝

��

A˝pZtq
IA˝ // pOpX_˝q

ii) Assume that the DT-transformations DTA and DTX are positive rational. Then:

• The canonical pairings are DT-equivariant:

IApDTt
Apaq,DTX_pxqq “ IApa, xq, IX_pDTApxq,DTt

X_pxqq “ IX_pa, xq. (30)

• There are commutative diagrams

X pZtq
IX //

Dt
X

��

pOpA_q

i˚
A_˝

��

X ˝pZtq
IX˝ // pOpA_˝q

ApZtq
IA //

Dt
A

��

pOpX_q

i˚
X_˝

��

A˝pZtq
IA˝ // pOpX_˝q

Let us recall the most basic feature of Duality Conjectures. A quiver determines a cluster co-
ordinate system tAiu on A_, and a cluster coordinate system on X . Duality Conjectures predict
that a tropical point l` P X pZtq with non-negative coordinates px1, ..., xnq in the tropicalised
cluster coordinate system on X gives rise to a cluster monomial Ax1

1 . . . Axn
n on A_:

IX pl`q “ Ax1

1 . . . Axn
n , l` “ px1, ..., xnq.

Let l´ P X pZtq be the tropical point with the coordinates p´x1, . . . ,´xnq in the same coordinate
system. Then (28) imlies that the tropicalised transformation DTt

X has the following property:

DTt
X pl`q “ l´. (31)

In particular, let l`i P X pZtq be the tropical point with the coordinates p0, ..., 1, ..., 0q: all the
coordinates but the i-th one are zero. Specializing (31) to these tropical points we get

DTt
X pl`i q “ l´i . (32)

It follows easily from Duality Conjectures that if there is a cluster transformation K such that

Ktpl`i q “ l´i (33)

then it is unique (Proposition 3.3).

Definition 1.15. A cluster transformation K such that (33) holds in a single cluster coordinate
system is called a cluster DT-transformation.

3Conjecture 1.14 is just one incarnation of the ”commutative diagrams” above. Another incarnation is the one
where the horizontal arrows mean the mirror symmetry.
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Let KA and KX be the cluster transformations of the A and X spaces provided by such a
cluster transformation K. If DT-transformations are rational, Conjecture 1.14 implies that

DTA “ KA, DTX “ KX . (34)

Indeed, thanks to (32) - (33), the DTA and KA must act the same way on the cluster variables
Ai, and hence on the cluster algebra. Therefore they coincide. Using Dulaity Conjectures again,
this implies the second claim. See the proof of Proposition 3.3 for details.

Keller proved unconditionally [K11], [K12, Th 6.5, Sect 7.11], although in a different formu-
lation which used crucially the cluster nature of K, see Theorem 3.4, even a stronger claim:

a cluster DT-transformation is a Kontsevich-Soibelman DT-transformation.

Unlike Keller’s definition, Condition (33) makes sense for any positive rational transformation
K of X . Conjecture 1.14 implies that K must coincide with the Kontsevich-Soibelman DT-
transformation. Condition (33) is an efficient way to find a cluster DT-transformation of a cluster
variety, which we use. Yet, placed out of the context of Conjecture 1.14, it looks enigmatic.

DT-transformations and Duality Conjectures revisited. The following conjecture links
rationality of DT-transformations to the existence of regular canonical bases on cluster varieties.

Conjecture 1.16. The map DTX is rational if and only if the formal canonical basis in pOpX q
lies in OpX q. The same is true for the A-space.

Theorem 1.17. Suppose that the map DTX is a cluster DT-transformation. Then
i) There is a canonical Γ-equivariant basis in the space OpX q, parametrized by the set of the

integral tropical points of A_pZtq of the Langlands dual cluster A-variety.
ii) There is a canonical Γ-equivariant basis in the upper cluster algebra with principal coef-

ficients OpAprinq.

Proof. This follows immediately from [GHKK, Theorem 0.10, Proposition 8.25] and the following
observation. Given a quiver q, consider two cones:

∆`
q Ă X pZtq, ∆´

q Ă X pZtq.

The cone ∆`
q (respectively ∆´

q ) consists of all integral tropical points of X which have non-
negative (respectively non-positive) coordinates in the cluster coordinate system provided by
the quiver q. Following [FG3], take the union ∆` of all cones ∆`

q , as well as the union ∆´ of
all cones ∆´

q , when q runs through all quivers obtained from a given one by mutations:

∆` Ă X pZtq, ∆´ Ă X pZtq.

Equivalently, the ∆` (respectively ∆´) consists of all points of X pZtq which have non-negative
(respectively non-positive) coordinates in one of the cluster coordinate systems. Since the map
DTX is a cluster DT-transformation, we have

tl`1 , ..., l
`
n , l

´
1 , ..., l

´
n u P ∆`.

Indeed, l`i P ∆`
q by the definition, and l´i “ DTt

X pl`i q by (32) and Definition 1.15. Therefore,

since DTX is cluster, l´i P ∆`. Evidently the convex hull of the points tl`i , l
´
j u in the linear

structure of X pZtq given by the cluster coordinate system assigned to the quiver q coincides with
the X pZtq. This is exactly the condition in [GHKK, Theorem 0.10, Proposition 8.25] needed to
get a canonical basis in OpX q as well as in OpAprinq.
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We notice that a cluster transformation K is a cluster DT-transformation if and only if

Kp∆`
q q “ ∆´

q .

Conjecture 1.16 tells that if DT-transformations are rational, we should have canonical maps

IA : ApZtq ÝÑ OpX_q, IX : X pZtq ÝÑ OpA_q. (35)

The functions tIAplqu in OpX_q should be linearly independent, and form a canonical linear
basis in the linear span of the image. Similarly for the functions tIX pmqu in OpA_q.

So the next question is what are the images. The equivariance under the DT-transformations
in Conjecture 1.14 implies that any function F in the linear span of the image of each of the two
maps (35) must remain regular under arbitrary powers of the corresponding DT-transformations.
Conjecture 1.18 claims that this is the only extra condition on the image.

Conjecture 1.18. Assume that the DT-transformations of cluster varieties pA,X q are rational.
Then the linear span of the images of canonical maps (35) consist of all regular functions which
remain regular under the arbitrary powers of the corresponding DT-transformations.

Let S be a decorated surface with a single puncture and no boundary. Then the condition
in Conjecture 1.18 is essential for the dual pair pAG,S,XGL,Sq, see the end of Section 3.4.

1.7 Ideal bipartite graphs on surfaces and 3d CY categories [G]

To define the DT-invariants Kontsevich-Soibelman start with a 3d CY category. However for
a generic cluster variety there is no natural 3d CY category assigned to it. Indeed, one uses a
quiver with generic potential pq,W q as an input, and the 3d CY category does depend on W .

It turns out that for the moduli space XG,S the situation is much better. Among the quivers
describing its cluster structure there is a particularly nice subclass provided by rank m ideal
bipartite graphs, introduced in [G]. A bipartite graph is a graph with vertices of two kinds, so
that each edge connects vertices of different kinds. Let us recall crucial examples.

Let T be an ideal triangulation of S, i.e. a triangulation of S with the vertices at the marked
points. Given a triangle of T , we subdivide it into m2 small triangles by drawing three families
of m equidistant lines, parallel to the sides of the triangle, as shown on the left of Figure 4.

For every triangle of T there are two kinds of small triangles: the “up” and “down” triangles.
We put a ‚-vertex into the center of each of the “down” triangles. Let us color in red all “up”
triangles. Consider the obtained red domains – some of them are unions of red triangles, and
put a ˝-vertex into the center of each of them. A ˝-vertex and a ‚-vertex are neighbors if the
corresponding domains share an edge. Connecting the neighbors, we get a bipartite surface
graph ΓAmpT q, see Figure 4.

The dual graph to a bipartite surface graph Γ is a quiver qΓ. Its vertices are the faces of Γ,
and its edges are oriented so that the ‚-vertex is on the left, see Figure 5. The quiver qΓ was
introduced in [FG1], where it was shown that it gives rise to a cluster coordinate system on the
moduli space XG,S. We review these coordinate systems in Section 4.

The quiver qΓ is equipped with a canonical potential. Namely, for each vertex of the graph
Γ there is a unique cycle on the quiver q going around the vertex. We sum all these cycles, with
the ` sign for the ˝-vertices, and ´ sign for the ‚ vetrices:

WqΓ
:“

ÿ

˝-vertices of Γ

Cycles in qΓ around ˝-vertices´
ÿ

‚-vertices of Γ

Cycles in qΓ around ‚-vertices.
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Figure 4: A bipartite graph associated with a 4-triangulation of a triangle.

Figure 5: G “ PGL4. A bipartite graph associated with a quadrilateral, and the related quiver.

It was proved in [G] that any two bipartite graphs assigned to ideal triangulations of S

are related by special moves of bipartite graphs, called two by two moves, see Figure 6. The

Figure 6: A two by two move. Flipping the colors of vertices delivers another two by two move.

corresponding moves of the associated quivers are the mutations. The two by two moves keep
us in the class of bipartite graphs on S, introduced in loc. cit. and called ideal bipartite graphs.
In particular, this class is ΓS-invariant. The crucial fact is that a two by two move Γ Ñ Γ1

transforms the potential WqΓ
to one WqΓ1 .

Therefore we arrive at a 3d CY category Cm,S with an array of cluster collections of generating
objects. For G “ PGL2 it was studied by Labardini-Fragoso in [LF08]. So we conclude that

There is a combinatorially defined 3d CY category Cm,S “categorifying” moduli spaces XG,S.

A conjectural realization of the 3d CY category Cm,S as a Fukaya category [G].
Let ΩP pΣq be the sheaf of meromorphic differentials on a Riemann surface Σ with the set of
punctures P , with poles of order ď 1 at P . A point t of the Hitchin’s base of pΣ, P q is given by
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a data
t “ pΣ, P ; t2, t3, . . . tmq, tk P ΩP pΣqbk.

The universal Hitchin base is the family of Hitchin bases over the moduli space Mg,n.
The spectral curve assigned to t is a curve in T ˚Σ given by the following equation:

Σt :“ tλ P T ˚Σ | λm ` t2λ
m´2 ` . . . ` tm´1λ ` tm “ 0u Ă T ˚Σ. (36)

The projection T ˚Σ Ñ Σ provides the spectral cover πt : Σt Ñ Σ. It is an m : 1 ramified cover.

The pair pm,Sq gives rise to a family of open CY threefolds Ym,S over the universal Hitchin
base [DDP], [KS3]. For example, in the A1 case it is given by

tpt, x P Σ, α1, α2, α3q | α2
1 ` α2

2 ` α2
3 “ tu, t P ΩP pΣqb2; αipxq P T ˚

x pΣq.

The intermediate Jacobians of the fibers Yt provide Hitchin’s integrable system.
The category Cm,S should be equivalent to a Fukaya category of the open CY threefold given

by the generic fiber Yt of the family Ym,S:

Conjecture 1.19 ([G]). For a generic point t of the Hitching base, there is a fully faithful
functor

ϕ : Cm,S ÝÑ FpYtq.

It transforms cluster collections in Cm,S to the ones provided by special Lagrangian spheres.

For m “ 2 this is known thanks to the works of Bridgeland and Smith [BrS], [S].
Therefore formula (24), conjecturally, describes the DT-invariants of this Fukaya category.

1.8 Physics perspective

Unification diagram. Assume that the group G is simply laced. In a series of works [GMN1]-
[GMN5], Gaiotto, Moore and Neitzke studied 4d N “ 2 SUYM theories of class S related to
a Riemann surface with punctures Σ. The S alludes to “six dimensional”: the theories are
“defined” as compactifications of the hypothetical p2, 0q theories XG, related to ADE Dynkin
diagrams, on the Riemann surface Σ, with defects at the punctures.

The origins of the 4d theory can be perceived as follows. Let ΓG be a finite subgroup of
SUp2q corresponding to G by the McKay correspondence. The theory XG itself is “defined” as
a compactification of the ten dimensional type IIB superstring theory on the Klein singularity
C2{ΓG. One should have a “commutative diagram”:

10d type IIB superstring theory

“
YG,Σ,t

‰

��

“
C2{ΓG

‰

((PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

PP
P

6d theory XG

“
Σ

‰

vv♥♥♥
♥♥
♥♥
♥♥
♥♥
♥♥
♥♥
♥♥
♥♥
♥♥
♥♥
♥♥
♥♥

4d N “ 2 SUYM class S theory TG,Σ
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The vertical arrow is the compactification of the 10d type IIB superstring theory on the six-
dimensional Riemannian manifold given by the complex open CY threefold YG,Σ,t. The point t
belongs to the Hitchin base. The latter is the Coulomb branch of the space of vacua of the 4d
theory TG,Σ.

Gaiotto-Moore-Neitzke count of BPS states. The Hilbert space H of the 4d N “ 2
SUYM class S theory is a huge representation of the N “ 2 Poincare super Lie algebra P “
P0 ‘P1. Its even part P0 is the Poincare Lie algebra of the flat Minkowski space R3,1 plus a one
dimensional center with the generator Z. The odd part is 8-dimensional. As a representation
of the Lorenz group, it is a sum of two copies of the spinor representation S` ‘ S´.

The Hilbert space H is the symmetric algebra of a 1-particle Hilbert space H1. The n-th
symmetric power of H1 is the “n-particle part”. The H1 should have a discrete spectrum, i.e.
be a sum rather then integral of unitary representations of the Poincare super Lie algebra P.

The Hilbert space H has the following structures, inherited on the subspace H1:
1. It depends on a point t of the Hitchin base. The Hitchin base is the Coulomb branch of

the moduli space of vacua in the theory.
2. It is graded by a charge lattice Γ. In particular, there is a decomposition

H1 “ ‘γPΓH1,γ .

The lattice Γ is equipped with an integral valued skew symmetric bilinear form x˚, ˚y.
Irreducible unitary representations of the super Lie algebra P are parametrized by three

parameters: the mass M P r0,8q, the spin j P t0, 12 , 1,
3
2 , ...u, and the central charge Z P C.

The pairs pM, jq parametrize “positive” unitary representations of the Lorenz group.
The crucial fact is the inequality M ě |Z|. We are interested in the BPS part HBPS

1 of
the space, defined by the M “ |Z| condition. Let nj be the multiplicity of the irreducible
representations of spin j in HBPS

1 . The integers ΩGMN
t pγq, “counting the BPS states” of the

central charge γ, are not the integers nj but rather the “ second helicity supertrace”:

ΩGMN
t pγq :“

ÿ

j

p´1q2jp2j ` 1qnj .

Let us now discuss the Gaiotto-Moore-Neitzke approach to calculate these numbers. A point
t of the Hitchin base determines a spectral curve Σt Ă T ˚Σ, and a spectral cover πt : Σt Ñ Σ.
It determines a lattice Γt. When Σ is compact it is given by

Γt “ Ker
´
H1pΣt,Zq

πtÝÑ H1pΣ,Zq
¯
. (37)

Then γ P Γt. Integrating the canonical 1-form α on T ˚Σ over the homology classes from (37)
we get a linear map, called the central charge map:

Zt : Γt ÝÑ C, γ ÞÝÑ

ż

γ

α.

Gaiotto, Moore and Neitzke introduced a spectral network related to a generic t. They use it
to develop an algorithm to calculate the numbers Ωtpγq. The algorithm has some mathematical
issues for higher rank groups.4 Let us assume that they are resolved.

4One of them is a possibility of having an infinite number of “two side roads” in a spectral network, making
the algorithm problematic.
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The Gaiotto-Moore-Neitzke spectral generator is a transformtion of the Hitchin moduli space.
It tells the cumulative result of the wall crossings which one encounters rotating a Higgs field Φ
projecting to a point t by eiθΦ, with 0 ď θ ď 8. It turned out5 that our map CPGLm,S acting
on the moduli space XPGLm,S coincides with the result of calculation of the spectral generator.

So formula (24) implies that

The DT-transformation DTm,S = The Gaiotto-Moore-Neitzke spectral generator. (38)

Let us assume that a point t of the universal Hitchin base determines a quiver q, and that
the lattice Λq of this quiver is identified with the lattice Γt. This is known for G “ SL2 [GMN2].
Examples were worked out in [GMN5] for G “ SLm,m ď 9. They produce quivers of the type
discussed above. Then the central charge map Zt translates into a central charge map

Zq : Λq ÝÑ C.

Let teiu be the basis of Λ provided by the quiver q. Assuming that Zqpeiq P H, we arrive at
a stability condition s determined by t.

So if all mentioned above assumptions were satisfied, the formula (38) would imply that

KS numerical DT-invariants ΩKS
s pγq = GMN invariants ΩGMN

t pγq. (39)

Let us stress that the origins and definitions of the two sides of (39) are entirely different.
The numbers ΩKS

s pγq came from 3d CY categories related to quivers q.

The numbers ΩGMN
t pγq came from a quantum field theory, and calculated using the geometry

of a Riemann surface Σ.

Gaiotto-Moore-Neitzke algorithm for counting the numbers Ωtpγq can be interpreted as a
count of certain type of branes in 10d type IIB superstring theory on

Yt ˆ R3,1. (40)

These are the D3-branes supported on L ˆ l where L Ă Yt is a special Lagrangian sphere, and
l Ă R3,1 is the world line of a BPS particle. The mass M of the particle is the Riemannian
volume of L. Its central charge Z is the integral ZpLq “

ş
L
Ω over L of the holomorphic 3-form

Ω on Yt. So the BPS condition M “ Z just means that we count special Lagrangian spheres.

Conjecture 1.19 connects the two approaches. Namely, among the “combinatorial” 3d CY
categories assigned to a quiver q there is a distinguished one, Cm,S, provided by the canonical
potentials on ideal bipartite graphs on S. Conjecture 1.19 predicts that the category Cm,S has
a geometric realisation as a Fukaya category of an open CY threefold Yt. And this is threefold
needed to get the 4d N “ 2 SUYM theory from the IIB superstring theory in (40).

So now the combinatorial 3d CY categories and the 4d theories are linked directly to each
other. The common structure visible in both is the cluster structure.

It is interesting to note that formula (24) involves both the 3d CY category used to define
the DT-transformation and the moduli space XG,S on which the element CG,S acts naturally.

5We thank Davide Gaiotto who pointed this to us at the 6d conference at Banff, and to Andy Neitzke for
providing some details.
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Notice that although the moduli space XG,S is closely related to the moduli space of G-local
systems on S, the element CG,S does not act on the latter.

In general there is no canonical moduli space linked to the DT-transformation. We have
only a cluster variety: it describes a lot of features of the space, yet it is different.

1.9 Other ramifications and applications

Duality conjectures for moduli spaces of G-local systems and Weyl group actions.
We assume for simplicity that S has no boundaries, only punctures.6 Duality Conjectures suggest
a mirror duality between the Langlands dual moduli spaces AG,S and XGL,S [FG1, Section 12],
[GS]. In particular, each integral tropical point l of one space corresponds to a regular function
Iplq on the other space. The functions Iplq should be linearly independent. We observe that if S
has punctures, then tIplqu can not span the space of regular functions on the space AG,S.

Indeed, each puncture p on S gives rise to a regular ΓS-invariant function Wp on AG,S, the
potential [GS], see also Section 6. However, one can argue that the only ΓS-invariant finite
subset in the set XGL,SpZtq is the zero point. This is obvious if G is of type A1 due to the
interpretation of the integral tropical points as laminations on S: the ΓS-orbit of any non-empty
integral lamination is infinite. The zero point 0 P XGL,SpZtq maps under the duality to the
constant function on AG,S. So the Wp can not be a finite linear compbination of the functions
Iplq, where l P XGL,SpZtq.

We conjecture that the space the functions Iplq span consists of all regular functions remaining
regular under the W n-action. The latter condition is forced by the following conjecture.

Conjecture 1.20. There is a ΓS ˆ W n-equivariant duality between the spaces AG,S and XGL,S.

If theW n-action is not cluster, theW n-transformations play a role of cluster transformations.

Periodicity of DT-transformations. The periodicity of DT-transformations is closely re-
lated to the periodicity conjecture of Zamolodchikov [Z]. Keller solved the cases of square
products of Dynkin quivers [K]. As a consequence of Theorem 1.12, we immediately have

Theorem 1.21. If S has only punctures, then pDTG,Sq2 “ Id.
If S is a disk/punctured disc with k special points on its boundary, then pDTG,Sqlcmp2,kq “ Id.

Compatibility of the CG,S-transformations with covers. The transformation CG,S has
many nice geometric properties.

Let π : rS ÝÑ S be a finite cover of decorated surfaces. By pull back, it induces a natural
positive embedding π˚ : XG,S ÝÑ XG,rS. The following diagram is commutative:

X
G,rS

C
G,rS // X

G,rS

XG,S

CG,S //

π˚

OO

XG,S

π˚

OO

6When S has boundaries / special points, the correct analog of the X -moduli space is the moduli space PGL,S

from [GS], which we do not discuss here. In particular, dimAG,S “ dimPGL,S. However dimAG,S ą dimXGL,S if
S has holes. In the other direction, each boundary interval I on a boundary component of S gives rise a natural
map αI from AG,S to the Cartan subgroup H. Let A1

G,S be the subspace of AG,S consisting of points a such that
αIpaq “ Id for all boundary intervals I. Then we have dimA1

G,S “ dimXGL,S.
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It would be interesting to establish a categorical interpretation of this diagram in the DT-theory.

Compatibility of the maps CG,S with the cluster ensemble structure. The transfor-
mation CPGLm,S is birational. We define a similar map CSLm,S on the space ASLm,S using quite
different construction. Remarkably, the two maps can be presented by the same sequence of
cluster (per)-mutations. So viewing the pair pASLm,S,XPGLm,Sq as a cluster ensemble, we have
the following commutative diagram:

ASLm,S

CSLm,S //

p

��

ASLm,S

p

��
XPGLm,S

CPGLm,S// XPGLm,S

Therefore the birational map CPGLm,S is regular on the image of ASLm,S.

Configurations of points in CPm: the DT-transformation “ the parity conjugation.
Denote by ConfnpCPmq the moduli space of configurations, that is PGLm`1-orbits, of points
pz1, ..., zmq in CPm. It has a cluster Poisson variety structure invariant under the cyclic shift
C : pz1, ..., zmq ÝÑ pz2, ..., zm, z1q. Let hk :“ pzk´m, ..., zk´1q be a hyperplane in CPm spanned
by the points zk´m, ..., zk´1, where the indices are modulo n. Then there is a birational map

P : ConfnpCPmq ÝÑ ConfnpCPmq, pz1, ..., znq ÞÝÑ ph1, ..., hnq.

It was argued in [GGSVV] that P is a cluster transformation. Just recently D. Weng [We] proved

Theorem 1.22. The map P is the cluster DT-transformation for the cluster variety ConfnpCPmq.

When m “ 3, the map C2P is the parity conjugation, which plays an essential role in the
theory scattering amplitudes in the N “ 4 super Yang-Mills. Namely, let P be the composition
of P with the complex conjugation. Scattering amplitudes are functions / forms on ConfnpCPmq
which are invariant under the subgroup generated by the cyclic shift and the map P.

Double Bruhat cells: the DT-transformation
?
“ the twist map. Let G be a split semi

simple group. Let us fix a pinning pB,B´, xi, yi; Iq of G, where B is a Borel subgroup of G, B´

is an opposite Borel subgroup, so that H :“ B´ X B is a Cartan subgroup, and the pair xi, yi
give rise to a homomorphism γi : SL2 Ñ G for each i P I such that

γi

ˆ
1 a

0 1

˙
“ xipaq, γi

ˆ
1 0
a 1

˙
“ yipaq, γi

ˆ
a 0
0 a´1

˙
“ α_

i paq.

Each pair of Weyl group elements u, v P W gives rise to a double Bruhat cell

Gu,v :“ BuB X B´vB´.

There are several maps involving the double Bruhat cells.
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• The involution i of the G:

i : G ÝÑ G, h ÞÝÑ h´1, xipaq ÞÝÑ yipaq, yipaq ÞÝÑ xipaq.

The involution i exchanged B and B´. Therefore it induces an involution

i : Gu,v ÝÑ Gv,u. (41)

• The transposition G ÝÑ G, g ÞÝÑ gT , defined as an anti-automorphism of G such that

hT “ h, xipaqT “ yipaq, yipaqT “ xipaq.

It induces a similar involution

Gu,v ÝÑ Gv´1,u´1

, g ÞÝÑ gT . (42)

• For each w P W , we define two representatives w,w P G. If si is a simple refection, then

si “ γi

ˆ
0 ´1
1 0

˙
, si “ γi

ˆ
0 1

´1 0

˙
.

The tsiu and tsiu satisfy braid relations. So given a reduced decomposition w “ si1 . . . sik ,

w “ si1 . . . sik , w “ si1 . . . sik .

Let U :“ rB,Bs, and U´ :“ rB´,B´s. Using the Gaussian decomposition G0 “ UHU´,
any g P G0 can be written as g “ rgs`rgs0rgs´. Consider the twist map

η : Gu,v ÝÑ Gu,v, ηpgq “
´

rv´1gs´1
` v´1gu´1rgu´1s´1

´

¯T

. (43)

The map η is a slight modification of the Fomin-Zelevinsky twist map [FZ98, Section 1.5],
which plays crucial role in the factorization formulas [FZ98]. It is well-defined for all g P Gu,v.

If G is simply connected, then the algebra OpGu,vq has a cluster algebra structure [BFZ].
The generalized minors are cluster variables. So Gu,v is a cluster A-variety.

If G has trivial center, then Gu,v has a cluster X -variety structure [FG5]. Taking quotients
by the action of the Cartan group H on both sides, we get another X -variety

Xu,v :“ HzGu,v{H. (44)

Alternatively, it is obtained by deleting all the frozen variables of the original X -variety Gu,v.
It is easy to check that

ηph1 ¨ g ¨ h2q “ uph2q ¨ ηpgq ¨ v´1ph1q @h1, h2 P H, @g P Gu,v.

