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Abstract

Suppose we have n observations from Y =X + ¢, where € is measurement error with
known distribution, and the density f of X is unknown with the non-parametric constraint
felfe) 1f™x) - f™x +8)1 <B3*, If1 <C}. Suppose the functional of interest is

T(f)=f"xg) ; for I =0, T(f) is the density function at a point. Then the optimal rate of

mia-i

estimating T(f) is 0((log n) P ) if the tail of the characteristic function of € is of order

m+o-|
1 1Pexp(— 1£1P/y)as t — o, and is O(n 2™ +®+2+T) if the tail of the characteristic func-

tion is of order O (+~®). Moreover, the optimal rate of convergence of a distribution function is

also found, which is no longer "root-n consistency” as in the ordinary case. In addition, the

1
optimal rate of estimating the functional T(f) =Y a; f U)(xy) is also addressed.
1
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1. Introduction

Suppose we have observations Y,, - - -, Y, having the same distribution as that of Y

available to estimate the unknown density f(x) of a random variable X, where
Y=X +¢ (L.1)

with measurement error € of known distribution. Assume furthermore that the random vari-
ables X and € are independent. We will discuss herein how well the unknown density and its

distribution function can be estimated nonparametrically under certain smoothness conditions.

The usual smoothness condition imposed on f is the set with kth bounded derivatives.
More generally, we shall assume ™) satisfies Lipschitz condition of order o, i.e. f is in the

set
Crpap = {FOX1f™) = f™(x +8)I <BJ* IfI1 <C} (1.2)

where B, C, and 0 < o < 1 are constants. Then the optimal rate of convergence will depends

on m, o through m + o.

Such a model of measurements being contaminated with error exists in many different
fields and has been widely studied. For example, the observation Y is the survival time of an
animal, X is the time that a tumor occurs, and € is the time from tumor occurring to death.
Some other examples, described in Liu and Taylor (1987), Carroll and Hall (1987), are Crump

and Seinfeld (1982), Mendelsohn and Rice (1982), and Medgyessy (1977).

The applications for such a model in theoretical settings are mentioned in Carroll and
Hall (1987). For example, our results can be applied to the estimation of the prior of non-
parameltric empiricz;l Bayes problem (Berger, 1980). Also, the theory can be applied to non-
parametric regression estimation for estimation of regression function and to the generalized

linear model ( Stefanski and Carroll (1987) ), and other models such as Y = Xe€.

Carroll and Hall (1987) give the optimal rates of density estimation at a point when the
error is normal, and give the result for gamma distributions omitting the proof. As far the

author can determine from their proof, we don’t not know exactly why the lower rates should
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depend on the tail of ¢.. In our heuristic argument in section 3, the reason for this dependence
are clearly stated. We will generalize the result to more general setting by assuming that the

tail of characteristic function is either of form
19e(t)1 = O (11 1™exp(= 12 1P/y)) (as t — o) (1.3)
or
0.()=0@P) (as t - o) (1.4)

Moreover, we will give the rate of convergence of estimating distribution , which is not n "2

convergence any more.

We will address how the difficulty of deconvolution depends heavily on both imposed
smoothness condition on density f and on the smoothness condition of distribution of error.
By smoothness of the distribution of error, we mean the order of characteristic function ¢g(¢)
of € as t—oo. The difficulty can be explained intuitively: on the basis of finite observations,
the tail of ¢g(r) makes it difficult to identify the tail of characteristic function of X, and hence
the distribution of X. It can also be explained by the fact that the empirical characteristic func-
tion of Y does not go to 0 ¢ as ¢+ — oo ), and hence to use inversion formula heuristically, we
have to truncate the integration somewhere. The smoother of the distribution of ¢, the more
we have to truncate, which increases the variance and bias of the estimator. Thus, we have to
pay some extra cost for estimating the density of f in deconvolution form. Therefore, the

optimal rate depends on how much we pay for the extra cost.

