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Sparsistency and Rates of Convergence in

Large Covariance Matrices Estimation ∗

By Clifford Lam and Jianqing Fan

Department of Operations Research and Financial Engineering

Princeton University, Princeton, NJ, 08544

This paper studies the sparsistency, rates of convergence, and asymptotic
normality for estimating sparse covariance matrices based on penalized like-
lihood with non-concave penalty functions. Here, sparsistency refers to the
property that all parameters that are zero are actually estimated as zero with
probability tending to one. Depending on the case of applications, sparsity
priori may occur on the covariance matrix, or its inverse or its Cholesky de-
composition. We study these three sparsity exploration problems under a
unified framework with a general penalty function. We show that the rates
of convergence for these problems under the Frobenius norm are of order
(sn log pn/n)

1/2, where sn is the number of nonsparse elements, pn is the size
of the covariance matrix and n is the sample size. This explicitly spells out the
contribution of high-dimensionality is merely of a logarithmic factor. The bi-
ases of the estimators using different penalty functions are explicitly obtained.
As a result, for the L1-penalty, to obtain the sparsistency and optimal rate of
convergence, the non-sparsity rates must be low: s′n = O(p

1/2
n ) among O(p2n)

parameters, for estimating sparse covariance matrix, or sparse precision ma-
trix or sparse Cholesky factor and s′n = O(1) for estimating sparse correlation
matrix or its inverse, where s′n is the number of the non-sparse elements on the
off-diagonal entries. On the other hand, using the SCAD or hard-thresholding
penalty functions, there are no such a restriction.
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1 Introduction

Covariance matrix estimation is a common statistical problem that arises in many science

applications. For example, in financial risk assessment or longitudinal study, an input of

covariance matrix Σ is needed, whereas an inverse of the covariance matrix, the precision

matrix Σ−1, is required for optimal portfolio selection, linear discriminant analysis or

graphical network models. Yet, the number of parameters in the covariance grows quickly

with dimensionality. Depending on the case of applications, the sparsity of the covariance

matrix or precision matrix is frequently imposed to strike a balance between biases and

variances. For example, in longitudinal data analysis (see e.g. [6], or [2]), it is reasonable

to assume that remote data in time are weakly correlated, whereas in Gaussian graphical

models, the sparsity of the precision is a reasonable assumption ([5]).

This initiates a series of research focusing on the parsimony estimation of covariance

matrix. [18] used prior which admit zeros on the off-diagonal elements of the Cholesky

factor of the precision matrix Ω = Σ−1, while [21] used zero-admitting prior directly on

the off-diagonal elements of Ω to achieve parsimony. [22] used the Modified Cholesky

Decomposition (MCD) to nonparametrically find a banded structure for Ω for longitudi-

nal data while preserving positive definiteness of the resulting estimator. [2] developed

consistency theories on banding methods for longitudinal data, both for Σ and Ω.

Penalized likelihood methods are used by various authors to achieve parsimony on

covariance selection. [10] has laid down a general framework for penalized likelihood with

diverging dimensionality, with general conditions for oracle property stated and proved.

However, it is not clear whether it is applicable to the specific case of covariance matrix

estimation. In particular, they did not link the dimensionality pn with the non-sparsity

size sn, which is the number of non-zero elements in the true covariance matrix Σ0, or

precision matrix Ω0. A direct application of their results to our setting can handle with

a relatively small covariance matrix of size pn = o(n1/10), which behaves like a constant

pn.

Recently, there is a surge of interest on the estimation of sparse covariance matrix

or precision matrix using penalized likelihood method. [13] used the LASSO on the off-

diagonal elements of the Cholesky factor from MCD, while [15], [4] and [23] use different

LASSO algorithms to select sparse elements in the precision matrix. A novel penalty

called the nested Lasso was constructed in [14] to penalize on these off-diagonal elements.

Thresholding the sample covariance matrix in high-dimensional setting was thoroughly
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studied by [7] and [3]. [20] proposed an Isomap method for discovering meaningful or-

derings of variables based on their correlations that result in block-diagonal or banded

correlation structure, resulting an ISoband estimator. A permutation invariant estima-

tor, called SPICE, was proposed in [19] based on penalized likelihood with L1-penalty

on the off-diagonal elements for the precision matrix. They obtained remarkable results

on the rates of convergence. The rate for estimating Ω under the Frobenius norm is of

order (sn log pn/n)
1/2, with dimensionality cost only a logarithmic factor in the overall

mean-square error. In particular, when the precision matrix is estimated, sn = pn + sn2,

where pn is the number of the diagonal elements and sn2 is the number of the non-sparse

elements of the off-diagonal entries. When the inverse of correlation matrix is estimated,

sn is merely sn2, since the diagonal elements of correlation matrices are known to be one.

However, such rate of convergence does not address explicitly the sparsistency such as

those in [9] and [25], the sampling distribution of nonsparse elements, nor the bias issues

of the L1-penalty. These are the core issues of the study. By sparsistency, we mean the

property that all parameters that are zero are actually estimated as zero with probability

tending to one.

In this paper, we investigate the aforementioned problems using a penalized likelihood.

Assume that the data {yi}1≤i≤n are from a normal random sample with mean zero and

covariance matrix Σ0. The sparsity of Σ0 can be explored by minimizing the penalized

negative normal likelihood:

q1(Σ) = tr(SΣ−1) + log |Σ|+
∑

i 6=j

pλn1
(|σij|), (1.1)

where S = n−1
∑n

i=1 yiy
T
i is the sample covariance matrix, with Σ = (σij), and pλn1

(·) is a

penalty function, depending on a regularization parameter λn1, which can be nonconvex.

For instance, the L1-penalty pλ(θ) = λ|θ| is convex, while the hard-thresholding penalty

defined by pλ(θ) = λ2 − (|θ| − λ)21{|θ|<λ}, and the SCAD penalty defined by

p′λ(θ) = λ1{θ≤λ} + (aλ− θ)+1{θ>λ}/(a− 1), for some a > 2, (1.2)

are nonconvex. Nonconvex penalty is introduced to reduce bias when the true parameter

has a relatively large magnitude. For example, the SCAD penalty remains constant when

θ is large, while the L1-penalty grows linearly with θ. See [9] for a detailed account of

this and other advantages of such a penalty function.
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Similarly, the sparsity of the true precision matrix Ω0 can be explored by minimizing

q2(Ω) = tr(SΩ)− log |Ω|+
∑

i 6=j

pλn2
(|ωij|), (1.3)

where we use ωij to denote the (i, j)-th element of the precision matrix Ω. Note that we

only penalize on the off-diagonal elements ofΣ or Ω in the aforementioned two menthods,

since the diagonal elements of Σ0 and Ω0 do not vanish.