Thus the twist map can be reduced to an isomorphism of Xu,v. We still denote it by η.
It is easy to see that the map i on the space Xu,v coincides with our involution iX .

Conjecture 1.23. The twist map η is the DT-transformation of Xu,v.
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Quantized DT-transformations and Γ-invariant bilinear forms. Quantizing a cluster
Poisson variety X , we get a Hilbert space HX with a scalar product x˚, ˚yX . Each cluster
transformation C of X is quantized into a unitary operator pC in HX . In particular we get a
unitary projective representation of the cluster modular group Γ in the Hilbert space HX [FG4].

Suppose that the DT-transformation DTX of X is cluster. Recall the map DX “ iX ˝ DTX ,
see (29). It is involutive: DX ˝ ˝ DX “ IdX . So we get a Γ-invariant “symmetric” bilinear form

BX : HX ˆ HX ˝ ÝÑ C, BX pv,wq :“ xpDXu,wyX ˝ ,

BX pv,wq “ µ ¨ BX pw, vq, |µ| “ 1.
(45)

Applying this to the moduli space XG,S, G “ PGLm, we get a Hilbert spaceHG,S [FG1, FG4].
It is conjecturally the space of conformal blocks for the higher Liouville theory related to G. Let
S˝ be the surface S with the opposite orientation. Then pairing (45) is a ΓS-invariant form

BG,S : HG,S ˆ HG,S˝ ÝÑ C. (46)

When S has punctures only, the cluster transformation CG,S is already involutive: C2
G,S “ Id.

So we get a new ΓS-invariant Hermitian symmetric form in the Hilbert space pHG,S, x˚, ˚yG,Sq:

B1
G,S : HG,S ˆ HG,S ÝÑ C, B1

G,Spu, vq :“ xpCG,S u, vyG,S. (47)

There might be a potential similarity between this form and the Drinfeld-Wang invariant bilinear
form [DW] in a space of automorphic forms on GpAF q{GpF q where G “ SL2, F is a global field.

Acknowledgments. This work was supported by the NSF grant DMS-1301776.
A.G. is grateful to IHES for the hospitality and support during the Summer of 2015.
We are grateful to Davide Gaiotto, Maxim Kontsevich, and Andy Neitzke for many illumi-

nating conversations.

2 Quantum cluster varieties

In Section 2, borrowed mostly from [FG2], we present a careful definition of quantum cluster
transformations and quantum cluster varieties. Quantum cluster varieties have a quasiclassical
limit, called cluster Poisson variety, introduced in loc. cit. under the name cluster X -variety.

A cluster Poisson variety is obtained by gluing a collection of split algebraic tori, each
equipped with a Poisson structure, by birational transformations called cluster Poisson trans-
formations. It is not quite a variety: it is rather a prescheme, possibly non-separated. Yet it
has a lot of important geometric features, not available for general varieties: a well defined set
of points with values in any semifield, canonical cluster variety divisors at infinity, etc.

The algebra of regular functions on each of the cluster Poisson tori has a canonical q-
deformation, to a quantum torus algebra. Cluster Poisson transformations are quasiclassical
limits of certain isomorphisms of the non-commutative fields of fractions of quantum torus alge-
bras, called quantum cluster transformations. Quantum cluster transformations are the primary
objects of study. They are given by isomorphisms of quantum torus algebras, followed by the
birational transformations provided by the composition of conjugations by the quantum dilog-
arithm of certain cluster coordinates. Quantum cluster variety is just a collection of these
non-commutative fields related by quantum cluster transformations.

For the convenience of the reader we present all definitions in the “simply laced” case.
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Quiver mutations.

Definition 2.1. A quiver is a data

q “ pΛ, teiuiPI, p˚, ˚qq,

where Λ is a lattice; teiu is a basis of the lattice Λ parametrized by a given set I; and p˚, ˚q is a
skewsymmetric Z-valued bilinear form on the lattice Λ.

The ε-matrix associated to q is a matrix εq :“ pεijq, εij :“ pei, ejq. Two quivers are called
isomorphic if their ε-matrices are equal. 7

Every basis vector ek provides a mutated in the direction ek quiver q1. The quiver q1 is
defined by changing the basis teiu only. The lattice and the form stay intact. The new basis
te1

iu is defined via halfreflection of the basis teiu along the hyperplane pek, ¨q “ 0:

µkpeiq “ e1
i :“

"
´ek if i “ k

ei ` rpei, ekqs`ek otherwise.
(48)

Here rαs` :“ α if α ě 0 and rαs` :“ 0 otherwise.

Relation with the Fomin-Zelevinsky quiver mutations. Formula (48) implies the Fomin-
Zelevinsky formula, which also appeared in Seiberg’s work in physics [Se95], telling how the
ε-matrix changes under mutations:

ε1
ij :“

"
´εij if k P ti, ju
εij ´ εikmint0,´sgnpεikqεkju if k R ti, ju.

(49)

Mutations of a given quiver can be encoded by the elements of the set I. Performing the
mutation at an element k P I twice, we get a basis

e2
i :“ µk ˝ µkpeiq “ ei ` pei, ekqek. (50)

So in general te2
i u is a different basis than teiu. However, it preserves the ε-matrix:

pe2
i , e

2
j q “ pei, ejq ` pei, ekqpek, ejq ` pei, ekqpej , ekq “ pei, ejq. (51)

Each quiver can be mutated in n directions, where n “ rk Λ, and mutations can be repeated
indefinitely. Thanks to (51), the double mutation in the same direction preserves the isomor-
phism class of a quiver. So we can picture the quivers obtained by mutations of an original
quiver q, and considered up to isomorphisms, at the vertices of an infinite n-valent tree Tn.

Precisely, consider a tree Tn such that the edges incident to a given vertex are parametrized
by the set I. We assign to each vertex a of the tree Tn a quiver qa considered up to an

isomorphism, so that the quivers qa and qb assigned to the vertices of an edge a
k
´ b of Tn

labeled by an element k P I are related by the mutations assigned to this edge:

qb “ µkpqaq, qa “ µkpqbq. (52)

Equivalently, the vertices of Tn are assigned ε-matrices which are related by (49).
Summarizing, we arrive at the following definition.

7An isomorphism class of quivers from Definition 2.1 is the same thing as a geometric quiver without loops and
length two cycles, whose vertices are parametrized by a set I. Namely, every such a geometric quiver q determines
a matrix εq :“ pεijq, εij :“ #tarrows from i to ju ´ #tarrows from j to iu, and vice versa.
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Definition 2.2. A decorated tree Tn is a tree whose edges are labeled by the elements of a given
set I, and whose vertices are decorated by the isomorphism classes of quivers so that

• The set of the edges incident to a given vertex is identified with the set I.

• The quivers qa and qb at the vertices of any edge a
k
´ b are related by mutations (52).

Negative mutations. The halfreflection (48) is not the only natural way to describe muta-
tions of isomorphism classes of quivers. There is another transformation of quivers, acting on
the basis vectors only, given by

µ´
k peiq :“

"
´ek if i “ k

ei ` r´pei, ekqs`ek otherwise.
(53)

The negative mutation µ´
k is the inverse of µk on the nose, not only up to an isomorphism.

Indeed, µ´
k ˝ µkpekq “ ek, and the composition µ´

k ˝ µkpeiq is computed as

ei ÞÝÑ e1
i “ ei ` rpei, ekqs`ek

ÞÝÑ e1
i ` r´pe1

i, e
1
kqs`pe1

kq “ ei ` rpei, ekqs`ek ´ rpei, ekqs`ek “ ei.

The negative mutation µ´
k acts on the isomorphism classes of quivers in the same way as µk.

Note that changing the sign of the form p˚, ˚q amounts to changing the µk to the µ´
k .

Remark. Let tk :“ µk ˝ µk be the transformation of bases teiu Ñ te2
i u, see (50)-(51). We have

µk “ tk ˝ µ´
k “ µ´

k ˝ tk. (54)

It is easy to check that ttku satisfy the braid relations

tj ˝ tk “ tk ˝ tj, if pej , ekq “ 0.

tj ˝ tk ˝ tj “ tk ˝ tj ˝ tk, if pej , ekq “ ˘1. (55)

Therefore the braid group acts on the bases in Λ, preserving the isomorphism class of quivers.
Moreover, one has

ti “

"
µj ˝ ti ˝ µ´

j if pei, ejq ě 0,

µ´
j ˝ ti ˝ µj if pei, ejq ă 0.

(56)

It relates the braid group actions assigned to different vertices of Tn.
In fact, after categorification, the ttku correspond to the Seidal-Thomas twist functors [ST],

which generate braid group actions on the category Cpq,W q.

From now on, all the quivers are considered up to isomorphisms, unless otherwise stated.
Abusing notation, we write q “ q1 if q and q1 are isomorphic.
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Quantum torus algebra. A lattice Λ with a form p˚, ˚q : Λ^Λ Ñ Z gives rise to a quantum
torus algebra TΛ, which is a free Zrq, q´1s-module with a basis Xv, v P Λ, and the product

q´pv1,v2qXv1Xv2 “ Xv1`v2 .

There is an involutive antiautomorphism making it into a ˚-algebra:

˚ : TΛ ÝÑ TΛ, ˚pXvq “ Xv, ˚ pqq “ q´1.

A quiver q “ pΛ, teiu, p˚, ˚qq gives rise to a quantum torus algebra Tq :“ TΛ equipped
with a set tXeiu of algebra generators corresponding to the basis vectors teiu. Thanks to
parametrization of the basis vectors, if two quivers q and q1 are isomorphic, then there is a
unique isomorphism identifying the associated quantum torus algebras

Tq
„

ÝÑ Tq1 , Xei ÞÝÑ Xe1
i
. (57)

Given a decorated tree Tn, each vertex a of Tn is decorated by a quiver pΛ, teiu, p˚, ˚qq,
considered up to isomorphisms. Therefore, each vertex a gives rise to a quantum torus algebra
Tpaq :“ TΛ with generators tXeiu, well-defined up to the isomorphism (57).

Denote by Tpaq the non-commutative fraction field of the quantum torus algebra Tpaq. Our
goal is to assign to any pair of vertices pa, bq of the tree a unique quantum cluster transformation

Φpa, bq : Tpbq ÝÑ Tpaq.

First, we assign a quantum cluster transformation to each oriented edge of the tree. Choose an
oriented path i on Tn connecting a and b. Denote by Φpiq : Tpbq Ñ Tpaq the composition of the
cluster transformations assigned to i in the reversed order. We show that the composition of
the two quantum cluster transformations assigned to the path a Ñ a1 Ñ a is the identity map.
Therefore Φpa, bq :“ Φpiq is independent of the choice of i.

Notation. We denote by Tpaq the quantum torus algebra assigned to a vertex a of the tree
Tn, and by Tpaq its non-commutative fraction field. At the same time, we have a quiver qa

assigned to the vertex a, well defined up to an isomorphism. We denote by Tq the quantum
torus algebra assigned to a quiver q, and by Tq its fraction field. They come with canonical
generators tXeiu provided by the basis teiu of the quiver. The quantum torus algebra itself
depends on the lattice Λ with the form only, and denoted also by TΛ.

Our crucial tool to define quantum cluster transformations is the quantum dilogarithm.

The quantum dilogarithm formal power series. Let us recall its definition:

Ψqpxq :“
8ź

a“1

p1 ` q2a´1xq´1. (58)

It is the unique formal power series starting from 1 and satisfying a difference relation

Ψqpq2xq “ p1 ` qxqΨqpxq. (59)

It is useful to note its equivalent form:

Ψqpq´2xq “ p1 ` q´1xq´1Ψqpxq. (60)
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It has the power series expansion, easily checked by using the difference relation:

Ψqpxq “
8ÿ

n“0

qnxn

pq2 ´ 1qpq4 ´ 1q . . . pq2n ´ 1q
“

8ÿ

n“0

qn
2

xn

|GLnpFq2q|
. (61)

By (8), it has an exponential expression

Ψqpxq “ exp
´ ÿ

ně1

p´1qn`1

npqn ´ q´nq
xn

¯
. (62)

As a direct consequence, we get
Ψqpxq´1 “ Ψq´1pxq. (63)

Below we skip q in the notation, setting Ψpxq :“ Ψqpxq.

Quantum tori mutations. Take a decorated tree Tn. Each vertex a of the tree Tn gives rise
to a quantum torus algebra Tpaq with a set of generators Xei , considered up to an isomorphism.

Given an oriented edge a
k

Ñ a1, there is a unique isomorphism 8

iaÑa1 : Tpa1q ÝÑ Tpaq, Xe1
i

ÞÝÑ Xµkpeiq, (64)

transforming the generator Xe1
i
of the algebra Tpa1q to the one Xµkpeiq of the algebra Tpaq.

Abusing notation, we also denote by iaÑa1 the induced isomorphism of the fraction fields.

Definition 2.3. The quantum mutation at an edge a
k

Ñ a1 is an isomorphism of fraction fields

Φpa Ñ a1q : Tpa1q ÝÑ Tpaq

defined as the composition of the isomorphism iaÑa1 with the conjugation by the quantum dilog-
arithm ΨpXekq:

Φpa Ñ a1q :“ AdΨpXek
q ˝ iaÑa1 , Y ÞÝÑ ΨpXekqiaÑa1 pY qΨ´1pXekq. (65)

It is a remarkable fact, following from difference equations (59) - (60), that the conjugation
by the the quantum dilogarithm ΨpXekq is a rational transformation. One can look at Definition
2.3 as follows. The classical Scolem-Noether theorem tells that any automorphism of a simple
central algebra is inner. If the form p˚, ˚q on Λ is non-degenerate, the quantum torus algebra
is an infinite dimensional simple central algebra. So the Scolem-Noether theorem can not be
applied. However one can get a birational automorphism of the quantum torus algebra by the
conjugation with the dilogarithm power series ΨqpXq. Although the ΨqpXq does not belong to
the algebra, the induced automorphism deserves to be viewed as “inner”.

Quantum cluster transformations. Consider a path i on the tree Tn, presented as a se-
quence of oriented edges labeled by the elements of the set I:

i : a “ a0
k1ÝÑ a1

k2ÝÑ . . .
km´1
ÝÑ am´1

kmÝÑ am “ b. (66)

8Note that the isomorphism is in the reversed direction.
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The quantum cluster transformation Φpiq is the composition of mutations in the reversed order:

Φpiq :“ Φpa0 Ñ a1q ˝ . . . ˝ Φpam´1 Ñ am´2q ˝ Φpam´1 Ñ amq : TpbqÝÑTpaq.

Below we present Φpiq as a composition of an isomorphism of quantum tori algebras with a
sequence of conjugations by quantum dilogarithms.

Let teiu be the basis for the quiver qa at the vertex a. Consider a composition of mutations

µi :“ µkm ˝ . . . ˝ µk1 . (67)

It changes the basis teiu to a basis tµipeiqu of the same lattice Λ for the quiver qa:

teiu “ te
p0q
i u

µk1ÝÑ te
p1q
i u

µk2ÝÑ . . .
µkmÝÑ te

pmq
i u “ tµipeiqu (68)

The basis tµipeiqu defines a quiver isomorphic to qb. Denote by te1
iu the basis for the quiver qb.

There is a unique isomorphism of quantum torus algebras identifying the generators:

ipiq : Tpbq ÝÑ Tpaq, Xe1
j

ÞÝÑ Xµipejq.

Let us define vectors f1, ..., fm of the lattice Λ for the quiver qa by setting

fs :“ e
ps´1q
ks

, s “ 1, ...,m. (69)

Proposition 2.4. One has

Φpiq “ AdΨpXf1
q ˝ . . . ˝ AdΨpXfm q ˝ ipiq. (70)

Proof. Follows from the very definitions.

Lemma 2.5. The composition of cluster mutations

Φpa
k

Ñ a1 k
Ñ aq :“ Φpa

k
Ñ a1q ˝ Φpa1 k

Ñ aq : Tpaq ÝÑ Tpa1q ÝÑ Tpaq is the identity map.

Proof. Let v P Λ be the basis vector which we use to define the mutation a Ñ a1. Then
iaÑa1 ˝ia1Ña is the reflection map w Ñ w`pw, vqv. The following lemma calculates the “quantum
dilogarithm part” of the composition Φpa Ñ a1q ˝ Φpa1 Ñ aq.

Lemma 2.6. One has
AdΨpXvqAdΨpX´vqpXwq “ Xw´pw,vqv . (71)

Proof. The general case reduces to the case when pv,wq “ 1. Assuming pv,wq “ 1, we have

ΨpXvqΨpX´vqXw “ XwΨpq2XvqΨpq´2X´vq
(59)(60)
“““

Xwp1 ` qXvqΨpXvqp1 ` q´1X´vq´1ΨpX´vq “ qXwXvΨpXvqΨpX´vq.

Since pv,wq “ 1 implies that qXwXv “ Xv`w, and w ´ pw, vqv “ w ` v, we get (71).

Therefore

Φpa Ñ a1q ˝ Φpa1 Ñ aq “ AdΨpXvq ˝ AdΨpX´vq ˝ iaÑa1 ˝ ia1Ña “ Id. (72)
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Remark 1. It is tempting to write

AdΨpXvqAdΨpX´vq
?
“ AdΨpXvqΨpX´vq. (73)

However the product ΨpX´1qΨpXq does not make sense as a power series. The formula starts
to make sense if we replace the quantum dilogarithm power series by their modular double, given
by the quantum dilogarithm function Φ~pxq, see (15).

Remark 2. Formula (70) is a composition of two transformations. The first one is an isomor-
phism ipiq : Tpbq Ñ Tpaq. The second one is a birational automorphism

AdΨpXf1
q ˝ . . . ˝ AdΨpXfm q : Tpaq ÝÑ Tpaq. (74)

By Lemma 2.5, there is a unique rational map assigned to any pair a, b of vertices of Tn, called
the quantum cluster transformation map:

Φpa, bq : Tpbq ÝÑ Tpaq. (75)

Another approach is to view mutations of quivers as transformations of bases in a given
lattice Λ. Then the lattices assigned to the vertices a0, ..., am of the path i are identified with Λ.
So cluster transformations can be understood as birational automorphisms (74) of the quantum
torus algebra TΛ. However then µk ˝µk is no longer the identity map, and therefore the cluster
transformation depends on the path i rather then on the vertices it starts and ends. Yet the
advantage is that µk˝µk is identified with the symplectic reflection tk, discussed in the beginning
of this Section, incorporating the braid group action into the cluster transformation story.

Alternative formulas for quantum cluster transformations. Recall the negative muta-

tion (53). Given an oriented edge a
k

Ñ a1, there is an isomorphism

i´aÑa1 : Tpa1q ÝÑ Tpaq, Xe1
i

ÞÝÑ Xµ´
k

peiq. (76)

Since i´1
a1Ña “ i´aÑa1 , and ΨpXvq commutes with ΨpX´vq, formula (72) is equivalent to

AdΨpXvq ˝ iaÑa1 “ AdΨpX´vq´1 ˝ i´aÑa1 . (77)

Therefore the quantum cluster mutation Φpa Ñ a1q can be defined by a different formula

Φ´pa Ñ a1q :“ AdΨpX´vq´1 ˝ i´aÑa1 , Φpa Ñ a1q “ Φ´pa Ñ a1q. (78)

So for any sequence of signs εs P t˘1u we can write the quantum cluster transformation as

Φpiq “ Φε1pa0 Ñ a1q ˝ . . . ˝ Φεmpam´1 Ñ amq.

Recall the bases teiu and te1
iu for the quivers qa and qb. We consider the sequence of

mutations along the path i:

teiu “ te
p0q
i u

µ
ε1
k1ÝÑ te

p1q
i u

µ
ε2
k2ÝÑ . . .

µ
εm
kmÝÑ te

pmq
i u “ tµε

i peiqu (79)
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There is an isomorphism of quantum torus algebras:

iεpiq : Tpbq ÝÑ Tpaq, Xe1
i

ÞÝÑ Xµε
i

peiq.

Set
f ε
s :“ εs ¨ e

ps´1q
ks

“ εs ¨ µ
εs´1

ks´1
˝ . . . ˝ µε1

k1
peksq, s “ 1, ...,m. (80)

The same quantum cluster transformation Φpiq can be written in a different form as

Φpiq “ AdΨpXfε
1

qε1 ˝ . . . ˝ AdΨpXfεm
qεm ˝ iεpiq. (81)

As we will see in Section 2.4, there is a unique sequence of signs εs P t˘1u for which all power
series ΨpXfε

s
qεs in (81) lie in the same completion of the quantum torus algebra TΛ.

Cluster modular groupoid. Let π be an arbitrary permutation of the set I. It gives rise to
a new quiver which does not necessarily preserve the isomorphism class of the original quiver:

q1 “ πpqq :“ tΛ, te1
iu, p˚, ˚qu, where e1

i :“ eπ´1piq, @i P I.

There is an isomorphism between their associated non-commutative fraction fields

Φpπq : Tq1 ÝÑ Tq, Xe1
i

ÞÝÑ Xe
π´1piq

.

A quiver cluster transformation is a composition of quiver mutations and permutations. It
induces a quantum cluster transformation of the associated non-commutative fraction fields.

Definition 2.7. If two quiver cluster transformations σ1, σ2 : q Ñ q1 induce the same quantum
cluster transformation, i.e,

Φpσ1q “ Φpσ2q : Tq1 ÝÑ Tq,

then we say σ1 and σ2 are equivalent, denoted by σ1 “ σ2.

Two quivers are equivalent if they are related by a quiver cluster transformation.

Definition 2.8. The cluster modular groupoid Gq is a groupoid whose objects are quivers equiv-
alent to q, and morphisms are quiver cluster transformations modulo equivalence. The funda-
mental group Γq of the groupoid at q is the cluster modular group.

Below we call both quiver cluster transformations and quantum cluster transformations just
cluster transformations, and use similar convention for mutations.

Cluster Poisson transformations. Setting q “ 1, the quantum cluster transformation (75)
becomes a birational transformation preserving the Poisson structure given by the quasiclassical
limit of the commutator in the quantum torus algebra. It is called the cluster Poisson map.9 10

9Kontsevich and Soilbelman considered another specilization q “ ´1.
10Notice that it is important to present first the map (75) as a rational transformation, and only then set q “ 1.

Indeed, setting q “ 1 first we get a commutative algebra, so the conjugation becomes the identity map.
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To write it explicitly, let us consider the quiver mutation µk : q Ñ q1. We assign to q a set
of cluster Poisson coordinates tXiuiPI. Denote by tX 1

iu the cluster Poisson coordinates assigned
to q1. Setting q “ 1, the quantum cluster transformation (88) becomes the cluster Poisson map

X 1
i ÞÝÑ

#
X´1

k if i “ k

Xip1 ` X
´sgnpεikq
k q´εik otherwise.

(82)

Note that (82) is subtraction free. Such a transformation is called positive. Its tropicalization is

x1
i ÞÝÑ

"
´xk if i “ k

xi ´ εikmint0,´sgnpεikqxku otherwise.
(83)

Tropical points of cluster Poisson varieties. A collection of quivers tqu related by quiver
cluster transformations determines a cluster Poisson variety X . It is given by a collection of
cluster Poisson tori

Xq :“ HompΛ,Gmq (84)

glued by cluster Poisson maps. A cluster Poisson variety X gives rise to a set X pZtq, called the
set of integral tropical points of X , equipped with an action of the cluster modular group Γ.
Namely, for each quiver q there is a set

XqpZtq :“ HompGm,Xqq “ Λ_ “ HompΛ,Zq.

A mutation σ : q Ñ q1 gives rise to an isomorphism of sets ϕtpσq : XqpZtq ÝÑ Xq1pZtq given in
coordinates by the transformation (83).

Definition 2.9. An integral tropical point l P X pZtq as a collection of lq P XqpZtq related by
mutations: ϕtpσqplqq “ lq1.

Frozen variables and integral tropical points of cluster Poisson variaties. Proposition
2.10 below is borrowed from [FG2, ArXive version 2, Proposition 2.44].

Given a quiver q “ pΛ, teiu, p˚, ˚qq, take a lattice

pΛ :“ Λ ‘ Ze0

generated by Λ and a new basis vector e0. It has a basis teiu Y e0.

Proposition 2.10. There is a canonical bijection between the extensions of the skew-symmetric
form p˚, ˚q from Λ to pΛ, and the set of integral tropical points X pZtq.

Proof. We encode a quiver q by a skew-symmetric Z-valued function εij on I ˆ I. The rank one
extensions of the quiver are parametrised by similar functions on pI Y t0uq2, i.e. by the integers
tεi0uiPI. The desired bijection is then given by

tεi0u ÞÝÑ txiu P XqpZtq, xi :“ εi0.

We have to show that the numbers tεi0u and coordinates txiu of a Z-tropical point x P X pZtq in
the tropical coordinate system assigned to the quiver q change under mutations the same way.
Indeed, under the mutation in the direction k P I one has

x1
i “

"
´xi if i “ k,

xi ´ εikmint0,´sgnpεikqxku otherwise.
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On the other hand, we have

ε1
i0 “

"
´εi0 if i “ k,

εi0 ´ εikmint0,´sgnpεikqεk0u otherwise.

The two formulas coincide under the assumption xi “ εi0.

Quantum cluster algebras with principle coefficients. Given a quiver q, the basis teiu
of the lattice Λ provides a dual basis tfiu of the dual lattice Λ˝ :“ HompΛ,Zq. The basis tfiu
mutates as follows:

f 1
i :“

"
´fk `

ř
jPIr´εkjs`fj if i “ k

fi if i ­“ k.
(85)

We need a lattice
ΛP :“ Λ ‘ Λ˝.