To find the optimal rate of convergence, we usually have to find a lower bound and an

upper bound. Suppose we want (o estimate a functional T of f. In principle, we can apply the

modulus lower bound b(—\%) invented by Donoho and Liu (1987), and defined by
n

bE) =sup{I T )-T(fD:f1,f2€ Coopr HU y1» fra) S € (L.5)

in current setting, where H (fy,, fy,) is the Hellinger metric between fy, and fy, (see Lecam

(1973), (1985)) and fy, is the density of Y under the convolution of model (1.1). But



-4-

constructing a lower bound in this way may obscure the essential difficulty inside. Instead of

using Hellinger metric, we will use % metric. To formulate the idea, let

P fD=[(Fr- DT (1.6)

be the 2 meltric between two densities, and

br®) =sup{\ITF) =T () \: f1. f2€ Crop, X(Fr1s fra) SE) .7

\/_

puted explicitly. In other words, when we cannot distinguish between two densities based on n

Then, the lower bound by (—1—-) will be the attainable lower bound, and the rate can be com-
n

observations of Y, then the change of functional is a lower bound.

To find an achievable upper bound, we will use Parzen’s (1962) type of density estima-
tor. A similar construction is used by Stefanski and Carroll (1987) and Liu and Taylor (1987).
For a nice kernel function K(x), lct ¢x () be its Fourier transform with ¢5x(0) = 1. Then the
kernel density estimator is defined by

oo ~

. , ")
Fao) = o | expt i) g eh) :gu)

dt (1.8)

for suitable choice of bandwidth h and kemel function. Note (1.8) can also be written in ker-
nel type of density (see (2.3)). Moreover, we will use (1.8) to construct the estimators of the

derivatives of the unknown density and its distribution.

In section 2, we will exhibit the rates of kernel type of density estimators , which are the
optimal in terms of rates of convergence. In section 3, we will construct the lower bounds and
give heuristic argumehl of the results which allow us to say the optimal rate of convergence.
In section 4, we will give some brief discussion and comments. In section 5, we will give the

proofs of the results.



2. Kernel density estimators

Let’s start with the kernel density estimator (1.8) with empirical characteristic function

defined by
A~ l "
¢, (t) = ’—, Y exp( itY,) @.n
1

and a given known function ¢ (r). Let K(x) be the Fourier inversion of ¢x () defined by

+ oo

K(x)=2—1u j exp (= itx ) (¢)dr, 22)

a smooth kernel function. Then (1.8) can be rewritten as a kernel type of estimator:

. Xo-Y;
flxo) = z,i o (L) 2.3)
where
" ox ()
_ 1 .\ %%
&x)= o -L exp(— ity) ot/ 24)

Define the maximum mean square error (MMSE) of an estimator f to be

MMSE(f)= sup  E(f(xo) - f (xo))* (2.5)
feChos

To compute (2.5), first compute its bias and see what kind of kernel or equivalently its
Fourier (ransformation ¢x (r), we should use.

+ oo

Efn o) — fxg) = Z_In_ J exp(— itxy) dx (th)dx (t) dt — f (x¢)

=F O KED | = f(xo) 26)

The last expression does not depend on the error distribution. Thus, the minimum conditions

we have to impose are that the Kernel function K satisfies the conditions of those without
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convolution. We will state them on its Fourier domain.
-The conditions we are going to impose on K and on ¢, are

Al) o(t)# 0, for any t.

A2) ¢x(t) is a symmetric function, having m + 2 bounded integrable derivatives on
(— o0, + o).

A3) ¢x(t)=1+0(1t1"*%), a5t — 0.

Note that A2) and A3) is imposed simply to make kernel K (-) satisfy the condition of
"classical” (without convolution) kernel function. Additional conditions will be specified
below.

More generally, we can use f,)(xy) to estimate f*(xy), the I derivative of the unk-
nown density at x,. For the exponential decay of ¢, case (we will call this the supersmooth
case), we have the following rates of convergence.