The computation of the non-convcave maximum likelihood problems can be solved by

a sequence of penalized L1-likelihood problem via local linear approximation ([26]). In

fact, [26] shows that one iteration of such a procedure suffices as long as the initial values

are good enough. See [8] for detailed implementations on the estimation of precision

matrices. See also [24] for a general solution to the nonconvex penalized least-squares

problem.

In studying sparse covariance or precision matrix, it is important to distinguish the

diagonal and off-diagonal elements, since the diagonal elements always are always positive

and contribute to the overall mean-squares errors. For example, the true correlation

matrix, denoted by Γ0, has the same sparsity structure asΣ0 without the need to estimate

its diagonal elements. In view of this fact, we introduce a revised method (2.1) to take this

advantage. It turns out that the correlation matrix can be estimated with a faster rate of

convergence, with rate (sn1 log pn/n)
1/2 instead of ((pn+sn1) log pn/n)

1/2, where sn1 is the

number of non-vanishing correlation coefficients. Similar advantages can be taken on the

estimation of the true inverse correlation matrix, denoted by Ψ0. See Section 3.2. This

is an extension of the work of [19] using the L1-penalty. Such an extension is important

since the non-concave penalized likelihood ameliorates the bias problem of the penalized

L1-likelihood.

The bias issues of the commonly used L1-penalty, or LASSO, can be seen from our the-

oretical results. In fact, it is not always possible to choose the regularization parameters

λni in the problems (1.1) and (1.3) to satisfy both consistency and sparsistency properties.

This is in fact one of the motivations for introducing nonconvex penalty functions in [9]

and [10], but we state and prove the explicit rates in the current context. In particular,

we demonstrate that penalized L1-likelihood can achieve simultaneously the optimal rate

and sparsistency for estimation of Σ0 or Ω0 only when the number of nonsparse elements

in off-diagonal entries are no larger than O(p
1/2
n ). On the other hand, using the nonconvex

penalty like SCAD or hard-thresholding penalty, such an extra restriction is not needed.
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In this paper, apart from rates of convergence, we also develop the asymptotic nor-

mality of the resulting estimators, with rates for any regularization parameters specified.

We also compare two different formulations of penalized likelihood using the Modified

Cholesky Decomposition, exploring their respective rates of convergence and sparsity

properties.

Throughout this paper, we λmin(A), λmax(A), and tr(A) to denote the minimum

eigenvalue, maximum eigenvalue, and trace of a symmetric matrix A, respectively. For

a matrix B, we define the operator norm and the Frobenius norm, respectively, as

‖B‖ = λ
1/2
max(BTB) and ‖B‖F = tr1/2(BTB). We define the relation a � b if b/a = O(1).

2 Estimation of sparse covariance matrix

We focus on analyzing the penalized likelihood method (1.1) for estimating sparse co-

variance matrix. Before stating and proving the rate of convergence and sparsistency of

the resulting estimator, we introduce some notations and present regularity conditions

concerning the penalty function pλ(·) and the covariance matrix Σ0.

Let S1 = {(i, j) : σ0
ij 6= 0}, where Σ0 = (σ0

ij). Denote sn1 = |S1| − pn, which is the

number of non-sparsity elements in the off-diagonal entries of Σ0. Let

an1 = max
(i,j)∈S1

p′λn1
(|σ0

ij |), bn1 = max
(i,j)∈S1

p′′λn1
(|σ0

ij |).

Note that for L1-penalty, an1 = max |σ0
i,j|λn and bn1 = 0, whereas for SCAD, an1 = bn1 =

0, for sufficiently large n under the last assumption of condition (B).

We assume the following regularity conditions:

(A) There exists constants τ1 and τ2 such that

0 < τ1 < λmin(Σ0) ≤ λmax(Σ0) < τ2 <∞ for all n.

(B) an1 = O({1 + pn/(sn1 + 1)}(log pn/n)
1/2), bn1 = o(1), and

min(i,j)∈S1
|σ0

ij|/λn1 → ∞ as n→ ∞.

(C) The penalty pλ(·) is singular at the origin, with limt↓0 pλ(t)/(λt) = k > 0.

(D) There are constants C and D such that, when θ1, θ2 > Cλn1, |p
′′
λn1

(θ1)− p′′λn1
(θ2)| ≤

D|θ1 − θ2|.
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Condition (A) bounds uniformly the eigenvalues of Σ0, which facilitates the proof of

consistency. It also includes a wide class of covariance matrices as noted in [2]. The rates

an1 and bn1 in condition (B) are also needed for proving consistency. If they are too large,

the penalty term can dominate the likelihood term, resulting in poor estimates.

The last requirement in condition (B) states the rate at which the non-zero parameters

can be distinguished from zero asymptotically. It is not explicitly needed in the proofs,

but for asymptotically unbiased penalty functions, this is a necessary condition so that

the first and second derivatives, an1 and bn1, are converging to zero fast enough as needed

in the first part of condition (B). In particular, for the SCAD and hard-thresholding

penalties, this condition means that an1 = bn1 = 0 exactly for sufficiently large n, thus

allowing a flexible choice of λn1. For the SCAD penalty (1.2), it can be relaxed as

min(i,j)∈S1
|σ0

ij|/λn1 > a.

Singularity of the origin in condition (C) allows for sparse estimates ([9]). Finally,

condition (D) is a smoothing condition for the penalty function, and is needed in prov-

ing asymptotic normality. The SCAD penalty, for instance, satisfies this condition by

choosing the constant D, independent of n, to be large enough.

2.1 Properties of sparse covariance matrix estimation

Minimizing (1.1) involves nonconvex minimization, and we need to prove that there exists

a local minimizer Σ̂ for the minimization problem. We give the rate of convergence under

Frobenius norm. The proof is given in section 5.

Theorem 1 (Rate of convergence). Under regularity conditions (A)-(D), if (pn+sn1) log pn/n =

o(1) and λ2n1 � (sn1 + 1) log pn/n, then there exists a local minimizer Σ̂ such that

‖Σ̂−Σ0‖
2
F = OP{(pn + sn1) log pn/n).

Theorem 1 states explicitly how the non-sparsity size and dimensionality affect the

rate of convergence. Since there are (pn + sn1) non-sparse elements and each of them

can be estimated at best with rate O(n−1/2), the total square errors are at least of rate

(pn+sn1)/n. The price that we pay for high-dimensionality is merely a logarithmic factor

log pn.

Theorem 1 is also applicable to the L1-penalty function, where λ2n1 � (sn1+1) log pn/n

can be relaxed to λ2n1 � log pn/n. In this case, the local minimizer becomes the global
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minimizer. The bias of the penalized L1 estimate an1 ≍ λn1 is controlled via Condition

(B), which entails an upper bound on λn1 = O((1 + pn/(sn1 + 1))(log pn/n)
1/2).