Let r˚, ˚s : Λ ˆ Λ˝ Ñ Z be the canonical pairing. Togerther with the skew symmetric form
p˚, ˚q on Λ, it provides the lattice ΛP with a skew symmetric bilinear form x˚, ˚yΛP

:

xpe, fq, pe1, f 1qyΛP
:“ pe, e1q ` re, f 1ys ´ re1, f s.

It gives rise to a quantum torus ˚-algebras TΛP
. The basis tei, fju of the lattice ΛP provides its

generators tBi,Xju, where Bi :“ Bfi and Xj :“ Xej . The relations are the following:

qBiXi “ q´1XiBi, BiXj “ XjBi, i ­“ j, q´εijXiXj “ q´εjiXjXi, BiBj “ BjBi. (86)

Denote by TPpaq the quantum torus algebra assigned to a vertex a of the tree Tn, and by

TPpaq its fraction field. Given oriented edge a
k

Ñ a1, there is a unique isomorphism of algebras

iaÑa1 : TPpa1q ÝÑ TPpaq, Xe1
i

ÞÝÑ Xµkpeiq, Bf 1
i

ÞÝÑ Bµkpfiq. (87)

Abusing notation, we also denote by iaÑa1 the induced isomorphism of the fraction fields.

Definition 2.11. The quantum mutation at an edge a
k

Ñ a1 is an isomorphism of fraction fields

ΦPpa Ñ a1q : TPpa1q ÝÑ TPpaq

ΦPpa Ñ a1q :“ AdΨpXek
q ˝ iaÑa1 , Y ÞÝÑ ΨpXekqiaÑa1 pY qΨ´1pXekq. (88)

In coordinates,

AdΨpXek
q : Bi ÞÝÑ

"
Bi if i ­“ k,

Bkp1 ` qkXkq if i “ k.
(89)

Indeed, the relation XkBi “ q2BiXk implies ΨqpXkqBi “ BiΨqpq2Xkq. It remains to use (59).
Since the B-variables commute, we can set

B`
k :“

ź

jPI

B
rεkjs`

j , B´
k :“

ź

jPI

B
r´εkjs`

j . (90)
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Then formula (85) translates into monomial transformations

i˚aÑa1 : B1
i ÞÝÑ

"
Bi if i ­“ k,

B´
k {Bk if i “ k.

(91)

Formulas for the action on the generators Xi are the same as for the X -space. Set

rXi :“ Xi ¨
ź

jPI

B
εij
j “ Xi

B`
k

B´
k

. (92)

Then the rXi commutes with the Xj . So mutations act on the rXi by monomial transformations.
Let us work out the formulas for the mutations of B-coordinates in the q Ñ 1 limit. The

conjugation (89) preserves B`
k and B´

k . So we get

Φ˚
P : B1

i ÞÝÑ

#
Bi if i ­“ k,

B
´
k

Bkp1`Xkq if i “ k.
(93)

Let us set Ai :“ B´1
i . Then Xi “ rXi

A`
k

A
´
k

. So the mutation formula can be written as

ΦPpa Ñ a1q˚ : A1
k ÞÝÑ

pA´
k ` rXkA

`
k q

Ak
, ΦPpa Ñ a1q˚ : A1

i ÞÝÑ Ai, i ­“ k. (94)

So mutation formulas of the coordinates pAi, rXjq in the q Ñ 1 limit coincide with the mutation

formulas [FZIV] for the cluster algebra with cluster variables Ai and principle coefficients rXk.
We denote by Aprin,q the quantum cluster variety with principal coefficients obtained by

gluing the symplectic tori assigned to the lattices ΛP by the mutations ΦPpa Ñ a1q. Denote by
T the split torus with the group of characters Λ, and by Tq the corresponding quantum torus.
Then the quantum space Aprin,q projects canonically to the product of the quantum torus Tq

and the quantum cluster variety Xq, and the fiber of the map πT is the cluster variety A:

A
j

ãÑ Aprin,q
πTˆπXÝÑ Tq ˆ Xq, π˚

TXi :“ rXi, π˚
XXi :“ Xi, jpAq “ π´1

T peq.

The subalgebra π˚
TpOpTqqq, that is the subalgebra generated by the rXi’s, see (92), is the

subalgebra of ”coefficients”, explaining the name. The Ai’s are the cluster algebra generators.
The quantum symplectic double Dq defined in [FG3, Definition 3.1] is similar to the double

Aprin,q. The difference is that the mutation automorphisms are defined differently:

Dq : We use the conjugation by the ratio of two quantum dilogarithms: ΨqpXkq{Ψqp rXkq.

Aprin,q : We use the conjugation by single quantum dilogarithm: ΨqpXkq.

3 DT-transformations of cluster varieties and Duality Conjec-
turs

In Section 3.1 we discuss a basic question: when do two quantum cluster transformations co-
incide? A considerable part of Section 3.1 is due to Nagao [N10] and Keller [K11, K12, K13],
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although we present the story from a different perspective, emphasizing the role of certain in-
tegral tropical points of cluster Poisson variaties, called basic positive laminations, rather then
using the C-matrices. Proposition 2.10 provides the dictionary relating the two points of view.

In Section 3.2 we recall cluster DT-transformations following Keller [K12]. We interpret
them as quantum cluster transformations, and prove that a cluster DT-transformation is a
central element of the cluster modular group. In Section 3.3 we recall the isomorphism i from
[FG4, Sect.3.2]. In Section 3.4 we relate the cluster DT-transformations to Duality Conjectures.

3.1 When do two cluster transformations coincide?

A quiver cluster transformation σ : q Ñ q1 induces a quantum cluster transformation

Φpσq : Tq1 ÝÑ Tq.

Setting q “ 1, we get a positive birational isomorphism of the Poisson tori

ϕpσq : Xq ÝÑ Xq1 .

Its tropicalization is a piecewise-linear map of the set of tropical points

ϕtpσq : XqpZtq ÝÑ Xq1pZtq.

If two quiver cluster transformations σ1, σ2 : q Ñ q1 induce the same quantum cluster
transformations Φpσ1q “ Φpσ2q, then their tropicalisations evidently coincide: ϕtpσ1q “ ϕtpσ2q.

Remarkably, the converse is true:

ϕtpσ1q “ ϕtpσ2q implies that Φpσ1q “ Φpσ2q.

It follows from a stronger Theorem 3.2, proved by Keller [K11], [K12, Sect.7] and Nagao [N10]
in a different formulation. It also follows from Duality Conjectures, as we show in Section 3.4.

Basic X -laminations. Recall that an equivalent class of quivers gives rise to a cluster Possion
variety X . Fix a quiver q. Each vertex i P t1, . . . , Nu of q corresponds to a rational function
Xi on X . The set cq :“ tX1, . . . ,XNu is a rational cluster Poisson coordinate system on X . Its
tropicalization identifies the set X pZtq of Z-tropical points of X with ZN :

ctq : X pZtq
„

ÝÑ ZN , l ÞÝÑ pXt
1plq, . . . ,Xt

N plqq.

Let ei “ p0, ..., 1, ..., 0q be the i-th unit element of ZN .

Definition 3.1. The Z-tropical points l`q,i (respectively l´q,i) of X such that

ctqpl`q,iq “ ei, ctqpl´q,iq “ ´ei (95)

are called basic positive (respectively negative) X -laminations associated to the quiver q.

We usually call basic positive X laminations just basic laminations, or basic X -laminations.
We also frequently write l˘i instead of l˘q,i when there is no confusion.
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Basic laminations and cluster transformations. Using basic laminations, we can state
now the strongest version of the criteria determining when two cluster transformations coincide.

Theorem 3.2. Let σ1, σ2 : q Ñ q1 be two cluster transformations between the same quivers.
The following are equivalent

1. Φpσ1q “ Φpσ2q.

2. ϕtpσ1qpl`q,iq “ ϕtpσ2qpl`q,iq for all i P I.

It looks surprising that such a strong statement is true, and even more surprising that basic
laminations play key role in the formulation. The proof of Proposition 3.3 below explains both.

Proposition 3.3. Theorem 3.2 follows from Duality Conjectures [FG2].

We prove Proposition 3.3 in Section 3.4, after a discussion of Duality Conjectires.

3.2 Cluster Donaldson-Thomas transformations

Theorem 3.4. Let σ : q Ñ q1 be a cluster transformation such that

ϕtpσqpl`q,iq “ l´
q1,i, @i P I.

Then the quivers q and q1 are isomorphic. The quantum cluster transformation Φpσq, unique
by Theorem 3.2, coincides with the Kontsevich-Soibelmam DT-transformation.

Theorem 3.4 suggests the following definition.

Definition 3.5. A cluster transformation K : q Ñ q is called a cluster Donaldson-Thomas
transformation if

ϕtpKqpl`q,iq “ l´q,i, @i P I. (96)

A cluster DT-transformation K may not exist. If it does, it is unique by Theorem 3.2.
Theorems 3.2 and 3.4 were proved by Keller [K11], [K12, Th 6.5, Sect 7.11] in a different

formulation, using c-vectors and C-matrices [FZIV], which we review in Section 4.1, rather than
the tropical points of cluster Poisson varieties. See an exposition in a nice short paper [K13]. The
equivalence of two points of view follows from Proposition 2.10. One of the benefits of using the
tropical points is that then Definition 3.5 make sense for any positive rational transformation,
not necessarily a cluster one.

Theorem 3.6. Let σ : q Ñ q1 be a cluster transformation. If K : q Ñ q is a cluster DT-
transformation, then so is σ ˝ K ˝ σ´1 .

Theorem 3.6 is proved in Section 4.4. It asserts that the cluster DT-transformation is
independent of the choice of q. Therefore it associates a canonical cluster transformation to
the cluster variety X , which is independent of the choice of coordinate system cq.

Corollary 3.7. The cluster DT-transformation K : q Ñ q is in the center of the cluster modular
group Γq.

Proof. Let σ P Γq. By Theorem 3.6, σ ˝ K ˝ σ´1 is a DT-transformation. By the uniqueness of
a DT-transformation, σ ˝ K ˝ σ´1 “ K.
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3.3 The isomorphism i, the contravariant functor F , and DT-transformations.

We recall the isomorphism i following [FG4, Sect.3.2]. It gives rise to a contravariant functor F .

Let ´q be the quiver obtained by reversing the sign of the form in the quiver q. Equivalently,
it is obtained by reversing the arrows in the geometric quiver q. We use the notation pu, vq˝ :“
´pu, vq for the form. The quantum torus algebra T´q has generators X˝

u, u P Λ satisfying

X˝
uX

˝
v “ qpu,vq˝X˝

u`v. (97)

There is a natural “antilinear” isomorphism

i˚ : T´q ÝÑ Tq, X˝
v ÞÝÑ X´v, q ÞÝÑ q´1. (98)

Indeed, the isomorphism i˚ sends the relation (97) to X´uX´v “ qp´u,´vqX´u´v:

i˚pX˝
uX

˝
v q “ X´uX´v, i˚pqpu,vq˝X˝

u`vq “ qpu,vqX´u´v “ qp´u,´vqX´u´v.

Lemma 3.8. The isomorphism i commutes with the quantum cluster transformations.

Proof. Clearly i commutes with the permutations of basis. It suffices to show that i commutes
with the mutations.

Recall the isomorphisms (64), (76). The mutation µk : ´q Ñ ´q1 acts on the basis vectors
in the same way as the negative mutation µ´

k : q Ñ q1. So the following diagram commutes

T´q1
i˚

//

i´qÑ´q1

��

Tq1

i´
qÑq1

��
T´q

i˚
// Tq

By (63), we get
i˚pΨqpX˝

v qq “ Ψq´1pX´vq “ ΨqpX´vq´1 (99)

Therefore the following diagram commutes

T´q
i˚

//

AdΨpX˝
ek

q

��

Tq

Ad
ΨpX´ek

q´1

��
T´q

i˚
// Tq

By (77), one can combine the above two diagrams, getting the following commutative diagram:

T´q1
i˚

//

Φpµkq

��

Tq1

Φpµkq

��
T´q

i˚
// Tq
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Thanks to Lemma 3.8, we get a functor I : Gq Ñ G´q, which assigns to a quiver q the quiver
´q, and to a (per)-mutation σ : q Ñ q1 the one σ : ´q Ñ ´q1.

It is useful to introduce a “contravariant” version of the functor I.

Definition 3.9. The contravariant functor F : Gq ÝÑ G´q assigns to quiver q the quiver ´q,
and to a cluster transformation σ : q Ñ q1 the one Ipσ´1q : ´q1 Ñ ´q.

This allows to us to state the following result, which we prove in Section 4.4.

Theorem 3.10. A cluster transformation K is a cluster DT-transformation if and only if F pKq
is a cluster DT-transformation.

3.4 DT-transformations of cluster varieties and Duality Conjectures

Definition 3.5 of cluster DT-transformations looks mysterious: it refers to a particular cluster
Poisson coordinate system, and uses positive and negative basic laminations in this coordinate
system, which seem out of the blue. Independence of a cluster coordinate system looks surprising.

A DT-transformation of a cluster variety is always defined as a formal automorphism. How-
ever even if it is rational, it may not be a cluster transformation, even in the most basic cases,
for example when G “ PGL2 and S is a surface of positive genus with a single puncture.

We suggest, using formal Duality Conjectures, a conjectural property of DT-transformations
of cluster varieties which characterizes them uniquely, makes their crucial properties obvious,
and in the case when it is a cluster transformation implies immediately that it is the cluster
DT-transformation.

We believe that this is the “right” definition of DT-transformations of cluster varieties, while
Definition 3.5 is a convenient technical characterization of those DT-transformations of cluster
varieties which are cluster transformations.

We formulate a conjecture relating rationality of DT-transformations to existence of canon-
ical bases in the space of regular functions on cluster varieties.

Let us recall first some features of Duality Conjectures.

Duality Conjectures [FG2, Section 4]. For any cluster variety Y, a regular function on Y
is a function which, in any cluster coordinate system, is a Laurent polynomial in the cluster co-
ordinates with positive integral coefficients. We denote by OpYq the algebra of regular functions
on Y.

A formal function on Y assigns to each cluster coordinate system a Laurent series with
integral coefficients in the cluster coordinates, related by the cluster transformations. We denote
by pOpYq the algebra of formal functions on Y. There is a canonical map

ϕ : OpYq ÝÑ pOpYq. (100)

A quiver gives rise to a dual pair of cluster varieties of the same dimension: a K2-cluster
variety A, and a cluster Poisson variety X , as well as the Langlands dual cluster varieties A_

and X_ [FG2]. In the “simpli-laced” case A_ “ A and X_ “ X . The cluster modular group Γ
acts by their automorphisms.

The algebra OpAq is closely related to the cluster algebra. By the Laurent phenomenon
theorem [FZ] the algebra OpAq is “big”: every cluster coordinate Ai lies in the OpAq. So the
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dimension of the spectrum of the algebra OpAq equals to the dimension of A. As was shown
in [GHK], the algebra OpX q could have smaller dimension then X . Yet for generic quiver, e.g.
with a non-degenerate form p˚, ˚q on the lattice, the algebra OpX q is “big”.

Duality Conjecture [FG2, Section 4] predict a duality between cluster varieties A and X_.
In particular, one should have canonical Γ-equivariant pairings

IA : ApZtq ˆ X_ ÝÑ A1,

IX : A ˆ X_pZtq ÝÑ A1.
(101)

This means that each l P ApZtq and each m P X_pZtq give rise to functions

IAplq :“ IApl, ˚q on X_, and IX pmq :“ IX pm, ˚q on A_.

Since we can consider either formal or regular functions, there are two kinds of canonical pairings.
In the formal setting we should have canonical Γ-equivariant maps

IA : ApZtq ÝÑ pOpX_q,

IX : X pZtq ÝÑ pOpA_q.
(102)

In a quite general setting, pairings (101) should produce Γ-equivariant maps to regular functions:

IA : ApZtq ÝÑ OpX_q,

IX : X pZtq ÝÑ OpA_q.
(103)

Being composed with the embedding (100), they produce the maps (102).
The main feature of the maps (102) / (103) is that they should parametrise canonical lin-

ear bases in the corresponding space of functions on the target space. Below we discuss two
properties of canonical maps (102) / (103) relevant to our story.

1. Positive tropical points and cluster algebras [FG2, Conjecture 4.1, part 2)].
The first basic property is this. If a tropical point l P X pZtq has non-negative coordinates
pl1, ..., lN q P ZN

ě0 in a cluster coordinate system assigned to a quiver q, then the function IX plq
on A_ is a monomial in the cluster A-coordinates assigned to the same quiver:

IX plq “
ź

iPI

Ali
i . (104)

By the Laurent Phenomenon theorem [FZ], one has IX plq P OpA_q. By the very definition, the
functions IX plq generate the cluster algebra related to A_.

This immediately implies Proposition 3.3.

Proof of Proposition 3.3. The cluster transformation of quivers σ´1
1 σ2 : q Ñ q acts identi-

cally on the basic positive laminations. So by (104), it acts as the identity on the cluster algebra.
It preserves the canonical 2-form on the spectrum of cluster algebra:

Ω “
ÿ

i,jPI

pei, ejqd logpAiq ^ d logpAjq.
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Therefore σ´1
1 σ2 preserves the form p˚, ˚q. This means that the map σ´1

1 σ2 : q Ñ q is an
isomorphism of quivers. Since it acts as the identity on the cluster coordinates, it acts as the
identity on the set A_pZtq. Therefore, thanks to the formal Dulaity Conjecture, it acts as the
identity on the canonical formal basis on X . Therefore it is the identity map of X . The claim
that the corresponding quantum cluster transformation is also the identity follows then by using
arguments from [FG4]. Alternatively, one can just use the quantum formal Dulaity Conjecture.

2. The parametrization of canonical bases [FG2, Conjecture 4.1, part 1)]. This is the
second basic property. It tells how to recover the integral tropical point l P ApZtq parametrizing
a canonical basis vector F on X_. In the cluster coordinate system assigned to a quiver q, the
F is given by a Laurent polynomial / series FqpX1, ...,Xnq. Let us right it as

FqpX1, ...,Xnq “
ź

iPI

Xai
i ` lower order terms.

Then the exponents pa1, ..., anq are the coordinates of a tropical point l P ApZtq in the cluster
coordinate system assigned to the quiver q. In other words, the exponents of the upper term
of FqpX1, ...,Xnq change under the cluster transformations as the coordinates of an integral
tropical point of A. This way one should get a bijection between the canonical basis elements
and the set l P ApZtq. This is the “upper” parametrisation of the canonical basis on X_.

The involutions iA and iX [FG4, Lemma 3.5]. There are isomorphisms of cluster varieties

iA : A ÝÑ A˝, iX : X ÝÑ X ˝ (105)

which in any cluster coordinate system act as follows:

i˚A : A˝
i ÞÝÑ Ai, i˚X : X˝

i ÞÝÑ X´1
i . (106)

The maps (106) are compatible with mutations, which means that they define isomorphisms
(105). They are also compatible with the canonical projection p : A ÝÑ X . By Lemma 3.8, the
map iX is the classical limit of an isomorphism of quantum cluster varieties

iX : Xq ÝÑ X ˝
q (107)

which in any cluster coordinate system is given by an “antilinear” isomorphism of ˚-algebras

i˚X : OqpX ˝q ÝÑ OqpX q, i˚X pX˝
i q “ X´1

i , i˚X pqq “ q´1. (108)

The lower parametrization of canonical bases. One can also parametrize canonical basis
elements F on X_ by the exponents of the lowest term by writing

FqpX1, ...,Xnq “
ź

iPI

Xbi
i ` higher order terms.

Namely, assigning to F the exponents pb1, ..., bnq one should get a well defined integral tropical
point of A. This is the “lower” parametrization of the canonical basis on X_.

Lemma 3.11. The existence of lower parametrization follows from the existence of the upper.
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Proof. The isomorphism iX transforms a canonical basis on X_ to a canonical basis on X_˝.
Evidently, in any cluster coordinate system one has

The lower term of i˚
X_pF q “ The upper term of F.

The duality between cluster varieties A and X_ is not compatible with the isomorphisms iA
and iX_ . Conjecture 3.12 suggests that the DT-transformations DTX and DTA of the cluster
varieties A and X tell the failure of the isomorphisms iA and iX to be compatible with the
duality. Precisely, set

DA :“ iA ˝ DTA, DX :“ iX ˝ DTX . (109)

The duality should intertwine DA with iX_ , and iA with DX_ . So, very schematically, we should
have diagrams

A ÐÑ X_ A ÐÑ X_

DA Ó Ó iX_ iA Ó Ó DX_

A˝ ÐÑ X_˝ A˝ ÐÑ X_˝

(110)

They become commutative diagrams when one of the columns is tropicalised, and the other is
replaced by the induced map of algebras of functions. So there are four commutative diagrams.
The horizontal arrows are the canonical maps, going in the direction “from the tropical column”.
Let us state this precisely.

Conjecture 3.12. Let pA,X q be a dual pair of cluster varieties satisfying formal Duality Con-
jectures. Then

i) There are commutative diagrams

X pZtq
IXÝÑ pOpA_q ApZtq

IAÝÑ pOpX_q

it
X

Ó Ó D˚
A_˝ it

A
Ó Ó D˚

X_˝

X ˝pZtq
IX˝
ÝÑ pOpA_˝q A˝pZtq

IA˝
ÝÑ pOpX_˝q

(111)

ii) Assume that the transformations DTA and DTX are positive rational maps, e.g. clus-
ter transformations, so their tropicalisations DTt

A and DTt
X are defined. Then they have the

following properties:

• The canonical pairings are DT-equivariant, that is

IA : ApZtq ˆ X_ ÝÑ A1, IApDTt
Apaq,DTX_pxqq “ IApa, xq,

IX_ : A ˆ X_pZtq ÝÑ A1, IX_pDTApxq,DTt
X_pxqq “ IX_pa, xq.

(112)

• Recall the maps (109). Then there are commutative diagrams

X pZtq
IXÝÑ pOpA_q ApZtq

IAÝÑ pOpX_q

Dt
X

Ó Ó i˚
A_˝ Dt

A
Ó Ó i˚

X_˝

X ˝pZtq
IX˝
ÝÑ pOpA_˝q A˝pZtq

IA˝
ÝÑ pOpX_˝q

(113)
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Few comments are in order.

1. The right commutative diagram in (111) just means that, for any element F of the canon-
ical basis, the upper parametrization of DT˚

X pF q = the lower parametrization of F .

It tells that the canonical basis on X_ is essentially11 invariant under the involution DX .

2. The transformation DTX satisfies the property characterizing cluster DT-transformations:

DTt
X pl`i q “ l´i . (114)

Indeed, since i˚
A

pAiq “ Ai, we have, using the left diagram (113):

Dt
X pl`i q “ itX ˝ DTt

X pl`i q “ l`i .

Applying to this the map it
X ˝ , and using iX ˝ ˝ iX “ Id and it

X
pl`i q “ l´i , we get (114).

So if the transformation DTX is cluster, it is the cluster DT-transformation.

3. The DT-equivariance (112) can be stated as follows:

IApDTt
Apaqq “ DT˚

X_pIApaqq, i.e. IA ˝ DTt
A “ DT˚

X_ ˝ IA.

IX_pDTt
X_pxqq “ DT˚

ApIX_ pxqq, i.e. IX_ ˝ DTt
X_ “ DT˚

A ˝ IX_ .
(115)

4. The transformation DTA is uniquely determined by (114) and (115), since its action on
the cluster coordinates is determined by these conditions.

5. Commutative diagrams (113) plus (115) imply the commutative diagrams (111). Indeed,
the maps iX and iA are involutive, in the sense that

iX ˝ ˝ iX “ IdX , iA˝ ˝ iA “ IdA.

Diagrams (113) commute, so the maps Dt
X

and Dt
A
are involutive in the same sense. Thus

itX “ pitX ˝q´1 “ DTt
X ˝ ˝ itX ˝ DTt

X . (116)

Using this, we have:

IX ˝ ˝ itX
p116q

“ IX ˝ ˝ DTt
X ˝ ˝ itX ˝ DTt

X

p115q
“ DT˚

A_˝ ˝ IX ˝ ˝ itX ˝ DTt
X

p109q
“

DT˚
A_˝ ˝ IX ˝ ˝ Dt

X

p113q
“ DT˚

A_˝ ˝ i˚A_˝ ˝ IX
p109q

“ D˚
A_˝ ˝ IX .

(117)

The argument for the second diagram is similar.

6. Since the maps iX and iA are involutive and diagrams (111) commute, the maps DX and
DA must be involutive:

DX ˝ ˝ DX “ IdX , DA˝ ˝ DA “ IdA. (118)

7. Using DTX ,cl ˝ iX instead of DX in the left diagram (113) would not make the diagram
commute for basic positive laminations. So we have no choice but to use the tropicalised
iX ˝ DTX in the left diagram (113) rather than the one DTX ˝ iX .

11“Essentially” reflect the fact that they are canonical bases on different spaces.
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DT-transformations and Duality Conjectures for the double. Recall the cluster variety
Aprin, see the end of Section 2. The algebra of regular functions OpAprinq is the upper cluster
algebra with principal coefficients [FZIV]. The cluster variety Aprin contains the cluster variety
A and projects onto the cluster Poisson variety X :

A
j

ãÑ Aprin
π

ÝÑ X .

There is a canonical involution, compatible with the involutions iA and iX in the obvious way:12

iP : Aprin ÝÑ Aprin.

Duality Conjectures can be casted as a duality between cluster varieties Aprin and A_
prin. In

the ”simply laced” case, which we mostly focus on in this paper, A_
prin “ Aprin.

In particular, one should have canonical Γ-equivariant pairings

IP : AprinpZtq ˆ A_
prin ÝÑ A1. (119)

This means that each l P AprinpZtq give rise to functions

IPplq :“ IPpl, ˚q on A_
prin.