Theorem 1: Under the assumptions Al) ~ A3) and

El) éx(t)=0for Il 2 1.

E2) 19¢t)! 111" Pexp(1e1Py) > ¢ (as 1 — o) with B, v, ¢ > 0.
1 -1
Then by choosing the bandwidth i = (4/y) p (log n) B,
sup  E(fy (o) = f Qo)) = O ((log n)y=%m + =Py @7)
f € CpmoB

Remark 1: When ! = 0, £, (x,) is the estimator of density function itself, which has rate
of convergence of O ((log n)™ ™ **"B)  The constant 1 in condition El) is not essential. It
can be replaced by any positive constant. The reason we impose such a condition is simply to

make (1.8) converge, and for easy calculation in the proof.

For the case of geometric decay of ¢, (called the smoothness case), we have the follow-

ing result.
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Theorem 2: Under the assumptions Al) ~ A3) and

Gl) ¢/()P*! = —Bc, ¢(t)P o ¢, (t — +o0) with ¢ > 0.

+ oo + oo

G2) j 1o ()1eP+1 = 1dt < oo, and j log ()P + de < oo

Then by choosing the bandwidth A = O (n~ VI2m + @) +2B + 1}y

__2m+a- 1)
s EG 0o - fOrgy=0@ HmrorBel 2.8)
m,aB

l .
Remark 2: If we want o estimate T(f) = Y, a;fY)(xg) in Cpy 5, then the kernel den-
1

I .
sity estimator T(f,,) = ¥, a;f,"(x¢) (a; # 0) has the optimal rate of O ((log n)~ ™ **=!¥f) or
I

m+ao-I

O@n ¥m+e+P+1y gdepending on the rate of the tail of ¢.. The proof of such a result fol-
lows easily from the proofs given in this and the next section under the same assumptions.

Note that the rate of convergence given by (2.7) and (2.8) is the optimal one, which will

be shown in the next section.
Now, we consider an estimator of distribution function. Define the estimator of distribu-
tion F (x,) by

Xo

Fp(xo) = L Fote) de 2.9)

where £, (t) is the kernel density estimator given by (2.3).

Theorem 3: Under assumptions El), E2), Al) of Theorem 1, suppose that ¢x(t) is a
symmetric function, having m+3 bounded integrable derivatives on ( — oo, + o ), and
dx)=1+0(e1™*'*% ag ¢ — 0. Then by chovsing the same bandwidth as for Theoremn

land M, =n 3 we have:

sup  Eg(F,(xo) = F(xg))* = O((fog n) *" *2* Py

f € m.a.B
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where C’p o = {f € Cnop: F(-n) < D(log n) m+28)

Remark 3: In the proofs of Theorem 5 & 7, we will see that the rate given in Theorem

3 is the optimal one, because the least favorable pair we choose is in C’y, o 5.

3. Lower bounds

In this section, we will find lower bounds for estimating densities and distributions.

More generally, suppose we want to estimate T(f) from observation (1.1). Then we have the

following lower bound of by (—= \/_.

Theorem 4: If for some sequence of positive constants (a,: n 21 }, we have

liminf inf P (If, -T(f)1 Sa,) =1

"—-)“fE m,oB

then

liminf a /br(\/—) 21/2 3.1

n — oo
Moreover for any estimator T, of T(f), we have for ¥ c,

LS E; (f, - T()*> Cb}(%n) (3.2)

for some constants C. In other words. no estimator can estimate better that by (—-E—).

Vn

Remark 4: (3.2) is implied by the result of Donoho and Liu (1987) in the current set-
ting. In fact, such a theorem may be familiar to some authors. For the purpose of later use

we state here and give a proof.