Next we show the sparsistency of the penalized covariance estimator (1.1). We use Sc

to denote the complement of a set S.

Theorem 2 (Sparsistency). Under regularity conditions (A), (C) and (D), if (pn +

sn1) log pn/n = o(1) and λ2n1 � (pn + sn1) log pn/n, then for any local minimizer of (1.1)

satisfying ‖Σ̂ − Σ0‖
2
F = OP{(pn + sn1) log pn/n}, with probability tending to 1, σ̂ij = 0

for all (i, j) ∈ Sc
1.

The proof of the theorem is relegated to section 5. According to Theorem 2, the

sparsistency requires a lower bound on the rate of the regularization parameter λn1.

On the other hand, Condition (B) imposes an upper bound on λn1 in order to control

the biases. For penalized L1-likelihood, these two conditions are compatible only when

sn1 = O(p
1/2
n ). When this condition is violated, we can not guarantee simultaneously the

rate of convergence specified in Theorem 1 and sparsistency.

On the other hand, if the penalty function used is unbiased, like the SCAD or the

hard-thresholding penalties, we do not impose an extra upper bound for λn1 since its first

derivative p′λn1
(|θ|) goes to zero fast enough as |θ| increases (exactly equals zero for the

SCAD and hard-thresholding penalties, when n is sufficiently large; see condition (B) and

the explanation thereof). Thus, λn1 is allowed to decay slower to zero than that for the

L1-penalty, allowing a larger order for sn1 as long as we have (pn + sn1) log pn/n = o(1).

We present the asymptotic normality of the estimators σ̂ij with (i, j) ∈ S1 only, since

other elements are equal to 0 according to Theorem 2. Let Σλn1
= diag(p′′λn1

(vec(Σ0))),

b1 = p′λn1
(|vec(Σ0)|)sgn(vec(Σ0)), where vec(A) vectorizes a matrix A and f(vec(A))

represents a vector of elements f(aij). They are equal to zero for SCAD, when n is large

enough. For a column vector a, a matrix A and an index set S, we denote [a]S the column

vector a with rows having positions not in the index S removed. Similarly, we denote

[A]S×S the submatrix A with rows and columns having positions not in the index set S

removed. Finally, ⊗ denotes the Kronecker product operator and define A⊗2 = A ⊗ A.

We use K to denote the commutation matrix (see e.g. Graybill (2001) for a definition).

Theorem 3 (Asymptotic normality) Under conditions in Theorem 1 and (pn+sn1)
2/n =
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o(1), for a unit vector α of length sn1 + pn, we have for Σ̂ in Theorem 1,

n1/2
α

T [(Ip2n +K)Ω⊗2
0 ]

−1/2
S1×S1

· {[Σλn1
+Ω⊗2

0 ]S1×S1
[vec(Σ̂)− vec(Σ0)]S1

+ [b1]S1
}

D

−→ N(0, 1).

For SCAD or the hard-thresholding penalty, under the last condition in Condition

(B), we have for sufficiently large n,

(Σλn1
)S1×S1

= 0 and [vec(Σ0)]S1
= 0.

2.2 Properties of sparse correlation matrix estimation

The correlation matrix Γ0 retains the same sparse structure of Σ0 with known diagonal

elements. This special structure allows us to estimate Γ0 more accurately. To take the

advantage of the known diagonal elements, the sparse correlation matrix Γ0 is estimated

by minimizing w.r.t. Γ = (γij),

tr(Γ−1Γ̂S) + log |Γ|+
∑

i 6=j

pνn1
(|γij|), (2.1)

where Γ̂S = Ŵ−1SŴ−1 is the sample correlation matrix, with Ŵ2 = DS being the

diagonal matrix with diagonal elements of S, and νn1 is a regularization parameter. After

obtaining Γ̂, Σ0 can also be estimated by Σ̃ = ŴΓ̂Ŵ.

To present the rates of convergence for Γ̂ and Σ̃, we define

cn1 = max
(i,j)∈S1

p′νn1
(|γ0ij|), dn1 = max

(i,j)∈S1

p′′νn1
(|γ0ij|),

where Γ0 = (γ0ij). We adapt the condition (D) to (D’) with λn1 there replaced by νn1,

and (B) to (B’) as follows:

(B’) cn1 = O({log pn/n}
1/2), dn1 = o(1), and min(i,j)∈S1

|γ0ij|/νn1 → ∞ as n→ ∞.

Theorem 4 Under regularity conditions (A),(B’),(C) and (D’), if pn/n = o(1), sn1 log pn/n =

o(1) and ν2n1 � (sn1+1) log pn/n, then there exists a local minimizer Γ̂ for (2.1) such that

‖Γ̂− Γ0‖
2
F = OP (sn1 log pn/n).

In addition, for the operator norm, we have

‖Σ̃−Σ0‖
2 = OP{(sn1 + 1) log pn/n}.
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The proof of this theorem is similar to that of Theorem 1 and is sketched in section

5. The condition ν2n1 � (sn1 + 1) log pn/n can be relaxed to ν2n1 � log pn/n when the L1-

penalty is used. This theorem indeed shows that the correlation matrix can be estimated

more accurately, without the errors from estimating the diagonal elements. It spells

clearly the contribution due to dimensionality is merely a factor of log pn. The following

theorem gives the condition under which sparsistency holds.

Theorem 5 Under the conditions of Theorem 4, the local minimizer Γ̂ in Theorem 4

must satisfy γ̂ij = 0 for all (i, j) ∈ Sc
1 with probability tending to one.

Like Theorem 2, Theorem 5 holds for any local minimizer with the property given

in Theorem 4. The proof follows similarly to that of Theorem 2, with an application of

Theorem 4 and establishing ‖Ŵ−1−W−1
0 ‖ = OP ({log pn/n}

1/2) and maxi,j |(Γ̂S)ij−γ
0
ij| =

OP ({log pn/n}
1/2), where W0 = D

1/2
W

.

Theorems 4 and 5 are applicable to the L1-penalty. In this case, the local minimizer

becomes the global one. In order to have the optimal rate of convergence and sparsitency

simultaneously, we need the conditions on the biases in Theorem 4 and on the variance

in Theorem 5 compatible. It is easy to calculate that the compatibility requires sn1 =

O(1), finite number of non-sparse correlation. This is too much a restrictive in many

applications.

However, like the case in estimating Σ̂, if the penalty function is flat at tails such

as the SCAD or the hard-thresholding penalties, no upper bound for νn1 is needed in

order to control the bias term and hence no restriction on sn1 is imposed, as long as the

conditions in Theorem 2 hold. It is clear that SCAD results in better sampling properties

than the penalized L1 estimator.