In the formal setting we should have canonical Γ-equivariant maps

IP : AprinpZtq ÝÑ pOpA_
prinq. (120)

Under certain assumptions, pairing (119) should produce a Γ-equivariant map to regular func-
tions, which should parametrise a canonical linear basis in the space of functions on the target:

IP : AprinpZtq ÝÑ OpA_
prinq. (121)

The dualityAprin Ø A_
prin is not compatible with the isomorphism iP . The DT-transformation

DTP tells the failure of the isomorphism iP_ to be compatible with the duality. Precisely, set

DP :“ iP ˝ DTP . (122)

Then the duality should intertwine DP with iP_ . So, schematically, we should have a diagram

Aprin
oo //

DP

��

A_
prin

iP_

��
A˝

prin
oo // A_˝

prin

It becomes a commutative diagram when one of the columns is tropicalised, and the other is
replaced by the induced map of algebras of functions. The horizontal arrows are the canonical
maps, going “from the tropical column”. Let us state this precisely.

12We use the subscript P - ”principal” - for maps related to the cluster variety Aprin, the subscript P_ for the
A_

prin, etc.
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Conjecture 3.13. Let Aprin be a cluster A-variety with principal coefficients. Then
i) The formal transformation DP_ , see (122), makes the following diagram commutative:

AprinpZtq
IP //

it
P

��

pOpA_
prinq

DP_

��

A˝
prinpZtq

IP˝ // pOpA_˝

prinq

(123)

ii) Assume that the DT-transformation DTP is a positive rational map, so that the tropi-
calised transformation Dt

P
is defined. Then:

• The canonical pairing is DT-equivariant:

IP : AprinpZtq ˆ A_
prin ÝÑ A1, IPpDTt

Ppxq,DTP_pyqq “ IPpx, yq. (124)

• There is the second commutative diagram

AprinpZtq
IP //

Dt
P

��

pOpA_
prinq

i˚
P_˝

��

A˝
prinpZtq

IP˝ // pOpA_˝
prinq

(125)

Few comments are in order.

1. The DT-equivariance (124) can be stated as follows:

IPpDTt
Ppxqq “ DT˚

P_pIP pxqq, i.e. IP ˝ DTt
P “ DT˚

P_ ˝ IP . (126)

2. The transformation DTP is uniquely determined by (126), since its action on the canonical
basis is determined by this conditions.

3. Commutative diagram (125) plus (126) imply that the diagram (123) is commutative.
Indeed, the maps iP are involutive, in the sense that

iD˝ ˝ iP “ IdP .

Since diagram (111) is commutative, the map Dt
P
is involutive in the same sense. Thus

itP “ pitP˝q´1 “ DTt
P˝ ˝ itP ˝ DTt

P . (127)

Using this, we have:

IP˝ ˝ itP
p127q

“ IP˝ ˝ DTt
P˝ ˝ itP ˝ DTt

P

p126q
“ DT˚

P_˝ ˝ IP˝ ˝ itX ˝ DTt
P

p122q
“

DT˚
P_˝ ˝ IP˝ ˝ Dt

P

p111q
“ DT˚

P_˝ ˝ i˚P_˝ ˝ IX
p122q

“ D˚
P_˝ ˝ IP .

(128)

4. Since the map iP is involutive and diagram (125) commute, the map DP must be involutive:

DP˝ ˝ DP “ IdP . (129)
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Rationality of DT-transformation and regular canonical bases.

Lemma 3.14. Let us assume Conjecture 3.12i). Then:
i) If the map DTX is cluster, then the formal canonical basis consists of Laurent polynomials.
ii) The same is true if DTX is a positive rational map, and the canonical pairing IA is

DT-equivariant, see (112).

Proof. i) The duality map is compatible with cluster transformations. So if the DT’s are cluster,
then we can compose the vertical maps in the right diagram in (111) with the inverse of DTX_

on the right, and with DTt
A on the left. The tropical side becomes it

A
˝DTt

A. The function side
becomes iX_ . Note that it

X_ takes lower order terms to upper order terms. So all the canonical
basis element are bounded by top terms and bottom terms, i.e., they are all polynomials.

ii) Same argument using commutativity of diagram (111) plus DT-equivariance (112).

Conjecture 3.15. The map DTX (respectively DTA) is rational if and only if the formal canon-
ical basis in pOpX q (respectively pOpAq) is regular, i.e. lies in OpX q (respectively OpAq).

Here are the arguments supporting Conjecture 3.15.
a) If the map DTX is a cluster DT-transformation, then by Theorem 1.17, which uses [GHKK,

Theorem 0.10], we get a canonical basis in OpX q.
b) Lemma 3.14 tells that if DTX is positive rational then, assuming Conjecture 3.12, there

is a canonical basis in OpX q.
c) A map A Ñ A is rational if and only if it takes the cluster coordinates Ai to rational

functions. So Conjecture 3.12 implies that if a canonical basis in OpAq exists, then the map
DTA must be rational.

DT-transformations and the target vector spaces in Duality Conjectures. Consider
the largest subalgebras on which the powers of the transformation DT act:

ODTpAq :“ tf P OpAq | DTn
Apfq P OpAq,@n P Zu.

ODTpX q :“ tf P OpX q | DTn
X pfq P OpX q,@n P Zu.

We can state now the enhanced version of Duality Conjectures for cluster varieties.

Conjecture 3.16. Let pA,X q be a dual pair of cluster varieties. Assume that the DT transfor-
mation DTA and DTX are rational. Then there is a ΓˆDT-equivariant mirror duality between
the spaces A and X_. In particular there are canonical Γ ˆ DT-equivariant isomorphisms

IA : ZrApZtqs
„

ÝÑ ODTpX_q, IX : ZrX pZtqs
„

ÝÑ ODTpA_q. (130)

The very existence of the DT-equivariant pairing IX implies that the image of the map IX
lies in the subspace ODTpA_q. Indeed, if IX plq P OpA_q, then by the DT-equivariance,

IX

´
pDTt

X qnplq
¯

“ DTn
A_IX plq, @n P Z.

It remains to notice that the left hand side always lies in OpAq.
Conjecture 3.16 is a cluster generalisation of Conjecture 1.20. We want to stress that the

ODTpAq could be smaller then OpAq. Let us elaborate on this.
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One can associate to the moduli space AG,S several a priori different algebras. One is
the algebra OpAG,Sq of regular functions on the moduli space AG,S. The other is the algebra
OclpAG,Sq of regular functions on the corresponding cluster A-variety, which in this case is just
the corresponding upper cluster algebra. The third one is the algebra ODTpAG,Sq.

Proposition 3.17. i) Assume that a decorated surface S has ą 1 punctures. Then the algebras
ODTpAG,Sq and OclpAG,Sq are smaller then OpAG,Sq.

ii) If S has 1 puncture and no special points, then ODTpASL2,Sq is smaller then OclpASL2,Sq.

Proof. i) The Weyl group W acts in this case by cluster transformations. Therefore, by the
very definition, its action preserves the algebra OclpAq. Recall the potential Wp at a puncture
p introduced in [GS], see also (24). it is a regular function on AG,S. However for any nontrivial
w P W , the function w˚Wp is not regular on AG,S. So we conclude that

Wp P OpAG,Sq, Wp R OclpAG,Sq, Wp R ODTpAG,Sq.

The same is true for any partial potential Wp,α.
ii) Indeed, Wp R ODTpASL2,Sq, but Wp P OclpASL2,Sq. This also tells that the Weyl group

action on ASL2,S is not cluster.

4 Properties of cluster DT-transformations

In Section 4.1 we discuss a special presentation of quantum cluster transformations provided by
the sign-coherence of the C-matix. In Section 4.2 we elaborate the cluster DT-transformation
and the quantum canonical basis for the cluster X -variety of type A2, demonstrating their
compatibility.

In Section 4.3 we show that the unitary operator quantizing the cluster DT-transformations
leads to a Γ-equivariant bilinear form on the Hilbert space assigned to a cluster Poisson variety.

In Section 4.4 we prove some results on cluster DT-transformations stated in Section 3.2.

4.1 Sign-coherence and cluster transformations

Definition 4.1. Let σ : q Ñ q1 be a cluster transformation. The matrix Cσ is a matrix whose
j-th column pc1j , c2j , ..., cnjqT is given by the coordinates of l`q,j in the coordinate system cq1.

By Proposition 2.10, the matrix Cσ coincides with the Fomin-Zelevinsky C-matrix [FZIV].
It is easy to show that detpCσq “ ˘1. Therefore Cσ is invertible. The matrix Cσ has many

other nice properties. The most important one is the sign-coherence.

Sign-coherence. Let ci “ pci1, . . . , cinq be the i-th row vector of Cσ.

Theorem 4.2 ([DWZ2]). The entries of ci are either all non-negative, or all non-positive.

This allows to introduce the sign sgnpciq P t˘1u as the sign of the entries of the row ci.
Let σ : q Ñ q1 be a cluster transformation. Let εq1 “ pε1

ikq. Let µk : q1 Ñ q2 be a mutation.

Lemma 4.3. The i-th row vector c1
i of Cµk˝σ is

c1
i :“

"
´ck if i “ k,

ci ` rsgnpckqε1
iks`ck if i ‰ k.

(131)
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Proof. Let Cµk˝σ “ pc1
ijq. By definition, the c1

ij are given by the tropicalization formula (83):

c1
ij :“

"
´ckj if i “ k,

cij ´ ε1
ik mint0,´sgnpε1

ikqckju “ cij ` rsgnpckjqε
1
iks`ckj if i ‰ k.

(132)

The Lemma follows immediately.

Let σ : q Ñ q1 be a cluster transformation, presented as a sequence of mutations followed
by a permutation:

σ : q “ q0
k1ÝÑ q1

k2ÝÑ . . .
kmÝÑ qm

π
ÝÑ q1. (133)

Following (131), we get a sequence of C-matrices

Id “ C0
k1ÝÑ C1

k2ÝÑ . . .
kmÝÑ Cm

π
ÝÑ Cσ. (134)

Denote by c
psq
i the i-th row vector of Cs.

Definition 4.4. The canonical sequence ε “ pε1, . . . , εmq of signs for the cluster transformation

(133) is given by εs :“ sgnpc
ps´1q
ks

q.

Recall the half reflections µk and µ´
k of basis defined by (48) and (53) respectively.

The canonical sequence ε “ pε1, . . . , εmq of signs gives rise to the following composition of
bases mutations and permutation assigned to the cluster transformation (133):

σpεq :“ π ˝ µεm
km

˝ . . . ˝ µε1
k1
.

Let teiu be a basis of Λ defining the quiver q. Then σpεq transforms it to a new basis te1
iu of Λ,

defining a quiver isomorphic to q1:

teiu “ te
p0q
i u

µ
ε1
k1ÝÑ te

p1q
i u

µ
ε2
k2ÝÑ . . .

µ
εm
kmÝÑ te

pmq
i u

π
ÝÑ te1

iu (135)

Lemma 4.5. The matrix Cσ “ pcijq expresses the vectors te1
iu via teju:

e1
i “

ÿ

jPI

cijej , @i P I. (136)

Proof. Since εs “ sgnpc
ps´1q
ks

q, the half reflection µεs
ks

coincides with the transformation (132).

Corollary 4.6. The skew-symmetric matrix εq1 of q1 is given by εq1 “ CσεqC
T
σ .

Proof. It follows directly from (136) and the definition of εq.

Corollary 4.6 asserts that Cσ determines the isomorphism class of q1. In particular, if σ is a
cluster DT-transformation (i.e., Cσ “ ´Id), then q1 “ q.
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A sign-coherent presentation of cluster transformations. Recall the vectors f ε
s and the

quantum cluster transformation Φpiq, see (80) and (81):

Φpiq “ AdΨpXfε
1

qε1 ˝ . . . ˝ AdΨpXfεm
qεm ˝ iεpiq. (137)

We consider the positive cone generated by the basis teiu

Λ` :“ ‘iPI Zě0ei.

The sign-coherence property of C-matrices from Theorem 4.2 is equivalent to the following.

Theorem 4.7. Given a quiver cluster transformation σ : q Ñ q1, for the canonical sequence ε

of signs we have
f ε
s P Λ`, @s P t1, . . . ,mu. (138)

This is the unique sequence of signs for which (138) holds.

Proof. By the definition (80) of the vectors f ε
s , they are exactly the vectors εse

ps´1q
ks

in (135).

Recall that pTq is the algebra of q-commutating power series in the basis tXeiu. Since for
the canonical sequence of signs ε each of the Xfε

s
is a monomial with non-negative exponents in

this basis, it make sense to consider a product of formal power series:

Ψpiq :“ ΨpXfε
1

qε1 . . .ΨpXfε
m

qεm P pTq. (139)

Then the quantum cluster transformation (81) can be written as

Φpiq “ AdΨpiq ˝ iεpiq. (140)

Decompositions of cluster transformations. One can exchange permutations π and quiver
mutations: π ˝ µk “ µπpkq ˝ π. Therefore every quiver transformation σ can be decomposed as

σ “ πσ ˝ iσ,

where iσ is a sequence of cluster mutations and πσ is a permutation. By (140), we can decompose
the quantum cluster transformation Φpσq into two parts

Φpσq :“ AdΨpiσq ˝ Σσ, Σσ :“ iεpiσq ˝ Φpπσq (141)

By Lemma 4.5, the Σσ corresponds to the change of basis, also encoded by the C-matrix.

Theorem 4.8 ([K13]). Let σ1, σ2 be two cluster transformations starting from the same quiver.

1. The following are equivalent

Φpσ1q “ Φpσ2q ðñ Σσ1
“ Σσ2

ðñ Cσ1
“ Cσ2

. (142)

2. If σ1 ˝ σ´1
2 is a permutation, then the corresponding formal power series are the same

Ψpiσ1
q “ Ψpiσ2

q (143)
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Remark. The first part of Theorem 4.8 is a reformulation of Theorem 3.2. It asserts that
the C-matrices determine cluster transformations. The second part asserts that every cluster
transformation σ : q Ñ q1 canonically determines a formal power series

Ψσ “ 1 ` higher order terms P pTq (144)

which does not depend on the decomposition of σ.
As an application, the q Ñ 1 limit of AdΨσ gives rise to the F-polynomials from [FZIV].

Precisely, recall the double of the quantum torus algebra Tq obtained by adding new generators
tAeiuiPI satisfying

AeiAej “ AejAei ; XeiAej “

"
q2AejXei if i “ j,

AejXei otherwise.

Let rΨσ, Ais :“ ΨσAiΨ
´1
σ A´1

i P pTq. Then the F-polynomials associated to σ are

Fi “ lim
qÑ1

rΨσ, Ais, i P I.

Now we can state the following crucial result.

Theorem 4.9 ([K12, Th.6.5]). If K is a cluster DT-transformation, then the formal power
series ΨK is the quantum Donaldson-Thomas series (10).

4.2 An example: quantum cluster variety for the quiver of type A2

Let q “
`
Λ, te1, e2u, p˚, ˚q

˘
be a rank 2 quiver with pe1, e2q “ 1. Then

Xe1Xe2 “ qXe1`e2 “ q2Xe2Xe1 .

DT-transformation and the quantum pentagon relation. Let σ1 “ µ2 ˝µ1. The canon-
ical sequence of signs for σ1 is ε “ t1, 1u. The Σσ1

is determined by a change of basis:

te1, e2u
µ1

ÝÑ t´e1, e2u
µ2

ÝÑ t´e1,´e2u. (145)

We have
f ε
1 “ e1, f ε

2 “ e2.

Therefore
Ψpiσ1

q “ ΨpXe1qΨpXe2q.

Let σ2 “ π12 ˝ µ2 ˝ µ1 ˝ µ2, where π12 is the permutation exchanging 1 and 2. The canonical
sequence of signs for σ2 is ε “ t1, 1, 1u. The Σσ2

is determined by a change of basis:

te1, e2u
µ2

ÝÑ te1 ` e2,´e2u
µ1

ÝÑ t´e1 ´ e2, e1u
µ2

ÝÑ t´e2,´e1u
π12ÝÑ t´e1,´e2u. (146)

We have
f ε
1 “ e2, f ε

2 “ e1 ` e2, f ε
3 “ e1.

Therefore
Ψpiσ2

q “ ΨpXe2qΨpXe1`e2qΨpXe1q.
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Note that Σσ1
“ Σσ2

. Therefore σ1 is equivalent to σ2. In this case, the identity (143) gives
rise to the Faddev-Kashaev pentagon relation of quantum dilogarithms

ΨpXe1qΨpXe2q “ ΨpXe2qΨpXe1`e2qΨpXe1q. (147)

By Definition 3.5, σ1 “ σ2 is the cluster DT-transformation for q. Formula (147) factorizes
the quantum DT-series Eq in two different ways.

The canonical basis and DT-transformation. There are 5 basic polynomials

P1 “ Xe1 , P2 “ X´e2 , P3 “ X´e1´e2`X´e1 , P4 “ X´e1`Xe2´e1`Xe2 , P5 “ Xe2`Xe1`e2

satisfying
Pi`2Pi “ 1 ` qPi`1, i P Z{5Z.

The polynomials
q´cdP c

i`1P
d
i , c, d P Zě0, i P Z{5Z

give rise to a linear basis of OqpXqq parametrized by AqpZtq

IApa, bq “

$
’’’’&
’’’’%

qabP´b
2 P a

1 if a ě 0, b ď 0;
q´abP a

1 P
b
5 if a ě 0, b ě 0;

qabP b
5P

´a
4 if a ď 0, b ě 0;

qpb´aqbP b´a
4 P´b

3 if a ď b ď 0;

qapa´bqP´a
3 P a´b

2 if b ď a ď 0.

The basis tIApa, bqu admit the following properties:

1. IApa, bq “ Xae1`be2 ` higher order terms.

2. IApa, bq is selfdual for the involutive anti-automorphism ˚ such that ˚Xv “ Xv , ˚ q “ q´1.

3. tIApa, bqu is compatible with cluster mutations.

4. The DT-transformation is a Zrq, q´1s-linear isomorphism preserving the basis

DT : OqpXqq
„

ÝÑ OqpXqq, Pi ÞÝÑ Pi`3. (148)

The map DX . Consider the opposite quiver ´q “
`
Λ, te1, e2u, p˚, ˚q˝

˘
such that pe1, e2q˝ “

´1. Its associated quantum torus T´q has generators X˝
v , v P Λ and relations

X˝
vX

˝
w “ qpv,wq˝X˝

v`w.

There are 5 basic polynomials

Q1 “ X˝
e1

`X˝
e1`e2

, Q2 “ X˝
´e2

`X˝
e1´e2

`X˝
e1
, Q3 “ X˝

´e1´e2
`X˝

´e2
, Q4 “ X˝

´e1
, Q5 “ X˝

e2
.

satisfying
Qi`2Qi “ 1 ` q´1Qi`1, i P Z{5Z.
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Similarly the polynomials

qcdQc
i`1Q

d
i , c, d P Zě0, i P Z{5

provide a linear basis of OqpXq˝q

IA˝pa, bq “

$
’’’’&
’’’’%

q´abQ´b
2 Qa

1 if a ě 0, b ď 0;
qabQa

1Q
b
5 if a ě 0, b ě 0;

q´abQb
5Q

´a
4 if a ď 0, b ě 0;

qpa´bqbQb´a
4 Q´b

3 if a ď b ď 0;

qapb´aqQ´a
3 Qa´b

2 if b ď a ď 0.

Here tIA˝pa, bqu satisfy the same properties as tIApa, bqu.
There is an natural isomorphism

i : T´q
„

ÝÑ Tq, X˝
v ÞÝÑ X´v, q ÞÝÑ q´1.

The map DX is an isomorphism

DX :“ DTq ˝ i : OqpX´qq
„

ÝÑ OqpXqq, IA˝pa, bq ÞÝÑ IApa, bq, q ÞÝÑ q´1. (149)

4.3 Canonical bilinear form on ˚-representations of quantum cluster varieties

Let HX be a split torus with the group of characters given by the kernel of the form p˚, ˚q on
the lattice Λ. Then, see [FG2, Section 2.2], the cluster Poisson variety X is fibered over the HX :

θ : X ÝÑ HX .

The subalgebra of functions θ˚OpHX q is the center of the Poisson algebra OpX q.
There is a q-deformation of the Poisson algebra OpX q is given by the ˚-algebra OqpX q.
The center of OqpX q is canonically identified with the algebra OpHX q [FG2, Section 3.4.1].
A cluster Poisson variety X gives rise to a Hilbert space HX with the scalar product x˚, ˚y

together with the following quantisation data [FG4]:

• A unitary projective action of the cluster modular group Γ in the Hilbert space HX .

• A Γ-equivariant ˚-representation of the ˚-algebra OqpX q in the Hilbert space HX .

• A decomposition of the unitary representation HX of the cluster modular group Γ into an
integral of Hilbert spaces HX ,λ, parametrised by the real positive points λ P HX pR˚

`q:

HX “

ż

λPHX pR˚
`q

HX ,λdλ. (150)

A point λ P HX pR˚
`q gives rise to a character Cλ of the center of OqpX q, given by evaluation

of polynomials P P OpHX q on λ. The center acts on the HX ,λ by the character Cλ.

• Any cluster transformation C of X gives rise to a unitary operator

pC : HX ,λ ÝÑ HX ,λ. (151)

One has {C1 ˝ C2 “ µ ¨ xC1 ˝ xC2, where µ P C˚, |µ| “ 1.
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In this section we establish one more feature of this picture:

Theorem 4.10. Assume that the Donaldson-Thomas transformation for a cluster Poisson va-
riety X is a cluster transformation, denoted by DTX . Then there is

• A Γ-equivariant non-degenerate bilinear form, symmetric up to a unitary scalar µX P Up1q:

BX : HX b HX ˝ ÝÑ C, BX pv,wq “ µX ¨ BX ˝pw, vq, |µX | “ 1. (152)

It provides a non-degenerate pairings

BX ,λ : HX ,λ b HX ˝,´λ ÝÑ C. (153)

Proof. According to (151), the cluster DT-transformation DTX gives rise to a unitary operator

yDTX : HX ÝÑ HX . (154)

Since the cluster transformation DTX is in the center of the cluster modular group, the
operator yDTX commutes with the action of the cluster modular group Γ.

Recall the isomorphism of quantum spaces from Lemma 3.8:

iX : Xq ÝÑ X ˝
q , i˚X : OqpX ˝q ÝÑ OqpX q,

i˚X pX˝
i q “ X´1

i , i˚X pqq “ q´1.
(155)

Let H be the complex conjugate of a complex vector space H. It is the same real vector
space with a new complex structure given by c ˝ v :“ cv, c P C, v P H.

Let tX 1
iu be cluster coordinates in Oq´1pX q, and tXiu the ones in OqpX q. Given a repre-

sentation ρ of the ˚-algebra OqpX q in a Hilbert space HX we get a new representation ρ of the
˚-algebra OqpX q in HX by setting

ρpX 1
iq :“ ρpXiq, X 1

i P OqpX q, Xi P OqpX q.

Indeed, we have

ρpX 1
aX

1
b ´ qpa,bqX 1

a`bq “ ρpXaqρpXbq ´ qpa,bqρpXa`bq “ 0.

This construction is compatible with interwiners between the Hilbert spaces assigned to
quivers, lifting cluster transformations. In particular the assignment HX Ñ HX is Γ-equivariant.

Assume now that |q| “ 1. Then the Γ-equivariant representation ρ of the ˚-algebra OqpX ˝q
in the Hilbert space HX ˝ gives rise to a Γ-equivariant representation ρ of the ˚-algebra Oq´1pX ˝q

in HX ˝ . Applying the isomorphism i˚
X

we get a Γ-equivariant unitary isomorphism

piX : HX ÝÑ HX ˝ . (156)

The composition of the operators (154) and (156) is a Γ-equivariant unitary operator

pDX :“ piX ˝ yDTX : HXÝÑHX ˝ .

Therefore we get a complex bilinear Γ-equivariant non-degenerate form

BX : HX b HX ˝ ÝÑ C, BX pv,wq :“ xv, pDX pwqy. (157)
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Since DX ˝ ˝DX “ IdX is the identity map, the composition of the unitary operators pDX and
pDX ˝ is the identity map up to a unitary constant µX P Up1q:

pDX ˝ ˝ pDX : HX ÝÑ HX , pDX ˝ ˝ pDX “ µX ¨ Id, |µX | “ 1. (158)

Therefore

BX pv,wq “ xv, pDX pwqy “ xpDX ˝pvq, pDX ˝ ˝ pDX pwqy
p158q

“

µX ¨ xpDX ˝pvq, wy “ µX ¨ xw, pDX ˝ pvqy “ µX ¨ BX ˝pw, vq.
(159)

Applications. Given an oriented decorated surface S, we denote by S˝ the decorated surface
S with the opposite orientation. Then we have a canonical isomorphism:

X ˝
G,S “ XG,S˝ .

Therefore the map D˚
X

“ piX ˝ DTq˚ provides us an involution

D˚
X : OqpXG,Sq ÝÑ Oq´1pX ˝

G,Sq “ Oq´1pXG,S˝q.

4.4 Proof of Theorems 3.10, 3.6

Proof of Theorem 3.10. By definition, K is a cluster DT-transformation if and only of
CK “ ´Id. The rest follows directly from the next Lemma.

Lemma 4.11 ([NZ, Th.1.2, (1.12)]). For any cluster transformation σ, we have CF pσqCσ “ Id.

Proof of Theorem 3.6. It suffices to show that

CK “ ´Id ùñ Cσ˝K˝σ´1 “ ´Id.

It is trivial when σ is a permutation. We prove the case when σ “ µk is a cluster mutation.
Set εq “ pεijq. By Lemma 4.3 we get

Cµk˝K “ ´Id ` D, where D “ pDijq, Dij :“

$
&
%

0 if j ‰ k,

r´εiks` if j “ k, i ‰ k,

2 if j “ k, i “ k.