Now, let’s study the lower bound of b, (—1— ). To begin with, suppose the functional of

i

interest is T (f) = f (vy), density at a point. Let’s give a heuristic argument to sce why the
result should depend on the tail of ¢.. Rigorous proof will be given in section 5, which

involves mathematical details and more careful constructions.
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Let’s assume without loss of generality that x, = 0 by relocating x to origin. To calcu-

late the abstract bound by (f ), take a pair fo(x) € Cp ap, f1(X) € Cpy o5, for which

F1x) = fox) + ¢ 8 H(x/8) (33)
+ oo
where k = m + 0o, H(0) # 0, j H(x)dx =0 and the m™ derivative of H(x) satisfies
Lipschitz condition of order a. Then by suitable choice of the tail of H(x), f(x) and con-
stant ¢, f, will be a density in C,, o 5 for small 8. & is chosen such that x2-distance

4+ oo

J (fy1 = fr2)*fi'dxe < % (3.4)
and the lower bound of density estimation at a point will be half of the change of functional
IT(fo) -T2 =2 1H©0)I8=0@) @3.5)

Thus, we have to find § as larger as possible so that (3.4) holds, or equivalently such that

+ oo <+ oo

8441 [ ([ Ha = )P 8y 85" 8x) dr £0(2) (36)

where F is the distribution function of the random variable €, g¢ = f o*F.

Suppose we can prove that as § — 0,
+ oo + oo

2
[ [ [ Ho-ydra@n] g5 @) dr 3.7)

+ oo + oo

<C j[ IH(.\'—y)dFe(By)]zdx

where C is a constant independent of n. Then by Parseval’s identity, to make (3.5) hold, we
have to choose & from

+ oo + co

[ ([ He - yar @y e =0 (3.8)
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or equivalently from

+ oo

5% +1 j Ly (£) 0e(t/8)12 dt < 0(-’17) (3.9)

— oo

where ¢y is the Fourier transformation of H. Thus, the result will depend on the tail of ¢,

only. It is not hard to choose 8 from (3.9) and consequently to get a desired lower bound.
Theorem 5: Suppose that the tail of ¢, satisfies

'_po

19(t)! 111 Pexp(1t 1By) S ¢ (as ¢t = o)

—(a +1

and P (x+1x1™2e2x - 1x1™) =0 (x| “%Nor 0<og<1 (as x — o) for
0 < oy < 1, a>0.5, then no estimator can estimate T(f ) = f,,(”(xo) knowing f € C,, op faster

than O ((log n)™ ™ **~ "By in the sense that if

timinf —inf P fPxg) = fPx) Sa,) =1 (3.10)

n—eefedl, .p
then

(log n)m+e2=-B g 5 3.11)
Moreover, for any estimator f',, ,

sup  Ep (T, = T(f)?> O(Uog ny #m+o-DF) (3.12)
f € Chon

From the result given in Theorem 1, we know that the optimal rate of estimating a den-
sity in the supersmooth noise case is only of order O ((logn)™ ™ * ®'®)_ Specifically, when the
error is distributed as Cauchy, then the optimal rate is O ((logn )~ ™ *®), and when the error is

normal, then the optimal rate is O (logn )~ ™ * ®'2),

Theorem 6: Suppose that the tail of ¢, satisfies the condition G1) of Theorem 2, and

0 ()P 5 oo + 1)¢ (r — o0), then no estimator can estimate T(f) = f"(xy) , under

m+o-1
the constraint that f € C,, o5, faster than O(n 2" *2**2B+1) in (he sense of (3.1) and
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(3.2).
Remark 5: In some cases, ¢(¢t) = exp(it€y)d(r), where ¢(¢) satisfies the condition of

Theorem 6. Then ¢ itself doesn’t satisfy the conditions of Theorem 6, but by translation the

result still holds. Note that the constant ¢ can be 0 in Theorem 6.

Remark 6: For estimating the functional T(f) in Remark 2, the lower bounds are

exactly the same as those given in Theorem 5 and 6 using the same constructions.