3 Estimation of sparse precision matrix

In this section, we analyze the sparse precision matrix estimation using penalized like-

lihood (1.3). The method is modified to estimate the inverse correlation matrix, which

improves the rate of convergence.
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3.1 Properties of sparse precision matrix estimation

Let S2 = {(i, j) : ω0
ij 6= 0}, where Ω0 = (ω0

ij). Denote by sn2 = |S2| − pn, so that sn2 is

the non-sparsity size for Ω0 on the off-diagnonal entries. Put

an2 = max
(i,j)∈S2

p′λn2
(|ω0

ij|), bn2 = max
(i,j)∈S2

p′′λn2
(|ω0

ij|).

Technical conditions in section 2 need some revision. In particular, condition (D) now

becomes condition (D2) with λn1 there replaced by λn2. Condition (B) should now be

(B2) an2 = O({1 + pn/(sn2 + 1)}(log pn/n)
1/2), bn2 = o(1), and

min(i,j)∈S2
|ω0

ij|/λn2 → ∞ as n→ ∞.

Note that the condition min(i,j)∈S2
|ω0

ij|/λn2 > a suffices for SCAD penalty defined in

(1.2).

Theorem 6 (Rate of convergence). Under regularity conditions (A), (B2), (C) and

(D2), if (pn + sn2) log pn/n = o(1) and

λ2n2 � (sn2 + 1) log pn/n,

then there exists a local minimizer Ω̂ such that ‖Ω̂−Ω0‖
2
F = OP{(pn + sn2) log pn/n}.

This theorem is applicable to the penalized L1-likelihood, which was studied thor-

oughly by [19]. The condition for λn2 can then be relaxed to λ2n2 � log pn/n. In this

case, the local minimizer becomes the global one. Hence, our result is an extension of

the remarkable result of [19], giving an important understanding how the bias an2 and

variance are controlled via the choice of λn2 and what role the nonsparse size sn2 plays.

The proof of the theorem is similar to that of Theorem 1 and is omitted.

Theorem 7 (Sparsistency). Under the conditions given in Theorem 6, if λ2n2 � (pn +

sn2) log pn/n, then with probability tending to 1, the local minimizer given in Theorem 6

must satisfy ω̂ij = 0 for all (i, j) ∈ Sc
2.

The proof of this theorem is sketched in section 5. Similar to what we have dis-

cussed before, the sparsistency property requires a lower bound on λn2, while the rate

of convergence imposes an upper bound λn2 in order to reduce the bias. To achieve

simultaneously the optimal rate of convergence and sparsistency, we need these two con-

ditions compatible. This entails sn2 = O(p
1/2
n ). This limitation is due to the biases of

10



the penalized L1-estimator. On the other hand, for the penalty function like SCAD or

hard-thresholding, the bias term an2 = 0 for sufficiently large n and hence there is no

upper bound on the choice of λn2. As a result, it does not induce an extra upper bound

on sn2. Of course, the condition (pn + sn2) log pn/n = o(1) is needed for Theorem 6.

We now establish the asymptotic normality for the estimators ω̂ij with (i, j) ∈ S2,

since the sparsity property holds following Theorem 7. Let Ωλn2
= diag(p′′λn2

(vec(Ω0))),

b2 = p′λn2
(|vec(Ω0)|)sgn(vec(Ω0)). The proof is omitted since it is similar to Theorem 3.

Theorem 8 (Asymptotic normality) Under conditions in Theorem 6 and (pn+sn2)
2/n =

o(1), for a unit vector α of length sn2 + pn, we have for Ω̂ in Theorem 6,

n1/2
α

T [(Ip2n +K)Σ⊗2
0 ]

−1/2
S2×S2

· {[Ωλn2
+Σ⊗2

0 ]S2×S2
[vec(Ω̂)− vec(Ω0)]S2

+ [b2]S2
}

D

−→ N(0, 1).

3.2 Properties of sparse inverse correlation matrix estimation

In this section, we show that the inverse correlation matrix can be estimated more accu-

rately via a simple modification of (1.3). More specifically, the inverse correlation matrix

Ψ0 = W0Ω0W0 can be estimated by minimizing w.r.t. Ψ = (ψij),

tr(ΨΓ̂S)− log |Ψ|+
∑

i 6=j

pνn2
(|ψij |), (3.1)

where Γ̂S is defined in (2.1), and νn2 is a regularization parameter. After obtaining Ψ̂,

Ω0 can also be estimated by Ω̃ = Ŵ−1Ψ̂Ŵ−1.

To present the rates of convergence for Ψ̂ and Ω̃, we define

cn2 = max
(i,j)∈S2

p′νn2
(|ψ0

ij|), dn2 = max
(i,j)∈S2

p′′νn2
(|ψ0

ij|),

where Ψ0 = (ψ0
ij) and modify condition (D) to (D2’) with λn1 there replaced by νn2, and

impose

(B2’) cn2 = O({log pn/n}
1/2), dn2 = o(1). Also, min(i,j)∈S2

|ψ0
ij |/νn2 → ∞ as n→ ∞.

Theorem 9 Under regularity conditions (A),(B2’),(C) and (D2’), if (sn2+1) log pn/n =

o(1) and ν2n2 � (sn2 + 1) log pn/n, then there exists a local minimizer Ψ̂ for (3.1) such

that ‖Ψ̂−Ψ0‖
2
F = OP ((sn2+1) log pn/n) and ‖Ω̃−Ω0‖

2 = OP ((sn2+1) log pn/n) under

the operator norm.
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The proof is similar to that of Theorem 4 and is omitted. Yet, this theorem is very differ-

ent from Theorem 4 and other consistency theorems, in that the condition pn/n = o(1) is

not needed. Indeed pn can be as large as o(exp(n)) here as long as (sn2+1) log pn/n = o(1)

is satisfied.

Comparing to the proof of Theorem 4, on top of removing an order of {pn log pn/n}
1/2

by estimating the inverse correlation rather than the inverse covariance, there is no need to

estimate the minimum eigenvalue of term like (5.2), which involves the sample covariance

matrix Γ̂S in the integrand (5.3) and behaves badly when pn is comparable to n or larger

than n. We give more details on this in the next subsection.

It is somewhat surprising the convergence rate for Ψ̂ under the Frobenius norm is

of order Op((sn2 + 1) log pn/n), since unlike the correlation matrix, the inverse correla-

tion matrix does not have known diagonal elements. Thus, it seems that an order of

(pn log pn/n)
1/2 contributed from estimating the diagonal elements cannot be eliminated.

This can be explained and proved as follows. If sn2 � pn, the result is obvious. When

sn2 = o(pn), most of off-diagonal elements are zero. Indeed, there are at most O(sn2)

columns of the inverse correlation matrix contain at least one non-sparse elements. The

rest columns that have all zero off-diagonal elements must have diagonal entries of 1.