(160)

Note that D2 “ 2D. Therefore
`
Cµk˝K

˘2
“

`
´ Id`D

˘2
“ Id´ 2D `D2 “ Id. By Lemma 4.11,

CF pKq˝µk
“ CF pµk˝Kq “

`
Cµk˝K

˘´1
“ ´Id ` D.

Here F pKq ˝ µk is a cluster transformation from ´µkpqq to ´q. Note that ε´q “ p´εijq. Using
Lemma 4.3 again, we get Cµk˝F pKq˝µk

“ ´Id. By Lemma 4.11, we have

Cµk˝K˝µk
“ pCF pµk˝K˝µkqq

´1 “ pCµk˝F pKq˝µk
q´1 “ ´Id.
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A combinatorial characterization of cluster DT-transformations [K12]. A transfor-
mation σ : q Ñ q1 is reddening if all the entries of Cσ are non-positive.

Lemma 4.12. If σ is reddening, then F pσq is reddening.

Proof. If F pσq is not reddening, then at least one of the entries of CF pσq (say dij) is positive.
By the sign-coherence of C-matrix, the entries on the i-th row of CF pσq are all non-negative.
Since σ is reddening, the entries on i-th row of the product CF pσqCσ are all non-negative, which
contradicts the fact that CF pσqCσ “ Id.

Proposition 4.13. If σ : q Ñ q1 is reddening, then there exists a unique permutation π : q Ñ q1

such that π ˝ σ is the cluster DT-transformation for q.

Proof. Let ci be the i-th row vector of Cσ. Let di “ pdi1, . . . dinq be the i-th row vector of CF pσq.
Let ei “ p0, ..., 1, ..., 0q be the i-th unit vector. By Lemma 4.11

di1c1 ` di2c2 ` . . . ` dincn “ ei, @i P t1, ..., nu.

By Lemma 4.12, every dikck P pZě0qn. Therefore for each i there is a unique j :“ πpiq such that
dijcj “ ei. Since dij P Zď0 and cj P pZď0qn, we get dij “ ´1, cj “ ´ei. Thus Cπ˝σ “ ´Id.

Corollary 4.14. If σ : q Ñ q1 is reddening, then the formal power series Ψσ in (143) is the
quantum DT-series for q.

Proof. Follows directly from Theorem 4.9 and Proposition 4.13

The following Proposition provides a criterion for recognizing permutations. Its proof goes
the same line as that of Proposition 4.13.

Proposition 4.15. A cluster transformation σ : q Ñ q1 is a permutation if and only if all the
entries of Cσ are non-negative.

Proof. We prove the “if” part. The other direction is clear. Using the same argument as in the
proof of Lemma 4.13, it follows that there is a cluster permutation τ such that Cτ˝σ “ Id. By
Corollary 4.6, τ ˝ σ maps the quiver q to itself. By Theorem 3.2, τ ˝ σ is an identical map.

5 Two geometric ways to determine cluster DT-transformations

for XPGL2,S

5.1 X -laminations and cluster DT-transformations for XPGL2,S

We start with a geometric interpretation of integral tropical points of the space XPGL2,S.
Laminations on closed surfaces were defined by Thurston. An important subclass of lamina-

tions is given by integral laminations. There are two kinds of laminations on decorated surfaces,
discussed in [FG1, Section 12], [FG1a]. Let us recall the important for us integral X -laminations
(also called unbounded measured laminations in loc.cit.).

We alter a decorated surface S by cutting little discs around the punctures. Abusing notation,
we denote it by S. We define the punctured boundary of S as the boundary of S minus the special
points. It is a union of punctured boundary components, which are either boundary circles or
boundary intervals. The boundary circles are parametrized by the punctures on the original
decorated surface. Each boundary interval is bounded by special points.
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Definition 5.1. An integral X -lamination on a decorated surface S is a union of finitely many
non-intersecting and non-self-intersecting simple closed loops and arcs connecting punctured
boundary components, each considered with a positive integral weight, plus

• A choice of an orientation of each boundary circle of S which bears an arc of the lamination.

In addition, we require that

• There are no trivial arcs between the neighboring boundary intervals.

• There are no loops homotopy equivalent to boundary circles.

Denote by LX pS;Zq the set of integral X -lamination on S.

The group pZ{2Zqn acts on LX pS;Zq by altering orientations of the boundary circles bearing
arcs of the laminations. The action of pZ{2Zqn on XPGL2,S by altering framings assigned to
punctures is positive. Therefore it can be tropicalized and acts on the set XPGL2,SpZtq.

The mapping class group ΓS acts on both LX pS;Zq and XPGL2,S.
The following result is [FG1, Theorem 12.1] in the case of rational laminations on a surface

with punctures. See the general case in [FG1a].

Theorem 5.2. There is a canonical ΓS ˆ pZ{2Zqn-equivariant isomorphism of sets

LX pS;Zq
„

ÝÑ XPGL2,SpZtq.

Each ideal triangulation T of S gives rise to a cluster Poisson coordinate system tXEu of
XPGL2,S, parametrized by the edges E of T . The tropicalization of these coordinates is a cluster
tropical coordinate system txEu on the set LX pS;Zq, defined as follows.

Let l P LX pS;Zq. We twist each of its arcs ending at a boundary circle infinitely many times
along the orientation of this boundary circle entering the definition of l, see Figure 7.

Figure 7: Rotating arcs of a lamination ending on a boundary circle.

We count the minimal intersection number of each connected component of the obtained finite
collection of curves as explained on Figure 8, and multiply it by the weight of the component.
Note that the part of a curve rotating around a vertex does not contribute to the coordinates. In
particular, the infinite number of intersections of an arc circling around a vertex do not count.

Each ideal triangulation T of S gives rise to a collection of basic laminations tl`Eu assigned
to the edges E of T . The lamination l`E is a single arc on S with multiplicity 1, defined as
follows. Take an end of E. If it goes to a puncture, we just add the canonical orientation of the
corresponding boundary circle, determined by the orientation of S. If it ends at a special point,
we rotate the end slightly following the orientation of the boundary.

Let txF u be the coordinate system assigned to the triangulation T . By Figure 8, we have

xEpl`Eq “ 1, otherwise xF pl`Eq “ 0.
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Figure 8: Counting contribution of an arc to the coordinate xE assigned to a diagonal E of a
quadrilateral. An arc going around a single vertex contributes 0. An arc crossing the diagonal
left-to-right contributes `1, and the arc crossing the diagonal right-to-left contributes ´1. These
rules do not require an orientation of the arc.

It means that tl`Eu are the basic positive laminations for the ideal triangulation T . The termi-
nology “basic positive laminations” was suggested by this example.

The longest element w0 “ p1, 1, ..., 1q P pZ{2Zqn acts on LX pS;Zq by altering the orientations
assigned to all boundary circles. Recall the cyclic shift by one action rS P ΓS. We consider

CS “ rS ˝ w0 P ΓS ˆ pZ{2qn. (161)

Proposition 5.3. The map CS sends a positive basic lamination l`E to a negative one:

xEpCSpl`Eqq “ ´1, otherwise xF pCSpl`Eqq “ 0.

Proof. Given an edge E of the ideal triangulation T , there are three cases:
1. The edge E connects two boundary circles, which could coincide. Altering orientations of

the boundary circles we change the counting sign for the arc intersecting E, see Figure 8.
2. The edge E connects two boundary intervals. The rotation rS by one changes the multi-

plicity `1 intersection to the multiplicity ´1 intersection, see Figure 9.

Figure 9: An edge E connecting two boundary intervals.

3. The edge E connects a boundary circle with a boundary interval. The resulting lamination
CSpl`Eq is shown on the right of Figure 10.

Figure 10: An edge E connecting a boundary circle with a boundary interval.
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The following result is the G “ PGL2 case of Theorem 1.3.

Theorem 5.4. If S is admissible, then the action of CS on XPGL2,S is the cluster DT-transformation.

Proof. If S is admissible, then the action of CS is a cluster transformation ([FG1]). The rest
follows from Theorem 3.4 and Proposition 5.3.

When S has a single puncture and no special points, i.e., S is not admissible, the action
of CS “ w0 P Z{2Z is not a cluster transformation. For example, when S is a punctured
torus, all cluster transformations preserve each of two tropical hemispheres, but the action of
w0 interchanges them (cf. [FG3]).

5.2 Cluster divisors at infinity and cluster DT-transformations for XPGL2,S

We recall the correspondence between basic laminations and cluster divisors of X -variety at
infinity borrowed from [FG3]. Using this correspondence, we give an alternative (rather simple)
proof of Proposition 5.3 for the case when S is a disk without punctures. We wish to apply the
same approach to more general cases in the future.

Basic laminations and cluster divisors at infinity. Let Xk be a cluster coordinate on a
cluster Poisson variety X , assigned to a basis vector ek of a quiver q “ pΛ, teiu, p˚, ˚qq. Deleting
ek, we obtain a subquiver qek , whose lattice is spanned by the basis vectors different from ek,
with the induced form. Mutating the quiver qek we get a cluster Poisson variety Xek of dimension
one less than that of X .

The variety Xek sits naturally on the boundary of X in two different ways:

X`
ek

Ă X Ą X´
ek
. (162)

Namely, adding the coordinate Xk to any cluster coordinate system tX 1
ju on Xek , we get a

rational cluster coordinate system on X . The cluster divisor X`
ek

is given in this coordinate
system by the equation Xk “ 0. Mutations at the other directions do not change the equation
Xk “ 0, as is clear from (82). Similarly, the cluster divisor X´

ek
is obtained by setting Xk “ 8.

Recall the basic laminations l`Xk
, l´Xk

P X pZtq associated to the coordinate Xk. For a generic

p P X`
ek

one has Xkppq “ 0, while the values tXjppqu of the rest coordinates tXju are well defined
and non-zero. Thus the irreducible divisor X`

ek
can be naturally identified with l`Xk

:

ord
X

`
ek

pXkq “ Xt
kpl`Xk

q “ 1, ord
X

`
ek

pXjq “ Xt
jpl`Xk

q “ 0.

Equivalently, l`Xk
is represented by a generic path pptq in X which approaches p as t Ñ 0.

Similarly, the divisor X´
ek

is identified with l´Xk
.

If the DT transformation DTX of X is a cluster transformation, then it maps l`Xk
to l´Xk

.

Therefore it gives rise to a birational map from X`
ek

to X´
ek
. Note that X`

ek
and X´

ek
are both

isomorphic to the cluster Poisson variety Xek . Therefore DTX induces a birational map

ĆDTX : Xek ÝÑ Xek . (163)

Conjecture 5.5. The induced map (163) is the DT-transformation of Xek .

Remark. If ek is a sink of the quiver q, i.e., pek , ejq ě 0 for all j, then the Conjecture follows
directly from [KS1, p.138, Proposition 16].
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The cluster divisors at infinity for the space XPGL2,S [FG3]. Let us adopt a dual point of
view on the definition of the space XPGL2,S. We assume that given a framed PGL2-local system
on S, the framing is defined as a covariantly constant section of the associate P1-bundle over
the punctured boundary of S, that is over BS ´ tspecial pointsu.13 A dual ideal triangulation
T of S is a triangulation of S whose vertices are either in the boundary circles, or inside of the
boundary intervals, so that each boundary interval carries just one vertex of T .
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Figure 11: Cutting a polygon along the ideal edge E, getting two new special points.

Figure 12: Cutting a punctured disk along the ideal edge E, getting two new special points.

Given an ideal edge E of S, the cluster variety assigned to E, sitting on the boundary of the
space XPGL2,S, is described as follows, see Figures 11-12. Cut the surface S along the edge E,
getting a new decorated surface SE, which may be disconnected. Its special points are the ones
inherited from S plus two new ones: the centers of the two new edges obtained by cutting the
edge E. If E ends at a boundary circle, then cutting along E, the boundary circle becomes a
boundary interval ending at the two new special points. The pair of divisors at infinity assigned
to E are both identified with the moduli space XPGL2,SE :

X`
PGL2,SE

Ă XPGL2,S Ą X´
PGL2,SE

Proposition 5.3 is a direct consequence of Proposition 5.6.

Proposition 5.6. For any decorated surface S, the rational functions C˚
SpXiq on the space

XPGL2,S have the following property:

1. If i is different from k, the function C˚
SpXiq, evaluated on a generic path pptq representing

the basic lamination l`Xk
, has a finite nonzero limit as t Ñ 0.

2. The function C˚
SpXkq, evaluated on such a path pptq, has a simple pole as t Ñ 0.

Proposition 5.7. Proposition 5.6 is true when S is a disk without punctures.

13In the original definition, the framing is a reduction to a Borel subgroup near every marked point.
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Proof. Let C be a finite subset of the circle S1. Let R be an edge with the vertices tr‚, r˝u Ă
S1 ´ C. It seperates S1 into two arcs. The points of C on the arc going clockwise from r‚ form
a subset C‚. The rest points of C form another subset C˝. Therefore C “ C‚ Y C˝.

Denote by XC the space of configurations of points on P1, parametrized by the set C. Its
partial compactification XC has a divisor X`

C pRq consisting of the configurations, of which the
points parametrized by C‚ are “very close” to a given point x‚ P P1. Equivalently, the points
parametrized by C˝ are “very close” to a given point on x˝ P P1, see Figure 13.

Figure 13: The red dashed edge R describes a divisor at infinity.

Consider the two connected intervals of S1 ´ C containing the points r‚, r˝. Their ends are
two ‚-vertices and two ˝-vertices. They form a quadrilateral. Let E and F be its diagonals. We
assume that E crosses R “from left to right”, see Figure 14.

D

R

E

R

F

Figure 14: Rotating the set C clockwise and keeping the triangulation intact, amounts to rotating
the triangulation counterclockwise. So the edge E moves to the edge F .

Let T be a triangulation of the disc with vertices at C, containing the edge E. Let D

be an edge of T . Denote by QD the quadrilateral of T containing D as a diagonal. Every
configuration in XC assigns to the vertices of QD a quadruple x1, ..., x4 P P1 so that D “ px1, x3q.
Its corresponding cluster X -coordinate is the cross-ratio of x1, ..., x4:

XD “ r`px1, x2, x3, x4q :“
px1 ´ x2qpx3 ´ x4q

px2 ´ x3qpx1 ´ x4q
. (164)

Let pptq be a path approaching a generic point p of X`
C pRq. We consider the limit of XDppptqq

as pptq approaches p. If D is different from E, then QD cannot contain two ‚-vertices and two
˝-vertex simultaneously. Therefore XDppptqq has a finite nonzero limit. For the edge E, the
quadrilateral QE contains two ‚-vertices and two ˝-vertex. By (164), XEppptqq Ñ 0 as pptq Ñ p.
Thus the path pptq represents the basic positive lamination l`XE

.

Let T 1 be the “counterclockwise rotation by one” of T . It contains the edge F . By (164),

XF ppptqq “ C˚
SpXEqppptqq Ñ 8, as pptq Ñ p.
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For any edge D1 of T 1 different from F , the limit of XD1ppptqq is finite and nonzero. These are
precisely the properties we needed in Proposition 5.6.

6 Birational Weyl group action on the space AG,S

Let G be a split semi-simple group. Let us assume that S has n many punctures.

The canonical central element sG P G is the image of

ˆ
´1 0
0 ´1

˙
under a principal embedding

SL2 ãÑ G. A twisted G-local system on S is a G-local system on the tangent bundle of S minus
zero section with monodromy sG around a loop given by rotating a tangent vector by 360˝ at a
point of S. Since s2G “ 1, the loop orientation is irrelevant.

Recall the principal affine space A “ G{U. Elements of A are called decorated flags.

Definition 6.1. The moduli space AG,S parametrizes twisted G-local systems on S with an
additional data, a decoration, given by a reduction to a decorated flag near each marked point.

This implies that the monodromy around each puncture is unipotent. However, thanks to
the freedom of choices of decorations, the dimension of dimAG,S will not decrease. For example,
if S has only punctures, then one has

dimAG,S “ dimXG,S.

If the group G has trivial center, then the principal affine space A is the moduli space of
pairs pU, χq, where U is a maximal unipotent subgroup of G, and χ : U Ñ A1 is a non-degenerate
character (cf. [GS, Section 1]). For general G, there is a canonical non-degenerate character χA

assigned to a decorated A P A.
The group G acts on A on the left. The stabilizer UA of A P A is a maximal unipotent

subgroup of G. Recall the set I indexing simple positive roots of G. The character χA provides
an isomorphism

iA : UA{rUA,UAs
„

ÝÑ AI . (165)

Let Σ : AI Ñ A1 be the sum map. Then χA “ Σ ˝ iA. This characterizes the map iA.
Let p be a puncture. A decoration at p is a decorated flag Ap in the fiber of LA near p,

invariant under the monodromy around p. It defines a conjugacy class in the unipotent subgroup
UAp preserving Ap. So we get a regular map

µp : AG,S ÝÑ UAp{rUAp ,UAps
iAp
“ AI . (166)

The composition µp ˝ σ is called the total potential Wp at the puncture p. It is a sum of the
components, called partial potentials, parametrized by the simple positive roots α:

Wp “
ÿ

αPI

Wp,α. (167)

Let R be the lattice spanned by the simple positive roots of G. For any abelian group A,
we have HompR,Aq “ AI . Using the embedding Gm ãÑ A we get an open embedding

i : T :“ HompR,Gmq “ pGmqI ãÑ AI .
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The monodromy map, followed by the birational isomorphism i´1, provides a rational map

rµp :“ i´1 ˝ µp : AG,S ÝÑ T. (168)

Summarizing, we arrive at a commutative diagram, related to a puncture p on S:

T “ HompR,Gmq

i
��

AG,S

rµp

77♦♦♦♦♦♦♦♦♦♦♦♦ µp // U{rU,Us “ AI

ř
// A

The Cartan group H of G acts from the right on A. Therefore the group Hn acts on AG,S

by rescaling decorations at punctures

Hn ˆ AG,S ÝÑ AG,S, ph, aq ÞÝÑ h ¨ a (169)

Forgetting the decorations near punctures, we get a principal Hn-fibration over the moduli space
LocunG,S of twisted G-local systems on S with unipotent monodromies around the punctures:

pA : AG,S ÝÑ LocunG,S. (170)

The projection pA and the rational map rµ “:
ś rµp provide a diagram

AG,S

pA

��

rµ // Tn

LocunG,S

(171)

The Weyl group acts on the lattice R, and hence on the torus T.

Theorem 6.2. For each puncture p of S, there is a canonical birational action of the Weyl
group W on the space AG,S such that

1. The group W acts along the fibers of the projection pA. It alters only the decoration at p.

2. The projection rµp is W -equivariant.

3. The actions at different punctures commute. So the group W n acts birationally on AG,S.

4. The action ˝ of the group W n intertwines the action ¨ of Hn on AG,S:

Hn ˆ AG,S ÝÑ AG,S, w ˝ ph ¨ aq “ wphq ¨ pw ˝ aq, w P W n, h P Hn, a P AG,S.

Proof. The map pA has a multivalued “section” rµ´1p1q. For any generic u P LocunG,S, we choose
an element

s P rµ´1
p p1q X p´1

A
puq.

Since the fiber p´1
A

puq is an Hn-torsor, the s chosen induces an isomorphism

Hn ÝÑ p´1
A

puq, h ÞÝÑ h ¨ s. (172)
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We define an action ˝ of the group W n on the fiber p´1
A

puq, making it W n-equivariant, setting

w ˝ ph ¨ sq :“ wphq ¨ s. (173)

It remains to show that the action ˝ does not depend on the choice of s. Let X˚pYq be
the character group of a split torus Y, and X˚pYq the cocharacter group. There is a natural
embedding X˚pTnq Ă X˚pHnq. Its dual X˚pHnq Ñ X˚pTnq provides an isogeny:

Hn “ X˚pHnq b Gm ÝÑ Tn “ X˚pTnq b Gm. (174)

Following the definition of µ̃, it is easy to show that (174) coincides with the map

Hn
(172)

ÝÝÝÝÑ p´1
A

puq
µ̃

ÝÑ Tn. (175)

The choices of s are differed by kernel elements of (174). Since (174) is W n-equivariant, its
kernel is W n-invariant. Thus the W n-action ˝ in (173) does not depend on the choices of s.

Comparing with the rational Weyl group action on the space XG,S. For any G, the
group W n acts by birational automorphisms of the space XG,S, see Section 1.2. Although it
looks like the W n-action on the space AG,S has nothing to do with it, they are closely related.

Here is an analog of diagram (171) for the space XG,S. There is a W n-equivariant projection

π : XG,S ÝÑ Hn, (176)

given by the semisimple part of the monodromies at the punctures, enhanced by framings.
For example, when G “ GLm, a generic monodromy a each puncture has m many different
eigenvalues. A framing near the puncture is equivalent to an ordering of these eigenvalues. It
gives rise to the projection (176). The Weyl group acts on XG,S by changing the ordering.

Forgetting the framing, we get a projection onto the moduli space of G-local systems

pX : XG,S ÝÑ LocG,S. (177)

The projection pX and the map π provide a diagram

XG,S
π //

pX

��

Hn

LocG,S

(178)

The Weyl group acts along the fibers of the map pX . The projection π is W n-equivariant. The
projection pX is a Galois cover over the generic point with the Galois group W n.

Weyl group action for G “ SL2 and tagged triangulations. The action of the group
pZ{2Zqn on the space ASL2,S was introduced in [FG1, p.186]. It is very closely related to the ideal
tagged triangulations of Fomin-Shapiro-Thurston [FST], [FT]. Namely, any ideal triangulation
T of S provides a cluster coordinate system CT on ASL2,S. However if S has more than one
puncture, not all cluster coordinate systems on the space ASL2,S can be interpreted this way. In
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this case the group pZ{2Zqn acts by cluster transformations, and so for any element w P pZ{2Zqn

there is a new cluster coordinate system CwT :“ w˚CT .
Any element w P pZ{2Zqn is determined uniquely by a subset Pw of the punctures, so that

w “
ź

pPPw

wp.

Here wp is the generator of Z{2Z assigned to a puncture p. The cluster coordinate system
CwT coincides with Fomin-Shapiro-Thurston’s cluster coordinate system assigned to the tagged
triangulation obtained by putting tags at the ends of all arcs of T ending at the punctures p P Pw.
This way we get almost all cluster coordinate systems, but not all of them. The exceptional ones
are assigned to tagged triangulations which can have a puncture with just two arcs entering,
which must be isotopic arcs, one is tagged, one is not, so that their other ends are either both
tagged, or not. We discussed tagged triangulation in detail in Section 7.2.

The very existence of the W n-action suggests a generalization of majority of tagged trian-
gulations for the group SLm: they are obtained by the action of elements of the group W n on
the cluster coordinate systems assigned to ideal webs on S studied in [G].

7 Example of cluster DT-transformations

We consider a basic example of the DT-transformation for the punctured disk, which serves as
a basic model for studying the cluster nature of Weyl group actions in the next Section.

7.1 Cluster DT-transformation for the punctured disc

Cluster set-up. A quiver q can be described by a skew-symmetric matrix εq “ pεijq, where

i, j P I “ t1, . . . , Nu, εij “ #tarrows from i to ju ´ #tarrows from j to iu.

Let Fq :“ QpX1, . . . ,XN , A1, . . . , AN q be the field of rational functions associated to q.
Each k P I gives rise to a mutated quiver q1 “ µkpqq such that εq1 is given by Formula (49).

Let Fq1 :“ QpX 1
1, . . . ,X

1
N , A1

1, . . . , A
1
N q. Consider an isomorphism µ˚

k : Fq1 Ñ Fq:

µ˚
kX

1
i : “

#
X´1

k if i “ k

Xip1 ` X
´sgnpεikq
k q´εik if i ‰ k,

(179)

µ˚
kA

1
i : “

#
A´1

k p
ś

j|εijă0 A
´εij
j `

ś
j|εiją0 A

εij
j q if i “ k

Ai if i ‰ k.
(180)

The map µ˚
k is the cluster mutation at the direction k. It is involute.

Let π be a bijection from I to itself. Let q1 “ πpqq be the quiver obtained via relabeling the
vertices i of q by πpiq. It induces an isomorphism π˚ : Fq1 Ñ Fq, called a cluster permutation:

π˚X 1
i “ Xπ´1piq, π˚A1

i “ Aπ´1piq.
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Figure 15: The quivers q2, q3, and q4.

Basic example. Let N ě 2. Let qN be a quiver of N vertices. When N “ 2, it has no arrows.
When N ą 2, it is a cycle with vertices labelled clockwise from 1 to N . See Figure 15. 14

Let pi1, i2, . . . , iN q be a permutation of t1, 2, . . . , Nu. Define a cluster transformation of qN

τN :“ µi1 ˝ . . . ˝ µiN´1
˝ πiN´1,iN ˝ µiN´1

˝ . . . ˝ µi1 , (181)

where µk is the cluster mutation at the directions k, and πiN´1,iN is the cluster permutation
switching the labels iN´1, iN . We frequently write τ instead of τN .

Theorem 7.1. The cluster transformation τN does not depend on the choices of permutation.
It maps the quiver qN to itself. Thus τN is an order 2 element of the cluster modular group
ΓqN

. The induced isomorphism τ˚
N of the field FqN

is determined by

τ˚
NAi “ AiW, τ˚

NXi “
Fi

Xi´1Fi´2
, (182)

where

W “
Nÿ

j“1

1

AjAj`1
, Fi “ 1 ` Xi ` XiXi´1 ` . . . ` XiXi´1 . . . Xi´N`2.

Let r be the cluster permutation that relabels the vertex i of qN by i ´ 1. Since qN is
rotation invariant, r P ΓqN

.

Corollary 7.2. The composition K :“ r ˝ τN is the DT-transformation of qN .

Proof. By Theorem 7.1, we have

K˚Xi “ τ˚
NXi`1 “

Fi`1

XiFi´1
. (183)

By the explicit formulas of Fi, we have F t
i pl`j q “ 0 for all i, j P I. Therefore

pK˚Xiq
tpl`j q “ F t

i`1pl`j q ´ F t
i´1pl`j q ´ Xt

i pl`j q “ ´Xt
i pl

`
j q “ Xt

i pl´j q.