Thus, we get the optimal rates for the smooth cases and the supersmooth cases. In prac-
lice, those conditions are easy to check. The cases of error distributions satisfying Theorem 2
& 6 include gamma distribution, double exponential distribution , etc. And the cases of error
distributions satis(ying Theorem 1 & 5 are normal, cauchy, mixture normal, and many other

distributions. Now, we state some lower bounds for estimating the distribution function.

Theorem 7: Under the condition of Theorem 5, then no estimator of estimation the distri-

m+o+l
bution function of X at a point under constraint (1.2) can be faster than O ((logn) P )-

in the sense of (3.10) ~ (3.12).

Theorem 8: Under the condition of Theorem 6, then no estimator of estimation the dis-

tribution function of X at a point under constraint (1.2) can be faster than

m+o+l

Om M+20+W+1) when B> 0.5 and O (n~ "2) when P < 0.5.

Remark 7: For estimating P { X € (a,b] ), the lower bounds are the same as those in

Theorem 7 & 8. However, the lower bound given by Theorem 8 may not be attainable. The

m+a+l

attainable one might be O (n %™ +e+P+ 1D
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4,  Discussion

We hope to decompose the difficulty of deconvolution into two parts: the difficulty of
deconvolving a functional T, and modulus function without convolution (does not depend on
the tail of characteristic function). The first part tells us how difficult of deconvolution is for a
functional, and the second part tells us the difficulty of estimating a functional even though no
convolution exists. To formula the idea, let modulus function

+oo

b@® = sup  (ITED-TED: [ Fi=f*fi' <8)
f B oo

1rf2€ Cy,

be the difficulty function of estimating T(f) without convolution ( i.e. the lower bound if error
€=0). And one way to define the difficulty of deconvolving a functional is
+ oo + oo

Dr®= s | _j“ (Fr1 = Fr)Fyy) dx: _j” 1= fDf ldx <8)

l'fZ
where C = ((f 1, f2): f1.f2€ Crmop. IT(f)=T(f)! 2b(B)2} and then the lower bound
for estimating T (f) is b (Dr |(l’)). The lower bound suggests that we find a pair of density
1

functions which is the least favorable in the situation without convolution and such that the x2
distance is as small as possible. Of course, we hope to find a difficulty function D, which
does not depend on T. But, it is impossible simply looking at estimating the mean and density

of the normal error case € ~ N (0, 1). In this case, D (§) = O (8) for estimating the mean, while

2m +a+p)+1
D@ =0(8 ¥ *9*! ) for estimating the density.

When error € ‘is uniformly distributed on [0,1], say, the model (1.1) itself is identifiable.

Theorem 6 tells us that no estimator can estimate the density of X at a point faster than

m + o

O@n 2m*2+D+1 for any b < 1. However, we cannot use kernel density estimator (1.8) to

estimate the density, because (1.8) is not integrable almost surely.
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5. Proofs

Proof of Theorem 1

According to our remark in section 2, the function K(t) satisfies the conditions of a kernel
function in density estimation in the situation of no convolution. Thus, we can apply the result

of classical kernel density estimation (2.6) (see Rao (1983), P 46 ~ 47), and it follows that

sup 'Ef n(l )(Xo) -f ¢ )(-\’o)l
feChasn

+ oo

- Oev — o Llrpd _ £y
fes("?.’,u,nl_'[..f o y)hK(h)dy FAKETOL

< Cchk-!

for some constant C, where k = m + o. Now the variance of f,,("(xo) is

+ oo
var (f(xq)) = i var [ _J; (- it) exp(=it(xg = Y})) ¢:€((t:;) dt]
n ox (th)
: (21:)2;,“ _J; (= it) exp(=it(xo = ¥ 1)) ge(t) ar’
< 1 ]l log (0)! dt]2 )
(21t)2nh2 J 1oe(e/h)]

By assumption E2, when Mh < It 1 < 1 (for large but fixed M),
IYONE %(r/h ) exp(= i~ Pry)

Moreover, by (A1)

1de(t/h)l 2 min &(t) >0, when I1t| < Mh
It <M

Thus, by (5.1)

1

2r)’nh? 0 (exp@h™Fry)

var (f,"(xg)) <
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1
=o0o(n 3)

1 1
by choosing the bandwidth & = O ((4/y) B (log n) P ). Hence, the conclusion follows.