These columns represent variables that are actually uncorrelated from the rest. Now, it

is easy to see from (3.1), that these diagonal elements, which are one, are all estimated

exactly. Hence an order of (pn log pn/n)
1/2 is not present even in the case of estimating

the inverse correlation matrix.

For the L1-penalty, our result reduces to that given in [19], and the condition for νn2

can be relaxed to ν2n2 � log pn/n. We offer the sparsistency result as follows.

Theorem 10 (Sparsistency) Under the conditions given in Theorem 9, with probability

tending to 1, the local minimizer Ψ̂ given in Theorem 9 satisfies ψ̂ij = 0 for all (i, j) ∈ Sc
2.

The proof follows similarly to that of Theorem 7 and is omitted. This theorem says

that sparsity structure for Ω0 can be estimated more accurately than the covariance

matrix Σ0, in the sense that pn allowed here is much larger than in Theorem 5.

Similarly to what we remarked before, if we use the L1-penalty, for the resulting inverse

correlation matrix estimator to have both optimal rate of convergence and sparsistency,

we need to impose sn2 = O(1). On the other hand, for penalty functions like the SCAD

or the hard-thresholding penalties, we do not need an upper bound on sn2, as long as

(sn2 + 1) log pn/n = o(1) is satisfied.

12



3.3 Remarks

As discussed briefly in the previous subsection, the condition pn/n = o(1) is not needed

for the consistency of the local minimizer for (3.1). In the proof of Theorem 9, a lower

bound on the minimum eigenvalue is needed for

∫ 1

0

Ψ−1
v ⊗Ψ−1

v (1− v)dv,

with Ψv = Ψ0 + v∆U and ∆U = αnU , where α
2
n = sn2 log pn/n, U is a symmetric matrix

with ‖U‖F = C for some constant C. Even if pn > n, asymptoticallyΨ−1
v ⊗Ψ−1

v = Γ0⊗Γ0.

Thus a quadratic form involving the integral above is positive by condition (A), and the

proof is still valid as long as αn = o(1). Hence pn can be as large as o(exp(n)).

On the other hand, a similar integral appears in the proof of Theorem 4 which requires

a lower bound on the minimum eigenvalue of (compare to (5.2) and (5.3))

∫ 1

0

h(v,Γv)(1− v)dv, (3.2)

where

Γv = Γ0 + v∆U , ∆U = αnU,

h(v,Σv) = Γ−1
v ⊗ Γ−1

v Γ̂SΓ
−1
v + Γ−1

v Γ̂SΓ
−1
v ⊗ Γ−1

v − Γ−1
v ⊗ Γ−1

v .

with α2
n = sn1 log pn/n and U a symmetric matrix with zeros on its main diagonal such

that ‖U‖F = C for some constant C. If pn is larger than n for instance, then Γ̂S is

singular. Thus the minimum eigenvalue of the integral above can be negative, since the

term −Γ−1
v ⊗ Γ−1

v asymptotically equals −Γ−1
0 ⊗ Γ−1

0 . Going through the proof, we then

cannot guarantee the positivity of a quadratic form involving the integral (3.2). Even

pn/n approaches a constant c with 0 < c < 1, the positivity needed is still not guaranteed.

Hence, estimating the correlation matrix is more difficult than estimating its inverse

when pn is large comparing with n.

4 Extension to sparse Cholesky decomposition

[17] proposed the modified Cholesky decomposition (MCD) which facilitates the sparse

estimation of Ω through penalization. The idea is to represent zero-mean data y =

13



(y1, · · · , ypn)
T using autoregressive models:

yi =

i−1
∑

j=1

φijyj + ǫi, and TΣTT = D, (4.1)

where T is the unique unit lower triangular matrix with ones on its diagonal and (i, j)th

element −φij for j < i, and D is diagonal with ith element σ2
i = var(ǫi). The optimization

problem is unconstrained (since the φij’s are free variables), and the estimate for Ω is

always positive-definite.

[13] and [14] both used the MCD for estimation of Ω0. The former maximized the

log-likelihood (ML) over T and D simultaneously, while the latter suggested also a least

square version (LS), with D being first set to the identity matrix and then minimizing

over T to obtain T̂. The latter corresponds to the original Cholesky decomposition. The

sparse Cholesky factor can be estimated through

(ML) : q3(T,D) = tr(TTD−1TS) + log |D|+ 2
∑

i<j

pλn3
(|tij|), (4.2)

(LS) : q4(T) = tr(TTTS) + 2
∑

i<j

pλn4
(|tij|). (4.3)

In view of the results in sections 2.2 and 3.2, we can also replace the sample covariance

in (4.3) by the sample correlation, resulting in the normalized (NL) version as follows:

(NL) : q5(T) = tr(TTTΓ̂S)− 2 log |T|+ 2
∑

i<j

pλn5
(|tij|). (4.4)

4.1 Properties of sparse Cholesky factor estimation

Since all the T’s introduced in the three models above have the same sparsity structure,

let S and sn3 be the non-sparsity set and non-sparsity size associated with each T above.

Define

an3 = max
(i,j)∈S

p′λn3
(|t0ij |), bn3 = max

(i,j)∈S
p′′λn3

(|t0ij |).

For (ML), condition (D) is adapted to (D3) with λn1 there replaced by λn3. Condition

(B) is modified as

(B3) an3 = O({1 + pn/(sn3 + 1)}(log pn/n)
1/2), bn3 = o(1) and

min(i,j)∈S |φ
0
ij|/λn3 → ∞ as n→ ∞.

After obtaining T̂ and D̂ from minimizing (ML), we set Ω̂ = T̂T D̂−1T̂.
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Theorem 11 Under regularity conditions (A),(B3),(C),(D3), if (pn + sn3) log pn/n =

o(1) and λ2n3 � (sn3 + 1) log pn/n, then there exists a local minimizer T̂ for (ML) such

that ‖T̂−T0‖
2
F = OP (sn3 log pn/n) and ‖Ω̂−Ω0‖

2
F = OP{(pn + sn3) log pn/n}.

The proof is similar to those of Theorem 1 and 4 and is omitted. The Cholesky factor

T has ones on its main diagonal without the need for estimation. Hence, the rate of

convergence is faster than Ω̂. If the L1-penalty is used, condition for λn3 can be relaxed

to λ2n3 � log pn/n.

Theorem 12 (Sparsistency). Under the conditions in Theorem 11, if λ2n3 � (pn +

sn3) log pn/n, then the sparsistency holds for T̂.