14 Starting from a Dynkin diagram of type DN , we assign orientations to each edge, obtaining quivers called
the Dynkin quivers of type DN . It is known that all the Dynkin quivers of type DN are equivalent to qN .
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7.2 Tagged ideal triangulations of a once-punctured disk.

We present a combinatorial model for the cluster transformation τN .
Let DN be a once-punctured disk with N special points on its boundary. The special points

of DN divide its boundary into N boundary intervals. Let m be the set of special points and
the puncture of DN . An ideal arc γ is a curve up to isotopy in DN such that:

• the endpoints of γ are two different points15 in m;

• γ does not intersect itself;

• except for the endpoints, γ is disjoint from m and the boundary of DN ;

• γ is not isotopic to a boundary interval of DN .

Following [FST, Definition 7.1], a tagged arc γ is an ideal arc γ tagged with some extra combi-
natorial data such that:

• if γ connects the puncture and a special point, we tag γ either plain or notched;

• if γ connects two special points, then we do not assign any data.

In the figures, the plain tags are omitted and the notched tags are presented by the ’ symbol.

Denote by A’pDN q the set of tagged arcs of DN . Two different tagged arcs α, β P A’pDN q
are called compatible when one of the following cases holds:

• if α and β both contain the puncture, then α and β are tagged in the same way unless
they correspond to the same ideal arc;

• if either α or β is disjoint from the puncture, then we require that α and β are disjoint
except for their endpoints.

Definition 7.3 ([FST]). A tagged ideal triangulation of DN is a maximal collection of piecewise
compatible tagged arcs. Let γ be a tagged arc contained in a tagged ideal triangulation T of DN .
A flip of T at γ is a transformation of T that removes γ and replace it with a puniqueq different
tagged arc γ1 that, together with the remaining arcs, forms a new tagged ideal triangulation T 1.

Figure 16: A tagged ideal triangulation corresponding to the quiver qN

15We require that the endpoints of γ are different in the case of once punctured disk. For a general decorated
surface S, the the endpoints of γ may coincide.
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The cardinality of every tagged ideal triangulation of DN is N ([FST, Theorem 7.9]). Let us
fix a tagged ideal triangulation T . Let us label the tagged arcs in T by 1 through N . It gives
rise to a quiver q by placing a vertex in the midpoint of each tagged arc and assigning an arrow
from the vertex i to the vertex j if the corresponding tagged arc i is to the right of the tagged
arc j. For example, the tagged ideal triangulation in Figure 16 gives rise to the quiver qN .

It is easy to show that a flip at a tagged arc is equivalent to the cluster mutation at the
corresponding vertices of the corresponding quiver. Therefore the transformation τN in Theorem
7.1 can be presented by a sequence of flips of the tagged ideal triangulations of DN .

Example. If N “ 2, then τ2 “ µ1 ˝ π1,2 ˝ µ1. As shown on Figure 17, we start from a tagged
ideal triangulation of D2 with arcs labelled by 1 and 2. The first cluster mutation µ1 removes
the plain arc 1 and replaces it with the notched arc 1 on the second graph. The permutation
π1,2 exchanges the labels of these two arcs. The last cluster mutation µ1 removes the plain arc
1 and replaces it with the notched arc 1 on the last graph. To summarize, the transformation
τ2 preserves the underlying triangulation but replaces each plain arc by a notched one.

Figure 17: The transformation τ2 “ µ1 ˝ π1,2 ˝ µ1.

Similarly, for N ą 2, τN notches all plain arcs, and therefore preserves qN . See Figure 18.

Figure 18: The transformation τN .

7.3 Proof of Theorem 7.1

We prove Theorem 7.1 in a more general setting for future use.

Definition 7.4. Let q be a quiver containing qN . The vertices of q are labelled by J. The
vertices of qN are labelled by I “ t1, . . . , Nu Ă J. We further assume that for each vertex k not
in qN , the number of arrows from k to qN equals the number of arrows from qN to k, i.e.,

@k P J ´ I,
ÿ

iPI

εki “ 0. (184)
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Lemma 7.5. Let q be as above. For k P J ´ I, there is a unique ck “ pck1, . . . , ckN q P ZN such
that

εki “ cki ´ ck,i´1, @i P I; (185)

mintck1, . . . , ckNu “ 0. (186)

Proof. The existence of ck follows from (184). The uniqueness of ck follows from (186).

Example 7.6. The quiver q on the left of Figure 19 contains q5 and satisfies (184). We have

c6 “ p0, 1, 0, 0, 0q, c7 “ p1, 1, 1, 0, 2q.

Mutating q at the direction 5, we obtain a new quiver q̃ on the right. Note that q̃ contains q4

and satisfies condition (184). We have

c̃5 “ p0, 0, 0, 1q, c̃6 “ p0, 1, 0, 0q, c̃7 “ p1, 1, 1,mint0, 2uq “ p1, 1, 1, 0q.

Figure 19: The right quiver is mutation of the left one at vertex 5. Both satisfy condition (184).

Theorem 7.7. Let q, ck be as above. The cluster transformation τN applying on the sub quiver
qN maps q to itself. The induced isomorphism of Fq is given by

τ˚
NAj “

"
AjW if j P I
Aj if j R I,

τ˚
NXj “

#
Xj

YjYj´1
if j P I

Xj

ś
iPI Y

cji
i if j R I,

where

W : “
ÿ

iPI

Qi

AiAi`1
, Qi : “

ź

kPJ´I

A
cki
k ; (187)

Yi : “
XiFi´1

Fi
, Fi : “ 1 ` Xi ` XiXi´1 ` . . . ` XiXi´1 . . . Xi´N`2. (188)

Proof. Theorem 7.7 is a generalization of Theorem 7.1. We prove it by induction on N .
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1. Theorem 7.7 holds for N “ 2. The cluster transformation τ2 mutates the quiver at the
vertices labelled by 1 and 2, then switch them. Condition (184) asserts that

εk1 ` εk2 “ 0, @k P J.

It follows directly τ2pqq “ q. By definition, we have

ck “ pck1, ck2q “ pmaxt0, εk1u, maxt0, εk2uq.

Therefore

τ˚
2A1 “ µ˚

2A2 “

ś
k|εk2ą0 A

εk2
k `

ś
k|εk2ă0 A

´εk2
k

A2
“ A1

`ś
A

ck2
k

A2A1
`

ś
A

ck1
k

A1A2

˘
“ A1W.

Similarly, τ˚
2A2 “ A2W . The rest Aj remain intact.

For the X -part, note that Fi “ 1 ` Xi for i P t1, 2u. So

Y1 “
1 ` X2

1 ` X´1
1

, Y2 “
1 ` X1

1 ` X´1
2

, Y1Y2 “ X1X2.

Therefore

τ˚
2X1 “ µ˚

2X2 “ X´1
2 “

X1

Y1Y2
, τ˚

2 X2 “ X´1
1 “

X2

Y2Y1
.

For k P J ´ t1, 2u, we have

τ˚
2Xk “ Xkp1 ` X

´sgnpεk1q
1 q´εk1p1 ` X

´sgnpεk2q
2 q´εk2 .

If εk1 ě 0, then ck “ pck1, ck2q “ pεk1, 0q. Therefore

τ˚
2Xk “ Xkp1 ` X´1

1 q´ck1p1 ` X2qck1 “ XkY
ck1
1 Y

ck2
2 .

The same formula holds for εk2 ě 0.

2. The transformation τN maps q to itself. When N ą 2, without loss of generality, let
us first mutate the quiver q at the direction N , obtaining a new quiver µN pqq “ q̃. Note that
q̃ contains qN´1 and satisfies condition (184). Let τN´1 be the cluster transformation applying
on qN´1. Using induction, we have τN´1pq̃q “ q̃. Therefore

τN pqq “ µN ˝ τN´1 ˝ µN pqq “ µ2
N pqq “ q.

3. Proof of the A-part. By (49), the vectors c̃k of q̃ “ µN pqq are

c̃N “ p0, . . . , 0, 1q, c̃k “ pck1, . . . , ck,N´2,mintck,N´1, ckNuq, @k P J ´ I. (189)

See Figure 19 for example.
Let tĂXi, ĂAiu be pairs of variables assigned to vertices i of q̃. By induction, we have

τ˚
N´1

ĂAj “

#
ĂAj

ĂW if j P t1, . . . , N ´ 1u
ĂAj otherwise.

(190)
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where

ĂW “
ČQN´1

ČAN´1
ĂA1

`
N´2ÿ

i“1

ĂQi

ĂAi
ĆAi`1

, ĂQi “
ź

kRt1,...,N´1u

ĂAk

c̃ki
.

Now we compute µ˚
N

ĂW . Note that

µ˚
N

ĂAk “

$
&
%

Ak if k ‰ N
A1

AN

ź

kPJ´I

A
´mint0,εkNu
k `

AN´1

AN

ź

kPJ´I

A
´mint0,´εkNu
k if k “ N. (191)

It follows directly from (189), (191) that

@i P t1, . . . , N ´ 2u, µ˚
N

ĂQi “ Qi. (192)

Meanwhile

µ˚
N

ČQN´1 “ µ˚
N

´ ź

kRt1,...,N´1u

ĂAk

c̃k,N´1
¯

(189)(191)
“““

´
µ˚
N

ĄAN

¯ ź

kPJ´I

A
mintck,N´1,ckNu
k

“
A1

AN

ź

kPJ´I

A
mintck,N´1,ckNu´mint0,εkNu
k `

AN´1

AN

ź

kPJ´I

A
mintck,N´1,ckNu´mint0,´εkNu
k

(185)
““

A1
ś

kPJ´IA
ck,N´1

k

AN
`

AN´1
ś

kPJ´IA
ckN
k

AN

“
A1QN´1

AN
`

AN´1QN

AN
(193)

Therefore

µ˚
N

ĂW “
ÿ

iPI

Qi

AiAi`1
“ W.

We consider the following cases.

(a) If j R I, then clearly τ˚
NAj “ Aj .

(b) If j P t1, . . . , N ´ 1u, then

τ˚
NAj “ µ˚

N ˝ τ˚
N´1 ˝ µ˚

N pAjq “ µ˚
N

`
τ˚
N´1

ĂAj

˘ (190)
““ µ˚

N pĂAj
ĂW q “ AjW. (194)

(c) If j “ N , then

µ˚
NAN “

ĂA1
ś

kPJ´I
ĂAk

´mint0,εkNu
` ČAN´1

ś
kPJ´I

ĂAk

´mint0,´εkNu

ĄAN

. (195)

Note that τ˚
N´1

ĂAk “ ĂAk for k R t1, . . . , N ´ 1u. Therefore

τ˚
NAN “ µ˚

N

´ ĂA1
ś

kPJ´I
ĂAk

´mint0,εkN u
` ČAN´1

ś
kPJ´I

ĂAk

´mint0,´εkNu

ĄAN

¨ ĂW
¯

“ ANW.

(196)
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4. Proof of the X -part. By induction, we have

τ˚
N´1

ĂXk “

$
’’’’’&
’’’’’%

ĂX1

ĂY1
ČYN´1

if k “ 1,

ĄXk

ĂYk
ČYk´1

if k P t2, . . . , N ´ 1u,

ĄXN
ĆYN´1 if k “ N,

ĂXk

śN´1
j“1

rYj
c̃kj

otherwise.

(197)

Here rYi is defined similarly via (188). Now we compute µ˚
N

rYi. Note that

µ˚
N

ĂXk “

$
’’’’&
’’’’%

Xkp1 ` X
´sgnpεkN q
N q´εkN if k P J ´ I,

X´1
N if k “ N,

X1p1 ` XN q if k “ 1,

XN´1p1 ` X´1
N q´1 if k “ N ´ 1,

Xk if k P t2, . . . , N ´ 2u.

(198)

By explicit calculations one obtains

µ˚
N

rFi “

"
Fi if i P t1, . . . , N ´ 2u,
FN p1 ` XN q´1 if i “ N ´ 1.

Therefore

µ˚
N

rYi “

"
Yi if i P t1, . . . , N ´ 2u,
YNYN´1 if i “ N ´ 1.

We consider the following cases.

(a) If k P t2, . . . , N ´ 2u, then µ˚
NXk “ ĂXk. Therefore

τ˚
NXi “ µ˚

N ˝ τ˚
N´1

ĂXk “ µ˚
N

´ ĂXk

ĂYk
ĆYk´1

¯
“

Xk

YkYk´1
. (199)

(b) If k “ N , then

τ˚
NXN “ µ˚

N ˝ τ˚
N´1 ˝ µ˚

N pXN q “ µ˚
N ˝ τ˚

N´1pĄXN

´1
q “

1

µ˚
N pĄXN

ĆYN´1q
“

XN

YNYN´1
. (200)

(c) If k P J ´ I, then

τ˚
NXk “ µ˚

N ˝ τ˚
N´1

´
p1 ` ĄXN

sgnpεkN q
qεkN ĂXk

¯
(201)

Note that

µ˚
N ˝ τ˚

N´1p1 ` ĄXN q “ 1 `
YNYN´1

XN
“ 1 `

XN´1FN´2

FN
“

FN ` XN´1FN´2

FN

“
p1 ` XN qFN´1

FN
“ p1 ` X´1

N qYN . (202)
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If εkN “ ckN ´ ck,N´1 ą 0, by (197)(201)(202), we get

τ˚
NXk “

´
p1 ` X´1

N qYN

¯εkN
µ˚
N

´
ĂXk

N´1ź

j“1

rYj
c̃kj

¯

“
´

p1 ` X´1
N qεkNµ˚

N
ĂXk

¯´
Y

ckN´ck,N´1

N µ˚
N p

N´1ź

j“1

rYj
c̃kj

q
¯

“ Xk

Nź

j“1

Y
ckj
j . (203)

By the same argument, the same formula holds for εkN ď 0.

(d) If k “ N ´ 1, by (197), we have

µ˚
N ˝ τ˚

N´1pČXN´1q “ µ˚
N

´ ČXN´1

ĆYN´2
ĆYN´1

¯
“

XN´1p1 ` X´1
N q´1

YNYN´1YN´2
. (204)

Note that µ˚
NXN´1 “ ČXN´1p1 ` ĄXN q. Therefore

τ˚
NXN´1 “ µ˚

N ˝ τ˚
N´1

´
ČXN´1p1 ` ĄXN q

¯
(204)(202)

“““
XN´1p1 ` X´1

N q´1

YNYN´1YN´2
p1 ` X´1

N qYN

“
XN´1

YN´1YN´2
. (205)

If k “ 1, then by similar calculations we get τ˚
NX1 “ X1

Y1YN
.

8 The Weyl group acts on XPGLm,S and ASLm,S by cluster trans-

formations

Let S be an admissible decorated surface. We recall the construction of cluster coordinates of
the pair pXPGLm,S,ASLm,Sq introduced in [FG2, Section 9, 10]. If S is a sphere with 3 punctures,
then we assume m ą 2. We show that the Weyl group actions on both XPGLm,S and ASLm,S are
cluster transformations.

Figure 20: A 5-triangulation. The ˝- vertices are of distance 3 to the vertex 1.
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An m-triangulation of a triangle gives rise to a quiver whose vertices are parametrized by

Γm “ tpa, b, cq | a ` b ` c “ m, a, b, c P Zě0u ´ tpm, 0, 0q, p0,m, 0q, p0, 0, mqu, (206)

and arrows compatible with the orientation of the triangle. The vertices pa, b, cq with a, b, c P Zą0

are called inner vertices. The other vertices are on the edges of the triangle. See Figure 20.
From now on, let us fix a puncture p of S. An ideal triangulation of S is a triangulation of S

whose vertices are marked points (i.e., punctures or special points) of S. Since S is admissible,
it admits an ideal triangulation T such that

• T contains no self-folded triangles. See Figure 21.

Figure 21: Self-folded triangle

• T contains no edge whose both vertices are p.

The ideal triangles in T surrounding p gives rise to a punctured disk.
We assign anm-triangulation to each triangle t P T , getting a quiver q. Let i P t1, . . . ,m´1u.

Denote by qp,i the subquiver consists of vertices of distance m ´ i to the puncture p. Note that
qp,i is a cycle. The pair pq,qp,iq satisfies conditions in Definition 7.4.

Denote by τp,i the cluster transformation (181) on the subquiver qp,i.

Example 8.1. Let m “ 4. If there are 4 ideal triangles surrounding p, then the quiver q locally
looks like Figure 22. The ˝- quiver qp,1 consists of vertices of distance 3 to the puncture p.

Figure 22:

In this section, we assign to each vertex v of q a function Av (respectively Xv) of the space
ASLm,S (respectively XPGLm,S). The set tAvu (respectively tXvu) provides a cluster coordinate
system for ASLm,S (respectively XPGLm,S).

Recall that the puncture p corresponds to a Weyl group (of type Am´1) action on both
ASLm,S and XPGLm,S. The Weyl group is generated by simple reflections sp,i, i P t1, . . . ,m ´ 1u.
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Theorem 8.2. The map sp,i is exactly the cluster transformation τp,i, i.e.,

s˚
p,iAv “ τ˚

p,iAv, s˚
p,iXv “ τ˚

p,iXv . @v P tvertices of q.u (207)

We prove Theorem 8.2 in the rest of this section.

8.1 The moduli space ASLm,S

The decorated flag variety ASLm. Let Vm be an m-dimensional vector space with a volume
form ω P detV ˚

m. A flag F‚ is a collection of subspaces in Vm:

F1 Ă F2 Ă . . . Ă Fm´1, dimFi “ i. (208)

A decorated flag is a flag F‚ with a choice of non-zero vectors fpiq P ^iFi for each i “
1, . . . ,m ´ 1 called decorations. The decorated flag variety ASLm

parametrizes decorated flags
for SLm:“ SLpVmq. The group SLm acts on ASLm on the left. The Cartan subgroup of SLm acts
on ASLm on the right by rescaling the decorations. Note that ASLm

„
“ G{U.

Additive characters associated to decorated flags. Let F P ASLm
be a decorated flag. Its

stabilizer UF is a unipotent subgroup of SLm. A representative of F is a linear basis pf1, . . . , fmq
of Vm which gives rise to decorations of F

fpiq :“ f1 ^ . . . ^ fi P ^iFi, @i P t1, . . . ,m ´ 1u; xf1 ^ . . . ^ fm, ωy “ 1.

Let u P UF. Note that ei :“ upfi`1q ´fi`1 P Fi. The vector fpi´1q ^ ei P ^iFi is independent
of the representative pf1, . . . , fmq chosen. It determines a unique χF,ipuq P A1 such that

fpi´1q ^ ei “ χF,ipuqfpiq, @i P t1, . . . ,m ´ 1u. (209)

Therefore we associate to UF a set of additive characters

pχF,1, . . . , χF,m´1q : UF ÝÑ Am´1. (210)

The moduli space ASLm,S. The moduli space ASLm,S parametrizes pairs pL, γ “ tFsuq where
L is a twisted SLm-local system on S, and γ assigns to every marked point s a section Fs of
L bSLm ASLm . For a puncture p, the assigned section Fp is invariant under the monodromy up
around p. Thus up is unipotent and belongs to the stabilizer of Fp. The functions

Wp,i :“ χFp,ipupq, i P t1, . . . ,m ´ 1u (211)

are called partial potentials of ASLm,S associated to the puncture p.
For each puncture p of S, there is a Weyl group action on ASLm,S by rescaling the decorations

of the flat section Fp. If the decorations of Fp are presented by the nonzero vectors fpkq, k “
t1, . . . ,m ´ 1u, then the action of the simple reflection sp,i changes the decorations to

fp1q, . . . ,Wp,ifpiq, . . . , fpm´1q, (212)

and keeps the rest intact.
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Local picture: configurations of three decorated flags. Let pF,G,Hq be a configuration
of three decorated flags, described by sets of nonzero vectors:

F “ pfp1q, . . . , fpm´1qq, G “ pgp1q, . . . , gpm´1qq, H “ php1q, . . . , hpm´1qq.

Recall the m-triangulation of a triangle. Each vertex pa, b, cq P (206) gives rise to a function

∆a,b,cpF,G,Hq :“ xfpaq ^ gpbq ^ hpcq, ωy. (213)

Forgetting the decorations, we get a natural projection π : ASLm
Ñ BSLm

. If pF,G,Hq is generic,
then there is a unique u P UF such that u ¨ πpHq “ πpGq. We define the potential

WF,ipF,G,Hq :“ χF,ipuq. (214)

Figure 23:

Let α be the arrow pa, b, cq Ð pa, b ` 1, c ´ 1q in the m-triangulation. As shown on Figure
23, there is a unique rhombus with the diagonal α. Its vertices correspond to functions in (213).

Set ∆m,0,0 “ ∆0,m,0 “ ∆0,0,m “ 1. We consider the ratio

Rα :“
∆a`1,b,c´1∆a´1,b`1,c

∆a,b,c∆a,b`1,c´1
. (215)

Lemma 8.3 ([GS, Section 3]). The potential (214) is

WF,i “
ÿ

αPtarrows of row i}

Rα. (216)

Example 8.4. Let G “ SL5. There are three rhombi in row 2 as shown on Figure 24. Therefore

WF,2 “
∆3,0,2∆1,1,3

∆2,0,3∆2,1,2
`

∆3,1,1∆1,2,2

∆2,1,2∆2,2,1
`

∆3,2,0∆1,3,1

∆2,2,1∆2,3,0
. (217)
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Figure 24:

Global picture: cluster coordinates of ASLm,S. Recall the quiver q associated to an ideal
triangulation T of S. Let v be a vertex of q. Assume that v is contained in a triangle t P T
and labelled by pa, b, cq P Γm. Restricting the data pL, γq P ASLm,S to the triangle t, we get a
configuration pF,G,Hq of three decorated flags. We set

Av :“ ∆a,b,cpF,G,Hq. (218)

The set tAvu is a coordinate system of ASLm,S.
The subquiver qp,i is a cycle. Every arrow α of qp,i corresponds to a rhombi term Rα. The

following Lemma is a direct sequence of Lemma 8.3.

Lemma 8.5. The potential (211) is

Wp,i “
ÿ

αPtarrows of qi,pu

Rα.

Example 8.6. Let G “ SL4. If there are 4 ideal triangles surrounding p, then the function Wp,1

is the sum of functions Rα assigned to the shadowed rhombi in Figure 25.

Figure 25:

Proof of Theorem 8.2: A-Part. According the definition of Av and (212), we have

s˚
p,iAv “

"
AvWp,i if j is vertex of qp,i,

Av otherwise.

Note that Wp,i is exactly the function W in Theorem 7.7. Therefore we have τ˚
p,iAv “ s˚

p,iAv.

8.2 The moduli space XPGLm,S

A flag F‚ for PGLm is a nested collection (208) of subspaces in a vector space Vm. The flag
variety BPGLm parametrizes flags for PGLm. First we consider the cases when m “ 2, 3.
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Local picture: the moduli space XPGL2,Dn. The flag variety BPGL2
parametrizes lines in

V2. Let pL1, . . . , L4q be a quadruple of lines. Let ω P detV ˚
2 be a volume form. We choose

nonzero vectors li P Li. Let ∆pli ^ ljq :“ xli ^ lj, ωy. We set the cross ratio

r`pL1, L2, L3, L4q :“
∆pl1 ^ l2q∆pl3 ^ l4q

∆pl1 ^ l4q∆pl2 ^ l3q
. (219)

Let Dn be a punctured disk with n special points on its boundary. We label the special
points clockwise from 1 to n. The space XPGL2,Dn parametrizes data pL, γ “ tLp, L1, . . . , Lnuq,
where L is a PGL2-local system on Dn, and γ assigns to the puncture p a flat section Lp of
L bPGL2

BPGL2
invariant under the monodromy around p, and to each special point i a flat

section Li. We connect each special point and the puncture, obtaining a triangulation of Dn.
We restrict the pair pL, γq to the ideal quadrilateral with vertices p, i ´ 1, i, i ` 1. We consider

Xi :“ r`pLp, Li´1, Li, Li`1q. (220)

The set tX1, . . . ,Xnu gives rise to a coordinate system of XPGL2,Dn .
If the monodromy around the puncture is generic, then there is another flat section L1

p

invariant under the monodromy. We get a Z{2-action on XPGL2,Dn via replacing Lp by L1
p. Let

X 1
i :“ r`pL1

p, Li´1, Li, Li`1q, Yi :“ r`pLi, Lp, Li`1, L
1
pq.

Lemma 8.7 ([FG1, Lemma 12.3]). We have

Yi “
XiFi´1

Fi
, X 1

i “
Xi

YiYi´1
“

Fi

Xi´1Fi´2
, where Fi “ 1`Xi `XiXi´1 ` . . .`Xi . . . Xi´n`2.

Cross-ratio versus triple ratio. We consider a triple of flags for PGL3

F‚ “ pF1 Ă F2q, G‚ “ pG1 Ă G2q, H‚ “ pH1 Ă H2q.

Let ω P detV ˚
3 be a volume form. We choose nonzero vectors f1 P F1, f2 P ^2F2 and the same

for G‚ and H‚. The following triple ratio is independent of the choices of ω and fi, gi, hi,

r`
3 pF‚, G‚,H‚q :“

xf1 ^ g2, ωy xg1 ^ h2, ωy xh1 ^ f2, ωy

xf1 ^ h2, ωy xg1 ^ f2, ωy xh1 ^ g2, ωy
. (221)

If the triple pF‚, G‚,H‚q is of generic position, then it gives rise to a quadruple of lines in F2

L1 :“ F1, L2 :“ G2 X F2, L3 :“ pG1 ‘ H1q X F2, L4 :“ H2 X F2.

The following Lemma was proved in [G94, Lemma 3.8]. We provide a proof for completeness.