Lemma 5.1: Under the assumption of Theorem 2,
28r. (N2 <« D . .
h°¥[g, (X)) < 5> (uniformly in small h).
X

for some constant D.
Proof of Lemma 5.1:

By integration by pilrts,

+ oo

(e =l . PR dx (1) ,d
gn '(x) x _J; exp( lt.t)[( it) _¢e(t/h)] t
Thus, by the usual argument,
h2Pre, (O ZSL A X211
ler <5 ([ wh -0 )
+ oo

C : - ,
<SS [ Qog@P* =11+ 197 @)1 P+ )
Xt .
(uniformly in small h ) for some constant C. Hence, the assertion follows.

Proof of Theorem 2:
By choosing the bandwidth as given by Theorem 2 and by the calculation of Theorem 1,
we have
k=1

sup NEF D) = fOr)I SO~y =0(n **+2+T)

f € "m.a.ﬂ

where k =m + 0. Now, we need only to compute the variance of the estimator. Let

gm =g\". Then by (2.3),
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o— Y,

var (D xo)) S —2—- Egh(—2—2) (52)
" nh?- % h
Let fy(y) be the density of ¥ = X + €, then
+ oo
X0
Egih( = [ sh D freo-y) dy (5.3)

Note that Ify(x)l <C for all f € C, ,p. Hence, the following result follows unformly in
f € Cp op. For any small m,
+ oo + oo

| I frxo—v) %81.21(%) dy — fy(xg) j ghy) dyl

+ oo

=1 | Greo-n - freoryaldy v

< max lfy(xg—y)— fy(xy)! l4!»’/.21(‘2)‘1)’
MEX) Msnh h
frixvo=»)
o T2 2y dy v frag) g (%) dy
Iyl 2n A h h lyl2n h

A max 'fmo—y) fraxpl Iy +1,+ 1,5

Iyl <

It is easy to check by definition that 1g,{)(y)l < Ch~?® unformly for small & and some con-

stant C. By Lemma 5.1,

= 1.2y
I = _[ ,ghl(h)dy

Ilyl'sn !
< [ wdorav+ [ gdoray (5.4)
vizt : Ivlst

<pn- % r[ —dv+2c1r2”
vl }’

=0 % . (5.5)
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Applying Lemma 5.1 again, we have

x —
I,= r[ fo=y) % g:ﬁ(*}) dy
lylan y 1

1 2
< —  sup | |
n Mu i y 8ni(y)

Sl sup Bh‘ 2

N iyl2wh y
=o0o(h” 2")
Similar reason shows
I3= 1fy(xo)! Loy dy = 0 (h™®)
Iy 12 wh

Note that (5.4) and (5.5) implies that

+ oo
[ ey dy =0om=%#)
Combining (5.5) ~ (5.8), we conclude from (5.3) that

Xg — Y|
h

1
',2_21 Eghzl(
nn

L))
S—I—O(h‘m‘z"')=0(n AW+
n

Hence, we get the desired conclusion.