The proof is similar to that of Theorem 2 and is omitted. Similar to what remarked

before, in order to have simultaneous optimal rate of convergence and sparsistency, the

condition sn3 = O(p
1/2
n ) is needed when L1-penalty is used. On the other hand, such a

restriction is not needed for unbiased penalties like SCAD or hard-thresholding.

4.2 Properties of sparse normalized Cholesky factor estimation

We now turn to analyzing the normalized penalized likelihood (4.4). With T = (tij) in

(NL) which is lower triangular, define

an5 = max
(i,j)∈S

p′λn5
(|t0ij |), bn5 = max

(i,j)∈S
p′′λn5

(|t0ij |).

Condition (D) is now changed to (D5) with λn1 there replaced by λn5. Condition (B) is

now substituted by

(B5) a2n5 = O(log pn/n), bn5 = o(1), and min(i,j)∈S |t
0
ij|/λn5 → ∞ as n→ ∞.

Theorem 13 (Rate of convergence) Under regularity conditions (A),(B5),(C) and (D5),

if (sn3+1) log pn/n = o(1) and λ2n3 � (sn3+1) log pn/n, then there exists a local minimizer

T̂ for (NL) such that ‖T̂ − T0‖
2
F = OP (sn3 log pn/n) and rate of convergence in the

Frobenius norm

‖Ω̂−Ω0‖
2
F = OP{(pn + sn3) log pn/n},

and in the operator norm, it is improved to

‖Ω̂−Ω0‖
2 = OP{(sn3 + 1) log pn/n)}.
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The proof is similar to that of Theorems 1 and 4 and is omitted. The condition for

λn3 can be relaxed to λ2n3 � log pn/n when the L1-penalty function is used. Similar to

Theorem 9, pn can also be as large as o(exp(n)), as long as sn3 log pn/n = o(1). It is

evident that normalizing with Ŵ results in an improvement in the rate of convergence

in operator norm.

Theorem 14 (Sparsistency). Under the condition of Theorem 13, the sparsistent prop-

erty holds for T̂.

Proof is omitted since it is similar to that of Theorem 2. The above results apply

also to the L1-penalty. For simultaneous persistency and optimal rate of convergence

using L1-penalty, the biases inherent in L1-penalty induce the restriction sn3 = O(1).

This restriction does not apply to the SCAD and other asymptotically unbiased penalty

functions.

5 Proofs

We first prove two lemmas. The first one concerns with inequalities involving operator

and Frobenius norms. The other one concerns with order estimation for elements in a

matrix of the formA(S−Σ0)B, which is useful in proving results concerning sparsistency.

Lemma 1 Let A and B be real matrices such that the product AB is defined. Then,

defining ‖A‖2min = λmin(A
TA), we have

‖A‖min‖B‖F ≤ ‖AB‖F ≤ ‖A‖‖B‖F . (5.1)

In particular, if A = (aij), then |aij| ≤ ‖A‖ for each i, j.

Proof of Lemma 1. Write B = (b1, · · · ,bq), where bi is the i-th column vector in B.

Then

‖AB‖2F = tr(BTATAB) =

q
∑

i=1

bT
i A

TAbi ≤ λmax(A
TA)

q
∑

i=1

‖bi‖
2

= ‖A‖2‖B‖2F .
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Similarly,

‖AB‖2F =

q
∑

i=1

bT
i A

TAbi ≥ λmin(A
TA)

q
∑

i=1

‖bi‖
2

= ‖A‖2min‖B‖2F ,

which completes the proof of (5.1). To prove |aij| ≤ ‖A‖, note that aij = eTi Aej , where

ei is the unit column vector with one at the i-th position, and zero elsewhere. Hence

using (5.1),

|aij| = |eTi Aej| ≤ ‖Aej‖F ≤ ‖A‖ · ‖ej‖F = ‖A‖,

and this completes the proof of the lemma. �

Lemma 2 Let S be a sample covariance matrix of a random sample {yi}1≤i≤n with yi ∼

N(0,Σ0). Assume Σ0 has eigenvalues uniformly bounded above as n → ∞, and A =

A0 + ∆1, B = B0 + ∆2 are matrices such that the constant matrices ‖A0‖ = O(1) and

‖B0‖ = O(1) independent of the data, with ‖∆1‖, ‖∆2‖ = oP (1). Then maxi,j |(A(S −

Σ0)B)ij| = OP ({log pn/n}
1/2).

Proof of Lemma 2. We first prove the lemma with A and B independent of the data.

Let xi = Ayi and wi = BTyi. Define ui = (xT
i ,w

T
i )

T , with covariance matrix

Σu = var(ui) =

(

AΣ0A
T AΣ0B

BTΣ0A
T BTΣ0B

)

.

Since ‖(AT B)T‖ ≤ (‖A‖2 + ‖B‖2)1/2 = O(1) and ‖Σ0‖ = O(1) uniformly, we have

‖Σu‖ = O(1) uniformly. Then, with Su = n−1
∑n

i=1 uiu
T
i , which is the sample covariance

matrix for the random sample {ui}1≤i≤n, by lemma 3 of [2], we have

max
i,j

|(Su −Σu)ij| = OP ({log pn/n}
1/2).

In particular, it means that

max
i,j

|(A(S−Σ0)B)ij| =
(

n−1
n

∑

r=1

xrw
T
r −AΣ0B

)

ij
= OP ({log pn/n}

1/2),

which completes the proof for A and B independent of the data.

Now consider A = A0 + ∆1, B = B0 + ∆2 as in the statement of the lemma. Find

a matrix C0 of the same size as ∆1 and D0 of the same size as ∆2 for each n, with
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the property that ‖C0‖ = O(1) = ‖D0‖, and each element in C0 or D0 are larger in

magnitude than the corresponding elements in ∆1 and ∆2 respectively. With probability

going to 1, C0 and D0 can be found satisfying the conditions just described for each n,

since ‖∆1‖, ‖∆2‖ = oP (1), meaning that, by Lemma 1, each element in ∆1 and ∆2 are of

order oP (1).

With these constructions, with probability going to 1,

max
i,j

|(C0(S−Σ0)B0)ij| > max
i,j

|(∆1(S−Σ0)B0)ij |,

and the former has orderOP ({log pn/n}
1/2) by the previous proof. Similarly, maxi,j |(A0(S−

Σ0)∆2)ij | and maxi,j |(∆1(S − Σ0)∆2)ij | are all of order OP ({log pn/n}
1/2). This com-

pletes the proof of the lemma. �

Proof of Theorem 1. Let U be a symmetric matrix of size pn, DU be its diagonal

matrix and RU = U − DU be its off-diagonal matrix. Set ∆U = αnRU + βnDU . We

would like to show that, for αn = (sn1 log pn/n)
1/2 and βn = (pn log pn/n)

1/2, and for a

set A defined as A = {U : ‖RU‖F = C1, ‖DU‖F = C2},

P
(

inf
U∈A

q1(Σ0 +∆U ) > q1(Σ0)
)

→ 1,

for sufficiently large constants C1 and C2. This implies that there is a local minimizer in

{Σ0 +∆U : ‖RU‖F = C1, ‖DU‖F = C2} such that ‖Σ̂−Σ0‖F = OP (αn + βn).