Lemma 8.8. The triple ratio (221) is equal to the cross ratio r`pL1, L2, L3, L4q.

Proof. We choose g1 P G1, h1 P H1 such that

∆p˚q “ x˚ ^ g1, ωy “ x˚ ^ h1, ωy, @˚ P ^2F2.

Therefore we get xg1 ^ f2, ωy “ xh1 ^ f2, ωy. Let l3 :“ g1 ´ h1 P G1 ‘ H1. Note that f2 ^ l3 “ 0.
So l3 P F2. Therefore l3 P L3. Let l2 P L2 such that g2 :“ l2 ^ g1. Therefore we get

∆pl2 ^ l3q “ ∆p´l3 ^ l2q “ x´l3 ^ l2 ^ g1, ωy “ x´l3 ^ g2, ωy “ xh1 ^ g2, ωy. (222)

Let l4 P L4 such that h2 :“ l4^h1. Then ∆pl3^l4q “ xl3^l4^h1, ωy “ xl3^h2, ωy “ xg1^h2, ωy.
Let l1 “ f1 P F1. Then we get

∆pl1 ^ l2q “ xl1 ^ l2 ^ g1, ωy “ xf1 ^ g2, ωy, ∆pl1 ^ l4q “ xl1 ^ l4 ^ h1, ωy “ xf1 ^ h2, ωy.

Combining the above equations, the Lemma is proved.
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Global picture: cluster coordinates of XPGLm,S. Recall that the moduli space XPGLm,S

parametrizes pairs pL, γ “ tFpuq, where L is a PGLm-local system on S, and γ assigns to each
puncture p a flat section Fp of L bPGLm

BPGLm
invariant under the monodromy around p.

Recall the quiver q associated to an ideal triangulation T of S. We assign a function Xv of
XPGLm,S to each vertex v of q. There are two cases.

1. The vertex v is an inner vertex of a triangle t P T . By restricting a generic pair pL, γq P
XPGLm,S to the triangle t, we obtain a configuration pF‚, G‚,H‚q of flags for PGLm. Let us
choose decorations for each flag. Recall the function (213). If v is labelled by pa, b, cq P Γm,
then there are 6 vertices in the m-triangulation adjacent to the vertex v. See Figure 26.
We consider the triple ratio

Xv :“
∆a,b´1,c`1∆a´1,b`1,c∆a`1,b,c´1

∆a´1,b,c`1∆a,b`1,c´1∆a`1,b´1,c
. (223)

Note that Xv is independent of the choices of decorations. So it is a function of XPGLm,S.

Figure 26: Triple ratio corresponding to an inner vertex.

We consider the following lines in the quotient Fa`1{Fa´1

L1 “ Fa{Fa´1, L2 “
´

pGb´1 ‘ Hc`1q X Fa`1

¯
{Fa´1,

L3 “
´

pGb ‘ Hcq X Fa`1

¯
{Fa´1, L4 “

´
pGb`1 ‘ Hc´1q X Fa`1

¯
{Fa´1.

Lemma 8.9. We have Xv “ r`pL1, L2, L3, L4q.

Proof. We project pF‚, G‚,H‚q onto the quotient

Vm

Fa´1 ‘ Gb´1 ‘ Hc´1
,

obtaining a configuration of flags for PGL3

F ‚ “ pFa{Fa´1 Ă Fa`1{Fa´1q, G‚ “ pGb{Gb´1 Ă Gb`1{Gb´1q, H‚ “ pHc{Hc´1 Ă Hc`1{Hc´1q.

Clearly Xv “ r`
3 pF ‚, G‚,H‚q. By Lemma 8.8, r`

3 pF ‚, G‚,H‚q “ r`pL1, L2, L3, L4q.
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2. The vertex v belongs to an edge e in T . Restricting a generic pL, γq P XPGLm,S to the unique
ideal quadrilateral containing e as a diagonal, we get a configuration pF‚, G‚,H‚, E‚q. Let
us choose decorations fpkq, k “ 1, . . . ,m´ 1 for F‚, and similarly for G‚,H‚, E‚. There are
4 vertices adjacent to v in the quiver, see Figure 27. We consider the cross ratio

Xv :“
xfpaq ^ hpb´1q ^ ep1q, ωy xfpa´1q ^ gp1q ^ hpbq, ωy

xfpa´1q ^ hpbq ^ ep1q, ωy xfpaq ^ gp1q ^ hpb´1q, ωy
. (224)

Note that Xv is independent of the decorations chosen. So it is a function of XPGLm,S.

Figure 27: Cross ratio corresponding to an edge point.

We consider the following lines in the quotient Fa`1{Fa´1:

L1 “ Fa{Fa´1, L2 “
´

pG1 ‘ Hb´1q X Fa`1

¯
{Fa´1,

L3 “ pHb X Fa`1q{Fa´1, L4 “
´

pHb´1 ‘ E1q X Fa`1

¯
{Fa´1.

Lemma 8.10. We have Xv “ r`pL1, L2, L3, L4q.

Proof. We project pF‚, G‚,H‚, E‚q on to the quotient

Vm

Fa´1 ‘ Hb´1
, (225)

obtaining 4 lines F “ Fa{Fa´1, G “ G1,H “ Hb{Hb´1, E “ E1. Clearly we have Xv “
r`pF ,G,H,Eq. We project Fa`1 onto (225), identifying Fa`1{Fa´1 “ Vm{pFa´1 ‘ Hb´1q.
It follows directly that r`pE,F ,G,Hq “ r`pL1, L2, L3, L4q.

The functions tXvu provide a coordinate system for the space XPGLm,S.

The map πp,i. Let v1, . . . , vn be the vertices of the subquiver qp,i. Let us define a map

πp,i : XPGLm,S ÝÑ XPGL2,Dn , pL, γq ÝÑ pLp,i, tLp, Lv1 , . . . , Lvnuq.
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Take a generic pL, γq P XPGLm,S. The framing of L near p is given by a flag of local subsystems
of L near p, or, what is the same, by a flat section of the local system of flags associated to L:

Fp “ pF1 Ă F2 Ă . . . Ă Fm´1q. (226)

The two dimensional subquotient Fi`1{Fi´1 of the local system L near p provides us with a
PGL2-local system Lp,i of a punctured disk and an invariant line Lp :“ Fi{Fi´1.

Let vk belong to an m-triangulation of a triangle t P T , locally labelled by pi, b, cq P Γm. The
data pL, γq restricts to a configuration pF‚, G‚,H‚q. We assign to vk a line

Lvk :“
´

pGb ‘ Hcq X Fi`1

¯
{Fi´1.

The data pLp,i, tLp, L1, . . . , Lnuq defines the map πp,i.

Lemma 8.11. In the coordinate systems of XPGLm,S and XPGL2,Dn, the map πp,i is a projection

πp,i : XPGLm,S ÝÑ XPGL2
, pXv1 , . . . ,Xvn , . . .q ÞÝÑ pXv1 , . . . ,Xvnq

Proof. Follows from Lemmas 8.9, 8.10.

Weyl group action on XPGLm,S. The Weyl group acts on XPGLm,S via changing the flat
section Fp around p, see (226), and keeping the rest intact. The simple reflection sp,i maps Fp

to
F 1
p “ pF1 Ă . . . Fi´1 Ă F 1

i Ă Fi`1 Ă . . . Fm´1q (227)

such that F 1
p is invariant under the monodromy around p.

Recall the Z{2-action s on XPGL2,Dn . By definition, the following map commutes

XPGLm,S

sp,i //

πp,i

��

XPGLm,S

πp,i

��
XPGL2,Dn s

// XPGL2,Dn

(228)

Proof of Theorem 8.2: X -Part. We consider the following cases.

1. The vertex v belongs to qp,i. By Lemma 8.11 and (228), we reduce the case to XPGL2,Dn .
Comparing transition maps in Lemma 8.7 and Theorem 7.7, s˚

p,iXv “ s˚Xv “ τ˚
p,iXv.

2. The vertex v is of distance m ´ i ´ 1 to the puncture p. If v is an inner point of an
ideal triangle t P T labelled by pi ` 1, b, cq, then the function Xv is defined by (223).
Let pFp, G‚,H‚q be the configuration obtained by restricting pL, γq on t. Let us choose
decorations for each flag. The action sp,i maps Fp to F 1

p as in (227). Let us pick an nonzero

vector f 1
piq P ^iF 1

i . Together with fpkq P ^kFk, k ‰ i, it gives rise to decorations of F 1
p. Set

∆1
i,j,k :“ xf 1

piq ^ gpjq ^ hpkq, ωy.

Using (223), we get

s˚
p,iXv

Xv
“

∆1
i,b`1,c∆i,b,c`1

∆i,b`1,c∆
1
i,b,c`1

“ r`pL1, Lp, L2, L
1
pq,
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where Lp “ Fi{Fi´1, L
1
p “ F 1

i {Fi´1, and

L1 “
´

pGb`1 ‘ Hcq X Fi`1

¯
{Fi´1, L2 “

´
pGb ‘ Hc`1q X Fi`1

¯
{Fi´1

are lines in the quotient Fi`1{Fi´1. Comparing Theorem 7.7 and Lemma 8.7, we get
s˚
p,iXv “ τ˚

p,iXv. Similarly, the same formula holds when v belongs to an edge in T .

3. The vertex v is of distance m ´ i ` 1 to the p. By a similar argument, s˚
p,iXv “ τ˚

p,iXv.

4. For the rest v, we have s˚
p,iXv “ τ˚

p,iXv “ Xv.

9 The ˚-involution and its cluster nature

In this section, S is a decorated surface which admits an ideal triangulation without self-folded
triangles.

Let αi pi P Iq be simple positive roots. There is a Dynkin diagram automorphism such that
αi˚ “ ´w0pαiq. Let us fix a pinning of G. We get an involution ˚ : G Ñ G defined in (2).

The involution of G preserves the subgroups B and U. Therefore it acts on the moduli spaces
XPGLm,S and ASLm,S. Indeed, they are defined as the local systems on S with a chosen reduction
the subgroups B or U near the marked points. Since all pinnings in G are G-conjugated, this
does not depend on the choice of pinning which we use to define B or U. Abusing notation, we
denoted all of these actions by ˚.

Recall the cluster structure of XPGLm,S and ASLm,S in the previous section.

Theorem 9.1. The involution ˚ on pASLm,S,XPGLm,Sq is a cluster transformation.

We prove Theorem 9.1 in Sections 9.1-9.2. We give a GLm-specific proof since we feel that
it may contain more information that just the claim. We present an explicit sequence of cluster
transformations equivalent to the involution ˚.

9.1 Involution on ConfnpASLm
q

We give an equivalent definition of the involution ˚ on ConfnpASLmq.

The moduli space ConfnpASLmq. Let V be an m-dimensional vector space with a volume
form ω. A decorated flag F “ pF‚, tfpkquq on pV, ωq is a decorated flag in V with xfpmq, ωy “ 1.
See Section 8.1. Denote by AV,ω the space of decorated flags on pV, ωq. The group AutpV, ωq “
SLpV q acts on it on the left. Set

ConfnpAV,ωq :“ AutpV, ωqz
`
AV,ω

˘n
. (229)

An isomorphism g : pV, ωq Ñ pV 1, ω1q induces an isomorphism AV,ω Ñ AV 1,ω1 and therefore an
isomorphism

ConfnpAV,ωq
„

ÝÑ ConfnpAV 1,ω1 q. (230)

Different isomorphisms g differ by an automorphism of the pV, ωq. Since ConfnpAV,ωq is the
space of AutpV, ωq-coinvariants, isomorphism (230) does not depend on g. We set

ConfnpASLmq :“ ConfnpAV,ωq. (231)
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The dual decorate flags. Let V ˚ be the dual vector space of V . For each k P t1, . . . ,mu
there is a non-degenerate bilinear map

x´,´y :
ľk

V ˆ
ľk

V ˚ ÝÑ Q, xv1 ^ . . . ^ vk, φ1 ^ . . . ^ φky “ detpxvi, φjyq. (232)

There is a canonical isomorphism

˚ :
ľk

V
„

ÝÑ
ľm´k

V ˚, such that xv, ˚uy “ xu ^ v, ωy. (233)

Let W be a k-dimensional subspace of V . Set WK :“ tφ P V ˚ | xw,φy “ 0 for all w P W u.

Lemma 9.2. If u P
ŹkW , then ˚u P

Źm´kWK.

Proof. Let us choose a linear basis pe1, . . . , emq of V such that u “ e1 ^ e2 ^ . . . ^ ek, and
xe1 ^ e2 ^ . . . ^ em, ωy “ 1. Thus pe1, . . . , ekq is a linear basis of W . Let pe1, e2, . . . , emq be the
basis of V ˚ dual to pe1, . . . , emq. Then ω “ e1 ^ . . . ^ em. Therefore

xu ^ v, ωy “ xu ^ v, e1 ^ . . . ek ^ ek`1 ^ . . . ^ emy “ xv, ek`1 ^ . . . ^ emy. (234)

Since WK is the linear span of pek`1, . . . , emq, by (233) we get ˚u “ ek`1 ^ . . .^em P
Źm´kWK.

Lemma 9.3. Let ω˚ be the volume form of V ˚ dual to ω, i.e. xω˚, ωy “ 1. Then one has

xu ^ v, ωy “ xω˚, ˚u ^ ˚vy, @u P
ľm´k

V, @v P
ľk

V. (235)

Proof. It suffices to the prove for v “ e1 ^ e2 ^ . . . ^ ek. By the proof of Lemma 9.2, we set

ω˚ “ e1 ^ e2 ^ . . . ^ em ˚ v “ ek`1 ^ . . . ^ em.

Therefore

xω˚, ˚u^ ˚vy “ xe1 ^ . . . ^ em, ˚u^ ek`1 ^ . . . ^ emy “ xe1 ^ . . . ^ ek, ˚uy “ xv, ˚uy “ xu^ v, ωy.

The dual flag FK
‚ is a flag on V ˚

FK
m´1 Ă . . . Ă FK

2 Ă FK
1 . (236)

The isomorphism ˚ : AV,ω
„
Ñ AV ˚,ω˚ , pF‚, tfpkquq ÞÝÑ pFK

‚ , t˚fpm´kquq from Lemma 9.2 provides

a canonical isomorphism ˚ : ConfnpAV,ωq
„

ÝÑ ConfnpAV ˚,ω˚ q. So we get a canonical involution

˚ : ConfnpASLm
q

„
ÝÑ ConfnpASLm

q. (237)

Using (234), it is easy to show that (237) is the involution defined via the involution ˚ in (2).
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Figure 28: The involution ˚ on Conf3pASL3
q is a cluster transformation. The dashed arrows

connect frozen vertices.

Example. When dimV “ 3, decorated flags in AV,ω are canonically identified with pairs

pv, φq P V ˆ V ˚, v ‰ 0, φ ‰ 0, xv, φy “ 0. (238)

Switching v and φ, we get the map ˚ : AV,ω ÝÑ AV ˚,ω˚ , pv, φq ÞÝÑ pφ, vq.
In particular, it acts on the triples of decorated flags as follows:

˚ :
`
pv1, φ1q, pv2, φ2q, pv3, φ3q

˘
ÞÝÑ

`
pφ1, v1q, pφ2, v2q, pφ3, v3q

˘
.

Lemma 9.4. We have

xv1 ^ v2 ^ v3, ωyxω˚, φ1 ^ φ2 ^ φ3y “ xv1, φ2yxv2, φ3yxv3, φ1y ` xv2, φ1yxv3, φ2yxv1, φ3y. (239)

Therefore the involution ˚ is a cluster transformation of Conf3pASL3
q, which mutates the inner

vertex of the left quiver on Figure 28, and then switches the pair of vertices on each edge.

Proof. By (232) we have

xv1 ^ v2 ^ v3, ωyxω˚, φ1 ^ φ2 ^ φ3y “ xω˚, ωyxv1 ^ v2 ^ v3, φ1 ^ φ2 ^ φ3y

“ det

¨
˝

0 xv1, φ2y xv1, φ3y
xv2, φ1y 0 xv2, φ3y
xv3, φ1y xv3, φ2y 0

˛
‚

“ xv1, φ2yxv2, φ3yxv3, φ1y ` xv2, φ1yxv3, φ2yxv1, φ3y.

Intersection of decorated flags. Let us fix a generic triple of decorated flags in AV,ω

F “ pF‚, tfpkquq, G “ pG‚, tgpkquq, H “ pH‚, thpkquq.

The pair pF,Gq determines a basis pf1, . . . , fmq of V such that

fpkq “ f1 ^ f2 ^ . . . ^ fk, fk P Fk X Gm`1´k. (240)
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The pair pG,Hq determines a basis phm, . . . , h1q of V such that

hpkq “ hk ^ hk´1 ^ . . . ^ h1, hk P Gn`1´k X Hk. (241)

For convenience, the subscripts of the wedge product decomposition of hpkq is reversed. We set

fs,pkq :“ fs`1 ^ fs`2 ^ . . . ^ fs`k. hpkq,s :“ hs`k ^ . . . ^ hs`1. (242)

Let pa, b, c, sq be a quadruple of nonnegative integers such that

a ` b ` c “ m ´ s. (243)

By definition, fs,paq ^ gpbq ^ hpcq,s P
Źm´sGm´s. We set

∆s
a,b,c :“ xfs,paq ^ gpbq ^ hpcq,s, ωsy, (244)

where ωs is a volume form of Gm´s such that

xgpm´sq, ωsy :“ xfpsq ^ gpm´sq, ωyxgpm´sq ^ hpsq, ωy. (245)

Lemma 9.5. Let us assume that a, b, c ą 0. One has

∆s
a,b,c∆

s`1
a,b´1,c “ ∆s

a`1,b´1,c∆
s`1
a´1,b,c ` ∆s

a,b´1,c`1∆
s`1
a,b,c´1. (246)

Proof. Note that the vector fs`1,pa´1q ^gpbq ^hpc´1q,s`1 belongs to the linear span of the vectors
fs`1,paq ^ gpb´1q ^ hpc´1q,s`1 and fs`1,pa´1q ^ gpb´1q ^ hpcq,s`1. Let us set

fs`1,pa´1q ^ gpbq ^ hpc´1q,s`1 :“ αfs`1,paq ^ gpb´1q ^ hpc´1q,s`1 ` βfs`1,pa´1q ^ gpb´1q ^ hpcq,s`1.

Then

fs,paq ^ gpbq ^ hpcq,s “ αfs,pa`1q ^ gpb´1q ^ hpcq,s ` βfs,paq ^ gpb´1q ^ hpc`1q,s,

fs`1,pa´1q ^ gpbq ^ hpcq,s`1 “ αfs`1,paq ^ gpb´1q ^ hpcq,s`1,

fs`1,paq ^ gpbq ^ hpc´1q,s`1 “ βfs`1,paq ^ gpb´1q ^ hpcq,s`1.

Therefore

∆s
a,b,c “ α∆s

a`1,b´1,c ` β∆s
a,b´1,c`1, ∆s`1

a´1,b,c “ α∆s`1
a,b´1,c, ∆s`1

a,b,c´1 “ β∆s`1
a,b´1,c.

Plugging them to (246), we get the Lemma.

Remark. Consider the tetrahedron

Tm :“ tpx1, x2, x3, x4q P R4 |
4ÿ

i“1

xi “ m, xi ě 0u. (247)

The quadruples pa, b, c, sq satisfying (243) are the integral points inside of Tm. Therefore the
functions ∆s

a,b,c can be attached to the integral points of Tm. The functions appearing in (246)
correspond to the vertices of an octahedron as illustrated by Figure 29. Therefore we call
Formula (246) the octahedral relation.16

16A similar but different octahedral relation was studied in [FG1, Sect.10].
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Figure 29: The octahedral relation.

We show that all the functions ∆s
a,b,c can be expressed in terms of (213).

Lemma 9.6. One has

∆s
0,t,m´s´t “ ∆s,m´s,0∆0,t,m´t, ∆s

m´s´t,t,0 “ ∆m´t,t,0∆0,m´s,s (248)

Proof. Set gptq ^ hpm´s´tq,s :“ αgpm´sq Then

gptq ^ hpm´tq “
`
gptq ^ hpm´s´tq,s

˘
^ hpsq “ αgpm´sq ^ hpsq.

Therefore

α “
∆s

0,t,m´s´t

∆s
0,m´s,0

“
∆0,t,m´t

∆0,m´s,s
. (249)

By (245) we have ∆s
0,m´s,0 “ ∆s,m´s,0∆0,s,m´s. Plugging it to (249), we get the first identity.

The second follows by a similar argument.

When s “ 0, the functions (244) equal ∆a,b,c in (213). They correspond to the integral points
on one face of the tetrahedron Tm. The functions (248) correspond to the integral points on
two other faces of Tm. See Figure 30. All of them can be expressed in terms of (213).

Using the octahedral relations (246) repeatedly, we express ∆s
a,b,c in terms of (213) layer by

layer as illustrated by Figure 31.

Coordinates of the dual configurations. Recall the set Γm in (206). We set

∆˚
a,b,c :“ ∆a,b,cp˚F, ˚G, ˚Hq “ xω˚, ˚fpm´aq ^ ˚gpm´bq ^ ˚hpm´cqy, @pa, b, cq P Γm. (250)

Lemma 9.7. One has
∆˚

a,b,c “ ∆b
c,0,a, @pa, b, cq P Γm. (251)

Remark. Note that the functions ∆b
c,0,a correspond to the integral points on the base of Tm.

Using the process illustrated by Figure 31, we express ∆˚
a,b,c in terms of (213).
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Figure 30:

Figure 31:

Proof. By Lemma 9.6 and Lemma 9.3, we have

∆b
0,0,m´b “ ∆b,m´b,0∆0,0,m “ ∆b,m´b,0 “ ∆˚

m´b,b,0.

By moving ˚hpm´cq to the left, we get

∆˚
a,b,c “ p´1qcpm´cqxω˚, ˚hpm´cq ^ ˚fpm´aq ^ ˚gpm´bqy “ p´1qcpm´cqxgpm´bq, ˚hpm´cq ^ ˚fpm´aqy

By definition xhpcq,m´c, ˚hpm´cqy “ xhpm´cq ^ hpcq,m´c, ωy “ p´1qcpm´cq. Therefore

∆˚
a,b,c

∆b
c,0,a

“
∆˚

a,b,c

∆˚
m´b,b,0

¨
∆b

0,0,m´b

∆b
c,0,a

“ p´1qcpm´cq xgpm´bq, ˚hpm´cq ^ ˚fpm´aqy

xgpm´bq, ˚fpbqy
¨

xhpm´bq,b, ωby

xfb,pcq ^ hpaq,b, ωby

“ p´1qcpm´cq xhpm´bq,b, ˚hpm´cq ^ ˚fpm´aqy

xfb,pcq ^ hpaq,b, ˚fpbqy

“ p´1qcpm´cq xhpcq,m´c ^ hpaq,b, ˚hpm´cq ^ ˚fpm´aqy

xfpbq ^ fb,pcq ^ hpaq,b, ωy

“ p´1qcpm´cqxhpcq,m´c, ˚hpm´cqy ¨
xhpaq,b, ˚fpm´aqy

xfpm´aq ^ hpaq,b, ωy
“ 1.

The involution ˚ of Conf3pASLm
q is a cluster transformation. Recall the quiver associ-

ated to the m-triangulation of a triangle. See the left graph of Figure 32. Denote by µa,b,c the
cluster mutation at the vertex pa, b, cq P Γm. The ˝-vertices on edges are frozen vertices. We
mutate the ‚-vertices only. Let i P t1, . . . ,m´2u. We introduce several cluster transformations:
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Figure 32: The cluster transformation D.

1. The sequence of cluster mutations at the ‚-vertices in row i from the left to the right:

Ei :“ µ1,b,i ˝ . . . ˝ µi´1,b,2 ˝ µi,b,1, where b “ m ´ i ´ 1. (252)

2. The cluster transformation presented by a sequence of Ei:

Si :“ E1 ˝ E2 ˝ . . . ˝ Ei. (253)

It corresponds to a sequence of cluster mutations at the vertices included in the top triangle
of size i starting from the left bottom. See Figure 35.

3. The cluster transformation presented by a sequence of Si:

C :“ Sm´2 ˝ Sm´1 ˝ . . . ˝ S1. (254)

4. The cluster permutation σ induced by an involution σ of Γm such that

σ : Γm
„

ÝÑ Γm, σpa, b, cq “

$
&
%

p0, c, bq if a “ 0,
pb, a, 0q if c “ 0,
pc, b, aq else.

(255)

Proposition 9.8. The cluster transformation D :“ σ ˝ C maps the left quiver of Figure 32 to
the right. It creates arrows between frozen vertices on the edges, and keeps the rest intact. Recall
the cluster A-coordinates t∆a,b,cu associated to the left quiver. We have

∆˚
a,b,c :“ D˚∆a,b,c, @pa, b, cq P Γm (256)

Proof. We start with proving the first part of the proposition. The proof is combinatorial and
based on several pictures below.

Note that the transformation Ek is a sequence of cluster mutations at ‚-vertices in a row.
Locally, the corresponding quiver mutation of Ek is illustrated by Figure 33. In particular, we
switch the vertex i (respectively i1) and the vertex j (respectively j1) on the right quiver.
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Figure 33: The cluster transformation Ek.

The cluster transformation Si is a sequence of Ek. Using the above process repeatedly, the
corresponding quiver mutation of Si is illustrated by Figure 34. Note that at the last step we
switch the vertex 1 and 11. Eventually Si take the bottom vertex on the side to the top of the
other side. The resulted quiver looks similar to the original one, but its size is enlarged by 1.

Figure 34: The cluster transformation S4 “ E1 ˝ E2 ˝ E3 ˝ E4.