Proof of Theorem 3

Yo + oo

) = [ [ fa-y)g K&y dy du

+ oo

= | GF@-y)-Fen' -y k) dy

- oo

(5.6)

6.7

(5.8)
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Now by the standard proof, we can show that
s |EF, (xo) = F (xo)!
fe g[: o8 n( 0) ( 0)

+ oo + oo

<1 F(xo—y)—ll:K(%)dy-F(xo)l + [ Fen" - hy)Ko)idy

— a3

SCh™ o+ L O(F(-n""32)) + J' 1K (y)! dy

o mia+tl

=0(togm)y P )

On the other hand, the variance of £, (v,) is

+ oo

Y 3 1 t 2
var (Ey o) < (11 4 x0) s [_L IMOIIIXCITRY
som'3 L S exp(2 h~ %)
nh

The conclusion follows.
Proof of Theorem 4

Take a pair f |, f, € C,, op such that it satisfies (3.4) and
(=) S IT(F) =T D! +0(a,) (5.9)

Then

[an’l)' : 'fY2(.vn)]2
R fro) - frim)

+ oo

=+ [ (ri-fr)lfpde) S e (5.10)

where fy, is the convolution of f; with the distribution of €. Hence by the Cauchy-Schwartz

inequality,
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[P, UF, - T (! Sa,,l]zsec P, (IT, ~T(f)! Sa,)
On the other hand, by (5.11) we have
P, (1T, =T (f)! < 2a,)
2P (IT(f)-T,1 Sa,, IT(fF)-T,1 <a,}
=P; ([IT(f) - T,1 Sa,) +o(1)
2e"C (asn — o)

Hence, we conclude that

ITED -T( ) < 2a,

and the conclusion follows.

We need the following Lemma in order to prove theorem 5 ~ 8.

Lemma 5.2: Suppose that F is a distribution function, then the convolution density

+ oo
golv) = _J; 1+ :y)z)" dF (y)
satisfies
gox)2DIx I~ %
as x — oo with D > 0.
Proof: Choose M large enough such that
FM)-F(-M)>0
Then when Ixl is large,
M c. .
$ol0) > _‘L U+« —y)P> *F0)>b Ix1?

(5.11)
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|—(a+l

Lemma 5.3: Suppose P |x+|x|°°2£2x—lxl“°]=0(lx _a")) for

0 < 0y <1 and H(x) is bounded with H(x) = o(lx I_m") (as x— t oo ). Then there exists a
large M and a constant C such that when 18x | 2 M,

+ oo
j H(x —y) dF (8y) < C(Slx 1)y 15~ (@ -03)2
if mg(a — 0.5) > 1.5 + (@-0.5)2.
Proof: Divide the real line into two parts:
Iy=({y: Ix =y/81 S Ix1%), I;=(y:lx —y/81 > Ix1%)

Then, by simple algebra,

+ oo

[ He =) dF(y)

< ’[ + ,[ H(x - y/3) dF (y)

= my,o

SO@Ix) 'Y L 0(x )

Now choosing o = (@ — 0.5)/2, the conclusion follows.

Proof of Theorem 5:

By relocating x to the origin, without loss of generality assume that x, = 0. Denote
k =m + a. Take a real function function H (.) satisfying the following conditions:
1. H"0)=0.
2. H®(x) is bounded continuous for each k.

-m .
3. H@)=0( %, asx — oo, for some given m,.

+ oo

4. _|' H(x)dx =0.
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0
5. j H(x)dx # 0.

6. ¢y(t) =0, when It is outside [1, 2], where ¢y is the Fourier transformation of H .

To see why such a function H (-) exists, lct’s take a nonnegative symmetric function ¢(¢)
which vanishes outside [1, 2] when ¢ > 0 and has continuous first m, bounded derivatives (

m, is large enough such that Lemma 5.3 holds). Moreover, ¢(¢) satisfies
hD0) 2 K1) (5.12)

and

2
J' s“t”w)dr #0
|

where h(x) is the Fourier inversion of ¢(r) defined by

2

hv) = %I cos (ex) Ot )dt (5.13)

Such a ¢(-) exists because all functions satisfying the above conditions are infinite dimensional.
Let H(x) = h(x) — h(x + 1), then its Fourier transformation ¢y (¢) = (1 — e~ it )9(r), and H (x)

satisfies the conditions 1 ~ 6.

Now take a pair of densities

fo , and f=fo+c8 H(/S)

- (1 +x%
Then, by Lemma 5.2, f, is a density when § is small, and by choosing r close to 0.5 and ¢
close 100, fo, and fy € C,y o 5.