Consider, for Σ = Σ0 +∆U , the difference

q1(Σ)− q1(Σ0) = I1 + I2 + I3,

where

I1 = tr(SΩ) + log |Σ| − (tr(SΩ0) + log |Σ0|),

I2 =
∑

(i,j)∈Sc
1

(pλn1
(|σij|)− pλn1

(|σ0
ij|)),

I3 =
∑

(i,j)∈S1,i 6=j

(pλn1
(|σij |)− pλn1

(|σ0
ij |)).

It suffice to show that the difference is positive asymptotically with probability tending

to 1. Using Taylor’s expansion with the integral remainder (details not shown), we have

I1 = K1 +K2, where

K1 = −tr((S−Σ0)Ω0∆UΩ0) = −tr((SΩ0
−Ω0)∆U),

K2 = vec(∆U)
T
{

∫ 1

0

g(v,Σv)(1− v)dv
}

vec(∆U ), (5.2)
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with the definitions Σv = Σ0+v∆U , and SΩ0
is the sample covariance matrix of a random

sample {xi}1≤i≤n having xi ∼ N(0,Ω0). Also,

g(v,Σv) = Σ−1
v ⊗Σ−1

v SΣ−1
v +Σ−1

v SΣ−1
v ⊗Σ−1

v −Σ−1
v ⊗Σ−1

v . (5.3)

By condition (A), we have

‖v∆UΩ0‖ ≤ ‖∆U‖‖Ω0‖ ≤ τ−1
1 (C1αn + C2βn) = o(1).

Thus, we can use the Neumann series expansion to arrive at

Σ−1
v = Ω0(I + v∆UΩ0)

−1 = Ω0(I − v∆UΩ0 + o(1)).

That is, Σ−1
v = Ω0+OP (αn+βn), and ‖Σ−1

v ‖ = τ−1
1 +OP (αn+βn). By the semi-circular

law, with SI defined as the sample covariance matrix formed from a random sample

{xi}1≤i≤n having xi ∼ N(0, I),

‖S−Σ0‖ = OP (‖SI − I‖) = OP ({pn/n}
1/2)

(see e.g. chapter 2 of [1]). These entail

SΣ−1
v = (S−Σ0)Σ

−1
v +Σ0Σ

−1
v

= OP ({pn/n}
1/2) + I +OP (αn + βn)

= I + oP (1).

Combining these results, we have

g(v,Σv) = Ω0 ⊗Ω0 +OP (αn + βn).

Consequently,

K2 = vec(∆U)
T
{

∫ 1

0

Ω0 ⊗Ω0(1 + oP (1))(1− v)dv
}

vec(∆U)

≥ λmin(Ω0 ⊗Ω0)‖vec(∆U )‖
2/2 · (1 + oP (1))

= τ−2
1 (C2

1α
2
n + C2

2β
2
n)/2 · (1 + oP (1)),

where C1 = ‖RU‖F , C2 = ‖DU‖F .

Next, we deal with K1. It is clear that |K1| ≤ L1 + L2, where

L1 =

∣

∣

∣

∣

∑

(i,j)∈S1

(SΩ0
−Ω0)ij(∆U)ij

∣

∣

∣

∣

,

L2 =

∣

∣

∣

∣

∑

(i,j)∈Sc
1

(SΩ0
−Ω0)ij(∆U)ij

∣

∣

∣

∣

.
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Using Lemma 1 and 2, we have

L1 ≤ (sn1 + pn)
1/2 max

i,j
|(SΩ0

−Ω0)ij| · ‖∆U‖F

≤ OP (αn + βn) · ‖∆U‖F

= OP (C1α
2
n + C2β

2
n),

This is dominated by K2 when C1 and C2 are sufficiently large.

Now, consider I2 − L2. Since we assumed λ2n1 � (sn1 + 1) log pn/n, by condition (C),

when n is sufficiently large, we have λn1 � αn and pλn1
(|αnuij|) ≥ λn1k1|αnuij| for some

positive constant k1. Using pλn1
(0) = 0, we then have

I2 =
∑

(i,j)∈Sc
1

pλn1
(|αnuij|) ≥ k1λn1αn

∑

(i,j)∈Sc
1

|uij|.

Hence

I2 − L2 ≥
∑

(i,j)∈Sc
1

{

λn1k1|αnuij| − |(SΩ0
−Ω0)ij | · |αnuij|

}

≥
∑

(i,j)∈Sc
1

[

λn1k1 − OP ({log pn/n}
1/2)

]

· |αnuij|

= λn1αn

∑

(i,j)∈Sc
1

[

k1 − OP (λ
−1
n1 {log pn/n}

1/2)
]

· |uij|.

With the assumption that λ2n1 � (sn1+1) log pn/n, we see from the above that I2−L2 ≥ 0

since OP (λ
−1
n1 {log pn/n}

1/2) = oP (1).

Now, with L1 dominated by K2 and I2 − L2 ≥ 0, the proof completes if we can show

that I3 is also dominated by K2, since we have proved that K2 > 0. Using Taylor’s

expansion, we can arrive at

|I3| ≤ C1αns
1/2
n1 an1 + C2

1bn1α
2
n/2 · (1 + o(1)).

By Condition (B), we have

|I3| = C ·O(α2
n + β2

n) + C2 · o(α2
n),

which is dominated by K2 with large enough constants C1 and C2. This completes the

proof of the theorem. �
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Proof of Theorem 2. It suffice to show that, for each (i, j) ∈ Sc
1, for σij in a sufficiently

small neighborhood around 0, the derivative ∂q1(Σ)/∂σij has the same sign as σij with

probability tending to 1. It is easy to show

∂q1(Σ)

∂σij
= 2(−(ΩSΩ)ij + ωij + p′λn

(|σij|)sgn(σij)),

where sgn(a) denotes the sign of a. Our aim is to estimate the order of |(−ΩSΩ+Ω)ij |,

finding an upper bound which is independent of both i and j.

Now consider Σ in the neighborhood ‖Σ−Σ0‖
2
F = Op{(pn + sn1) log pn/n}, the rate

specified in the theorem. Write

−ΩSΩ+Ω = I1 + I2,

where I1 = −Ω(S−Σ0)Ω and I2 = Ω(Σ−Σ0)Ω. Since

‖Ω‖ = λ−1
min(Σ) ≤ (λmin(Σ0) + λmin(Σ−Σ0))

−1

= τ−1
1 + oP (1),

we have

Ω = Ω0 + (Ω−Ω0) = Ω0 −Ω(Σ−Σ0)Ω0 = Ω0 +∆,

where ‖∆‖ ≤ ‖Ω‖ · ‖Σ−Σ0‖ · ‖Ω0‖ = oP (1) by Lemma 1. Hence we can apply Lemma

2 and conclude that maxi,j |(I1)ij| = OP ({log pn/n}
1/2).