The cluster transformation C is a sequence of Si. Using the above process inductively, the
corresponding quiver mutation of C is illustrated by Figure 35. After the action of C, the
orientation of all the arrows are reversed. In the last step we flip the whole quiver horizontally.
It is equivalent to the permutation σ. Eventually we obtain the quiver after the action of D.
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Figure 35: The cluster transformation D “ σ ˝ C “ σ ˝ Sm´2 ˝ . . . ˝ S2 ˝ S1.

To prove the second part of the proposition, we compare the above process with Figure 31.
Indeed, the action of Si is equivalent to the transition from the i-th layer to the pi ` 1q-th layer
in Figure 31. In particular, the octahedral relation (246) is compatible with the rule of cluster
mutation. For the cluster mutations at the leftmost and the rightmost ‚-vertices, besides the
octahedral relation, we also need the identities (248). Note that we exchange the subscripts
a and c in (251). Therefore, by Lemma 9.7, after flipping the quiver horizontally, we get the
function ∆˚

a,b,c eventually.

Remark. The permutation (255) can be decomposed as σ :“ σe ˝σi, where σe switches vertices
on the edges only:

σepa, b, cq :“

$
’’&
’’%

p0, c, bq if a “ 0,
pc, 0, aq if b “ 0,
pb, a, 0q if c “ 0,
pa, b, cq else,

and σi exchanges the inner vertices only:

σipa, b, cq :“

"
pc, b, aq if a, b, c ą 0,
pa, b, cq else.

We consider the following cluster transformation applying only on the inner vertices

Ct :“ σi ˝ C. (257)

Note that the definition of Ct is not symmetric: one has to pick an angle of the triangle first.
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Corollary 9.9. Up to equivalence (in the sense of Definition 2.7), the cluster transformation
Ct is independent of the angle chosen.

Proof. The cluster transformation D in Proposition 9.8 can be rewritten as D :“ σe ˝ Ct. The
corollary is clear since D and σe are independent of the angle chosen.

9.2 Proof of Theorem 9.1

The A–part. Let us fix an ideal triangulation T :“ pE,T q for the decorated surface S. Here
E is the set of all edges in T , and T is the set of all triangles in T . We assign an m-triangulation
to each triangle t P T , obtaining a quiver q. We define the cluster transformation

D :“ σE ˝ CT (258)

where σE is a permutation switching vertices of q on each edge e P E, and CT is a cluster
transformation applying (257) on each triangle t P T .

If e P E is a boundary edge, then the vertices of q on e are frozen. As illustrated by Figure
36, the cluster tranformation D will create new arrows among the frozen vertices.

If e P E is an internal edge, then it belongs to two different triangles t1, t2 P T . The extra
arrows on e created by Ct1 and Ct2 will cancel.

Summarizing, the cluster transformation D only add new arrows among frozen vertices.

Figure 36: The involution D on Conf4pASLmq.

Theorem 9.10. The action ˚ on ASLm,S is exactly the cluster transformation D.

Proof. Note that the action ˚ is local, i.e., the following diagram commutes

ASLm,S
˚ //

��

ASLm,S

��ź

tPT

Conf3pASLm
q

˚ //
ź

tPT

Conf3pASLm
q

(259)

Meanwhile, the cluster coordinates (218) of ASLm,S are also local. The Theorem is a direct
consequence of Proposition 9.8.
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The X–part. Let q be a quiver with vertices parametrized by I. Set εq “ pεijq. Deleting
frozen vertices of q, we get a quiver q with vertices parametrized by J Ă I. Consider the map

p : Aq ÝÑ Xq, p˚Xj “
ź

iPI

A
εij
i , @j P J. (260)

It is known that p commutes with cluster permutations and cluster mutations

Aq

µk //

p

��

Aµkpqq

p

��
Xq

µk // Xµkpqq

(261)

Therefore p commutes with all cluster transformations.

Theorem 9.11. The action ˚ on XPGLm,S is exactly the cluster transformation D.

Proof. Since the action ˚ on XPGLm,S is local, it suffices to prove the case when XPGLm,S “
Conf4pBPGLmq. Recall the projection from ASLm to BPGLm by forgetting decorations. It induces
a projection

p : Conf4pASLmq ÝÑ Conf4pBPGLmq. (262)

By (223)(224), the projection (262) coincides with the map (260). Thus p commutes with D:

p˚pD˚Xvq “ D˚pp˚Xvq.

By the definition of ˚-involution, the following diagram commutes

Conf4pASLmq
˚ //

p

��

Conf4pASLmq

p

��
Conf4pBPGLmq

˚ // Conf4pBPGLmq

(263)

Thus p˚p˚Xvq “ ˚pp˚Xvq. By Theorem 9.10, ˚pp˚Xvq “ D˚pp˚Xvq. Hence p˚p˚Xvq “ p˚pD˚Xvq.
Since p is onto in this case, p˚ is an injection. We get ˚Xv “ D˚Xv .

9.3 The Schützenberger involution

The involution S. Let V be an m-dimensional vector space with a volume form ω. Set
ω1 :“ p´1qmpm`1q{2ω. We consider the isomorphism

t : AV,ω
„

ÝÑ AV,ω1 , pF‚, tfpkquq ÞÝÑ pF‚, tp´1qkpk`1q{2fpkquq.

Let pF,G,Hq be a triple of decorated flags. It is clear that17

∆a,b,cpF,G,Hq “ ∆c,b,aptpHq, tpGq, tpFqq, @pa, b, cq P Γm.

Let us compose the involution ˚ with the map t:

S : Conf3pASLmq
„

ÝÑ Conf3pASLmq,
`
F,G,H

˘
ÞÝÑ

`
tp˚Hq, tp˚Gq, tp˚Fq

˘
(264)

Lemma 9.12. One has S˚∆a,b,c “ ∆b
a,0,c for all pa, b, cq P Γm.

Proof. It follows directly from Lemma 9.7.

17Note that we change the order of the decorated flags here.
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The space ConfpASLm
,BSLm

,ASLm
q. Recall the configuration space

ConfpASLm
,BSLm

,ASLm
q :“ SLmz

`
ASLm

ˆ BSLm
ˆ ASLm

˘
. (265)

Let pa, b, cq be a triple of nonnegative integers such that a ` b ` c “ m ´ 1. The functions

Ra,b,c :“
∆a,b,c`1

∆a`1,b,c
(266)

form a coordinate system on (265), referred to as the special coordinate system.

Theorem 9.13 ([GS, Theorem 3.2]). The special coordinate system on ConfpASLm ,BSLm ,ASLmq
together with the potential W “ χA1

` χA3
provide a canonical isomorphism

tGelfand-Tsetlin’s patterns for PGLmu “ Conf`pASLm ,BSLm ,ASLmqpZtq.

The Schützenberger involution. Using the special coordinate system, we study the invo-
lution

S : ConfpASLm ,BSLm ,ASLmq
„

ÝÑ ConfpASLm ,BSLm ,ASLmq,`
A1,B2,A3

˘
ÞÝÑ

`
tp˚A3q, ˚B2, tp˚A1q

˘ (267)

Let pa, b, c, sq be a quadruple of nonnegative integers such that a` b` c` s “ m ´ 1. Let us set

Rs
a,b,c :“

∆s
a,b,c`1

∆s
a`1,b,c

. (268)

By definition, when s “ 0, we have R0
a,b,c “ Ra,b,c.

Lemma 9.14. One has S˚Ra,b,c “ Rb
a,0,c for all pa, b, cq P Γm´1.

Proof. It follows directly from Lemma 9.12.

Lemma 9.15. Let us assume that a, b, c ą 0. One has

Rs`1
a,b´1,cR

s
a,b,c “

Rs`1
a´1,b,c ` Rs

a,b´1,c`1

pRs`1
a,b,c´1q´1 ` pRs

a`1,b´1,cq
´1

. (269)

Proof. Using Figure 37, let us assign variables pA,B, . . . , Jq to the 10 vertices satisfying the
octahedral relations

JH “ BF ` EC, IG “ BD ` EA.

Let us assign ratios to the 6 red edges

R1 “
J

I
, R2 “

H

G
, R3 “

B

A
, R4 “

C

B
, R5 “

E

D
, R6 “

F

E
.

Then

R1R2 “
JH

IG
“

BF ` EC

BD ` EA
“

F {E ` C{B

D{E ` A{B
“

R6 ` R4

R´1
5 ` R´1

3

(270)

Recall the octahedral relations (246) illustrated by Figure 29. The Lemma follows by working
with the subscripts of Rs

a,b,c carefully.
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Figure 37:

We consider the special cases when a “ 0 or c “ 0.

Lemma 9.16. We have

Rs`1
0,b´1,cR

s
0,b,c “

Rs
0,b´1,c`1

pRs`1
0,b,c´1q´1 ` pRs

1,b´1,cq
´1

, s “ m ´ 1 ´ b ´ c, c ą 0, (271)

Rs`1
a,b´1,0R

s
a,b,0 “

Rs`1
a´1,b,0 ` Rs

a,b´1,1

pRs
a`1,b´1,0q´1

, s “ m ´ 1 ´ a ´ b, a ą 0, (272)

Rs`1
0,b´1,0R

s
0,b,0 “

Rs
0,b´1,1

pRs
1,b´1,0q´1

, s “ m ´ 1 ´ b. (273)

Proof. Using Figure 38, let us assign variables pB, . . . , Jq to the 9 vertices satisfying the relations

JH “ BF ` EC, IG “ BD.

Let us assign ratios to the 5 red edges

R1 “
J

I
, R2 “

H

G
, R3 “

C

B
, R4 “

E

D
, R5 “

F

E
.

Then

Figure 38:
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R1R2 “
JH

IG
“

BF ` EC

BD
“

F {E ` C{B

D{E
“

R5 ` R3

R´1
4

(274)

For functions assigned to vertices on the face c “ 0, by Lemma 9.6, we have

∆m´a´b
a,b,0 ∆m`1´a´b

a,b´1,0 “ ∆m´a´b
a`1,b´1,0∆

m`1´a´b
a´1,b,0 . (275)

Combining with the octahedral relations (246), we get the second identity. The proofs for the
first and the third identities are similar.

Theorem 9.17. The tropicalization of the involution (267) is the Schützenberger involution of
the Gelfand-Tsetlin’s patterns.

Proof. Recall the Schützenberger involution η defined by Berenstein-Zelevinsky [BZ, (8.5)].
Tropicalizing the formula (270), we get

Rt
1 “ mintRt

6, Rt
4u ´ mint´Rt

5, ´ Rt
3u ´ Rt

2 “ mintRt
6, Rt

4u ` maxtRt
5, Rt

3u ´ Rt
2. (276)

Note that Formula (276) is exactly Formula (8.4) in loc.cit.. The tropicalizations of (271)-(273)
give (degenerate) formulas of (276). Recall the cluster transformation C in (254). The Theorem
is proved by comparing C with the involution η of Berenstein-Zelevinsky.

10 Donaldson-Thomas transformation on XPGLm,S

Let S be an admissible decorated surface. Recall the transformation

CS :“ ˚ ˝ rS ˝ w0.

Theorem 10.1. The action CS is a cluster transformation.

Proof. Note that rS is an element of the mapping class group of S. By Corollary 10.3, rS is a
cluster transformation. By Theorem 8.2, the action w0 on XPGLm,S is a cluster transformation.18

By Theorem 9.1, the involution ˚ is a cluster transoformation.

Theorem 10.2. The action CS is the Donaldson-Thomas transformation on XPGLm,S.

We prove Theorem 10.2 in the rest of this section.
By Theorem 10.1, it suffices to prove that CS maps basic positive laminations to basic

negative laminations. The latter follows from Theorem 10.8, Theorem 10.9, and Theorem 10.11.

10.1 Cluster nature of the mapping class group action

Let T and T 1 be two ideal triangulations of S without self-folded triangles. We assign an m-
triangulation to each ideal triangle in T , obtaining a quiver q. Each vertex v of q gives rise to a
function Xv of XPGLm,S. The set cq “ tXvu is a coordinate chart of XPGLm,S. In the same way,
the refined m-triangulation q1 of T 1 gives rise to a chart cq1 for XPGLm,S.

18When S is a sphere with 3 punctures and G “ PGL2, the corresponding quiver has 3 vertices but no arrows.
In this case, the Weyl group action at a single puncture is not cluster. However, the action w0 is still cluster,
which mutates at each of the three vertices once.
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Theorem 10.3 ([FG1, Section 10]). There is a cluster transformation from q to q1 such that the
transition map between cq and cq1 coincides with the one provided by the cluster transformation.

Remark. Let e be a diagonal of an ideal quadrilateral in T . A flip at e removes e and adds the
other diagonal of the ideal quadrilateral to T . Note that any two ideal triangulations without
self-folded triangles can be connected by a sequence of flips that only involves ideal triangulations
without self-folded triangles. Therefore it suffices to show that every flip in the sequence is a
cluster transformation. Since a flip only involves a local quadrilateral, it is enough to prove
Theorem 10.3 for the case when S is a quadrilateral.

Figure 39: Flip.

Proof. For future use, we present below a sequence of quiver mutations that takes left quiver on
Figure 39 to the right by induction on m. We refer the reader to [FG1, Section 10] for showing
that it gives the transition map between cq and cq1 .

Consider the integral points inside of the tetrahedron

Tm :“ tpx1, x2, x3, x4q P R4 |
4ÿ

i“1

xi “ m, xi ě 0u.

We identify the vertices of the left quiver on Figure 39 with the integral points on the faces of
Tm when x1 “ 0 or x2 “ 0, and the vertices of the right with the integral points on the the
faces when x3 “ 0 or x4 “ 0. First we focus on the top tetrahedron of size m´ 1. By induction,
after a sequence of mutations, we obtain the second graph of Figure 40. Then we mutate at
the vertices on the last layer, obtaining the third graph. Using the language of quivers, we first

Figure 40:

mutate the sub quiver consisting of vertices on the top square of size m´ 1. See the first quiver
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on Figure 41. By induction, we obtain the second quiver on Figure 41. Then we mutate at the
vertices contained in the bottom triangle, in the order of row by row, from bottom left to top
right, obtaining the final quiver. 19

Figure 41:

Corollary 10.4. The mapping class group ΓS of S acts on XPGLm,S by cluster transformations.

Proof. Let T be an ideal triangulation of S without self-folded triangles. Each element γ P ΓS

maps T to another ideal triangulation γpT q without self-folded triangles. By Theorem 10.3, T
and γpT q are connected by cluster transformations.

From now on let us assume that T 1 is obtained from T by a flip at e. Recall the basic
laminations l`v in the coordinate chart cq (Definition 3.1). We study their coordinates in cq1 .

Notation. The coordinates of X -laminations will be illustrated as in Figure 42: the ˝-vertices
with “ ` ” give 1, the ˝-vertices with “ ´ ” give -1, and the rest give 0.

Lemma 10.5. 1. If v is an inner vertex of an ideal triangle containing e, then the coordinates
of l`v in cq1 are illustrated by the second graph of Figure 42.

2. If v is on the edge e, then the coordinates of l`v in cq1 are illustrated by the fourth graph
of Figure 42.

3. For the rest vertices v, the coordinates of l`v remain intact.

Proof. Part 3 is clear. Part 2 is a special case of 1 when a “ 0.
The proof uses induction on m in the same way as the proof of Theorem 10.3.
If m “ 2, then pa, b, cq “ p0, 1, 1q. The Lemma follows due to direct calculation.

19In fact, every quiver mutation in the sequence gives a two by two move on the bipartite graph of Figure 4.
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Figure 42: Basic laminations under a flip.

If m ą 2, we prove the case when b ą 1 (the proof for b “ 1 is similar but easier). First
we apply cluster mutations to the top square of size m ´ 1. Using induction, the coordinates
of the basic lamination are shown on the second graph of Figure 43. Then we mutate at the
vertices contained in the bottom triangle, in such an order illustrated by Figure 41. By an easy
calculation, we get the last graph of Figure 43.

Figure 43:

10.2 Covering map of decorated surfaces

The cone of positive laminations. Let X be a cluster Poisson variety assigned to a quiver
q with N vertices indexed by I “ t1, . . . , Nu. The chart cq :“ tXiu provides a bijection

ctq : X pZtq
„

ÝÑ ZN , l ÞÝÑ pXt
1plq, . . . ,Xt

N plqq.

Let N be the set of non-negative integers. We consider the cone of positive laminations in cq

X`
q pZtq :“

`
ctq

˘´1
pNN q.

Lemma 10.6. If K is the cluster DT-transformation on X , then it maps positive laminations
to negative laminations:

ctqpKtplqq “ ´ctqplq, @l P X`
q pZtq. (277)
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Proof. By the commutative version of Formula (140), we have 20

K˚Xi “ X´1
i

ź

jPI

F
εij
j , where the F -polynomials Fj are of constant term 1. (278)

If l P X`
q pZtq, then F t

j plq “ 0. We have

Xt
i pKtplqq “

`
K˚Xi

˘t
plq “ ´Xt

i plq `
ÿ

j

εijF
t
j plq “ ´Xt

i plq.

Covering map. Let π : S̃ Ñ S be a covering map of decorated surfaces. By pulling back, it
induces a natural positive embedding j : XG,S Ñ XG,S̃.

Lemma 10.7. The following diagram commutes

XG,S

CS

��

j // XG,S̃

C
S̃

��
XG,S

j // XG,S̃

.

Proof. It follows directly from the geometric meaning of CS.

Theorem 10.8. If C
S̃
is the cluster DT-transformation on XG,S̃, then so is CS on XG,S.

Proof. Thanks to Theorem 10.1, it remains to prove that CS maps basic positive laminations to
basic negative laminations.

Let T be an ideal triangulation of S without self-folded triangles. Its m-refined triangulation
gives a quiver q with vertices indexed by I. By pulling back to S̃, we get an ideal triangulation
T̃ of S̃, and a quiver q̃ with vertices indexed by Ĩ. There is a natural projection π : Ĩ Ñ I.
Using the coordinate charts cq and cq̃, the embedding j is given by

j : XG,S ÝÑ XG,S̃
, j˚pXvq “ Xπpvq, @v P Ĩ . (279)

Its tropicalization is an injection jt : XG,SpZtq ãÑ XG,S̃pZtq.

Let l˘i pi P Iq be basic laminations in the coordinate chart cq. By (279), jtpl`i q is a positive
lamination in the cone X`

q̃ pZtq. If C
S̃
is the cluster DT-transformation, by Lemma 10.6, we

have Ct
S̃

`
jtpl`i q

˘
“ jtpl´i q. By the commutative diagram in Lemma 10.7, we have jt

`
Ct
Spl`i q

˘
“

Ct
S̃

`
jtpl`i q

˘
. Therefore jt

`
Ct
Spl`i q

˘
“ jtpl´i q. Since jt is an injection, we get Ct

Spl`i q “ l´i .

20See [FZIV, Prop 3.13] for the commutative version. See [DWZ2, Theorem 1.7] for the proof that F -polynomials
have constant 1. As an example, if q is a cycle, then K˚Xi is given by (183).
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10.3 The action w :“ rS ˝ w0 on XPGLm,S

From now on, let us assume that S admits an ideal triangulation T such that every edge in T
connects two different marked points. By Theorem 10.8, it is enough to prove Theorem 10.2 for
such decorated surfaces.

Let cq :“ tXvu be the cluster chart of XPGLm,S given by the m-triangulation of T . The
tropicalization of w :“ rS ˝ w0 is an isomorphism

wt : XPGLm,SpZtq
„

ÝÑ XPGLm,SpZtq (280)

We consider the images of the basic positive X -laminations l`v under wt. There are two cases.

Theorem 10.9. 1. If v is a vertex on an edge e of T , labelled by pa, bq, then the coordinates of
wtpl`v q are illustrated by Figure 44.

Figure 44:

2. If v is inside an ideal triangle t of T , labelled by pa, b, cq P Γm, then the coordinates of
wtpl`v q are illustrated by Figure 45.

Figure 45:

We prove Theorem 10.9 in the rest of Section 10.3.

10.3.1 Tropicalization of Weyl group actions

Recall the quivers qN Ă q in Theorem 7.7. The vertices of qN are labelled by I “ t1, ..., Nu
clockwise.

Lemma 10.10. Let i P I be a vertex of qN . Let l P X|q|pZ
tq such that

Xt
kplq “

$
&
%

1 if k “ i,

0 if k P I and k ‰ i,

lk if k R I.
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We have

Xt
k

`
τ tplq

˘
“

$
&
%

´1 if k “ i ` 1,
0 if k P I and k ‰ i ` 1,
lk ` cki if k R I.

Proof. Recall Fj , Yj in Theorem 7.7. By definition, F t
j plq “ 0 for all j P I. Therefore

Y t
i plq “ 1; Y t

j plq “ 0, @j P I ´ tiu.

Note that Xt
k

`
τ tplq

˘
“ pτ˚Xkqtplq. The Lemma follows from Theorem 7.7.

Recall the Weyl group action on XPGLm,S assigned to a puncture p of S. By Theorem 8.2,
the action of the simple reflection sp,i is exactly the cluster transformation τp,i. Set

dk,p :“ sp,m´k ˝ . . . ˝ sp,m´2 ˝ sp,m´1. (281)

Let v be a vertex of distance pm´ iq to p. Using Lemma 10.10 repeatedly, the coordinates of l`v
under the action dm´1,p are illustrated by Figure 46.

Figure 46: Here m “ 6, d5,p “ sp,1 ˝ . . . ˝ sp,5.

10.3.2 Part 1 of Theorem 10.9.

We have the following three cases.
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1. The edge e connects two different special points m1 and m2. Let m1
i be the

previous special point of mi. By flips at edges other than e, we get an ideal triangulation T 1

containing the ideal quadrilateral of vertices pm1,m
1
1,m2,m

1
2q as the left graph of Figure 47.

Note that flips at edges other than e keep the coordinates of l`v intact. So l`v is still a basic
positive lamination in the coordinate chart given by T 1.

We flip at the edge e. By Lemma 10.5, the coordinates of l`v are illustrated by the second
graph21 of Figure 47. The action rS of transporting framings rotates the edge m1

1m
1
2 back to e.

Finally, again by flips at edges other than e, we return to the original ideal triangulation T .
The actions at other marked points preserve the lamination of the last graph of Figure 47.

So the coordinates of wt
0plvq is the same as predicted by the Theorem.

Figure 47:

2. The edge e connects a puncture p and a special point m. We consider the ideal
triangle of vertices p,m,m1. Recall the action dk,p in (281). The action of the longest Weyl
group element on p is

w0,p :“ d1,p ˝ d2,p ˝ . . . ˝ dm´1,p (282)

Using repeatedly the process illustrated by Figure 46, w0,p maps l`v to the lamination shown on
the second graph of Figure 48. The action rS rotates the edge pm1 back to e.

Figure 48:

3. The edge e connects two different punctures p1 and p2. By the same process
described in Case 2, the action of w0 on p1 maps l`v to the second graph of Figure 49. The
action of w0 on p2 maps it to the last graph. The action at other point preserve the lamination
of the last graph.

21The edges connecting mi and m1
i are boundary intervals. Since we consider the moduli space XPGLm,S, there

are no frozen vertices assigned to the boundary intervals.
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Figure 49: l

10.3.3 Part 2 of Theorem 10.9.

We have the following four cases.

1. The vertices of t consists of three different punctures p1, p2, p3. Set

w2,p2 :“ dm´c,p2 ˝ . . . ˝ dm´1,p2 , w1,p2 “ d1,p2 ˝ . . . ˝ da`b´1,p2 .

By (282), the action of w0 on p2 is

w0,p2 “ w1,p2 ˝ w2,p2 .

The actions on the other punctures/special points will not change the coordinates of lv. So
it suffices to consider the action w0 on p1, p2, p3. Note that Weyl group actions on different
punctures always commute. The action w1,p2 ˝ w0,p1 ˝ w0,p3 ˝ w2,p2 is illustrated by Figure 50,
which coincides with Figure 45.

Figure 50:

2. The vertices of t consist of two punctures p1, p2 and a special point m. Let m1

be the previous special point of m. Set

w2,p2 :“ dm´b,p2 ˝ . . . ˝ dm´1,p2 , w1,p2 “ d1,p2 ˝ . . . ˝ da`c´1,p2 .
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It suffices to consider the ideal quadrilateral of vertices pp1, p2,m,m1q. Figure 51 illustrates the
change of coordinates of l`v after w0 actions on p1 and p2 and a flip the edge p1m. The action
rS rotates the triangle p1p2m

1 back to t. The actions on the other marked points will preserve
the coordinates of l`v .

Figure 51:

3. The vertices of t consist of a puncture p and two special point m1, m2. Figure 52
illustrates the change of coordinates of l`v after the w0 action on p and flips at two edge. The
action rS rotates the triangle pm1

1m
1
2 back to t. The actions on the other marked points will

preserve the coordinates of l`v .
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Figure 52:

4. The vertices of t consist of three special point m1, m2 and m3. Figure 52 illustrates
the change of coordinates of lv after flips at four edges. The action rS rotates the triangle
m1

1m
1
2m

1
3 back to t. The actions on the other marked points will preserve the coordinates of lv.

Figure 53:
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10.4 The involution ˚ on XPGLm,S

Theorem 10.11. The involution ˚ maps the laminations in Figures 54 to basic negative lami-
nations.

Figure 54:

Proof. The first case is clear. We prove the second case by induction on m.
If m “ 3, then a “ b “ c “ 1. The second case is clear.
If m ą 3, without loss of generality, let us assume that c ą 1. By Proposition 9.8, the

involution ˚ locally equals
D :“ σ ˝ Sm´2 ˝ Sm´3 . . . ˝ S1.

Let us assume that Theorem 10.11 holds for m ´ 1. Then C1 :“ Sm´3 . . . ˝ S1 maps the first
graph to the second one. Recall the exact sequence of Sm´2 as illustrated by Figure 34. It
follows directly that Sm´2 maps the second graph to the third one. Finally, we flip the third
graph horizontally, getting the last graph that we want.

Figure 55:
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