Denote go = fo*Fe. Now the x* distance between the two densities in convolution space

is of order (c.f. (3.6))

+ oo + oo

&+ [ ([ Hex - y)dF 689)) 85" () dx
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+ oo + oo
< 5%+ j ( j H(x — y)dF 8y ))%dx
+ oo + oo
x\| | ([ He = y)dF(8yygo@x))? dx (5.14)

Note that by Parseval’s identity the first term of (5.14) is

<+ oo

j Lo ()12 19(t/8)12 dt

2

=2I Lo (1)1 219o(/8)12 dt

< 0@ Pexp(— 25~ Bry)

uniformly in small §. Let the minimum value of g,(x) over [-M, M] be m,, which is bigger

than 0. By Lemma 5.2 and 5.3, the second term is bounded by

+ oo + 0o
-1.5 - (a - 0.5)/2
mg” j [ _j H((x — y))dF (8y))? dx + ) J | (Or )D =" Pdx =0@™).
Consequently, when 8 — 0,
+ oo
| Gri=FroFr)™ dx < C8 expi- 5 Pry) (5.15)

for some constants ¢ and C. Taking

1 _1
8= (logn + (c + log(logn)) Py P

C
n log n

(5.15) < = o(%)

and the change of the functional is

F O - P01 =0@* ")
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Thus,

br(%'_,) = O((log ny * = VP

and the conclusion follows.

Proof of Theorem 6:

Use the same notation as in the proof of Theorem 5. Take the same ¢(¢) except only the

first two continuous derivatives are required in this case. Now take a pair of densities
q p
fo=mr—2)r. aﬂdf|=fo+6‘8k Hx/d)
X

Letdy(t)=(1 —e" it )9(¢) be the Fourier transformation of H (x), and define

95(r) = (@n (1) O(/8))”

and

do(@) = lim 5 P o5(r)
§90

(5.16)
which converges uniformly in It 1 € [1, 2]. Now, by Fourier inversion formula,
4 oo
[ Hex - y)ardy)
+ oo
==L [ exp( it (000(2/8) dr
2r J
1 - itx ;
=- 3 e $s(t) dt (5.17)
2rx"<inis2
Let Ng = 18~ 95(t) — o(r) 1dr, which goes to 0 (as 8 — 0 ). Then by (5.17),
111152
te N
| 5-# j Hx -y) dFdn)| s 22+ | do(t) | dr (5.18)
oo X 2nx

1St 52

Now, we are ready to compute (3.6). By Parseval's indentity, when d is small,
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* 2
nd [ (] Ho-yMFEy) gq' 6x) ds
IxI <1
2
sc [ ([ Ha -y FL8y) dx
<C J’ Loy (1) 0o(t/8)12 dt (5.19)

=03*h)

where go = fo*F. does not vanish, and hence C is a finite constant. By Lemma 5.2, and
(5.18)

+ oo

2
AT [ (] He- @) gs' @) ds
Ixl 21 — oo

N 1 .
< |xJZl[ .\'2 * 2fo2"'|$|l|52 '¢0(t)l dt ]80 (sx)dx

=0(1) : (5.20)

Consequently, the xz-dislance in the Y variable ( see (3.6) ) is
62(’" +a)+1 (Il + 82 ﬁ12)= O(n—l)

and the change of the functional is

m+ao-/

IT(F) - TP = 8"+~ 1hD(1) - hOO)I =0 Am+o+P+1)
Hence the conclusion follows.
Proof of Theorem 7 & 8: By wanslation, without loss of generality assume that x, = 0.

Take the same least favorable pairs as used in Theorem 5 and 6. Then the change of func-

tional is



-24 -

0
IF,(0) = Fo(0)l = 8™ *% | J' H(x/8) dx |

=O(6m +a+l)

Hence the result follows.
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