Applying the above result for I2, using Lemma 1, we have

max
i,j

|(I2)ij | ≤ ‖Ω‖ · ‖Σ−Σ0‖ · ‖Ω‖

= OP (‖Σ−Σ0‖).

Hence we have

max
i,j

|(−ΩSΩ+Ω)ij | = OP ({log pn/n}
1/2 + ‖Σ−Σ0‖)

= OP ({(pn + sn1) log pn/n}
1/2).

Note that by Conditions (C) and (D), we have

p′λn1
(|σij|)) = C3λn1
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for σij in a small neighborhood of 0 (excluding 0 itself) and some positive constant C3.

Hence if λ2n1 � (pn+sn1) log pn/n, the term p′λn1
(|σij|)sgn(σij) dominates over −(ΩSΩ)ij+

ωij with probability tending to 1, making the sign of the derivative ∂q1(Σ)/∂σij depends

on sgn(σij) only. Hence, we obtain the result. �.

Proof of Theorem 3.

Following the sparsity property in Theorem 2, let Q1(Σ) = q1((σij1(i,j)∈S1
)), and we

solve ∂Q1(Σ̂)/∂σij = 0 for (i, j) ∈ S1, where Σ̂ is a local minimizer in Theorem 1. That

is, we solve

[∇Q1(Σ̂)]S1
= [∂Q1(Σ̂)/∂vec(Σ)]S1

= 0.

By Taylor’s expansion, we have

[−vec(Ω0SΩ0) + vec(Ω0) + b1]S1

+ [g(c,Σc) +∇2Pλn1
]S1×S1

[vec(Σ̂)− vec(Σ0)]S1
= 0,

where ∇2Pλn1
= diag(p′′λn1

(vec(Σc))), with Σc = Σ0 + c∆ and ∆ = Σ̂−Σ0 where c is a

constant, and g(c,Σc) is as defined in the proof of Theorem 1.

Since ‖Ω0∆Ω0‖ = OP (‖Σ̂−Σ0‖) = oP (1), from an argument in the proof of Theorem

1, we have

g(c,Σc) = Ω0 ⊗Ω0 +OP (αn + βn).

Also by regularity condition (D), we have ∇2Pλn1
= Σλn1

+ oP (1). Therefore,

[Ω⊗2
0 + Σλn1

]S1×S1
[vec(Σ̂)− vec(Σ0)]S1

(1 + oP (1)) + [b1]S1

= −[vec(Ω0SΩ0)− vec(Ω0)]S1
.

Hence, for a unit vector α of length sn1 + pn,

n1/2
α

T [(Ip2n +K)Ω⊗2
0 ]

−1/2
S1×S1

·
{

[Ω⊗2
0 + Σλn1

]S1×S1
[vec(Σ̂)− vec(Σ0)]S1

(1 + oP (1)) + [b1]S1

}

= n−1/2

n
∑

i=1

wi,

where wi = −α
T [(Ip2n +K)Ω⊗2

0 ]
−1/2
S1×S1

[vec(Ω0(yiy
T
i −Σ0)Ω0)]S1

defines a sequence of i.i.d.

random variables with mean zero and variance 1, since

var([vec(Ω0yiy
T
i Ω0)]S1

) = [(Ip2n +K)Ω⊗2
0 ]S1×S1
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(see e.g. Theorem 9.2.2 of [11] and p90 of [16]). Therefore, it remains to check the

Lindeberg condition.

Firstly,
∑n

i=1E(n
−1w2

i ) = var(w1) = 1. Also, for an ǫ > 0,

n
∑

i=1

E(n−1w2
i 1{|wi|≥ǫn1/2}) = E(w2

11{|w1|≥ǫn1/2})

≤ {E(w4
1)P (w1 > ǫn1/2)}1/2.

For the latter probability, by the Markov inequality,

P (|w1| > ǫn1/2) ≤ 1/(ǫ2n) = O(n−1). (5.4)

For the former expectation, write

aT = α
T [(Ip2n +K)Ω⊗2

0 ]
−1/2
S1×S1

, x = [vec(Ω0(yiy
T
i −Σ0)Ω0)]S1

.

Then, since elements of x are elements of a Wishart matrix centered to zero, it has a

finite fourth moment. Consequently,

E(w4
1) = tr{E(xxT ⊗ xxT ) · aaT ⊗ aaT }

= O((pn + sn1)
2), (5.5)

With (5.4) and (5.5), we have

n
∑

i=1

E(n−1w2
i 1{|wi|≥ǫn1/2}) = O((pn + sn1)n

−1/2) = o(1),

which completes the proof. �

Proof of Theorem 4. The proof is nearly identical to that of Theorem 1, except that we

now set ∆U = αnU . The fact that (Γ̂S)ii = 1 = γ0ii has no estimation error eliminates an

order (pn log pn/n)
1/2 that contributes from estimating tr((Γ̂S − Γ0)Ψ0∆UΨ0) for (2.1).

This is why we can estimate more accurately for the sparse correlation.

For the operator norm result, we refer readers to the proof of Theorem 2 of [19]. �

Proof of Theorem 7. For Ω a minimizer of (1.3), the derivative for q2(Ω) w.r.t. ωij for

(i, j) ∈ Sc
2 is

∂q2(Ω)

∂ωij
= 2(sij − σij + p′λn

(|ωij|)sgn(ωij)).
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Arguments similar to those in the proof of Theorem 2 shows that

‖Σ−Σ0‖ = ‖Σ(Ω0 −Ω)Σ0‖ = O(‖Ω−Ω0‖).

By Lemma 2 or Lemma 3 of Bickel and Levina (2006), it follows that maxi,j |sij − σ0
ij | =

OP ({log pn/n}
1/2). Combining the last two results yield that

max
i,j

|sij − σij | = OP (|sij − σ0
ij |+ ‖Ω−Ω0‖)

= OP ({log pn/n}
1/2 + ‖Ω−Ω0‖)

= OP ({(pn + sn2) log pn/n}
1/2).

Using arguments similar to the proof of Theorem 2, for ωij in a small neighborhood

of 0, we need to have λn2 � {(pn + sn2) log pn/n}
1/2 in order to have sign of ∂q2(Ω)/∂ωij

depends on sgn(ωij) only with probability tending to 1. The proof of the theorem is

completed. �
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